Science.gov

Sample records for multiple lignocellulosic pretreatment

  1. Method for pretreating lignocellulosic biomass

    DOEpatents

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  2. Lignocellulosic biomass pretreatment using AFEX.

    PubMed

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P S; Marshall, Derek; Dale, Bruce E

    2009-01-01

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  3. Lime pretreatment of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Chang, Shushien

    Lignocellulose is a valuable alternative energy source. The susceptibility of lignocellulosic biomass to enzymatic hydrolysis is constrained due to its structural features, so pretreatment is essential to enhance enzymatic digestibility. Of the chemicals used as pretreatment agents, it has been reported that alkalis improve biomass digestibility significantly. In comparison with other alkalis such as NaOH and ammonia, lime (calcium hydroxide) has many advantages; it is very inexpensive, is safe, and can be recovered by carbonating wash water. The effects of lime pretreatment were explored on switchgrass and poplar wood, representing herbaceous and woody biomass, respectively. The effects of pretreatment conditions (time, temperature, lime loading, water loading, particle size, and oxygen pressure) have been systematically studies. Lime alone enhances the digestibility of switchgrass significantly; under the recommended conditions, the 3-d total sugar (glucose + xylose) yields of lime-treated switchgrass were 7 times that of untreated sample. When treating poplar wood, lime must be combined with oxygen to achieve high digestibility; oxidative lime pretreatment increased the 3-d total sugar yield of poplar wood to 12 times that of untreated sample. In a fundamental study, to determine why lime pretreatment is effective, the effects of three structural features on enzymatic digestibility were studied: lignin content, acetyl content, and crystallinity index (CrI). Poplar wood was treated with peracetic acid, potassium hydroxide, and ball milling to produce model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and CrI, respectively. Enzymatic hydrolysis was performed on the model lignocelluloses to determine the digestibility. Correlations between lignin/carbohydrate ratio, acetyl/carbohydrate ratio, CrI and digestibility were developed. The 95% prediction intervals show that the correlations predict the 1-h and 3-d total sugar conversions of

  4. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors

    SciTech Connect

    Yang, Shihui; Pelletier, Dale A; Lu, Tse-Yuan; Brown, Steven D

    2010-01-01

    Zymomonas mobilis produces near theoretical yields of ethanol and recombinant strains are candidate industrial microorganisms. To date, few studies have examined its responses to various stresses at the gene level. Hfq is a conserved bacterial member of the Sm-like family of RNA-binding proteins, coordinating a broad array of responses including multiple stress responses. In a previous study, we observed Z. mobilis ZM4 gene ZMO0347 showed higher expression under anaerobic, stationary phase compared to that of aerobic, stationary conditions. We have shown the utility of the pKNOCK suicide plasmid for mutant construction in Z. mobilis, and constructed a Gateway compatible expression plasmid for use in Z. mobilis for the first time. We have also used genetics to show Z. mobilis Hfq and S. cerevisiae Lsm proteins play important roles in resisting multiple, important industrially relevant inhibitors. The conserved nature of this global regulator offers the potential to apply insights from these fundamental studies for further industrial strain development.

  5. Supercritical ammonia pretreatment of lignocellulosic materials

    SciTech Connect

    Chou, Y.C.T.; Scott, C.D.

    1986-01-01

    A pretreatment technique using ammonia in a supercritical or near-critical fluid state was shown to substantially enhance the susceptibility of polysaccharides in lignocellulosics to subsequent hydrolysis by Trichoderma reesei cellulase. Near-theoretical conversion of cellulose and 70-80% conversion of hemicellulose to sugars from supercritical ammonia pretreated hardwoods or agricultural byproducts were obtained with a small dosage of cellulase. This technique was less effective toward softwoods. The pretreatment results are discussed in light of the properties of supercritical fluids.

  6. Pretreatment of lignocellulosic biomass using Fenton chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...

  7. Cellulose pretreatments of lignocellulosic substrates

    NASA Technical Reports Server (NTRS)

    Weil, J.; Westgate, P.; Kohlmann, K.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Cellulose in inedible plant materials, forestry residues, and municipal wastes must be pretreated to disrupt its physical structure, thereby making its hydrolysis to glucose practical. Developments since 1991 are summarized.

  8. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    PubMed Central

    Zheng, Jun; Rehmann, Lars

    2014-01-01

    Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic) hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs. PMID:25334065

  9. Pretreatments to enhance the digestibility of lignocellulosic biomass.

    PubMed

    Hendriks, A T W M; Zeeman, G

    2009-01-01

    Lignocellulosic biomass represents a rather unused source for biogas and ethanol production. Many factors, like lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have as a goal to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effect(s) on the cellulose, hemicellulose and lignin; the three main components of lignocellulosic biomass. This paper reviews the different effect(s) of several pretreatments on the three main parts of the lignocellulosic biomass to improve its digestibility. Steam pretreatment, lime pretreatment, liquid hot water pretreatments and ammonia based pretreatments are concluded to be pretreatments with high potentials. The main effects are dissolving hemicellulose and alteration of lignin structure, providing an improved accessibility of the cellulose for hydrolytic enzymes.

  10. Evaluation of hydrotropic pretreatment on lignocellulosic biomass.

    PubMed

    Devendra, Leena P; Kiran Kumar, M; Pandey, Ashok

    2016-08-01

    The production of cellulosic ethanol from biomass is considered as a promising alternative to fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The presence of lignin poses a significant challenge for obtaining biofuels and bioproducts from biomass. Part of that problem involves understanding fundamental aspects of lignin structure which can provide a pathway for the development of improved technologies for biomass conversion. Hydrotropic pretreatment has several attractive features that make it an attractive alternative for biofuel production. This review highlights the recent developments on hydrotropic pretreatment processes for lignocellulosic biomass on a molecular structure basis for recalcitrance, with emphasis on lignin concerning chemical structure, transformation and recalcitrance. The review also evaluates the hydrotropic delignification in comparison to alkaline delignification on lignin reduction and surface coverage by lignin. The effect of hydrotrope pretreatment on enzymatic saccharification has also been discussed. PMID:27013188

  11. Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass

    PubMed Central

    2014-01-01

    Background Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. Results Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation. Conclusions The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance. PMID:24779378

  12. Pretreatment of Lignocellulosic Biomass with Low-cost Ionic Liquids.

    PubMed

    Gschwend, Florence J V; Brandt, Agnieszka; Chambon, Clementine L; Tu, Wei-Chien; Weigand, Lisa; Hallett, Jason P

    2016-01-01

    A number of ionic liquids (ILs) with economically attractive production costs have recently received growing interest as media for the delignification of a variety of lignocellulosic feedstocks. Here we demonstrate the use of these low-cost protic ILs in the deconstruction of lignocellulosic biomass (Ionosolv pretreatment), yielding cellulose and a purified lignin. In the most generic process, the protic ionic liquid is synthesized by accurate combination of aqueous acid and amine base. The water content is adjusted subsequently. For the delignification, the biomass is placed into a vessel with IL solution at elevated temperatures to dissolve the lignin and hemicellulose, leaving a cellulose-rich pulp ready for saccharification (hydrolysis to fermentable sugars). The lignin is later precipitated from the IL by the addition of water and recovered as a solid. The removal of the added water regenerates the ionic liquid, which can be reused multiple times. This protocol is useful to investigate the significant potential of protic ILs for use in commercial biomass pretreatment/lignin fractionation for producing biofuels or renewable chemicals and materials. PMID:27583830

  13. Features of promising technologies for pretreatment of lignocellulosic biomass.

    PubMed

    Mosier, Nathan; Wyman, Charles; Dale, Bruce; Elander, Richard; Lee, Y Y; Holtzapple, Mark; Ladisch, Michael

    2005-04-01

    Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose. These methods cause physical and/or chemical changes in the plant biomass in order to achieve this result. Experimental investigation of physical changes and chemical reactions that occur during pretreatment is required for the development of effective and mechanistic models that can be used for the rational design of pretreatment processes. Furthermore, pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass. This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods.

  14. Processes for pretreating lignocellulosic biomass: A review

    SciTech Connect

    McMillan, J.D.

    1992-11-01

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  15. Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment.

    PubMed

    Masran, Ruqayyah; Zanirun, Zuraidah; Bahrin, Ezyana Kamal; Ibrahim, Mohamad Faizal; Lai Yee, Phang; Abd-Aziz, Suraini

    2016-06-01

    Abundant lignocellulosic biomass from various industries provides a great potential feedstock for the production of value-added products such as biofuel, animal feed, and paper pulping. However, low yield of sugar obtained from lignocellulosic hydrolysate is usually due to the presence of lignin that acts as a protective barrier for cellulose and thus restricts the accessibility of the enzyme to work on the cellulosic component. This review focuses on the significance of biological pretreatment specifically using ligninolytic enzymes as an alternative method apart from the conventional physical and chemical pretreatment. Different modes of biological pretreatment are discussed in this paper which is based on (i) fungal pretreatment where fungi mycelia colonise and directly attack the substrate by releasing ligninolytic enzymes and (ii) enzymatic pretreatment using ligninolytic enzymes to counter the drawbacks of fungal pretreatment. This review also discusses the important factors of biological pretreatment using ligninolytic enzymes such as nature of the lignocellulosic biomass, pH, temperature, presence of mediator, oxygen, and surfactant during the biodelignification process. PMID:27115758

  16. Understanding Ionic Liquid Pretreatment of Lignocellulosic Biomasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment of biomass is essential for breaking apart highly ordered and crystalline plant cell walls and loosening the lignin and hemicellulose conjugation to cellulose microfibrills, thereby facilitating enzyme accessibility and adsorption and reducing costs of downstream saccharification proces...

  17. Conversion of lignocellulosics pretreated with liquid hot water to ethanol

    SciTech Connect

    Walsum, G.P. van; Laser, M.S.; Lynd, L.R.

    1996-12-31

    Lignocellulosic materials pretreated using liquid hot water (LHW) (220{degrees}C, 5 MPa, 120 s) were fermented to ethanol by batch simultaneous saccharification and fermentation (SSF) using Saccharomyces cerevisiae in the presence of Trichoderma reesei cellulose. SSF of sugarcane bagasse (as received), aspen chips (smallest dimension 3 mm), and mixed hardwood flour (-60 +70 mesh) resulted in 90% conversion to ethanol in 2-5 d at enzyme loadings of 15-30 FPU/g. In most cases, 90% of the final conversion was achieved within 75 h of inoculation. Comminution of the pretreated substrates did not affect the conversion to ethanol. The hydrolysate produced from the LHW pretreatment showed slight inhibition of batch growth of S. cerevisiae. Solids pretreated at a concentration of 100 g/L were as reactive as those pretreated at a lower concentration, provided that the temperature was maintained at 220{degrees}C. 51 refs., 3 figs., 4 tabs.

  18. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents.

    PubMed

    Zhang, Cheng-Wu; Xia, Shu-Qian; Ma, Pei-Sheng

    2016-11-01

    In this work, three kinds of deep eutectic solvents (DESs) were facilely prepared and used in the pretreatment of corncob, including monocarboxylic acid/choline chloride, dicarboxylic acid/choline chloride and polyalcohol/choline chloride. The enhanced delignification and subsequent enzymatic hydrolysis efficiency were found to be related to the acid amount, acid strength and the nature of hydrogen bond acceptors. The XRD, SEM and FT-IR results consistently indicated that the structures of corncob were disrupted by the removal of lignin and hemicellulose in the pretreatment process. In addition, the optimal pretreatment temperature and time were 90°C and 24h, respectively. This study explored the roles of various DESs combinations, pretreatment temperature and time to better utilize the DESs in the pretreatment of lignocellulosic biomass. PMID:27468171

  19. Physiochemical characterization of lignocellulosic biomass dissolution by flowthrough pretreatment

    DOE PAGESBeta

    Yan, Lishi; Pu, Yunqiao; Bowden, Mark; Ragauskas, Arthur J.; Yang, Bin

    2015-11-24

    In this study, comprehensive understanding of biomass solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of valorizing biomass to fermentable sugars and lignin for biofuels production. In this study, poplar wood was flowthrough pretreated by water-only or 0.05% (w/w) sulfuric acid at different temperatures (220–270 °C), flow rate (25 mL/min), and reaction times (8–90 min), resulting in significant disruption of the lignocellulosic biomass. Ion chromatography (IC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, and solid state cross-polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR)more » spectroscopy were applied to characterize the pretreated biomass whole slurries in order to reveal depolymerization as well as solubilization mechanism and identify unique dissolution structural features during these pretreatments. Results showed temperature-dependent cellulose decrystallization in flowthrough pretreatment. Crystalline cellulose was completely disrupted, and mostly converted to amorphous cellulose and oligomers by water-only operation at 270 °C for 10 min and by 0.05 wt % H2SO4 flowthrough pretreatment at 220 °C for 12 min. Flowthrough pretreatment with 0.05% (w/w) H2SO4 led to a greater disruption of structures in pretreated poplar at a lower temperature compared to water-only pretreatment.« less

  20. Screening of ligninolytic fungi for biological pretreatment of lignocellulosic biomass.

    PubMed

    Xu, Chunyan; Singh, Deepak; Dorgan, Kathleen M; Zhang, Xiaoyu; Chen, Shulin

    2015-10-01

    To identify white rot fungi with high potential in biological pretreatment of lignocellulosic biomass, preliminary screening was carried out on plates by testing different strains for their ability to oxidize guaiacol and decolorize the dyes azure B and Poly R-478. Of the 86 strains screened, 16 were selected for secondary screening for their ligninolytic ability; however, low manganese peroxidase activity and no lignin peroxidase activity were detected. Strain BBEL0970 proved to be the most efficient in laccase production and was subsequently identified as Trametes versicolor by analysis of the ribosomal DNA internal transcribed spacer gene sequence. In combining laccase production with biological pretreatment, the replacement of glucose with barley straw significantly improved the laccase activity by up to 10.3 U/mL, which provided evidence toward potential utilization of barley straw in laccase production by BBEL0970. Simultaneously, comparison by thermogravimetric analysis of the untreated and pretreated barley straw in liquid fermentation of laccase also demonstrated the high potential of BBEL0970 in biological pretreatment of lignocellulosic biomass. This work sheds light on further exploration on the integrated process of low-cost laccase production and efficient biological pretreatment of barley straw by T. versicolor BBEL0970.

  1. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-05-01

    Hydrothermal pretreatment using liquid hot water, steam explosion, or dilute acids enhances the enzymatic digestibility of cellulose by altering the chemical and/or physical structures of lignocellulosic biomass. However, compounds that inhibit both enzymes and microbial activity, including lignin-derived phenolics, soluble sugars, furan aldehydes, and weak acids, are also generated during pretreatment. Insoluble lignin, which predominantly remains within the pretreated solids, also acts as a significant inhibitor of cellulases during hydrolysis of cellulose. Exposed lignin, which is modified to be more recalcitrant to enzymes during pretreatment, adsorbs cellulase nonproductively and reduces the availability of active cellulase for hydrolysis of cellulose. Similarly, lignin-derived phenolics inhibit or deactivate cellulase and β-glucosidase via irreversible binding or precipitation. Meanwhile, the performance of fermenting microorganisms is negatively affected by phenolics, sugar degradation products, and weak acids. This review describes the current knowledge regarding the contributions of inhibitors present in whole pretreatment slurries to the enzymatic hydrolysis of cellulose and fermentation. Furthermore, we discuss various biological strategies to mitigate the effects of these inhibitors on enzymatic and microbial activity to improve the lignocellulose-to-biofuel process robustness. While the inhibitory effect of lignin on enzymes can be relieved through the use of lignin blockers and by genetically engineering the structure of lignin or of cellulase itself, soluble inhibitors, including phenolics, furan aldehydes, and weak acids, can be detoxified by microorganisms or laccase.

  2. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  3. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review.

    PubMed

    Brodeur, Gary; Yau, Elizabeth; Badal, Kimberly; Collier, John; Ramachandran, K B; Ramakrishnan, Subramanian

    2011-01-01

    Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have shown that pretreatment can improve sugar yields to higher than 90% theoretical yield for biomass such as wood, grasses, and corn. This paper reviews different leading pretreatment technologies along with their latest developments and highlights their advantages and disadvantages with respect to subsequent hydrolysis and fermentation. The effects of different technologies on the components of biomass (cellulose, hemicellulose, and lignin) are also reviewed with a focus on how the treatment greatly enhances enzymatic cellulose digestibility. PMID:21687609

  4. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review

    PubMed Central

    Brodeur, Gary; Yau, Elizabeth; Badal, Kimberly; Collier, John; Ramachandran, K. B.; Ramakrishnan, Subramanian

    2011-01-01

    Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have shown that pretreatment can improve sugar yields to higher than 90% theoretical yield for biomass such as wood, grasses, and corn. This paper reviews different leading pretreatment technologies along with their latest developments and highlights their advantages and disadvantages with respect to subsequent hydrolysis and fermentation. The effects of different technologies on the components of biomass (cellulose, hemicellulose, and lignin) are also reviewed with a focus on how the treatment greatly enhances enzymatic cellulose digestibility. PMID:21687609

  5. Physiochemical characterization of lignocellulosic biomass dissolution by flowthrough pretreatment

    SciTech Connect

    Yan, Lishi; Pu, Yunqiao; Bowden, Mark; Ragauskas, Arthur J.; Yang, Bin

    2015-11-24

    In this study, comprehensive understanding of biomass solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of valorizing biomass to fermentable sugars and lignin for biofuels production. In this study, poplar wood was flowthrough pretreated by water-only or 0.05% (w/w) sulfuric acid at different temperatures (220–270 °C), flow rate (25 mL/min), and reaction times (8–90 min), resulting in significant disruption of the lignocellulosic biomass. Ion chromatography (IC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, and solid state cross-polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) spectroscopy were applied to characterize the pretreated biomass whole slurries in order to reveal depolymerization as well as solubilization mechanism and identify unique dissolution structural features during these pretreatments. Results showed temperature-dependent cellulose decrystallization in flowthrough pretreatment. Crystalline cellulose was completely disrupted, and mostly converted to amorphous cellulose and oligomers by water-only operation at 270 °C for 10 min and by 0.05 wt % H2SO4 flowthrough pretreatment at 220 °C for 12 min. Flowthrough pretreatment with 0.05% (w/w) H2SO4 led to a greater disruption of structures in pretreated poplar at a lower temperature compared to water-only pretreatment.

  6. Structural modifications of lignocellulosics by pretreatments to enhance enzymatic hydrolysis

    SciTech Connect

    Gharpuray, M.M.; Lee, Y.F.; Fan, L.T.

    1983-01-01

    In this work an evaluation was made of a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw. A multiple pretreatment consisted of a physical pretreatment followed by a chemical pretreatment. The structural features of wheat straw, including the specific surface area, crystallinity index, and lignin content, were measured to understand the mechanism of the enhancement in the hyrolysis rate upon pretreatment. It has been found that, in general, multiple pretreatments were not promising, since the hydrolysis rates rarely exceeded those achieved by single pretreatments. Ball-milling pretreatment was found to be effective in increasing the specific surface area and decreasing the crystallinity index. Treatment with ethylene glycol was highly effective in increasing the specific surface area, in addition to a high degree of delignification. Peracetic acid pretreatment was highly effective in delignifying substrate. Among multiple pretreatments, those involving peracetic acid treatment generally had lower crystallinity indices and lignin content values. The relationship between the hydrolysis rate and the set of structural features indicated that an increase in surface area and a decrease in the crystallinity and lignin content enhance the hydrolysis; the specific surface area is the most influential of the structural features, followed by the lignin content. (Refs. 23).

  7. Adhesion improvement of lignocellulosic products by enzymatic pre-treatment.

    PubMed

    Widsten, Petri; Kandelbauer, Andreas

    2008-01-01

    Enzymatic bonding methods, based on laccase or peroxidase enzymes, for lignocellulosic products such as medium-density fiberboard and particleboard are discussed with reference to the increasing costs of presently used petroleum-based adhesives and the health concerns associated with formaldehyde emissions from current composite products. One approach is to improve the self-bonding properties of the particles by oxidation of their surface lignin before they are fabricated into boards. Another method involves using enzymatically pre-treated lignins as adhesives for boards and laminates. The application of this technology to achieve wet strength characteristics in paper is also reviewed.

  8. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  9. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    PubMed Central

    2011-01-01

    Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose. PMID:22074910

  10. Elucidating the Role of Ferrous Ion Cocatalyst in Enhancing Dilute Acid Pretreatment of Lignocellulosic Biomass

    SciTech Connect

    Wei, H.; Donohoe, B. S.; Vinzant, T. B.; Ciesielski, P. N.; Wang, W.; Gedvilas, L. M.; Zeng, Y.; Johnson, D. K.; Ding, S. Y.; Himmel, M. E.; Tucker, M. P.

    2011-01-01

    Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe{sup 2+} ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe{sup 2+} ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe{sup 2+} ion pretreatment, in which delamination and fibrillation of the cell wall were observed. By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  11. Deconstruction of ionic liquid pretreated lignocellulosic biomass using mono-component cellulases and hemicellulases and commercial mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass is comprised of cellulose and hemicellulose, sources of polysaccharides, and lignin, a macromolecule with extensive aromaticity. Lignocellulose requires pretreatment before biochemical conversion to its monomeric sugars which can provide a renewable carbon based feedstock for...

  12. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass.

    PubMed

    Fernandes, T V; Bos, G J Klaasse; Zeeman, G; Sanders, J P M; van Lier, J B

    2009-05-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After pre-treatment, the plant material was anaerobically digested in batch bottles under mesophilic conditions for 40 days. From the pre-treatment and subsequent anaerobic digestion experiments, it was concluded that when the lignin content of the plant material is high, thermo-chemical pre-treatments have a positive effect on the biodegradability of the substrate. Calcium hydroxide pre-treatment improves the biodegradability of lignocellulosic biomass, especially for high lignin content substrates, like bracken. Maleic acid generates the highest percentage of dissolved COD during pre-treatment. Ammonium pre-treatment only showed a clear effect on biodegradability for straw. PMID:19144515

  13. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Vaidya, Atul N; Das, Sera; Wate, Satish R

    2015-06-01

    A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment.

  14. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review

    PubMed Central

    Taherzadeh, Mohammad J.; Karimi, Keikhosro

    2008-01-01

    Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane) or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX), supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute-and concentrated-acid hydrolyses, and biological pretreatments. PMID:19325822

  15. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review.

    PubMed

    Singh, Joginder; Suhag, Meenakshi; Dhaka, Anil

    2015-03-01

    Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.

  16. Influence of lignin addition on the enzymatic digestibility of pretreated lignocellulosic biomasses.

    PubMed

    Wang, Wangxia; Zhu, Yangsu; Du, Jing; Yang, Yiqin; Jin, Yongcan

    2015-04-01

    The presence of lignin in lignocellulosic biomass is correlated with its enzymatic digestibility. Their correlation and mechanism have been investigated widely but have not been elucidated clearly. In this study, hydrophilic sulfonated lignin and hydrophobic kraft lignin were introduced into the enzymatic hydrolysis process to investigate their effects on the enzymatic digestibility of different pretreated lignocellulose. The influence of lignin addition on the enzymatic digestibility varied with both introduced lignin type and the pretreatment methods of substrates. Slight enhancement of enzymatic hydrolysis was observed for all substrates by adding kraft lignin. The addition of sulfonated lignin could effectively improve the enzymatic digestibility of green liquor and acidic bisulfite pretreated materials, but had little effect on sulfite-formaldehyde pretreated samples. The enzymatic digestibility of green liquor pretreated masson pine increased from 42% without lignin addition to 75% with 0.3g/g-substrate sulfonated lignin addition.

  17. Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production.

    PubMed

    Zhang, Jian; Wang, Xiusheng; Chu, Deqiang; He, Yanqing; Bao, Jie

    2011-03-01

    Two rarely noticed but important parameters of the dilute sulfuric acid pretreatment of lignocellulose biomass, the feedstock filling ratio to the pretreatment reactor and the solids/liquid presoaking ratio, were extensively studied. The effects of the two parameters on the steam consumption, waste water generation, and pretreatment efficiency were investigated. At the full filling ratio and high solids/liquid presoaking ratio, this "dry" pretreatment method provided at least the following advantages: (1) the steam consumption was significantly reduced; (2) no aqueous acid containing waste water was generated; (3) high solids content of the pretreated materials were obtained and the consequent saccharification and fermentation was carried out at high solids loading easily. This method was applied to various lignocellulose feedstocks successfully and provided a practical means to produce ethanol economically feasible.

  18. Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose.

    PubMed

    Jung, Young Hoon; Kim, Hyun Kyung; Park, Hyun Min; Park, Yong-Cheol; Park, Kyungmoon; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-03-01

    In this study, the Fenton reaction, which is naturally used by fungi for wood decay, was employed to pretreat rice straw and increase the enzymatic digestibility for the saccharification of lignocellulosic biomass. Using an optimized Fenton's reagent (FeCl3 and H2O2) for pretreatment, an enzymatic digestibility that was 93.2% of the theoretical glucose yield was obtained. This is the first report of the application of the Fenton reaction to lignocellulose pretreatment at a moderate temperature (i.e., 25°C) and with a relatively high loading of biomass (i.e., 10% (w/v)). Substantial improvement in the process economics of cellulosic fuel and chemical production can be achieved by replacing the conventional pretreatment with this Fenton-mimicking process.

  19. Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment.

    PubMed

    Hu, Yuansheng; Hao, Xiaodi; Wang, Jimin; Cao, Yali

    2016-03-01

    This study attempted to enhance anaerobic conversion of lignocellulosic materials in excess sludge by bioaugmentation and pretreatment. The results reveal that highly active lignocellulolytic microorganisms (Clostridium stercorarium and Bacteroides cellulosolvens) could be enriched from anaerobic sludge in ordinarily operated anaerobic digester (AD). Inoculating these microorganisms into AD could substantially enhance the degradation of cellulose and hemicellulose. However, this effect of bioaugmentation was shielded for raw excess sludge due to lignin incrustation in native biosolids. For this problem, pretreatments including acid, alkali, thermal and ultrasonic methods were effectively used to deconstruct the lignin incrustation, in which thermal pretreatment was demonstrated to be the most effective one. Then, pretreatment associated with bioaugmentation was successfully used to enhance the energy conversion of lignocellulosic materials, which resulted in the degradation of cellulose, hemicellulose and lignin to 68.8-78.2%, 77.4-89% and 15.4-33.7% respectively and thus increased the CH4 production by 210-246%, compared with ordinary AD.

  20. Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast.

    PubMed

    Stagge, Stefan; Cavka, Adnan; Jönsson, Leif J

    2015-12-01

    Pretreatment of lignocellulosic biomass under acidic conditions gives rise to by-products that inhibit fermenting microorganisms. An analytical procedure for identification of p-benzoquinone (BQ) and 2,6-dimethoxybenzoquinone (DMBQ) in pretreated biomass was developed, and the inhibitory effects of BQ and DMBQ on the yeast Saccharomyces cerevisiae were assessed. The benzoquinones were analyzed using ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. Pretreatment liquids examined with regard to the presence of BQ and DMBQ originated from six different lignocellulosic feedstocks covering agricultural residues, hardwood, and softwood, and were produced through impregnation with sulfuric acid or sulfur dioxide at varying pretreatment temperature (165-204 °C) and residence time (6-20 min). BQ was detected in all six pretreatment liquids in concentrations ranging up to 6 mg/l, while DMBQ was detected in four pretreatment liquids in concentrations ranging up to 0.5 mg/l. The result indicates that benzoquinones are ubiquitous as by-products of acid pretreatment of lignocellulose, regardless of feedstock and pretreatment conditions. Fermentation experiments with BQ and DMBQ covered the concentration ranges 2 mg/l to 1 g/l and 20 mg/l to 1 g/l, respectively. Even the lowest BQ concentration tested (2 mg/l) was strongly inhibitory to yeast, while 20 mg/l DMBQ gave a slight negative effect on ethanol formation. This work shows that benzoquinones should be regarded as potent and widespread inhibitors in lignocellulosic hydrolysates, and that they warrant attention besides more well-studied inhibitory substances, such as aliphatic carboxylic acids, phenols, and furan aldehydes. PMID:26384342

  1. Effect of moisture on pretreatment efficiency for anaerobic digestion of lignocellulosic substrates.

    PubMed

    Peces, M; Astals, S; Mata-Alvarez, J

    2015-12-01

    The present study evaluates the effect of moisture in low-temperature and ultrasound pretreatment on lignocellulosic substrates anaerobic biodegradability, where brewer's spent grain was used as model substrate. Besides moisture content, low-temperature pretreatment was also evaluated in terms of temperature (60-80°C) and exposure time (12-72 h). Likewise, ultrasonication was also evaluated in terms of specific energy (1000-50,000 kJ kg TS(-1)). In addition, the effect of substrate particle size reduction by milling pretreatment was also considered. The results clearly demonstrated that substrate moisture (total solid concentration) is a significant parameter for pretreatment performance, although it has been rarely considered in pretreatment optimisation. Specifically, moisture optimisation increased the methane yield of brewer's spent grain by 6% for low-temperature pretreatment (60°C), and by 14% for ultrasound pretreatment (1000 kJ kg TS(-1)) towards the control (without pretreatment). In both pretreatments, the experimental optimum total solid concentration was 100 gTS kg(-1). Thus, lowering substrate moisture, a strategy suggested attaining energetic pretreatment feasibility, needs to be analysed as another pretreatment variable since it might have limited correlation. Finally, a preliminary energetic balance of the pretreatments under study showed that the extra methane production could not cover the energetic pretreatment expenses.

  2. Effect of moisture on pretreatment efficiency for anaerobic digestion of lignocellulosic substrates.

    PubMed

    Peces, M; Astals, S; Mata-Alvarez, J

    2015-12-01

    The present study evaluates the effect of moisture in low-temperature and ultrasound pretreatment on lignocellulosic substrates anaerobic biodegradability, where brewer's spent grain was used as model substrate. Besides moisture content, low-temperature pretreatment was also evaluated in terms of temperature (60-80°C) and exposure time (12-72 h). Likewise, ultrasonication was also evaluated in terms of specific energy (1000-50,000 kJ kg TS(-1)). In addition, the effect of substrate particle size reduction by milling pretreatment was also considered. The results clearly demonstrated that substrate moisture (total solid concentration) is a significant parameter for pretreatment performance, although it has been rarely considered in pretreatment optimisation. Specifically, moisture optimisation increased the methane yield of brewer's spent grain by 6% for low-temperature pretreatment (60°C), and by 14% for ultrasound pretreatment (1000 kJ kg TS(-1)) towards the control (without pretreatment). In both pretreatments, the experimental optimum total solid concentration was 100 gTS kg(-1). Thus, lowering substrate moisture, a strategy suggested attaining energetic pretreatment feasibility, needs to be analysed as another pretreatment variable since it might have limited correlation. Finally, a preliminary energetic balance of the pretreatments under study showed that the extra methane production could not cover the energetic pretreatment expenses. PMID:26316102

  3. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    NASA Astrophysics Data System (ADS)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  4. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass.

    PubMed

    Acharjee, Tapas C; Coronella, Charles J; Vasquez, Victor R

    2011-04-01

    The equilibrium moisture content (EMC) of raw lignocellulosic biomass, along with four samples subjected to thermal pretreatment, was measured at relative humidities ranging from 11% to 97% at a constant temperature of 30 °C. Three samples were prepared by treatment in hot compressed water by a process known as wet torrefaction, at temperatures of 200, 230, and 260 °C. An additional sample was prepared by dry torrefaction at 300 °C. Pretreated biomass shows EMC below that of raw biomass. This indicates that pretreated biomass, both dry and wet torrefied, is more hydrophobic than raw biomass. The EMC results were correlated with a recent model that takes into account additional non-adsorption interactions of water, such as mixing and swelling. The model offers physical insight into the water activity in lignocellulosic biomass.

  5. Production of ligninolytic enzymes by white rot fungi on lignocellulosic wastes using novel pretreatments.

    PubMed

    Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K; Agrawal, S; Singh, M P

    2014-01-01

    Production of extracellular ligninolytic enzymes (laccase and polyphenol oxidase) secreted by three species of white rot fungi (Pleurotus florida, P. flabellatus and P. sajor—caju) under in vivo condition was studied on two lignocellulosic substrates i.e., paddy straw and wheat straw. These lignocellulosic substrates were treated with neem (Azadirachta indica) oil and ashoka (Saraca indica) leaves extract. Between the two lignocellulosic substrates, paddy straw pretreated with neem oil supported maximum activity of laccase and polyphenol oxidase (PPO). The activities of both the enzymes were low on the 5th day of cultivation which increased on the 10th day and reached at peak on the 15th day. Thereafter, there was continuous decrease in the enzymatic activity. Among the three species, P. flabellatus (P3) showed maximum ligninolytic enzymatic activity followed by P. florida (P2)and P. sajor—caju (P1). PMID:25535711

  6. Overcoming Biomass Recalcitrance by Combining Genetically Modified Switchgrass and Cellulose Solvent-Based Lignocellulose Pretreatment

    PubMed Central

    Zhao, Bingyu; Zhang, Y.-H. Percival

    2013-01-01

    Decreasing lignin content of plant biomass by genetic engineering is believed to mitigate biomass recalcitrance and improve saccharification efficiency of plant biomass. In this study, we compared two different pretreatment methods (i.e., dilute acid and cellulose solvent) on transgenic plant biomass samples having different lignin contents and investigated biomass saccharification efficiency. Without pretreatment, no correlation was observed between lignin contents of plant biomass and saccharification efficiency. After dilute acid pretreatment, a strong negative correlation between lignin content of plant samples and overall glucose release was observed, wherein the highest overall enzymatic glucan digestibility was 70% for the low-lignin sample. After cellulose solvent- and organic solvent-based lignocellulose fractionation pretreatment, there was no strong correlation between lignin contents and high saccharification efficiencies obtained (i.e., 80–90%). These results suggest that the importance of decreasing lignin content in plant biomass to saccharification was largely dependent on pretreatment choice and conditions. PMID:24086283

  7. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose

    SciTech Connect

    Gabhane, Jagdish; William, S.P.M. Prince; Vaidya, Atul N.; Das, Sera; Wate, Satish R.

    2015-06-15

    Highlights: • SAAP is an efficient and economic means of pretreatment. • SAAP was found to be efficient in lignin and hemicellulose removal. • SAAP enhanced the enzymatic hydrolysis. • FTIR, XRD and SEM provided vivid understanding about the mode of action of SAAP. • Mass balance closer of 98% for pretreated GB confirmed the reliability of SAAP. - Abstract: A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment.

  8. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenol...

  9. A biorefining process: Sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse.

    PubMed

    Su, Haifeng; Liu, Gang; He, Mingxiong; Tan, Furong

    2015-01-01

    Here, for the first time, we designed a sequential, combinatorial lignocellulose pretreatment procedure (SCLPP) for microbial biofuel fermentation to reduce generation of microbial growth inhibitors and furthermore increase sugar yields. We tested this pretreatment process using sugarcane bagasse as substrate and assessed the effectiveness by analysis of biobutanol production through microbial clostridium beijerinckii NCIMB 8052 conversion. Our results showed that there were no inhibitory effects when using the hydrolysates as fermentation substrate. Under the SSF scheme, we observed the highest concentrations of butanol (6.4g/L) and total ABE (11.9g/L), resulting in a higher ABE productivity, compared with the SHF method. These findings suggest that the SCLPP is a feasible method for improving ABE production, lowering microbial inhibitor generation, and ensuring success in the subsequent fermentation process. Therefore, our work demonstrated developing a tractable integrated process that facilitates to increase biofuel production from agricultural residues rich in lignocellulose is feasible.

  10. Lignocellulose Recalcitrance Screening by Integrated High Throughput Hydrothermal Pretreatment and Enzymatic Saccharification

    SciTech Connect

    Selig, M. J.; Tucker, M. P.; Sykes, R. W.; Reichel, K. L.; Brunecky, R.; Himmel, M. E.; Davis, M. F.; Decker, S. R.

    2010-04-01

    We report a novel 96-well multiplate reactor system for comparative analysis of lignocellulose recalcitrance via integrated hydrothermal pretreatment and enzymatic saccharification. The system utilizes stackable nickel/gold-plated 96-well aluminum reactor plates, a clamping device fit to a standard Parr reactor, and robotics for efficient liquids and solids handling. A capacity of 20 plates allows up to 1,920 separate hydrothermal reactions per run. Direct and rapid analysis of key end-products, glucose and xylose, is facilitated by the use of glucose oxidase/peroxidase and xylose dehydrogenase-linked assays. To demonstrate efficacy, a set of 755 poplar core samples from the US Department of Energy's BioEnergy Science Center was tested. Total sugar release ranged from 0.17 to 0.64 g/g of biomass and correlated strongly with the ratio of syringyl to guaiacyl lignins in the samples. Variance among sample replicates was sufficiently minimal to permit clear assignment of differences in recalcitrance throughout this large sample set.

  11. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.

    PubMed

    Chandel, Anuj K; Gonçalves, Bruna C M; Strap, Janice L; da Silva, Silvio S

    2015-01-01

    Lignocellulosic biomass (LB) is a promising sugar feedstock for biofuels and other high-value chemical commodities. The recalcitrance of LB, however, impedes carbohydrate accessibility and its conversion into commercially significant products. Two important factors for the overall economization of biofuel production is LB pretreatment to liberate fermentable sugars followed by conversion into ethanol. Sustainable biofuel production must overcome issues such as minimizing water and energy usage, reducing chemical usage and process intensification. Amongst available pretreatment methods, microorganism-mediated pretreatments are the safest, green, and sustainable. Native biodelignifying agents such as Phanerochaete chrysosporium, Pycnoporous cinnabarinus, Ceriporiopsis subvermispora and Cyathus stercoreus can remove lignin, making the remaining substrates amenable for saccharification. The development of a robust, integrated bioprocessing (IBP) approach for economic ethanol production would incorporate all essential steps including pretreatment, cellulase production, enzyme hydrolysis and fermentation of the released sugars into ethanol. IBP represents an inexpensive, environmentally friendly, low energy and low capital approach for second-generation ethanol production. This paper reviews the advancements in microbial-assisted pretreatment for the delignification of lignocellulosic substrates, system metabolic engineering for biorefineries and highlights the possibilities of process integration for sustainable and economic ethanol production. PMID:24156399

  12. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.

    PubMed

    Chandel, Anuj K; Gonçalves, Bruna C M; Strap, Janice L; da Silva, Silvio S

    2015-01-01

    Lignocellulosic biomass (LB) is a promising sugar feedstock for biofuels and other high-value chemical commodities. The recalcitrance of LB, however, impedes carbohydrate accessibility and its conversion into commercially significant products. Two important factors for the overall economization of biofuel production is LB pretreatment to liberate fermentable sugars followed by conversion into ethanol. Sustainable biofuel production must overcome issues such as minimizing water and energy usage, reducing chemical usage and process intensification. Amongst available pretreatment methods, microorganism-mediated pretreatments are the safest, green, and sustainable. Native biodelignifying agents such as Phanerochaete chrysosporium, Pycnoporous cinnabarinus, Ceriporiopsis subvermispora and Cyathus stercoreus can remove lignin, making the remaining substrates amenable for saccharification. The development of a robust, integrated bioprocessing (IBP) approach for economic ethanol production would incorporate all essential steps including pretreatment, cellulase production, enzyme hydrolysis and fermentation of the released sugars into ethanol. IBP represents an inexpensive, environmentally friendly, low energy and low capital approach for second-generation ethanol production. This paper reviews the advancements in microbial-assisted pretreatment for the delignification of lignocellulosic substrates, system metabolic engineering for biorefineries and highlights the possibilities of process integration for sustainable and economic ethanol production.

  13. Extracellular xylanase production by Pleurotus species on lignocellulosic wastes under in vivo condition using novel pretreatment.

    PubMed

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K

    2012-01-01

    The production of extracellular xylanase by three species of Pleurotus species i.e. P. florida, P. flabellatus and P. sajor caju was studied under in vivo condition during their cultivation on pretreated lignocellulosic wastes. Neem (Azadirachta indica) oil and ashoka (Saraca indica) leaves extract were used for pretreatment of paddy straw and wheat straw. Between these two wastes, paddy straw pretreated with neem oil, supported better xylanase production than wheat straw. Initially, xylanase production was low but it increased in subsequent days and reached at peak on 25th day of cultivation of Pleurotus species. Thereafter, there was decrease in the activity of the enzyme. On 25th day of incubation P. florida produced maximum xylanase on neem oil pretreated paddy straw i.e. 10.59 Uh—1ml—1. Among the three species, P. florida showed maximum enzyme activity followed by P. flabellatus and P. sajor caju. PMID:23273208

  14. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse.

    PubMed

    An, Yan-Xia; Zong, Min-Hua; Wu, Hong; Li, Ning

    2015-09-01

    Pretreatment of lignocelluloses is a key step in the biorefinery for production of biofuels and valuable platform chemicals. In this work, various lignocelluloses were pretreated using cholinium ionic liquids (ILs) that are wholly composed of biomaterials, and fractionated into carbohydrate-rich materials (CRMs) and lignin-rich materials (LRMs). Cholinium ILs were found to be effective pretreatment solvents for grass lignocelluloses as well as eucalyptus, resulting in significant improvements in the glucose yields (58-75%) in subsequent enzymatic hydrolysis, while they were inefficient to make pine susceptible to biodegradation. Approximately 46% of lignin in native rice straw was fractionated as LRM after pretreatment using cholinium argininate ([Ch][Arg]). [Ch][Arg] showed excellent recyclability, and the total recovery was as high as 75% after reused for 8 cycles. Besides, rice straw pretreated by the recycled IL remained highly digestible, and good glucose yields (63-75%) were achieved after its enzymatic hydrolysis.

  15. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse.

    PubMed

    An, Yan-Xia; Zong, Min-Hua; Wu, Hong; Li, Ning

    2015-09-01

    Pretreatment of lignocelluloses is a key step in the biorefinery for production of biofuels and valuable platform chemicals. In this work, various lignocelluloses were pretreated using cholinium ionic liquids (ILs) that are wholly composed of biomaterials, and fractionated into carbohydrate-rich materials (CRMs) and lignin-rich materials (LRMs). Cholinium ILs were found to be effective pretreatment solvents for grass lignocelluloses as well as eucalyptus, resulting in significant improvements in the glucose yields (58-75%) in subsequent enzymatic hydrolysis, while they were inefficient to make pine susceptible to biodegradation. Approximately 46% of lignin in native rice straw was fractionated as LRM after pretreatment using cholinium argininate ([Ch][Arg]). [Ch][Arg] showed excellent recyclability, and the total recovery was as high as 75% after reused for 8 cycles. Besides, rice straw pretreated by the recycled IL remained highly digestible, and good glucose yields (63-75%) were achieved after its enzymatic hydrolysis. PMID:26026293

  16. Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment.

    PubMed

    Hu, Yuansheng; Hao, Xiaodi; Wang, Jimin; Cao, Yali

    2016-03-01

    This study attempted to enhance anaerobic conversion of lignocellulosic materials in excess sludge by bioaugmentation and pretreatment. The results reveal that highly active lignocellulolytic microorganisms (Clostridium stercorarium and Bacteroides cellulosolvens) could be enriched from anaerobic sludge in ordinarily operated anaerobic digester (AD). Inoculating these microorganisms into AD could substantially enhance the degradation of cellulose and hemicellulose. However, this effect of bioaugmentation was shielded for raw excess sludge due to lignin incrustation in native biosolids. For this problem, pretreatments including acid, alkali, thermal and ultrasonic methods were effectively used to deconstruct the lignin incrustation, in which thermal pretreatment was demonstrated to be the most effective one. Then, pretreatment associated with bioaugmentation was successfully used to enhance the energy conversion of lignocellulosic materials, which resulted in the degradation of cellulose, hemicellulose and lignin to 68.8-78.2%, 77.4-89% and 15.4-33.7% respectively and thus increased the CH4 production by 210-246%, compared with ordinary AD. PMID:26712660

  17. Enhanced Solid-State Biogas Production from Lignocellulosic Biomass by Organosolv Pretreatment

    PubMed Central

    Mirmohamadsadeghi, Safoora; Zamani, Akram; Horváth, Ilona Sárvári

    2014-01-01

    Organosolv pretreatment was used to improve solid-state anaerobic digestion (SSAD) for methane production from three different lignocellulosic substrates (hardwood elm, softwood pine, and agricultural waste rice straw). Pretreatments were conducted at 150 and 180°C for 30 and 60 min using 75% ethanol solution as an organic solvent with addition of sulfuric acid as a catalyst. The statistical analyses showed that pretreatment temperature was the significant factor affecting methane production. Optimum temperature was 180°C for elmwood while it was 150°C for both pinewood and rice straw. Maximum methane production was 152.7, 93.7, and 71.4 liter per kg carbohydrates (CH), which showed up to 32, 73, and 84% enhancement for rice straw, elmwood, and pinewood, respectively, compared to those from the untreated substrates. An inverse relationship between the total methane yield and the lignin content of the substrates was observed. Kinetic analysis of the methane production showed that the process followed a first-order model for all untreated and pretreated lignocelluloses. PMID:25243134

  18. High solids enzymatic hydrolysis of pretreated lignocellulosic materials with a powerful stirrer concept.

    PubMed

    Ludwig, Daniel; Michael, Buchmann; Hirth, Thomas; Rupp, Steffen; Zibek, Susanne

    2014-02-01

    In this study, we present a powerful stirred tank reactor system that can efficiently hydrolyse lignocellulosic material at high solid content to produce hydrolysates with glucose concentration > 100 g/kg. As lignocellulosic substrates alkaline-pretreated wheat straw and organosolv-pretreated beech wood were used. The developed vertical reactor was equipped with a segmented helical stirrer, which was specially designed for high biomass hydrolysis. The stirrer was characterised according to mixing behaviour and power input. To minimise the cellulase dosage, a response surface plan was used. With the empirical relationship between glucose yield, cellulase loading and solid content, the minimal cellulase dosage was calculated to reach at least 70% yield at high glucose and high substrate concentrations within 48 h. The optimisation resulted in a minimal enzyme dosage of 30 FPU/g dry matter (DM) for the hydrolysis of wheat straw and 20 FPU/g DM for the hydrolysis of beech wood. By transferring the hydrolysis reaction from shaking flasks to the stirred tank reactor, the glucose yields could be increased. Using the developed stirred tank reactor system, alkaline-pretreated wheat straw could be converted to 110 g/kg glucose (76%) at a solid content of 20% (w/w) after 48 h. Organosolv-pretreated beech wood could be efficiently hydrolysed even at 30% (w/w) DM, giving 150 g/kg glucose (72%). PMID:24242162

  19. Multifaceted metabolomics approaches for characterization of lignocellulosic biomass degradation products formed during ammonia fiber expansion pretreatment

    NASA Astrophysics Data System (ADS)

    Vismeh, Ramin

    Lignocellulosic biomass represents a rather unused resource for production of biofuels, and it offers an alternative to food sources including corn starch. However, structural and compositional impediments limit the digestibility of sugar polymers in biomass cell walls. Thermochemical pretreatments improve accessibility of cellulose and hemicellulose to hydrolytic enzymes. However, most pretreatment methods generate compounds that either inhibit enzymatic hydrolysis or exhibit toxicity to fermentive microorganisms. Characterization and quantification of these products are essential for understanding chemistry of the pretreatment and optimizing the process efficiency to achieve higher ethanol yields. Identification of oligosaccharides released during pretreatment is also critical for choosing hydrolases necessary for cost-effective hydrolysis of cellulose and hemicellulose to fermentable monomeric sugars. Two chapters in this dissertation describe new mass spectrometry-based strategies for characterization and quantification of products that are formed during ammonia fiber expansion (AFEX) pretreatment of corn stover. Comparison of Liquid Chromatography Mass Spectrometry (LC/MS) profiles of AFEX-treated corn stover (AFEXTCS) and untreated corn stover (UTCS) extract shows that ammonolysis of lignin carbohydrate ester linkages generates a suite of nitrogenous compounds that are present only in the AFEXTCS extract and represent a loss of ammonia during processing. Several of these products including acetamide, feruloyl, coumaroyl and diferuloyl amides were characterized and quantified in the AFEXTCS extracts. The total amount of characterized and uncharacterized phenolic amides measured 17.4 mg/g AFEXTCS. Maillard reaction products including pyrazines and imidazoles were also identified and measured in the AFEXTCS extract totaling almost 1 mg/g AFEXTCS. The total of quantified nitrogenous products that are formed during AFEX was 43.4 mg/g AFEXTCS which was equivalent

  20. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods.

    PubMed

    Wang, G S; Pan, X J; Zhu, J Y; Gleisner, R; Rockwood, D

    2009-01-01

    This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180 degrees C, SPORL can achieve near-complete cellulose conversion to glucose in a wide range of pretreatment liquor of pH 2.0-4.5 in only about 10 h enzymatic hydrolysis. The enzyme loading was about 20 FPU cellulase plus 30 CBU beta-glucosidase per gram of cellulose. The production of fermentation inhibitor furfural was less than 20 mg/g of aspen wood at pH 4.5. With pH 4.5, SPORL avoided reactor corrosion problem and eliminated the need for substrate neutralization prior to enzymatic hydrolysis. Similar results were obtained from maple and eucalyptus.

  1. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production.

    PubMed

    da Silva, André Rodrigues Gurgel; Torres Ortega, Carlo Edgar; Rong, Ben-Guang

    2016-10-01

    In this work, a method based on process synthesis, simulation and evaluation has been used to setup and study the industrial scale lignocellulosic bioethanol productions processes. Scenarios for pretreatment processes of diluted acid, liquid hot water and ammonia fiber explosion were studied. Pretreatment reactor temperature, catalyst loading and water content as well as solids loading in the hydrolysis reactor were evaluated regarding its effects on the process energy consumption and bioethanol concentration. The best scenarios for maximizing ethanol concentration and minimizing total annual costs (TAC) were selected and their minimum ethanol selling price was calculated. Ethanol concentration in the range of 2-8% (wt.) was investigated after the pretreatment. The best scenarios maximizing the ethanol concentration and minimizing TAC obtained a reduction of 19.6% and 30.2% respectively in the final ethanol selling price with respect to the initial base case. PMID:27403858

  2. Assessing Cellulase Performance on Pretreated Lignocellulosic Biomass Using Saccharification and Fermentation-Based Protocols

    NASA Astrophysics Data System (ADS)

    Dowe, Nancy

    Cellulase enzyme is a key cost component in the production of fuels and chemicals from lignocellulosic biomass. Cellulolytic ability of the enzyme preparation is often measured by activity assays using model substrates such as filter paper. Using lignocellulosic biomass as the substrate to assess enzyme performance has the potential of being more process relevant. We describe two procedures that use washed pretreated cellulosic material to measure the efficacy of cellulase enzymes. First, a saccharification assay that measures glucose yield as a function of the amount of cellulase used in the process. And second, the simultaneous saccharification and fermentation (SSF) assay measures cellulase performance by the amount of ethanol produced from enzymatic hydrolysis of the cellulosic material. You can use both assays to screen cellulases under a variety of substrate types, loadings, and process conditions.

  3. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    NASA Astrophysics Data System (ADS)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid

  4. Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora.

    PubMed

    Naseeruddin, Shaik; Srilekha Yadav, K; Sateesh, L; Manikyam, Ananth; Desai, Suseelendra; Venkateswar Rao, L

    2013-05-01

    Pretreatment is a pre-requisite step in bioethanol production from lignocellulosic biomass required to remove lignin and increase the porosity of the substrate for saccharification. In the present study, chemical pretreatment of Prosopis juliflora was performed using alkali (NaOH, KOH, and NH3), reducing agents (Na2S2O4, Na2SO3) and NaClO2 in different concentration ranges at room temperature (30±2 °C) to remove maximum lignin with minimum sugar loss. Further, biphasic acid hydrolysis of the various pretreated substrates was performed at mild temperatures. Considering the amount of holocellulose hydrolyzed and inhibitors released during hydrolysis, best chemical pretreatment was selected. Among all the chemicals investigated, pretreatment with sodium dithionite at concentration of 2% (w/v) removed maximum lignin (80.46±1.35%) with a minimum sugar loss (2.56±0.021%). Subsequent biphasic acid hydrolysis of the sodium dithionite pretreated substrate hydrolyzed 40.09±1.22% of holocellulose and released minimum amount of phenolics (1.04±0.022 g/L) and furans (0.41±0.012 g/L) in the hydrolysate.

  5. Modeling Sucrose Hydrolysis in Dilute Sulfuric Acid Solutions at Pretreatment Conditions for Lignocellulosic Biomass

    SciTech Connect

    Bower, S.; Wickramasinghe, R.; Nagle, N. J.; Schell, D. J.

    2008-01-01

    Agricultural and herbaceous feedstocks may contain appreciable levels of sucrose. The goal of this study was to evaluate the survivability of sucrose and its hydrolysis products, fructose and glucose, during dilute sulfuric acid processing at conditions typically used to pretreat lignocellulose biomass. Solutions containing 25 g/l sucrose with 0.1-2.0% (w/w) sulfuric acid concentrations were treated at temperatures of 160-200 C for 3-12 min. Sucrose was observed to completely hydrolyze at all treatment conditions. However, appreciable concentrations of fructose and glucose were detected and glucose was found to be significantly more stable than fructose. Different mathematical approaches were used to fit the kinetic parameters for acid-catalyzed thermal degradation of these sugars. Since both sugars may survive dilute acid pretreatment, they could provide an additional carbon source for production of ethanol and other bio-based products.

  6. [Effect of pretreatment on topochemical and ultrastructural changes of lignocellulose plant cell walls: a review].

    PubMed

    Ji, Zhe; Ling, Zhe; Zhang, Xun; Ma, Jianfeng; Xu, Feng

    2014-05-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by biochemical means is impeded by several poorly understood ultrastructural and chemical barriers. Pretreatment is an essential step by altering the morphological and compositional characteristics of biomass to enhance the sugar release during enzymatic hydrolysis. Therefore, getting insight into this field is necessary to improve the conversion of biomass into biofuels. In this review, we highlight our recent understanding on the impact of various promising pretreatments on biomass, with emphasis on the topochemical and ultrastructural changes of plant cell walls that are related to the reduction of recalcitrance and the consequence of saccharification. It will lend support to the scientific research and development with respect to biomass conversion.

  7. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    PubMed

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. PMID:27174616

  8. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.

    PubMed

    Nitsos, Christos K; Matis, Konstantinos A; Triantafyllidis, Kostas S

    2013-01-01

    The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and "external" liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log R(o). The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt% for the parent biomass to as high as 70 wt% for the treated solids. Maximum xylan recovery (60 wt%) in the hydrothermal process liquid was observed at about 80 wt% hemicellulose removal; this was accomplished by moderate treatment severities (log R(o)=3.8-4.1). At higher severities (log R(o)=4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed. PMID:23180649

  9. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    PubMed

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion.

  10. A PCR-based method to quantify fungal growth during pretreatment of lignocellulosic biomass.

    PubMed

    Simeng, Zhou; Sacha, Grisel; Isabelle, Herpoël-Gimbert; Marie-Noëlle, Rosso

    2015-08-01

    Filamentous fungi have shown great potential in the pretreatment of lignocellulosic biomass and their use in bio-processes based on Solid State Fermentation (SSF) opens promising perspectives for plant biomass valorization. Obviously, quantification of the fungal biomass throughout the fermentation is a crucial parameter for SSF evaluation and control, both at the laboratory and industrial scale. Here we provide a qPCR-based method as a reliable alternative to conventional methods to estimate mycelial growth during plant biomass treatment. For the three strains analyzed, the lowest detection limit ranged from 58 to 272 μg mycelium dry weight per gram biomass (dry weight). We show that the qPCR-based method allows fungal growth monitoring during fermentation and provides relevant information for selection of the most appropriate fungal strains in specific SSF/reactor conditions. PMID:26031470

  11. A PCR-based method to quantify fungal growth during pretreatment of lignocellulosic biomass.

    PubMed

    Simeng, Zhou; Sacha, Grisel; Isabelle, Herpoël-Gimbert; Marie-Noëlle, Rosso

    2015-08-01

    Filamentous fungi have shown great potential in the pretreatment of lignocellulosic biomass and their use in bio-processes based on Solid State Fermentation (SSF) opens promising perspectives for plant biomass valorization. Obviously, quantification of the fungal biomass throughout the fermentation is a crucial parameter for SSF evaluation and control, both at the laboratory and industrial scale. Here we provide a qPCR-based method as a reliable alternative to conventional methods to estimate mycelial growth during plant biomass treatment. For the three strains analyzed, the lowest detection limit ranged from 58 to 272 μg mycelium dry weight per gram biomass (dry weight). We show that the qPCR-based method allows fungal growth monitoring during fermentation and provides relevant information for selection of the most appropriate fungal strains in specific SSF/reactor conditions.

  12. Utilization of hydrolysate from lignocellulosic biomass pretreatment to generate electricity by enzymatic fuel cell system.

    PubMed

    Kim, Sung Bong; Kim, Dong Sup; Yang, Ji Hyun; Lee, Junyoung; Kim, Seung Wook

    2016-04-01

    The waste hydrolysate after dilute acid pretreatment (DAP) of lignocellulosic biomass was utilized to generate electricity using an enzymatic fuel cell (EFC) system. During DAP, the components of biomass containing hemicellulose and other compounds are hydrolyzed, and glucose is solubilized into the dilute acid solution, called as the hydrolysate liquid. Glucose oxidase (GOD) and laccase (Lac) were assembled on the electrode of the anode and cathode, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured, and the maximum power density was found to be 1.254×10(3) μW/cm(2). The results indicate that the hydrolysate from DAP is a reliable electrolyte containing the fuel of EFC. Moreover, the impurities in the hydrolysate such as phenols and furans slightly affected the charge transfer on the surface of the electrode, but did not affect the power generation of the EFC system in principal. PMID:26920478

  13. Hydrothermal pretreatment of several lignocellulosic mixtures containing wheat straw and two hardwood residues available in Southern Europe.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work studied the processing of biomass mixtures containing three lignocellulosic materials largely available in Southern Europe, eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP). The mixtures were chemically characterized, and their pretreatment, by autohydrolysis, evaluated within a severity factor (logR0) ranging from 1.73 up to 4.24. A simple modeling strategy was used to optimize the autohydrolysis conditions based on the chemical characterization of the liquid fraction. The solid fraction was characterized to quantify the polysaccharide and lignin content. The pretreatment conditions for maximal saccharides recovery in the liquid fraction were at a severity range (logR0) of 3.65-3.72, independently of the mixture tested, which suggests that autohydrolysis can effectively process mixtures of lignocellulosic materials for further biochemical conversion processes.

  14. Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment.

    PubMed

    Peleteiro, Susana; Rivas, Sandra; Alonso, José L; Santos, Valentín; Parajó, Juan C

    2015-09-23

    Ionic liquids (ILs) can play multiple roles in lignocellulose biorefineries, including utilization as agents for the separation of selected compounds or as reaction media for processing lignocellulosic materials (LCM). Imidazolium-based ILs have been proposed for separating target components from LCM biorefinery streams, for example, the dehydration of ethanol-water mixtures or the extractive separation of biofuels (ethanol, butanol) or lactic acid from the respective fermentation broths. As in other industries, ILs are potentially suitable for removing volatile organic compounds or carbon dioxide from gaseous biorefinery effluents. On the other hand, cellulose dissolution in ILs allows homogeneous derivatization reactions to be carried out, opening new ways for product design or for improving the quality of the products. Imidazolium-based ILs are also suitable for processing native LCM, allowing the integral benefit of the feedstocks via separation of polysaccharides and lignin. Even strongly lignified materials can yield cellulose-enriched substrates highly susceptible to enzymatic hydrolysis upon ILs processing. Recent developments in enzymatic hydrolysis include the identification of ILs causing limited enzyme inhibition and the utilization of enzymes with improved performance in the presence of ILs.

  15. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    PubMed Central

    Keating, David H.; Zhang, Yaoping; Ong, Irene M.; McIlwain, Sean; Morales, Eduardo H.; Grass, Jeffrey A.; Tremaine, Mary; Bothfeld, William; Higbee, Alan; Ulbrich, Arne; Balloon, Allison J.; Westphall, Michael S.; Aldrich, Josh; Lipton, Mary S.; Kim, Joonhoon; Moskvin, Oleg V.; Bukhman, Yury V.; Coon, Joshua J.; Kiley, Patricia J.; Bates, Donna M.; Landick, Robert

    2014-01-01

    Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass), phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH). To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(P)H, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts. PMID:25177315

  16. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.

    PubMed

    Arantes, Valdeir; Saddler, Jack N

    2011-01-01

    A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the

  17. Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose.

    PubMed

    Kim, In Jung; Ko, Hyeok-Jin; Kim, Tae-Wan; Nam, Ki Hyun; Choi, In-Geol; Kim, Kyoung Heon

    2013-06-01

    BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus x giganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3. However, the amounts of BsEXLX1 bound to lignin-rich substrates were much higher than those of CtCBD3. A binding competition assay between BsEXLX1 and CtCBD3 revealed that binding of BsEXLX1 to alkali lignin was not affected by the presence of CtCBD3. This preferential binding of BsEXLX1 to lignin could be related to root colonization in plants by bacteria, and the bacterial expansin could be used as a lignin blocker in the enzymatic hydrolysis of lignocellulose.

  18. High-efficiency ethanol production from lignocellulosic residues pretreated with alkaline H/sub 2/O/sub 2/

    SciTech Connect

    Gould, J.M.; Freer, S.N.

    1984-06-01

    Pretreatment should be economic and should not utilize toxic reagents. In this study locally obtained residues were used - wheat straw, cornstalks, corn husks and kenaf -as substrates. The high efficiency of glucose production from alkaline H/sub 2/O/sub 2/ pretreated lignocellulosic residues made these materials excellent substrates for ethanol production by Saccharomyces cerevisiae in combined saccharification/fermentation experiments. Results showed that overall efficiency of ethanol formation was 90% for pretreated corn cobs, stalks and husks compared to 50% for untreated materials. Yields from kenaf and oak were also enhanced although below the theoretical maximum. The lignin containing supernatant does not appear to be inhibitory to Saccharomyces cerevisiae growth or ethanol production. The improvement in conversion efficiency is apparently the result of the removal of about one half of the lignin along with an apparent reduction in the degree of crystallinity within the cellulose structure itself. 16 references.

  19. Combined Dilute Acid and Solvent Based Pretreatment of Agricultural Wastes for Efficient Lignocellulosic Fractionation and Biofuels Production

    SciTech Connect

    Brodeur, G.; Ramakrishnan, S.; Wilson, C.; Telotte, J.; Collier, J.; Stickel, J.

    2013-01-01

    A true biorefinery for processing lignocellulosic biomass should achieve maximum utilization of all major constituents (cellulose, hemicellulose, & lignin) within the feedstock. In this work a combined pretreatment process of dilute acid (DA) and N-methyl morpholine N-oxide (NMMO) is described that allows for both fractionation and subsequent complete hydrolysis of the feedstocks (corn stover and sugarcane bagasse). During this multi-step processing, the dilute acid pretreatment solubilizes the majority (>90%) of the hemicellulosic fraction, while the NMMO treatment yields a cellulosic fraction that is completely digestible within 48 hours at low enzyme loadings. With both the cellulosic and hemicellulosic fractions being converted into separate, dissolved sugar fractions, the remaining portion is nearly pure lignin. When used independently, DA and NMMO pretreatments are only able to achieve ~80% and ~45% cellulosic conversion, respectively. Mass balance calculations along with experimental results are used to illustrate the feasibility of separation and recycling of NMMO.

  20. Multiple Levels of Synergistic Collaboration in Termite Lignocellulose Digestion

    PubMed Central

    Scharf, Michael E.; Karl, Zachary J.; Sethi, Amit; Boucias, Drion G.

    2011-01-01

    In addition to evolving eusocial lifestyles, two equally fascinating aspects of termite biology are their mutualistic relationships with gut symbionts and their use of lignocellulose as a primary nutrition source. Termites are also considered excellent model systems for studying the production of bioethanol and renewable bioenergy from 2nd generation (non-food) feedstocks. While the idea that gut symbionts are the sole contributors to termite lignocellulose digestion has remained popular and compelling, in recent years host contributions to the digestion process have become increasingly apparent. However, the degree to which host and symbiont, and host enzymes, collaborate in lignocellulose digestion remain poorly understood. Also, how digestive enzymes specifically collaborate (i.e., in additive or synergistic ways) is largely unknown. In the present study we undertook translational-genomic studies to gain unprecedented insights into digestion by the lower termite Reticulitermes flavipes and its symbiotic gut flora. We used a combination of native gut tissue preparations and recombinant enzymes derived from the host gut transcriptome to identify synergistic collaborations between host and symbiont, and also among enzymes produced exclusively by the host termite. Our findings provide important new evidence of synergistic collaboration among enzymes in the release of fermentable monosaccharides from wood lignocellulose. These monosaccharides (glucose and pentoses) are highly relevant to 2nd-generation bioethanol production. We also show that, although significant digestion capabilities occur in host termite tissues, catalytic tradeoffs exist that apparently favor mutualism with symbiotic lignocellulose-digesting microbes. These findings contribute important new insights towards the development of termite-derived biofuel processing biotechnologies and shed new light on selective forces that likely favored symbiosis and, subsequently, group living in primitive

  1. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment

    PubMed Central

    2013-01-01

    Background Lignin is often overlooked in the valorization of lignocellulosic biomass, but lignin-based materials and chemicals represent potential value-added products for biorefineries that could significantly improve the economics of a biorefinery. Fluctuating crude oil prices and changing fuel specifications are some of the driving factors to develop new technologies that could be used to convert polymeric lignin into low molecular weight lignin and or monomeric aromatic feedstocks to assist in the displacement of the current products associated with the conversion of a whole barrel of oil. We present an approach to produce these chemicals based on the selective breakdown of lignin during ionic liquid pretreatment. Results The lignin breakdown products generated are found to be dependent on the starting biomass, and significant levels were generated on dissolution at 160°C for 6 hrs. Guaiacol was produced on dissolution of biomass and technical lignins. Vanillin was produced on dissolution of kraft lignin and eucalytpus. Syringol and allyl guaiacol were the major products observed on dissolution of switchgrass and pine, respectively, whereas syringol and allyl syringol were obtained by dissolution of eucalyptus. Furthermore, it was observed that different lignin-derived products could be generated by tuning the process conditions. Conclusions We have developed an ionic liquid based process that depolymerizes lignin and converts the low molecular weight lignin fractions into a variety of renewable chemicals from biomass. The generated chemicals (phenols, guaiacols, syringols, eugenol, catechols), their oxidized products (vanillin, vanillic acid, syringaldehyde) and their easily derivatized hydrocarbons (benzene, toluene, xylene, styrene, biphenyls and cyclohexane) already have relatively high market value as commodity and specialty chemicals, green building materials, nylons, and resins. PMID:23356589

  2. Utilization of waste cellulose. VI. Pretreatment of lignocellulosic materials with sodium hypochlorite and enzymatic hydrolysis by Trichoderma viride

    SciTech Connect

    David, C.; Fornasier, R.; Thiry, P.

    1985-10-01

    A pretreatment of lignocellulosic materials with sodium hypochlorite-hypochlorous acid at controlled pH (between 7 and 9) considerably increases the accessibility of the cellulosic part of the substrate to chemical and biochemical reactants. As a consequence, the yield and rate of the enzymatic hydrolysis to glucose is largely increased. Wheat straw and spruce sawdust have been investigated. The increase in accessibility is assigned to degradation and (or) detachment of the lignin network. The loss in cellulose and hemicellulose is not important, lignin being preferentially degraded under carefully controlled pH conditions. When applied to pure cellulose, the pretreatment decreases the yield of enzymatic hydrolysis; in the absence of lignin, oxidation of the anhydroglucose units is important and results in the inhibition of the enzymatic hydrolysis. 12 references.

  3. Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses.

    PubMed

    Sipos, Bálint; Szilágyi, Mátyás; Sebestyén, Zoltán; Perazzini, Raffaella; Dienes, Dóra; Jakab, Emma; Crestini, Claudia; Réczey, Kati

    2011-11-01

    The efficiency of enzymatic hydrolysis of lignocellulses can be increased by addition of surfactants and polymers, such as poly(ethylene glycol) (PEG). The effect of PEG addition on the cellulase adsorption was tested on various steam pretreated lignocellulose substrates (spruce, willow, hemp, corn stover, wheat straw, sweet sorghum bagasse). A positive effect of PEG addition was observed, as protein adsorption has decreased and free enzyme activities (FP, β-glucosidase) have increased due to the additive. However, the degree of enhancement differed among the substrates, being highest on steam pretreated spruce. Results of lignin analysis (pyrolysis-GC/MS, (31)P NMR) suggest that the effect of PEG addition is in connection with the amount of unsubstituted phenolic hydroxyl groups of lignin in the substrate. Adsorption experiments using two commercial enzyme preparations, Celluclast 1.5L (Trichoderma reesei cellulase) and Novozym 188 (Aspergillus niger β-glucosidase) suggested that enzyme origins affected on the adsorptivity of β-glucosidases.

  4. Comparative biochemical analysis after steam pretreatment of lignocellulosic agricultural waste biomass from Williams Cavendish banana plant (Triploid Musa AAA group).

    PubMed

    Kamdem, Irénée; Jacquet, Nicolas; Tiappi, Florian Mathias; Hiligsmann, Serge; Vanderghem, Caroline; Richel, Aurore; Jacques, Philippe; Thonart, Philippe

    2015-11-01

    The accessibility of fermentable substrates to enzymes is a limiting factor for the efficient bioconversion of agricultural wastes in the context of sustainable development. This paper presents the results of a biochemical analysis performed on six combined morphological parts of Williams Cavendish Lignocellulosic Biomass (WCLB) after steam cracking (SC) and steam explosion (SE) pretreatments. Solid (S) and liquid (L) fractions (Fs) obtained from SC pretreatment performed at 180°C (SLFSC180) and 210°C (SLFSC210) generated, after diluted acid hydrolysis, the highest proportions of neutral sugar (NS) contents, specifically 52.82 ± 3.51 and 49.78 ± 1.39%w/w WCLB dry matter (DM), respectively. The highest proportions of glucose were found in SFSC210 (53.56 ± 1.33%w/w DM) and SFSC180 (44.47 ± 0.00%w/w DM), while the lowest was found in unpretreated WCLB (22.70 ± 0.71%w/w DM). Total NS content assessed in each LF immediately after SC and SE pretreatments was less than 2%w/w of the LF DM, thus revealing minor acid autohydrolysis consequently leading to minor NS production during the steam pretreatment. WCLB subjected to SC at 210 °C (SC210) generated up to 2.7-fold bioaccessible glucan and xylan. SC and SE pretreatments showed potential for the deconstruction of WCLB (delignification, depolymerization, decrystallization and deacetylation), enhancing its enzymatic hydrolysis. The concentrations of enzymatic inhibitors, such as 2-furfuraldehyde and 5-(hydroxymethyl)furfural from LFSC210, were the highest (41 and 21 µg ml(-1), respectively). This study shows that steam pretreatments in general and SC210 in particular are required for efficient bioconversion of WCLB. Yet, biotransformation through biochemical processes (e.g., anaerobic digestion) must be performed to assess the efficiency of these pretreatments. PMID:26264932

  5. Comparative biochemical analysis after steam pretreatment of lignocellulosic agricultural waste biomass from Williams Cavendish banana plant (Triploid Musa AAA group).

    PubMed

    Kamdem, Irénée; Jacquet, Nicolas; Tiappi, Florian Mathias; Hiligsmann, Serge; Vanderghem, Caroline; Richel, Aurore; Jacques, Philippe; Thonart, Philippe

    2015-11-01

    The accessibility of fermentable substrates to enzymes is a limiting factor for the efficient bioconversion of agricultural wastes in the context of sustainable development. This paper presents the results of a biochemical analysis performed on six combined morphological parts of Williams Cavendish Lignocellulosic Biomass (WCLB) after steam cracking (SC) and steam explosion (SE) pretreatments. Solid (S) and liquid (L) fractions (Fs) obtained from SC pretreatment performed at 180°C (SLFSC180) and 210°C (SLFSC210) generated, after diluted acid hydrolysis, the highest proportions of neutral sugar (NS) contents, specifically 52.82 ± 3.51 and 49.78 ± 1.39%w/w WCLB dry matter (DM), respectively. The highest proportions of glucose were found in SFSC210 (53.56 ± 1.33%w/w DM) and SFSC180 (44.47 ± 0.00%w/w DM), while the lowest was found in unpretreated WCLB (22.70 ± 0.71%w/w DM). Total NS content assessed in each LF immediately after SC and SE pretreatments was less than 2%w/w of the LF DM, thus revealing minor acid autohydrolysis consequently leading to minor NS production during the steam pretreatment. WCLB subjected to SC at 210 °C (SC210) generated up to 2.7-fold bioaccessible glucan and xylan. SC and SE pretreatments showed potential for the deconstruction of WCLB (delignification, depolymerization, decrystallization and deacetylation), enhancing its enzymatic hydrolysis. The concentrations of enzymatic inhibitors, such as 2-furfuraldehyde and 5-(hydroxymethyl)furfural from LFSC210, were the highest (41 and 21 µg ml(-1), respectively). This study shows that steam pretreatments in general and SC210 in particular are required for efficient bioconversion of WCLB. Yet, biotransformation through biochemical processes (e.g., anaerobic digestion) must be performed to assess the efficiency of these pretreatments.

  6. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.

    PubMed

    Nguyen, Thanh Yen; Cai, Charles M; Kumar, Rajeev; Wyman, Charles E

    2015-05-22

    We introduce a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs dramatically for high sugar yields from hemicellulose and cellulose, which is essential for the low-cost conversion of biomass to fuels. CELF employs THF miscible with aqueous dilute acid to obtain up to 95 % theoretical yield of glucose, xylose, and arabinose from corn stover even if coupled with enzymatic hydrolysis at only 2 mgenzyme  gglucan (-1) . The unusually high saccharification with such low enzyme loadings can be attributed to a very high lignin removal, which is supported by compositional analysis, fractal kinetic modeling, and SEM imaging. Subsequently, nearly pure lignin product can be precipitated by the evaporation of volatile THF for recovery and recycling. Simultaneous saccharification and fermentation of CELF-pretreated solids with low enzyme loadings and Saccharomyces cerevisiae produced twice as much ethanol as that from dilute-acid-pretreated solids if both were optimized for corn stover. PMID:25677100

  7. Production of cellulolytic enzymes by Pleurotus species on lignocellulosic wastes using novel pretreatments.

    PubMed

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K; Singh, V K

    2014-01-01

    In the present investigation three species of Pleurotus i.e. P. sajor—caju (P1), P. florida (P2) and P. flabellatus (P3) along with two lignocellulosic substrates namely paddy straw and wheat straw were selected for evaluation of production of extracellular cellulolytic enzymes. During the cultivation of three species of Pleurotus under in vivo condition, the two lignocellulosic substrates were treated with plants extracts (aqueous extracts of ashoka leaves (A) and neem oil (B)), hot water (H) and chemicals (C).Among all treatments, neem oil treated substrates supported better enzyme production followed by aqueous extract of ashoka leaves, hot water and chemical treatment. Between the two substrates paddy straw supported better enzyme production than wheat straw. P. flabellatus showed maximum activity of exoglucanase, endoglucanase and β—glucosidase followed by P. florida and P. sajor—caju. PMID:25535714

  8. Improved enzymatic hydrolysis of lignocellulosic biomass through pretreatment with plasma electrolysis.

    PubMed

    Gao, Jing; Chen, Li; Zhang, Jian; Yan, Zongcheng

    2014-11-01

    A comprehensive research on plasma electrolysis as pretreatment method for water hyacinth (WH) was performed based on lignin content, crystalline structure, surface property, and enzymatic hydrolysis. A large number of active particles, such as HO and H2O2, generated by plasma electrolysis could decompose the lignin of the biomass samples and reduce the crystalline index. An efficient pretreatment process made use of WH pretreated at a load of 48 wt% (0.15-0.18 mm) in FeCl3 solution for 30 min at 450 V. After the pretreatment, the sugar yield of WH was increased by 126.5% as compared with unpretreated samples. PMID:25205055

  9. A feasibility study on the multistage process for the oxalic acid pretreatment of a lignocellulosic biomass using electrodialysis.

    PubMed

    Lee, Hong-Joo; Ahn, Sung Ju; Seo, Young-Jun; Lee, Jae-Won

    2013-02-01

    The present study investigated the feasibility of the recovery and reuse oxalic acid in a multistage process for the pretreatment of a lignocellulosic biomass. Electrodialysis (ED), an electrochemical process using ion exchange membranes, was used to recover and reuse oxalic acid in the multistage process. The ED optimal condition for recover oxalic acid was potential of 10V and pH 2.2 in synthetic solutions. The recovery efficiency of oxalic acid from hydrolysates reached 100% at potential of 10V. The power consumption to treat 1mol of oxalic acid was estimated to be 41.0wh. At the same time, ethanol production increased up to 19g/L in the ED-treated hydrolysate, corresponding to ethanol productivity of 0.27g/L/h. It was clearly shown that bioethanol fermentation efficiency increased using the ED process, due to a small loss of fermentable sugar and a significantly high removal of inhibitory chemicals. PMID:23306131

  10. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass.

    PubMed

    Tao, Ling; Aden, Andy; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E

    2011-12-01

    Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured. The pretreatment area process design and simulation are based on the research data generated within the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) 3 project. Overall ethanol production, total capital investment, and minimum ethanol selling price (MESP) are reported along with selected sensitivity analysis. The results show limited differentiation between the projected economic performances of the pretreatment options, except for processes that exhibit significantly lower monomer sugar and resulting ethanol yields.

  11. Two-stage dilute-acid and organic-solvent lignocellulosic pretreatment for enhanced bioprocessing.

    PubMed

    Brodeur, G; Telotte, J; Stickel, J J; Ramakrishnan, S

    2016-11-01

    A two stage pretreatment approach for biomass is developed in the current work in which dilute acid (DA) pretreatment is followed by a solvent based pretreatment (N-methyl morpholine N oxide - NMMO). When the combined pretreatment (DAWNT) is applied to sugarcane bagasse and corn stover, the rates of hydrolysis and overall yields (>90%) are seen to dramatically improve and under certain conditions 48h can be taken off the time of hydrolysis with the additional NMMO step to reach similar conversions. DAWNT shows a 2-fold increase in characteristic rates and also fractionates different components of biomass - DA treatment removes the hemicellulose while the remaining cellulose is broken down by enzymatic hydrolysis after NMMO treatment to simple sugars. The remaining residual solid is high purity lignin. Future work will focus on developing a full scale economic analysis of DAWNT for use in biomass fractionation. PMID:27631703

  12. Two-stage dilute-acid and organic-solvent lignocellulosic pretreatment for enhanced bioprocessing.

    PubMed

    Brodeur, G; Telotte, J; Stickel, J J; Ramakrishnan, S

    2016-11-01

    A two stage pretreatment approach for biomass is developed in the current work in which dilute acid (DA) pretreatment is followed by a solvent based pretreatment (N-methyl morpholine N oxide - NMMO). When the combined pretreatment (DAWNT) is applied to sugarcane bagasse and corn stover, the rates of hydrolysis and overall yields (>90%) are seen to dramatically improve and under certain conditions 48h can be taken off the time of hydrolysis with the additional NMMO step to reach similar conversions. DAWNT shows a 2-fold increase in characteristic rates and also fractionates different components of biomass - DA treatment removes the hemicellulose while the remaining cellulose is broken down by enzymatic hydrolysis after NMMO treatment to simple sugars. The remaining residual solid is high purity lignin. Future work will focus on developing a full scale economic analysis of DAWNT for use in biomass fractionation.

  13. Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation.

    PubMed

    da Costa Lopes, André M; João, Karen G; Rubik, Djonatam F; Bogel-Łukasik, Ewa; Duarte, Luís C; Andreaus, Jürgen; Bogel-Łukasik, Rafał

    2013-08-01

    This work is devoted to study pre-treatment methodologies of wheat straw with 1-ethyl-3-methylimidazolium acetate ([emim][CH3COO]) and subsequent fractionation to cellulose, hemicellulose and lignin. The method developed and described here allows the separation into high purity carbohydrate and lignin fractions and permits an efficient IL recovery. A versatility of the established method was confirmed by the IL reuse. The fractionation of completely dissolved biomass led to cellulose-rich and hemicellulose-rich fractions. A high purity lignin was also achieved. To verify the potential further applicability of the obtained carbohydrate-rich fractions, and to evaluate the pre-treatment efficiency, the cellulose fraction resulting from the treatment with [emim][CH3COO] was subjected to enzymatic hydrolysis. Results showed a very high digestibility of the cellulose samples and confirmed a high glucose yield for the optimized pre-treatment methodology.

  14. Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation.

    PubMed

    da Costa Lopes, André M; João, Karen G; Rubik, Djonatam F; Bogel-Łukasik, Ewa; Duarte, Luís C; Andreaus, Jürgen; Bogel-Łukasik, Rafał

    2013-08-01

    This work is devoted to study pre-treatment methodologies of wheat straw with 1-ethyl-3-methylimidazolium acetate ([emim][CH3COO]) and subsequent fractionation to cellulose, hemicellulose and lignin. The method developed and described here allows the separation into high purity carbohydrate and lignin fractions and permits an efficient IL recovery. A versatility of the established method was confirmed by the IL reuse. The fractionation of completely dissolved biomass led to cellulose-rich and hemicellulose-rich fractions. A high purity lignin was also achieved. To verify the potential further applicability of the obtained carbohydrate-rich fractions, and to evaluate the pre-treatment efficiency, the cellulose fraction resulting from the treatment with [emim][CH3COO] was subjected to enzymatic hydrolysis. Results showed a very high digestibility of the cellulose samples and confirmed a high glucose yield for the optimized pre-treatment methodology. PMID:23735803

  15. Ionic liquid pretreatment to increase succinic acid production from lignocellulosic biomass.

    PubMed

    Wang, Caixia; Yan, Daojiang; Li, Qiang; Sun, Wei; Xing, Jianmin

    2014-11-01

    In this study, pinewood and corn stover pretreated with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride (AmimCl) were used as a feedstock for succinic acid production. Results reveal that 5% (v/v) AmimCl inhibited bacterial growth, whereas 0.01% (v/v) AmimCl inhibited succinic acid production. AmimCl was effective in extracting cellulose from pinewood and in degrading pinewood into a uniform pulp, as revealed by scanning electron microscopy (SEM). The rate of enzymatic hydrolysis of pinewood extract reached 72.16%. The combinations of AmimCl pretreatment with steam explosion or with hot compressed water were effective in treating corn stover, whereas AmimCl treatment alone did not result in a significant improvement. Pinewood extract produced 20.7g/L succinic acid with an average yield of 0.37g per gram of biomass. Workflow calculations indicated pine wood pretreated with IL has a theoretical yield of succinic acid of 57.1%. IL pretreatment led to increase in succinic acid yields.

  16. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus.

    PubMed

    Li, Fengcheng; Ren, Shuangfeng; Zhang, Wei; Xu, Zhengdan; Xie, Guosheng; Chen, Yan; Tu, Yuanyuan; Li, Qing; Zhou, Shiguang; Li, Yu; Tu, Fen; Liu, Lin; Wang, Yanting; Jiang, Jianxiong; Qin, Jingping; Li, Shizhong; Li, Qiwei; Jing, Hai-Chun; Zhou, Fasong; Gutterson, Neal; Peng, Liangcai

    2013-02-01

    Xylans are the major hemicelluloses in grasses, but their effects on biomass saccharification remain unclear. In this study, we examined the 79 representative Miscanthus accessions that displayed a diverse cell wall composition and varied biomass digestibility. Correlation analysis showed that hemicelluloses level has a strong positive effect on lignocellulose enzymatic digestion after NaOH or H(2)SO(4) pretreatment. Characterization of the monosaccharide compositions in the KOH-extractable and non-KOH-extractable hemicelluloses indicated that arabinose substitution degree of xylan is the key factor that positively affects biomass saccharification. The xylose/arabinose ratio after individual enzyme digestion revealed that the arabinose in xylan is partially associated with cellulose in the amorphous regions, which negatively affects cellulose crystallinity for high biomass digestibility. The results provide insights into the mechanism of lignocellulose enzymatic digestion upon pretreatment, and also suggest a goal for the genetic modification of hemicelluloses towards the bioenergy crop breeding of Miscanthus and grasses.

  17. Chemical Preconversion: Application of Low-Severity Pretreatment Chemistries for Commoditization of Lignocellulosic Feedstock

    SciTech Connect

    David N. Thompson; Timothy Campbell; Bryan Bals; Troy Runge; Farzaneh Teymouri

    2013-05-01

    Securing biofuels project financing is challenging, in part because of risks in feedstock supply. Commoditization of the feedstock and decoupling its supply from the biorefinery will promote greater economies of scale, reduce feedstock supply risk and reduce the need for overdesign of biorefinery pretreatment technologies. We present benefits and detractions of applying low-severity chemical treatments or ‘chemical preconversion treatments’ to enable this approach through feedstock modification and densification early in the supply chain. General structural modifications to biomass that support cost-effective densification and transportation are presented, followed by available chemistries to achieve these modifications with minimal yield loss and the potential for harvesting value in local economies. A brief review of existing biomass pretreatment technologies for cellulolytic hydrolysis at biorefineries is presented, followed by a discussion toward economically applying the underlying chemistries at reduced severity in light of capital and operational limitations of small-scale feedstock depots.

  18. Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover

    PubMed Central

    Parreiras, Lucas S.; Breuer, Rebecca J.; Avanasi Narasimhan, Ragothaman; Higbee, Alan J.; La Reau, Alex; Tremaine, Mary; Qin, Li; Willis, Laura B.; Bice, Benjamin D.; Bonfert, Brandi L.; Pinhancos, Rebeca C.; Balloon, Allison J.; Uppugundla, Nirmal; Liu, Tongjun; Li, Chenlin; Tanjore, Deepti; Ong, Irene M.; Li, Haibo; Pohlmann, Edward L.; Serate, Jose; Withers, Sydnor T.; Simmons, Blake A.; Hodge, David B.; Westphall, Michael S.; Coon, Joshua J.; Dale, Bruce E.; Balan, Venkatesh; Keating, David H.; Zhang, Yaoping; Landick, Robert; Gasch, Audrey P.; Sato, Trey K.

    2014-01-01

    The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH. PMID:25222864

  19. Optimization of sulfide/sulfite pretreatment of lignocellulosic biomass for lactic acid production.

    PubMed

    Idrees, Muhammad; Adnan, Ahmad; Qureshi, Fahim Ashraf

    2013-01-01

    Potential of sodium sulfide and sodium sulfite, in the presence of sodium hydroxide was investigated to pretreat the corncob (CC), bagasse (BG), water hyacinth and rice husk (RH) for maximum digestibility. Response Surface Methodology was employed for the optimization of pretreatment factors such as temperature, time and concentration of Na₂S and Na₂SO₃, which had high coefficient of determination (R²) along with low probability value (P), indicating the reliable predictability of the model. At optimized conditions, Na₂S and Na₂SO₃ remove up to 97% lignin, from WH and RH, along with removal of hemicellulose (up to 93%) during pretreatment providing maximum cellulose, while in BG and CC; 75.0% and 90.0% reduction in lignin and hemicellulose was observed. Saccharification efficiency of RH, WH, BG and CC after treatment with 1.0% Na₂S at 130°C for 2.3-3.0 h was 79.40, 85.93, 87.70, and 88.43%, respectively. WH treated with Na₂SO₃ showed higher hydrolysis yield (86.34%) as compared to Na₂S while other biomass substrates showed 2.0-3.0% less yield with Na₂SO₃. Resulting sugars were evaluated as substrate for lactic acid production, yielding 26.48, 25.36, 31.73, and 30.31 gL⁻¹ of lactic acid with 76.0, 76.0, 86.0, and 83.0% conversion yield from CC, BG, WH, and RH hydrolyzate, respectively. PMID:24058918

  20. Optimization of Sulfide/Sulfite Pretreatment of Lignocellulosic Biomass for Lactic Acid Production

    PubMed Central

    Adnan, Ahmad; Qureshi, Fahim Ashraf

    2013-01-01

    Potential of sodium sulfide and sodium sulfite, in the presence of sodium hydroxide was investigated to pretreat the corncob (CC), bagasse (BG), water hyacinth and rice husk (RH) for maximum digestibility. Response Surface Methodology was employed for the optimization of pretreatment factors such as temperature, time and concentration of Na2S and Na2SO3, which had high coefficient of determination (R2) along with low probability value (P), indicating the reliable predictability of the model. At optimized conditions, Na2S and Na2SO3 remove up to 97% lignin, from WH and RH, along with removal of hemicellulose (up to 93%) during pretreatment providing maximum cellulose, while in BG and CC; 75.0% and 90.0% reduction in lignin and hemicellulose was observed. Saccharification efficiency of RH, WH, BG and CC after treatment with 1.0% Na2S at 130°C for 2.3–3.0 h was 79.40, 85.93, 87.70, and 88.43%, respectively. WH treated with Na2SO3 showed higher hydrolysis yield (86.34%) as compared to Na2S while other biomass substrates showed 2.0–3.0% less yield with Na2SO3. Resulting sugars were evaluated as substrate for lactic acid production, yielding 26.48, 25.36, 31.73, and 30.31 gL−1 of lactic acid with 76.0, 76.0, 86.0, and 83.0% conversion yield from CC, BG, WH, and RH hydrolyzate, respectively. PMID:24058918

  1. Role of Pretreatment and Conditioning Processes on Toxicity of Lignocellulosic Biomass Hydrolysates

    SciTech Connect

    Pienkos, P. T.; Zhang, M.

    2009-01-01

    The Department of Energy's Office of the Biomass Program has set goals of making ethanol cost competitive by 2012 and replacing 30% of 2004 transportation supply with biofuels by 2030. Both goals require improvements in conversions of cellulosic biomass to sugars as well as improvements in fermentation rates and yields. Current best pretreatment processes are reasonably efficient at making the cellulose/hemicellulose/lignin matrix amenable to enzymatic hydrolysis and fermentation, but they release a number of toxic compounds into the hydrolysate which inhibit the growth and ethanol productivity of fermentation organisms. Conditioning methods designed to reduce the toxicity of hydrolysates are effective, but add to process costs and tend to reduce sugar yields, thus adding significantly to the final cost of production. Reducing the cost of cellulosic ethanol production will likely require enhanced understanding of the source and mode of action of hydrolysate toxic compounds, the means by which some organisms resist the actions of these compounds, and the methodology and mechanisms for conditioning hydrolysate to reduce toxicity. This review will provide an update on the state of knowledge in these areas and can provide insights useful for the crafting of hypotheses for improvements in pretreatment, conditioning, and fermentation organisms.

  2. Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility

    SciTech Connect

    Zhu, Z.; Sathitsuksanoh, N.; Vinzant, T.; Schell, D. J.; McMillian, J. D.; Zhang, Y. H. P.

    2009-07-01

    Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only {approx}60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m{sup 2}/g, nearly twice that of the DA-pretreated biomass (5.89 m{sup 2}/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

  3. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility.

    PubMed

    Zhu, Zhiguang; Sathitsuksanoh, Noppadon; Vinzant, Todd; Schell, Daniel J; McMillan, James D; Zhang, Y-H Percival

    2009-07-01

    Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only approximately 60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m(2)/g, nearly twice that of the DA-pretreated biomass (5.89 m(2)/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

  4. A NaBH₄ Coupled Ninhydrin-Based Assay for the Quantification of Protein/Enzymes During the Enzymatic Hydrolysis of Pretreated Lignocellulosic Biomass.

    PubMed

    Mok, Yiu Ki; Arantes, Valdeir; Saddler, Jack N

    2015-07-01

    Accurate protein quantification is necessary in many of the steps during the enzymatic hydrolysis of pretreated lignocellulosic biomass, from the fundamental determination of enzyme kinetics to techno-economic assessments, such as the use of enzyme recycling strategies, evaluation of enzyme costs, and the optimization of various process steps. In the work described here, a modified, more rapid ninhydrin-based protein quantification assay was developed to better quantify enzyme levels in the presence of lignocellulosic biomass derived compounds. The addition of sodium borohydride followed by acid hydrolysis at 130 °C greatly reduced interference from monosaccharides and oligosaccharides and decreased the assay time 6-fold. The modified ninhydrin assay was shown to be more accurate as compared to various traditional colorimetric protein assays when commercial cellulase enzyme mixtures were quantified under typical pretreated lignocellulosic biomass enzymatic hydrolysis conditions. The relatively short assay time and microplate-reading capability of the modified assay indicated that the method could likely be used for high-throughput protein determination. PMID:25987134

  5. Efficient degradation of lignocellulosic plant biomass without pretreatment by the 9 thermophilic anaerobe, Anaerocellum thermophilum DSM 6725

    SciTech Connect

    Yang, Sung-Jae; Kataeva, Irina; Hamilton-Brehm, Scott; Engle, Nancy L; Tschaplinski, Timothy J; Doeppke, Crissa; Davis, Dr. Mark F.; Westpheling, Janet; Adams, Michael W. W.

    2009-01-01

    Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that 'Anaerocellum thermophilum' DSM 6725, an anaerobic bacterium that grows optimally at 75 C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.

  6. Evaluating the utility of hydrothermolysis pretreatment approaches in enhancing lignocellulosic biomass degradation by the anaerobic fungus Orpinomyces sp. strain C1A.

    PubMed

    Liggenstoffer, Audra S; Youssef, Noha H; Wilkins, Mark R; Elshahed, Mostafa S

    2014-09-01

    Members of the anaerobic fungi (Phylum Neocallimastigomycota) are efficient biomass degraders and represent promising agents for fuel and chemical production from lignocellulosic biomass. Pretreatment of lignocellulosic biomass is considered an unavoidable first step in enzyme-based saccharification schemes, but its necessity in any proposed anaerobic fungi-based schemes is still unclear. Here, we evaluated the effect of hydrothermal pretreatments on the extent of corn stover and switchgrass degradation by an anaerobic fungal isolate, Orpinomyces sp. strain C1A. Using a factorial experimental design, we evaluated the effect of three different temperatures (180, 190, and 200°C) and three hold times (5, 10, and 15min). Pretreated corn stover and switchgrass were more amenable to degradation by strain C1A when compared to untreated biomass, as evident by the higher proportion of plant biomass degraded compared to untreated controls. However, when factoring in the proportion of biomass lost during the pretreatment process (ranging between 25.78 and 58.92% in corn stover and 28.34 and 38.22% in switchgrass), hydrothermolysis provided negligible or negative improvements to the extent of corn stover and switchgrass degradation by strain C1A. Product analysis demonstrated a shift towards higher ethanol and lactate production and lower acetate production associated with increase in pretreatment severity, especially in switchgrass incubations. The results are in stark contrast to the requirement of pretreatment in enzyme-based schemes for biomass saccharification, and their implications on the potential utility of anaerobic fungi in biofuel and biochemical production are discussed.

  7. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    PubMed

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem.

  8. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus.

    PubMed

    Li, Ming; Si, Shengli; Hao, Bo; Zha, Yi; Wan, Can; Hong, Shufen; Kang, Yongbo; Jia, Jun; Zhang, Jing; Li, Meng; Zhao, Chunqiao; Tu, Yuanyuan; Zhou, Shiguang; Peng, Liangcai

    2014-10-01

    In this study, various alkali-pretreated lignocellulose enzymatic hydrolyses were evaluated by using three standard pairs of Miscanthus accessions that showed three distinct monolignol (G, S, H) compositions. Mfl26 samples with elevated G-levels exhibited significantly increased hexose yields of up to 1.61-fold compared to paired samples derived from enzymatic hydrolysis, whereas Msa29 samples with high H-levels displayed increased hexose yields of only up to 1.32-fold. In contrast, Mfl30 samples with elevated S-levels showed reduced hexose yields compared to the paired sample of 0.89-0.98 folds at p<0.01. Notably, only the G-rich biomass samples exhibited complete enzymatic hydrolysis under 4% NaOH pretreatment. Furthermore, the G-rich samples showed more effective extraction of lignin-hemicellulose complexes than the S- and H-rich samples upon NaOH pretreatment, resulting in large removal of lignin inhibitors to yeast fermentation. Therefore, this study proposes an optimal approach for minor genetic lignin modification towards cost-effective biomass process in Miscanthus. PMID:25079210

  9. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    PubMed

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.

  10. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411

    PubMed Central

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47–0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2–2.7 g/L/h and a total sugar conversion of 90–99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  11. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    PubMed

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  12. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    PubMed

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield. PMID:25625459

  13. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    PubMed

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield.

  14. Determination of porosity of lignocellulosic biomass before and after pretreatment by using Simons' stain and NMR techniques.

    PubMed

    Meng, Xianzhi; Foston, Marcus; Leisen, Johannes; DeMartini, Jaclyn; Wyman, Charles E; Ragauskas, Arthur J

    2013-09-01

    To further investigate the effect of dilute acid pretreatment (DAP) and steam explosion pretreatment (SE) on the change in cellulose accessibility, several techniques were applied including a Simons' stain (SS) technique along with several NMR methods (i.e., NMR cryoporometry, (1)H spin-lattice (T1) and (1)H spin-spin (T2) relaxometry, and diffusometry). These methods were utilized to probe biomass porosity and thus assess cellulose accessibility on untreated and pretreated Populus. In general, these techniques indicate that pretreated Populus has larger pore size distributions and specific surface area (SSA) when compared to an untreated sample. The SS method revealed that DAP is more effective than SE in terms of the SSA increase, and that DAP increases SSA as a function of pretreatment severity. Relaxometry and diffusion measurements also suggest pore expansion occurs primarily in the first 10 min of DAP.

  15. The Presence of Pretreated Lignocellulosic Solids from Birch during Saccharomyces cerevisiae Fermentations Leads to Increased Tolerance to Inhibitors--A Proteomic Study of the Effects.

    PubMed

    Koppram, Rakesh; Mapelli, Valeria; Albers, Eva; Olsson, Lisbeth

    2016-01-01

    The fermentation performance of Saccharomyces cerevisiae in the cellulose to ethanol conversion process is largely influenced by the components of pretreated biomass. The insoluble solids in pretreated biomass predominantly constitute cellulose, lignin, and -to a lesser extent- hemicellulose. It is important to understand the effects of water-insoluble solids (WIS) on yeast cell physiology and metabolism for the overall process optimization. In the presence of synthetic lignocellulosic inhibitors, we observed a reduced lag phase and enhanced volumetric ethanol productivity by S. cerevisiae CEN.PK 113-7D when the minimal medium was supplemented with WIS of pretreated birch or spruce and glucose as the carbon source. To investigate the underlying molecular reasons for the effects of WIS, we studied the response of WIS at the proteome level in yeast cells in the presence of acetic acid as an inhibitor. Comparisons were made with cells grown in the presence of acetic acid but without WIS in the medium. Altogether, 729 proteins were detected and quantified, of which 246 proteins were significantly up-regulated and 274 proteins were significantly down-regulated with a fold change≥1.2 in the presence of WIS compared to absence of WIS. The cells in the presence of WIS up-regulated several proteins related to cell wall, glycolysis, electron transport chain, oxidative stress response, oxygen and radical detoxification and unfolded protein response; and down-regulated most proteins related to biosynthetic pathways including amino acid, purine, isoprenoid biosynthesis, aminoacyl-tRNA synthetases and pentose phosphate pathway. Overall, the identified differentially regulated proteins may indicate that the likelihood of increased ATP generation in the presence of WIS was used to defend against acetic acid stress at the expense of reduced biomass formation. Although, comparative proteomics of cells with and without WIS in the acetic acid containing medium revealed numerous

  16. The Presence of Pretreated Lignocellulosic Solids from Birch during Saccharomyces cerevisiae Fermentations Leads to Increased Tolerance to Inhibitors--A Proteomic Study of the Effects.

    PubMed

    Koppram, Rakesh; Mapelli, Valeria; Albers, Eva; Olsson, Lisbeth

    2016-01-01

    The fermentation performance of Saccharomyces cerevisiae in the cellulose to ethanol conversion process is largely influenced by the components of pretreated biomass. The insoluble solids in pretreated biomass predominantly constitute cellulose, lignin, and -to a lesser extent- hemicellulose. It is important to understand the effects of water-insoluble solids (WIS) on yeast cell physiology and metabolism for the overall process optimization. In the presence of synthetic lignocellulosic inhibitors, we observed a reduced lag phase and enhanced volumetric ethanol productivity by S. cerevisiae CEN.PK 113-7D when the minimal medium was supplemented with WIS of pretreated birch or spruce and glucose as the carbon source. To investigate the underlying molecular reasons for the effects of WIS, we studied the response of WIS at the proteome level in yeast cells in the presence of acetic acid as an inhibitor. Comparisons were made with cells grown in the presence of acetic acid but without WIS in the medium. Altogether, 729 proteins were detected and quantified, of which 246 proteins were significantly up-regulated and 274 proteins were significantly down-regulated with a fold change≥1.2 in the presence of WIS compared to absence of WIS. The cells in the presence of WIS up-regulated several proteins related to cell wall, glycolysis, electron transport chain, oxidative stress response, oxygen and radical detoxification and unfolded protein response; and down-regulated most proteins related to biosynthetic pathways including amino acid, purine, isoprenoid biosynthesis, aminoacyl-tRNA synthetases and pentose phosphate pathway. Overall, the identified differentially regulated proteins may indicate that the likelihood of increased ATP generation in the presence of WIS was used to defend against acetic acid stress at the expense of reduced biomass formation. Although, comparative proteomics of cells with and without WIS in the acetic acid containing medium revealed numerous

  17. The Presence of Pretreated Lignocellulosic Solids from Birch during Saccharomyces cerevisiae Fermentations Leads to Increased Tolerance to Inhibitors – A Proteomic Study of the Effects

    PubMed Central

    Koppram, Rakesh; Mapelli, Valeria; Albers, Eva; Olsson, Lisbeth

    2016-01-01

    The fermentation performance of Saccharomyces cerevisiae in the cellulose to ethanol conversion process is largely influenced by the components of pretreated biomass. The insoluble solids in pretreated biomass predominantly constitute cellulose, lignin, and -to a lesser extent- hemicellulose. It is important to understand the effects of water-insoluble solids (WIS) on yeast cell physiology and metabolism for the overall process optimization. In the presence of synthetic lignocellulosic inhibitors, we observed a reduced lag phase and enhanced volumetric ethanol productivity by S. cerevisiae CEN.PK 113-7D when the minimal medium was supplemented with WIS of pretreated birch or spruce and glucose as the carbon source. To investigate the underlying molecular reasons for the effects of WIS, we studied the response of WIS at the proteome level in yeast cells in the presence of acetic acid as an inhibitor. Comparisons were made with cells grown in the presence of acetic acid but without WIS in the medium. Altogether, 729 proteins were detected and quantified, of which 246 proteins were significantly up-regulated and 274 proteins were significantly down-regulated with a fold change≥1.2 in the presence of WIS compared to absence of WIS. The cells in the presence of WIS up-regulated several proteins related to cell wall, glycolysis, electron transport chain, oxidative stress response, oxygen and radical detoxification and unfolded protein response; and down-regulated most proteins related to biosynthetic pathways including amino acid, purine, isoprenoid biosynthesis, aminoacyl-tRNA synthetases and pentose phosphate pathway. Overall, the identified differentially regulated proteins may indicate that the likelihood of increased ATP generation in the presence of WIS was used to defend against acetic acid stress at the expense of reduced biomass formation. Although, comparative proteomics of cells with and without WIS in the acetic acid containing medium revealed numerous

  18. Enzymatic hydrolysis of various pretreated lignocellulosic substrates and the fermentation of the liberated sugars to ethanol and butanediol

    SciTech Connect

    Saddler, J.N.; Mes-Hartree, M.; Yu, E.K.C.; Brownell, H.H.

    1983-01-01

    Aspen wood and wheat straw were pretreated by exposure to steam at elevated temperatures. Chemical analysis of the substrates revealed that steam explosion differentially decomposed the pentosan component while leaving the glucan portion relatively unchanged. The pretreated residues could be used as substrates for growth of Trichoderma reesei C30 and T. harzianum E58. The cellulase activities detected were in some cases three times as high as those found when Solka Floc was used as the substrate. Culture filtrates of T. harzianum E58 could efficiently hydrolyze the hemicellulose-rich water-soluble fractions. This material was fermented by Klebsiella pneumoniae with 0.4-0.5 g of 2,3-butanediol produced per gram of sugar utilized. Once the steam-exploded residues had been water and alkali extracted, the enzymatically hydrolyzed substrates were readily fermented by Saccharomyces cerevisiae or Zymononas mobilis with values as high as 2% (w/v) ethanol obtained from 5% steam-exploded wood fractions. 30 references, 2 figures, 8 tables.

  19. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus.

    PubMed

    Oliva, Jose Miguel; Sáez, Felicia; Ballesteros, Ignacio; González, Alberto; Negro, Maria José; Manzanares, Paloma; Ballesteros, Mercedes

    2003-01-01

    The filtrate from steam-pretreated poplar was analyzed to identify degradation compounds. The effect of selected compounds on growth and ethanolic fermentation of the thermotolerant yeast strain Kluyveromyces marxianus CECT 10875 was tested. Several fermentations on glucose medium, containing individual inhibitory compounds found in the hydrolysate, were carried out. The degree of inhibition on yeast strain growth and ethanolic fermentation was determined. At concentrations found in the prehy-drolysate, none of the individual compounds significantly affected the fermentation. For all tested compounds, growth was inhibited to a lesser extent than ethanol production. Lower concentrations of catechol (0.96 g/L) and 4-hydroxybenzaldehyde (1.02 g/L) were required to produce the 50% reduction in cell mass in comparison to other tested compounds.

  20. Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass.

    PubMed

    Zhou, Simeng; Raouche, Sana; Grisel, Sacha; Navarro, David; Sigoillot, Jean-Claude; Herpoël-Gimbert, Isabelle

    2015-11-01

    The potential of fungal pretreatment to improve fermentable sugar yields from wheat straw or Miscanthus was investigated. We assessed 63 fungal strains including 53 white-rot and 10 brown-rot fungi belonging to the Basidiomycota phylum in an original 12 day small-scale solid-state fermentation (SSF) experiment using 24-well plates. This method offers the convenience of one-pot processing of samples from SSF to enzymatic hydrolysis. The comparison of the lignocellulolytic activity profiles of white-rot fungi and brown-rot fungi showed different behaviours. The hierarchical clustering according to glucose and reducing sugars released from each biomass after 72 h enzymatic hydrolysis splits the set of fungal strains into three groups: efficient, no-effect and detrimental-effect species. The efficient group contained 17 species belonging to seven white-rot genera and one brown-rot genus. The yield of sugar released increased significantly (max. 62%) compared with non-inoculated controls for both substrates.

  1. Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass

    PubMed Central

    Zhou, Simeng; Raouche, Sana; Grisel, Sacha; Navarro, David; Sigoillot, Jean-Claude; Herpoël-Gimbert, Isabelle

    2015-01-01

    The potential of fungal pretreatment to improve fermentable sugar yields from wheat straw or Miscanthus was investigated. We assessed 63 fungal strains including 53 white-rot and 10 brown-rot fungi belonging to the Basidiomycota phylum in an original 12 day small-scale solid-state fermentation (SSF) experiment using 24-well plates. This method offers the convenience of one-pot processing of samples from SSF to enzymatic hydrolysis. The comparison of the lignocellulolytic activity profiles of white-rot fungi and brown-rot fungi showed different behaviours. The hierarchical clustering according to glucose and reducing sugars released from each biomass after 72 h enzymatic hydrolysis splits the set of fungal strains into three groups: efficient, no-effect and detrimental-effect species. The efficient group contained 17 species belonging to seven white-rot genera and one brown-rot genus. The yield of sugar released increased significantly (max. 62%) compared with non-inoculated controls for both substrates. PMID:26249037

  2. Hydrolysates of lignocellulosic materials for biohydrogen production.

    PubMed

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-05-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.

  3. Ethanolic fermentation of lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.

    1996-12-31

    This minireview discusses various factors which require consideration for the ethanolic fermentation of lignocellulose hydrolysates. The production of an alternative transportation fuel requires pretreatment of the biomass and detoxification to enhance the fermentability. Recombinant DNA technology makes it possible to engineer new microorganisms for efficient ethanol production from all sugars present in the hydrolysates. 60 refs.

  4. Fermentative hydrogen production from agroindustrial lignocellulosic substrates

    PubMed Central

    Reginatto, Valeria; Antônio, Regina Vasconcellos

    2015-01-01

    To achieve economically competitive biological hydrogen production, it is crucial to consider inexpensive materials such as lignocellulosic substrate residues derived from agroindustrial activities. It is possible to use (1) lignocellulosic materials without any type of pretreatment, (2) lignocellulosic materials after a pretreatment step, and (3) lignocellulosic materials hydrolysates originating from a pretreatment step followed by enzymatic hydrolysis. According to the current literature data on fermentative H2 production presented in this review, thermophilic conditions produce H2 in yields approximately 75% higher than those obtained in mesophilic conditions using untreated lignocellulosic substrates. The average H2 production from pretreated material is 3.17 ± 1.79 mmol of H2/g of substrate, which is approximately 50% higher compared with the average yield achieved using untreated materials (2.17 ± 1.84 mmol of H2/g of substrate). Biological pretreatment affords the highest average yield 4.54 ± 1.78 mmol of H2/g of substrate compared with the acid and basic pretreatment - average yields of 2.94 ± 1.85 and 2.41 ± 1.52 mmol of H2/g of substrate, respectively. The average H2 yield from hydrolysates, obtained from a pretreatment step and enzymatic hydrolysis (3.78 ± 1.92 mmol of H2/g), was lower compared with the yield of substrates pretreated by biological methods only, demonstrating that it is important to avoid the formation of inhibitors generated by chemical pretreatments. Based on this review, exploring other microorganisms and optimizing the pretreatment and hydrolysis conditions can make the use of lignocellulosic substrates a sustainable way to produce H2. PMID:26273246

  5. Lime Pretreatment

    NASA Astrophysics Data System (ADS)

    Sierra, Rocio; Granda, Cesar Benigno; Holtzapple, Mark T.

    Lime pretreatment has proven to be a useful method for selectively reducing the lignin content of lignocellulosic biomass without significant loss in carbohydrates, thus realizing an important increase in biodigestibility. In lime pretreatment, the biomass is pretreated with calcium hydroxide and water under different conditions of temperature and pressure. It can be accomplished in one of three fashions: (1) short-term pretreatment that lasts up to 6 h, requires temperatures of 100-160°C, and can be applied with or without oxygen (pressure ~200 psig); (2) long-term pretreatment taking up to 8 weeks, requiring only 55-65°C, and capable of running with or without air (atmospheric pressure); and (3) simple pretreatment requiring 1 h in boiling water, without air or oxygen. Nonoxidative conditions are effective at low lignin contents (below ~18% lignin), whereas oxidative conditions are required for high lignin contents (above ~18% lignin).

  6. Biohydrogen production from lignocellulosic feedstock.

    PubMed

    Cheng, Chieh-Lun; Lo, Yung-Chung; Lee, Kuo-Shing; Lee, Duu-Jong; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.

  7. Customized optimization of cellulase mixtures for differently pretreated rice straw.

    PubMed

    Kim, In Jung; Jung, Ju Yeon; Lee, Hee Jin; Park, Hyong Seok; Jung, Young Hoon; Park, Kyungmoon; Kim, Kyoung Heon

    2015-05-01

    Lignocellulose contains a large amount of cellulose but is recalcitrant to enzymatic hydrolysis, which yields sugars for fuels or chemicals. Various pretreatment methods are used to improve the enzymatic digestibility of cellulose in lignocellulose. Depending on the lignocellulose types and pretreatment methods, biomass compositions and physical properties significantly vary. Therefore, customized enzyme mixtures have to be employed for the efficient hydrolysis of pretreated lignocellulose. Here, using three recombinant model enzymes consisting of endoglucanase, cellobiohydrolase, and xylanase with a fixed amount of β-glucosidase, the optimal formulation of enzyme mixtures was designed for two differently pretreated rice straws (acid-pretreated or alkali-pretreated rice straw) by the mixture design methodology. As a result, different optimal compositions for the enzyme mixtures were employed depending on the type of pretreatment of rice straw. These results suggest that customized enzyme mixtures for pretreated lignocellulosic biomass are necessary to obtain increased sugar yields and should be considered in the industrial utilization of lignocellulose. PMID:25547288

  8. Fuel ethanol production from corn stover under optimized dilute phosphoric acid pretreatment and enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol is a renewable oxygenated fuel. Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Generation of fermentable sugars from corn stover involves pretreatment and enzymatic saccharification. Pretreatment is crucial as nat...

  9. Grass Lignocellulose

    NASA Astrophysics Data System (ADS)

    Akin, Danny E.

    Grass lignocelluloses are limited in bioconversion by aromatic constituents, which include both lignins and phenolic acids esters. Histochemistry, ultraviolet absorption microspectrophotometry, and response to microorganisms and specific enzymes have been used to determine the significance of aromatics toward recalcitrance. Coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues; cell walls with syringyl lignin, for example, leaf sclerenchyma, are less recalcitrant. Esterified phenolic acids, i.e., ferulic and p-coumaric acids, often constitute a major chemical limitation in nonlignified cell walls to biodegradation in grasses, especially warm-season species. Methods to improve biodegradability through modification of aromatics include: plant breeding, use of lignin-degrading white-rot fungi, and addition of esterases. Plant breeding for new cultivars has been especially effective for nutritionally improved forages, for example, bermudagrasses. In laboratory studies, selective white-rot fungi that lack cellulases delignified the lignocellulosic materials and improved fermentation of residual carbohydrates. Phenolic acid esterases released p-coumaric and ferulic acids for potential coproducts, improved the available sugars for fermentation, and improved biodegradation. The separation and removal of the aromatic components for coproducts, while enhancing the availability of sugars for bioconversion, could improve the economics of bioconversion.

  10. Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology.

    PubMed

    Pandey, Ajay Kumar; Negi, Sangeeta

    2015-09-01

    In present study, two hybrid methods such as surfactant assisted acid pretreatment (SAAP) and surfactant assisted base pretreatment (SABP) of pine foliage (PF) were found efficient for removal of 59.53 ± 0.76% and 73.47 ± 1.03% lignin, respectively. Assessment of the impact of pretreatment over the structure of PF were studied by scanning electron microscopy, Fourier transform infrared and X-ray diffraction analysis. Parameters for saccharification of SAAP and SABP biomass were optimized by Box-Behnken design method and 0.588 g/g and 0.477 g/g of reducing sugars were obtained, respectively. The ethanol fermentation efficiency of Saccharomyces cerevisiae (NCIM 3288) of hydrolysates was increased by 16.1% and 6.01% in SAAP-PFF and SABP-PFF after detoxification with XAD-4 resin. The mass balance analysis of the process showed that 67.7% and 70.12% cellulose were utilized during SAAP and SABP, respectively. These results indicated that SAAP would be more economic for bioethanol production.

  11. Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology.

    PubMed

    Pandey, Ajay Kumar; Negi, Sangeeta

    2015-09-01

    In present study, two hybrid methods such as surfactant assisted acid pretreatment (SAAP) and surfactant assisted base pretreatment (SABP) of pine foliage (PF) were found efficient for removal of 59.53 ± 0.76% and 73.47 ± 1.03% lignin, respectively. Assessment of the impact of pretreatment over the structure of PF were studied by scanning electron microscopy, Fourier transform infrared and X-ray diffraction analysis. Parameters for saccharification of SAAP and SABP biomass were optimized by Box-Behnken design method and 0.588 g/g and 0.477 g/g of reducing sugars were obtained, respectively. The ethanol fermentation efficiency of Saccharomyces cerevisiae (NCIM 3288) of hydrolysates was increased by 16.1% and 6.01% in SAAP-PFF and SABP-PFF after detoxification with XAD-4 resin. The mass balance analysis of the process showed that 67.7% and 70.12% cellulose were utilized during SAAP and SABP, respectively. These results indicated that SAAP would be more economic for bioethanol production. PMID:26025349

  12. Hydrolysates of lignocellulosic materials for biohydrogen production

    PubMed Central

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-01-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized. [BMB Reports 2013; 46(5): 244-251] PMID:23710634

  13. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  14. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  15. Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes

    PubMed Central

    Forsberg, Kevin J.; Patel, Sanket; Witt, Evan; Wang, Bin; Ellison, Tyler D.

    2015-01-01

    The production of fuels or chemicals from lignocellulose currently requires thermochemical pretreatment to release fermentable sugars. These harsh conditions also generate numerous small-molecule inhibitors of microbial growth and fermentation, limiting production. We applied small-insert functional metagenomic selections to discover genes that confer microbial tolerance to these inhibitors, identifying both individual genes and general biological processes associated with tolerance to multiple inhibitory compounds. Having screened over 248 Gb of DNA cloned from 16 diverse soil metagenomes, we describe gain-of-function tolerance against acid, alcohol, and aldehyde inhibitors derived from hemicellulose and lignin, demonstrating that uncultured soil microbial communities hold tremendous genetic potential to address the toxicity of pretreated lignocellulose. We recovered genes previously known to confer tolerance to lignocellulosic inhibitors as well as novel genes that confer tolerance via unknown functions. For instance, we implicated galactose metabolism in overcoming the toxicity of lignin monomers and identified a decarboxylase that confers tolerance to ferulic acid; this enzyme has been shown to catalyze the production of 4-vinyl guaiacol, a valuable precursor to vanillin production. These metagenomic tolerance genes can enable the flexible design of hardy microbial catalysts, customized to withstand inhibitors abundant in specific bioprocessing applications. PMID:26546427

  16. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    PubMed

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ∼93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only. PMID:22613899

  17. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds.

    PubMed

    Chen, Xi; Li, Zihui; Zhang, Xiaoxi; Hu, Fengxian; Ryu, Dewey D Y; Bao, Jie

    2009-12-01

    High cost of triacylglycerol lipid feedstock is the major barrier for commercial production of biodiesel. The fermentation of oleaginous yeasts for lipid production using lignocellulose biomass provides a practical option with high economic competitiveness. In this paper, the typical oleaginous yeast strains were screened under the pressure of lignocellulose degradation compounds for selection of the optimal strains tolerant to lignocellulose. The inhibitory effect of lignocellulose degradation products on the oleaginous yeast fermentation was carefully investigated. Preliminary screening was carried out in the minimum nutritious medium without adding any expensive complex ingredients then was carried out in the lignocellulosic hydrolysate pretreated by dilute sulfuric acid. Seven typical lignocellulose degradation products formed in various pretreatment and hydrolysis processing were selected as the model inhibitors, including three organic acids, two furan compounds, and two phenol derivatives. The inhibition of the degradation compounds on the cell growth and lipid productivity of the selected oleaginous yeasts were examined. Acetic acid, formic acid, furfural, and vanillin were found to be the strong inhibitors for the fermentation of oleaginous yeasts, while levulinic acid, 5-hydroxymethylfurfural, and hydroxybenzaldehyde were relatively weak inhibitors. Trichosporon cutaneum 2.1374 was found to be the most adopted strain to the lignocellulose degradation compounds.

  18. Ethanol production from lignocellulose

    DOEpatents

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  19. Erlotinib Pretreatment Improves Photodynamic Therapy of Non-Small Cell Lung Carcinoma Xenografts via Multiple Mechanisms.

    PubMed

    Gallagher-Colombo, Shannon M; Miller, Joann; Cengel, Keith A; Putt, Mary E; Vinogradov, Sergei A; Busch, Theresa M

    2015-08-01

    Aberrant expression of the epidermal growth factor receptor (EGFR) is a common characteristic of many cancers, including non-small cell lung carcinoma (NSCLC), head and neck squamous cell carcinoma, and ovarian cancer. Although EGFR is currently a favorite molecular target for the treatment of these cancers, inhibition of the receptor with small-molecule inhibitors (i.e., erlotinib) or monoclonal antibodies (i.e., cetuximab) does not provide long-term therapeutic benefit as standalone treatment. Interestingly, we have found that addition of erlotinib to photodynamic therapy (PDT) can improve treatment response in typically erlotinib-resistant NSCLC tumor xenografts. Ninety-day complete response rates of 63% are achieved when erlotinib is administered in three doses before PDT of H460 human tumor xenografts, compared with 16% after PDT-alone. Similar benefit is found when erlotinib is added to PDT of A549 NCSLC xenografts. Improved response is accompanied by increased vascular shutdown, and erlotinib increases the in vitro cytotoxicity of PDT to endothelial cells. Tumor uptake of the photosensitizer (benzoporphyrin derivative monoacid ring A; BPD) is increased by the in vivo administration of erlotinib; nevertheless, this elevation of BPD levels only partially accounts for the benefit of erlotinib to PDT. Thus, pretreatment with erlotinib augments multiple mechanisms of PDT effect that collectively lead to large improvements in therapeutic efficacy. These data demonstrate that short-duration administration of erlotinib before PDT can greatly improve the responsiveness of even erlotinib-resistant tumors to treatment. Results will inform clinical investigation of EGFR-targeting therapeutics in conjunction with PDT.

  20. Pretreatment methods for bioethanol production.

    PubMed

    Xu, Zhaoyang; Huang, Fang

    2014-09-01

    Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.

  1. Prehydrolysis of lignocellulose

    DOEpatents

    Torget, Robert W.; Kadam, Kiran L.; Hsu, Teh-An; Philippidis, George P.; Wyman, Charles E.

    1998-01-01

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions.

  2. Prehydrolysis of lignocellulose

    DOEpatents

    Torget, Robert W.; Kadam, Kiran L.; Hsu, Teh-An; Philippidis, George P.; Wyman, Charles E.

    1995-01-01

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions.

  3. Prehydrolysis of lignocellulose

    DOEpatents

    Torget, Robert W.; Kadam, Kiran L.; Hsu, Teh-An; Philippidis, George P.; Wyman, Charles E.

    1996-01-01

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions.

  4. GREET Pretreatment Module

    SciTech Connect

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from biomass via different pretreatment technologies that yield sugars. This report documents the material and energy flows that occur when fermentable sugars from four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar) are produced via dilute acid pretreatment and ammonia fiber expansion. These flows are documented for inclusion in the pretreatment module of the Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. Process simulations of each pretreatment technology were developed in Aspen Plus. Material and energy consumption data from Aspen Plus were then compiled in the GREET pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  5. Liquid Hot Water Pretreatment of Cellulosic Biomass

    NASA Astrophysics Data System (ADS)

    Kim, Youngmi; Hendrickson, Rick; Mosier, Nathan S.; Ladisch, Michael R.

    Lignocellulosic biomass is an abundant and renewable resource for fuel ethanol production. However, the lignocellulose is recalcitrant to enzymatic hydrolysis because of its structural complexity. Controlled-pH liquid hot water (LHW) pretreatment of cellulosic feedstock improves its enzymatic digestibility by removing hemicellulose and making the cellulose more accessible to cellulase enzymes. The removed hemicellulose is solubilized in the liquid phase of the pretreated feedstock as oligosaccharides. Formation of monomeric sugars during the LHW pretreatment is minimal. The LHW pretreatment is carried out by cooking the feedstock in process water at temperatures between 160 and 190°C and at a pH of 4-7. No additional chemicals are needed. This chapter presents the detailed procedure of the LHW pretreatment of lignocellulosic biomass.

  6. Genomic mechanisms of inhibitor-detoxification for low-cost lignocellulosic bioethanol conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One major challenges of sustainable lignocellulosic biomass conversion to ethanol is to overcome inhibitors generated from biomass pretreatment. Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural, cinnamaldehyde, phenylacetylaldehyde, and 4-hydroxybenzaldehyde, are common and potent inhi...

  7. Investigation of adsorption kinetics and isotherm of cellulase and B-Glucosidase on lignocellulosic substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clear understanding of enzyme adsorption during enzymatic hydrolysis of lignocellulosic biomass is essential to enhance the cost-efficiency of hydrolysis. However, conclusions from literatures often contradicted each other because enzyme adsorption is enzyme, biomass/pretreatment and experimental co...

  8. Are multiple pre-treatment groups necessary or unwarranted in faecal egg count reduction tests in sheep?

    PubMed

    McKenna, P B

    2013-09-23

    Previously conducted faecal egg count reduction tests (FECRTs) in sheep involving a number of different anthelmintic treatments, were used to examine the effects of comparing post-treatment faecal egg counts (FECs) with pre-treatment counts from either the same treatment groups (matched FECRs) or with those from other treatment groups (unmatched FECRs). Each of these unmatched FECRs were considered to be analogous to those that might otherwise have been obtained by the use of a randomly selected group of animals to provide a single pre-treatment baseline for comparing all post-treatment results. An examination of these comparisons showed that the use of either procedure was likely to result in similar estimates of anthelmintic efficacy and the detection of a comparable number of cases of anthelmintic-resistance. Only on 1.1% of occasions did the FECRs from any of the unmatched groups fall outside the 95% confidence limits of the FECRs of their corresponding matched counterparts and in just 9.8% (54/553) of instances were there any disagreements between the number of cases categorised as either resistant or susceptible on the basis of a < or ≥ 95% FECR. These findings suggest that any improvements in accuracy and reliability that might supposedly be achieved by the use of multiple pre- and post-treatment FECs from the same treatment groups as opposed to those likely to be provided by the use of a single randomly selected representative pre-treatment group, may be largely illusory.

  9. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.

    PubMed

    Hasunuma, Tomohisa; Kondo, Akihiko

    2012-01-01

    To build an energy and material secure future, a next generation of renewable fuels produced from lignocellulosic biomass is required. Although lignocellulosic biomass, which represents an abundant, inexpensive and renewable source for bioethanol production, is of great interest as a feedstock, the complicated ethanol production processes involved make the cost of producing bioethanol from it higher compared to corn starch and cane juice. Therefore, consolidated bioprocessing (CBP), which combines enzyme production, saccharification and fermentation in a single step, has gained increased recognition as a potential bioethanol production system. CBP requires a highly engineered microorganism developed for several different process-specific characteristics. The dominant strategy for engineering a CBP biocatalyst is to express multiple components of a cellulolytic system from either fungi or bacteria in the yeast Saccharomyces cerevisiae. The development of recombinant yeast strains displaying cellulases and hemicellulases on the cell surface represents significant progress toward realization of CBP. Regardless of the process used for biomass hydrolysis, CBP-enabling microorganisms encounter a variety of toxic compounds produced during biomass pretreatment that inhibit microbial growth and ethanol yield. Systems biology approaches including disruptome screening, transcriptomics, and metabolomics have been recently exploited to gain insight into the molecular and genetic traits involved in tolerance and adaptation to the fermentation inhibitors. In this review, we focus on recent advances in development of yeast strains with both the ability to directly convert lignocellulosic material to ethanol and tolerance in the harsh environments containing toxic compounds in the presence of ethanol.

  10. Prehydrolysis of lignocellulose

    DOEpatents

    Torget, R.W.; Kadam, K.L.; Hsu, T.A.; Philippidis, G.P.; Wyman, C.E.

    1995-06-13

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions. 7 figs.

  11. Prehydrolysis of lignocellulose

    DOEpatents

    Torget, R.W.; Kadam, K.L.; Hsu, T.A.; Philippidis, G.P.; Wyman, C.E.

    1996-04-02

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions. 7 figs.

  12. Prehydrolysis of lignocellulose

    DOEpatents

    Torget, R.W.; Kadam, K.L.; Hsu, T.A.; Philippidis, G.P.; Wyman, C.E.

    1998-01-06

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions. 7 figs.

  13. The conversion of lignocellulosics to fermentable sugars - A survey of current research and applications to CELSS

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.; Baresi, Larry

    1990-01-01

    This report provides an overview options for converting lignocellulosics into fermentable sugars in CELSS. A requirement for pretreatment is shown. Physical-chemical and enzymatic hydrolysis processes for producing fermentable sugars are discussed. At present physical-chemical methods are the simplest and best characterized options, but enzymatic processes will be the likely method of choice in the future. The use of pentose sugars by microorganisms to produce edibles is possible. The use of mycelial food production on pretreated but not hydrolyzed lignocellulosics is also possible. Simple trade-off analyses to regenerate waste lignocellulosics for two pathways are made, one of which is compared to complete oxidation.

  14. Application of Complex Fluids in Lignocellulose Processing

    NASA Astrophysics Data System (ADS)

    Carrillo Lugo, Carlos A.

    Complex fluids such as emulsions, microemulsions and foams, have been used for different applications due to the multiplicity of properties they possess. In the present work, such fluids are introduced as effective media for processing lignocellulosic biomass. A demonstration of the generic benefits of complex fluids is presented to enhance biomass impregnation, to facilitate pretreatment for fiber deconstruction and to make compatible cellulose fibrils with hydrophobic polymers during composite manufacture. An improved impregnation of woody biomass was accomplished by application of water-continuous microemulsions. Microemulsions with high water content, > 85%, were formulated and wood samples were impregnated by wicking and capillary flooding at atmospheric pressure and temperature. Formulations were designed to effectively impregnate different wood species during shorter times and to a larger extent compared to the single components of the microemulsions (water, oil or surfactant solutions). The viscosity of the microemulsions and their interactions with cell wall constituents in fibers were critical to define the extent of impregnation and solubilization. The relation between composition and formulation variables and the extent of microemulsion penetration in different woody substrates was studied. Formulation variables such as salinity content of the aqueous phase and type of surfactant were elucidated. Likewise, composition variables such as the water-to-oil ratio and surfactant concentration were investigated. These variables affected the characteristics of the microemulsion and determined their effectiveness in wood treatment. Also, the interactions between the surfactant and the substrate had an important contribution in defining microemulsion penetration in the capillary structure of wood. Microemulsions as an alternative pretreatment for the manufacture of cellulose nanofibrils (CNFs) was also studied. Microemulsions were applied to pretreat lignin

  15. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights.

    PubMed

    Ren, Nan-Qi; Zhao, Lei; Chen, Chuan; Guo, Wan-Qian; Cao, Guang-Li

    2016-09-01

    With the increasing energy crisis and rising concern over climate change, the development of clean alternative energy sources is of great importance. Biohydrogen produced from lignocellulosic biomass is a promising candidate, because of its positives such as readily available, no harmful emissions, environment friendly, efficient, and renewable. However, obstacles still exist to enable the commercialization of biological hydrogen production from lignocellulosic biomass. Thus the objective of this work is to provide update information about the recent progress on lignocellulosic hydrogen conversion via dark fermentation. In this review, the most important technologies associated with lignocellulosic hydrogen fermentation were covered. Firstly, pretreatment methods for better utilization of lignocellulosic biomass are presented, at the same time, hydrolysis methods assisting to achieve efficient hydrogen fermentation were discussed. Afterwards, issues related to bioprocesses for hydrogen production purposes were presented. Additionally, the paper gave challenges and new insights of lignocellulosic biohydrogen production.

  16. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights.

    PubMed

    Ren, Nan-Qi; Zhao, Lei; Chen, Chuan; Guo, Wan-Qian; Cao, Guang-Li

    2016-09-01

    With the increasing energy crisis and rising concern over climate change, the development of clean alternative energy sources is of great importance. Biohydrogen produced from lignocellulosic biomass is a promising candidate, because of its positives such as readily available, no harmful emissions, environment friendly, efficient, and renewable. However, obstacles still exist to enable the commercialization of biological hydrogen production from lignocellulosic biomass. Thus the objective of this work is to provide update information about the recent progress on lignocellulosic hydrogen conversion via dark fermentation. In this review, the most important technologies associated with lignocellulosic hydrogen fermentation were covered. Firstly, pretreatment methods for better utilization of lignocellulosic biomass are presented, at the same time, hydrolysis methods assisting to achieve efficient hydrogen fermentation were discussed. Afterwards, issues related to bioprocesses for hydrogen production purposes were presented. Additionally, the paper gave challenges and new insights of lignocellulosic biohydrogen production. PMID:27090403

  17. Biological pretreatment of corn stover with white-rot fungus for enzymatic hydrolysis and bioethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment, as the first step towards conversion of lignocellulosic feedstocks to biofuels and/or chemicals remains one of the main barriers to commercial success. Typically, harsh methods are used to pretreat lignocellulosic biomass prior to its breakdown to sugars by enzymes, which also result ...

  18. Plant biotechnology for lignocellulosic biofuel production.

    PubMed

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production. PMID:25330253

  19. Plant biotechnology for lignocellulosic biofuel production.

    PubMed

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.

  20. Ozone Pretreatment of Wheat Straw and its Effect on Reducing Sugars in Hydrolyzate

    NASA Astrophysics Data System (ADS)

    Gerulová, Kristína; Blinová, Lenka

    2011-01-01

    The aim of this contribution is to measure the effect of the pretreatment of lignocellulosic phytomass utilization for bioethanol production. The first step of bioethanol production from lignocellulosic phytomass is pretreatment of raw material. The next step is hydrolysis, and then the fermentation of sugars follows. The physical (grinding, breaking) and chemical (ozonization) processes were used as pretreatment. Ozone was applied to the aqueous suspension of lignocellulosic phytomass before and during the hydrolysis. Ozone pretreatment did not perform as effectively as expected. The results of study, which are focused on evaluation of reducing sugars are included in this contribution.

  1. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Quang A.

    1999-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  2. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Quang A.

    1998-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards of downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  3. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Q.A.

    1999-03-30

    An apparatus is described for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  4. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Q.A.

    1998-03-31

    An apparatus is disclosed for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material. The apparatus consists of a tower bioreactor which has mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  5. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks.

    PubMed

    Poovaiah, Charleson R; Nageswara-Rao, Madhugiri; Soneji, Jaya R; Baxter, Holly L; Stewart, Charles N

    2014-12-01

    Lignocellulosic feedstocks can be converted to biofuels, which can conceivably replace a large fraction of fossil fuels currently used for transformation. However, lignin, a prominent constituent of secondary cell walls, is an impediment to the conversion of cell walls to fuel: the recalcitrance problem. Biomass pretreatment for removing lignin is the most expensive step in the production of lignocellulosic biofuels. Even though we have learned a great deal about the biosynthesis of lignin, we do not fully understand its role in plant biology, which is needed for the rational design of engineered cell walls for lignocellulosic feedstocks. This review will recapitulate our knowledge of lignin biosynthesis and discuss how lignin has been modified and the consequences for the host plant.

  6. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  7. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    PubMed

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared.

  8. Utilization of lignocellulosic polysaccharides

    NASA Astrophysics Data System (ADS)

    Fenske, John James

    Lignocellulosic biomass represents a vast supply of fermentable carbohydrates and functional aromatic compounds. Conversion of lignocellulosics to ethanol and other useful products would be of widespread economical and environmental benefit. Better understanding of the behavior of different lignocellulosic feedstocks in fermentation protocols as well as catalytic activities involved in lignocellulosic depolymerization will further enhance the commercial viability of biomass-to-ethanol conversion processes. The relative toxicity of the combined non-xylose components in prehydrolysates derived from three different lignocellulosic biomass feedstocks (poplar, corn stover and switchgrass, or Panicum virgatum L.) was determined using a Pichia stipits fermentation assay. The relative toxicity of the prehydrolysates, in decreasing order, was poplar-derived prehydrolysates > switchgrass-derived prehydrolysates > corn stover-derived prehydrolysates. Ethanol yields averaged 74%, 83% and 88% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Volumetric ethanol productivities (g ethanol lsp{-1} hsp{-1}) averaged 32%, 70% and 102% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Ethanol productivities correlated closely with acetate concentrations in the prehydrolysates; however, regression lines correlating acetate concentrations and ethanol productivities were found to be feedstock-dependent. Differences in the relative toxicity of xylose-rich prehydrolysates derived from woody and herbaceous feedstocks are likely due to the relative abundance of a variety of inhibitory compounds, e.g. acetate and aromatic compounds. Fourteen aromatic monomers present in prehydrolysates prepared from corn stover, switchgrass, and poplar were tentatively identified by comparison with published mass spectra. The concentrations of the aromatic monomers totaled 112, 141 and 247 mg(l)sp{-1} for corn stover, switchgrass

  9. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  10. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process. PMID:26992903

  11. Bioconversion of Lignocellulose Materials

    PubMed Central

    Kanmani, P.; Balaji, P.

    2006-01-01

    One of the most economically viable processes for the bioconversion of many lignocellulosic waste is represented by white rot fungi. Phanerochaete chrysosporium is one of the important commercially cultivated fungi which exhibit varying abilities to utilize different lignocellulosic as growth substrate. Examination of the lignocellulolytic enzyme profiles of the two organisms Phanerochaete chrysosporium and Rhizopus stolonifer show this diversity to be reflected in qualitative variation in the major enzymatic determinants (ie cellulase, xylanase, ligninase and etc) required for substrate bioconversion. For example P. chrysosporium which is cultivated on highly lignified substrates such as wood (or) sawdust, produces two extracellular enzymes which have associated with lignin deploymerization. (Mn peroxidase and lignin peroxidase). Conversely Rhizopus stolonifer which prefers high cellulose and low lignin containg substrates produce a family of cellulolytic enzymes including at least cellobiohydrolases and β-glucosidases, but very low level of recognized lignin degrading enzymes. PMID:24039492

  12. Lenalidomide (Revlimid), bortezomib (Velcade) and dexamethasone for heavily pretreated relapsed or refractory multiple myeloma.

    PubMed

    Jimenez-Zepeda, Victor H; Reece, Donna E; Trudel, Suzanne; Chen, Christine; Tiedemann, Rodger; Kukreti, Vishal

    2013-03-01

    The combination of lenalidomide, bortezomib and dexamethasone (RVD) has shown excellent efficacy in patients with relapsed or refractory multiple myeloma (RRMM). The aim of our study was to assess the efficacy and toxicity profile of RVD for patients with advanced RRMM. We retrospectively reviewed the records of all patients with RRMM treated with RVD between March 2009 and December 2011. Thirty patients received ≥ 1 full cycle of RVD. Primary endpoints were overall response rate (ORR), progression-free survival (PFS) and overall survival (OS). After a median of 5 cycles (1-16), a very good partial response (VGPR) was seen in 10%, partial response (PR) in 36.7% and stable disease (SD) in 13.3% (ORR of 46.7%). Disease progression occurred in 21 patients at a median of 3 months (range 1.41-4.59). Eight patients (26%) experienced grade 3/4 adverse events, including anemia, neutropenia, muscle weakness and pneumonia. No patient experienced worsening peripheral neuropathy. Although RVD has been previously shown to be effective in RRMM, the ORR and PFS we observed were affected by very advanced disease status and heavy prior exposure to novel agents. Nevertheless, six of these patients with RRMM experienced a benefit of ≥ 6 months, suggesting synergism of this immunomodulatory derivative/proteasome inhibitor combination and/or re-establishment of drug sensitivity by an emergent myeloma clone.

  13. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma

    PubMed Central

    Weiss, Brendan M.; Plesner, Torben; Bahlis, Nizar J.; Belch, Andrew; Lonial, Sagar; Lokhorst, Henk M.; Voorhees, Peter M.; Richardson, Paul G.; Chari, Ajai; Sasser, A. Kate; Axel, Amy; Feng, Huaibao; Uhlar, Clarissa M.; Wang, Jianping; Khan, Imran; Ahmadi, Tahamtan; Nahi, Hareth

    2016-01-01

    The efficacy and favorable safety profile of daratumumab monotherapy in multiple myeloma (MM) was previously reported. Here, we present an updated pooled analysis of 148 patients treated with daratumumab 16 mg/kg. Data were combined from part 2 of a first-in-human phase 1/2 study of patients who relapsed after or were refractory to ≥2 prior therapies and a phase 2 study of patients previously treated with ≥3 prior lines of therapy (including a proteasome inhibitor [PI] and an immunomodulatory drug [IMiD]) or were double refractory. Among the pooled population, patients received a median of 5 prior lines of therapy (range, 2 to 14 prior lines of therapy), and 86.5% were double refractory to a PI and an IMiD. Overall response rate was 31.1%, including 13 very good partial responses, 4 complete responses, and 3 stringent complete responses. The median duration of response was 7.6 months (95% confidence interval [CI], 5.6 to not evaluable [NE]). The median progression-free survival (PFS) and overall survival (OS) were 4.0 months (95% CI, 2.8-5.6 months) and 20.1 months (95% CI, 16.6 months to NE), respectively. When stratified by responders vs stable disease/minimal response vs progressive disease/NE, median PFS was 15.0 months (95% CI, 7.4 months to NE) vs 3.0 months (95% CI, 2.8-3.7 months) vs 0.9 months (95% CI, 0.9-1.0 months), respectively, and median OS was NE (95% CI, NE to NE) vs 18.5 months (95% CI, 15.1-22.4 months) vs 3.7 months (95% CI, 1.7-7.6 months), respectively. No new safety signals were identified. In this pooled data set, daratumumab 16 mg/kg monotherapy demonstrated rapid, deep, and durable responses, with a clinical benefit that extended to patients with stable disease or better. PMID:27216216

  14. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    PubMed Central

    2012-01-01

    Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications. PMID:22928996

  15. Pretreatment of rapeseed straw by soaking in aqueous ammonia.

    PubMed

    Kang, Kyeong Eop; Jeong, Gwi-Taek; Sunwoo, Changshin; Park, Don-Hee

    2012-01-01

    Pretreatment of lignocellulosic biomass has gained attention for production of biofuels. In this study, pretreatment by soaking in aqueous ammonia was adopted for pretreatment of biomass for ethanol production. A central composite design of response surface methodology was used for optimization of the pretreatment condition of rapeseed straw, with respect to catalyst concentration, pretreatment time, and pretreatment temperature. The most optimal condition for pretreatment of rapeseed straw by soaking in aqueous ammonia was 19.8% of ammonia water, 14.2 h of pretreatment time, and a pretreatment temperature of 69.0 °C. Using these optimal factor values under experimental conditions, 60.7% of theoretical glucose was obtained, and this value was well within the range predicted by the model. SEM results showed that SAA pretreatment of rapeseed straw resulted in increased surface area and pore size, as well as enhanced enzymatic digestibility.

  16. Comparative Study of SPORL and Dilute Acid Pretreatments of Spruce for Cellulosic Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of two pretreatment methods, Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose (SPORL) and Dilute Acid (DA), was compared in pretreating softwood (spruce) for fuel ethanol production under the same conditions of temperature (180°C), time (30 min), sulfuric acid loading...

  17. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL pretreated lodgepole pine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performances of 5 yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, ...

  18. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. However, fungal pretreatment can cause carbohydrate loss and it is, th...

  19. Inactivating effects of lignin-derived compounds released during lignocellulosic biomass pretreatment on the endo-glucanase catalyzed hydrolysis of carboxymethylcellulose: A study in continuous stirred ultrafiltration-membrane reactor.

    PubMed

    Cantarella, Maria; Mucciante, Claudia; Cantarella, Laura

    2014-03-01

    This study focusses on the reversible/irreversible damage that selected phenolic compounds, released during steam-explosion pretreatment, mandatory for cellulose accessibility, causes on both stability and activity of a commercial cellulase (half-life=173h) during carboxymethyl-cellulose hydrolysis. Long-term experiments performed in continuous stirred UF-membrane bioreactors, operating at steady-state regime, in controlled operational conditions, allowed evaluating the inactivation-constant in the phenol presence (kd1) and after its removal (kd2) from the reactor feed. p-Hydroxybenzoic acid (1 and 2g L(-1)) are the extreme limits in the inactivating effect with enzyme half-lives 99.02 and 14.15h, respectively. The inactivation reversibility was assessed for vanillic acid, p-hydroxybenzoic acid, syringaldehyde, p-coumaric acid, being kd1>kd2. p-Hydroxybenzaldehyde and protocatechuic acid irreversibly affected cellulase stability increasing its inactivation with kd2>kd1. p-Hydroxybenzaldehyde, 1g L(-1), syringaldehyde, and vanillin, at 2gL(-1), had similar kd1÷kd2. PMID:24486937

  20. Inactivating effects of lignin-derived compounds released during lignocellulosic biomass pretreatment on the endo-glucanase catalyzed hydrolysis of carboxymethylcellulose: A study in continuous stirred ultrafiltration-membrane reactor.

    PubMed

    Cantarella, Maria; Mucciante, Claudia; Cantarella, Laura

    2014-03-01

    This study focusses on the reversible/irreversible damage that selected phenolic compounds, released during steam-explosion pretreatment, mandatory for cellulose accessibility, causes on both stability and activity of a commercial cellulase (half-life=173h) during carboxymethyl-cellulose hydrolysis. Long-term experiments performed in continuous stirred UF-membrane bioreactors, operating at steady-state regime, in controlled operational conditions, allowed evaluating the inactivation-constant in the phenol presence (kd1) and after its removal (kd2) from the reactor feed. p-Hydroxybenzoic acid (1 and 2g L(-1)) are the extreme limits in the inactivating effect with enzyme half-lives 99.02 and 14.15h, respectively. The inactivation reversibility was assessed for vanillic acid, p-hydroxybenzoic acid, syringaldehyde, p-coumaric acid, being kd1>kd2. p-Hydroxybenzaldehyde and protocatechuic acid irreversibly affected cellulase stability increasing its inactivation with kd2>kd1. p-Hydroxybenzaldehyde, 1g L(-1), syringaldehyde, and vanillin, at 2gL(-1), had similar kd1÷kd2.

  1. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.

    PubMed

    Moreno, Antonio D; Ibarra, David; Alvira, Pablo; Tomás-Pejó, Elia; Ballesteros, Mercedes

    2015-01-01

    Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.

  2. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production.

    PubMed

    Parisutham, Vinuselvi; Kim, Tae Hyun; Lee, Sung Kuk

    2014-06-01

    Lignocelluloses are rich sugar treasures, which can be converted to useful commodities such as biofuel with the help of efficient combination of enzymes and microbes. Although several bioprocessing approaches have been proposed, biofuel production from lignocelluloses is limited because of economically infeasible technologies for pretreatment, saccharification and fermentation. Use of consolidated bioprocessing (CBP) microbes is the most promising method for the cost-effective production of biofuels. However, lignocelluloses are obtained from highly diverse environment and hence are heterogeneous in nature. Therefore, it is necessary to develop and integrate tailor-designed pretreatment processes and efficient microbes that can thrive on many different kinds of biomass. In this review, the progress towards the construction of consolidated bioprocessing microbes, which can efficiently convert heterogeneous lignocellulosic biomass to bioenergy, has been discussed; in addition, the potential and constraints of current bioprocessing technologies for cellulosic biofuel production have been discussed.

  3. Curcumin pretreatment mediates antidiabetogenesis via functional regulation of adrenergic receptor subtypes in the pancreas of multiple low-dose streptozotocin-induced diabetic rats.

    PubMed

    Naijil, George; Anju, T R; Jayanarayanan, S; Paulose, C S

    2015-09-01

    Lifestyle modification pivoting on nutritional management holds tremendous potential to meet the challenge of management of diabetes. The current study hypothesizes that regular uptake of curcumin lowers the incidence of diabetes by functional regulation of pancreatic adrenergic receptor subtypes. The specific objective of the study was to identify the regulatory pathways implicated in the antidiabetogenesis effect of curcumin in multiple low-dose streptozotocin (MLD-STZ)-induced diabetic Wistar rats. Administration of MLD-STZ to curcumin-pretreated rats induced a prediabetic condition. Scatchard analysis, real-time polymerase chain reaction, and confocal microscopic studies confirmed a significant increase in α2-adrenergic receptor expression in the pancreas of diabetic rats. Pretreatment with curcumin significantly decreased α2-adrenergic receptor expression. The diabetic group showed a significant decrease in the expression of β-adrenergic receptors when compared with control. Pretreatment significantly increased β-adrenergic receptor expression to near control. When compared with the diabetic rats, a significant up-regulation of CREB, phospholipase C, insulin receptor, and glucose transporter 2 were observed in the pretreated group. Curcumin pretreatment was also able to maintain near control levels of cyclic adenosine monophosphate, cyclic guanosine monophosphate, and inositol triphosphate. These results indicate that a marked decline in α2-adrenergic receptor function relents sympathetic inhibition of insulin release. It also follows that escalated signaling through β-adrenergic receptors mediates neuronal stimulation of hyperglycemia-induced β-cell compensatory response. Curcumin-mediated functional regulation of adrenergic receptors and modulation of key cell signaling molecules improve pancreatic glucose sensing, insulin gene expression, and insulin secretion. PMID:26255758

  4. Curcumin pretreatment mediates antidiabetogenesis via functional regulation of adrenergic receptor subtypes in the pancreas of multiple low-dose streptozotocin-induced diabetic rats.

    PubMed

    Naijil, George; Anju, T R; Jayanarayanan, S; Paulose, C S

    2015-09-01

    Lifestyle modification pivoting on nutritional management holds tremendous potential to meet the challenge of management of diabetes. The current study hypothesizes that regular uptake of curcumin lowers the incidence of diabetes by functional regulation of pancreatic adrenergic receptor subtypes. The specific objective of the study was to identify the regulatory pathways implicated in the antidiabetogenesis effect of curcumin in multiple low-dose streptozotocin (MLD-STZ)-induced diabetic Wistar rats. Administration of MLD-STZ to curcumin-pretreated rats induced a prediabetic condition. Scatchard analysis, real-time polymerase chain reaction, and confocal microscopic studies confirmed a significant increase in α2-adrenergic receptor expression in the pancreas of diabetic rats. Pretreatment with curcumin significantly decreased α2-adrenergic receptor expression. The diabetic group showed a significant decrease in the expression of β-adrenergic receptors when compared with control. Pretreatment significantly increased β-adrenergic receptor expression to near control. When compared with the diabetic rats, a significant up-regulation of CREB, phospholipase C, insulin receptor, and glucose transporter 2 were observed in the pretreated group. Curcumin pretreatment was also able to maintain near control levels of cyclic adenosine monophosphate, cyclic guanosine monophosphate, and inositol triphosphate. These results indicate that a marked decline in α2-adrenergic receptor function relents sympathetic inhibition of insulin release. It also follows that escalated signaling through β-adrenergic receptors mediates neuronal stimulation of hyperglycemia-induced β-cell compensatory response. Curcumin-mediated functional regulation of adrenergic receptors and modulation of key cell signaling molecules improve pancreatic glucose sensing, insulin gene expression, and insulin secretion.

  5. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    PubMed

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  6. Lignocellulose decomposition by microbial secretions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon storage in terrestrial ecosystems is contingent upon the natural resistance of plant cell wall polymers to rapid biological degradation. Nevertheless, certain microorganisms have evolved remarkable means to overcome this natural resistance. Lignocellulose decomposition by microorganisms com...

  7. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    NASA Astrophysics Data System (ADS)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  8. The conversion of lignocellulosics to fermentable sugars: A survey of current research and application to CELSS

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.; Baresi, Larry

    1990-01-01

    An overview of the options for converting lignocellulosics into fermentable sugars as applied to the Closed Ecological Life Support System (CELSS) is given. A requirement for pretreatment is shown as well as the many available options. At present, physical/chemical methods are the simplest and best characterized options, but enzymatic processes will likely be the method of choice in the future. The use of pentose sugars by microorganisms to produce edibles at levels comparable to conventional plants is shown. The possible use of mycelial food production on pretreated but not hydrolyzed lignocelluloscis is also presented. Simple tradeoff analysis among some of the many possible biological pathways to regeneration of waste lignocellulosics was undertaken. Comparisons with complete oxidation processes were made. It is suggested that the NASA Life Sciences CELSS program maintain relationships with other government agencies involved in lignocellulosic conversions and use their expertise when the actual need for such conversion technology arises rather than develop this expertise within NASA.

  9. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification.

    PubMed

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z Conrad

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707

  10. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    PubMed Central

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707

  11. Methods for degrading lignocellulosic materials

    DOEpatents

    Vlasenko, Elena; Cherry, Joel; Xu, Feng

    2011-05-17

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.

  12. Methods for degrading lignocellulosic materials

    DOEpatents

    Vlasenko, Elena; Cherry, Joel; Xu, Feng

    2008-04-08

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.

  13. Techniques for the evolution of robust Pentose-fermenting yeast for bioconversion of Lignocellulose to Ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol and other bio-products via the processing steps of pretreatment, enzyme hydrolysis and microbial conversion. Traditional industrial yeasts do not ferment xylose and are not able to grow, survi...

  14. Bio-Product Recovery from Lignocellulosic Materials Derived from Poultry Manure

    ERIC Educational Resources Information Center

    Champagne, Pascale; Li, Caijian

    2008-01-01

    This study examines the hydrolysis of lignocellulose extracted from poultry manure for the purpose of investigating low-cost feedstocks for ethanol production while providing an alternative solid waste management strategy for agricultural livestock manures. Poultry manure underwent various pretreatments to enhance subsequent enzymatic hydrolysis…

  15. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass, upon pretreatment and enzymatic hydrolysis, generates a mixture of hexose and pentose sugars such as glucose, xylose, arabinose and galactose. Escherichia coli utilizes all these sugars well but it lacks the ability to produce ethanol from them. Recombinant ethanologenic E...

  16. Monitoring lignocellulosic bioethanol production processes using Raman spectroscopy.

    PubMed

    Iversen, Jens A; Ahring, Birgitte K

    2014-11-01

    Process control automation in the emerging biorefinery industry may be achieved by applying effective methods for monitoring compound concentrations during the production processes. This study examines the application of Raman spectroscopy with an excitation wavelength of 785nm and an immersion probe for in situ monitoring the progression of pretreatment, hydrolysis and fermentation processes in the production of lignocellulosic ethanol. Raman signals were attenuated by light scattering cells and lignocellulosic particulates, which the quantification method to some degree could correct for by using an internal standard in the spectra. Allowing particulates to settle by using a slow stirring speed further improved results, suggesting that Raman spectroscopy should be used in combination with continuous separation when used to monitor process mixtures with large amounts of particulates. The root mean square error of prediction (RMSE) of ethanol and glucose measured in real-time was determined to be 0.98g/L and 1.91g/L respectively.

  17. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.

    PubMed

    van Kuijk, S J A; Sonnenberg, A S M; Baars, J J P; Hendriks, W H; Cone, J W

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass, however, limits the effective utilization of cellulose and hemicellulose. Currently, most often chemical and/or physical treatments are used to degrade lignin. White rot fungi are selective lignin degraders and can be a potential alternative to current methods which involve potentially toxic chemicals and expensive equipment. This review provides an overview of research conducted to date on fungal pretreatment of lignocellulosic biomass for ruminant feeds. White rot fungi colonize lignocellulosic biomass, and during colonization produce enzymes, radicals and other small compounds to breakdown lignin. The mechanisms on how these fungi degrade lignin are not fully understood, but fungal strain, the origin of lignocellulose and culture conditions have a major effect on the process. Ceriporiopsis subvermispora and Pleurotus eryngii are the most effective fungi to improve the nutritional value of biomass for ruminant nutrition. However, conclusions on the effectiveness of fungal delignification are difficult to draw due to a lack of standardized culture conditions and information on fungal strains used. Methods of analysis between studies are not uniform for both chemical analysis and in vitro degradation measurements. In vivo studies are limited in number and mostly describing digestibility after mushroom production, when the fungus has degraded cellulose to derive energy for fruit body development. Optimization of fungal pretreatment is required to shorten the process of delignification and make it more selective for lignin. In this respect, future research should focus on optimization of culture conditions and gene expression to obtain a better understanding of the mechanisms

  18. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    SciTech Connect

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  19. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas.

    PubMed

    Allison, Brittany J; Cádiz, Juan Canales; Karuna, Nardrapee; Jeoh, Tina; Simmons, Christopher W

    2016-08-01

    Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels. PMID:27039400

  20. A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential

    PubMed Central

    Dunnett, Alex J; Adjiman, Claire S; Shah, Nilay

    2008-01-01

    Background Lignocellulosic bioethanol technologies exhibit significant capacity for performance improvement across the supply chain through the development of high-yielding energy crops, integrated pretreatment, hydrolysis and fermentation technologies and the application of dedicated ethanol pipelines. The impact of such developments on cost-optimal plant location, scale and process composition within multiple plant infrastructures is poorly understood. A combined production and logistics model has been developed to investigate cost-optimal system configurations for a range of technological, system scale, biomass supply and ethanol demand distribution scenarios specific to European agricultural land and population densities. Results Ethanol production costs for current technologies decrease significantly from $0.71 to $0.58 per litre with increasing economies of scale, up to a maximum single-plant capacity of 550 × 106 l year-1. The development of high-yielding energy crops and consolidated bio-processing realises significant cost reductions, with production costs ranging from $0.33 to $0.36 per litre. Increased feedstock yields result in systems of eight fully integrated plants operating within a 500 × 500 km2 region, each producing between 1.24 and 2.38 × 109 l year-1 of pure ethanol. A limited potential for distributed processing and centralised purification systems is identified, requiring developments in modular, ambient pretreatment and fermentation technologies and the pipeline transport of pure ethanol. Conclusion The conceptual and mathematical modelling framework developed provides a valuable tool for the assessment and optimisation of the lignocellulosic bioethanol supply chain. In particular, it can provide insight into the optimal configuration of multiple plant systems. This information is invaluable in ensuring (near-)cost-optimal strategic development within the sector at the regional and national scale. The framework is flexible and can thus

  1. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    PubMed

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-01

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion.

  2. Enzymatic hydrolysis of lignocellulosic biomass from Onopordum nervosum.

    PubMed

    Martín, C; Negro, M J; Alfonsel, M; Sáez, R

    1988-07-20

    Some properties of the cellulolytic complex obtained from Trichoderma reesei QM 9414 grown on Solka floc as carbon source and its ability to hydrolyze the lignocellulosic biomass of Onopordum nervosum Boiss were studied. The optimum enzyme activity was found at temperatures between 50 and 55 degrees C and pH ranging from 4.3 to 4.8. Hydrolysis of 4-nitropnenyl-beta-D-glucopyranoside (4-NPG) and cellobiose by the beta-glucosidase of the complex, showed competitive inhibition by glucose with a K(i) value of 0.8 mM for 4-NPG and 2. 56 mM for cellobiose. Enzymatic hydrolysis yield of Onopordum nervosum, evaluated as glucose production after 48 h, showed a threefold increase by pretreating the lignocellulosic substrate with alkali. When the loss of glucose incurred by de pretreatment was taken into account, a 160% increase in the final cellulose to glucose conversion was found to be due to the pretreatment.

  3. Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates

    NASA Astrophysics Data System (ADS)

    Pasha, Chand; Rao, L. Venkateswar

    No other sustainable option for production of transportation fuels can match ethanol made from lignocellulosic biomass with respect to its dramatic environmental, economic, strategic and infrastructure advantages. Substantial progress has been made in advancing biomass ethanol (bioethanol) production technology to the point that it now has commercial potential, and several firms are engaged in the demanding task of introducing first-of-a-kind technology into the marketplace to make bioethanol a reality in existing fuel-blending markets. In order to lower pollution India has a long-term goal to use biofuels (bioethanol and biodiesel). Ethanol may be used either in pure form, or as a blend in petrol in different proportions. Since the cost of raw materials, which can account up to 50 % of the total production cost, is one of the most significant factors affecting the economy of alcohol, nowadays efforts are more concentrated on using cheap and abundant raw materials. Several forms of biomass resources exist (starch or sugar crops, weeds, oil plants, agricultural, forestry and municipal wastes) but of all biomass cellulosic resources represent the most abundant global source. The lignocellulosic materials include agricultural residues, municipal solid wastes (MSW), pulp mill refuse, switchgrass and lawn, garden wastes. Lignocellulosic materials contain two types of polysaccharides, cellulose and hemicellulose, bound together by a third component lignin. The principal elements of the lignocellulosic research include: i) evaluation and characterization of the waste feedstock; ii) pretreatment including initial clean up or dewatering of the feedstock; and iii) development of effective direct conversion bioprocessing to generate ethanol as an end product. Pre-treatment of lignocellulosic materials is a step in which some of the hemicellulose dissolves in water, either as monomeric sugars or as oligomers and polymers. The cellulose cannot be enzymatically hydrolyzed to

  4. Sonochemistry: what potential for conversion of lignocellulosic biomass into platform chemicals?

    PubMed

    Chatel, Gregory; De Oliveira Vigier, Karine; Jérôme, François

    2014-10-01

    This Review focuses on the use of ultrasound to produce chemicals from lignocellulosic biomass. However, the question about the potential of sonochemistry for valorization/conversion of lignocellulosic biomass into added-value chemicals is rather conceptual. Until now, this technology has been mainly used for the production of low-value chemicals such as biodiesel or as simple method for pretreatment or extraction. According to preliminary studies reported in literature, access to added-value chemicals can be easily and sometimes solely obtained by the use of ultrasound. The design of sonochemical parameters offers many opportunities to develop new eco-friendly and efficient processes. The goal of this Review is to understand why the use of ultrasound is focused rather on pretreatment or extraction of lignocellulosic biomass rather than on the production of chemicals and to understand, through the reported examples, which directions need to be followed to favor strategies based on ultrasound-assisted production of chemicals from lignocellulosic biomass. We believe that ultrasound-assisted processes represent an innovative approach and will create a growing interest in academia but also in the industry in the near future. Based on the examples reported in the literature, we critically discuss how sonochemistry could offer new strategies and give rise to new results in lignocellulosic biomass valorization.

  5. Biomass pretreatment

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  6. Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry.

    PubMed

    Ali, Shahin S; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M

    2016-03-01

    Microbial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. The most important challenge is to overcome substrate recalcitrance and to thus reduce the number of steps needed to biorefine lignocellulose. Conventionally, conversion involves chemical pretreatment of lignocellulose, followed by hydrolysis of biomass to monomer sugars that are subsequently fermented into bioethanol. Consolidated bioprocessing (CBP) has been suggested as an efficient and economical method of manufacturing bioethanol from lignocellulose. CBP integrates the hydrolysis and fermentation steps into a single process, thereby significantly reducing the amount of steps in the biorefining process. Filamentous fungi are remarkable organisms that are naturally specialised in deconstructing plant biomass and thus they have tremendous potential as components of CBP. The fungus Fusarium oxysporum has potential for CBP of lignocellulose to bioethanol. Here we discuss the complexity and potential of CBP, the bottlenecks in the process, and the potential influence of fungal genetic diversity, substrate complexity and new technologies on the efficacy of CPB of lignocellulose, with a focus on F. oxysporum.

  7. Bendamustine in heavily pre-treated multiple myeloma patients: Results of a retrospective analysis from the Korean Multiple Myeloma Working Party

    PubMed Central

    Kim, Seok Jin; Bang, Soo-Mee; Choi, Yoon Seok; Jo, Deog-Yeon; Kim, Jin Seok; Lee, Hyewon; Eom, Hyeon Seok; Yoon, Dok Hyun; Suh, Cheolwon; Lee, Je-Jung; Hong, Junshik; Lee, Jae Hoon; Koh, Youngil; Kim, Kihyun

    2016-01-01

    Background Bendamustine may be a potential treatment option for patients with myeloma, but little is known about the utility of bendamustine as a salvage treatment, especially in Asian patients. Methods We performed a multicenter retrospective study of patients with relapsed or refractory myeloma who received bendamustine and prednisone. Results The records of 65 heavily pre-treated patients, who had undergone bortezomib and lenalidomide treatment (median number of previous treatments: 5), were analyzed. The median time from diagnosis to bendamustine treatment was 3.8 years, and the median patient age was 63 years (range, 38‒77 yr). The responses to the last treatment before bendamustine were refractory disease (N=52, 80%) or disease progression from partial response (N=13, 20%). Twenty-three patients responded to the treatment, with an overall response rate of 35% (23/65), and the median number of bendamustine treatment cycles was two (range, 1‒5 cycles). The median overall survival after bendamustine treatment was 5.5 months and the overall survival rate in responders to bendamustine was significantly better than that in non-responders (P=0.036). Conclusion Bendamustine may be a potential salvage treatment to extend survival in a select group of heavily pre-treated patients with relapsed or refractory myeloma. PMID:27722131

  8. [Progress in lignocellulose deconstruction by fungi].

    PubMed

    Tian, Chaoguang; Ma, Yanhe

    2010-10-01

    Inefficient degradation of lignocellulose is one of the main barriers for the utilization of renewable plant biomass for biofuel production. The bottleneck of the biorefinery process is the generation of fermentable sugars from complicated biomass polymers. In nature, the main microbes of lignocelluloses deconstruction are fungi. Therefore, elucidating the mechanism of lignocelluloses degradation by fungi is of critical importance for the commercialization of lignocellulosic biofuels. This review focuses on the progress in lignocelluloses degradation pathways in fungi, especially on the advances made by functional genomics studies.

  9. Evaluation of various fungal pretreatment of switchgrass for enhanced saccharification and simultaneous enzyme production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During fungal pretreatment of lignocellulosic biomass for bioethanol production, the treatment effectiveness may vary with different fungal strains in regard to biomass loss, sugar yield, enzyme loading, and co-product yield. In this study, 25 different fungal strains were screened for pretreatment ...

  10. Cellulosic Biomass Pretreatment and Sugar Yields as a Function of Biomass Particle Size

    PubMed Central

    Stavila, Vitalie; Knierim, Bernhard; George, Anthe; Auer, Manfred; Adams, Paul D.; Hadi, Masood Z.

    2014-01-01

    Three lignocellulosic pretreatment techniques (ammonia fiber expansion, dilute acid and ionic liquid) are compared with respect to saccharification efficiency, particle size and biomass composition. In particular, the effects of switchgrass particle size (32–200) on each pretreatment regime are examined. Physical properties of untreated and pretreated samples are characterized using crystallinity, surface accessibility measurements and scanning electron microscopy (SEM) imaging. At every particle size tested, ionic liquid (IL) pretreatment results in greater cell wall disruption, reduced crystallinity, increased accessible surface area, and higher saccharification efficiencies compared with dilute acid and AFEX pretreatments. The advantages of using IL pretreatment are greatest at larger particle sizes (>75 µm). PMID:24971883

  11. Saccharification of Miscanthus x giganteus, incorporation of lignocellulosic by-product in cementitious matrix.

    PubMed

    Le Ngoc Huyen, Tran; Queneudec T'kint, Michèle; Remond, Caroline; Chabbert, Brigitte; Dheilly, Rose-Marie

    2011-11-01

    Given the non competition of miscanthus with food and animal feed, this lignocellulosic species has attracted attention as a possible biofuel resource. However, sustainability of ethanol production from lignocelluloses biomass would imply reduction in the consumption of chemicals and/or energetic means, but also valorization of the lignocellulosic by-product remaining from enzymatic saccharification. Introduction of these by-products into a cementitious matrix could be used in manufacturing a lightweight composite. Miscanthus biomass was submitted to chemical pretreatments followed by saccharification using an enzymatic cocktail. Residues from saccharification were then mixed with a cementitious matrix. Given their mechanical properties and a good adherence between cement and by-product, the hardened materials could be used. However, the delay in the beginning of setting time is too long, which prevents the direct use of by-product into cementitious matrix. Preliminary experiments using a setting accelerator in the cementitious matrix permitted significant reduction in the setting time delay. PMID:22078741

  12. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5

    PubMed Central

    Saha, Badal; Cotta, Michael A.

    2012-01-01

    Lignocellulosic biomass, upon pretreatment and enzymatic hydrolysis, generates a mixture of hexose and pentose sugars such as glucose, xylose, arabinose and galactose. While Escherichia coli utilizes all these sugars it lacks the ability to produce ethanol from them. Recombinant ethanologenic E. coli strains have been created with a goal to produce ethanol from both hexose and pentose sugars. Herein, we review the current state of the art on the production of ethanol from lignocellulosic hydrolyzates by an ethanologenic recombinant E. coli strain (FBR5). The bacterium is stable without antibiotics and can tolerate ethanol up to 50 gL-1. It produces up to 45 g ethanol per L and has the potential to be used for industrial production of ethanol from lignocellulosic hydrolyzates. PMID:22705843

  13. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5.

    PubMed

    Saha, Badal; Cotta, Michael A

    2012-01-01

    Lignocellulosic biomass, upon pretreatment and enzymatic hydrolysis, generates a mixture of hexose and pentose sugars such as glucose, xylose, arabinose and galactose. While Escherichia coli utilizes all these sugars it lacks the ability to produce ethanol from them. Recombinant ethanologenic E. coli strains have been created with a goal to produce ethanol from both hexose and pentose sugars. Herein, we review the current state of the art on the production of ethanol from lignocellulosic hydrolyzates by an ethanologenic recombinant E. coli strain (FBR5). The bacterium is stable without antibiotics and can tolerate ethanol up to 50 gL(-1). It produces up to 45 g ethanol per L and has the potential to be used for industrial production of ethanol from lignocellulosic hydrolyzates.

  14. Fuel ethanol production from alkaline peroxide pretreated corn stover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...

  15. Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth.

    PubMed

    Guragain, Yadhu Nath; De Coninck, Joelle; Husson, Florence; Durand, Alain; Rakshit, Sudip Kumar

    2011-03-01

    Pretreatment of lignocellulosic residues like water hyacinth (WH) and wheat straw (WS) using crude glycerol (CG) and ionic liquids (IL) pretreatment was evaluated and compared with conventional dilute acid pretreatment (DAT) in terms of enzymatic hydrolysis yield and fermentation yield of pretreated samples. In the case of WS, 1-butyl-3-methylimidazolium acetate pretreatment was found to be the best method. The hydrolysis yields of glucose and total reducing sugars were 2.1 and 3.3 times respectively higher by IL pretreatment than DAT, while it was 1.4 and 1.9 times respectively higher with CG pretreatment. For WH sample, CG pretreatment was as effective as DAT and more effective than IL pretreatment regarding hydrolysis yield. The fermentation inhibition was not noticeable with both types of pretreatment methods and feedstocks. Besides, CG pretreatment was found as effective as pure glycerol pretreatment for both feedstocks. This opens up an attractive economic route for the utilization of CG. PMID:21273061

  16. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy’s sugar process (CLE Sugar)

    PubMed Central

    2013-01-01

    Background Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Results Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy’s Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood), and 94.0% for debarked maple chips (hardwood). Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed) biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed) pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate liquor and enzymatic

  17. Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2015-11-01

    In this study, the effects of glycerol pretreatment on subsequent glycerol fermentation and biomass fast pyrolysis were investigated. The liquid fraction from the pretreatment process was evaluated to be feasible for fermentation by Paenibacillus polymyxa and could be an economic substrate. The pretreated biomass was further utilized to obtain levoglucosan by fast pyrolysis. The pretreated sugarcane bagasse exhibited significantly higher levoglucosan yield (47.70%) than that of un-pretreated sample (11.25%). The promotion could likely be attributed to the effective removal of alkali and alkaline earth metals by glycerol pretreatment. This research developed an economically viable manufacturing paradigm to utilize glycerol comprehensively and enhance the formation of levoglucosan effectively from lignocellulose. PMID:26241838

  18. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass.

    PubMed

    Negro, Maria José; Manzanares, Paloma; Ballesteros, Ignacio; Oliva, Jose Miguel; Cabañas, Araceli; Ballesteros, Mercedes

    2003-01-01

    Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210 C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.

  19. Lignocellulose degradation mechanisms across the Tree of Life.

    PubMed

    Cragg, Simon M; Beckham, Gregg T; Bruce, Neil C; Bugg, Timothy D H; Distel, Daniel L; Dupree, Paul; Etxabe, Amaia Green; Goodell, Barry S; Jellison, Jody; McGeehan, John E; McQueen-Mason, Simon J; Schnorr, Kirk; Walton, Paul H; Watts, Joy E M; Zimmer, Martin

    2015-12-01

    Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however, house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. The omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role. PMID:26583519

  20. Lignocellulose degradation mechanisms across the Tree of Life.

    PubMed

    Cragg, Simon M; Beckham, Gregg T; Bruce, Neil C; Bugg, Timothy D H; Distel, Daniel L; Dupree, Paul; Etxabe, Amaia Green; Goodell, Barry S; Jellison, Jody; McGeehan, John E; McQueen-Mason, Simon J; Schnorr, Kirk; Walton, Paul H; Watts, Joy E M; Zimmer, Martin

    2015-12-01

    Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however, house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. The omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role.

  1. Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Biomass

    SciTech Connect

    Pingali, Sai Venkatesh; Urban, Volker S; Heller, William T; McGaughey, Joseph; O'Neill, Hugh Michael; Foston, Marcus B; Myles, Dean A A; Ragauskas, Arthur J; Evans, Barbara R

    2010-01-01

    The generation of bioethanol from lignocellulosic biomass holds great promise for renewable and clean energy production. A better understanding of the complex mechanisms of lignocellulose breakdown during various pretreatment methods is needed to realize this potential in a cost and energy efficient way. Here, we use small-angle neutron scattering (SANS) to characterize morphological changes in switchgrass lignocellulose across molecular to sub-micron length scales resulting from the industrially-relevant dilute acid pretreatment method. Our results demonstrate that dilute acid pretreatment increases the cross-sectional radius of the crystalline cellulose fibril. This change is accompanied by removal of hemicellulose and the formation of Rg ~ 135 lignin aggregates. The structural signature of smooth cell wall surfaces is observed at length scales larger than 1000 , and it remains remarkably invariable during pretreatment. This study elucidates the interplay of the different biomolecular components in the break down process of switchgrass by dilute acid pretreatment. The results are important for the development of efficient strategies of biomass to biofuel conversion.

  2. Deconstruction of Lignocellulose into Soluble Sugars by Native and Designer Cellulosomes

    PubMed Central

    Moraïs, Sarah; Morag, Ely; Barak, Yoav; Goldman, Dan; Hadar, Yitzhak; Lamed, Raphael; Shoham, Yuval; Wilson, David B.; Bayer, Edward A.

    2012-01-01

    ABSTRACT Lignocellulosic biomass, the most abundant polymer on Earth, is typically composed of three major constituents: cellulose, hemicellulose, and lignin. The crystallinity of cellulose, hydrophobicity of lignin, and encapsulation of cellulose by the lignin-hemicellulose matrix are three major factors that contribute to the observed recalcitrance of lignocellulose. By means of designer cellulosome technology, we can overcome the recalcitrant properties of lignocellulosic substrates and thus increase the level of native enzymatic degradation. In this context, we have integrated six dockerin-bearing cellulases and xylanases from the highly cellulolytic bacterium, Thermobifida fusca, into a chimeric scaffoldin engineered to bear a cellulose-binding module and the appropriate matching cohesin modules. The resultant hexavalent designer cellulosome represents the most elaborate artificial enzyme composite yet constructed, and the fully functional complex achieved enhanced levels (up to 1.6-fold) of degradation of untreated wheat straw compared to those of the wild-type free enzymes. The action of these designer cellulosomes on wheat straw was 33 to 42% as efficient as the natural cellulosomes of Clostridium thermocellum. In contrast, the reduction of substrate complexity by chemical or biological pretreatment of the substrate removed the advantage of the designer cellulosomes, as the free enzymes displayed higher levels of activity, indicating that enzyme proximity between these selected enzymes was less significant on pretreated substrates. Pretreatment of the substrate caused an increase in activity for all the systems, and the native cellulosome completely converted the substrate into soluble saccharides. PMID:23232718

  3. Microwave pretreatment of switchgrass for bioethanol production

    NASA Astrophysics Data System (ADS)

    Keshwani, Deepak Radhakrishin

    Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment

  4. The fate of lignin during hydrothermal pretreatment

    PubMed Central

    2013-01-01

    Background Effective enzymatic hydrolysis of lignocellulosic biomass benefits from lignin removal, relocation, and/or modification during hydrothermal pretreatment. Phase transition, depolymerization/repolymerization, and solubility effects may all influence these lignin changes. To better understand how lignin is altered, Populus trichocarpa x P. deltoides wood samples and cellulolytic enzyme lignin (CEL) isolated from P. trichocarpa x P. deltoides were subjected to batch and flowthrough pretreatments. The residual solids and liquid hydrolysate were characterized by gel permeation chromatography, heteronuclear single quantum coherence NMR, compositional analysis, and gas chromatography–mass spectrometry. Results Changes in the structure of the solids recovered after the pretreatment of CEL and the production of aromatic monomers point strongly to depolymerization and condensation being primary mechanisms for lignin extraction and redeposition. The differences in lignin removal and phenolic compound production from native P. trichocarpa x P. deltoides and CEL suggested that lignin-carbohydrate interactions increased lignin extraction and the extractability of syringyl groups relative to guaiacyl groups. Conclusions These insights into delignification during hydrothermal pretreatment point to desirable pretreatment strategies and plant modifications. Because depolymerization followed by repolymerization appears to be the dominant mode of lignin modification, limiting the residence time of depolymerized lignin moieties in the bulk liquid phase should reduce lignin content in pretreated biomass. In addition, the increase in lignin removal in the presence of polysaccharides suggests that increasing lignin-carbohydrate cross-links in biomass would increase delignification during pretreatment. PMID:23902789

  5. SO2 -catalyzed steam explosion: the effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass.

    PubMed

    Kang, Yuzhi; Bansal, Prabuddha; Realff, Matthew J; Bommarius, Andreas S

    2013-01-01

    Lignocellulosic biomass is the most promising feedstock for biofuels production. To enhance the efficiency of enzymatic hydrolysis, lignocellulosics needs to be pretreated to lower their recalcitrance. SO(2) -catalyzed steam explosion is an efficient and relatively cost-efficient pretreatment method for softwood. This work investigates the effects of steam explosion severity on the digestibility, accessibility, and crystallinity of Loblolly pine. Higher severity was found to increase the accessibility of the feedstock while also promoting nonselective degradation of carbohydrates. The adsorption behavior of Celluclast® enzymes on steam-exploded Loblolly pine (SELP) can be described by a Langmuir isotherm. Cellulose crystallinity was found to first increase and then decrease with increasing pretreatment severity. A linear relationship between initial hydrolysis rates and crystallinity index (CrI) of pretreated Loblolly pine was found; moreover, a strong correlation between X-ray diffraction intensities and initial rates was confirmed. The findings demonstrate the significance of CrI in enzymatic hydrolysis of pretreated lignocellulosic biomass.

  6. High-throughput Saccharification assay for lignocellulosic materials.

    PubMed

    Gomez, Leonardo D; Whitehead, Caragh; Roberts, Philip; McQueen-Mason, Simon J

    2011-07-03

    Polysaccharides that make up plant lignocellulosic biomass can be broken down to produce a range of sugars that subsequently can be used in establishing a biorefinery. These raw materials would constitute a new industrial platform, which is both sustainable and carbon neutral, to replace the current dependency on fossil fuel. The recalcitrance to deconstruction observed in lignocellulosic materials is produced by several intrinsic properties of plant cell walls. Crystalline cellulose is embedded in matrix polysaccharides such as xylans and arabinoxylans, and the whole structure is encased by the phenolic polymer lignin, that is also difficult to digest (1). In order to improve the digestibility of plant materials we need to discover the main bottlenecks for the saccharification of cell walls and also screen mutant and breeding populations to evaluate the variability in saccharification (2). These tasks require a high throughput approach and here we present an analytical platform that can perform saccharification analysis in a 96-well plate format. This platform has been developed to allow the screening of lignocellulose digestibility of large populations from varied plant species. We have scaled down the reaction volumes for gentle pretreatment, partial enzymatic hydrolysis and sugar determination, to allow large numbers to be assessed rapidly in an automated system. This automated platform works with milligram amounts of biomass, performing ball milling under controlled conditions to reduce the plant materials to a standardised particle size in a reproducible manner. Once the samples are ground, the automated formatting robot dispenses specified and recorded amounts of material into the corresponding wells of 96 deep well plate (Figure 1). Normally, we dispense the same material into 4 wells to have 4 replicates for analysis. Once the plates are filled with the plant material in the desired layout, they are manually moved to a liquid handling station (Figure 2

  7. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production.

    PubMed

    Methrath Liyakathali, Niyaz Ahamed; Muley, Pranjali D; Aita, Giovanna; Boldor, Dorin

    2016-01-01

    Pretreatment of lignocellulosic biomass is a critical steps in bioethanol production. Ultrasonic pretreatment significantly improves cellulose hydrolysis increasing sugar yields, but current system designs have limitations related to efficiency and scalability. This study evaluates the ultrasonic pretreatment of energy cane bagasse in a novel scalable configuration and by maximizing coupling of ultrasound energy to the material via active modulation of frequency. Pretreatment was conducted in 28% ammonia water mixture at a sample:ammonia:water ratio of 1:0.5:8. Process performance was investigated as a function of frequency (20, 20.5, 21kHz), reaction time (30, 45, 60min), temperature, and power levels for multiple combinations of ammonia, water and sample mixture. Results indicated an increased enzymatic digestibility, with maximum glucose yield of 24.29g/100g dry biomass. Theoretical ethanol yields obtained ranged from 6.47 to a maximum of 24.29g/100g dry biomass. Maximum energy attainable was 886.34kJ/100g dry biomass.

  8. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production.

    PubMed

    Methrath Liyakathali, Niyaz Ahamed; Muley, Pranjali D; Aita, Giovanna; Boldor, Dorin

    2016-01-01

    Pretreatment of lignocellulosic biomass is a critical steps in bioethanol production. Ultrasonic pretreatment significantly improves cellulose hydrolysis increasing sugar yields, but current system designs have limitations related to efficiency and scalability. This study evaluates the ultrasonic pretreatment of energy cane bagasse in a novel scalable configuration and by maximizing coupling of ultrasound energy to the material via active modulation of frequency. Pretreatment was conducted in 28% ammonia water mixture at a sample:ammonia:water ratio of 1:0.5:8. Process performance was investigated as a function of frequency (20, 20.5, 21kHz), reaction time (30, 45, 60min), temperature, and power levels for multiple combinations of ammonia, water and sample mixture. Results indicated an increased enzymatic digestibility, with maximum glucose yield of 24.29g/100g dry biomass. Theoretical ethanol yields obtained ranged from 6.47 to a maximum of 24.29g/100g dry biomass. Maximum energy attainable was 886.34kJ/100g dry biomass. PMID:26496215

  9. Influence of feedstock particle size on lignocellulose conversion--a review.

    PubMed

    Vidal, Bernardo C; Dien, Bruce S; Ting, K C; Singh, Vijay

    2011-08-01

    Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈ 50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from <0.15 to 50 mm. Maximal sizes as defined above were dependent on the pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (<3 mm) than woody biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.

  10. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates.

    PubMed

    Wei, Zhen; Zeng, Guangming; Huang, Fang; Kosa, Matyas; Sun, Qining; Meng, Xianzhi; Huang, Danlian; Ragauskas, Arthur J

    2015-09-01

    Metabolic synthesis of single cell oils (SCOs) for biodiesel application by heterotrophic oleaginous microorganisms is being hampered by the high cost of culture media. This study investigated the possibility of using loblolly pine and sweetgum autohydrolysates as economic feedstocks for microbial lipid production by oleaginous Rhodococcus opacus (R. opacus) PD630 and DSM 1069. Results revealed that when the substrates were detoxified by the removal of inhibitors (such as HMF-hydroxymethyl-furfural), the two strains exhibited viable growth patterns after a short adaptation/lag phase. R. opacus PD630 accumulated as much as 28.6 % of its cell dry weight (CDW) in lipids while growing on detoxified sweetgum autohydrolysate (DSAH) that translates to 0.25 g/l lipid yield. The accumulation of SCOs reached the level of oleagenicity in DSM 1069 cells (28.3 % of CDW) as well, while being cultured on detoxified pine autohydrolysate (DPAH), with the maximum lipid yield of 0.31 g/l. The composition of the obtained microbial oils varied depending on the substrates provided. These results indicate that lignocellulosic autohydrolysates can be used as low-cost fermentation substrates for microbial lipid production by wild-type R. opacus species. Consequently, the variety of applications for aqueous liquors from lignocellulosic pretreatment has been expanded, allowing for the further optimization of the integrated biorefinery.

  11. Impact of enzymatic pretreatment on corn stover degradation and biogas production.

    PubMed

    Schroyen, Michel; Vervaeren, Han; Van Hulle, Stijn W H; Raes, Katleen

    2014-12-01

    Corn stover is an agricultural residue consisting of lignocellulose, cellulose and hemicellulose polymers, sheeted in a lignin barrier. Corn stover can be used as feedstock for biogas production. Previous studies have shown biological pretreatment of lignocellulose materials can increase digestibility of the substrate improving hydrolysis, the rate-limiting step in biogas production. The impact of pretreating with different enzymes (laccase, manganese peroxidase and versatile peroxidase) and different incubation times, (0, 6 and 24 h) was studied. The effect on the matrix and biomethane production was determined. Pretreatments did not yield high concentrations of phenolic compounds, inhibitors of biogas production. The laccase enzyme showed an increase in biomethane production of 25% after 24 h of incubation. Pretreatment with peroxidase enzymes increased biomethane production with 17% after 6 h of incubation. As such it can be concluded that by introducing the different enzymes at different stages during pretreatment an increased biomethane production can be obtained.

  12. Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate.

    PubMed

    Cai, Cheng; Qiu, Xueqing; Lin, Xuliang; Lou, Hongming; Pang, Yuxia; Yang, Dongjie; Chen, Siwei; Cai, Kaifan

    2016-09-01

    Two pretreatment methods to overcome recalcitrance of lignocelluloses, sulfite pretreatment (SPORL) and dilute acid (DA), were conducted to pretreat softwood masson pine and hardwood eucalyptus for enzymatic hydrolysis. In the presence of corresponding pre-hydrolysates, adding moderate cetyltrimethylammonium bromide (CTAB) could enhance the enzymatic hydrolysis of the SPORL-pretreated substrates, but had no enhancement for the DA-pretreated substrates. The results showed that sodium lignosulfonate (SL) in pre-hydrolysates and CTAB together had a strong enhancement on the enzymatic hydrolysis of lignocelluloses. The compound of commercial lignosulfonate SXSL and CTAB (SXSL-CTAB) could enhance the substrate enzymatic digestibility (SED) of SPORL-pretreated masson pine from 27.1% to 71.0%, and that of DA-pretreated eucalyptus from 37.6% to 67.9%. The mechanism that CTAB increased the adsorption of SL on lignin to form more effective steric hindrance and reduced the non-productive adsorption of cellulase on lignin by neutralizing the negative charge of SL was proposed. PMID:27343448

  13. Epidemic based modeling of enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Arellano, Maria G; Keshwani, Deepak R

    2014-01-01

    An epidemic based model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, dilute sulfuric acid pretreated corn stover. The process of substrate getting adsorbed and digested by enzyme was simulated as susceptibles getting infected by viruses and becoming removed and recovered. This model simplified the dynamic enzyme "infection" process and the catalysis of cellulose into a two-parameter controlled, enzyme behavior guided mechanism. Furthermore, the model incorporates the adsorption block by lignin and inhibition effects on cellulose catalysis. The model satisfactorily predicted the enzyme adsorption and hydrolysis, negative role of lignin, and inhibition effects over hydrolysis for a broad range of substrate and enzyme loadings. Sensitivity analysis was performed to evaluate the incorporation of lignin and other inhibition effects. Our model will be a useful tool for evaluating the effects of parameters during hydrolysis and guide a design strategy for continuous hydrolysis and the associated process control.

  14. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  15. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. PMID:26990396

  16. Highly Thermostable Xylanase Production from A Thermophilic Geobacillus sp. Strain WSUCF1 Utilizing Lignocellulosic Biomass

    PubMed Central

    Bhalla, Aditya; Bischoff, Kenneth M.; Sani, Rajesh Kumar

    2015-01-01

    Efficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylooligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail) when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70°C, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70°C, respectively. At 70°C, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, Cellic-HTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70°C). High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes. PMID:26137456

  17. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2011-12-20

    Lactic acid is an industrially important product with a large and rapidly expanding market due to its attractive and valuable multi-function properties. The economics of lactic acid production by fermentation is dependent on many factors, of which the cost of the raw materials is very significant. It is very expensive when sugars, e.g., glucose, sucrose, starch, etc., are used as the feedstock for lactic acid production. Therefore, lignocellulosic biomass is a promising feedstock for lactic acid production considering its great availability, sustainability, and low cost compared to refined sugars. Despite these advantages, the commercial use of lignocellulose for lactic acid production is still problematic. This review describes the "conventional" processes for producing lactic acid from lignocellulosic materials with lactic acid bacteria. These processes include: pretreatment of the biomass, enzyme hydrolysis to obtain fermentable sugars, fermentation technologies, and separation and purification of lactic acid. In addition, the difficulties associated with using this biomass for lactic acid production are especially introduced and several key properties that should be targeted for low-cost and advanced fermentation processes are pointed out. We also discuss the metabolism of lignocellulose-derived sugars by lactic acid bacteria.

  18. Alkaline twin-screw extrusion pretreatment for fermentable sugar production

    PubMed Central

    2013-01-01

    Background The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. Results The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. Conclusions With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process

  19. Comparison of pretreatment methods for rye straw in the second generation biorefinery: effect on cellulose, hemicellulose and lignin recovery.

    PubMed

    Perez-Cantu, Lilia; Schreiber, Andreas; Schütt, Fokko; Saake, Bodo; Kirsch, Christian; Smirnova, Irina

    2013-08-01

    The increasing interest in lignocellulose-based biorefineries boosts the further development of the needed pretreatment methods for preprocessing biomass. There are a large number of different processes that are being investigated; however research is made mostly based on different types of biomass with the same pretreatment or several modifications of the same process for a given type of biomass. In this work a comparison of promising chemical pretreatments using the same biomass was performed. Organosolv (OS), Steam (SE) and Liquid-Hot-Water (LHW) processes were used for the pretreatment of rye straw and the treated solids further enzymatically hydrolyzed. Best results for carbohydrate and lignin yield were found for the OS pretreatment followed close by the LHW and SE with similar results. All of the processes showed satisfactory performance for the pretreatment of lignocellulosic biomass for application in the second generation biorefinery.

  20. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.

    PubMed

    Hasunuma, Tomohisa; Okazaki, Fumiyoshi; Okai, Naoko; Hara, Kiyotaka Y; Ishii, Jun; Kondo, Akihiko

    2013-05-01

    The biorefinery manufacturing process for producing chemicals and liquid fuels from biomass is a promising approach for securing energy and resources. To establish cost-effective fermentation of lignocellulosic biomass, the consolidation of sacccharification and fermentation processes is a desirable strategy, but requires the development of microorganisms capable of cellulose/hemicellulose hydrolysis and target chemical production. Such an endeavor requires a large number of prerequisites to be realized, including engineering microbial strains with high cellulolytic activity, high product yield, productivities, and titers, ability to use many carbon sources, and resistance to toxic compounds released during the pretreatment of lignocellulosic biomass. Researchers have focused on either engineering naturally cellulolytic microorganisms to improve product-related properties or modifying non-cellulolytic organisms with high product yields to become cellulolytic. This article reviews recent advances in the development of microorganisms for the production of renewable chemicals and advanced biofuels, as well as ethanol, from lignocellulosic materials through consolidated bioprocessing.

  1. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.

    PubMed

    Hasunuma, Tomohisa; Okazaki, Fumiyoshi; Okai, Naoko; Hara, Kiyotaka Y; Ishii, Jun; Kondo, Akihiko

    2013-05-01

    The biorefinery manufacturing process for producing chemicals and liquid fuels from biomass is a promising approach for securing energy and resources. To establish cost-effective fermentation of lignocellulosic biomass, the consolidation of sacccharification and fermentation processes is a desirable strategy, but requires the development of microorganisms capable of cellulose/hemicellulose hydrolysis and target chemical production. Such an endeavor requires a large number of prerequisites to be realized, including engineering microbial strains with high cellulolytic activity, high product yield, productivities, and titers, ability to use many carbon sources, and resistance to toxic compounds released during the pretreatment of lignocellulosic biomass. Researchers have focused on either engineering naturally cellulolytic microorganisms to improve product-related properties or modifying non-cellulolytic organisms with high product yields to become cellulolytic. This article reviews recent advances in the development of microorganisms for the production of renewable chemicals and advanced biofuels, as well as ethanol, from lignocellulosic materials through consolidated bioprocessing. PMID:23195654

  2. Lignin structural alterations in thermochemical pretreatments with limited delignification

    DOE PAGESBeta

    Pu, Yunqiao; Hu, Fan; Huang, Fang; Ragauskas, Arthur J.

    2015-08-02

    Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion,more » and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.« less

  3. Lignin structural alterations in thermochemical pretreatments with limited delignification

    SciTech Connect

    Pu, Yunqiao; Hu, Fan; Huang, Fang; Ragauskas, Arthur J.

    2015-08-02

    Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion, and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.

  4. Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors

    PubMed Central

    Ishola, Mofoluwake M.; Ylitervo, Päivi; Taherzadeh, Mohammad J.

    2015-01-01

    Integrated permeate channel (IPC) flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR) for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936), a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF). The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology would also allow the reuse of the yeast for several batches. PMID:26633530

  5. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    PubMed Central

    2014-01-01

    Background Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. Results We studied the composition and fermentability of 24 different biomass hydrolysates. To create diversity, the 24 hydrolysates were prepared from six different biomass types, namely sugar cane bagasse, corn stover, wheat straw, barley straw, willow wood chips and oak sawdust, and with four different pretreatment methods, i.e. dilute acid, mild alkaline, alkaline/peracetic acid and concentrated acid. Their composition and that of fermentation samples generated with these hydrolysates were analyzed with two GC-MS methods. Either ethyl acetate extraction or ethyl chloroformate derivatization was used before conducting GC-MS to prevent sugars are overloaded in the chromatograms, which obscure the detection of less abundant compounds. Using multivariate PLS-2CV and nPLS-2CV data analysis models, potential inhibitors were identified through establishing relationship between fermentability and composition of the hydrolysates. These identified compounds were tested for their effects on the growth of the model yeast, Saccharomyces. cerevisiae CEN.PK 113-7D, confirming that the majority of the identified compounds were indeed inhibitors. Conclusion Inhibitory compounds in lignocellulosic biomass hydrolysates were successfully identified using a non-targeted systematic approach: metabolomics. The identified inhibitors include both known ones, such as furfural, HMF and vanillin, and novel inhibitors, namely sorbic acid and phenylacetaldehyde. PMID:24655423

  6. Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors.

    PubMed

    Ishola, Mofoluwake M; Ylitervo, Päivi; Taherzadeh, Mohammad J

    2015-01-01

    Integrated permeate channel (IPC) flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR) for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936), a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF). The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology also allows the reuse of the yeast for several batches. PMID:26633530

  7. Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass.

    PubMed

    Teixeira, L C; Linden, J C; Schroeder, H A

    2000-01-01

    Previous work in our laboratories has demonstrated the effectiveness of peracetic acid for improving enzymatic digestibility of lignocellulosic materials. The use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increased carbohydrate hydrolysis yields in a synergistic as opposed to additive manner. Deacetylation of xylan is easily achieved using dilute alkali solutions under mild conditions. In this article, we evaluate the effectiveness of peracetic acid combined with an alkaline pre-pretreatment through simultaneous saccharification and cofermentation (SSCF) of pretreated hybrid poplar wood and sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% of theoretical are achieved using 6% NaOH/15% peracetic acid-pretreated substrates and recombinant Zymomonas mobilis CP4/pZB5. Reduction of acetyl groups of the lignocellulosic materials is demonstrated following alkaline pre-pretreatments. Such processing may be helpful in reducing peracetic acid requirements. The influence of deacetylation is more significant in combined pretreatments using lower peracetic acid loadings.

  8. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.

    PubMed

    van der Pol, Edwin; Bakker, Rob; van Zeeland, Alniek; Sanchez Garcia, David; Punt, Arjen; Eggink, Gerrit

    2015-04-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretreatment included acetic, glycolic and coumaric acid in concentrations up to 40, 21 and 2.5 g/kg dry weight bagasse respectively. Alkaline pretreated material contained up to 45 g/kg bagasse DW of sodium. Acid and autohydrolysis pretreatment results in a furan formation of 14 g/kg and 25 g/kg DW bagasse respectively. Enzyme monomerization efficiencies of pretreated solid material after 72 h were 81% for acid pretreatment, 77% for autohydrolysis and 57% for alkaline pretreatment. Solid material was washed with superheated water to decrease the amount of by-products. Washing decreased organic acid, phenol and furan concentrations in solid material by at least 60%, without a major sugar loss.

  9. Influence of Retardants to Burning Lignocellulosic Materials

    NASA Astrophysics Data System (ADS)

    Tureková, Ivana; Harangozó, Jozef; Martinka, Jozef

    2011-01-01

    The paper deals with monitoring retardant changes of lignocellulosic materials. Combustion of lignocellulosic materials and fire-technical characteristics are described. In assessing the retarding effect of salt NH4H2PO4, fire-technical characteristics as limiting oxygen index (LOI) were measured, and by using thermoanalytical TG and DSC methods. High-temperature process of cellulose degradation at various flame concentrations was studied.

  10. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass

    PubMed Central

    Morrison, Jessica M.; Elshahed, Mostafa S.; Youssef, Noha H.

    2016-01-01

    The anaerobic fungus Orpinomyces strain C1A is capable of growth on various types of lignocellulosic substrates, and harbors an impressive reservoir of carbohydrate active enzymes (CAZymes). Using a minimum enzyme cocktail strategy, we constituted a four-component lignocellulolytic cocktail derived from highly transcribed C1A, and evaluated its efficacy against pretreated corn stover and switchgrass. Hydrolysis yields ranged between 65–77.4%, depending on the lignocellulosic substrate and pretreatment applied. Addition of a highly expressed anaerobic fungal swollenin improved hydrolysis yields by up to 7%. Compared to the commercial cocktail CTec2, these anaerobic fungal cocktails provided comparable or slightly lower hydrolysis yields. Further, the differences in efficacy between commercial and anaerobic cocktails were often only realized after extended (168 hr) incubations. Under certain conditions, the hydrolysis yields of the anaerobic fungal cocktail was slightly superior to that realized by CTec2. We attribute the observed high hydrolysis yields to the high specific activity and affinity of the individual enzymes of the cocktail, as well as the high level of synergy and multi-functionality observed in multiple components. Collectively, this effort provides a novel platform for constructing highly effective enzymes for biofuel production and represents the first lignocellulolytic enzyme cocktail created from anaerobic fungal enzymes. PMID:27381262

  11. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass.

    PubMed

    Morrison, Jessica M; Elshahed, Mostafa S; Youssef, Noha H

    2016-01-01

    The anaerobic fungus Orpinomyces strain C1A is capable of growth on various types of lignocellulosic substrates, and harbors an impressive reservoir of carbohydrate active enzymes (CAZymes). Using a minimum enzyme cocktail strategy, we constituted a four-component lignocellulolytic cocktail derived from highly transcribed C1A, and evaluated its efficacy against pretreated corn stover and switchgrass. Hydrolysis yields ranged between 65-77.4%, depending on the lignocellulosic substrate and pretreatment applied. Addition of a highly expressed anaerobic fungal swollenin improved hydrolysis yields by up to 7%. Compared to the commercial cocktail CTec2, these anaerobic fungal cocktails provided comparable or slightly lower hydrolysis yields. Further, the differences in efficacy between commercial and anaerobic cocktails were often only realized after extended (168 hr) incubations. Under certain conditions, the hydrolysis yields of the anaerobic fungal cocktail was slightly superior to that realized by CTec2. We attribute the observed high hydrolysis yields to the high specific activity and affinity of the individual enzymes of the cocktail, as well as the high level of synergy and multi-functionality observed in multiple components. Collectively, this effort provides a novel platform for constructing highly effective enzymes for biofuel production and represents the first lignocellulolytic enzyme cocktail created from anaerobic fungal enzymes. PMID:27381262

  12. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin

    PubMed Central

    2013-01-01

    Background Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) is a relatively new process, but has demonstrated robust performance for sugar and biofuel production from woody biomass in terms of yield and energy efficiency. This study demonstrated the advantage of SPORL pretreatment whereby the presentation of lignosulfonate (LS) renders the hydrolysate non-inhibitory to cellulase (Cel) due to the formation of lignosulfonate-cellulase complexes (LCCs) which can mediate the Cel adsorption between lignin and cellulose, contrary to the conventional belief that pretreatment hydrolysate inhibits the enzymatic hydrolysis unless detoxified. Results Particular emphasis was made on the formation mechanisms and stability phase of LCCs, the electrostatic interaction between LCCs and lignin, and the redistributed Cel adsorption between lignin and cellulose. The study found that LS, the byproduct of SPORL pretreatment, behaves as a polyelectrolyte to form LCCs with Cel by associating to the oppositely charged groups of protein. Compared to Cel, the zeta potential of LCCs is more negative and adjustable by altering the molar ratio of LS to Cel, and thereby LCCs have the ability to mitigate the nonproductive binding of Cel to lignin because of the enlarged electrostatic repulsion. Experimental results showed that the benefit from the reduced nonproductive binding outweighed the detrimental effects from the inhibitors in pretreatment hydrolysate. Specifically, the glucan conversions of solid substrate from poplar and lodgepole pine were greatly elevated by 25.9% and 31.8%, respectively, with the complete addition of the corresponding hydrolysate. This contradicts the well

  13. Production of Biofuel from Waste Lignocellulosic Biomass Materials Based on Energy Saving Viewpoint

    NASA Astrophysics Data System (ADS)

    Takano, Maki; Hoshino, Kazuhiro

    To develop biofuel production from waste lignocellulosic biomass materials the rice straw was selected one of renewable material and the degradation condition about pretreatment and enzymatic hydrolysis to obtain effectively fermentable sugars was investigated. Rice straw was pretreated by five kinds of methods and then the components ratio of rice straw was examined. First, the steam explosion was selected based on the degradability and the requirement energy. In addition, the best suitable combination of two cellulases to effective and economical hydrolyze was determined from the degradability of these pretreated rice straws. In the simultaneous saccharification and fermentation of the steam explosion rice straw by combining cellulase cocktail and a novel fermenting fungus, 13.2 g/L ethanol was able to product for 96 h.

  14. Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis.

    PubMed

    Yu, Guoce; Yano, Shinichi; Inoue, Hiroyuki; Inoue, Seiichi; Endo, Takashi; Sawayama, Shigeki

    2010-01-01

    Hot-compressed water (HCW) is among several cost-effective pretreatment processes of lignocellulosic biomass for enzymatic hydrolysis. The present work investigated the characteristics of HCW pretreatment of rice straw including sugar production and inhibitor formation in the liquid fraction and enzymatic hydrolysis of pretreated material. Pretreatment was carried out at a temperature ranging from 140 to 240 degrees C for 10 or 30 min. Soluble oligosaccharides were found to constitute almost all the components of total sugars in the liquid fraction. The maximal production of total glucose at 180 degrees C and below accounted for 4.4-4.9% of glucan in raw material. Total xylose production peaked at 180 degrees C, accounting for 43.3% of xylan in raw material for 10-min pretreatment and 29.8% for 30-min pretreatment. The production of acetic acid increased at higher temperatures and longer treatment time, indicating more significant disruption of lignocellulosic structure, and furfural production achieved the maximum (2.8 mg/ml) at 200 degrees C for both 10-min and 30-min processes. The glucose yield by enzymatic hydrolysis of pretreated rice straw was no less than 85% at 180 degrees C and above for 30-min pretreatment and at 200 degrees C and above for 10-min pretreatment. Considering sugar recovery, inhibitor formation, and process severity, it is recommended that a temperature of 180 degrees C for a time of 30 min can be the most efficient process for HCW pretreatment of rice straw.

  15. Effect of ozone pretreatment on hydrogen production from barley straw.

    PubMed

    Wu, Jiangning; Ein-Mozaffari, Farhad; Upreti, Simant

    2013-09-01

    Application of ozone technology to lignocellulosic biohydrogen production was explored with a barley straw. Ozone pretreatment effectively degraded the straw lignin and increased reducing sugar yield. A simultaneous enzyme hydrolysis and dark fermentation experiment was conducted using a mixed anaerobic consortium together with saccharification enzymes. Both untreated and ozonated samples produced hydrogen. Compared to the untreated group, hydrogen produced by the groups ozonated for 15, 30, 45 and 90 min increased 99%, 133%, 166% and 94%, respectively. Some inhibitory effect on hydrogen production was observed with the samples ozonated for 90 min, and the inhibition was on the fermentative microorganisms, not the saccharification enzymes. These results demonstrate that production of biohydrogen from barley straw, a lignocellulosic biomass, can be significantly enhanced by ozone pretreatment.

  16. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.

    PubMed

    Mondala, Andro H

    2015-04-01

    Various economic and environmental sustainability concerns as well as consumer preference for bio-based products from natural sources have paved the way for the development and expansion of biorefining technologies. These involve the conversion of renewable biomass feedstock to fuels and chemicals using biological systems as alternatives to petroleum-based products. Filamentous fungi possess an expansive portfolio of products including the multifunctional organic acids itaconic, fumaric, and malic acids that have wide-ranging current applications and potentially addressable markets as platform chemicals. However, current bioprocessing technologies for the production of these compounds are mostly based on submerged fermentation, which necessitates physicochemical pretreatment and hydrolysis of lignocellulose biomass to soluble fermentable sugars in liquid media. This review will focus on current research work on fungal production of itaconic, fumaric, and malic acids and perspectives on the potential application of solid-state fungal cultivation techniques for the consolidated hydrolysis and organic acid fermentation of lignocellulosic biomass.

  17. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass.

    PubMed

    Adsul, M G; Singhvi, M S; Gaikaiwari, S A; Gokhale, D V

    2011-03-01

    Lignocellulosic biomass is recognized as potential sustainable source for production of power, biofuels and variety of commodity chemicals which would potentially add economic value to biomass. Recalcitrance nature of biomass is largely responsible for the high cost of its conversion. Therefore, it is necessary to introduce some cost effective pretreatment processes to make the biomass polysaccharides easily amenable to enzymatic attack to release mixed fermentable sugars. Advancement in systemic biology can provide new tools for the development of such biocatalysts for sustainable production of commodity chemicals from biomass. Integration of functional genomics and system biology approaches may generate efficient microbial systems with new metabolic routes for production of commodity chemicals. This paper provides an overview of the challenges that are faced by the processes converting lignocellulosic biomass to commodity chemicals. The critical factors involved in engineering new microbial biocatalysts are also discussed with more emphasis on commodity chemicals. PMID:21277771

  18. Limitations of the NNS assay for reducing sugars from saccharified lignocellulosics. [Trichoderma reesei

    SciTech Connect

    Rivers, D.B.; Gracheck, S.J.; Woodford, L.C.; Emert, G.H.

    1984-07-01

    An evaluation is presented of two DNS (2,4-dinitrosalicylic acid) assay procedures as well as high-performance liquid chromatography (HPLC) and YSI Glucose Analyzer analyses of sugars resulting from enzymatic saccharification of lignocellulosics. Trichoderma reesei was used to produce the cellulase system containing endoglucanase, cellobiohydrolase and cellobiase. Data suggest that the DNS assay can be used as an accurate analytical method for the evaluation of reducing sugars in pure solution as well as in supernatants from enzymatic saccharification if glucose is the sole product. However, only specific assay methods such as HPLC and YSI-type glucose analyzers should be used for the analysis of saccharides produced from the hydrolysis of native or pretreated lignocellulosics since the DNS assay is susceptible to interferences and therefore results in inaccurate analyses.

  19. Lignocellulose-based analytical devices: bamboo as an analytical platform for chemical detection

    PubMed Central

    Kuan, Chen-Meng; York, Roger L.; Cheng, Chao-Min

    2015-01-01

    This article describes the development of lignocellulose-based analytical devices (LADs) for rapid bioanalysis in low-resource settings. LADs are constructed using either a single lignocellulose or a hybrid design consisting of multiple types of lignocellulose. LADs are simple, low-cost, easy to use, provide rapid response, and do not require external instrumentation during operation. Here, we demonstrate the implementation of LADs for food and water safety (i.e., nitrite assay in hot-pot soup, bacterial detection in water, and resazurin assay in milk) and urinalysis (i.e., nitrite, urobilinogen, and pH assays in human urine). Notably, we created a unique approach using simple chemicals to achieve sensitivity similar to that of commercially available immunochromatographic strips that is low-cost, and provides on-site, rapid detection, for instance, of Eschericia coli (E. coli) in water. PMID:26686576

  20. Factors affecting the pretreatment of biomass with gaseous ozone

    SciTech Connect

    Neely, W.C.

    1984-01-01

    Treatment of a wide variety of lignocellulosic biomass with gaseous ozone results in greatly enhanced susceptibility to cellulase enzyme hydrolysis and to digestion by rumen microorganisms so that it can be used as ruminant animal feed or for the production of glucose via enzymatic hydrolysis. By use of appropriate reaction conditions a useful degree of such pretreatment may be obtained in 1-2 h contact time with an ozone consumption of ca. 4-6% of the dry weight of the biomass.

  1. Effect of non-enzymatic proteins on enzymatic hydrolysis and simultaneous saccharification and fermentation of different lignocellulosic materials.

    PubMed

    Wang, Hui; Kobayashi, Shinichi; Mochidzuki, Kazuhiro

    2015-08-01

    Non-enzymatic proteins were added during hydrolysis of cellulose and simultaneous saccharification and fermentation (SSF) of different biomass materials. Bovine serum albumin (BSA), a model non-enzymatic protein, increased cellulose and xylose conversion efficiency and also enhanced the ethanol yield during SSF of rice straw subjected to varied pretreatments. Corn steep liquor, yeast extract, and peptone also exerted a similar effect as BSA and enhanced the enzymatic hydrolysis of rice straw. Compared to the glucose yields obtained after enzymatic hydrolysis of rice straw in the absence of additives, the glucose yields after 72h of hydrolysis increased by 12.7%, 13.5%, and 13.7% after addition of the corn steep liquor, yeast extract, and peptone, respectively. This study indicated the use of BSA as an alternative to intensive pretreatment of lignocellulosic materials for enhancing enzymatic digestibility. The utilization of non-enzymatic protein additives is promising for application in glucose and ethanol production from lignocellulosic materials.

  2. Enzymatic digestion of liquid hot water pretreated hybrid poplar.

    PubMed

    Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R

    2009-01-01

    Liquid hot (LHW) water pretreatment (LHW) of lignocellulosic material enhances enzymatic conversion of cellulose to glucose by solubilizing hemicellulose fraction of the biomass, while leaving the cellulose more reactive and accessible to cellulase enzymes. Within the range of pretreatment conditions tested in this study, the optimized LHW pretreatment conditions for a 15% (wt/vol) slurry of hybrid poplar were found to be 200(o)C, 10 min, which resulted in the highest fermentable sugar yield with minimal formation of sugar decomposition products during the pretreatment. The LHW pretreatment solubilized 62% of hemicellulose as soluble oligomers. Hot-washing of the pretreated poplar slurry increased the efficiency of hydrolysis by doubling the yield of glucose for a given enzyme dose. The 15% (wt/vol) slurry of hybrid poplar, pretreated at the optimal conditions and hot-washed, resulted in 54% glucose yield by 15 FPU cellulase per gram glucan after 120 h. The hydrolysate contained 56 g/L glucose and 12 g/L xylose. The effect of cellulase loading on the enzymatic digestibility of the pretreated poplar is also reported. Total monomeric sugar yield (glucose and xylose) reached 67% after 72 h of hydrolysis when 40 FPU cellulase per gram glucan were used. An overall mass balance of the poplar-to-ethanol process was established based on the experimentally determined composition and hydrolysis efficiencies of the liquid hot water pretreated poplar.

  3. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria

    PubMed Central

    2013-01-01

    Background Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. Results We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. Conclusions The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co

  4. Biogas production and saccharification of Salix pretreated at different steam explosion conditions.

    PubMed

    Horn, Svein J; Estevez, Maria M; Nielsen, Henrik K; Linjordet, Roar; Eijsink, Vincent G H

    2011-09-01

    Different steam explosion conditions were applied to Salix chips and the effect of this pretreatment was evaluated by running both enzymatic hydrolysis and biogas tests. Total enzymatic release of glucose and xylose increased with pretreatment harshness, with maximum values being obtained after pretreatment for 10 min at 210°C. Harsher pretreatment conditions did not increase glucose release, led to degradation of xylose and to formation of furfurals. Samples pretreated at 220 and 230°C initially showed low production of biogas, probably because of inhibitors produced during the pretreatment, but the microbial community was able to adapt and showed high final biogas production. Interestingly, final biogas yields correlated well with sugar yields after enzymatic hydrolysis, suggesting that at least in some cases a 24h enzymatic assay may be developed as a quick method to predict the effects of pretreatment of lignocellulosic biomass on biogas yields.

  5. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    PubMed

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  6. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    PubMed

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

  7. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels

    PubMed Central

    Healey, Adam L.; Lee, David J.; Furtado, Agnelo; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  8. Deep eutectic solvent pretreatment and subsequent saccharification of corncob.

    PubMed

    Procentese, Alessandra; Johnson, Erin; Orr, Valerie; Garruto Campanile, Anna; Wood, Jeffery A; Marzocchella, Antonio; Rehmann, Lars

    2015-09-01

    Ionic liquid (ILs) pretreatment of lignocellulosic biomass has attracted broad scientific interest, despite high costs, possible toxicity and energy intensive recycling. An alternative group of ionic solvents with similar physicochemical properties are deep eutectic solvents (DESs). Corncob residues were pretreated with three different DES systems: choline chloride and glycerol, choline chloride and imidazole, choline chloride and urea. The pretreated biomass was characterised in terms of lignin content, sugars concentration, enzymatic digestibility and crystallinity index. A reduction of lignin and hemicellulose content resulted in increased crystallinity of the pretreated biomass while the crystallinity of the cellulose fraction could be reduced, depending on DES system and operating conditions. The subsequent enzymatic saccharification was enhanced in terms of rate and extent. A total of 41 g fermentable sugars (27 g glucose and 14 g xylose) could be recovered from 100g corncob, representing 76% (86% and 63%) of the initially available carbohydrates. PMID:26005926

  9. Effect of chip size on steam explosion pretreatment of softwood.

    PubMed

    Ballesteros, I; Oliva, J M; Navarro, A A; González, A; Carrasco, J; Ballesteros, M

    2000-01-01

    Although considerable progress has been made in technology for converting lignocellulosic biomass into ethanol, substantial opportunities still exist to reduce production costs. In biomass pretreatment, reducing milling power is a technological improvement that will substantially lower production costs for ethanol. Improving sugar yield from hemicellulose hydrolysis would also reduce ethanol production costs. Thus, it would be desirable to test innovative pretreatment conditions to improve the economics by reducing electrical power of the milling stage and by optimizing pretreatment recovery of hemicellulose, as well as to enhance cellulose hydrolysis. The objective of this study was to evaluate the effect of chip size (2-5, 5-8, and 8-12 mm) on steam-explosion pretreatment (190 and 210 degrees C, 4 and 8 min) of softwood (Pinus pinaster).

  10. Acetylation of woody lignocellulose: significance and regulation

    PubMed Central

    Pawar, Prashant Mohan-Anupama; Koutaniemi, Sanna; Tenkanen, Maija; Mellerowicz, Ewa J.

    2013-01-01

    Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase) or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose toward improved saccharification. In this review we: (1) summarize literature on lignocellulose acetylation in different tree species, (2) present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, (3) describe plant proteins involved in lignocellulose O-acetylation, (4) give examples of microbial enzymes capable to de-acetylate lignocellulose, and (5) discuss prospects for exploiting these enzymes in planta to modify xylan acetylation. PMID:23734153

  11. Simultaneous conversion of all cell wall components by oleaginous fungus without chemi-physical pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin utilization during biomass conversion has been a major challenge for lignocellulosic biofuel. In particular, the conversion of lignin along with carbohydrate for fungible fuels and chemicals will both improve the overall carbon efficiency and reduce the need for chemical pretreatments. Howeve...

  12. Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-12-01

    In cellulosic ethanol production using lignocellulose, an increase in biomass solids loading during the pretreatment process significantly affects the final ethanol titer and the production cost. In this study, pretreatment using rice straw at high solids loading (20% (w/v)) was evaluated, using maleic acid as a catalyst. After pretreatment at optimal conditions of 190°C, 20 min, and 0.2% or 5% (w/v) maleic acid, the highest enzymatic digestibility obtained was over 80%. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated rice straw in the presence of activated carbon to separate inhibitory compounds generated a high ethanol yield of 62.8%, based on the initial glucan in unpretreated rice straw. These findings suggest that high solids loading pretreatment using maleic acid and SSF of the whole slurry of pretreated rice straw can be combined to improve the process economics of ethanol production.

  13. Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-12-01

    In cellulosic ethanol production using lignocellulose, an increase in biomass solids loading during the pretreatment process significantly affects the final ethanol titer and the production cost. In this study, pretreatment using rice straw at high solids loading (20% (w/v)) was evaluated, using maleic acid as a catalyst. After pretreatment at optimal conditions of 190°C, 20 min, and 0.2% or 5% (w/v) maleic acid, the highest enzymatic digestibility obtained was over 80%. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated rice straw in the presence of activated carbon to separate inhibitory compounds generated a high ethanol yield of 62.8%, based on the initial glucan in unpretreated rice straw. These findings suggest that high solids loading pretreatment using maleic acid and SSF of the whole slurry of pretreated rice straw can be combined to improve the process economics of ethanol production. PMID:26461793

  14. Lignocellulosic ethanol: Technology design and its impact on process efficiency.

    PubMed

    Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel

    2015-11-01

    This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use

  15. Biodiesel from lignocellulosic biomass--prospects and challenges.

    PubMed

    Yousuf, Abu

    2012-11-01

    Biodiesel can be a potential alternative to petroleum diesel, but its high production cost has impeded its commercialization in most parts of the world. One of the main drivers for the generation and use of biodiesel is energy security, because this fuel can be produced from locally available resources, thereby reducing the dependence on imported oil. Many countries are now trying to produce biodiesel from plant or vegetable oils. However, the consumption of large amounts of vegetable oils for biodiesel production could result in a shortage in edible oils and cause food prices to soar. Alternatively, the use of animal fat, used frying oils, and waste oils from restaurants as feedstock could be a good strategy to reduce the cost. However, these limited resources might not meet the increasing demand for clean, renewable fuels. Therefore, recent research has been focused the use of residual materials as renewable feedstock in order to lower the cost of producing biodiesel. Microbial oils or single cell oils (SCOs), produced by oleaginous microorganisms have been studied as promising alternatives to vegetable or seed oils. Various types of agro-industrial residues have been suggested as prospective nutritional sources for microbial cultures. Since the most abundant residue from agricultural crops is lignocellulosic biomass (LCB), this byproduct has been given top-priority consideration as a source of biomass for producing biodiesel. But the biological transformation of lignocellulosic materials is complicated due to their crystalline structure. So, pretreatment is required before they can be converted into fermentable sugar. This article compares and scrutinizes the extent to which various microbes can accumulate high levels of lipids as functions of the starting materials and the fermentation conditions. Also, the obstacles associated with the use of LCB are described, along with a potentially viable approach for overcoming the obstacles that currently preclude the

  16. Aqueous Ionic Liquids and Deep Eutectic Solvents for Cellulosic Biomass Pretreatment and Saccharification

    PubMed Central

    Xia, Shuqian; Baker, Gary A.; Li, Hao; Ravula, Sudhir; Zhao, Hua

    2014-01-01

    Ionic liquids (ILs) have proven effective solvents for pretreating lignocellulose, leading to the fast saccharification of cellulose and hemicellulose. However, the high current cost of most ILs remains a major barrier to commercializing this recent approach at a practical scale. As a strategic detour, aqueous solutions of ILs are also being explored as less costly alternatives to neat ILs for cellulose pretreatment. However, limited studies on a few select IL systems are known and there remains no systematic survey of various ILs, eluding an in-depth understanding of pretreatment mechanisms afforded by aqueous IL systems. As a step toward filling this gap, this study presents results for Avicel cellulose pretreatment by neat and aqueous solutions (1.0 and 2.0 M) of 20 different ILs and three deep eutectic solvents, correlating enzymatic hydrolysis rates of pretreated cellulose with various IL properties such as hydrogen-bond basicity, polarity, Hofmeister ranking, and hydrophobicity. The pretreatment efficiencies of neat ILs may be loosely correlated to the hydrogen-bond basicity of the constituent anion and IL polarity; however, the pretreatment efficacies for aqueous ILs are more complicated and cannot be simply related to any single IL property. Several aqueous IL systems have been identified as effective alternatives to neat ILs in lignocellulose pretreatment. In particular, this study reveals that aqueous solutions of 1-butyl-3-methylimidazolium methanesulfonate ([BMIM][MeSO3]) are effective for pretreating switchgrass (Panicum virgatum), resulting in fast saccharification of both cellulose and hemicellulose. An integrated analysis afforded by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and cellulase adsorption isotherm of lignocellulose samples is further used to deliver a more complete view of the structural changes attending aqueous IL pretreatment. PMID:24729865

  17. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  18. Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR.

    PubMed

    Fu, Li; McCallum, Scott A; Miao, Jianjun; Hart, Courtney; Tudryn, Gregory J; Zhang, Fuming; Linhardt, Robert J

    2015-02-01

    Biofuels and biomaterials, produced from lignocellulosic feedstock, require facile access to cellulose and hemicellulose to be competitive with petroleum processing and sugar-based fermentation. Physical-chemical barriers resulting from lignin complicates the hydrolysis biomass into fermentable sugars. Thus, the amount of lignin within a substrate is critical in determining biomass processing. The application of (13)C cross-polarization, magic-angle spinning, and solid-state nuclear magnetic resonance for the direct quantification of lignin content in biomass is examined. Using a standard curve constructed from pristine lignin and cellulose, the lignin content of a biomass sample is accurately determined through direct measurement without chemical or enzymatic pre-treatment.

  19. Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw

    PubMed Central

    2013-01-01

    Background The use of the enzymatic hydrolysis of lignocellulose with subsequent fermentation to ethanol provides a green alternative for the production of transportation fuels. Because of its recalcitrant nature, the lignocellulosic biomass must be pretreated before enzymatic hydrolysis. However, the pretreatment often results in the formation of compounds that are inhibitory for the enzymes or fermenting organism. Although well recognized, little quantitative information on the inhibition of individual cellulase components by identified inhibitors is available. Results Strong cellulase inhibitors were separated from the liquid fraction of the hydrothermal pretreatment of wheat straw. HPLC and mass-spectroscopy analyses confirmed that the inhibitors were oligosaccharides (inhibitory oligosaccharides, IOS) with a degree of polymerization from 7 to 16. The IOS are composed of a mixture of xylo- (XOS) and gluco-oligosaccharides (GOS). We propose that XOS and GOS are the fragments of the xylan backbone and mixed-linkage β-glucans, respectively. The IOS were approximately 100 times stronger inhibitors for Trichoderma reesei cellobiohydrolases (CBHs) than cellobiose, which is one of the strongest inhibitors of these enzymes reported to date. Inhibition of endoglucanases (EGs) by IOS was weaker than that of CBHs. Most of the tested cellulases and hemicellulases were able to slowly degrade IOS and reduce the inhibitory power of the liquid fraction to some extent. The most efficient single enzyme component here was T. reesei EG TrCel7B. Although reduced by the enzyme treatment, the residual inhibitory power of IOS and the liquid fraction was strong enough to silence the major component of the T. reesei cellulase system, CBH TrCel7A. Conclusions The cellulase inhibitors described here may be responsible for the poor yields from the enzymatic conversion of the whole slurries from lignocellulose pretreatment under conditions that do not favor complete degradation of

  20. Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion

    NASA Astrophysics Data System (ADS)

    Murphy, Patrick Thomas

    The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to evaluate brown midrib corn stover as feedstock for ethanol production. In the first study (Chapter 2), we investigated the potential of corn stover from bm1-4 hybrids for increased ethanol production and reduced pretreatment intensity compared to corn stover from the isogenic normal hybrid. Corn stover from hybrid W64A X A619 and respective isogenic bm hybrids was pretreated by aqueous ammonia steeping using ammonium hydroxide concentrations from 0 to 30%, by weight, and the resulting residues underwent simultaneous saccharification and cofermentation (SSCF) to ethanol. Dry matter (DM) digested by SSCF increased with increasing ammonium hydroxide concentration across all genotypes (P>0.0001) from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide pretreatment. The bm corn stover materials averaged 373 g kg-1 DM of DM digested by SSCF compared with 335 g kg-1 DM for the normal corn stover (P<0.0001). Of the bm mutations, bm3 had (i) the greatest effect on cell-wall carbohydrate hydrolysis of corn stover, (ii) the lowest initial cell-wall carbohydrate concentration, (iii) the lowest dry matter remaining after pretreatment, and (iv) the highest amount of monosaccharides released during enzymatic hydrolysis. However, bm corn stover did not reduce the severity of aqueous ammonia steeping pretreatment needed to maximize DM hydrolysis during SSCF compared with normal corn stover. In the remaining studies (Chapters 3 thru 5), a system for analyzing the quality of lignocellulosic biomass feedstocks for biochemical conversion to biofuels (i.e., pretreatment, enzymatic hydrolysis, and fermentation) was developed. To accomplish this, a carbohydrate availability model was developed to characterize feedstock quality. The model partitions carbohydrates within a feedstock material into

  1. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae

    DOE PAGESBeta

    Narayanan, Venkatachalam; Sànchez i Nogué, Violeta; van Niel, Ed W. J.; Gorwa-Grauslund, Marie F.

    2016-08-26

    Here, lignocellulosic bioethanol from renewable feedstocks using Saccharomyces cerevisiae is a promising alternative to fossil fuels owing to environmental challenges. S. cerevisiae is frequently challenged by bacterial contamination and a combination of lignocellulosic inhibitors formed during the pre-treatment, in terms of growth, ethanol yield and productivity. We investigated the phenotypic robustness of a brewing yeast strain TMB3500 and its ability to adapt to low pH thereby preventing bacterial contamination along with lignocellulosic inhibitors by short-term adaptation and adaptive lab evolution (ALE). The short-term adaptation strategy was used to investigate the inherent ability of strain TMB3500 to activate a robust phenotypemore » involving pre-culturing yeast cells in defined medium with lignocellulosic inhibitors at pH 5.0 until late exponential phase prior to inoculating them in defined media with the same inhibitor cocktail at pH 3.7. Adapted cells were able to grow aerobically, ferment anaerobically (glucose exhaustion by 19 +/- 5 h to yield 0.45 +/- 0.01 g ethanol g glucose-1) and portray significant detoxification of inhibitors at pH 3.7, when compared to non-adapted cells. ALE was performed to investigate whether a stable strain could be developed to grow and ferment at low pH with lignocellulosic inhibitors in a continuous suspension culture. Though a robust population was obtained after 3600 h with an ability to grow and ferment at pH 3.7 with inhibitors, inhibitor robustness was not stable as indicated by the characterisation of the evolved culture possibly due to phenotypic plasticity. With further research, this short-term adaptation and low pH strategy could be successfully applied in lignocellulosic ethanol plants to prevent bacterial contamination.« less

  2. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae.

    PubMed

    Narayanan, Venkatachalam; Sànchez I Nogué, Violeta; van Niel, Ed W J; Gorwa-Grauslund, Marie F

    2016-12-01

    Lignocellulosic bioethanol from renewable feedstocks using Saccharomyces cerevisiae is a promising alternative to fossil fuels owing to environmental challenges. S. cerevisiae is frequently challenged by bacterial contamination and a combination of lignocellulosic inhibitors formed during the pre-treatment, in terms of growth, ethanol yield and productivity. We investigated the phenotypic robustness of a brewing yeast strain TMB3500 and its ability to adapt to low pH thereby preventing bacterial contamination along with lignocellulosic inhibitors by short-term adaptation and adaptive lab evolution (ALE). The short-term adaptation strategy was used to investigate the inherent ability of strain TMB3500 to activate a robust phenotype involving pre-culturing yeast cells in defined medium with lignocellulosic inhibitors at pH 5.0 until late exponential phase prior to inoculating them in defined media with the same inhibitor cocktail at pH 3.7. Adapted cells were able to grow aerobically, ferment anaerobically (glucose exhaustion by 19 ± 5 h to yield 0.45 ± 0.01 g ethanol g glucose(-1)) and portray significant detoxification of inhibitors at pH 3.7, when compared to non-adapted cells. ALE was performed to investigate whether a stable strain could be developed to grow and ferment at low pH with lignocellulosic inhibitors in a continuous suspension culture. Though a robust population was obtained after 3600 h with an ability to grow and ferment at pH 3.7 with inhibitors, inhibitor robustness was not stable as indicated by the characterisation of the evolved culture possibly due to phenotypic plasticity. With further research, this short-term adaptation and low pH strategy could be successfully applied in lignocellulosic ethanol plants to prevent bacterial contamination.

  3. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae.

    PubMed

    Narayanan, Venkatachalam; Sànchez I Nogué, Violeta; van Niel, Ed W J; Gorwa-Grauslund, Marie F

    2016-12-01

    Lignocellulosic bioethanol from renewable feedstocks using Saccharomyces cerevisiae is a promising alternative to fossil fuels owing to environmental challenges. S. cerevisiae is frequently challenged by bacterial contamination and a combination of lignocellulosic inhibitors formed during the pre-treatment, in terms of growth, ethanol yield and productivity. We investigated the phenotypic robustness of a brewing yeast strain TMB3500 and its ability to adapt to low pH thereby preventing bacterial contamination along with lignocellulosic inhibitors by short-term adaptation and adaptive lab evolution (ALE). The short-term adaptation strategy was used to investigate the inherent ability of strain TMB3500 to activate a robust phenotype involving pre-culturing yeast cells in defined medium with lignocellulosic inhibitors at pH 5.0 until late exponential phase prior to inoculating them in defined media with the same inhibitor cocktail at pH 3.7. Adapted cells were able to grow aerobically, ferment anaerobically (glucose exhaustion by 19 ± 5 h to yield 0.45 ± 0.01 g ethanol g glucose(-1)) and portray significant detoxification of inhibitors at pH 3.7, when compared to non-adapted cells. ALE was performed to investigate whether a stable strain could be developed to grow and ferment at low pH with lignocellulosic inhibitors in a continuous suspension culture. Though a robust population was obtained after 3600 h with an ability to grow and ferment at pH 3.7 with inhibitors, inhibitor robustness was not stable as indicated by the characterisation of the evolved culture possibly due to phenotypic plasticity. With further research, this short-term adaptation and low pH strategy could be successfully applied in lignocellulosic ethanol plants to prevent bacterial contamination. PMID:27566648

  4. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities.

    PubMed

    Sawatdeenarunat, Chayanon; Surendra, K C; Takara, Devin; Oechsner, Hans; Khanal, Samir Kumar

    2015-02-01

    Anaerobic digestion (AD) of lignocellulosic biomass provides an excellent opportunity to convert abundant bioresources into renewable energy. Rumen microorganisms, in contrast to conventional microorganisms, are an effective inoculum for digesting lignocellulosic biomass due to their intrinsic ability to degrade substrate rich in cellulosic fiber. However, there are still several challenges that must be overcome for the efficient digestion of lignocellulosic biomass. Anaerobic biorefinery is an emerging concept that not only generates bioenergy, but also high-value biochemical/products from the same feedstock. This review paper highlights the current status of lignocellulosic biomass digestion and discusses its challenges. The paper also discusses the future research needs of lignocellulosic biomass digestion.

  5. Engineering Sugar Utilization and Microbial Tolerance toward Lignocellulose Conversion

    PubMed Central

    Nieves, Lizbeth M.; Panyon, Larry A.; Wang, Xuan

    2015-01-01

    Production of fuels and chemicals through a fermentation-based manufacturing process that uses renewable feedstock such as lignocellulosic biomass is a desirable alternative to petrochemicals. Although it is still in its infancy, synthetic biology offers great potential to overcome the challenges associated with lignocellulose conversion. In this review, we will summarize the identification and optimization of synthetic biological parts used to enhance the utilization of lignocellulose-derived sugars and to increase the biocatalyst tolerance for lignocellulose-derived fermentation inhibitors. We will also discuss the ongoing efforts and future applications of synthetic integrated biological systems used to improve lignocellulose conversion. PMID:25741507

  6. Perspective and prospective of pretreatment of corn straw for butanol production.

    PubMed

    Baral, Nawa Raj; Li, Jiangzheng; Jha, Ajay Kumar

    2014-01-01

    Corn straw, lignocellulosic biomass, is a potential substrate for microbial production of bio-butanol. Bio-butanol is a superior second generation biofuel among its kinds. Present researches are focused on the selection of butanol tolerant clostridium strain(s) to optimize butanol yield in the fermentation broth because of toxicity of bio-butanol to the clostridium strain(s) itself. However, whatever the type of the strain(s) used, pretreatment process always affects not only the total sugar yield before fermentation but also the performance and growth of microbes during fermentation due to the formation of hydroxyl-methyl furfural, furfural and phenolic compounds. In addition, the lignocellulosic biomasses also resist physical and biological attacks. Thus, selection of best pretreatment process and its parameters is crucial. In this context, worldwide research efforts are increased in past 12 years and researchers are tried to identify the best pretreatment method, pretreatment conditions for the actual biomass. In this review, effect of particle size, status of most common pretreatment method and enzymatic hydrolysis particularly for corn straw as a substrate is presented. This paper also highlights crucial parameters necessary to consider during most common pretreatment processes such as hydrothermal, steam explosion, ammonia explosion, sulfuric acid, and sodium hydroxide pretreatment. Moreover, the prospective of pretreatment methods and challenges is discussed.

  7. Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture.

    PubMed

    He, Yu-Cai; Liu, Feng; Gong, Lei; Lu, Ting; Ding, Yun; Zhang, Dan-Ping; Qing, Qing; Zhang, Yue

    2015-02-01

    To improve the enzymatic saccharification of lignocellulosic biomass, a mixture of ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) was used for pretreating corn stover in this study. After the optimization in oil-bath system, the optimum pretreatment temperature and time were 130 °C and 30 min, respectively. After the saccharification of 10 g/L pretreated corn stover for 48 h, the saccharification rate was obtained in the yield of 77.4 %. To decrease pretreatment temperature and shorten pretreatment time, ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) media under microwave irradiation was employed to pretreat corn stover effectively at 100 °C and 200 W for 5 min. Finally, the recovered hydrolyzates containing glucose obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. These results would be helpful for developing a cost-effective pretreatment combined with enzymatic saccharification of cellulosic materials for the production of lignocellulosic ethanol.

  8. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.

    PubMed

    Rasmussen, Helena; Sørensen, Hanne R; Meyer, Anne S

    2014-02-19

    The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at elevated temperatures. Correspondingly, xylose can follow different reaction mechanisms resulting in the formation of furan-2-carbaldehyde (furfural) and/or various C-1 and C-4 compounds. At least four routes for the formation of HMF from glucose and three routes for furfural formation from xylose are possible. In addition, new findings show that biomass monosaccharides themselves can react further to form pseudo-lignin and humins as well as a wide array of other compounds when exposed to high temperatures. Hence, several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes and microorganisms may be valuable biobased chemicals. Hence a new potential for industrial scale synthesis of chemicals has emerged. A better understanding of the reaction mechanisms and the impact of the reaction conditions on the product formation is thus a prerequisite for designing better biomass processing strategies and forms an important basis for the development of new biorefinery products from lignocellulosic biomass as well. PMID:24412507

  9. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass.

    PubMed

    Baral, Nawa Raj; Shah, Ajay

    2014-11-01

    Biobutanol is a promising biofuel due to the close resemblance of its fuel properties to gasoline, and it is produced via acetone-butanol-ethanol (ABE) fermentation using Clostridium species. However, lignin in the crystalline structure of the lignin-cellulose-hemicellulose biomass complex is not readily consumed by the Clostridium; thus, pretreatment is required to degrade this complex. During pretreatment, some fractions of cellulose and hemicellulose are converted into fermentable sugars, which are further converted to ABE. However, a major setback resulting from common pretreatment processes is the formation of sugar and lignin degradation compounds, including weak acids, furan derivatives, and phenolic compounds, which have inhibitory effects on the Clostridium. In addition, butanol concentration above 13 g/L in the fermentation broth is itself toxic to most Clostridium strain(s). This review summarizes the current state-of-the-art knowledge on the formation of microbial inhibitors during the most common lignocellulosic biomass pretreatment processes. Metabolic effects of inhibitors and their impacts on ABE production, as well as potential solutions for reducing inhibitor formation, such as optimizing pretreatment process parameters, using inhibitor tolerant strain(s) with high butanol yield ability, continuously recovering butanol during ABE fermentation, and adopting consolidated bioprocessing, are also discussed.

  10. Sophorolipid production from lignocellulosic biomass feedstocks

    NASA Astrophysics Data System (ADS)

    Samad, Abdul

    , the yield of SLs was 0.55 g/g carbon (sugars plus oil) for cultures with bagasse hydrolysates. Further, SL production was investigated using sweet sorghum bagasse and corn stover hydrolysates derived from different pretreatment conditions. For the former and latter sugar sources, yellow grease or soybean oil was supplemented at different doses to enhance sophorolipid yield. 14-day batch fermentation on bagasse hydrolysates with 10, 40 and 60 g/L of yellow grease had cell densities of 5.7 g/L, 6.4 g/L and 7.8 g/L, respectively. The study also revealed that the yield of SLs on bagasse hydrolysate decreased from 0.67 to 0.61 and to 0.44 g/g carbon when yellow grease was dosed at 10, 40 and 60 g/L. With aforementioned increasing yellow grease concentration, the residual oil left after 14 days was recorded as 3.2 g/L, 8.5 g/L and 19.9 g/L. For similar experimental conditions, the cell densities observed for corn stover hydrolysate combined with soybean oil at 10, 20 and 40 g/L concentration were 6.1 g/L, 5.9 g/L, and 5.4 g/L respectively. Also, in the same order of oil dose supplemented, the residual oil recovered after 14-day was 8.5 g/L, 8.9 g/L, and 26.9 g/L. Corn stover hydrolysate mixed with the 10, 20 and 40 g/L soybean oil, the SL yield was 0.19, 0.11 and 0.09 g/g carbon. Overall, both hydrolysates supported cell growth and sophorolipid production. The results from this research show that hydrolysates derived from the different lignocellulosic biomass feedstocks can be utilized by C. bombicola to achieve substantial yields of SLs. Based upon the results revealed by several batch-stage experiments, it can be stated that there is great potential for scaling up and industrial scale production of these high value products in future.

  11. Lignocellulosic biomass conversion to ethanol by Saccharomyces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As interest in alternative energy sources rises, the concept of agriculture as an energy producer has become increasingly attractive (Outlaw et al. 2005). Renewable biomass, including lignocellulosic materials and agricultural residues, are low-cost materials for bioethanol production (Bothast and ...

  12. Thermo-chemical pre-treatment to solubilize and improve anaerobic biodegradability of press mud.

    PubMed

    López González, Lisbet Mailin; Vervaeren, Han; Pereda Reyes, Ileana; Dumoulin, Ann; Romero Romero, Osvaldo; Dewulf, Jo

    2013-03-01

    Different pre-treatment severities by thermo-alkaline conditions (100°C, Ca(OH)2) on press mud were evaluated for different pre-treatment time and lime loading. COD solubilization and the methane yield enhancement were assessed. The biochemical methane potential was determined in batch assays under mesophilic conditions (37±1°C). The best pre-treatment resulted in a surplus of 72% of methane yield, adding 10g Ca(OH)2 100g(-1)TS(-1) for 1h. Pre-treatment also increased the COD solubilization, but the optimal severity for COD solubilization as determined by response surface methodology did not ensure the highest methane production. Inhibitory effects on anaerobic digestion were noticed when the severity was increased. These results demonstrate the relevance of thermo-alkaline pre-treatment severity in terms of both lime loading and pre-treatment time to obtain optimal anaerobic biodegradability of lignocellulosic biomass from press mud.

  13. Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover.

    PubMed

    Nakashima, Kazunori; Ebi, Yuuki; Kubo, Masaki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2016-03-01

    Ultrasound (US) can be used to disrupt microcrystalline cellulose to give nanofibers via ultrasonic cavitation. Sodium percarbonate (SP), consisting of sodium carbonate and hydrogen peroxide, generates highly reactive radicals, which cause oxidative delignification. Here, we describe a novel pretreatment technique using a combination of US and SP (US-SP) for the efficient saccharification of cellulose and hemicellulose in lignocellulosic corn stover. Although US-SP pretreatment was conducted under mild condition (i.e., at room temperature and atmospheric pressure), the pretreatment greatly increased lignin removal and cellulose digestibility. We also determined the optimum US-SP treatment conditions, such as ultrasonic power output, pretreatment time, pretreatment temperature, and SP concentration for an efficient cellulose saccharification. Moreover, xylose could be effectively recovered from US-SP pretreated biomass without the formation of microbial inhibitor furfural. PMID:26547502

  14. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank.

  15. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank. PMID:27268439

  16. Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover.

    PubMed

    Nakashima, Kazunori; Ebi, Yuuki; Kubo, Masaki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2016-03-01

    Ultrasound (US) can be used to disrupt microcrystalline cellulose to give nanofibers via ultrasonic cavitation. Sodium percarbonate (SP), consisting of sodium carbonate and hydrogen peroxide, generates highly reactive radicals, which cause oxidative delignification. Here, we describe a novel pretreatment technique using a combination of US and SP (US-SP) for the efficient saccharification of cellulose and hemicellulose in lignocellulosic corn stover. Although US-SP pretreatment was conducted under mild condition (i.e., at room temperature and atmospheric pressure), the pretreatment greatly increased lignin removal and cellulose digestibility. We also determined the optimum US-SP treatment conditions, such as ultrasonic power output, pretreatment time, pretreatment temperature, and SP concentration for an efficient cellulose saccharification. Moreover, xylose could be effectively recovered from US-SP pretreated biomass without the formation of microbial inhibitor furfural.

  17. The effect of nonenzymatic protein on lignocellulose enzymatic hydrolysis and simultaneous saccharification and fermentation.

    PubMed

    Wang, Hui; Kobayashi, Shinichi; Hiraide, Hatsue; Cui, Zongjun; Mochidzuki, Kazuhiro

    2015-01-01

    Nonenzymatic protein was added to cellulase hydrolysis and simultaneous saccharification and fermentation (SSF) of different biomass materials. Adding bovine serum albumin (BSA) and corn steep before cellulase enhanced enzyme activity in solution and increased cellulose and xylose conversion rates. The cellulose conversion rate of filter paper hydrolysis was increased by 32.5 % with BSA treatment. When BSA was added before cellulase, the remaining activity in the solution was higher than that in a control without BSA pretreatment. During SSF with pretreated rice straw as the substrate, adding 1.0 mg/mL BSA increased the ethanol yield by 13.6 % and final xylose yield by 42.6 %. The results indicated that lignin interaction is not the only mechanism responsible for the positive BSA effect. BSA had a stabilizing effect on cellulase and relieved cumulative sugar inhibition of enzymatic hydrolysis of biomass materials. Thus, nonenzymatic protein addition represents a promising strategy in the biorefining of lignocellulose materials.

  18. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum.

    PubMed

    Iqtedar, Mehwish; Nadeem, Mohammad; Naeem, Hira; Abdullah, Roheena; Naz, Shagufta; Qurat ul Ain Syed; Kaleem, Afshan

    2015-01-01

    The industrialisation of lignocellulose conversion is impeded by expensive cellulase enzymes required for saccharification in bioethanol production. Current research undertakes cellulase production from pretreated Saccharum spontaneum through Trichoderma viride HN1 under submerged fermentation conditions. Pretreatment of substrate with 2% NaOH resulted in 88% delignification. Maximum cellulase production (2603 ± 16.39 U/mL/min carboxymethyl cellulase and 1393 ± 25.55 U/mL/min FPase) was achieved at 6% substrate at pH 5.0, with 5% inoculum, incubated at 35°C for 120 h of fermentation period. Addition of surfactant, Tween 80 and metal ion Mn(+2), significantly enhanced cellulase yield. This study accounts proficient cellulase yield through process optimisation by exploiting cheaper substrate to escalate their commercial endeavour.

  19. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum.

    PubMed

    Iqtedar, Mehwish; Nadeem, Mohammad; Naeem, Hira; Abdullah, Roheena; Naz, Shagufta; Qurat ul Ain Syed; Kaleem, Afshan

    2015-01-01

    The industrialisation of lignocellulose conversion is impeded by expensive cellulase enzymes required for saccharification in bioethanol production. Current research undertakes cellulase production from pretreated Saccharum spontaneum through Trichoderma viride HN1 under submerged fermentation conditions. Pretreatment of substrate with 2% NaOH resulted in 88% delignification. Maximum cellulase production (2603 ± 16.39 U/mL/min carboxymethyl cellulase and 1393 ± 25.55 U/mL/min FPase) was achieved at 6% substrate at pH 5.0, with 5% inoculum, incubated at 35°C for 120 h of fermentation period. Addition of surfactant, Tween 80 and metal ion Mn(+2), significantly enhanced cellulase yield. This study accounts proficient cellulase yield through process optimisation by exploiting cheaper substrate to escalate their commercial endeavour. PMID:25346145

  20. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095

  1. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  2. Ethanol Fermentation of Various Pretreated and Hydrolyzed Substrates at Low Initial pH

    NASA Astrophysics Data System (ADS)

    Kádár, Zsófia; Maltha, San Feng; Szengyel, Zsolt; Réczey, Kati; de Laat, Wim

    Lignocellulosic materials represent an abundant feedstock for bioethanol production. Because of their complex structure pretreatment is necessary to make it accessible for enzymatic attack. Steam pretreatment with or without acid catalysts seems to be one of the most promising techniques, which has already been applied for large variety of lignocellulosics in order to improve enzymatic digestibility. During this process a range of toxic compounds (lignin and sugar degradation products) are formed which inhibit ethanol fermentation. In this study, the toxicity of hemicellulose hydrolysates obtained in the steam pretreatment of spruce, willow, and corn stover were investigated in ethanol fermentation tests using a yeast strain, which has been previously reported to have a resistance to inhibitory compounds generated during steam pretreatment. To overcome bacterial contamination, fermentations were carried out at low initial pH. The fermentability of hemicellulose hydrolysates of pretreated lignocellulosic substrates at low pH gave promising results with the economically profitable final 5 vol% ethanol concentration corresponding to 85% of theoretical. Adaptation experiments have shown that inhibitor tolerance of yeast strain can be improved by subsequent transfer of the yeast to inhibitory medium.

  3. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  4. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  5. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality. PMID:24801125

  6. Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria

    PubMed Central

    2014-01-01

    Background Consolidated bioprocessing (CBP) of lignocellulosic biomass to hydrogen offers great potential for lower cost and higher efficiency compared to processes featuring dedicated cellulase production. Current studies on CBP-based hydrogen production mainly focus on using the thermophilic cellulolytic bacterium Clostridium thermocellum and the extremely thermophilic cellulolytic bacterium Caldicellulosiruptor saccharolyticus. However, no studies have demonstrated that the strains in the genus Thermoanaerobacterium could be used as the sole microorganism to accomplish both cellulose degradation and H2 generation. Results We have specifically screened for moderately thermophilic cellulolytic bacteria enabling to produce hydrogen directly from conversion of lignocellulosic materials. Three new strains of thermophilic cellulolytic bacteria in the genus Thermoanaerobacterium growing at a temperature of 60°C were isolated. All of them grew well on various plant polymers including microcrystalline cellulose, filter paper, xylan, glucose, and xylose. In particular, the isolated bacterium, designated as Thermoanaerobacterium thermosaccharolyticum M18, showed high cellulolytic activity and a high yield of H2. When it was grown in 0.5% microcrystalline cellulose, approximately 82% cellulose was consumed, and the H2 yield and maximum production rate reached 10.86 mmol/g Avicel and 2.05 mmol/L/h, respectively. Natural lignocellulosic materials without any physicochemical or biological pretreatment also supported appreciable growth of strain M18, which resulted in 56.07% to 62.71% of insoluble cellulose and hemicellulose polymer degradation in corn cob, corn stalk, and wheat straw with a yield of 3.23 to 3.48 mmol H2/g substrate and an average production rate of 0.10 to 0.13 mmol H2/L/h. Conclusions The newly isolated strain T. thermosaccharolyticum M18 displayed effective degradation of lignocellulose and produced large amounts of hydrogen. This is the first report

  7. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.

    PubMed

    Slininger, Patricia J; Dien, Bruce S; Kurtzman, Cletus P; Moser, Bryan R; Bakota, Erica L; Thompson, Stephanie R; O'Bryan, Patricia J; Cotta, Michael A; Balan, Venkatesh; Jin, Mingjie; Sousa, Leonardo da Costa; Dale, Bruce E

    2016-08-01

    Oleaginous yeasts can convert sugars to lipids with fatty acid profiles similar to those of vegetable oils, making them attractive for production of biodiesel. Lignocellulosic biomass is an attractive source of sugars for yeast lipid production because it is abundant, potentially low cost, and renewable. However, lignocellulosic hydrolyzates are laden with byproducts which inhibit microbial growth and metabolism. With the goal of identifying oleaginous yeast strains able to convert plant biomass to lipids, we screened 32 strains from the ARS Culture Collection, Peoria, IL to identify four robust strains able to produce high lipid concentrations from both acid and base-pretreated biomass. The screening was arranged in two tiers using undetoxified enzyme hydrolyzates of ammonia fiber expansion (AFEX)-pretreated cornstover as the primary screening medium and acid-pretreated switch grass as the secondary screening medium applied to strains passing the primary screen. Hydrolyzates were prepared at ∼18-20% solids loading to provide ∼110 g/L sugars at ∼56:39:5 mass ratio glucose:xylose:arabinose. A two stage process boosting the molar C:N ratio from 60 to well above 400 in undetoxified switchgrass hydrolyzate was optimized with respect to nitrogen source, C:N, and carbon loading. Using this process three strains were able to consume acetic acid and nearly all available sugars to accumulate 50-65% of cell biomass as lipid (w/w), to produce 25-30 g/L lipid at 0.12-0.22 g/L/h and 0.13-0.15 g/g or 39-45% of the theoretical yield at pH 6 and 7, a performance unprecedented in lignocellulosic hydrolyzates. Three of the top strains have not previously been reported for the bioconversion of lignocellulose to lipids. The successful identification and development of top-performing lipid-producing yeast in lignocellulose hydrolyzates is expected to advance the economic feasibility of high quality biodiesel and jet fuels from renewable biomass, expanding the market

  8. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.

    PubMed

    Slininger, Patricia J; Dien, Bruce S; Kurtzman, Cletus P; Moser, Bryan R; Bakota, Erica L; Thompson, Stephanie R; O'Bryan, Patricia J; Cotta, Michael A; Balan, Venkatesh; Jin, Mingjie; Sousa, Leonardo da Costa; Dale, Bruce E

    2016-08-01

    Oleaginous yeasts can convert sugars to lipids with fatty acid profiles similar to those of vegetable oils, making them attractive for production of biodiesel. Lignocellulosic biomass is an attractive source of sugars for yeast lipid production because it is abundant, potentially low cost, and renewable. However, lignocellulosic hydrolyzates are laden with byproducts which inhibit microbial growth and metabolism. With the goal of identifying oleaginous yeast strains able to convert plant biomass to lipids, we screened 32 strains from the ARS Culture Collection, Peoria, IL to identify four robust strains able to produce high lipid concentrations from both acid and base-pretreated biomass. The screening was arranged in two tiers using undetoxified enzyme hydrolyzates of ammonia fiber expansion (AFEX)-pretreated cornstover as the primary screening medium and acid-pretreated switch grass as the secondary screening medium applied to strains passing the primary screen. Hydrolyzates were prepared at ∼18-20% solids loading to provide ∼110 g/L sugars at ∼56:39:5 mass ratio glucose:xylose:arabinose. A two stage process boosting the molar C:N ratio from 60 to well above 400 in undetoxified switchgrass hydrolyzate was optimized with respect to nitrogen source, C:N, and carbon loading. Using this process three strains were able to consume acetic acid and nearly all available sugars to accumulate 50-65% of cell biomass as lipid (w/w), to produce 25-30 g/L lipid at 0.12-0.22 g/L/h and 0.13-0.15 g/g or 39-45% of the theoretical yield at pH 6 and 7, a performance unprecedented in lignocellulosic hydrolyzates. Three of the top strains have not previously been reported for the bioconversion of lignocellulose to lipids. The successful identification and development of top-performing lipid-producing yeast in lignocellulose hydrolyzates is expected to advance the economic feasibility of high quality biodiesel and jet fuels from renewable biomass, expanding the market

  9. Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol

    SciTech Connect

    Herring, Christopher D.; Kenealy, William R.; Shaw, A. Joe; Raman, Babu; Tschaplinski, Timothy J.; Brown, Steven D.; Davison, Brian H.; Covalla, Sean F.; Sillers, W. Ryan; Xu, Haowen; Tsakraklides, Vasiliki; Hogsett, David A.

    2012-01-24

    This project addressed the need for economical technology for the conversion of lignocellulosic biomass to fuels, specifically the conversion of pretreated hardwood to ethanol. The technology developed is a set of strains of the bacterium Thermoanaerobacterium saccharolyticum and an associated fermentation process for pretreated hardwood. Tools for genetic engineering and analysis of the organism were developed, including a markerless mutation method, a complete genome sequence and a set of gene expression profiles that show the activity of its genes under a variety of conditions relevant to lignocellulose conversion. Improved strains were generated by selection and genetic engineering to be able to produce higher amounts of ethanol (up to 70 g/L) and to be able to better tolerate inhibitory compounds from pretreated hardwood. Analysis of these strains has generated useful insight into the genetic basis for desired properties of biofuel producing organisms. Fermentation conditions were tested and optimized to achieve ethanol production targets established in the original project proposal. The approach proposed was to add cellulase enzymes to the fermentation, a method called Simultaneous Saccharification and Fermentation (SSF). We had reason to think SSF would be an efficient approach because the optimal temperature and pH for the enzymes and bacterium are very close. Unfortunately, we discovered that commercially available cellulases are inactivated in thermophilic SSF by a combination of low redox potential and ethanol. Despite this, progress was made against the fermentation targets using bacterial cellulases. Thermoanaerobacterium saccharolyticum may still prove to be a commercially viable technology should cellulase enzyme issues be addressed. Moreover, the organism was demonstrated to produce ethanol at approximately theoretical yield from oligomeric hemicellulose extracts, an ability that may prove to be uniquely valuable in pretreatment configurations in

  10. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials.

    PubMed

    Monlau, Florian; Sambusiti, Cecilia; Barakat, Abdellatif; Guo, Xin Mei; Latrille, Eric; Trably, Eric; Steyer, Jean-Philippe; Carrere, Hélène

    2012-11-01

    In an integrated biorefinery concept, biological hydrogen and methane production from lignocellulosic substrates appears to be one of the most promising alternatives to produce energy from renewable sources. However, lignocellulosic substrates present compositional and structural features that can limit their conversion into biohydrogen and methane. In this study, biohydrogen and methane potentials of 20 lignocellulosic residues were evaluated. Compositional (lignin, cellulose, hemicelluloses, total uronic acids, proteins, and soluble sugars) as well as structural features (crystallinity) were determined for each substrate. Two predictive partial least square (PLS) models were built to determine which compositional and structural parameters affected biohydrogen or methane production from lignocellulosic substrates, among proteins, total uronic acids, soluble sugars, crystalline cellulose, amorphous holocelluloses, and lignin. Only soluble sugars had a significant positive effect on biohydrogen production. Besides, methane potentials correlated negatively to the lignin contents and, to a lower extent, crystalline cellulose showed also a negative impact, whereas soluble sugars, proteins, and amorphous hemicelluloses showed a positive impact. These findings will help to develop further pretreatment strategies for enhancing both biohydrogen and methane production.

  11. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose

    PubMed Central

    Socha, Aaron M.; Parthasarathi, Ramakrishnan; Shi, Jian; Pattathil, Sivakumar; Whyte, Dorian; Bergeron, Maxime; George, Anthe; Tran, Kim; Stavila, Vitalie; Venkatachalam, Sivasankari; Hahn, Michael G.; Simmons, Blake A.; Singh, Seema

    2014-01-01

    Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p-anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90–95% glucose and 70–75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a “closed-loop” process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources. PMID:25136131

  12. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose.

    PubMed

    Socha, Aaron M; Parthasarathi, Ramakrishnan; Shi, Jian; Pattathil, Sivakumar; Whyte, Dorian; Bergeron, Maxime; George, Anthe; Tran, Kim; Stavila, Vitalie; Venkatachalam, Sivasankari; Hahn, Michael G; Simmons, Blake A; Singh, Seema

    2014-09-01

    Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p-anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90-95% glucose and 70-75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a "closed-loop" process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources. PMID:25136131

  13. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose.

    PubMed

    Socha, Aaron M; Parthasarathi, Ramakrishnan; Shi, Jian; Pattathil, Sivakumar; Whyte, Dorian; Bergeron, Maxime; George, Anthe; Tran, Kim; Stavila, Vitalie; Venkatachalam, Sivasankari; Hahn, Michael G; Simmons, Blake A; Singh, Seema

    2014-09-01

    Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p-anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90-95% glucose and 70-75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a "closed-loop" process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources.

  14. Pretreatment Technology Plan

    SciTech Connect

    Barker, S.A.; Thornhill, C.K.; Holton, L.K. Jr.

    1993-03-01

    This technology plan presents a strategy for the identification, evaluation, and development of technologies for the pretreatment of radioactive wastes stored in underground storage tanks at the Hanford Site. This strategy includes deployment of facilities and process development schedules to support the other program elements. This document also presents schedule information for alternative pretreatment systems: (1) the reference pretreatment technology development system, (2) an enhanced pretreatment technology development system, and (3) alternative pretreatment technology development systems.

  15. Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste

    PubMed Central

    Siddhu, Muhammad Abdul Hanan; Li, Jianghao; Zhang, Jiafu; Huang, Yan; Wang, Wen; Chen, Chang; Liu, Guangqing

    2016-01-01

    Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential for biofuel production. This study exhibited three different pretreatment effects to enhance the digestibility of corn stover (CS) for methane production. In this context, steam explosion (SE) and thermal potassium hydroxide (KOH-60°C) treated CS produced the maximal methane yield of 217.5 and 243.1 mL/gvs, which were 40.0% and 56.4% more than untreated CS (155.4 mL/gvs), respectively. Copretreatment of thermal potassium hydroxide and steam explosion (CPTPS) treated CS was highly significant among all treatments and improved 88.46% (292.9 mL/gvs) methane yield compared with untreated CS. Besides, CPTPS also achieved the highest biodegradability up to 68.90%. Three kinetic models very well simulated dynamics of methane production yield. Moreover, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analyses declared the most effective changes in physicochemical properties after CPTPS pretreatment. Thus, CPTPS might be a promising approach to deconstructing the recalcitrance of lignocellulosic structure to improve the biodegradability for AD. PMID:27200370

  16. Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste.

    PubMed

    Siddhu, Muhammad Abdul Hanan; Li, Jianghao; Zhang, Jiafu; Huang, Yan; Wang, Wen; Chen, Chang; Liu, Guangqing

    2016-01-01

    Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential for biofuel production. This study exhibited three different pretreatment effects to enhance the digestibility of corn stover (CS) for methane production. In this context, steam explosion (SE) and thermal potassium hydroxide (KOH-60°C) treated CS produced the maximal methane yield of 217.5 and 243.1 mL/gvs, which were 40.0% and 56.4% more than untreated CS (155.4 mL/gvs), respectively. Copretreatment of thermal potassium hydroxide and steam explosion (CPTPS) treated CS was highly significant among all treatments and improved 88.46% (292.9 mL/gvs) methane yield compared with untreated CS. Besides, CPTPS also achieved the highest biodegradability up to 68.90%. Three kinetic models very well simulated dynamics of methane production yield. Moreover, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analyses declared the most effective changes in physicochemical properties after CPTPS pretreatment. Thus, CPTPS might be a promising approach to deconstructing the recalcitrance of lignocellulosic structure to improve the biodegradability for AD.

  17. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Cherry, Joel R; Harris, Paul; Meyer, Anne S

    2006-01-01

    This study examined the cellulytic effects on steam-pretreated barley straw of cellulose-degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a beta-glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5-6.5) and temperature (35-65 degrees C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam-pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.

  18. Using Populus as a lignocellulosic feedstock for bioethanol.

    PubMed

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome. PMID:25676392

  19. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    PubMed Central

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  20. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    DOE PAGESBeta

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be producedmore » in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.« less

  1. Using Populus as a lignocellulosic feedstock for bioethanol.

    PubMed

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.

  2. Mandarin peel wastes pretreatment with steam explosion for bioethanol production.

    PubMed

    Boluda-Aguilar, María; García-Vidal, Lidia; González-Castañeda, Fayiny Del Pilar; López-Gómez, Antonio

    2010-05-01

    The mandarin (Citrus reticulata L.) citrus peel wastes (MCPW) were studied for bioethanol production, obtaining also as co-products: d-limonene, galacturonic acid, and citrus pulp pellets (CPP). The steam explosion pretreatment was analysed at pilot plant level to decrease the hydrolytic enzymes requirements and to separate and recover the d-limonene. The effect of steam explosion on MCPW lignocellulosic composition was analyzed by means thermogravimetric analysis. The d-limonene contents and their influence on ethanol production have been also studied, while concentration of sugars, galacturonic acid and ethanol have been analysed to measure the saccharification and fermentation (HF and SSF) processes efficiency obtained by MCPW steam explosion pretreatment. Ethanol contents of 50-60L/1000kg raw MCPW can be obtained and CPP yields can be regulated by means the control of enzymes dose and the steam explosion pretreatment which can significantly reduce the enzymes requirements. PMID:20093022

  3. Biorefining of lignocellulosic feedstock--Technical, economic and environmental considerations.

    PubMed

    Luo, Lin; van der Voet, Ester; Huppes, Gjalt

    2010-07-01

    Biorefinery, an example of a multiple products system, integrates biomass conversion processes and equipment to produce fuels, power and chemicals from biomass. This study focuses on technical design, economic and environmental analysis of a lignocellulosic feedstock (LCF) biorefinery producing ethanol, succinic acid, acetic acid and electricity. As the potential worldwide demand of succinic acid and its derivatives can reach 30 million tons per year, succinic acid is a promising high-value product if production cost and market price are substantially lowered. The results of the economic analysis show that the designed refinery has great potentials compared to the single-output ethanol plant; even when the price of succinic acid is lowered or the capital investment doubled. In terms of eco-efficiency, the LCF biorefinery shows better environmental performances mainly in global warming potential due to CO(2) fixation during acid fermentation. The overall evaluation of the eco-efficiency depends on the importance attached to each impact category.

  4. Correlation analysis of enzyme activities and deconstruction of ammonia-pretreated switchgrass by bacterial-fungal communities.

    PubMed

    Jain, Abhiney; Bediako, Sandra H; Henson, J Michael

    2016-10-01

    The mixed microbial communities that occur naturally on lignocellulosic feedstocks can provide feedstock-specific enzyme mixtures to saccharify lignocelluloses. Bacterial-fungal communities were enriched from switchgrass bales to deconstruct ammonia-pretreated switchgrass (DSG). Correlation analysis was carried out to elucidate the relationship between microbial decomposition of DSG by these communities, enzymatic activities produced and enzymatic saccharification of DSG using these enzyme mixtures. Results of the analysis showed that β-glucosidase and xylosidase activities limited the extent of microbial deconstruction and enzymatic saccharification of DSG. The results also underlined the importance of ligninase activity for the enzymatic saccharification of pretreated lignocellulosic feedstock. The bacterial-fungal communities developed in this research can be used to produce enzyme mixtures to deconstruct DSG, and the results from the correlation analysis can be used to optimize these enzyme mixtures for efficient saccharification of DSG to produce second-generation biofuels.

  5. Correlation analysis of enzyme activities and deconstruction of ammonia-pretreated switchgrass by bacterial-fungal communities.

    PubMed

    Jain, Abhiney; Bediako, Sandra H; Henson, J Michael

    2016-10-01

    The mixed microbial communities that occur naturally on lignocellulosic feedstocks can provide feedstock-specific enzyme mixtures to saccharify lignocelluloses. Bacterial-fungal communities were enriched from switchgrass bales to deconstruct ammonia-pretreated switchgrass (DSG). Correlation analysis was carried out to elucidate the relationship between microbial decomposition of DSG by these communities, enzymatic activities produced and enzymatic saccharification of DSG using these enzyme mixtures. Results of the analysis showed that β-glucosidase and xylosidase activities limited the extent of microbial deconstruction and enzymatic saccharification of DSG. The results also underlined the importance of ligninase activity for the enzymatic saccharification of pretreated lignocellulosic feedstock. The bacterial-fungal communities developed in this research can be used to produce enzyme mixtures to deconstruct DSG, and the results from the correlation analysis can be used to optimize these enzyme mixtures for efficient saccharification of DSG to produce second-generation biofuels. PMID:27469088

  6. Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Kyoung Heon

    2015-09-01

    We evaluated the feasibility of whole slurry (pretreated lignocellulose) saccharification and fermentation for producing ethanol from maleic acid-pretreated rice straw. The optimized conditions for pretreatment were to treat rice straw at a high temperature (190 °C) with 1 % (w/v) maleic acid for a short duration (3 min ramping to 190 °C and 3 min holding at 190 °C). Enzymatic digestibility (based on theoretical glucose yield) of cellulose in the pretreated rice straw was 91.5 %. Whole slurry saccharification and fermentation of pretreated rice straw resulted in 83.2 % final yield of ethanol based on the initial quantity of glucan in untreated rice straw. These findings indicate that maleic acid pretreatment results in a high yield of ethanol from fermentation of whole slurry even without conditioning or detoxification of the slurry. Additionally, the separation of solids and liquid is not required; therefore, the economics of cellulosic ethanol fuel production are significantly improved. We also demonstrated whole slurry saccharification and fermentation of pretreated lignocellulose, which has rarely been reported.

  7. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.

    PubMed

    Zhu, J Y; Pan, X J

    2010-07-01

    This review presents a comprehensive discussion of the key technical issues in woody biomass pretreatment: barriers to efficient cellulose saccharification, pretreatment energy consumption, in particular energy consumed for wood-size reduction, and criteria to evaluate the performance of a pretreatment. A post-chemical pretreatment size-reduction approach is proposed to significantly reduce mechanical energy consumption. Because the ultimate goal of biofuel production is net energy output, a concept of pretreatment energy efficiency (kg/MJ) based on the total sugar recovery (kg/kg wood) divided by the energy consumption in pretreatment (MJ/kg wood) is defined. It is then used to evaluate the performances of three of the most promising pretreatment technologies: steam explosion, organosolv, and sulfite pretreatment to overcome lignocelluloses recalcitrance (SPORL) for softwood pretreatment. The present study found that SPORL is the most efficient process and produced highest sugar yield. Other important issues, such as the effects of lignin on substrate saccharification and the effects of pretreatment on high-value lignin utilization in woody biomass pretreatment, are also discussed.

  8. Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol

    PubMed Central

    2014-01-01

    Background Dry dilute acid pretreatment at extremely high solids loading of lignocellulose materials demonstrated promising advantages of no waste water generation, less sugar loss, and low steam consumption while maintaining high hydrolysis yield. However, the routine pretreatment reactor without mixing apparatus was found not suitable for dry pretreatment operation because of poor mixing and mass transfer. In this study, helically agitated mixing was introduced into the dry dilute acid pretreatment of corn stover and its effect on pretreatment efficiency, inhibitor generation, sugar production, and bioconversion efficiency through simultaneous saccharification and ethanol fermentation (SSF) were evaluated. Results The overall cellulose conversion taking account of cellulose loss in pretreatment was used to evaluate the efficiency of pretreatment. The two-phase computational fluid dynamics (CFD) model on dry pretreatment was established and applied to analyze the mixing mechanism. The results showed that the pretreatment efficiency was significantly improved and the inhibitor generation was reduced by the helically agitated mixing, compared to the dry pretreatment without mixing: the ethanol titer and yield from cellulose in the SSF reached 56.20 g/L and 69.43% at the 30% solids loading and 15 FPU/DM cellulase dosage, respectively, corresponding to a 26.5% increase in ethanol titer and 17.2% increase in ethanol yield at the same fermentation conditions. Conclusions The advantage of helically agitated mixing may provide a prototype of dry dilute acid pretreatment processing for future commercial-scale production of cellulosic ethanol. PMID:24387051

  9. Seawater as Alternative to Freshwater in Pretreatment of Date Palm Residues for Bioethanol Production in Coastal and/or Arid Areas.

    PubMed

    Fang, Chuanji; Thomsen, Mette Hedegaard; Brudecki, Grzegorz P; Cybulska, Iwona; Frankaer, Christian Grundahl; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2015-11-01

    The large water consumption (1.9-5.9 m(3) water per m(3) of biofuel) required by biomass processing plants has become an emerging concern, which is particularly critical in arid/semiarid regions. Seawater, as a widely available water source, could be an interesting option. This work was to study the technical feasibility of using seawater to replace freshwater in the pretreatment of date palm leaflets, a lignocellulosic biomass from arid regions, for bioethanol production. It was shown that leaflets pretreated with seawater exhibited lower cellulose crystallinity than those pretreated with freshwater. Pretreatment with seawater produced comparably digestible and fermentable solids to those obtained with freshwater. Moreover, no significant difference of inhibition to Saccharomyces cerevisiae was observed between liquids from pretreatment with seawater and freshwater. The results showed that seawater could be a promising alternative to freshwater for lignocellulose biorefineries in coastal and/or arid/semiarid areas. PMID:26487350

  10. Ethanolic fermentation of pentoses in lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.; Linden, T.; Senac, T.; Skoog, K.

    1991-12-31

    In the fermentation of lignocellulose hydrolysates to ethanol, two major problems are encountered: the fermentation of the pentose sugar xylose, and the presence of microbial inhibitors. Xylose can be directly fermented with yeasts; such as Pachysolen tannophilus, Candida shehatae, and Pichia stipis, or by isomerization of xylose to xylulose with the enzyme glucose (xylose) isomerase, and subsequent fermentation with bakers yeast, Saccharomyces cerevisiae. The direct fermentation requires low, carefully controlled oxygenation, as well as the removal of inhibitors. Also, the xylose-fermenting yeasts have a limited ethanol tolerance. The combined isomerization and fermentation with XI and S. cerevisiae gives yields and productivities comparable to those obtained in hexose fermentations without oxygenation and removal of inhibitors. However, the enzyme is not very stable in a lignocellulose hydrolysate, and S. cerevisiae has a poorly developed pentose phosphate shunt. Different strategies involving strain adaptation, and protein and genetic engineering adopted to overcome these different obstacles, are discussed.

  11. Symbiotic digestion of lignocellulose in termite guts.

    PubMed

    Brune, Andreas

    2014-03-01

    Their ability to degrade lignocellulose gives termites an important place in the carbon cycle. This ability relies on their partnership with a diverse community of bacterial, archaeal and eukaryotic gut symbionts, which break down the plant fibre and ferment the products to acetate and variable amounts of methane, with hydrogen as a central intermediate. In addition, termites rely on the biosynthetic capacities of their gut microbiota as a nutritional resource. The mineralization of humus components in the guts of soil-feeding species also contributes to nitrogen cycling in tropical soils. Lastly, the high efficiency of their minute intestinal bioreactors makes termites promising models for the industrial conversion of lignocellulose into microbial products and the production of biofuels.

  12. Hydrolytic pretreatment of softwood and almond shells. Degree of polymerization and enzymatic digestibility of the cellulose fraction

    SciTech Connect

    Martinez, J.M.; Reguant, J.; Montero, M.A.; Montane, D.; Salvado, J.; Farriol, X.

    1997-03-01

    Autohydrolysis and dilute-acid hydrolysis were used as pretreatment methods to enhance the enzymatic digestibility of cellulose in two different lignocellulosic substrates, a softwood mixture and an agricultural residue of almond shells. The changes in the chemical composition of the softwood mixture during dilute-acid pretreatment were studied, and the results were grouped by using a severity parameter, KR{sub OH}, which was derived from the kinetics of hemicellulose solubilization. The average degree of polymerization of the cellulose retained in the pretreated substrate, DP{sub v}, was investigated and its trend compared with that of almond shells. Cellulose DP{sub v} decreased for both the substrates from a value of 700 for the untreated lignocellulosic to around 200, which corresponds to the leveling-off degree of polymerization, as there is no significant variation in DP{sub v} when severity increases. Glucose yields after enzymatic saccharification of the pretreated substrates turned out to be higher for almond shells than for the softwood mixture, which had a very low susceptibility to enzymatic hydrolysis throughout the spectrum of experimental conditions investigated. At KR{sub OH} = 15,000, the glucose yield for the softwood mixture is 44% of the potential fraction present in the pretreated pulp, while for almond shells the maximum yield surpasses 97% for KR{sub OH} = 3. The different behavior these lignocellulosic species is not caused by different degrees of cellulose depolymerization nor by the removal of different amounts of carbohydrates during pretreatments in equivalent conditions.

  13. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste.

    PubMed

    Pecorini, Isabella; Baldi, Francesco; Carnevale, Ennio Antonio; Corti, Andrea

    2016-10-01

    The aim of this research was to enhance the anaerobic biodegradability and methane production of two synthetic Organic Fractions of Municipal Solid Waste with different lignocellulosic contents by assessing microwave and autoclave pre-treatments. Biochemical Methane Potential assays were performed for 21days. Changes in the soluble fractions of the organic matter (measured by soluble chemical oxygen demand, carbohydrates and proteins), the first order hydrolysis constant kh and the cumulated methane production at 21days were used to evaluate the efficiency of microwaving and autoclaving pretreatments on substrates solubilization and anaerobic digestion. Microwave treatment led to a methane production increase of 8.5% for both the tested organic fractions while autoclave treatment had an increase ranging from 1.0% to 4.4%. Results showed an increase of the soluble fraction after pre-treatments for both the synthetic organic fractions. Soluble chemical oxygen demand observed significant increases for pretreated substrates (up to 219.8%). In this regard, the mediocre results of methane's production led to the conclusion that autoclaving and microwaving resulted in the hydrolysis of a significant fraction of non-biodegradable organic substances recalcitrant to anaerobic digestion.

  14. The effect of Pleurotus ostreatus arabinofuranosidase and its evolved variant in lignocellulosic biomasses conversion.

    PubMed

    Marcolongo, Loredana; Ionata, Elena; La Cara, Francesco; Amore, Antonella; Giacobbe, Simona; Pepe, Olimpia; Faraco, Vincenza

    2014-11-01

    The fungal arabinofuranosidase from Pleurotus ostreatus PoAbf recombinantly expressed in Pichia pastoris rPoAbf and its evolved variant rPoAbf F435Y/Y446F were tested for their effectiveness to enhance the enzymatic saccharification of three lignocellulosic biomasses, namely Arundo donax, corn cobs and brewer's spent grains (BSG), after chemical or chemical-physical pretreatment. All the raw materials were subjected to an alkaline pretreatment by soaking in aqueous ammonia solution whilst the biomass from A. donax was also pretreated by steam explosion. The capability of the wild-type and mutant rPoAbf to increase the fermentable sugars recovery was assessed by using these enzymes in combination with different (hemi)cellulolytic activities. These enzymatic mixtures were either entirely of commercial origin or contained the cellulase from Streptomyces sp. G12 CelStrep recombinantly expressed in Escherichia coli in substitution to the commercial counterparts. The addition of the arabinofuranosidases from P. ostreatus improved the hydrolytic efficiency of the commercial enzymatic cocktails on all the pretreated biomasses. The best results were obtained using the rPoAbf evolved variant and are represented by increases of the xylose recovery up to 56.4%. These data clearly highlight the important role of the accessory hemicellulolytic activities to optimize the xylan bioconversion yields.

  15. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.

    PubMed

    Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

    2009-01-01

    The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and beta-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.

  16. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.

    PubMed

    Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

    2009-01-01

    The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and beta-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains. PMID:19774110

  17. Engineering microbial surfaces to degrade lignocellulosic biomass.

    PubMed

    Huang, Grace L; Anderson, Timothy D; Clubb, Robert T

    2014-01-01

    Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer them to display multi-cellulase containing minicellulosomes that hydrolyze biomass more efficiently than isolated enzymes. In this review, we discuss progress in engineering the surfaces of the model microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We compare the distinct approaches used to display cellulases and minicellulosomes, as well as their surface enzyme densities and cellulolytic activities. Thus far, minicellulosomes have only been grafted onto the surfaces of B. subtilis and S. cerevisiae, suggesting that the absence of an outer membrane in fungi and Gram-positive bacteria may make their surfaces better suited for displaying the elaborate multi-enzyme complexes needed to efficiently degrade lignocellulose.

  18. Engineering microbial surfaces to degrade lignocellulosic biomass

    PubMed Central

    Huang, Grace L; Anderson, Timothy D; Clubb, Robert T

    2014-01-01

    Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer them to display multi-cellulase containing minicellulosomes that hydrolyze biomass more efficiently than isolated enzymes. In this review, we discuss progress in engineering the surfaces of the model microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We compare the distinct approaches used to display cellulases and minicellulosomes, as well as their surface enzyme densities and cellulolytic activities. Thus far, minicellulosomes have only been grafted onto the surfaces of B. subtilis and S. cerevisiae, suggesting that the absence of an outer membrane in fungi and Gram-positive bacteria may make their surfaces better suited for displaying the elaborate multi-enzyme complexes needed to efficiently degrade lignocellulose. PMID:24430239

  19. Engineering microbial surfaces to degrade lignocellulosic biomass.

    PubMed

    Huang, Grace L; Anderson, Timothy D; Clubb, Robert T

    2014-01-01

    Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer them to display multi-cellulase containing minicellulosomes that hydrolyze biomass more efficiently than isolated enzymes. In this review, we discuss progress in engineering the surfaces of the model microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We compare the distinct approaches used to display cellulases and minicellulosomes, as well as their surface enzyme densities and cellulolytic activities. Thus far, minicellulosomes have only been grafted onto the surfaces of B. subtilis and S. cerevisiae, suggesting that the absence of an outer membrane in fungi and Gram-positive bacteria may make their surfaces better suited for displaying the elaborate multi-enzyme complexes needed to efficiently degrade lignocellulose. PMID:24430239

  20. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

    PubMed Central

    Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

    2009-01-01

    The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains. PMID:19774110

  1. Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse

    PubMed Central

    2013-01-01

    Background Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. In this study, “green” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. Results Pretreatment of sugarcane bagasse at 90°C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified ethylene carbonate (EC). Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. Conclusions Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained

  2. Biomass pretreatment affects Ustilago maydis in producing itaconic acid

    PubMed Central

    2012-01-01

    Background In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. Results U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. Conclusion The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like) in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on the hemicellulosic fraction

  3. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    PubMed Central

    Yang, Ruihong; ZHU, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574

  4. Processes for converting lignocellulosics to reduced acid pyrolysis oil

    DOEpatents

    Kocal, Joseph Anthony; Brandvold, Timothy A

    2015-01-06

    Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.

  5. Hydrolysis and fractionation of lignocellulosic biomass

    DOEpatents

    Torget, Robert W.; Padukone, Nandan; Hatzis, Christos; Wyman, Charles E.

    2000-01-01

    A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4

  6. Impact of pretreatment on solid state anaerobic digestion of yard waste for biogas production.

    PubMed

    Zhang, Zhikai; Li, Wangliang; Zhang, Guangyi; Xu, Guangwen

    2014-02-01

    Solid state anaerobic digestion, as a safe and environment-friendly technology to dispose municipal solid wastes, can produce methane and reduce the volume of wastes. In order to raise the digestion efficiency, this study investigated the pretreatment of yard waste by thermal or chemical method to break down the complex lignocellulosic structure. The composition and structure of pretreated yard waste were analyzed and characterized. The results showed that the pretreatment decreased the content of cellulose and hemicelluloses in yard waste and in turn improved the hydrolysis and methanogenic processes. The thermal pretreatment sample (P1) had the highest methane yield, by increasing 88% in comparison with digesting the raw material. The maximum biogas production reached 253 mL/g volatile solids (VS). The largest substrate mass reduction was obtained by the alkaline pretreatment (P5). The VS of the alkaline-treated sample decreased about 60% in comparison with the raw material.

  7. Biomass pretreatments capable of enabling lignin valorization in a biorefinery process.

    PubMed

    Narron, Robert H; Kim, Hoyong; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2016-04-01

    Recent techno-economic studies of proposed lignocellulosic biorefineries have concluded that creating value from lignin will assist realization of biomass utilization into valuable fuels, chemicals, and materials due to co-valorization and the new revenues beyond carbohydrates. The pretreatment step within a biorefinery process is essential for recovering carbohydrates, but different techniques and intensities have a variety of effects on lignin. Acidic and alkaline pretreatments have been shown to produce diverse lignins based on delignification chemistry. The valorization potential of pretreated lignin is affected by its chemical structure, which is known to degrade, including inter-lignin condensation under high-severity pretreatment. Co-valorization of lignin and carbohydrates will require dampening of pretreatment intensities to avoid such effects, in spite of tradeoffs in carbohydrate production.

  8. Steam explosion pretreatment for enhancing biogas production of late harvested hay.

    PubMed

    Bauer, Alexander; Lizasoain, Javier; Theuretzbacher, Franz; Agger, Jane W; Rincón, María; Menardo, Simona; Saylor, Molly K; Enguídanos, Ramón; Nielsen, Paal J; Potthast, Antje; Zweckmair, Thomas; Gronauer, Andreas; Horn, Svein J

    2014-08-01

    Grasslands are often abandoned due to lack of profitability. Extensively cultivating grassland for utilization in a biogas-based biorefinery concept could mend this problem. Efficient bioconversion of this lignocellulosic biomass requires a pretreatment step. In this study the effect of different steam explosion conditions on hay digestibility have been investigated. Increasing severity in the pretreatment induced degradation of the hemicellulose, which at the same time led to the production of inhibitors and formation of pseudo-lignin. Enzymatic hydrolysis showed that the maximum glucose yields were obtained under pretreatment at 220 °C for 15 min, while higher xylose yields were obtained at 175 °C for 10 min. Pretreatment of hay by steam explosion enhanced 15.9% the methane yield in comparison to the untreated hay. Results indicate that hay can be effectively converted to methane after steam explosion pretreatment.

  9. Synergistic effects of surfactant-assisted ionic liquid pretreatment rice straw.

    PubMed

    Chang, Ken-Lin; Chen, Xi-Mei; Han, Ye-Ju; Wang, Xiao-Qin; Potprommanee, Laddawan; Ning, Xun-An; Liu, Jing-Yong; Sun, Jian; Peng, Yen-Ping; Sun, Shui-Yu; Lin, Yuan-Chung

    2016-08-01

    The aim of this work was to study an environmentally friendly method for pretreating rice straw by using 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as an ionic liquid (IL) assisted by surfactants. Different temperatures, reaction times, and surfactant concentrations were studied. Compared with [BMIM]Cl only pretreatment, the addition of 1% sodium dodecyl sulfate (SDS) and 1% cetyl trimethyl ammonium bromide (CTAB) increased lignin removal to 49.48% and 34.76%, respectively. Untreated and pretreated rice straw was thoroughly characterized through FTIR, XRD, and FE-SEM. Cellulose crystallinity and surface morphology of the rice straw were substantially altered after surfactant-assisted IL pretreatment. In conclusion, surfactant-assisted IL pretreatment is an effective method for producing fermentable sugars from lignocellulosic substrates. PMID:27155265

  10. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects.

    PubMed

    Kuglarz, Mariusz; Gunnarsson, Ingólfur B; Svensson, Sven-Erik; Prade, Thomas; Johansson, Eva; Angelidaki, Irini

    2014-07-01

    In the present study, combined steam (140-180°C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and ethanol yields was also evaluated. Pretreatment with 1% sulfuric acid at 180°C resulted in the highest glucose yield (73-74%) and ethanol yield of 75-79% (0.38-0.40 g-ethanol/g-glucose). Taking into account the costs of biomass processing, from field to ethanol facility storage, the field-dried hemp pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment as well as subsequent enzymatic hydrolysis and ethanol fermentation. PMID:24821202

  11. Biomethane production and physicochemical characterization of anaerobically digested teff (Eragrostis tef) straw pretreated by sodium hydroxide.

    PubMed

    Chufo, Akiber; Yuan, Hairong; Zou, Dexun; Pang, Yunzhi; Li, Xiujin

    2015-04-01

    The biogas production potential and biomethane content of teff straw through pretreatment by NaOH was investigated. Different NaOH concentrations (1%, 2%, 4% and 6%) were used for each four solid loadings (50, 65, 80 and 95 g/L). The effects of NaOH as pretreatment factor on the biodegradability of teff straw, changes in main compositions and enhancement of anaerobic digestion were analyzed. The result showed that, using 4% NaOH for pretreatment in 80 g/L solid loading produced 40.0% higher total biogas production and 48.1% higher biomethane content than the untreated sample of teff straw. Investigation of changes in chemical compositions and physical microstructure indicated that there was 4.3-22.1% total lignocellulosic compositions removal after three days pretreatment with NaOH. The results further revealed that NaOH pretreatment changed the structural compositions and lignin network, and improved biogas production from teff straw.

  12. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects.

    PubMed

    Kuglarz, Mariusz; Gunnarsson, Ingólfur B; Svensson, Sven-Erik; Prade, Thomas; Johansson, Eva; Angelidaki, Irini

    2014-07-01

    In the present study, combined steam (140-180°C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and ethanol yields was also evaluated. Pretreatment with 1% sulfuric acid at 180°C resulted in the highest glucose yield (73-74%) and ethanol yield of 75-79% (0.38-0.40 g-ethanol/g-glucose). Taking into account the costs of biomass processing, from field to ethanol facility storage, the field-dried hemp pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment as well as subsequent enzymatic hydrolysis and ethanol fermentation.

  13. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL-pretreated lodgepole pine.

    PubMed

    Zhou, Haifeng; Lan, Tianqing; Dien, Bruce S; Hector, Ronald E; Zhu, J Y

    2014-01-01

    The performances of five yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, while intermediate toxicity was represented by the hydrolysate with partial loading of pretreatment spent liquor. The zero toxicity was represented using the enzymatic hydrolysate produced from thoroughly washed SPORL lodgepole pine solids. The results indicate that strains D5A and YRH400 can tolerate the whole pretreated biomass slurry to produce 90.1 and 73.5% theoretical ethanol yield. Strains Y1528, YRH403, and FPL450 did not grow in whole hydrolysate cultures and were observed to have lower ethanol productivities than D5A and YRH400 on the hydrolysate with intermediate toxicity. Both YRH400 and YRH403 were genetically engineered for xylose fermentation but were not able to consume xylose efficiently in hydrolysate.

  14. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    PubMed

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed.

  15. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose.

    PubMed

    Song, Yanliang; Zhang, Jingzhi; Zhang, Xu; Tan, Tianwei

    2015-10-01

    H2SO4, NaOH and H3PO4 were applied to decompose lignocellulose samples (giant reeds, pennisetum and cotton stalks) to investigate the correlation between cellulose allomorphs (cellulose I and II) and conversion of cellulose. The effect of removal of hemicellulose and lignin on the surface morphology, crystallinity index (CrI), cellulose allomorphs (cellulose I and II), and enzymatic hydrolysis under different pretreatments was also studied. CrI caused by H3PO4 pretreatment reached 11.19%, 24.93% and 8.15% for the three samples, respectively. Corn stalk showed highest conversion of cellulose among three samples, irrespective of the pretreatment used. This accounted for the widely use of corn stalk as the renewable crop substrate to synthesize biofuels like ethanol. CrI of cellulose I (CrI-I) negatively affects cellulose conversion but CrI of cellulose II (CrI-II) positively affects cellulose conversion. It contributes to make the strategy to transform cellulose I to cellulose II and enhancing enzymatic hydrolysis of lignocellulose.

  16. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    SciTech Connect

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  17. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?

    PubMed Central

    2011-01-01

    Background We and other workers have shown that accessory enzymes, such as β-glucosidase, xylanase, and cellulase cofactors, such as GH61, can considerably enhance the hydrolysis effectiveness of cellulase cocktails when added to pretreated lignocellulosic substrates. It is generally acknowledged that, among the several factors that hamper our current ability to attain efficient lignocellulosic biomass conversion yields at low enzyme loadings, a major problem lies in our incomplete understanding of the cooperative action of the different enzymes acting on pretreated lignocellulosic substrates. Results The reported work assessed the interaction between cellulase and xylanase enzymes and their potential to improve the hydrolysis efficiency of various pretreated lignocellulosic substrates when added at low protein loadings. When xylanases were added to the minimum amount of cellulase enzymes required to achieve 70% cellulose hydrolysis of steam pretreated corn stover (SPCS), or used to partially replace the equivalent cellulase dose, both approaches resulted in enhanced enzymatic hydrolysis. However, the xylanase supplementation approach increased the total protein loading required to achieve significant improvements in hydrolysis (an additive effect), whereas the partial replacement of cellulases with xylanase resulted in similar improvements in hydrolysis without increasing enzyme loading (a synergistic effect). The enhancement resulting from xylanase-aided synergism was higher when enzymes were added simultaneously at the beginning of hydrolysis. This co-hydrolysis of the xylan also influenced the gross fiber characteristics (for example, fiber swelling) resulting in increased accessibility of the cellulose to the cellulase enzymes. These apparent increases in accessibility enhanced the steam pretreated corn stover digestibility, resulting in three times faster cellulose and xylan hydrolysis, a seven-fold decrease in cellulase loading and a significant increase in

  18. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.

    PubMed

    Ma, Menggen; Wang, Xu; Zhang, Xiaoping; Zhao, Xianxian

    2013-09-01

    Aldehyde inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) are generated from biomass pretreatment. Scheffersomyces stipitis is able to reduce furfural and HMF to less toxic furanmethanol and furan-2,5-dimethanol; however, the enzymes involved in the reductive reaction still remain unknown. In this study, transcription responses of two known and five putative alcohol dehydrogenase genes from S. stipitis were analyzed under furfural and HMF stress conditions. All the seven alcohol dehydrogenase genes were also cloned and overexpressed for their activity analyses. Our results indicate that transcriptions of SsADH4 and SsADH6 were highly induced under furfural and HMF stress conditions, and the proteins encoded by them exhibited NADH- and/or NADPH-dependent activities for furfural and HMF reduction, respectively. For furfural reduction, NADH-dependent activity was also observed in SsAdh1p and NAD(P)H-dependent activities were also observed in SsAdh5p and SsAdh7p. For HMF reduction, NADPH-dependent activities were also observed in SsAdh5p and SsAdh7p. SsAdh4p displayed the highest NADPH-dependent specific activity and catalytic efficiency for reduction of both furfural and HMF among the seven alcohol dehydrogenases. Enzyme activities of all SsADH proteins were more stable under acidic condition. For most SsADH proteins, the optimum temperature for enzyme activities was 30 °C and more than 50 % enzyme activities remained at 60 °C. Reduction activities of formaldehyde, acetaldehyde, isovaleraldehyde, benzaldehyde, and phenylacetaldehyde were also observed in some SsADH proteins. Our results indicate that multiple alcohol dehydrogenases in S. stipitis are involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. PMID:23912116

  19. Thermal decomposition of lignocellulosic biomass in the presence of acid catalysts.

    PubMed

    Larabi, Cherif; al Maksoud, Walid; Szeto, Kai C; Roubaud, Anne; Castelli, Pierre; Santini, Catherine C; Walter, Jean J

    2013-11-01

    Transformation of lignocellulosic biomass to biofuels involves multiple processes, in which thermal decomposition, hydrotreatment are the most central steps. Current work focuses on the impact of several solid acids and Keggin-type heteropolyacids on the decomposition temperature (Td) of pine wood and the characterization of the resulted products. It has been observed that a mechanical mixture of solid acids with pine wood has no influence on Td, while the use of heteropolyacids lower the Td by 100°C. Moreover, the treatment of biomass with a catalytic amount of H3PW12O40 leads to formation of three fractions: solid, liquid and gas, which have been investigated by elemental analysis, TGA, FTIR, GC-MS and NMR. The use of heteropolyacid leads, at 300°C, to a selective transformation of more than 50 wt.% of the holocellulose part of the lignocellulosic biomass. Moreover, 60 wt.% of the catalyst H3PW12O40 are recovered.

  20. Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Gadhe, Abhijit; Rath, Ritika; Vaidya, Atul Narayan; Wate, Satish

    2014-02-01

    Banana agricultural waste is one of the potential lignocellulosic substrates which are mostly un-utilized but sufficiently available in many parts of the world. In the present study, suitability of banana waste for biofuel production with respect to pretreatment and reducing sugar yield was assessed. The effectiveness of both acid and alkali pretreatments along with autoclaving, microwave heating and ultrasonication on different morphological parts of banana (BMPs) was studied. The data were statistically analyzed using ANOVA and numerical point prediction tool of MINITAB RELEASE 14. Accordingly, the optimum cumulative conditions for maximum recovery of reducing sugar through acid pretreatment are: leaf (LF) as the substrate with 25 min of reaction time and 180°C of reaction temperature using microwave. Whereas, the optimum conditions for alkaline pretreatments are: pith (PH) as the substrate with 51 min of reaction time and 50°C of reaction temperature using ultrasonication (US).

  1. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.

    PubMed

    Mathews, Stephanie L; Pawlak, Joel; Grunden, Amy M

    2015-04-01

    Lignocellulose is a term for plant materials that are composed of matrices of cellulose, hemicellulose, and lignin. Lignocellulose is a renewable feedstock for many industries. Lignocellulosic materials are used for the production of paper, fuels, and chemicals. Typically, industry focuses on transforming the polysaccharides present in lignocellulose into products resulting in the incomplete use of this resource. The materials that are not completely used make up the underutilized streams of materials that contain cellulose, hemicellulose, and lignin. These underutilized streams have potential for conversion into valuable products. Treatment of these lignocellulosic streams with bacteria, which specifically degrade lignocellulose through the action of enzymes, offers a low-energy and low-cost method for biodegradation and bioconversion. This review describes lignocellulosic streams and summarizes different aspects of biological treatments including the bacteria isolated from lignocellulose-containing environments and enzymes which may be used for bioconversion. The chemicals produced during bioconversion can be used for a variety of products including adhesives, plastics, resins, food additives, and petrochemical replacements.

  2. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.

    PubMed

    Mathews, Stephanie L; Pawlak, Joel; Grunden, Amy M

    2015-04-01

    Lignocellulose is a term for plant materials that are composed of matrices of cellulose, hemicellulose, and lignin. Lignocellulose is a renewable feedstock for many industries. Lignocellulosic materials are used for the production of paper, fuels, and chemicals. Typically, industry focuses on transforming the polysaccharides present in lignocellulose into products resulting in the incomplete use of this resource. The materials that are not completely used make up the underutilized streams of materials that contain cellulose, hemicellulose, and lignin. These underutilized streams have potential for conversion into valuable products. Treatment of these lignocellulosic streams with bacteria, which specifically degrade lignocellulose through the action of enzymes, offers a low-energy and low-cost method for biodegradation and bioconversion. This review describes lignocellulosic streams and summarizes different aspects of biological treatments including the bacteria isolated from lignocellulose-containing environments and enzymes which may be used for bioconversion. The chemicals produced during bioconversion can be used for a variety of products including adhesives, plastics, resins, food additives, and petrochemical replacements. PMID:25722022

  3. A PRIMER FOR LIGNOCELLULOSE BIOCHEMICAL CONVERSION TO FUEL ETHANOL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meeting the future needs for bioethanol in the marketplace depends upon developing lignocellulose as a feedstock for production. The major obstacles to using lignocellulose as a feedstock remain capital and production costs and their associated risks. However, technological advancements have conti...

  4. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing.

    PubMed

    Toquero, Cristina; Bolado, Silvia

    2014-04-01

    Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L.

  5. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application.

    PubMed

    Carrere, Hélène; Antonopoulou, Georgia; Affes, Rim; Passos, Fabiana; Battimelli, Audrey; Lyberatos, Gerasimos; Ferrer, Ivet

    2016-01-01

    When properly designed, pretreatments may enhance the methane potential and/or anaerobic digestion rate, improving digester performance. This paper aims at providing some guidelines on the most appropriate pretreatments for the main feedstocks of biogas plants. Waste activated sludge was firstly investigated and implemented at full-scale, its thermal pretreatment with steam explosion being most recommended as it increases the methane potential and digestion rate, ensures sludge sanitation and the heat needed is produced on-site. Regarding fatty residues, saponification is preferred for enhancing their solubilisation and bioavailability. In the case of animal by-products, this pretreatment can be optimised to ensure sterilisation, solubilisation and to reduce inhibition linked to long chain fatty acids. With regards to lignocellulosic biomass, the first goal should be delignification, followed by hemicellulose and cellulose hydrolysis, alkali or biological (fungi) pretreatments being most promising. As far as microalgae are concerned, thermal pretreatment seems the most promising technique so far.

  6. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation.

    PubMed

    He, Yanqing; Zhang, Jian; Bao, Jie

    2014-04-01

    Impregnation of lignocellulose materials with dilute acid solution is a routine operation in conventional dilute acid pretreatment. The dry dilute acid pretreatment (DDAP) at high solids content up to 70% is naturally considered to require longer impregnation time. In this study, a co-currently feeding operation of corn stover and dilute sulfuric acid solution without any impregnation was tested for DDAP. The DDAP pretreated corn stover without impregnation is found to be essentially no difference in pretreatment efficiency compared to those with impregnation in the helically agitated reactor. The yield from cellulose to ethanol in SSF again shows no obvious difference between the DDAP pretreated corn stover with and without impregnation. This study suggests that impregnation in DDAP was not necessary under the helical agitation mixing. The results provided a useful way of cost reduction and process simplification in pretreatment. PMID:24630497

  7. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation.

    PubMed

    He, Yanqing; Zhang, Jian; Bao, Jie

    2014-04-01

    Impregnation of lignocellulose materials with dilute acid solution is a routine operation in conventional dilute acid pretreatment. The dry dilute acid pretreatment (DDAP) at high solids content up to 70% is naturally considered to require longer impregnation time. In this study, a co-currently feeding operation of corn stover and dilute sulfuric acid solution without any impregnation was tested for DDAP. The DDAP pretreated corn stover without impregnation is found to be essentially no difference in pretreatment efficiency compared to those with impregnation in the helically agitated reactor. The yield from cellulose to ethanol in SSF again shows no obvious difference between the DDAP pretreated corn stover with and without impregnation. This study suggests that impregnation in DDAP was not necessary under the helical agitation mixing. The results provided a useful way of cost reduction and process simplification in pretreatment.

  8. Genetic manipulation of lignocellulosic biomass for bioenergy.

    PubMed

    Wang, Peng; Dudareva, Natalia; Morgan, John A; Chapple, Clint

    2015-12-01

    Lignocellulosic biomass represents an abundant and sustainable raw material for biofuel production. The recalcitrance of biomass to degradation increases the estimated cost of biofuel production and limits its competitiveness in the market. Genetic engineering of lignin, a major recalcitrance factor, improves saccharification and thus the potential yield of biofuels. Recently, our understanding of lignification and its regulation has been advanced by new studies in various systems, all of which further enhances our ability to manipulate the biosynthesis and deposition of lignin in energy crops for producing cost-effective second generation biofuels.

  9. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    NASA Astrophysics Data System (ADS)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  10. Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride.

    PubMed

    Mutschlechner, Mira; Illmer, Paul; Wagner, Andreas Otto

    2015-09-01

    With regard to renewable sources of energy, bioconversion of lignocellulosic biomass has long been recognized as a desirable endeavor. However, the highly heterogeneous structure of lignocellulose restricts the exploitation of its promising potential in biogas plants. Hence, effective pre-treatment methods are decisive prerequisites to overcome these challenges in order to improve the utilization ratio of (ligno) cellulosic substrates during fermentation. In the present study, the application of Trichoderma viride in an aerobic upstream process prior to anaerobic digestion led up to a threefold increase in the yield of methane and total gas in a lab-scale investigation. Due to its highly efficient cellulolytic activities, T. viride seemed to be responsible for an improved nutrient availability that positively influenced the anaerobic microbiocenosis. Aerobic pre-treatment of organic matter with T. viride is therefore a promising solution to achieve higher methane yields and degradation performances without any additional energy demand, nor undesired by-product inhibition. PMID:26013693

  11. Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride.

    PubMed

    Mutschlechner, Mira; Illmer, Paul; Wagner, Andreas Otto

    2015-09-01

    With regard to renewable sources of energy, bioconversion of lignocellulosic biomass has long been recognized as a desirable endeavor. However, the highly heterogeneous structure of lignocellulose restricts the exploitation of its promising potential in biogas plants. Hence, effective pre-treatment methods are decisive prerequisites to overcome these challenges in order to improve the utilization ratio of (ligno) cellulosic substrates during fermentation. In the present study, the application of Trichoderma viride in an aerobic upstream process prior to anaerobic digestion led up to a threefold increase in the yield of methane and total gas in a lab-scale investigation. Due to its highly efficient cellulolytic activities, T. viride seemed to be responsible for an improved nutrient availability that positively influenced the anaerobic microbiocenosis. Aerobic pre-treatment of organic matter with T. viride is therefore a promising solution to achieve higher methane yields and degradation performances without any additional energy demand, nor undesired by-product inhibition.

  12. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.

    PubMed

    Marjamaa, Kaisa; Toth, Karolina; Bromann, Paul Andrew; Szakacs, George; Kruus, Kristiina

    2013-05-10

    The (hemi)cellulolytic systems of two novel lignocellulolytic Penicillium strains (Penicillium pulvillorum TUB F-2220 and P. cf. simplicissimum TUB F-2378) have been studied. The cultures of the Penicillium strains were characterized by high cellulase and β-glucosidase as well moderate xylanase activities compared to the Trichoderma reesei reference strains QM 6a and RUTC30 (volumetric or per secreted protein, respectively). Comparison of the novel Penicillium and T. reesei secreted enzyme mixtures in the hydrolysis of (ligno)cellulose substrates showed that the F-2220 enzyme mixture gave higher yields in the hydrolysis of crystalline cellulose (Avicel) and similar yields in hydrolysis of pre-treated spruce and wheat straw than enzyme mixture secreted by the T. reesei reference strain. The sensitivity of the Penicillium cellulase complexes to softwood (spruce) and grass (wheat straw) lignins was lignin and temperature dependent: inhibition of cellulose hydrolysis in the presence of wheat straw lignin was minor at 35°C while at 45°C by spruce lignin a clear inhibition was observed. The two main proteins in the F-2220 (hemi)cellulase complex were partially purified and identified by peptide sequence similarity as glycosyl hydrolases (cellobiohydrolases) of families 7 and 6. Adsorption of the GH7 enzyme PpCBH1 on cellulose and lignins was studied showing that the lignin adsorption of the enzyme is temperature and pH dependent. The ppcbh1 coding sequence was obtained using PCR cloning and the translated amino acid sequence of PpCBH1 showed up to 82% amino acid sequence identity to known Penicillium cellobiohydrolases.

  13. Molecular Adaptation Mechanisms Employed by Ethanologenic Bacteria in Response to Lignocellulose-derived Inhibitory Compounds

    PubMed Central

    Ibraheem, Omodele; Ndimba, Bongani K.

    2013-01-01

    Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains. PMID:23847442

  14. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds.

    PubMed

    Ibraheem, Omodele; Ndimba, Bongani K

    2013-01-01

    Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains. PMID:23847442

  15. Considering water availability and the effect of solute concentration on high solids saccharification of lignocellulosic biomass.

    PubMed

    Selig, Michael J; Hsieh, Chia-Wen Carmen; Thygesen, Lisbeth G; Himmel, Michael E; Felby, Claus; Decker, Stephen R

    2012-01-01

    Milliliter scale (ligno)cellulose saccharifications suggest general solute concentration and its impact on water availability plays a significant role in detrimental effects associated with high solids lignocellulose conversions. A microtumbler developed to enable free-fall mixing at dry solids loadings up to 35% (w/w) repeatedly produced known detrimental conversion trends on cellulose, xylan and pretreated lignocellulose with commercial enzymes. Despite this, high concentrations of insoluble nonhydrolysable dextrans did not depress saccharification extents in 5% (w/w) cellulose slurries suggesting mass transfer limitations may not significantly limit hydrolysis extents at high solids loadings. Interestingly, cellulose saccharification by purified cellulases showed increased conversions with increasing dry solids loadings. This prompted investigations into impacts the concentration of soluble species, such as sugar alcohols, low molecular weight enzyme preparation components, and monomer hydrolysis products, have on the hydrolysis environment. Such substances significantly depress conversion rates and were shown to correlatively lower water activity (A(w) ) in the hydrolysis environment while high insoluble solids concentrations did not. Furthermore, low-field NMR on concentrated slurries of insoluble complex carbohydrates, including the nonhydrolysable dextrans, showed all solids constrained water significantly more than high concentrations of soluble species (inhibitory) suggesting water constraint may not be as problematic an issue at high solids loadings compared to the availability of water in the system. Additionally, the introduction of soluble species lessened overall water constraint in high solids systems and appears to shift the distribution of water away from insoluble surfaces. This is potentially a critical issue for industrial processes operating at high dry solids levels.

  16. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.

    PubMed

    Madhavan, Anjali; Srivastava, Aradhana; Kondo, Akihiko; Bisaria, Virendra S

    2012-03-01

    Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.

  17. High-Solids Enzymatic Saccharification Screening Method for Lignocellulosic Biomass (Poster)

    SciTech Connect

    Roche, C. M.; Stickel, J. J.

    2009-05-01

    The ability to screen new biomass pretreatments and advanced enzyme systems at process-relevant conditions is key to developing economically viable lignocellulosic ethanol. While much research is being invested in developing pretreatment technologies and enzyme systems that will more efficiently convert cellulosic biomass to sugars, the current standard reactor vessel, a shake flask, that is used for screening enzymatic saccharification of cellulosic biomass is inadequate at high-solids conditions. Shake flasks do not provide adequate mixing at high solids conditions. In this work, a roller bottle reactor was identified as a small-scale high-solids saccharification reaction vessel, and a method was developed for use in screening both pretreated biomass and enzyme systems at process-relevant conditions. This new method addresses mixing issues observed in high-solids saccharifications. In addition, yield calculations from sugar concentrations on a mass basis were used to account for the two-phase nature of the saccharification slurry, which eliminates discontinuities in comparing high-solids to low-solids saccharifications that occur when using concentrations on a volume basis. The roller bottle reactors out-performed the shake flasks by 5% for an initial insoluble solids loading of 15% and 140% for an initial soluble solids loading of 30%. The reactor system and method was compared at bench and floor scales and determined to be scalable for initial insoluble solids loading in the range of 15% to 30%. Pretreatment and enzyme screening results indicate that mid severity pretreated biomass is more digestible than the low and high severity biomass and GC220 is a superior enzyme to Spezyme CP.

  18. Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass

    NASA Astrophysics Data System (ADS)

    Smuga-Kogut, Małgorzata; Zgórska, Kazimiera; Szymanowska-Powałowska, Daria

    2016-01-01

    In recent years, much attention has been devoted to the possibility of using lignocellulosic biomass for energy. Bioethanol is a promising substitute for conventional fossil fuels and can be produced from straw and wood biomass. Therefore, the aim of this paper was to investigate the effect of 1-ethyl-3-methylimidazolium pretreatment on the structure of cellulose and the acquisition of reducing sugars and bioethanol from cellulosic materials. Material used in the study was rye straw and microcrystalline cellulose subjected to ionic liquid 1-ethyl-3-methylimidazolium pretreatment. The morphology of cellulose fibres in rye straw and microcrystalline cellulose was imaged prior to and after ionic liquid pretreatment. Solutions of ionic liquid-treated and untreated cellulosic materials were subjected to enzymatic hydrolysis in order to obtain reducing sugars, which constituted a substrate for alcoholic fermentation. An influence of the ionic liquid on the cellulose structure, accumulation of reducing sugars in the process of hydrolysis of this material, and an increase in ethanol amount after fermentation was observed. The ionic liquid did not affect cellulolytic enzymes negatively and did not inhibit yeast activity. The amount of reducing sugars and ethyl alcohol was higher in samples purified with 1-ethyl-3-methy-limidazolium acetate. A change in the supramolecular structure of cellulose induced by the ionic liquid was also observed.

  19. Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling.

    PubMed

    Kim, Sun Min; Dien, Bruce S; Tumbleson, M E; Rausch, Kent D; Singh, Vijay

    2016-09-01

    Efficient pretreatment is essential for economic conversion of lignocellulosic feedstocks into monosaccharides for biofuel production. To realize high sugar yields with low inhibitor concentrations, hot water or dilute acid pretreatment followed by disk milling is proposed. Corn stover at 20% solids was pretreated with hot water at 160-200°C for 4-8min with and without subsequent milling. Hot water pretreatment and disk milling acted synergistically to improve glucose and xylose yields by 89% and 134%, respectively, compared to hot water pretreatment alone. Hot water pretreated (180°C for 4min) and milled samples had the highest glucose and xylose yields among all hot water pretreated and milled samples, which were comparable to samples pretreated with 0.55% dilute acid at 160°C for 4min. However, samples pretreated with 1% dilute acid at 150°C for 4min and disk milled had the highest observed glucose (87.3%) and xylose yields (83.4%).

  20. Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling.

    PubMed

    Kim, Sun Min; Dien, Bruce S; Tumbleson, M E; Rausch, Kent D; Singh, Vijay

    2016-09-01

    Efficient pretreatment is essential for economic conversion of lignocellulosic feedstocks into monosaccharides for biofuel production. To realize high sugar yields with low inhibitor concentrations, hot water or dilute acid pretreatment followed by disk milling is proposed. Corn stover at 20% solids was pretreated with hot water at 160-200°C for 4-8min with and without subsequent milling. Hot water pretreatment and disk milling acted synergistically to improve glucose and xylose yields by 89% and 134%, respectively, compared to hot water pretreatment alone. Hot water pretreated (180°C for 4min) and milled samples had the highest glucose and xylose yields among all hot water pretreated and milled samples, which were comparable to samples pretreated with 0.55% dilute acid at 160°C for 4min. However, samples pretreated with 1% dilute acid at 150°C for 4min and disk milled had the highest observed glucose (87.3%) and xylose yields (83.4%). PMID:27289063

  1. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production.

    PubMed

    Brown, Dan; Shi, Jian; Li, Yebo

    2012-11-01

    Lignocellulosic biomass feedstocks (switchgrass, corn stover, wheat straw, yard waste, leaves, waste paper, maple, and pine) were evaluated for methane production under liquid anaerobic digestion (L-AD) and solid-state anaerobic digestion (SS-AD). No significant difference in methane yield between L-AD and SS-AD, except for waste paper and pine, were found. However, the volumetric productivity was 2- to 7-fold greater in the SS-AD system compared with the L-AD system, except for paper. Methane yields from corn stover, wheat straw, and switchgrass were 2-5 times higher than those from yard waste, maple, and pine biomass. Waste paper had a methane yield of only 15 L/kg VS caused by souring during SS-AD due to organic overloading. Pine also had very low biogas yield of 17 L/kg VS, indicating the need for pretreatment prior to SS-AD. The findings of this study can guide future studies to improve the efficiency and stability of SS-AD of lignocellulosic biomass. PMID:22995169

  2. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    PubMed

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals.

  3. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.

    PubMed

    Sun, Fubao Fuebiol; Hong, Jiapeng; Hu, Jinguang; Saddler, Jack N; Fang, Xu; Zhang, Zhenyu; Shen, Song

    2015-11-01

    The potential of cellulase enzymes in the developing and ongoing "biorefinery" industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA. And this difference was even observed on the filter paper itself when the FPA based assay was revisited. The analysis of specific enzyme activity in cellulase preparations demonstrated that different accessory enzymes were mainly responsible for the discrepancy of enzymatic hydrolysis between diversified substrates and various cellulases. Such the active role of accessory enzymes present in cellulase preparations was finally verified by supplementation with β-glucosidase, xylanase and lytic polysaccharide monooxygenases AA9. This paper provides new insights into the role of accessory enzymes, which can further provide a useful reference for the rational customization of cellulase cocktails in order to realize an efficient conversion of natural lignocellulosic substrates.

  4. Examination of changes in the morphology of lignocellulosic fibers treated with e-beam irradiation

    NASA Astrophysics Data System (ADS)

    Gryczka, Urszula; Migdal, Wojciech; Chmielewska, Dagmara; Antoniak, Magdalena; Kaszuwara, Waldemar; Jastrzebska, Agnieszka; Olszyna, Andrzej

    2014-01-01

    Ionizing radiation was applied as a substrate pretreatment method in the process of bioethanol production. The aim of the presented work was to determine the changes in the morphology of willow plant fibers caused by the interaction of a high energy electron beam with lignocellulosic biomass. The microstructure was examined with a scanning electron microscope and X-ray computer microtomography. Additionally, sorption analysis was carried out in order to determine specific surface area and porosity. The analysis carried out after the treatment of lignocellulose with an electron beam indicated destruction of cell walls, observed as a decrease in the smoothness and an increase in the roughness of the surface of the fibers. The changes in surface texture and fiber integrity affected the specific surface area and porosity of the tested samples. The specific surface area, the total volume of pores and the average pore diameter were calculated based on the isotherms of nitrogen sorption. The increase in the specific surface area was observed to occur simultaneously with the increase in the average diameter of pores.

  5. Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors

    PubMed Central

    Piotrowski, Jeff S.; Zhang, Yaoping; Bates, Donna M.; Keating, David H.; Sato, Trey K.; Ong, Irene M.; Landick, Robert

    2014-01-01

    Lignocellulosic hydrolysate (LCH) inhibitors are a large class of bioactive molecules that arise from pretreatment, hydrolysis, and fermentation of plant biomass. These diverse compounds reduce lignocellulosic biofuel yields by inhibiting cellular processes and diverting energy into cellular responses. LCH inhibitors present one of the most significant challenges to efficient biofuel production by microbes. Development of new strains that lessen the effects of LCH inhibitors is an economically favorable strategy relative to expensive detoxification methods that also can reduce sugar content in deconstructed biomass. Systems biology analyses and metabolic modeling combined with directed evolution and synthetic biology are successful strategies for biocatalyst development, and methods that leverage state-of-the-art tools are needed to overcome inhibitors more completely. This perspective considers the energetic costs of LCH inhibitors and technologies that can be used to overcome their drain on conversion efficiency. We suggest academic and commercial research groups could benefit by sharing data on LCH inhibitors and implementing “translational biofuel research.” PMID:24672514

  6. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    PubMed

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals. PMID:26598400

  7. Cellulose Aggregation under Hydrothermal Pretreatment Conditions.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Kovalenko, Andriy; Skaf, Munir S

    2016-08-01

    Cellulose, the most abundant biopolymer on Earth, represents a resource for sustainable production of biofuels. Thermochemical treatments make lignocellulosic biomaterials more amenable to depolymerization by exposing cellulose microfibrils to enzymatic or chemical attacks. In such treatments, the solvent plays fundamental roles in biomass modification, but the molecular events underlying these changes are still poorly understood. Here, the 3D-RISM-KH molecular theory of solvation has been employed to analyze the role of water in cellulose aggregation under different thermodynamic conditions. The results show that, under ambient conditions, highly structured hydration shells around cellulose create repulsive forces that protect cellulose microfibrils from aggregating. Under hydrothermal pretreatment conditions, however, the hydration shells lose structure, and cellulose aggregation is favored. These effects are largely due to a decrease in cellulose-water interactions relative to those at ambient conditions, so that cellulose-cellulose attractive interactions become prevalent. Our results provide an explanation to the observed increase in the lateral size of cellulose crystallites when biomass is subject to pretreatments and deepen the current understanding of the mechanisms of biomass modification. PMID:27301535

  8. Poor ex vivo induction of T-cell responses to idiotype or tumor cell lysate-pulsed autologous dendritic cells in advanced pre-treated multiple myeloma.

    PubMed

    Garderet, Laurent; Mazurier, Christelle; Pellat-Deceunynck, Catherine; Karim, Abdul; Baudin, Bruno; Funck-Brentano, Christian; Bouchet, Sandrine; Geffroy, Alexandrine; Bataille, Régis; Gorin, Norbert-Claude; Lopez, Manuel

    2006-07-01

    This study evaluated the feasibility of using dendritic cells (DCs) to generate, ex vivo, anti-tumor cytotoxic T lymphocytes (CTL) in patients with stage III multiple myeloma (MM). Nucleated cells from eight patients who had received chemotherapy (three of whom had undergone autologous hemopoeitic stem cell transplantation) were collected by apheresis. Their monocytes were enriched using counter-current centrifugation, differentiated into DCs which were further co-cultured with autologous CD8 lymphocytes to induce CTL. The DCs were pulsed either with the idiotypic paraprotein (regarded as a tumor-specific antigen) or with autologous MM cell lysate before co-culture. Specific T-cell responses were measured in IFNgamma enzyme-linked immunospot and chromium release assays of autologous plasmocyte targets. A slight increase in IFNgamma secretion by T-cells was observed for two patients (DCs pulsed with idiotypic paraprotein for one, MM cell lysate for the other). No or weak specific lysis of plasmocyte targets was observed in the chromium release assays. In conclusion, the T-cell response to pulsed DCs was very weak or absent. There are clinical and technical reasons that could explain, in part, this lack of response.

  9. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose.

    PubMed

    Yuki, Masahiro; Kuwahara, Hirokazu; Shintani, Masaki; Izawa, Kazuki; Sato, Tomoyuki; Starns, David; Hongoh, Yuichi; Ohkuma, Moriya

    2015-12-01

    Wood-feeding lower termites harbour symbiotic gut protists that support the termite nutritionally by degrading recalcitrant lignocellulose. These protists themselves host specific endo- and ectosymbiotic bacteria, functions of which remain largely unknown. Here, we present draft genomes of a dominant, uncultured ectosymbiont belonging to the order Bacteroidales, 'Candidatus Symbiothrix dinenymphae', which colonizes the cell surface of the cellulolytic gut protists Dinenympha spp. We analysed four single-cell genomes of Ca. S. dinenymphae, the highest genome completeness was estimated to be 81.6-82.3% with a predicted genome size of 4.28-4.31 Mb. The genome retains genes encoding large parts of the amino acid, cofactor and nucleotide biosynthetic pathways. In addition, the genome contains genes encoding various glycoside hydrolases such as endoglucanases and hemicellulases. The genome indicates that Ca. S. dinenymphae ferments lignocellulose-derived monosaccharides to acetate, a major carbon and energy source of the host termite. We suggest that the ectosymbiont digests lignocellulose and provides nutrients to the host termites, and hypothesize that the hydrolytic activity might also function as a pretreatment for the host protist to effectively decompose the crystalline cellulose components.

  10. Quantification of symbiotic contributions to lower termite lignocellulose digestion using antimicrobial treatments.

    PubMed

    Peterson, Brittany F; Stewart, Hannah L; Scharf, Michael E

    2015-04-01

    Animal-microbe co-evolution and symbiosis are broadly distributed across the animal kingdom. Insects form a myriad of associations with microbes ranging from vectoring of pathogens to intracellular, mutualistic relationships. Lower termites are key models for insect-microbe symbiosis because of the diversity, complexity and functionality of their unique tripartite symbiosis. This collaboration allows termites to live on a diet of nitrogen-poor lignocellulose. Recent functional investigations of lignocellulose digestion in lower termites have primarily focused on the contributions of the eukaryotic members of the termite holobiont (termite and protist). Here, using multiple antimicrobial treatments, we induced differing degrees of dysbiosis in the termite gut, leading to variably altered symbiont abundance and diversity, and lignocellulolytic capacity. Although protists are clearly affected by antimicrobial treatments, our findings provide novel evidence that the removal of distinct groups of bacteria partially reduces, but does not abolish, the saccharolytic potential of the termite gut holobiont. This is specifically manifested by reductions of 23-47% and 30-52% in glucose and xylose yields respectively from complex lignocellulose. Thus, all members of the lower termite holobiont (termite, protist and prokaryotes) are involved in the process of efficient, sustained lignocellulase activity. This unprecedented quantification of the relative importance of prokaryotes in this system emphasizes the collaborative nature of the termite holobiont, and the relevance of lower termites as models for inter-domain symbioses.

  11. Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis.

    PubMed

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Nashef, Enas Muen; Jamal, Parveen

    2015-04-01

    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance. PMID:25661309

  12. Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis.

    PubMed

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Nashef, Enas Muen; Jamal, Parveen

    2015-04-01

    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance.

  13. A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals.

    PubMed

    Shen, Yanwen; Jarboe, Laura; Brown, Robert; Wen, Zhiyou

    2015-12-01

    Thermochemical-biological hybrid processing uses thermochemical decomposition of lignocellulosic biomass to produce a variety of intermediate compounds that can be converted into fuels and chemicals through microbial fermentation. It represents a unique opportunity for biomass conversion as it mitigates some of the deficiencies of conventional biochemical (pretreatment-hydrolysis-fermentation) and thermochemical (pyrolysis or gasification) processing. Thermochemical-biological hybrid processing includes two pathways: (i) pyrolysis/pyrolytic substrate fermentation, and (ii) gasification/syngas fermentation. This paper provides a comprehensive review of these two hybrid processing pathways, including the characteristics of fermentative substrates produced in the thermochemical stage and microbial utilization of these compounds in the fermentation stage. The current challenges of these two biomass conversion pathways include toxicity of the crude pyrolytic substrates, the inhibition of raw syngas contaminants, and the mass-transfer limitations in syngas fermentation. Possible approaches for mitigating substrate toxicities are discussed. The review also provides a summary of the current efforts to commercialize hybrid processing.

  14. Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR.

    PubMed

    Fu, Li; McCallum, Scott A; Miao, Jianjun; Hart, Courtney; Tudryn, Gregory J; Zhang, Fuming; Linhardt, Robert J

    2015-02-01

    Biofuels and biomaterials, produced from lignocellulosic feedstock, require facile access to cellulose and hemicellulose to be competitive with petroleum processing and sugar-based fermentation. Physical-chemical barriers resulting from lignin complicates the hydrolysis biomass into fermentable sugars. Thus, the amount of lignin within a substrate is critical in determining biomass processing. The application of (13)C cross-polarization, magic-angle spinning, and solid-state nuclear magnetic resonance for the direct quantification of lignin content in biomass is examined. Using a standard curve constructed from pristine lignin and cellulose, the lignin content of a biomass sample is accurately determined through direct measurement without chemical or enzymatic pre-treatment. PMID:25404762

  15. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.

    PubMed

    Zeng, Yining; Zhao, Shuai; Yang, Shihui; Ding, Shi-You

    2014-06-01

    A biochemical platform holds the most promising route toward lignocellulosic biofuels, in which polysaccharides are hydrolyzed by cellulase enzymes into simple sugars and fermented to ethanol by microbes. However, these polysaccharides are cross-linked in the plant cell walls with the hydrophobic network of lignin that physically impedes enzymatic deconstruction. A thermochemical pretreatment process is often required to remove or delocalize lignin, which may also generate inhibitors that hamper enzymatic hydrolysis and fermentation. Here we review recent advances in understanding lignin structure in the plant cell walls and the negative roles of lignin in the processes of converting biomass to biofuels. Perspectives and future directions to improve the biomass conversion process are also discussed.

  16. Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR

    PubMed Central

    Fu, Li; McCallum, Scott A.; Miao, Jianjun; Hart, Courtney; Tudryn, Gregory J.; Zhang, Fuming; Linhardt, Robert J.

    2014-01-01

    Biofuels and biomaterials, produced from lignocellulosic feedstock, require facile access to cellulose and hemicellulose to be competitive with petroleum processing and sugar-based fermentation. Physical-chemical barriers resulting from lignin complicates the hydrolysis biomass into fermentable sugars. Thus, the amount of lignin within a substrate is critical in determining biomass processing. The application of 13C cross-polarization, magic-angle spinning, and solid-state nuclear magnetic resonance for the direct quantification of lignin content in biomass is examined. Using a standard curve constructed from pristine lignin and cellulose, the lignin content of a biomass sample is accurately determined through direct measurement without chemical or enzymatic pre-treatment. PMID:25404762

  17. Reducing β-glucosidase supplementation during cellulase recovery using engineered strain for successive lignocellulose bioconversion.

    PubMed

    Guo, Hong; Zou, Shaolan; Liu, Boshi; Su, Rongxin; Huang, Renliang; Qi, Wei; Zhang, Minhua; He, Zhimin

    2015-01-01

    Enzyme recycling by re-adsorption is one of the primary methods for reducing enzyme usage in lignocellulose conversion. This work proposes the combination of an engineered yeast strain that expresses β-glucosidase with enzyme recycling to reduce the amount of supplemented β-glucosidase in enzyme recycling experiments. Using the engineered strain, a slight increase in ethanol concentration was obtained after a 96-h fermentation of pretreated corncobs. Ethanol concentrations increased by 34.7% and 62.7% in the following two recycle rounds using the engineered strain compared with those using its parental strain without β-glucosidase addition. Furthermore, with the addition of β-glucosidase at 30CBU/g cellulose, the ethanol concentration after two recycle rounds exceeded 90% of that observed in the first SSF round with the engineered strain at a high initial cellulase loading of 45FPU/g cellulose.

  18. Quantification of bound and free enzymes during enzymatic hydrolysis and their reactivities on cellulose and lignocellulose.

    PubMed

    Yu, Zhiying; Jameel, Hasan; Chang, Hou-min; Philips, Richard; Park, Sunkyu

    2013-11-01

    Enzymatic hydrolysis of insoluble biomass is a surface reaction. Part of the enzyme adsorb on the surface of biomass, whereas the others stay in the liquid phase. In this study, three substrates (Avicel cellulose, bleached hardwood pulp, and green-liquor pretreated hardwood pulp) were used to study the reactivity of bound and free enzyme. In a continuous enzymatic hydrolysis, 35-65% initially added enzymes became bound enzymes, which were primarily responsible for enzymatic hydrolysis. The contribution from free enzymes became insignificant after a certain period of reaction time. SDS-PAGE analysis showed that CBH I was significantly decreased in the free enzyme, which might be the reason for the low digestibility of free enzymes due to the loss of synergistic effect. When Tween 80 was added during enzymatic hydrolysis, the digestibility of free enzyme on Avicel was greatly enhanced. However, the benefit of surfactant was not noticeable for lignocellulosic pulps, comparing to Avicel.

  19. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries.

    PubMed

    Zhang, Y-H Percival

    2008-05-01

    Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs (dollars /gallon of ethanol), (2) huge capital investment (dollars approximately 4-10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (> approximately 1.0/kg) than ethanol ( approximately 0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar-hydrogen-fuel cell systems in the long term. PMID:18180967

  20. Local phase separation of co-solvents enhances pretreatment of biomass for bioenergy applications

    DOE PAGESBeta

    Mostofian, Barmak; Cai, Charles M.; Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Wyman, Charles E.; Smith, Jeremy C.

    2016-08-02

    Pretreatment facilitates more complete deconstruction of plant biomass to enable more economic production of lignocellulosic biofuels and byproducts. Various co-solvent pretreatments have demonstrated advantages relative to aqueous-only methods by enhancing lignin removal to allow unfettered access to cellulose. However, there is a limited mechanistic understanding of the interactions between the co-solvents and cellulose that impedes further improvement of such pretreatment methods. Recently, tetrahydrofuran (THF) has been identified as a highly effective co-solvent for the pretreatment and fractionation of biomass. Here, to elucidate the mechanism of the THF water interactions with cellulose, we pair simulation and experimental data demonstrating that enhancedmore » solubilization of cellulose can be achieved by the THF water co-solvent system at equivolume mixtures and moderate temperatures (≤445 K). The simulations show that THF and water spontaneously phase separate on the local surface of a cellulose fiber, owing to hydrogen bonding of water molecules with the hydrophilic cellulose faces and stacking of THF molecules on the hydrophobic faces. Furthermore, a single fully solvated cellulose chain is shown to be preferentially bound by water molecules in the THF water mixture. In light of these findings, co-solvent reactions were performed on microcrystalline cellulose and maple wood to show that THF significantly enhanced cellulose deconstruction and lignocellulose solubilization at simulation conditions, enabling a highly versatile and efficient biomass pretreatment and fractionation method.« less

  1. The use of high-solids loadings in biomass pretreatment--a review.

    PubMed

    Modenbach, Alicia A; Nokes, Sue E

    2012-06-01

    The use of high-solids loadings (≥ 15% solids, w/w) in the unit operations of lignocellulose conversion processes potentially offers many advantages over lower-solids loadings, including increased sugar and ethanol concentrations and decreased production and capital costs. Since the term lignocellulosic materials refers to a wide range of feedstocks (agricultural and forestry residues, distillery by-products, and dedicated energy crops like grasses), the term "solids loading" here is defined by the amount of dry material that enters the process divided by the total mass of material and water added to the material. The goal of this study is to provide a consolidated review of studies using a high-solids pretreatment step in the conversion process. Included in this review is a brief discussion of the limitations, such as the lack of available water to promote mass transfer, increased substrate viscosity, and increased concentration of inhibitors produced affecting pretreatment, as well as descriptions and findings of pretreatment studies performed at high solids, the latest reactor designs developed for pretreatment at bench- and pilot-scales to address some of the limitations, and high-solids pretreatment operations that have been scaled-up and incorporated into demonstration facilities.

  2. Structural Variation of Bamboo Lignin before and after Ethanol Organosolv Pretreatment

    PubMed Central

    Bai, Yuan-Yuan; Xiao, Ling-Ping; Shi, Zheng-Jun; Sun, Run-Cang

    2013-01-01

    In order to make better use of lignocellulosic biomass for the production of renewable fuels and chemicals, it is necessary to disrupt its recalcitrant structure through pretreatment. Specifically, organosolv pretreatment is a feasible method. The main advantage of this method compared to other lignocellulosic pretreatment technologies is the extraction of high-quality lignin for the production of value-added products. In this study, bamboo was treated in a batch reactor with 70% ethanol at 180 °C for 2 h. Lignin fractions were isolated from the hydrolysate by centrifugation and then precipitated as ethanol organosolv lignin. Two types of milled wood lignins (MWLs) were isolated from the raw bamboo and the organosolv pretreated residue separately. After the pretreatment, a decrease of lignin (preferentially guaiacyl unit), hemicelluloses and less ordered cellulose was detected in the bamboo material. It was confirmed that the bamboo MWL is of HGS type (p-hydroxyphenyl (H), vanillin (G), syringaldehyde (S)) associated with a considerable amount of p-coumarate and ferulic esters of lignin. The ethanol organosolv treatment was shown to remove significant amounts of lignin and hemicelluloses without strongly affecting lignin primary structure and its lignin functional groups. PMID:24169436

  3. Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications.

    PubMed

    Mostofian, Barmak; Cai, Charles M; Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Wyman, Charles E; Smith, Jeremy C

    2016-08-31

    Pretreatment facilitates more complete deconstruction of plant biomass to enable more economic production of lignocellulosic biofuels and byproducts. Various co-solvent pretreatments have demonstrated advantages relative to aqueous-only methods by enhancing lignin removal to allow unfettered access to cellulose. However, there is a limited mechanistic understanding of the interactions between the co-solvents and cellulose that impedes further improvement of such pretreatment methods. Recently, tetrahydrofuran (THF) has been identified as a highly effective co-solvent for the pretreatment and fractionation of biomass. To elucidate the mechanism of the THF-water interactions with cellulose, we pair simulation and experimental data demonstrating that enhanced solubilization of cellulose can be achieved by the THF-water co-solvent system at equivolume mixtures and moderate temperatures (≤445 K). The simulations show that THF and water spontaneously phase separate on the local surface of a cellulose fiber, owing to hydrogen bonding of water molecules with the hydrophilic cellulose faces and stacking of THF molecules on the hydrophobic faces. Furthermore, a single fully solvated cellulose chain is shown to be preferentially bound by water molecules in the THF-water mixture. In light of these findings, co-solvent reactions were performed on microcrystalline cellulose and maple wood to show that THF significantly enhanced cellulose deconstruction and lignocellulose solubilization at simulation conditions, enabling a highly versatile and efficient biomass pretreatment and fractionation method. PMID:27482599

  4. Structural variation of bamboo lignin before and after ethanol organosolv pretreatment.

    PubMed

    Bai, Yuan-Yuan; Xiao, Ling-Ping; Shi, Zheng-Jun; Sun, Run-Cang

    2013-01-01

    In order to make better use of lignocellulosic biomass for the production of renewable fuels and chemicals, it is necessary to disrupt its recalcitrant structure through pretreatment. Specifically, organosolv pretreatment is a feasible method. The main advantage of this method compared to other lignocellulosic pretreatment technologies is the extraction of high-quality lignin for the production of value-added products. In this study, bamboo was treated in a batch reactor with 70% ethanol at 180 °C for 2 h. Lignin fractions were isolated from the hydrolysate by centrifugation and then precipitated as ethanol organosolv lignin. Two types of milled wood lignins (MWLs) were isolated from the raw bamboo and the organosolv pretreated residue separately. After the pretreatment, a decrease of lignin (preferentially guaiacyl unit), hemicelluloses and less ordered cellulose was detected in the bamboo material. It was confirmed that the bamboo MWL is of HGS type (p-hydroxyphenyl (H), vanillin (G), syringaldehyde (S)) associated with a considerable amount of p-coumarate and ferulic esters of lignin. The ethanol organosolv treatment was shown to remove significant amounts of lignin and hemicelluloses without strongly affecting lignin primary structure and its lignin functional groups. PMID:24169436

  5. Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications.

    PubMed

    Mostofian, Barmak; Cai, Charles M; Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Wyman, Charles E; Smith, Jeremy C

    2016-08-31

    Pretreatment facilitates more complete deconstruction of plant biomass to enable more economic production of lignocellulosic biofuels and byproducts. Various co-solvent pretreatments have demonstrated advantages relative to aqueous-only methods by enhancing lignin removal to allow unfettered access to cellulose. However, there is a limited mechanistic understanding of the interactions between the co-solvents and cellulose that impedes further improvement of such pretreatment methods. Recently, tetrahydrofuran (THF) has been identified as a highly effective co-solvent for the pretreatment and fractionation of biomass. To elucidate the mechanism of the THF-water interactions with cellulose, we pair simulation and experimental data demonstrating that enhanced solubilization of cellulose can be achieved by the THF-water co-solvent system at equivolume mixtures and moderate temperatures (≤445 K). The simulations show that THF and water spontaneously phase separate on the local surface of a cellulose fiber, owing to hydrogen bonding of water molecules with the hydrophilic cellulose faces and stacking of THF molecules on the hydrophobic faces. Furthermore, a single fully solvated cellulose chain is shown to be preferentially bound by water molecules in the THF-water mixture. In light of these findings, co-solvent reactions were performed on microcrystalline cellulose and maple wood to show that THF significantly enhanced cellulose deconstruction and lignocellulose solubilization at simulation conditions, enabling a highly versatile and efficient biomass pretreatment and fractionation method.

  6. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production.

    PubMed

    López-Abelairas, M; Álvarez Pallín, M; Salvachúa, D; Lú-Chau, T; Martínez, M J; Lema, J M

    2013-09-01

    The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.

  7. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment.

    PubMed

    Feng, Yu; Li, Guangyu; Li, Xiangyu; Zhu, Ning; Xiao, Bo; Li, Jian; Wang, Yujue

    2016-08-01

    This study investigated microwave-assisted formic acid (MW-FA) pretreatment as a possible way to improve aromatic production from catalytic fast pyrolysis (CFP) of lignocellulosic biomass. Results showed that short duration of MW-FA pretreatment (5-10min) could effectively disrupt the recalcitrant structure of beech wood and selectively remove its hemicellulose and lignin components. This increased the accessibility of cellulose component of biomass to subsequent thermal conversion in CFP. Consequently, the MW-FA pretreated beech wood produced 14.0-28.3% higher yields (26.4-29.8C%) for valuable aromatic products in CFP than the untreated control (23.2C%). In addition, the yields of undesired solid residue (char/coke) decreased from 33.1C% for the untreated control to 28.6-29.8C% for the MW-FA pretreated samples. These results demonstrate that MW-FA pretreatment can provide an effective way to improve the product distribution from CFP of lignocellulose. PMID:27176672

  8. Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK₁₇.

    PubMed

    Almarsdottir, Arnheidur Ran; Sigurbjornsdottir, Margret Audur; Orlygsson, Johann

    2012-03-01

    The ethanol production capacity from sugars and lignocellulosic biomass hydrolysates (HL) by Thermoanaerobacterium strain AK(17) was studied in batch cultures. The strain converts various carbohydrates to, acetate, ethanol, hydrogen, and carbon dioxide. Ethanol yields on glucose and xylose were 1.5 and 1.1 mol/mol sugars, respectively. Increased initial glucose concentration inhibited glucose degradation and end product formation leveled off at 30 mM concentrations. Ethanol production from 5 g L(-1) of complex biomass HL (grass, hemp, wheat straw, newspaper, and cellulose) (Whatman paper) pretreated with acid (0.50% H(2) SO(4)), base (0.50% NaOH), and without acid/base (control) and the enzymes Celluclast and Novozyme 188 (0.1 mL g(-1) dw; 70 and 25 U g(-1) of Celluclast and Novozyme 188, respectively) was investigated. Highest ethanol yields (43.0 mM) were obtained on cellulose but lowest on hemp leafs (3.6 mM). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The influence of various factors (HL, enzyme, and acid/alkaline concentrations) on end-product formation from 5 g L(-1) of grass and cellulose was further studied to optimize ethanol production. Highest ethanol yields (5.5 and 8.6 mM ethanol g(-1) grass and cellulose, respectively) were obtained at very low HL concentrations (2.5 g L(-1)); with 0.25% acid/alkali (v/v) and 0.1 mL g(-1) enzyme concentrations. Inhibitory effects of furfural and hydroxymethylfurfural during glucose fermentation, revealed a total inhibition in end product formation from glucose at 4 and 6 g L(-1), respectively. PMID:22012653

  9. Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries.

    PubMed

    Terán Hilares, Ruly; Dos Santos, Júlio César; Ahmed, Muhammad Ajaz; Jeon, Seok Hwan; da Silva, Silvio Silvério; Han, Jong-In

    2016-08-01

    Hydrodynamic cavitation (HC) was employed in order to improve the efficiency of alkaline pretreatment of sugarcane bagasse (SCB). Response surface methodology (RSM) was used to optimize pretreatment parameters: NaOH concentration (0.1-0.5M), solid/liquid ratio (S/L, 3-10%) and HC time (15-45min), in terms of glucan content, lignin removal and enzymatic digestibility. Under an optimal HC condition (0.48M of NaOH, 4.27% of S/L ratio and 44.48min), 52.1% of glucan content, 60.4% of lignin removal and 97.2% of enzymatic digestibility were achieved. Moreover, enzymatic hydrolysis of the pretreated SCB resulted in a yield 82% and 30% higher than the untreated and alkaline-treated controls, respectively. HC was found to be a potent and promising approach to pretreat lignocellulosic biomass. PMID:27183237

  10. Dissolution of cellulose from AFEX-pretreated Zoysia japonica in AMIMCl with ultrasonic vibration.

    PubMed

    Liu, Le; Ju, Meiting; Li, Weizun; Hou, Qidong

    2013-10-15

    In this study, 1-allyl-3-methylimidazolium chloride (AMIMCl), an ionic liquid, was synthesized and characterized by a series of test methods. Pretreatment of Zoysia japonica by ammonia fiber expansion (AFEX) was shown to reduce significantly the mass of hemicellulose and lignin in biomass, thereby breaking the lignocellulosic structure. Z. japonica samples pretreated with AFEX showed reasonable solubility in AMIMCl upon ultrasonic treatment. The rate of cellulose regeneration from Z. japonica samples pretreated with AFEX increased with increase in applied power of ultrasonication within a certain power range from 0 to 110 W. The regeneration rate of cellulose from AFEX-pretreated Z. japonica reached a maximum of 97% when the ultrasonic power was 110 W. Fourier transform infrared spectroscopy and nuclear magnetic resonance analyses indicated that the regenerated cellulose was similar to microcrystalline cellulose.

  11. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion.

    PubMed

    Fernandes, Maria C; Ferro, Miguel D; Paulino, Ana F C; Mendes, Joana A S; Gravitis, Janis; Evtuguin, Dmitry V; Xavier, Ana M R B

    2015-06-01

    The correct choice of the specific lignocellulosic biomass pretreatment allows obtaining high biomass conversions for biorefinery implementations and cellulosic bioethanol production from renewable resources. Cynara cardunculus (cardoon) pretreated by steam explosion (SE) was involved in second-generation bioethanol production using separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) processes. Steam explosion pretreatment led to partial solubilisation of hemicelluloses and increased the accessibility of residual polysaccharides towards enzymatic hydrolysis revealing 64% of sugars yield against 11% from untreated plant material. Alkaline extraction after SE pretreatment of cardoon (CSEOH) promoted partial removal of degraded lignin, tannins, extractives and hemicelluloses thus allowing to double glucose concentration upon saccharification step. Bioethanol fermentation in SSF mode was faster than SHF process providing the best results: ethanol concentration 18.7 g L(-1), fermentation efficiency of 66.6% and a yield of 26.6g ethanol/100 g CSEOH or 10.1 g ethanol/100 g untreated cardoon.

  12. Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars.

    PubMed

    Yoo, Juhyun; Alavi, Sajid; Vadlani, Praveen; Amanor-Boadu, Vincent

    2011-08-01

    Thermo-mechanical extrusion pretreatment for lignocellulosic biomass was investigated using soybean hulls as the substrate. The enzyme cocktail used to hydrolyze pretreated soybean hulls to fermentable sugars was optimized using response surface methodology (RSM). Structural changes in substrate and sugar yields from thermo-mechanical processing were compared with two traditional pretreatment methods that utilized dilute acid (1% sulfuric acid) and alkali (1% sodium hydroxide). Extrusion processing parameters (barrel temperature, in-barrel moisture, screw speed) and processing aids (starch, ethylene glycol) were studied with respect to reducing sugar and glucose yields. The conditions resulting in the highest cellulose to glucose conversion (95%) were screw speed 350rpm, maximum barrel temperature 80°C and in-barrel moisture content 40%wb. Compared with untreated soybean hulls, glucose yield from enzymatic hydrolysis of soybean hulls increased by 69.6%, 128.7% and 132.2%, respectively, when pretreated with dilute acid, alkali and extrusion.

  13. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  14. Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw

    PubMed Central

    2011-01-01

    Background Thermostable enzymes have several benefits in lignocellulose processing. In particular, they potentially allow the use of increased substrate concentrations (because the substrate viscosity decreases as the temperature increases), resulting in improved product yields and reduced capital and processing costs. A short pre-hydrolysis step at an elevated temperature using thermostable enzymes aimed at rapid liquefaction of the feedstock is seen as an attractive way to overcome the technical problems (such as poor mixing and mass transfer properties) connected with high initial solid loadings in the lignocellulose to ethanol process. Results The capability of novel thermostable enzymes to reduce the viscosity of high-solid biomass suspensions using a real-time viscometric measurement method was investigated. Heterologously expressed enzymes from various thermophilic organisms were compared for their ability to liquefy the lignocellulosic substrate, hydrothermally pretreated wheat straw. Once the best enzymes were identified, the optimal temperatures for these enzymes to decrease substrate viscosity were compared. The combined hydrolytic properties of the thermostable preparations were tested in hydrolysis experiments. The studied mixtures were primarily designed to have good liquefaction potential, and therefore contained an enhanced proportion of the key liquefying enzyme, EGII/Cel5A. Conclusions Endoglucanases were shown to have a superior ability to rapidly reduce the viscosity of the 15% (w/w; dry matter) hydrothermally pretreated wheat straw. Based on temperature profiling studies, Thermoascus aurantiacus EGII/Cel5A was the most promising enzyme for biomass liquefaction. Even though they were not optimized for saccharification, many of the thermostable enzyme mixtures had superior hydrolytic properties compared with the commercial reference enzymes at 55°C. PMID:21269447

  15. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.

  16. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. PMID:26121186

  17. Direct glucose production from lignocellulose using Clostridium thermocellum cultures supplemented with a thermostable β-glucosidase

    PubMed Central

    2013-01-01

    Background Cellulases continue to be one of the major costs associated with the lignocellulose hydrolysis process. Clostridium thermocellum is an anaerobic, thermophilic, cellulolytic bacterium that produces cellulosomes capable of efficiently degrading plant cell walls. The end-product cellobiose, however, inhibits degradation. To maximize the cellulolytic ability of C. thermocellum, it is important to eliminate this end-product inhibition. Results This work describes a system for biological saccharification that leads to glucose production following hydrolysis of lignocellulosic biomass. C. thermocellum cultures supplemented with thermostable beta-glucosidases make up this system. This approach does not require any supplementation with cellulases and hemicellulases. When C. thermocellum strain S14 was cultured with a Thermoanaerobacter brockii beta-glucosidase (CglT with activity 30 U/g cellulose) in medium containing 100 g/L cellulose (617 mM initial glucose equivalents), we observed not only high degradation of cellulose, but also accumulation of 426 mM glucose in the culture broth. In contrast, cultures without CglT, or with less thermostable beta-glucosidases, did not efficiently hydrolyze cellulose and accumulated high levels of glucose. Glucose production required a cellulose load of over 10 g/L. When alkali-pretreated rice straw containing 100 g/L glucan was used as the lignocellulosic biomass, approximately 72% of the glucan was saccharified, and glucose accumulated to 446 mM in the culture broth. The hydrolysate slurry containing glucose was directly fermented to 694 mM ethanol by addition of Saccharomyces cerevisiae, giving an 85% theoretical yield without any inhibition. Conclusions Our process is the first instance of biological saccharification with exclusive production and accumulation of glucose from lignocellulosic biomass. The key to its success was the use of C. thermocellum supplemented with a thermostable beta-glucosidase and cultured

  18. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation.

    PubMed

    Sitarz, Anna K; Mikkelsen, Jørn D; Højrup, Peter; Meyer, Anne S

    2013-12-10

    Based on a differential pre-screening of 44 white-rot fungi on a lignocellulose-supplemented minimal medium, four basidiomycetes were selected for further study: Ganoderma lucidum, Polyporus brumalis, Polyporus ciliatus and Trametes versicolor. Only G. lucidum was able to grow vividly on malt extract or minimal media supplemented with alkali lignin. When grown on malt extract or minimal medium supplemented with lignocellulose (sugar cane bagasse), the crude G. lucidum protein extract exhibited high laccase activity, ∼3U/mL toward syringaldazine. This activity was 13-17 fold higher than the corresponding activities of the crude protein extracts of P. brumalis, P. ciliatus and T. versicolor. Native PAGE electrophoresis of the crude G. lucidum extract confirmed the presence of an active laccase. The G. lucidum laccase had a molecular weight of ∼62.5kDa, and a Km value of 0.107mM (determined on ABTS). A partial amino acid sequence analysis of four short de novo sequenced peptides, defined after trypsin digest analysis using MALDI-TOF MS/MS analysis, revealed 64-100% homology to sequences in related laccases in the UniProt database, but also indicated that certain sequence stretches had low homology. Addition of the laccase-rich G. lucidum broth to lignocellulosic biomass (pretreated sugar cane bagasse) together with a state-of-the-art cellulase enzyme preparation (Cellic™CTec1) produced significantly increased cellulolytic yields, which were also better than those obtained with a T. versicolor laccase addition, indicating that the laccase from G. lucidum has unique properties that may be momentous in lignocellulosic biomass conversion.

  19. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation.

    PubMed

    Sitarz, Anna K; Mikkelsen, Jørn D; Højrup, Peter; Meyer, Anne S

    2013-12-10

    Based on a differential pre-screening of 44 white-rot fungi on a lignocellulose-supplemented minimal medium, four basidiomycetes were selected for further study: Ganoderma lucidum, Polyporus brumalis, Polyporus ciliatus and Trametes versicolor. Only G. lucidum was able to grow vividly on malt extract or minimal media supplemented with alkali lignin. When grown on malt extract or minimal medium supplemented with lignocellulose (sugar cane bagasse), the crude G. lucidum protein extract exhibited high laccase activity, ∼3U/mL toward syringaldazine. This activity was 13-17 fold higher than the corresponding activities of the crude protein extracts of P. brumalis, P. ciliatus and T. versicolor. Native PAGE electrophoresis of the crude G. lucidum extract confirmed the presence of an active laccase. The G. lucidum laccase had a molecular weight of ∼62.5kDa, and a Km value of 0.107mM (determined on ABTS). A partial amino acid sequence analysis of four short de novo sequenced peptides, defined after trypsin digest analysis using MALDI-TOF MS/MS analysis, revealed 64-100% homology to sequences in related laccases in the UniProt database, but also indicated that certain sequence stretches had low homology. Addition of the laccase-rich G. lucidum broth to lignocellulosic biomass (pretreated sugar cane bagasse) together with a state-of-the-art cellulase enzyme preparation (Cellic™CTec1) produced significantly increased cellulolytic yields, which were also better than those obtained with a T. versicolor laccase addition, indicating that the laccase from G. lucidum has unique properties that may be momentous in lignocellulosic biomass conversion. PMID:24315640

  20. Deconstruction of lignocellulosic biomass to fuels and chemicals.

    PubMed

    Chundawat, Shishir P S; Beckham, Gregg T; Himmel, Michael E; Dale, Bruce E

    2011-01-01

    Plants represent a vast, renewable resource and are well suited to provide sustainably for humankind's transportation fuel needs. To produce infrastructure-compatible fuels from biomass, two challenges remain: overcoming plant cell wall recalcitrance to extract sugar and phenolic intermediates, and reduction of oxygenated intermediates to fuel molecules. To compete with fossil-based fuels, two primary routes to deconstruct cell walls are under development, namely biochemical and thermochemical conversion. Here, we focus on overcoming recalcitrance with biochemical conversion, which uses low-severity thermochemical pretreatment followed by enzymatic hydrolysis to produce soluble sugars. Many challenges remain, including understanding how pretreatments affect the physicochemical nature of heterogeneous cell walls; determination of how enzymes deconstruct the cell wall effectively with the aim of designing superior catalysts; and resolution of issues associated with the co-optimization of pretreatment, enzymatic hydrolysis, and fermentation. Here, we highlight some of the scientific challenges and open questions with a particular focus on problems across multiple length scales. PMID:22432613

  1. Dilute acid saccharification of lignocellulosic biomass

    SciTech Connect

    Penner, M.H.; Hashimoto, A.G.

    1995-12-01

    Aqueous dilute sulfuric acid solutions have been evaluated in terms of their effectiveness for the saccharification of the insoluble xylan fraction of poplar and switchgrass feedstocks. Acid concentrations ranging from .6 to 1.2% have been tested at temperatures ranging from 120 to 160{degrees}C. Treatments at optimum time, temperature, and acid combinations provided xylose yields of approximately 90% theoretical. Rate constants associated with xylan hydrolysis and xylose degradation for each of the feed-stocks have been evaluated. In general, optimum yields were associated with high temperature treatments for relatively short reaction times. Results from our laboratory will be presented with reference to previously published studies on hemicellulose saccharification and in the general context of converting lignocellulosic biomass to useful products.

  2. Ultrasonically assisted liquefaction of lignocellulosic materials.

    PubMed

    Kunaver, Matjaž; Jasiukaitytė, Edita; Cuk, Nataša

    2012-01-01

    In our research, we have utilized high energy ultrasound for the liquefaction of different lignocellulosic materials, wood wastes in particular. We developed a highly efficient way of transforming this biomass waste into valuable chemicals. It was found, that the reaction yield in all experiments was high and that the reaction times were shortened up to nine times when using the ultrasound process with smaller residual particles and with no influence on the hydroxyl number of the final products. The use of the ultrasound process inhibits the formation of the large molecular structures during the liquefaction from the degradation products, by keeping the reactive segments apart and due to such a short reaction time being used. The short reaction time and subsequent low energy consumption for the liquefaction reaction leads to the creation of the new method for the transformation of the wood waste materials into valuable chemicals. PMID:22029956

  3. (Biotechnology for the conversion of lignocellulosics)

    SciTech Connect

    Woodward, J.

    1990-10-25

    This report summarizes the results of the traveler's participation in the International Energy Agency (IEA) Network planning meeting for Biotechnology for the Conversion of Lignocellulosics,'' held at the Institut Francais du Petrole (IFP), Rueil-Malmaison, France. It also summarizes the results of discussions held at Aston University, Birmingham, UK, with Dr. Martin Beevers with whom the traveler is attempting to initiate a collaborative research project that will be beneficial to ongoing research programs at Oak Ridge National Laboratory (ORNL). The itinerary for the trip is given in Appendix A; the names of the people contacted are listed in Appendix B. Also, pertinent information about the Institut Francais du Petrole is attached (Appendix C). 1 tab.

  4. Pretreatment of microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1995-01-01

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  5. Pretreatment of microbial sludges

    DOEpatents

    Rivard, C.J.; Nagle, N.J.

    1995-01-10

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  6. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    DOE PAGESBeta

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; C. Neal Stewart Jr.

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanolmore » (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.« less

  7. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    SciTech Connect

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; C. Neal Stewart Jr.

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  8. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    PubMed

    Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels. PMID:26437026

  9. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    PubMed Central

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; Stewart, C. Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels. PMID:26437026

  10. [Process strategy for ethanol production from lignocellulose feedstock under extremely low water usage and high solids loading conditions].

    PubMed

    Zhang, Jian; Chu, Deqiang; Yu, Zhanchun; Zhang, Xiaoxi; Deng, Hongbo; Wang, Xiusheng; Zhu, Zhinan; Zhang, Huaiqing; Dai, Gance; Bao, Jie

    2010-07-01

    The massive water and steam are consumed in the production of cellulose ethanol, which correspondingly results in the significant increase of energy cost, waster water discharge and production cost as well. In this study, the process strategy under extremely low water usage and high solids loading of corn stover was investigated experimentally and computationally. The novel pretreatment technology with zero waste water discharge was developed; in which a unique biodetoxification method using a kerosene fungus strain Amorphotheca resinae ZN1 to degrade the lignocellulose derived inhibitors was applied. With high solids loading of pretreated corn stover, high ethanol titer was achieved in the simultaneous saccharification and fermentation process, and the scale-up principles were studied. Furthermore, the flowsheet simulation of the whole process was carried out with the Aspen plus based physical database, and the integrated process developed was tested in the biorefinery mini-plant. Finally, the core technologies were applied in the cellulose ethanol demonstration plant, which paved a way for the establishment of an energy saving and environment friendly technology of lignocellulose biotransformation with industry application potential.

  11. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    PubMed

    Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  12. Evaluation of bacterial expansin EXLX1 as a cellulase synergist for the saccharification of lignocellulosic Agro-industrial wastes.

    PubMed

    Lin, Hui; Shen, Qi; Zhan, Ju-Mei; Wang, Qun; Zhao, Yu-Hua

    2013-01-01

    Various types of lignocellulosic wastes extensively used in biofuel production were provided to assess the potential of EXLX1 as a cellulase synergist. Enzymatic hydrolysis of natural wheat straw showed that all the treatments using mixtures of cellulase and an optimized amount of EXLX1, released greater quantities of sugars than those using cellulase alone, regardless of cellulase dosage and incubation time. EXLX1 exhibited different synergism and binding characteristics for different wastes, but this can be related to their lignocellulosic components. The cellulose proportion could be one of the important factors. However, when the cellulose proportion of different biomass samples exhibited no remarkable differences, a higher synergism of EXLX1 is prone to occur on these materials, with a high proportion of hemicellulose and a low proportion of lignin. The information could be favorable to assess whether EXLX1 is effective as a cellulase synergist for the hydrolysis of the used materials. Binding assay experiments further suggested that EXLX1 bound preferentially to alkali pretreated materials, as opposed to acid pretreated materials under the assay condition and the binding preference would be affected by incubation temperature.

  13. Enhancement in the enzymatic digestibility of hybrid poplar with poor residual hemicelluloses after Na2SO3 pretreatment.

    PubMed

    Jiang, Hua; Han, Binbin; Ge, Jianhong

    2015-03-01

    The aim of this work was to illustrate the contributions of delignification and the introduced sulfonic groups on the enzymatic digestibility of the Na2SO3-pretreated hybrid poplar with poor residual hemicelluloses (HPPRH). The higher the content of the introduced sulfonic group in the pretreated HPPRH was, the higher its enzymatic digestibility could be achieved. Delignification was favorable to increasing the content of sulfonic group in the pretreated HPPRH. The introduced sulfonic group contributed much more to the total glucose yield at low level of residual lignin. The introduced sulfonic groups could contribute 17.30% of total glucose yield (92.70%) and delignification could do 38.43% of it. Meanwhile, the delignification rate and the sulfonic group content in the pretreated HPRH were 59.88% and 283.51mmolkg(-1) lignin, respectively. Therefore, the sulfonic group introduced on the pretreated lignocellulosics could improve the enzymatic digestibility and make the sulfite process effective. PMID:25621727

  14. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges.

    PubMed

    Jin, Mingjie; Slininger, Patricia J; Dien, Bruce S; Waghmode, Suresh; Moser, Bryan R; Orjuela, Andrea; Sousa, Leonardo da Costa; Balan, Venkatesh

    2015-01-01

    Although single-cell oil (SCO) has been studied for decades, lipid production from lignocellulosic biomass has received substantial attention only in recent years as biofuel research moves toward producing drop-in fuels. This review gives an overview of the feasibility and challenges that exist in realizing microbial lipid production from lignocellulosic biomass in a biorefinery. The aspects covered here include biorefinery technologies, the microbial oil market, oleaginous microbes, lipid accumulation metabolism, strain development, process configurations, lignocellulosic lipid production, technical hurdles, lipid recovery, and technoeconomics. The lignocellulosic SCO-based biorefinery will be feasible only if a combination of low- and high-value lipids are coproduced, while lignin and protein are upgraded to high-value products.

  15. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota.

    PubMed

    Ni, Jinfeng; Tokuda, Gaku

    2013-11-01

    Lignocellulose-the dry matter of plants, or "plant biomass"-digestion is of increasing interest in organismal metabolism research, specifically the conversion of biomass into biofuels. Termites efficiently decompose lignocelluloses, and studies on lignocellulolytic systems may elucidate mechanisms of efficient lignocellulose degradation in termites as well as offer novel enzyme sources, findings which have significant potential industrial applications. Recent progress in metagenomic and metatranscriptomic research has illuminated the diversity of lignocellulolytic enzymes within the termite gut. Here, we review state-of-the-art research on lignocellulose-degrading systems in termites, specifically cellulases, xylanases, and lignin modification enzymes produced by termites and their symbiotic microbiota. We also discuss recent investigations into heterologous overexpression of lignocellulolytic enzymes from termites and their symbionts.

  16. Anaerobic digestion of yard waste with hydrothermal pretreatment.

    PubMed

    Li, Wangliang; Zhang, Guangyi; Zhang, Zhikai; Xu, Guangwen

    2014-03-01

    The digestibility of lignocellulosic biomass is limited by its high content of refractory components. The objective of this study is to investigate hydrothermal pretreatment and its effects on anaerobic digestion of sorted organic waste with submerged fermentation. Hydrothermal pretreatment (HT) was performed prior to anaerobic digestion, and three agents were examined for the HT: hot compressed water, alkaline solution, and acidic solution. The concentrations of glucose and xylose were the highest in the sample pretreated in acidic solution. Compared with that of the untreated sample, the biogas yields from digesting the samples pretreated in alkaline solution, acidic solution, and hot water increased by 364, 107, and 79%, respectively. The decrease of chemical oxygen demand (COD) in liquid phase followed the same order as for the biogas yield. The initial ammonia content of the treated samples followed the order sample treated in acidic solution > sample treated in alkaline solution > sample treated in hot water. The concentrations of volatile fatty acids (VFAs) were low, indicating that the anaerobic digestion process was running at continuously stable conditions.

  17. Pretreatment and fractionation of wheat straw using various ionic liquids.

    PubMed

    Lopes, André M da Costa; João, Karen G; Bogel-Łukasik, Ewa; Roseiro, Luísa B; Bogel-Łukasik, Rafał

    2013-08-21

    Pretreatment of lignocellulosic biomass with ionic liquids (ILs) is a promising and challenging process for an alternative method of biomass processing. The present work emphasizes the examination of wheat straw pretreatment using ILs, namely, 1-butyl-3-methylimidazolium hydrogensulfate ([bmim][HSO4]), 1-butyl-3-methylimidazolium thiocyanate ([bmim][SCN]), and 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN)2]). Only [bmim][HSO4] was found to achieve a macroscopic complete dissolution of wheat straw during pretreatment. The fractionation process demonstrated to be dependent on the IL used. Using [bmim][SCN], a high-purity lignin-rich material was obtained. In contrast, [bmim][N(CN)2] was a good solvent to produce high-purity carbohydrate-rich fractions. When [bmim][HSO4] was used, a different behavior was observed, exhibiting similarities to an acid hydrolysis pretreatment, and no hemicellulose-rich material was recovered during fractionation. A capillary electrophoresis (CE) technique allowed for a better understanding of this phenomenon. Hydrolysis of carbohydrates was confirmed, although an extended degradation of monosaccharides to furfural and hydroxymethylfurfural (HMF) was observed.

  18. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB).

    PubMed

    Ishola, Mofoluwake M; Isroi; Taherzadeh, Mohammad J

    2014-08-01

    Oil palm empty fruit bunches (OPEFB), a lignocellulosic residue of palm oil industries was examined for ethanol production. Milled OPEFB exposed to simultaneous saccharification and fermentation (SSF) with enzymes and Saccharomyces cerevisiae resulted just in 14.5% ethanol yield compared to the theoretical yield. Therefore, chemical pretreatment with phosphoric acid, a biological pretreatment with white-rot fungus Pleurotus floridanus, and their combination were carried out on OPEFB prior to the SSF. Pretreatment with phosphoric acid, combination of both methods and just fungal pretreatment improved the digestibility of OPEFB by 24.0, 16.5 and 4.5 times, respectively. During the SSF, phosphoric acid pretreatment, combination of fungal and phosphoric acid pretreatment and just fungal pretreatment resulted in the highest 89.4%, 62.8% and 27.9% of the theoretical ethanol yield, respectively. However, the recovery of the OPEFB after the fungal pretreatment was 98.7%, which was higher than after phosphoric acid pretreatment (36.5%) and combined pretreatment (45.2%).

  19. Influence of surfactant-free ionic liquid microemulsions pretreatment on the composition, structure and enzymatic hydrolysis of water hyacinth.

    PubMed

    Xu, Fan; Chen, Li; Wang, Aili; Yan, Zongcheng

    2016-05-01

    This study investigated the pretreatment performance of surfactant-free ionic liquid microemulsions (ILMs) on water hyacinth. Pretreatment effects were evaluated in terms of lignocellulosic composition, structure and enzymatic hydrolysis. Analysis of the regenerated water hyacinth indicated that the content of the lignocellulosic composition changed, and the surface became more porous. After being pretreated with ILM(a) (mass ratio of toluene: ethanol: 1-ethyl-3-methylimidazolium acetate ([Emim]Ac)=0.35:0.3:0.35) at 70°C for 12h, the maximum delignification of 63.6% was observed. The cellulose of the water hyacinth was well protected and retained during the pretreatment process. After being enzymatically hydrolyzed for 48 h, the reducing sugar yield of the water hyacinth pretreated with ILM(a) at 70°C for 6 h was 563.7 mg/g, and its hydrolysis yield (86.1%) was nearly four and a half times of that of the untreated one (20.2%). In conclusion, the designed surfactant-free ILMs exhibit promising potential application in biomass pretreatment. PMID:26913644

  20. Comparative lipid production on hydrolyzates of pretreated lignocellulosic biomass using Oleaginous yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipid, predominantly as triacylglycerides. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic and linoleic acids. This capability provides the opp...

  1. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.

    PubMed

    Cunha, Joana T; Aguiar, Tatiana Q; Romaní, Aloia; Oliveira, Carla; Domingues, Lucília

    2015-09-01

    PRS3, RPB4 and ZWF1 were previously identified as key genes for yeast tolerance to lignocellulose-derived inhibitors. To better understand their contribution to yeast resistance to the multiple stresses occurring during lignocellulosic hydrolysate fermentations, we overexpressed these genes in two industrial Saccharomyces cerevisiae strains, CCUG53310 and PE-2, and evaluated their impact on the fermentation of Eucalyptus globulus wood and corn cob hydrolysates. PRS3 overexpression improved the fermentation rate (up to 32%) and productivity (up to 48%) in different hydrolysates. ZWF1 and RPB4 overexpression did not improve the fermentation performance, but their increased expression in the presence of acetic acid, furfural and hydroxymethylfurfural was found to contribute to yeast adaptation to these inhibitors. This study expands our understanding about the molecular mechanisms involved in industrial yeast tolerance to the stresses occurring during lignocellulosic bioethanol production and highlights the importance of selecting appropriate strain backgrounds/hydrolysates combinations when addressing further improvement of these processes.

  2. Using high pressure processing (HPP) to pretreat sugarcane bagasse.

    PubMed

    Castañón-Rodríguez, J F; Torrestiana-Sánchez, B; Montero-Lagunes, M; Portilla-Arias, J; Ramírez de León, J A; Aguilar-Uscanga, M G

    2013-10-15

    High pressure processing (HPP) technology was used to modify the structural composition of sugarcane bagasse. The effect of pressure (0, 150 and 250 MPa), time (5 and 10 min) and temperature (25 and 50 °C) as well as the addition of phosphoric acid, sulfuric acid and NaOH during the HPP treatment were assessed in terms of compositional analysis of the lignocellulosic fraction, structural changes and crystallinity of the bagasse. The effect of HPP pretreatment on the bagasse structure was also evaluated on the efficiency of the enzymatic hydrolysis of bagasse. Results showed that 68.62 and 45.84% of the hemicellulose fraction was degraded by pretreating at 250 MPa with sulfuric and phosphoric acids, respectively. The removal of lignin (54.10%) was higher with the HPP-NaOH treatment. The compacted lignocellulosic structure of the raw bagasse was modified by the HPP treatments and showed few cracks, tiny holes and some fragments flaked off from the surface. Structural changes were higher at 250 MPa and 50 °C. The X ray diffraction (XRD) patterns of the raw bagasse showed a major diffraction peak of the cellulose crystallographic 2θ planes ranging between 22 and 23°. The distribution of the crystalline structure of cellulose was affected by increasing the pressure level. The HPP treatment combined with NaOH 2% led to the higher glucose yield (25 g/L) compared to the combination of HPP with water and acids (>5 g/L). Results from this work suggest that HPP technology may be used to pretreat sugarcane bagasse.

  3. Steam pretreatment of spruce forest residues: optimal conditions for biogas production and enzymatic hydrolysis.

    PubMed

    Janzon, Ron; Schütt, Fokko; Oldenburg, Saskia; Fischer, Elmar; Körner, Ina; Saake, Bodo

    2014-01-16

    Steam refining of non-debarked spruce forest residues was investigated as pretreatment for enzymatic hydrolysis as well as for biogas production. Pretreatment conditions were varied in the range of 190-220 °C, 5-10 min and 0-3.7% SO₂ according to a statistical design. For both applications highest product yields were predicted at 220 °C and 2.4% SO₂, whereas the reaction time had only a minor influence. The conformity of the model results allows the conclusion that enzymatic hydrolysis is a suitable test method to evaluate the degradability of lignocellulosic biomass in the biogas process. In control experiments under optimal conditions the results of the model were verified. The yield of total monomeric carbohydrates after enzymatic hydrolysis was equivalent to 55% of all theoretically available polysaccharides. The corresponding biogas yield from the pretreated wood amounted to 304 mL/gODM. Furthermore, furans produced under optimal process conditions showed no inhibitory effect on biogas production. It can be concluded that steam refining opens the structure of wood, thus improving the enzymatic hydrolysis of the polysaccharides to fermentable monomeric sugars and subsequently enabling a higher and faster production of biogas. Anaerobic fermentation of pretreated wood is a serious alternative to alcoholic fermentation especially when low quality wood grades and residues are used. Anaerobic digestion should be further investigated in order to diversify the biorefinery options for lignocellulosic materials.

  4. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    PubMed

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently.

  5. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    PubMed

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. PMID:19998277

  6. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    SciTech Connect

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  7. The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report

    SciTech Connect

    Grethlein, H.E.; Dill, T.

    1993-04-30

    The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

  8. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    PubMed

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance.

  9. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review.

    PubMed

    Bundhoo, M A Zumar; Mohee, Romeela; Hassan, M Ali

    2015-07-01

    Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale.

  10. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review.

    PubMed

    Bundhoo, M A Zumar; Mohee, Romeela; Hassan, M Ali

    2015-07-01

    Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale. PMID:25881150

  11. Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment.

    PubMed

    Liang, Yanna; Jarosz, Kimberly; Wardlow, Ashley T; Zhang, Ji; Cui, Yi

    2014-08-01

    Corn fiber and sweet sorghum bagasse (SSB) are both pre-processed lignocellulosic materials that can be used to produce liquid biofuels. Pretreatment using dilute sulfuric acid at a severity factor of 1.06 and 1.02 released 83.2 and 86.5 % of theoretically available sugars out of corn fiber and SSB, respectively. The resulting hydrolysates derived from pretreatment of SSB at SF of 1.02 supported growth of Cryptococcus curvatus well. In 6 days, the dry cell density reached 10.8 g/l with a lipid content of 40 % (w/w). Hydrolysates from corn fiber, however, did not lead to any significant cell growth even with addition of nutrients. In addition to consuming glucose, xylose, and arabinose, C. curvatus also utilized formic acid, acetic acid, 4-hydroxymethylfurfural, and levulinic acid for growth. Thus, C. curvatus appeared to be an excellent yeast strain for producing lipids from hydrolysates developed from lignocellulosic feedstocks. PMID:24928546

  12. Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes).

    PubMed

    Gao, Jing; Chen, Li; Yan, Zongcheng; Wang, Lin

    2013-03-01

    The effect of the pretreatment of water hyacinth with ionic liquid and co-solvent on the lignocellulosic composition, structural change and biogas production was evaluated in this study. The results from regenerated water hyacinth indicate that, the content of the lignocellulosic composition was changed, the crystallinity of the structure was decreased, and the surface became more porous. After the pretreatment with 1-N-butyl-3-methyimidazolium chloride ([Bmim]Cl)/dimethyl sulfoxide (DMSO) under 120°C for 120min, the cellulose content of regenerated water hyacinth was increased by 27.9%, 49.2% of the lignin was removed, and the biogas yield was increased by 97.6% as compared with unpretreated water hyacinth. The ionic liquids and co-solvents were successfully recovered by forming aqueous biphasic systems with K3PO4. PMID:23186677

  13. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  14. Bacterial conversion of lignocellulose to ethanol

    SciTech Connect

    Ingram, L.O.

    1996-10-01

    Technologies for fuel ethanol production from lignocellulose are currently available. The challenge today is to assemble these technologies into a commercial demonstration plant. Bacteria such as Escherichia coli strain KO11 have been specifically engineered to produce ethanol at greater than 90% of theoretical yield (40 g ethanol/L in 48 h) from all sugar constituents in hemicellulose (pentoses and hexoses). Methods have been developed to produce fermentable hemicellulose syrups containing high concentrations of sugars. The effectiveness of strain KO11 has been demonstrated with hemicellulose syrups at the 150-liter scale and with laboratory sugars at the 10,000-liter scale. Additional organisms such as Klebsiella oxytoca strain P2 have been engineered for the simultaneous saccharification and fermentation of cellulose (SSF). Cellulase enzymes is one of the major costs associated with all SSF processes. The new organisms eliminate the need for added cellobiase and in some cases produce part of the endoglucanase. Strain P2 has been tested with bagasse, purified cellulose and mixed waste office paper. A simple method of enzyme recycling was tested using strain P2 with office paper as a substrate. Ethanol yields were prejected to be over 539 liters per metric ton. With onsite production, the estimated cost of cellulose for this process is 8.5 cents (U.S.) per liter.

  15. Enzymatic conversion of pretreated biomass into fermentable sugars for biorefinery operation

    NASA Astrophysics Data System (ADS)

    Gao, Dahai

    2011-12-01

    Depleting petroleum reserves and potential climate change caused by fossil fuel consumption have attracted significant attention towards the use of alternative renewable resources for production of fuels and chemicals. Lignocellulosic biomass provides a plentiful resource for the sustainable production of biofuels and biochemicals and could serve as an important contributor to the world energy portfolio in the near future. Successful biological conversion of lignocellulosic biomass requires an efficient and economical pretreatment method, high glucose/xylose yields during enzymatic hydrolysis and fermentation of both hexose and pentose to ethanol. High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. Core glycosyl hydrolases were isolated and purified from various sources to help rationally optimize an enzyme cocktail to digest ammonia fiber expansion (AFEX) treated corn stover. The four core cellulases were endoglucanase I (EG I), cellobiohydrolase I (CBH I), cellobiohydrolase II (CBH II) and beta-Glucosidase (betaG). The two core hemicellulases were an endoxylanase (EX) and a beta-xylosidase (betaX). A diverse set of accessory hemicellulases from bacterial sources was found necessary to enhance the synergistic action of cellulases hydrolysing AFEX pretreated corn stover. High glucose (around 80%) and xylose (around 70%) yields were achieved with a moderate enzyme loading (˜20 mg protein/g glucan) using an in-house developed enzyme cocktail and this cocktail was compared to commercial enzyme. Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products

  16. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    SciTech Connect

    Davis, R.; Tao, L.; Scarlata, C.; Tan, E. C. D.; Ross, J.; Lukas, J.; Sexton, D.

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  17. Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion

    PubMed Central

    Song, Zilin; GaiheYang; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

    2014-01-01

    Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and 4% (w/w) and three alkaline reagents (NaOH, Ca(OH)2, and NH3·H2O) at concentrations of 4%, 6%, 8%, and 10% (w/w) were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH)2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS −1 in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH)2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost. PMID:24695485

  18. Aqueous ammonia pretreatment, saccharification, and fermentation evaluation of oil palm fronds for ethanol production.

    PubMed

    Jung, Young Hoon; Kim, Sooah; Yang, Taek Ho; Lee, Hee Jong; Seung, Doyoung; Park, Yong-Cheol; Seo, Jin-Ho; Choi, In-Geol; Kim, Kyoung Heon

    2012-11-01

    Oil palm fronds are the most abundant lignocellulosic biomass in Malaysia. In this study, fronds were tested as the potential renewable biomass for ethanol production. The soaking in aqueous ammonia pretreatment was applied, and the fermentability of pretreated fronds was evaluated using simultaneous saccharification and fermentation. The optimal pretreatment conditions were 7 % (w/w) ammonia, 80 °C, 20 h of pretreatment, and 1:12 S/L ratio, where the enzymatic digestibility was 41.4 % with cellulase of 60 FPU/g-glucan. When increasing the cellulase loading in the hydrolysis of pretreated fronds, the enzymatic digestibility increased until the enzyme loading reached 60 FPU/g-glucan. With 3 % glucan loading in the SSF of pretreated fronds, the ethanol concentration and yield based on the theoretical maximum after 12 and 48 h of the SSF were 7.5 and 9.7 g/L and 43.8 and 56.8 %, respectively. The ethanol productivities found at 12 and 24 h from pretreated fronds were 0.62 and 0.36 g/L/h, respectively.

  19. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    NASA Astrophysics Data System (ADS)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  20. Termite symbiotic systems: efficient bio-recycling of lignocellulose.

    PubMed

    Ohkuma, M

    2003-03-01

    Termites thrive in great abundance in terrestrial ecosystems and play important roles in biorecycling of lignocellulose. Together with their microbial symbionts, they efficiently decompose lignocellulose. In so-called lower termites, a dual decomposing system, consisting of the termite's own cellulases and those of its gut protists, was elucidated at the molecular level. Higher termites degrade cellulose apparently using only their own enzymes, because of the absence of symbiotic protists. Termite gut prokaryotes efficiently support lignocellulose degradation. However, culture-independent molecular studies have revealed that the majority of these gut symbionts have not yet been cultivated, and that the gut symbiotic community shows a highly structured spatial organization. In situ localization of individual populations and their functional interactions are important to understand the nature of symbioses in the gut. In contrast to cellulose, lignin degradation does not appear to be important in the gut of wood-feeding termites. Soil-feeding termites decompose humic substances in soil at least partly, but little is known about the decomposition. Fungus-growing termites are successful in the almost complete decomposition of lignocellulose in a sophisticated cooperation with basidiomycete fungi cultivated in their nest. A detailed understanding of efficient biorecycling systems, such as that for lignocellulose, and the symbioses that provide this efficiency will benefit applied microbiology and biotechnology.

  1. Thermoset-cross-linked lignocellulose: a moldable plant biomass.

    PubMed

    Karumuri, Sriharsha; Hiziroglu, Salim; Kalkan, A Kaan

    2015-04-01

    The present work demonstrates a high biomass content (i.e., up to 90% by weight) and moldable material by controlled covalent cross-linking of lignocellulosic particles by a thermoset through epoxide-hydroxyl reactions. As an example for lignocellulosic biomass, Eastern redcedar was employed. Using scanning fluorescence microscopy and vibrational spectroscopy, macroscopic to molecular scale interactions of the thermoset with the lignocellulose have been revealed. Impregnation of the polymer resin into the biomass cellular network by capillary action as well as applied pressure results in a self-organizing structure in the form of thermoset microrods in a matrix of lignocellulose. We also infer permeation of the thermoset into the cell walls from the reaction of epoxides with the hydroxyls of the lignin. Compression tests reveal, at 30% thermoset content, thermoset-cross-linked lignocellulose has superior mechanical properties over a commercial wood plastic composite while comparable stiffness and strength to bulk epoxy and wood, respectively. The failure mechanism is understood to be crack propagation along the particle-thermoset interface and/or interparticle thermoset network. PMID:25734539

  2. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    PubMed Central

    2012-01-01

    Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%) > >[C2mim]Cl(53%) = [C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography). Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved

  3. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    PubMed

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment. PMID:26350883

  4. The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw.

    PubMed

    Sun, Fubao Fuelbiol; Wang, Liang; Hong, Jiapeng; Ren, Junli; Du, Fengguang; Hu, Jinguang; Zhang, Zhenyu; Zhou, Bangwei

    2015-01-01

    Given that the glycerol organosolv pretreatment (GOP) can effectively improve the hydrolyzability of various lignocellulosic substrates, physicochemical changes of the substrate before and after the pretreatment was characterized to elucidate what is responsible for it. The effect of GOP on the main components and hydrolyzability of wheat straw was revisited. Results demonstrate that the GOP should be a promising candidate for the current pretreatment. Then the composition and structure of substrates was measured at multi-dimensional scales by using various analytic equipment such as TGA, SEM, AFM, CLSM, FT-IR, XRD and solid-state CP/MAS (13)C NMR. This paper reports some new insights on the mechanism behind that, which can be beneficial for further development, optimization, and scale-up of the GOP process.

  5. Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation.

    PubMed

    Merali, Zara; Ho, Justin D; Collins, Samuel R A; Le Gall, Gwénaëlle; Elliston, Adam; Käsper, Andres; Waldron, Keith W

    2013-03-01

    Thermophysical pretreatment enhances the enzymatic hydrolysis of lignocellulose. However, its impact on cell wall chemistry is still poorly understood. This paper reports the effects of hydrothermal pretreatment on the degradation and alkali-extractability of wheat straw cell wall polymers. Pretreatment resulted in loss and/or solubilization of arabinoxylans (by 53%), ferulic and diferulic acids which are important cross-linking agents accompanied by concomitant increases in cellulose (up to 43%) and lignin (29%). The remaining water-insoluble hemicelluloses were more readily extractable in alkali and were reduced in molecular weight indicating substantial thermochemical depolymerization. They were also associated with smaller but significant amounts of (cellulose-derived) glucose. The alkali-insoluble residues consisted predominantly of cellulosic glucose and lignin and contained p-coumaric acid. The depolymerization of hemicelluloses, reduction in cinnamic acids and partial degradation of cellulose is likely to contribute significantly to the accessibility of cellulases during subsequent enzymolysis.

  6. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    PubMed

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment.

  7. Life cycle assessment of bioethanol production from woodchips with modifications in the pretreatment process.

    PubMed

    Shadbahr, Jalil; Zhang, Yan; Khan, Faisal

    2015-01-01

    Pretreatment as a crucial step in the process of ethanol production has significant influences on the process efficiency and on the environmental performance of the bioethanol production from lignocellulosic biomass. In present life cycle analysis (LCA) study, two cases for pretreatment of woodchips were considered as the focal point of the ethanol plant. One was assumed as base scenario whereas the second is the proposed alternative by implementation of modifications on the base design. In the first stage, LCA results of pretreatment unit showed lower environmental impacts in respiratory inorganics and land use than in new scenario, while the base scenario revealed better performance in fossil fuels. The results of the second stage of LCA study demonstrated improvement in proposed design in most categories of environmental impacts such as 18.5 % in land use as well as 17 % improvement in ecosystem quality. PMID:25367284

  8. Hot water extraction and steam explosion as pretreatments for ethanol production from spruce bark.

    PubMed

    Kemppainen, Katariina; Inkinen, Jenni; Uusitalo, Jaana; Nakari-Setälä, Tiina; Siika-aho, Matti

    2012-08-01

    Spruce bark is a source of interesting polyphenolic compounds and also a potential but little studied feedstock for sugar route biorefinery processes. Enzymatic hydrolysis and fermentation of spruce bark sugars to ethanol were studied after three different pretreatments: steam explosion (SE), hot water extraction (HWE) at 80 °C, and sequential hot water extraction and steam explosion (HWE+SE), and the recovery of different components was determined during the pretreatments. The best steam explosion conditions were 5 min at 190 °C without acid catalyst based on the efficiency of enzymatic hydrolysis of the material. However, when pectinase was included in the enzyme mixture, the hydrolysis rate and yield of HWE bark was as good as that of SE and HWE+SE barks. Ethanol was produced efficiently with the yeast Saccharomyces cerevisiae from the pretreated and hydrolysed materials suggesting the suitability of spruce bark to various lignocellulosic ethanol process concepts.

  9. Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover.

    PubMed

    Liu, Chen-Guang; Liu, Li-Yang; Zi, Li-Han; Zhao, Xin-Qing; Xu, You-Hai; Bai, Feng-Wu

    2014-08-01

    Instant catapult steam explosion (ICSE) offers enormous physical force on lignocellulosic biomass due to its extremely short depressure duration. In this article, the response surface methodology was applied to optimize the effect of working parameters including pressure, maintaining time and mass loading on the crystallinity index and glucose yield of the pretreated corn stover. It was found that the pressure was of essential importance, which determined the physical force that led to the morphological changes without significant chemical reactions, and on the other hand the maintaining time mainly contributed to the thermo-chemical reactions. Furthermore, the pretreated biomass was assessed by scanning electron microscope, X-ray diffraction and Fourier transform infrared spectra to understand mechanisms underlying the ICSE pretreatment.

  10. Hydrothermal and organosolv pretreatments of poplar wood and wheat straw for saccharification by a Trichoderma viride cellulase

    SciTech Connect

    Bonn, G.; Hoermeyer, H.F.; Bobleter, O.

    1987-01-01

    Two types of processes have been applied for the pretreatment of lignocellulosic materials in order to render them easily degradable by the cellulase of Trichoderma viride. They were compared at different temperatures, with regard both to the residual dry mass and the improvement in accessibility to the enzyme complex. The latter was measured in terms of glucose liberated, which was quantified by HPLC. Hydrothermolysis proved more effective than the organosolv process for the pretreatment of wheat straw, and vice versa for poplar wood. In terms of the percentage of glucan enzymatically converted to glucose, yields up to 90% could be achieved. 16 references.

  11. Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Monolayers and Lignocellulosic Substrates: A Chemical Force Microscopy Study.

    PubMed

    Arslan, Baran; Ju, Xiaohui; Zhang, Xiao; Abu-Lail, Nehal I

    2015-09-22

    Lack of fundamental understanding of cellulase interactions with different plant cell wall components during cellulose saccharification hinders progress toward achieving an economic production of biofuels from renewable plant biomass. Here, chemical force microscopy (CFM) was utilized to quantify the interactions between two surfaces that model either hydrophilic or hydrophobic functional groups of cellulases and a set of lignocellulosic substrates prepared through Kraft, sulfite, or organosolv pulping with defined chemical composition. The measured forces were then decoupled into specific and nonspecific components using the Poisson statistical approach. Heterogeneities in the distributions of forces as a function of the pretreatment method were mapped. Our results showed that hydrophobic domains and chemical moieties involved in hydrogen bonding and polar interactions were homogeneously distributed on all substrates but with distribution densities that varied with the type of the pretreatment method used to prepare substrates. In addition, we showed that increasing surface lignin coverage increased the heterogeneity of the substrates. When forces were decoupled, our results indicated that xylan reduced the strength of hydrogen bonding between the hydrophilic model surface and substrates. Permanent dipole-dipole interactions dominated the adhesion of the hydrophilic model surface to lignosulfonates, whereas hydrophobic interactions facilitated the adhesion of the hydrophobic model surface to Kraft lignin. We further showed that the structure of lignin determines the type of forces that dominate lignocellulosic interactions with other surfaces. Our findings suggest that nonproductive binding of cellulases to lignocellulosic biomass can be reduced by altering the hydrophobicity and/or chemical moieties involved in the polar interactions and by utilizing organosolv as a pretreatment method. PMID:26339982

  12. Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Monolayers and Lignocellulosic Substrates: A Chemical Force Microscopy Study.

    PubMed

    Arslan, Baran; Ju, Xiaohui; Zhang, Xiao; Abu-Lail, Nehal I

    2015-09-22

    Lack of fundamental understanding of cellulase interactions with different plant cell wall components during cellulose saccharification hinders progress toward achieving an economic production of biofuels from renewable plant biomass. Here, chemical force microscopy (CFM) was utilized to quantify the interactions between two surfaces that model either hydrophilic or hydrophobic functional groups of cellulases and a set of lignocellulosic substrates prepared through Kraft, sulfite, or organosolv pulping with defined chemical composition. The measured forces were then decoupled into specific and nonspecific components using the Poisson statistical approach. Heterogeneities in the distributions of forces as a function of the pretreatment method were mapped. Our results showed that hydrophobic domains and chemical moieties involved in hydrogen bonding and polar interactions were homogeneously distributed on all substrates but with distribution densities that varied with the type of the pretreatment method used to prepare substrates. In addition, we showed that increasing surface lignin coverage increased the heterogeneity of the substrates. When forces were decoupled, our results indicated that xylan reduced the strength of hydrogen bonding between the hydrophilic model surface and substrates. Permanent dipole-dipole interactions dominated the adhesion of the hydrophilic model surface to lignosulfonates, whereas hydrophobic interactions facilitated the adhesion of the hydrophobic model surface to Kraft lignin. We further showed that the structure of lignin determines the type of forces that dominate lignocellulosic interactions with other surfaces. Our findings suggest that nonproductive binding of cellulases to lignocellulosic biomass can be reduced by altering the hydrophobicity and/or chemical moieties involved in the polar interactions and by utilizing organosolv as a pretreatment method.

  13. Biomass Pretreatment using Ionic Liquid and Glycerol Mixtures

    NASA Astrophysics Data System (ADS)

    Lynam, Joan Goerss

    Lignocellulosic biomass is a renewable, sustainable resource that can replace or supplement fossil fuels use for liquid fuels and chemicals. However, its recalcitrant structure including interwoven cellulose, hemicelluloses, and lignin biomacromolecules is challenging to deconstruct. Pretreating biomass so that it can be converted to useful liquids dominates process economics. Many pretreatment methods exist, but most require hazardous chemicals or processing conditions. Many ionic liquids (ILs), salts molten below 100°C, can be used to deconstruct lignocellulosic biomass and are less hazardous than the volatile organic compounds typically used. While effective, relatively safe, and recyclable, ILs are expensive. To reduce costs, dilution with other safe compounds is desirable, if there is no impact on deconstruction efficiency. Glycerol, a food additive, is inexpensive and becoming even more so since it is a by-product of the burgeoning biodiesel industry. Use of glycerol as an additive or diluent for ILs is extensively evaluated in this work. Rice hulls are an abundant biomass, with over 100 million tons produced per year, but with little practical use. The IL 1-ethyl-3-methylimidazolium formate ([C2mim][O2CH] or EMIM Form) when mixed with an equal amount of glycerol has been shown to be effective in pretreating rice hulls. Ambient pressure, a pretreatment temperature of 110°C, and a reaction time of three hours produced rice hulls that could be enzymatically hydrolyzed to give reasonably good glucose and xylose yields considering the recalcitrance of this silica-armored biomass. The IL [C2mim][O2CH] was also effective when mixed with an equal amount of glycerol to pretreat loblolly pine, a fast-growing softwood. Loblolly pine was pretreated at 140°C for three hours to produce a solid rich in cellulose and hemicelluloses, while a lignin-rich product could be precipitated from the IL. Similar products were obtained from pretreatment with a mixture of 75% 1

  14. Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates.

    PubMed

    Wang, Jianqing; Zhang, Yan; Chen, Yilu; Lin, Min; Lin, Zhanglin

    2012-12-01

    Lignocellulosic biomass is regarded as the most viable source of feedstock for industrial biorefinery, but the harmful inhibitors generated from the indispensable pretreatments prior to fermentation remain a daunting technical hurdle. Using an exogenous regulator, irrE, from the radiation-resistant Deinococcus radiodurans, we previously showed that a novel global regulator engineering (GRE) approach significantly enhanced tolerances of Escherichia coli to alcohol and acetate stresses. In this work, an irrE library was subjected to selection under various stresses of furfural, a typical hydrolysate inhibitor. Three furfural tolerant irrE mutants including F1-37 and F2-1 were successfully obtained. The cells containing these mutants reached OD(600) levels of 4- to 16-fold of that for the pMD18T cells in growth assay under 0.2% (v/v) furfural stress. The cells containing irrE F1-37 and F2-1 also showed considerably reduced intracellular oxygen species (ROS) levels under furfural stress. Moreover, these two irrE mutants were subsequently found to confer significant cross tolerances to two other most common inhibitors, 5-hydroxymethyl-2-furaldehyde (HMF), vanillin, as well as real lignocellulosic hydrolysates. When evaluated in Luria-Bertani (LB) medium supplemented with corn stover cellulosic hydrolysate (prepared with a solid loading of 30%), the cells containing the mutants exhibited lag phases markedly shortened by 24-44 h in comparison with the control cells. This work thus presents a promising step forward to resolve the inhibitor problem for E. coli. From the view of synthetic biology, irrE can be considered as an evolvable "part" for various stresses. Furthermore, this GRE approach can be extended to exploit other exogenous global regulators from extremophiles, and the native counterparts in E. coli, for eliciting industrially useful phenotypes.

  15. Impacts of Deacetylation Prior to Dilute Acid Pretreatment on the Bioethanol Process

    SciTech Connect

    Chen, X.; Shekiro, J.; Franden, M. A.; Wang, W.; Johnson, D. K.; Zhang, M.; Kuhn, E.; Tucker, M. P.

    2011-12-01

    Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: (1) cleavage of the xylosidic bonds, and (2) cleavage of covalently bonded acetyl ester groups. Results: In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Conclusions: Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield.

  16. Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue

    PubMed Central

    2012-01-01

    Background Corn cob residue (CCR) is a kind of waste lignocellulosic material with enormous potential for bioethanol production. The moderated sulphite processes were used to enhance the hydrophily of the material by sulfonation and hydrolysis. The composition, FT-IR spectra, and conductometric titrations of the pretreated materials were measured to characterize variations of the CCR in different sulfite pretreated environments. And the objective of this study is to compare the saccharification rate and yield of the samples caused by these variations. Results It was found that the lignin in the CCR (43.2%) had reduced to 37.8%, 38.0%, 35.9%, and 35.5% after the sulfite pretreatment in neutral, acidic, alkaline, and ethanol environments, respectively. The sulfite pretreatments enhanced the glucose yield of the CCR. Moreover, the ethanol sulfite sample had the highest glucose yield (81.2%, based on the cellulose in the treated sample) among the saccharification samples, which was over 10% higher than that of the raw material (70.6%). More sulfonic groups and weak acid groups were produced during the sulfite pretreatments. Meanwhile, the ethanol sulfite treated sample had the highest sulfonic group (0.103 mmol/g) and weak acid groups (1.85 mmol/g) in all sulfite treated samples. In FT-IR spectra, the variation of bands at 1168 and 1190 cm-1 confirmed lignin sulfonation during sulfite pretreatment. The disappearance of the band at 1458 cm-1 implied the methoxyl on lignin had been removed during the sulfite pretreatments. Conclusions It can be concluded that the lignin in the CCR can be degraded and sulfonated during the sulfite pretreatments. The pretreatments improve the hydrophility of the samples because of the increase in sulfonic group and weak acid groups, which enhances the glucose yield of the material. The ethanol sulfite pretreatment is the best method for lignin removal and with the highest glucose yield. PMID:23206858

  17. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  18. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries.

    PubMed

    Silveira, Marcos Henrique Luciano; Morais, Ana Rita C; da Costa Lopes, Andre M; Olekszyszen, Drielly Nayara; Bogel-Łukasik, Rafał; Andreaus, Jürgen; Pereira Ramos, Luiz

    2015-10-26

    Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids). PMID:26365899

  19. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries.

    PubMed

    Silveira, Marcos Henrique Luciano; Morais, Ana Rita C; da Costa Lopes, Andre M; Olekszyszen, Drielly Nayara; Bogel-Łukasik, Rafał; Andreaus, Jürgen; Pereira Ramos, Luiz

    2015-10-26

    Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids).

  20. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review.

    PubMed

    Monlau, F; Sambusiti, C; Barakat, A; Quéméneur, M; Trably, E; Steyer, J-P; Carrère, H

    2014-01-01

    Nowadays there is a growing interest on the use of both lignocellulosic and algae biomass to produce biofuels (i.e. biohydrogen, ethanol and methane), as future alternatives to fossil fuels. In this purpose, thermal and thermo-chemical pretreatments have been widely investigated to overcome the natural physico-chemical barriers of such biomass and to enhance biofuel production from lignocellulosic residues and, more recently, marine biomass (i.e. macro and microalgae). However, the pretreatment technologies lead not only to the conversion of carbohydrate polymers (ie cellulose, hemicelluloses, starch, agar) to soluble monomeric sugar (ie glucose, xylose, arabinose, galactose), but also the generation of various by-products (i.e. furfural and 5-HMF). In the case of lignocellulosic residues, part of the lignin can also be degraded in lignin derived by-products, mainly composed of phenolic compounds. Although the negative impact of such by-products on ethanol production has been widely described in literature, studies on their impact on biohydrogen and methane production operated with mixed cultures are still very limited. This review aims to summarise and discuss literature data on the impact of pre-treatment by-products on H2-producing dark fermentation and anaerobic digestion processes when using mixed cultures as inoculum. As a summary, furanic (5-HMF, furfural) and phenolic compounds were found to be stronger inhibitors of the microbial dark fermentation than the full anaerobic digestion process. Such observations can be explained by differences in process parameters: anaerobic digestion is performed with more complex mixed cultures, lower substrate/inoculum and by-products/inoculum ratios and longer batch incubation times than dark fermentation. Finally, it has been reported that, during dark fermentation process, the presence of by-products could lead to a metabolic shift from H2-producing pathways (i.e. acetate and butyrate) to non-H2-producing pathways (i

  1. Pretreatment of non-sterile, rotted silage maize straw by the microbial community MC1 increases biogas production.

    PubMed

    Hua, Binbin; Dai, Jiali; Liu, Bin; Zhang, Huan; Yuan, Xufeng; Wang, Xiaofen; Cui, Zongjun

    2016-09-01

    Using microbial community MC1 to pretreat lignocellulosic materials increased the yield of biogas production, and the substrate did not need to be sterilized, lowering the cost. Rotted silage maize straw carries many microbes. To determine whether such contamination affects MC1, rotted silage maize straw was pretreated with MC1 prior to biogas production. The decreases in the weights of unsterilized and sterilized rotted silage maize straw were similar, as were their carboxymethyl cellulase activities. After 5d pretreatment, denaturing gradient gel electrophoresis and quantitative polymerase chain reaction results indicated that the proportions of five key strains in MC1 were the same in the unsterilized and sterilized groups; thus, MC1 was resistant to microbial contamination. However, its resistance to contamination decreased as the degradation time increased. Following pretreatment, volatile fatty acids, especially acetic acid, were detected, and MC1 enhanced biogas yields by 74.7% compared with the untreated group.

  2. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    PubMed

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. PMID:27078206

  3. PRETREATING THORIUM FOR ELECTROPLATING

    DOEpatents

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  4. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    NASA Astrophysics Data System (ADS)

    Shrestha, Prachand

    no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.

  5. Concentration of lignocellulosic hydrolyzates by solar membrane distillation.

    PubMed

    Zhang, Lin; Wang, Yafei; Cheng, Li-Hua; Xu, Xinhua; Chen, Huanlin

    2012-11-01

    A small solar energy collector was run to heat lignocellulosic hydrolyzates through an exchanger, and the heated hydrolyzate was concentrated by vacuum membrane distillation (VMD). Under optimal conditions of velocity of 1.0m/s and 65°C, glucose rejection was 99.5% and the flux was 8.46Lm(-2)h(-1). Fermentation of the concentrated hydrolyzate produced 2.64 times the amount of ethanol as fermentation using the original hydrolyzate. The results of this work indicated the possibility to decrease the thermal energy consumption of lignocellulosic ethanol through using VMD. PMID:22940345

  6. Concentration of lignocellulosic hydrolyzates by solar membrane distillation.

    PubMed

    Zhang, Lin; Wang, Yafei; Cheng, Li-Hua; Xu, Xinhua; Chen, Huanlin

    2012-11-01

    A small solar energy collector was run to heat lignocellulosic hydrolyzates through an exchanger, and the heated hydrolyzate was concentrated by vacuum membrane distillation (VMD). Under optimal conditions of velocity of 1.0m/s and 65°C, glucose rejection was 99.5% and the flux was 8.46Lm(-2)h(-1). Fermentation of the concentrated hydrolyzate produced 2.64 times the amount of ethanol as fermentation using the original hydrolyzate. The results of this work indicated the possibility to decrease the thermal energy consumption of lignocellulosic ethanol through using VMD.

  7. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    PubMed Central

    de Vrije, Truus; Bakker, Robert R; Budde, Miriam AW; Lai, Man H; Mars, Astrid E; Claassen, Pieternel AM

    2009-01-01

    Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass. PMID:19534765

  8. Improving the bioconversion yield of carbohydrates and ethanol from lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Ewanick, Shannon M.

    Improving the efficiency of lignocellulosic ethanol production is of the utmost importance if cellulosic bioethanol is to be competitive with fossil fuels and first generation bioethanol from starch and sucrose. Improvements in individual processes (pretreatment, saccharification, fermentation) have been ongoing, but few researchers have considered the effect that the incoming raw biomass can have on the process. It is important to understand how biomass can be altered to provide the maximum yield of hydrolysable and fermentable sugars from whatever is available. Since the moisture content is highly variable and easily altered, the effect of drying and rewetting on bioconversion was studied on switchgrass, sugarcane bagasse and hybrid poplar. For switchgrass and sugarcane bagasse, the ethanol yield after simultaneous saccharification and fermentation was improved 18-24% by increasing the moisture content by soaking prior to pretreatment. It was also found that soaking had no effect when the samples were not catalyzed with SO2 confirming that the effect of moisture content is directly related to SO2 uptake and diffusion into the biomass. In hybrid poplar, the results were similar to herbaceous biomass for chips with less than 2% absorbed SO2. However, when the SO2 uptake was increased to 3% even the air dried chips exhibited high digestibility, indicating that increased SO2 uptake can overcome the poor diffusion in dried biomass. Alongside controlling the biomass moisture content, improving knowledge and control of the processes can also increase efficiency and product yields. By monitoring reactions continuously with accurate, robust, on-line sensors, operators can detect when reactions deviate from the norm, and when they are complete. Avoiding process upsets and contamination could be the difference between an economically viable biorefinery and one that struggles to compete. Real time, continuous Raman spectroscopy was used to continuously monitor both a

  9. Thermo-chemical pre-treatment to solubilize and improve anaerobic biodegradability of press mud.

    PubMed

    López González, Lisbet Mailin; Vervaeren, Han; Pereda Reyes, Ileana; Dumoulin, Ann; Romero Romero, Osvaldo; Dewulf, Jo

    2013-03-01

    Different pre-treatment severities by thermo-alkaline conditions (100°C, Ca(OH)2) on press mud were evaluated for different pre-treatment time and lime loading. COD solubilization and the methane yield enhancement were assessed. The biochemical methane potential was determined in batch assays under mesophilic conditions (37±1°C). The best pre-treatment resulted in a surplus of 72% of methane yield, adding 10g Ca(OH)2 100g(-1)TS(-1) for 1h. Pre-treatment also increased the COD solubilization, but the optimal severity for COD solubilization as determined by response surface methodology did not ensure the highest methane production. Inhibitory effects on anaerobic digestion were noticed when the severity was increased. These results demonstrate the relevance of thermo-alkaline pre-treatment severity in terms of both lime loading and pre-treatment time to obtain optimal anaerobic biodegradability of lignocellulosic biomass from press mud. PMID:23353040

  10. Optimization of microwave-assisted calcium chloride pretreatment of corn stover.

    PubMed

    Li, Hongqiang; Xu, Jian

    2013-01-01

    A 62.5% (w/w) CaCl(2) solution was used in the microwave pretreatment of corn stover. The central composite design (CCD) of response surface methodology (RSM) was employed to design and optimize the CaCl(2)-assisted microwave pretreatment (CaCl(2)-pretreatment). Temperature and time were the main factors affecting the enzymatic digestibility of corn stover. After CaCl(2)-pretreatment, hemicellulose degradation reached 85.90%, the specific surface area (SSA) increased by 168.93%, cellulose crystallinity index (CrI) decreased by 13.91% compared to untreated corn stover. The optimal conditions for glucose production with the CaCl(2)-pretreatment obtained by CCD were, 162.1 °C, 12 min and solid-to-liquid ratio 10% (w/v). Under these conditions, the enzymatic hydrolysis ratio of cellulose was 90.66% and glucose recovery was 65.47%. This novel process achieved the temperature of about 160 °C necessary for lignocellulose pretreatment under atmospheric pressure using the cheap calcium chloride as the heating medium.

  11. Structural changes and enzymatic response of Napier grass (Pennisetum purpureum) stem induced by alkaline pretreatment.

    PubMed

    Phitsuwan, Paripok; Sakka, Kazuo; Ratanakhanokchai, Khanok

    2016-10-01

    Napier grass is a promising energy crop in the tropical region. Feasible alkaline pretreatment technologies, including NaOH, Ca(OH)2, NH3, and alkaline H2O2 (aH2O2), were used to delignify lignocellulose with the aim of improving glucose recovery from Napier grass stem cellulose via enzymatic saccharification. The influences of the pretreatments on structural alterations were examined using SEM, FTIR, XRD, and TGA, and the relationships between these changes and the enzymatic digestibility of cellulose were addressed. The extensive removal of lignin (84%) in NaOH-pretreated fibre agreed well with the high glucan conversion rate (94%) by enzymatic hydrolysis, while the conversion rates for fibre pretreated with Ca(OH)2, NH3, and aH2O2 approached 60%, 51%, and 42%, respectively. The substantial solubilisation of lignin created porosity, allowing increased cellulose accessibility to cellulases in NaOH-pretreated fibre. In contrast, high lignin content, lignin redeposition on the surface, and residual internal lignin and hemicellulose impeded enzymatic performance in Ca(OH)2-, NH3-, and aH2O2-pretreated fibres, respectively.

  12. Responses of biomass briquetting and pelleting to water-involved pretreatments and subsequent enzymatic hydrolysis.

    PubMed

    Li, Yang; Li, Xiaotong; Shen, Fei; Wang, Zhanghong; Yang, Gang; Lin, Lili; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2014-01-01

    Although lignocellulosic biomass has been extensively regarded as the most important resource for bioethanol, the wide application was seriously restricted by the high transportation cost of biomass. Currently, biomass densification is regarded as an acceptable solution to this issue. Herein, briquettes, pellets and their corresponding undensified biomass were pretreated by diluted-NaOH and hydrothermal method to investigate the responses of biomass densification to these typical water-involved pretreatments and subsequent enzymatic hydrolysis. The densified biomass auto-swelling was initially investigated before pretreatment. Results indicated pellets could be totally auto-swollen in an hour, while it took about 24 h for briquettes. When diluted-NaOH pretreatment was performed, biomass briquetting and pelleting improved sugar conversion rate by 20.1% and 5.5% comparing with their corresponding undensified biomass. Pelleting improved sugar conversion rate by 7.0% after hydrothermal pretreatment comparing with the undensified biomass. However, briquetting disturbed hydrothermal pretreatment resulting in the decrease of sugar conversion rate by 15.0%.

  13. Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass.

    PubMed

    Perez-Pimienta, Jose A; Lopez-Ortega, Monica G; Varanasi, Patanjali; Stavila, Vitalie; Cheng, Gang; Singh, Seema; Simmons, Blake A

    2013-01-01

    Lignocellulose represents a sustainable source of carbon for transformation into biofuels. Effective biomass to sugar conversion strategies are needed to lower processing cost without degradation of polysaccharides. Since ionic liquids (ILs) are excellent solvents for pretreatment/dissolution of biomass, IL pretreatment was carried out on agave bagasse (AGB-byproduct of tequila industry) and digestibility and sugar yield was compared with that obtained with switchgrass (SWG). The IL pretreatment was conducted using ([C2mim][OAc]) at 120 and 160 °C for 3h and 15% biomass loading. While pretreatment using [C2mim][OAc] was very effective in improving the digestibility of both feedstocks, IL pretreatment at 160 °C resulted in higher delignification for AGB (45.5%) than for SWG (38.4%) when compared to 120 °C (AGB-16.6%, SWG-8.2%), formation of a highly amorphous cellulose structure and a significant enhancement of enzyme kinetics. These results highlight the potential of AGB as a biofuel feedstock that can produce high sugar yields with IL pretreatment. PMID:23131619

  14. Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass.

    PubMed

    Perez-Pimienta, Jose A; Lopez-Ortega, Monica G; Varanasi, Patanjali; Stavila, Vitalie; Cheng, Gang; Singh, Seema; Simmons, Blake A

    2013-01-01

    Lignocellulose represents a sustainable source of carbon for transformation into biofuels. Effective biomass to sugar conversion strategies are needed to lower processing cost without degradation of polysaccharides. Since ionic liquids (ILs) are excellent solvents for pretreatment/dissolution of biomass, IL pretreatment was carried out on agave bagasse (AGB-byproduct of tequila industry) and digestibility and sugar yield was compared with that obtained with switchgrass (SWG). The IL pretreatment was conducted using ([C2mim][OAc]) at 120 and 160 °C for 3h and 15% biomass loading. While pretreatment using [C2mim][OAc] was very effective in improving the digestibility of both feedstocks, IL pretreatment at 160 °C resulted in higher delignification for AGB (45.5%) than for SWG (38.4%) when compared to 120 °C (AGB-16.6%, SWG-8.2%), formation of a highly amorphous cellulose structure and a significant enhancement of enzyme kinetics. These results highlight the potential of AGB as a biofuel feedstock that can produce high sugar yields with IL pretreatment.

  15. Tailoring wet explosion process parameters for the pretreatment of cocksfoot grass for high sugar yields.

    PubMed

    Njoku, S I; Ahring, B K; Uellendahl, H

    2013-08-01

    The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response surface methodology. The WEx process parameters studied were temperature (160-210 °C), retention time (5-20 min), and dilute sulfuric acid concentration (0.2-0.5 %). The pretreatment parameter set E, applying 210 °C for 5 min and 0.5 % dilute sulfuric acid, was found most suitable for achieving a high glucose release with low formation of by-products. Under these conditions, the cellulose and hemicellulose sugar recovery was 94 % and 70 %, respectively. The efficiency of the enzymatic hydrolysis of cellulose under these conditions was 91 %. On the other hand, the release of pentose sugars was higher when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars.

  16. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production.

    PubMed

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Sticklen, Mariam

    2016-06-01

    Microbial cell wall-deconstructing enzymes are widely used in the food, wine, pulp and paper, textile, and detergent industries and will be heavily utilized by cellulosic biorefineries in the production of fuels and chemicals. Due to their ability to use freely available solar energy, genetically engineered bioenergy crops provide an attractive alternative to microbial bioreactors for the production of cell wall-deconstructing enzymes. This review article summarizes the efforts made within the last decade on the production of cell wall-deconstructing enzymes in planta for use in the deconstruction of lignocellulosic biomass. A number of strategies have been employed to increase enzyme yields and limit negative impacts on plant growth and development including targeting heterologous enzymes into specific subcellular compartments using signal peptides, using tissue-specific or inducible promoters to limit the expression of enzymes to certain portions of the plant or certain times, and fusion of amplification sequences upstream of the coding region to enhance expression. We also summarize methods that have been used to access and maintain activity of plant-generated enzymes when used in conjunction with thermochemical pretreatments for the production of lignocellulosic biofuels. PMID:26627868

  17. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol

    PubMed Central

    2014-01-01

    Background During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the organisms to stressful conditions. In addition, for lignocellulosic bioethanol production, conversion of both pentose and hexose sugars is a pre-requisite for fermentative organisms for efficient and complete conversion. All these factors are important to maximise industrial efficiency, productivity and profit margins in order to make second-generation bioethanol an economically viable alternative to fossil fuels for future transport needs. Results The aim of the current study was to assess Saccharomyces yeasts for their capacity to tolerate osmotic, temperature and ethanol stresses and inhibitors that might typically be released during steam explosion of wheat straw. Phenotypic microarray analysis was used to measure tolerance as a function of growth and metabolic activity. Saccharomyces strains analysed in this study displayed natural variation to each stress condition common in bioethanol fermentations. In addition, many strains displayed tolerance to more than one stress, such as inhibitor tolerance combined with fermentation stresses. Conclusions Our results suggest that this study could identify a potential candidate strain or strains for efficient second generation bioethanol production. Knowledge of the Saccharomyces spp. strains grown in these conditions will aid the development of breeding programmes in order to generate more efficient strains for industrial fermentations. PMID:24670111

  18. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production.

    PubMed

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Sticklen, Mariam

    2016-06-01

    Microbial cell wall-deconstructing enzymes are widely used in the food, wine, pulp and paper, textile, and detergent industries and will be heavily utilized by cellulosic biorefineries in the production of fuels and chemicals. Due to their ability to use freely available solar energy, genetically engineered bioenergy crops provide an attractive alternative to microbial bioreactors for the production of cell wall-deconstructing enzymes. This review article summarizes the efforts made within the last decade on the production of cell wall-deconstructing enzymes in planta for use in the deconstruction of lignocellulosic biomass. A number of strategies have been employed to increase enzyme yields and limit negative impacts on plant growth and development including targeting heterologous enzymes into specific subcellular compartments using signal peptides, using tissue-specific or inducible promoters to limit the expression of enzymes to certain portions of the plant or certain times, and fusion of amplification sequences upstream of the coding region to enhance expression. We also summarize methods that have been used to access and maintain activity of plant-generated enzymes when used in conjunction with thermochemical pretreatments for the production of lignocellulosic biofuels.

  19. Efficient function and characterization of GH10 xylanase (Xyl10g) from Gloeophyllum trabeum in lignocellulose degradation.

    PubMed

    Kim, Ho Myeong; Lee, Kwang Ho; Kim, Kyoung Hyoun; Lee, Dae-Seok; Nguyen, Quynh Anh; Bae, Hyeun-Jong

    2014-02-20

    The xylanase gene from Gloeophyllum trabeum was cloned and expressed in Pichia pastoris GS115. Xyl10g has a molecular weight of approximately 50kDa, and exhibits maximum specific activity at 70°C and a broad range of pH 4.0-7.0. Purified recombinant Xyl10g efficiently degraded popping-pretreated corn stover and newspaper waste at 50°C and pH 4.0 after 24h, and showed synergistic effects with Cel5B (endoglucanase) and BglB (β-glucosidase) to increase reduced sugar levels by about 1.71- to 1.88-fold and 2.26- to 2.48-fold, respectively. Although Xyl10g has low specific activity for beechwood xylan, as compared to XynA, Xyl10g more efficiently degraded corn stover than did XynA. According to immunogold labeling analysis, Xyl10g can attack highly substituted, unsubstituted, and low-substituted xylans, whereas XynA cannot efficiently attack highly substituted xylans, which is important for lignocellulose degradation. These results suggest that GH10 Xyl10g can be used for lignocellulose degradation. PMID:24380820

  20. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Xi, Yong-lan; Dai, Wen-yu; Xu, Rong; Zhang, Jiu-hua; Chen, Ke-quan; Jiang, Min; Wei, Ping; Ouyang, Ping-kai

    2013-11-01

    Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively. PMID:23649828