Turner, Leslie M; Harr, Bettina
2014-12-09
Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone.
Turner, Leslie M; Harr, Bettina
2014-01-01
Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone. DOI: http://dx.doi.org/10.7554/eLife.02504.001 PMID:25487987
Parkes, Miles; Barrett, Jeffrey C; Prescott, Natalie; Tremelling, Mark; Anderson, Carl A; Fisher, Sheila A; Roberts, Roland G; Nimmo, Elaine R; Cummings, Fraser R; Soars, Dianne; Drummond, Hazel; Lees, Charlie W; Khawaja, Saud A; Bagnall, Richard; Burke, Denis A; Todhunter, Catherine E; Ahmad, Tariq; Onnie, Clive M; McArdle, Wendy; Strachan, David; Bethel, Graeme; Bryan, Claire; Deloukas, Panos; Forbes, Alastair; Sanderson, Jeremy; Jewell, Derek P; Satsangi, Jack; Mansfield, John C; Cardon, Lon; Mathew, Christopher G
2008-01-01
A genome-wide association scan in Crohn disease by the Wellcome Trust Case Control Consortium1 detected strong association at 6 novel loci. We tested 37 SNPs from these and other loci for association in an independent case control sample. Replication was obtained for the IRGM gene on chromosome 5q33.1 which induces autophagy (replication P = 6.6 × 10−4, combined P = 2.1 × 10−10), and for 9 other loci including NKX2-3 and gene deserts on chromosomes 1q and 5p13. PMID:17554261
Rozzo, Stephen J.; Vyse, Timothy J.; Drake, Charles G.; Kotzin, Brian L.
1996-01-01
Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease. PMID:8986781
An ImmunoChip study of multiple sclerosis risk in African Americans
Isobe, Noriko; Madireddy, Lohith; Khankhanian, Pouya; Matsushita, Takuya; Caillier, Stacy J.; Moré, Jayaji M.; Gourraud, Pierre-Antoine; McCauley, Jacob L.; Beecham, Ashley H.; Piccio, Laura; Herbert, Joseph; Khan, Omar; Cohen, Jeffrey; Stone, Lael; Santaniello, Adam; Cree, Bruce A. C.; Onengut-Gumuscu, Suna; Rich, Stephen S.; Hauser, Stephen L.; Sawcer, Stephen
2015-01-01
The aims of this study were: (i) to determine to what degree multiple sclerosis-associated loci discovered in European populations also influence susceptibility in African Americans; (ii) to assess the extent to which the unique linkage disequilibrium patterns in African Americans can contribute to localizing the functionally relevant regions or genes; and (iii) to search for novel African American multiple sclerosis-associated loci. Using the ImmunoChip custom array we genotyped 803 African American cases with multiple sclerosis and 1516 African American control subjects at 130 135 autosomal single nucleotide polymorphisms. We conducted association analysis with rigorous adjustments for population stratification and admixture. Of the 110 non-major histocompatibility complex multiple sclerosis-associated variants identified in Europeans, 96 passed stringent quality control in our African American data set and of these, >70% (69) showed over-representation of the same allele amongst cases, including 21 with nominally significant evidence for association (one-tailed test P < 0.05). At a further eight loci we found nominally significant association with an alternate correlated risk-tagging single nucleotide polymorphism from the same region. Outside the regions known to be associated in Europeans, we found seven potentially associated novel candidate multiple sclerosis variants (P < 10−4), one of which (rs2702180) also showed nominally significant evidence for association (one-tailed test P = 0.034) in an independent second cohort of 620 African American cases and 1565 control subjects. However, none of these novel associations reached genome-wide significance (combined P = 6.3 × 10−5). Our data demonstrate substantial overlap between African American and European multiple sclerosis variants, indicating common genetic contributions to multiple sclerosis risk. PMID:25818868
An ImmunoChip study of multiple sclerosis risk in African Americans.
Isobe, Noriko; Madireddy, Lohith; Khankhanian, Pouya; Matsushita, Takuya; Caillier, Stacy J; Moré, Jayaji M; Gourraud, Pierre-Antoine; McCauley, Jacob L; Beecham, Ashley H; Piccio, Laura; Herbert, Joseph; Khan, Omar; Cohen, Jeffrey; Stone, Lael; Santaniello, Adam; Cree, Bruce A C; Onengut-Gumuscu, Suna; Rich, Stephen S; Hauser, Stephen L; Sawcer, Stephen; Oksenberg, Jorge R
2015-06-01
The aims of this study were: (i) to determine to what degree multiple sclerosis-associated loci discovered in European populations also influence susceptibility in African Americans; (ii) to assess the extent to which the unique linkage disequilibrium patterns in African Americans can contribute to localizing the functionally relevant regions or genes; and (iii) to search for novel African American multiple sclerosis-associated loci. Using the ImmunoChip custom array we genotyped 803 African American cases with multiple sclerosis and 1516 African American control subjects at 130 135 autosomal single nucleotide polymorphisms. We conducted association analysis with rigorous adjustments for population stratification and admixture. Of the 110 non-major histocompatibility complex multiple sclerosis-associated variants identified in Europeans, 96 passed stringent quality control in our African American data set and of these, >70% (69) showed over-representation of the same allele amongst cases, including 21 with nominally significant evidence for association (one-tailed test P < 0.05). At a further eight loci we found nominally significant association with an alternate correlated risk-tagging single nucleotide polymorphism from the same region. Outside the regions known to be associated in Europeans, we found seven potentially associated novel candidate multiple sclerosis variants (P < 10(-4)), one of which (rs2702180) also showed nominally significant evidence for association (one-tailed test P = 0.034) in an independent second cohort of 620 African American cases and 1565 control subjects. However, none of these novel associations reached genome-wide significance (combined P = 6.3 × 10(-5)). Our data demonstrate substantial overlap between African American and European multiple sclerosis variants, indicating common genetic contributions to multiple sclerosis risk. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Naj, Adam C; Jun, Gyungah; Reitz, Christiane; Kunkle, Brian W; Perry, William; Park, Yo Son; Beecham, Gary W; Rajbhandary, Ruchita A; Hamilton-Nelson, Kara L; Wang, Li-San; Kauwe, John S K; Huentelman, Matthew J; Myers, Amanda J; Bird, Thomas D; Boeve, Bradley F; Baldwin, Clinton T; Jarvik, Gail P; Crane, Paul K; Rogaeva, Ekaterina; Barmada, M Michael; Demirci, F Yesim; Cruchaga, Carlos; Kramer, Patricia L; Ertekin-Taner, Nilufer; Hardy, John; Graff-Radford, Neill R; Green, Robert C; Larson, Eric B; St George-Hyslop, Peter H; Buxbaum, Joseph D; Evans, Denis A; Schneider, Julie A; Lunetta, Kathryn L; Kamboh, M Ilyas; Saykin, Andrew J; Reiman, Eric M; De Jager, Philip L; Bennett, David A; Morris, John C; Montine, Thomas J; Goate, Alison M; Blacker, Deborah; Tsuang, Debby W; Hakonarson, Hakon; Kukull, Walter A; Foroud, Tatiana M; Martin, Eden R; Haines, Jonathan L; Mayeux, Richard P; Farrer, Lindsay A; Schellenberg, Gerard D; Pericak-Vance, Margaret A; Albert, Marilyn S; Albin, Roger L; Apostolova, Liana G; Arnold, Steven E; Barber, Robert; Barnes, Lisa L; Beach, Thomas G; Becker, James T; Beekly, Duane; Bigio, Eileen H; Bowen, James D; Boxer, Adam; Burke, James R; Cairns, Nigel J; Cantwell, Laura B; Cao, Chuanhai; Carlson, Chris S; Carney, Regina M; Carrasquillo, Minerva M; Carroll, Steven L; Chui, Helena C; Clark, David G; Corneveaux, Jason; Cribbs, David H; Crocco, Elizabeth A; DeCarli, Charles; DeKosky, Steven T; Dick, Malcolm; Dickson, Dennis W; Duara, Ranjan; Faber, Kelley M; Fallon, Kenneth B; Farlow, Martin R; Ferris, Steven; Frosch, Matthew P; Galasko, Douglas R; Ganguli, Mary; Gearing, Marla; Geschwind, Daniel H; Ghetti, Bernardino; Gilbert, John R; Glass, Jonathan D; Growdon, John H; Hamilton, Ronald L; Harrell, Lindy E; Head, Elizabeth; Honig, Lawrence S; Hulette, Christine M; Hyman, Bradley T; Jicha, Gregory A; Jin, Lee-Way; Karydas, Anna; Kaye, Jeffrey A; Kim, Ronald; Koo, Edward H; Kowall, Neil W; Kramer, Joel H; LaFerla, Frank M; Lah, James J; Leverenz, James B; Levey, Allan I; Li, Ge; Lieberman, Andrew P; Lin, Chiao-Feng; Lopez, Oscar L; Lyketsos, Constantine G; Mack, Wendy J; Martiniuk, Frank; Mash, Deborah C; Masliah, Eliezer; McCormick, Wayne C; McCurry, Susan M; McDavid, Andrew N; McKee, Ann C; Mesulam, Marsel; Miller, Bruce L; Miller, Carol A; Miller, Joshua W; Murrell, Jill R; Olichney, John M; Pankratz, Vernon S; Parisi, Joseph E; Paulson, Henry L; Peskind, Elaine; Petersen, Ronald C; Pierce, Aimee; Poon, Wayne W; Potter, Huntington; Quinn, Joseph F; Raj, Ashok; Raskind, Murray; Reisberg, Barry; Ringman, John M; Roberson, Erik D; Rosen, Howard J; Rosenberg, Roger N; Sano, Mary; Schneider, Lon S; Seeley, William W; Smith, Amanda G; Sonnen, Joshua A; Spina, Salvatore; Stern, Robert A; Tanzi, Rudolph E; Thornton-Wells, Tricia A; Trojanowski, John Q; Troncoso, Juan C; Valladares, Otto; Van Deerlin, Vivianna M; Van Eldik, Linda J; Vardarajan, Badri N; Vinters, Harry V; Vonsattel, Jean Paul; Weintraub, Sandra; Welsh-Bohmer, Kathleen A; Williamson, Jennifer; Wishnek, Sarah; Woltjer, Randall L; Wright, Clinton B; Younkin, Steven G; Yu, Chang-En; Yu, Lei
2014-11-01
Because APOE locus variants contribute to risk of late-onset Alzheimer disease (LOAD) and to differences in age at onset (AAO), it is important to know whether other established LOAD risk loci also affect AAO in affected participants. To investigate the effects of known Alzheimer disease risk loci in modifying AAO and to estimate their cumulative effect on AAO variation using data from genome-wide association studies in the Alzheimer Disease Genetics Consortium. The Alzheimer Disease Genetics Consortium comprises 14 case-control, prospective, and family-based data sets with data on 9162 participants of white race/ethnicity with Alzheimer disease occurring after age 60 years who also had complete AAO information, gathered between 1989 and 2011 at multiple sites by participating studies. Data on genotyped or imputed single-nucleotide polymorphisms most significantly associated with risk at 10 confirmed LOAD loci were examined in linear modeling of AAO, and individual data set results were combined using a random-effects, inverse variance-weighted meta-analysis approach to determine whether they contribute to variation in AAO. Aggregate effects of all risk loci on AAO were examined in a burden analysis using genotype scores weighted by risk effect sizes. Age at disease onset abstracted from medical records among participants with LOAD diagnosed per standard criteria. Analysis confirmed the association of APOE with earlier AAO (P = 3.3 × 10(-96)), with associations in CR1 (rs6701713, P = 7.2 × 10(-4)), BIN1 (rs7561528, P = 4.8 × 10(-4)), and PICALM (rs561655, P = 2.2 × 10(-3)) reaching statistical significance (P < .005). Risk alleles individually reduced AAO by 3 to 6 months. Burden analyses demonstrated that APOE contributes to 3.7% of the variation in AAO (R(2) = 0.256) over baseline (R(2) = 0.221), whereas the other 9 loci together contribute to 2.2% of the variation (R(2) = 0.242). We confirmed an association of APOE (OMIM 107741) variants with AAO among affected participants with LOAD and observed novel associations of CR1 (OMIM 120620), BIN1 (OMIM 601248), and PICALM (OMIM 603025) with AAO. In contrast to earlier hypothetical modeling, we show that the combined effects of Alzheimer disease risk variants on AAO are on the scale of, but do not exceed, the APOE effect. While the aggregate effects of risk loci on AAO may be significant, additional genetic contributions to AAO are individually likely to be small.
DNA methylome signature in rheumatoid arthritis.
Nakano, Kazuhisa; Whitaker, John W; Boyle, David L; Wang, Wei; Firestein, Gary S
2013-01-01
Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed. Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini-Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern. Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.
USDA-ARS?s Scientific Manuscript database
Chromosomal rearrangements between sympatric species often contain multiple loci contributing to assortative mating, local adaptation, and hybrid sterility. When and how these associations arise during the process of speciation remains a subject of debate. Here, we address the relative roles of loca...
Guo, Xiuqing; Franceschini, Nora; Cheng, Ching-Yu; Sim, Xueling; Vojinovic, Dina; Marten, Jonathan; Musani, Solomon K.; Li, Changwei; Schwander, Karen; Richard, Melissa A.; Noordam, Raymond; Aschard, Hugues; Bartz, Traci M.; Bielak, Lawrence F.; Dorajoo, Rajkumar; Fisher, Virginia; Hartwig, Fernando P.; Horimoto, Andrea R. V. R.; Lohman, Kurt K.; Manning, Alisa K.; Rankinen, Tuomo; Smith, Albert V.; Wojczynski, Mary K.; Alver, Maris; Boissel, Mathilde; Cai, Qiuyin; Divers, Jasmin; Gao, Chuan; Goel, Anuj; Harris, Sarah E.; He, Meian; Hsu, Fang-Chi; Jackson, Anne U.; Kähönen, Mika; Kasturiratne, Anuradhani; Komulainen, Pirjo; Kühnel, Brigitte; Laguzzi, Federica; Luan, Jian'an; Nolte, Ilja M.; Padmanabhan, Sandosh; Robino, Antonietta; Scott, Robert A.; Sofer, Tamar; Stančáková, Alena; Takeuchi, Fumihiko; Tayo, Bamidele O.; Varga, Tibor V.; Vitart, Veronique; Wang, Yajuan; Warren, Helen R.; Wen, Wanqing; Yanek, Lisa R.; Zhang, Weihua; Zhao, Jing Hua; Afaq, Saima; Amin, Najaf; Arking, Dan E.; Aung, Tin; Boerwinkle, Eric; Borecki, Ingrid; Broeckel, Ulrich; Brown, Morris; Brumat, Marco; Burke, Gregory L.; Chakravarti, Aravinda; Charumathi, Sabanayagam; Ida Chen, Yii-Der; Connell, John M.; Correa, Adolfo; de las Fuentes, Lisa; de Mutsert, Renée; de Silva, H. Janaka; Deng, Xuan; Ding, Jingzhong; Duan, Qing; Eaton, Charles B.; Ehret, Georg; Eppinga, Ruben N.; Faul, Jessica D.; Felix, Stephan B.; Forouhi, Nita G.; Forrester, Terrence; Franco, Oscar H.; Friedlander, Yechiel; Gandin, Ilaria; Gao, He; Ghanbari, Mohsen; Gigante, Bruna; Gu, C. Charles; Gu, Dongfeng; Hagenaars, Saskia P.; Hallmans, Göran; Harris, Tamara B.; He, Jiang; Heng, Chew-Kiat; Hirata, Makoto; Howard, Barbara V.; Ikram, M. Arfan; John, Ulrich; Katsuya, Tomohiro; Khor, Chiea Chuen; Kilpeläinen, Tuomas O.; Koh, Woon-Puay; Krieger, José E.; Kritchevsky, Stephen B.; Kubo, Michiaki; Kuusisto, Johanna; Lakka, Timo A.; Langefeld, Carl D.; Langenberg, Claudia; Launer, Lenore J.; Lehne, Benjamin; Lewis, Cora E.; Li, Yize; Lin, Shiow; Liu, Jianjun; Liu, Jingmin; Loh, Marie; Louie, Tin; Mägi, Reedik; McKenzie, Colin A.; Meitinger, Thomas; Milaneschi, Yuri; Milani, Lili; Mohlke, Karen L.; Momozawa, Yukihide; Nalls, Mike A.; Nelson, Christopher P.; Sotoodehnia, Nona; Norris, Jill M.; O'Connell, Jeff R.; Palmer, Nicholette D.; Perls, Thomas; Pedersen, Nancy L.; Peters, Annette; Peyser, Patricia A.; Poulter, Neil; Raffel, Leslie J.; Raitakari, Olli T.; Roll, Kathryn; Rose, Lynda M.; Rosendaal, Frits R.; Rotter, Jerome I.; Schmidt, Carsten O.; Schreiner, Pamela J.; Schupf, Nicole; Scott, William R.; Shi, Yuan; Sidney, Stephen; Sims, Mario; Sitlani, Colleen M.; Smith, Jennifer A.; Snieder, Harold; Starr, John M.; Strauch, Konstantin; Stringham, Heather M.; Tan, Nicholas Y. Q.; Tang, Hua; Taylor, Kent D.; Teo, Yik Ying; Tham, Yih Chung; Turner, Stephen T.; Uitterlinden, André G.; Vollenweider, Peter; Waldenberger, Melanie; Wang, Lihua; Wang, Ya Xing; Wei, Wen Bin; Williams, Christine; Yao, Jie; Yu, Caizheng; Yuan, Jian-Min; Zhao, Wei; Zonderman, Alan B.; Becker, Diane M.; Boehnke, Michael; Bowden, Donald W.; Chambers, John C.; Deary, Ian J.; Esko, Tõnu; Farrall, Martin; Franks, Paul W.; Freedman, Barry I.; Froguel, Philippe; Gasparini, Paolo; Gieger, Christian; Kamatani, Yoichiro; Kato, Norihiro; Kooner, Jaspal S.; Kutalik, Zoltán; Laakso, Markku; Laurie, Cathy C.; Leander, Karin; Lehtimäki, Terho; Study, Lifelines Cohort; Magnusson, Patrik K. E.; Oldehinkel, Albertine J.; Penninx, Brenda W. J. H.; Polasek, Ozren; Porteous, David J.; Rauramaa, Rainer; Samani, Nilesh J.; Scott, James; Shu, Xiao-Ou; van der Harst, Pim; Wagenknecht, Lynne E.; Watkins, Hugh; Weir, David R.; Wickremasinghe, Ananda R.; Wu, Tangchun; Zheng, Wei; Bouchard, Claude; Christensen, Kaare; Evans, Michele K.; Gudnason, Vilmundur; Horta, Bernardo L.; Kardia, Sharon L. R.; Liu, Yongmei; Pereira, Alexandre C.; Psaty, Bruce M.; Ridker, Paul M.; van Dam, Rob M.; Gauderman, W. James; Zhu, Xiaofeng; Mook-Kanamori, Dennis O.; Fornage, Myriam; Rotimi, Charles N.; Cupples, L. Adrienne; Kelly, Tanika N.; Fox, Ervin R.; Hayward, Caroline; van Duijn, Cornelia M.; Tai, E Shyong; Wong, Tien Yin; Kooperberg, Charles; Palmas, Walter; Morrison, Alanna C.; Caulfield, Mark J.; Munroe, Patricia B.; Rao, Dabeeru C.; Province, Michael A.; Levy, Daniel
2018-01-01
Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10−5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10−8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10−8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension. PMID:29912962
Feitosa, Mary F; Kraja, Aldi T; Chasman, Daniel I; Sung, Yun J; Winkler, Thomas W; Ntalla, Ioanna; Guo, Xiuqing; Franceschini, Nora; Cheng, Ching-Yu; Sim, Xueling; Vojinovic, Dina; Marten, Jonathan; Musani, Solomon K; Li, Changwei; Bentley, Amy R; Brown, Michael R; Schwander, Karen; Richard, Melissa A; Noordam, Raymond; Aschard, Hugues; Bartz, Traci M; Bielak, Lawrence F; Dorajoo, Rajkumar; Fisher, Virginia; Hartwig, Fernando P; Horimoto, Andrea R V R; Lohman, Kurt K; Manning, Alisa K; Rankinen, Tuomo; Smith, Albert V; Tajuddin, Salman M; Wojczynski, Mary K; Alver, Maris; Boissel, Mathilde; Cai, Qiuyin; Campbell, Archie; Chai, Jin Fang; Chen, Xu; Divers, Jasmin; Gao, Chuan; Goel, Anuj; Hagemeijer, Yanick; Harris, Sarah E; He, Meian; Hsu, Fang-Chi; Jackson, Anne U; Kähönen, Mika; Kasturiratne, Anuradhani; Komulainen, Pirjo; Kühnel, Brigitte; Laguzzi, Federica; Luan, Jian'an; Matoba, Nana; Nolte, Ilja M; Padmanabhan, Sandosh; Riaz, Muhammad; Rueedi, Rico; Robino, Antonietta; Said, M Abdullah; Scott, Robert A; Sofer, Tamar; Stančáková, Alena; Takeuchi, Fumihiko; Tayo, Bamidele O; van der Most, Peter J; Varga, Tibor V; Vitart, Veronique; Wang, Yajuan; Ware, Erin B; Warren, Helen R; Weiss, Stefan; Wen, Wanqing; Yanek, Lisa R; Zhang, Weihua; Zhao, Jing Hua; Afaq, Saima; Amin, Najaf; Amini, Marzyeh; Arking, Dan E; Aung, Tin; Boerwinkle, Eric; Borecki, Ingrid; Broeckel, Ulrich; Brown, Morris; Brumat, Marco; Burke, Gregory L; Canouil, Mickaël; Chakravarti, Aravinda; Charumathi, Sabanayagam; Ida Chen, Yii-Der; Connell, John M; Correa, Adolfo; de Las Fuentes, Lisa; de Mutsert, Renée; de Silva, H Janaka; Deng, Xuan; Ding, Jingzhong; Duan, Qing; Eaton, Charles B; Ehret, Georg; Eppinga, Ruben N; Evangelou, Evangelos; Faul, Jessica D; Felix, Stephan B; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Friedlander, Yechiel; Gandin, Ilaria; Gao, He; Ghanbari, Mohsen; Gigante, Bruna; Gu, C Charles; Gu, Dongfeng; Hagenaars, Saskia P; Hallmans, Göran; Harris, Tamara B; He, Jiang; Heikkinen, Sami; Heng, Chew-Kiat; Hirata, Makoto; Howard, Barbara V; Ikram, M Arfan; John, Ulrich; Katsuya, Tomohiro; Khor, Chiea Chuen; Kilpeläinen, Tuomas O; Koh, Woon-Puay; Krieger, José E; Kritchevsky, Stephen B; Kubo, Michiaki; Kuusisto, Johanna; Lakka, Timo A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lehne, Benjamin; Lewis, Cora E; Li, Yize; Lin, Shiow; Liu, Jianjun; Liu, Jingmin; Loh, Marie; Louie, Tin; Mägi, Reedik; McKenzie, Colin A; Meitinger, Thomas; Metspalu, Andres; Milaneschi, Yuri; Milani, Lili; Mohlke, Karen L; Momozawa, Yukihide; Nalls, Mike A; Nelson, Christopher P; Sotoodehnia, Nona; Norris, Jill M; O'Connell, Jeff R; Palmer, Nicholette D; Perls, Thomas; Pedersen, Nancy L; Peters, Annette; Peyser, Patricia A; Poulter, Neil; Raffel, Leslie J; Raitakari, Olli T; Roll, Kathryn; Rose, Lynda M; Rosendaal, Frits R; Rotter, Jerome I; Schmidt, Carsten O; Schreiner, Pamela J; Schupf, Nicole; Scott, William R; Sever, Peter S; Shi, Yuan; Sidney, Stephen; Sims, Mario; Sitlani, Colleen M; Smith, Jennifer A; Snieder, Harold; Starr, John M; Strauch, Konstantin; Stringham, Heather M; Tan, Nicholas Y Q; Tang, Hua; Taylor, Kent D; Teo, Yik Ying; Tham, Yih Chung; Turner, Stephen T; Uitterlinden, André G; Vollenweider, Peter; Waldenberger, Melanie; Wang, Lihua; Wang, Ya Xing; Wei, Wen Bin; Williams, Christine; Yao, Jie; Yu, Caizheng; Yuan, Jian-Min; Zhao, Wei; Zonderman, Alan B; Becker, Diane M; Boehnke, Michael; Bowden, Donald W; Chambers, John C; Deary, Ian J; Esko, Tõnu; Farrall, Martin; Franks, Paul W; Freedman, Barry I; Froguel, Philippe; Gasparini, Paolo; Gieger, Christian; Jonas, Jost Bruno; Kamatani, Yoichiro; Kato, Norihiro; Kooner, Jaspal S; Kutalik, Zoltán; Laakso, Markku; Laurie, Cathy C; Leander, Karin; Lehtimäki, Terho; Study, Lifelines Cohort; Magnusson, Patrik K E; Oldehinkel, Albertine J; Penninx, Brenda W J H; Polasek, Ozren; Porteous, David J; Rauramaa, Rainer; Samani, Nilesh J; Scott, James; Shu, Xiao-Ou; van der Harst, Pim; Wagenknecht, Lynne E; Wareham, Nicholas J; Watkins, Hugh; Weir, David R; Wickremasinghe, Ananda R; Wu, Tangchun; Zheng, Wei; Bouchard, Claude; Christensen, Kaare; Evans, Michele K; Gudnason, Vilmundur; Horta, Bernardo L; Kardia, Sharon L R; Liu, Yongmei; Pereira, Alexandre C; Psaty, Bruce M; Ridker, Paul M; van Dam, Rob M; Gauderman, W James; Zhu, Xiaofeng; Mook-Kanamori, Dennis O; Fornage, Myriam; Rotimi, Charles N; Cupples, L Adrienne; Kelly, Tanika N; Fox, Ervin R; Hayward, Caroline; van Duijn, Cornelia M; Tai, E Shyong; Wong, Tien Yin; Kooperberg, Charles; Palmas, Walter; Rice, Kenneth; Morrison, Alanna C; Elliott, Paul; Caulfield, Mark J; Munroe, Patricia B; Rao, Dabeeru C; Province, Michael A; Levy, Daniel
2018-01-01
Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
Genetic architectures of seropositive and seronegative rheumatic diseases.
Kirino, Yohei; Remmers, Elaine F
2015-07-01
Rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and some other rheumatic diseases are genetically complex, with evidence of familial clustering, but not of Mendelian inheritance. These diseases are thought to result from contributions and interactions of multiple genetic and nongenetic risk factors, which have small effects individually. Genome-wide association studies (GWAS) of large collections of data from cases and controls have revealed many genetic factors that contribute to non-Mendelian rheumatic diseases, thus providing insights into associated molecular mechanisms. This Review summarizes methods for the identification of gene variants that influence genetically complex diseases and focuses on what we have learned about the rheumatic diseases for which GWAS have been reported. Our review of the disease-associated loci identified to date reveals greater sharing of risk loci among the groups of seropositive (diseases in which specific autoantibodies are often present) or seronegative diseases than between these two groups. The nature of the shared and discordant loci suggests important similarities and differences among these diseases.
Contribution of Large Region Joint Associations to Complex Traits Genetics
Paré, Guillaume; Asma, Senay; Deng, Wei Q.
2015-01-01
A polygenic model of inheritance, whereby hundreds or thousands of weakly associated variants contribute to a trait’s heritability, has been proposed to underlie the genetic architecture of complex traits. However, relatively few genetic variants have been positively identified so far and they collectively explain only a small fraction of the predicted heritability. We hypothesized that joint association of multiple weakly associated variants over large chromosomal regions contributes to complex traits variance. Confirmation of such regional associations can help identify new loci and lead to a better understanding of known ones. To test this hypothesis, we first characterized the ability of commonly used genetic association models to identify large region joint associations. Through theoretical derivation and simulation, we showed that multivariate linear models where multiple SNPs are included as independent predictors have the most favorable association profile. Based on these results, we tested for large region association with height in 3,740 European participants from the Health and Retirement Study (HRS) study. Adjusting for SNPs with known association with height, we demonstrated clustering of weak associations (p = 2x10-4) in regions extending up to 433.0 Kb from known height loci. The contribution of regional associations to phenotypic variance was estimated at 0.172 (95% CI 0.063-0.279; p < 0.001), which compared favorably to 0.129 explained by known height variants. Conversely, we showed that suggestively associated regions are enriched for known height loci. To extend our findings to other traits, we also tested BMI, HDLc and CRP for large region associations, with consistent results for CRP. Our results demonstrate the presence of large region joint associations and suggest these can be used to pinpoint weakly associated SNPs. PMID:25856144
An Ancestral Recombination Graph for Diploid Populations with Skewed Offspring Distribution
Birkner, Matthias; Blath, Jochen; Eldon, Bjarki
2013-01-01
A large offspring-number diploid biparental multilocus population model of Moran type is our object of study. At each time step, a pair of diploid individuals drawn uniformly at random contributes offspring to the population. The number of offspring can be large relative to the total population size. Similar “heavily skewed” reproduction mechanisms have been recently considered by various authors (cf. e.g., Eldon and Wakeley 2006, 2008) and reviewed by Hedgecock and Pudovkin (2011). Each diploid parental individual contributes exactly one chromosome to each diploid offspring, and hence ancestral lineages can coalesce only when in distinct individuals. A separation-of-timescales phenomenon is thus observed. A result of Möhle (1998) is extended to obtain convergence of the ancestral process to an ancestral recombination graph necessarily admitting simultaneous multiple mergers of ancestral lineages. The usual ancestral recombination graph is obtained as a special case of our model when the parents contribute only one offspring to the population each time. Due to diploidy and large offspring numbers, novel effects appear. For example, the marginal genealogy at each locus admits simultaneous multiple mergers in up to four groups, and different loci remain substantially correlated even as the recombination rate grows large. Thus, genealogies for loci far apart on the same chromosome remain correlated. Correlation in coalescence times for two loci is derived and shown to be a function of the coalescence parameters of our model. Extending the observations by Eldon and Wakeley (2008), predictions of linkage disequilibrium are shown to be functions of the reproduction parameters of our model, in addition to the recombination rate. Correlations in ratios of coalescence times between loci can be high, even when the recombination rate is high and sample size is large, in large offspring-number populations, as suggested by simulations, hinting at how to distinguish between different population models. PMID:23150600
Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M; Showmaker, Kurt C; Smith, Leif; Peterson, Daniel G; Lu, Shien
2016-06-01
Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14 genome as well as Burkholderia species genome show considerable diversity. Multiple antimicrobial agent biosynthesis genes were identified in the genome of plant growth-promoting species of Burkholderia. In addition, by comparing to nonpathogenic Burkholderia species, pathogenic Burkholderia species have more characterized homologs of the gene loci known to contribute to pathogenicity and virulence to plant and animals. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Mägi, Reedik; Suleimanov, Yury V; Clarke, Geraldine M; Kaakinen, Marika; Fischer, Krista; Prokopenko, Inga; Morris, Andrew P
2017-01-11
Genome-wide association studies (GWAS) of single nucleotide polymorphisms (SNPs) have been successful in identifying loci contributing genetic effects to a wide range of complex human diseases and quantitative traits. The traditional approach to GWAS analysis is to consider each phenotype separately, despite the fact that many diseases and quantitative traits are correlated with each other, and often measured in the same sample of individuals. Multivariate analyses of correlated phenotypes have been demonstrated, by simulation, to increase power to detect association with SNPs, and thus may enable improved detection of novel loci contributing to diseases and quantitative traits. We have developed the SCOPA software to enable GWAS analysis of multiple correlated phenotypes. The software implements "reverse regression" methodology, which treats the genotype of an individual at a SNP as the outcome and the phenotypes as predictors in a general linear model. SCOPA can be applied to quantitative traits and categorical phenotypes, and can accommodate imputed genotypes under a dosage model. The accompanying META-SCOPA software enables meta-analysis of association summary statistics from SCOPA across GWAS. Application of SCOPA to two GWAS of high-and low-density lipoprotein cholesterol, triglycerides and body mass index, and subsequent meta-analysis with META-SCOPA, highlighted stronger association signals than univariate phenotype analysis at established lipid and obesity loci. The META-SCOPA meta-analysis also revealed a novel signal of association at genome-wide significance for triglycerides mapping to GPC5 (lead SNP rs71427535, p = 1.1x10 -8 ), which has not been reported in previous large-scale GWAS of lipid traits. The SCOPA and META-SCOPA software enable discovery and dissection of multiple phenotype association signals through implementation of a powerful reverse regression approach.
Kote-Jarai, Zsofia; Easton, Douglas F.; Stanford, Janet L.; Ostrander, Elaine A.; Schleutker, Johanna; Ingles, Sue A.; Schaid, Daniel; Thibodeau, Stephen; Dörk, Thilo; Neal, David; Cox, Angela; Maier, Christiane; Vogel, Walter; Guy, Michelle; Muir, Kenneth; Lophatananon, Artitaya; Kedda, Mary-Anne; Spurdle, Amanda; Steginga, Suzanne; John, Esther M.; Giles, Graham; Hopper, John; Chappuis, Pierre O.; Hutter, Pierre; Foulkes, William D.; Hamel, Nancy; Salinas, Claudia A.; Koopmeiners, Joseph S.; Karyadi, Danielle M.; Johanneson, Bo; Wahlfors, Tiina; Tammela, Teuvo L.; Stern, Mariana C.; Corral, Roman; McDonnell, Shannon K.; Schürmann, Peter; Meyer, Andreas; Kuefer, Rainer; Leongamornlert, Daniel A.; Tymrakiewicz, Malgorzata; Liu, Jo-fen; O'Mara, Tracy; Gardiner, R.A. (Frank); Aitken, Joanne; Joshi, Amit D.; Severi, Gianluca; English, Dallas R.; Southey, Melissa; Edwards, Stephen M.; Amin Al Olama, Ali; Eeles, Rosalind A.
2009-01-01
A recent genome-wide association study found that genetic variants on chromosomes 3, 6, 7, 10, 11, 19 and X were associated with prostate cancer risk. We evaluated the most significant single-nucleotide polymorphisms (SNP) in these loci using a worldwide consortium of 13 groups (PRACTICAL). Blood DNA from 7,370 prostate cancer cases and 5,742 male controls was analyzed by genotyping assays. Odds ratios (OR) associated with each genotype were estimated using unconditional logistic regression. Six of the seven SNPs showed clear evidence of association with prostate cancer (P = 0.0007-P = 10−17). For each of these six SNPs, the estimated per-allele OR was similar to those previously reported and ranged from 1.12 to 1.29. One SNP on 3p12 (rs2660753) showed a weaker association than previously reported [per-allele OR, 1.08 (95% confidence interval, 1.00-1.16; P = 0.06) versus 1.18 (95% confidence interval, 1.06-1.31)]. The combined risks associated with each pair of SNPs were consistent with a multiplicative risk model. Under this model, and in combination with previously reported SNPs on 8q and 17q, these loci explain 16% of the familial risk of the disease, and men in the top 10% of the risk distribution have a 2.1-fold increased risk relative to general population rates. This study provides strong confirmation of these susceptibility loci in multiple populations and shows that they make an important contribution to prostate cancer risk prediction. PMID:18708398
Liang, Jingjing; Le, Thu H.; Edwards, Digna R. Velez; Tayo, Bamidele O.; Gaulton, Kyle J.; Lu, Yingchang; Jensen, Richard A.; Chen, Guanjie; Schwander, Karen; McKenzie, Colin A.; Fox, Ervin; Nalls, Michael A.; Young, J. Hunter; Lane, Jacqueline M.; Zhou, Jie; Tang, Hua; Fornage, Myriam; Musani, Solomon K.; Wang, Heming; Forrester, Terrence; Chu, Pei-Lun; Evans, Michele K.; Morrison, Alanna C.; Martin, Lisa W.; Wiggins, Kerri L.; Hui, Qin; Zhao, Wei; Jackson, Rebecca D.; Faul, Jessica D.; Reiner, Alex P.; Bray, Michael; Denny, Joshua C.; Mosley, Thomas H.; Palmas, Walter; Guo, Xiuqing; Polak, Joseph F.; Taylor, Ken D.; Boerwinkle, Eric; Bottinger, Erwin P.; Liu, Kiang; Risch, Neil; Hunt, Steven C.; Kooperberg, Charles; Zonderman, Alan B.; Becker, Diane M.; Cai, Jianwen; Loos, Ruth J. F.; Psaty, Bruce M.; Weir, David R.; Kardia, Sharon L. R.; Arnett, Donna K.; Won, Sungho; Edwards, Todd L.; Redline, Susan; Cooper, Richard S.; Rao, D. C.; Rotimi, Charles; Levy, Daniel; Chakravarti, Aravinda
2017-01-01
Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10−8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension. PMID:28498854
A predictive model for canine dilated cardiomyopathy-a meta-analysis of Doberman Pinscher data.
Simpson, Siobhan; Edwards, Jennifer; Emes, Richard D; Cobb, Malcolm A; Mongan, Nigel P; Rutland, Catrin S
2015-01-01
Dilated cardiomyopathy is a prevalent and often fatal disease in humans and dogs. Indeed dilated cardiomyopathy is the third most common form of cardiac disease in humans, reported to affect approximately 36 individuals per 100,000 individuals. In dogs, dilated cardiomyopathy is the second most common cardiac disease and is most prevalent in the Irish Wolfhound, Doberman Pinscher and Newfoundland breeds. Dilated cardiomyopathy is characterised by ventricular chamber enlargement and systolic dysfunction which often leads to congestive heart failure. Although multiple human loci have been implicated in the pathogenesis of dilated cardiomyopathy, the identified variants are typically associated with rare monogenic forms of dilated cardiomyopathy. The potential for multigenic interactions contributing to human dilated cardiomyopathy remains poorly understood. Consistent with this, several known human dilated cardiomyopathy loci have been excluded as common causes of canine dilated cardiomyopathy, although canine dilated cardiomyopathy resembles the human disease functionally. This suggests additional genetic factors contribute to the dilated cardiomyopathy phenotype.This study represents a meta-analysis of available canine dilated cardiomyopathy genetic datasets with the goal of determining potential multigenic interactions relating the sex chromosome genotype (XX vs. XY) with known dilated cardiomyopathy associated loci on chromosome 5 and the PDK4 gene in the incidence and progression of dilated cardiomyopathy. The results show an interaction between known canine dilated cardiomyopathy loci and an unknown X-linked locus. Our study is the first to test a multigenic contribution to dilated cardiomyopathy and suggest a genetic basis for the known sex-disparity in dilated cardiomyopathy outcomes.
Chen, Chunhui; Chen, Chuansheng; Moyzis, Robert; Stern, Hal; He, Qinghua; Li, He; Li, Jin; Zhu, Bi; Dong, Qi
2011-01-01
Traditional behavioral genetic studies (e.g., twin, adoption studies) have shown that human personality has moderate to high heritability, but recent molecular behavioral genetic studies have failed to identify quantitative trait loci (QTL) with consistent effects. The current study adopted a multi-step approach (ANOVA followed by multiple regression and permutation) to assess the cumulative effects of multiple QTLs. Using a system-level (dopamine system) genetic approach, we investigated a personality trait deeply rooted in the nervous system (the Highly Sensitive Personality, HSP). 480 healthy Chinese college students were given the HSP scale and genotyped for 98 representative polymorphisms in all major dopamine neurotransmitter genes. In addition, two environment factors (stressful life events and parental warmth) that have been implicated for their contributions to personality development were included to investigate their relative contributions as compared to genetic factors. In Step 1, using ANOVA, we identified 10 polymorphisms that made statistically significant contributions to HSP. In Step 2, these polymorphism's main effects and interactions were assessed using multiple regression. This model accounted for 15% of the variance of HSP (p<0.001). Recent stressful life events accounted for an additional 2% of the variance. Finally, permutation analyses ascertained the probability of obtaining these findings by chance to be very low, p ranging from 0.001 to 0.006. Dividing these loci by the subsystems of dopamine synthesis, degradation/transport, receptor and modulation, we found that the modulation and receptor subsystems made the most significant contribution to HSP. The results of this study demonstrate the utility of a multi-step neuronal system-level approach in assessing genetic contributions to individual differences in human behavior. It can potentially bridge the gap between the high heritability estimates based on traditional behavioral genetics and the lack of reproducible genetic effects observed currently from molecular genetic studies.
Chen, Chunhui; Chen, Chuansheng; Moyzis, Robert; Stern, Hal; He, Qinghua; Li, He; Li, Jin; Zhu, Bi; Dong, Qi
2011-01-01
Traditional behavioral genetic studies (e.g., twin, adoption studies) have shown that human personality has moderate to high heritability, but recent molecular behavioral genetic studies have failed to identify quantitative trait loci (QTL) with consistent effects. The current study adopted a multi-step approach (ANOVA followed by multiple regression and permutation) to assess the cumulative effects of multiple QTLs. Using a system-level (dopamine system) genetic approach, we investigated a personality trait deeply rooted in the nervous system (the Highly Sensitive Personality, HSP). 480 healthy Chinese college students were given the HSP scale and genotyped for 98 representative polymorphisms in all major dopamine neurotransmitter genes. In addition, two environment factors (stressful life events and parental warmth) that have been implicated for their contributions to personality development were included to investigate their relative contributions as compared to genetic factors. In Step 1, using ANOVA, we identified 10 polymorphisms that made statistically significant contributions to HSP. In Step 2, these polymorphism's main effects and interactions were assessed using multiple regression. This model accounted for 15% of the variance of HSP (p<0.001). Recent stressful life events accounted for an additional 2% of the variance. Finally, permutation analyses ascertained the probability of obtaining these findings by chance to be very low, p ranging from 0.001 to 0.006. Dividing these loci by the subsystems of dopamine synthesis, degradation/transport, receptor and modulation, we found that the modulation and receptor subsystems made the most significant contribution to HSP. The results of this study demonstrate the utility of a multi-step neuronal system-level approach in assessing genetic contributions to individual differences in human behavior. It can potentially bridge the gap between the high heritability estimates based on traditional behavioral genetics and the lack of reproducible genetic effects observed currently from molecular genetic studies. PMID:21765900
Strong signatures of selection in the domestic pig genome.
Rubin, Carl-Johan; Megens, Hendrik-Jan; Martinez Barrio, Alvaro; Maqbool, Khurram; Sayyab, Shumaila; Schwochow, Doreen; Wang, Chao; Carlborg, Örjan; Jern, Patric; Jørgensen, Claus B; Archibald, Alan L; Fredholm, Merete; Groenen, Martien A M; Andersson, Leif
2012-11-27
Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig--the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.
Strong signatures of selection in the domestic pig genome
Rubin, Carl-Johan; Megens, Hendrik-Jan; Barrio, Alvaro Martinez; Maqbool, Khurram; Sayyab, Shumaila; Schwochow, Doreen; Wang, Chao; Carlborg, Örjan; Jern, Patric; Jørgensen, Claus B.; Archibald, Alan L.; Fredholm, Merete; Groenen, Martien A. M.; Andersson, Leif
2012-01-01
Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection. PMID:23151514
Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).
Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling
2014-04-01
This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.
Shankar, Manisha; Jorgensen, Dorthe; Taylor, Julian; Chalmers, Ken J; Fox, Rebecca; Hollaway, Grant J; Neate, Stephen M; McLean, Mark S; Vassos, Elysia; Golzar, Hossein; Loughman, Robert; Mather, Diane E
2017-12-01
QTL for tan spot resistance were mapped on wheat chromosomes 1A and 2A. Lines were developed with resistance alleles at these loci and at the tsn1 locus on chromosome 5B. These lines expressed significantly higher resistance than the parent with tsn1 only. Tan spot (syn. yellow spot and yellow leaf spot) caused by Pyrenophora tritici-repentis is an important foliar disease of wheat in Australia. Few resistance genes have been mapped in Australian germplasm and only one, known as tsn1 located on chromosome 5B, is known in Australian breeding programs. This gene confers insensitivity to the fungal effector ToxA. The main aim of this study was to map novel resistance loci in two populations: Calingiri/Wyalkatchem, which is fixed for the ToxA-insensitivity allele tsn1, and IGW2574/Annuello, which is fixed for the ToxA-sensitivity allele Tsn1. A second aim was to combine new loci with tsn1 to develop lines with improved resistance. Tan spot severity was evaluated at various growth stages and in multiple environments. Symptom severity traits exhibited quantitative variation. The most significant quantitative trait loci (QTL) were detected on chromosomes 2A and 1A. The QTL on 2A explained up to 29.2% of the genotypic variation in the Calingiri/Wyalkatchem population with the resistance allele contributed by Wyalkatchem. The QTL on 1A explained up to 28.1% of the genotypic variation in the IGW2574/Annuello population with the resistance allele contributed by Annuello. The resistance alleles at both QTL were successfully combined with tsn1 to develop lines that express significantly better resistance at both seedling and adult plant stages than Calingiri which has tsn1 only.
A. Groover; M. Devey; T. Fiddler; J. Lee; R. Megraw; T. Mitchel-Olds; B. Sherman; S. Vujcic; C. Williams; D. Neale
1994-01-01
We report the identification of quantitative trait loci (QTL) influencing wood specific gravity (WSG) in an outbred pedigree of loblolly pine (Pinus taeda L.) . QTL mapping in an outcrossing species is complicated by the presence of multiple alleles (>2) at QTL and marker loci. Multiple alleles at QTL allow the examination of interaction among...
Alu expression in human cell lines and their retrotranspositional potential.
Oler, Andrew J; Traina-Dorge, Stephen; Derbes, Rebecca S; Canella, Donatella; Cairns, Brad R; Roy-Engel, Astrid M
2012-06-20
The vast majority of the 1.1 million Alu elements are retrotranspositionally inactive, where only a few loci referred to as 'source elements' can generate new Alu insertions. The first step in identifying the active Alu sources is to determine the loci transcribed by RNA polymerase III (pol III). Previous genome-wide analyses from normal and transformed cell lines identified multiple Alu loci occupied by pol III factors, making them candidate source elements. Analysis of the data from these genome-wide studies determined that the majority of pol III-bound Alus belonged to the older subfamilies Alu S and Alu J, which varied between cell lines from 62.5% to 98.7% of the identified loci. The pol III-bound Alus were further scored for estimated retrotransposition potential (ERP) based on the absence or presence of selected sequence features associated with Alu retrotransposition capability. Our analyses indicate that most of the pol III-bound Alu loci candidates identified lack the sequence characteristics important for retrotransposition. These data suggest that Alu expression likely varies by cell type, growth conditions and transformation state. This variation could extend to where the same cell lines in different laboratories present different Alu expression patterns. The vast majority of Alu loci potentially transcribed by RNA pol III lack important sequence features for retrotransposition and the majority of potentially active Alu loci in the genome (scored high ERP) belong to young Alu subfamilies. Our observations suggest that in an in vivo scenario, the contribution of Alu activity on somatic genetic damage may significantly vary between individuals and tissues.
Multiple loci on 8q24 associated with prostate cancer susceptibility.
Al Olama, Ali Amin; Kote-Jarai, Zsofia; Giles, Graham G; Guy, Michelle; Morrison, Jonathan; Severi, Gianluca; Leongamornlert, Daniel A; Tymrakiewicz, Malgorzata; Jhavar, Sameer; Saunders, Ed; Hopper, John L; Southey, Melissa C; Muir, Kenneth R; English, Dallas R; Dearnaley, David P; Ardern-Jones, Audrey T; Hall, Amanda L; O'Brien, Lynne T; Wilkinson, Rosemary A; Sawyer, Emma; Lophatananon, Artitaya; Horwich, Alan; Huddart, Robert A; Khoo, Vincent S; Parker, Christopher C; Woodhouse, Christopher J; Thompson, Alan; Christmas, Tim; Ogden, Chris; Cooper, Colin; Donovan, Jenny L; Hamdy, Freddie C; Neal, David E; Eeles, Rosalind A; Easton, Douglas F
2009-10-01
Previous studies have identified multiple loci on 8q24 associated with prostate cancer risk. We performed a comprehensive analysis of SNP associations across 8q24 by genotyping tag SNPs in 5,504 prostate cancer cases and 5,834 controls. We confirmed associations at three previously reported loci and identified additional loci in two other linkage disequilibrium blocks (rs1006908: per-allele OR = 0.87, P = 7.9 x 10(-8); rs620861: OR = 0.90, P = 4.8 x 10(-8)). Eight SNPs in five linkage disequilibrium blocks were independently associated with prostate cancer susceptibility.
Sato, Masahiro; Miyoshi, Kazuchika; Nakamura, Shingo; Ohtsuka, Masato; Sakurai, Takayuki; Watanabe, Satoshi; Kawaguchi, Hiroaki; Tanimoto, Akihide
2017-12-04
The recent advancement in genome editing such a CRISPR/Cas9 system has enabled isolation of cells with knocked multiple alleles through a one-step transfection. Somatic cell nuclear transfer (SCNT) has been frequently employed as one of the efficient tools for the production of genetically modified (GM) animals. To use GM cells as SCNT donor, efficient isolation of transfectants with mutations at multiple target loci is often required. The methods for the isolation of such GM cells largely rely on the use of drug selection-based approach using selectable genes; however, it is often difficult to isolate cells with mutations at multiple target loci. In this study, we used a novel approach for the efficient isolation of porcine cells with at least two target loci mutations by one-step introduction of CRISPR/Cas9-related components. A single guide (sg) RNA targeted to GGTA1 gene, involved in the synthesis of cell-surface α-Gal epitope (known as xenogenic antigen), is always a prerequisite. When the transfected cells were reacted with toxin-labeled BS-I-B₄ isolectin for 2 h at 37 C to eliminate α-Gal epitope-expressing cells, the surviving clones lacked α-Gal epitope expression and were highly expected to exhibit induced mutations at another target loci. Analysis of these α-Gal epitope-negative surviving cells demonstrated a 100% occurrence of genome editing at target loci. SCNT using these cells as donors resulted in the production of cloned blastocysts with the genotype similar to that of the donor cells used. Thus, this novel system will be useful for SCNT-mediated acquisition of GM cloned piglets, in which multiple target loci may be mutated.
Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval.
Lin, Honghuang; van Setten, Jessica; Smith, Albert V; Bihlmeyer, Nathan A; Warren, Helen R; Brody, Jennifer A; Radmanesh, Farid; Hall, Leanne; Grarup, Niels; Müller-Nurasyid, Martina; Boutin, Thibaud; Verweij, Niek; Lin, Henry J; Li-Gao, Ruifang; van den Berg, Marten E; Marten, Jonathan; Weiss, Stefan; Prins, Bram P; Haessler, Jeffrey; Lyytikäinen, Leo-Pekka; Mei, Hao; Harris, Tamara B; Launer, Lenore J; Li, Man; Alonso, Alvaro; Soliman, Elsayed Z; Connell, John M; Huang, Paul L; Weng, Lu-Chen; Jameson, Heather S; Hucker, William; Hanley, Alan; Tucker, Nathan R; Chen, Yii-Der Ida; Bis, Joshua C; Rice, Kenneth M; Sitlani, Colleen M; Kors, Jan A; Xie, Zhijun; Wen, Chengping; Magnani, Jared W; Nelson, Christopher P; Kanters, Jørgen K; Sinner, Moritz F; Strauch, Konstantin; Peters, Annette; Waldenberger, Melanie; Meitinger, Thomas; Bork-Jensen, Jette; Pedersen, Oluf; Linneberg, Allan; Rudan, Igor; de Boer, Rudolf A; van der Meer, Peter; Yao, Jie; Guo, Xiuqing; Taylor, Kent D; Sotoodehnia, Nona; Rotter, Jerome I; Mook-Kanamori, Dennis O; Trompet, Stella; Rivadeneira, Fernando; Uitterlinden, André; Eijgelsheim, Mark; Padmanabhan, Sandosh; Smith, Blair H; Völzke, Henry; Felix, Stephan B; Homuth, Georg; Völker, Uwe; Mangino, Massimo; Spector, Timothy D; Bots, Michiel L; Perez, Marco; Kähönen, Mika; Raitakari, Olli T; Gudnason, Vilmundur; Arking, Dan E; Munroe, Patricia B; Psaty, Bruce M; van Duijn, Cornelia M; Benjamin, Emelia J; Rosand, Jonathan; Samani, Nilesh J; Hansen, Torben; Kääb, Stefan; Polasek, Ozren; van der Harst, Pim; Heckbert, Susan R; Jukema, J Wouter; Stricker, Bruno H; Hayward, Caroline; Dörr, Marcus; Jamshidi, Yalda; Asselbergs, Folkert W; Kooperberg, Charles; Lehtimäki, Terho; Wilson, James G; Ellinor, Patrick T; Lubitz, Steven A; Isaacs, Aaron
2018-05-01
Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability. We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval. We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction ( P <1.2×10 -6 ), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at MYH6 ( P =5.9×10 -11 ) and SCN5A ( P =1.1×10 -7 ) were associated with PR interval. SCN5A locus also was implicated in the common variant analysis, whereas MYH6 was a novel locus. We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health. © 2018 American Heart Association, Inc.
Genome-Wide Association Studies of Drug-Resistance Determinants.
Volkman, Sarah K; Herman, Jonathan; Lukens, Amanda K; Hartl, Daniel L
2017-03-01
Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance. Copyright © 2016. Published by Elsevier Ltd.
Spritz, Richard; Andersen, Genevieve
2016-01-01
Synopsis Vitiligo is “complex disorder” (also termed polygenic and multifactorial), reflecting simultaneous contributions of multiple genetic risk factors and environmental triggers. Large-scale genome-wide association studies, principally in European-derived whites and in Chinese, have discovered approximately 50 different genetic loci that contribute to vitiligo risk, some of which also contribute to other autoimmune diseases that are epidemiologically associated with vitiligo. At many of these vitiligo susceptibility loci the corresponding relevant genes have now been identified, and for some of these genes the specific DNA sequence variants that contribute to vitiligo risk are also now known. A large fraction of these genes encode proteins involved in immune regulation, a number of others play roles in cellular apoptosis, and still others are involved in regulating functions of melanocytes. For this last group, there appears to be an opposite relationship between susceptibility to vitiligo and susceptibility to melanoma, suggesting that vitiligo may engage a normal mechanism of immune surveillance for melanoma. While many of the specific biologic mechanisms through which these genetic factors operate to cause vitiligo remain to be elucidated, it is now clear that vitiligo is an autoimmune disease involving a complex relationship between programming and function of the immune system, aspects of the melanocyte autoimmune target, and dysregulation of the immune response. PMID:28317533
An evolutionary reduction principle for mutation rates at multiple Loci.
Altenberg, Lee
2011-06-01
A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (Evolutionary Biology, vol. 14, pp. 61-204, 1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models.A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface-a generalization of the hyperplane found by Zhivotovsky et al. (Proc. Natl. Acad. Sci. USA 91, 1079-1083, 1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance.Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.
Reifová, Radka; Majerová, Veronika; Reif, Jiří; Ahola, Markus; Lindholm, Antero; Procházka, Petr
2016-06-16
Understanding the mechanisms and selective forces leading to adaptive radiations and origin of biodiversity is a major goal of evolutionary biology. Acrocephalus warblers are small passerines that underwent an adaptive radiation in the last approximately 10 million years that gave rise to 37 extant species, many of which still hybridize in nature. Acrocephalus warblers have served as model organisms for a wide variety of ecological and behavioral studies, yet our knowledge of mechanisms and selective forces driving their radiation is limited. Here we studied patterns of interspecific gene flow and selection across three European Acrocephalus warblers to get a first insight into mechanisms of radiation of this avian group. We analyzed nucleotide variation at eight nuclear loci in three hybridizing Acrocephalus species with overlapping breeding ranges in Europe. Using an isolation-with-migration model for multiple populations, we found evidence for unidirectional gene flow from A. scirpaceus to A. palustris and from A. palustris to A. dumetorum. Gene flow was higher between genetically more closely related A. scirpaceus and A. palustris than between ecologically more similar A. palustris and A. dumetorum, suggesting that gradual accumulation of intrinsic barriers rather than divergent ecological selection are more efficient in restricting interspecific gene flow in Acrocephalus warblers. Although levels of genetic differentiation between different species pairs were in general not correlated, we found signatures of apparently independent instances of positive selection at the same two Z-linked loci in multiple species. Our study brings the first evidence that gene flow occurred during Acrocephalus radiation and not only between sister species. Interspecific gene flow could thus be an important source of genetic variation in individual Acrocephalus species and could have accelerated adaptive evolution and speciation rate in this avian group by creating novel genetic combinations and new phenotypes. Independent instances of positive selection at the same loci in multiple species indicate an interesting possibility that the same loci might have contributed to reproductive isolation in several speciation events.
Multiple Genetic Associations with Irish Wolfhound Dilated Cardiomyopathy.
Simpson, Siobhan; Dunning, Mark D; Brownlie, Serena; Patel, Janika; Godden, Megan; Cobb, Malcolm; Mongan, Nigel P; Rutland, Catrin S
2016-01-01
Cardiac disease is a leading cause of morbidity and mortality in dogs and humans, with dilated cardiomyopathy being a large contributor to this. The Irish Wolfhound (IWH) is one of the most commonly affected breeds and one of the few breeds with genetic loci associated with the disease. Mutations in more than 50 genes are associated with human dilated cardiomyopathy (DCM), yet very few are also associated with canine DCM. Furthermore, none of the identified canine loci explain many cases of the disease and previous work has indicated that genotypes at multiple loci may act together to influence disease development. In this study, loci previously associated with DCM in IWH were tested for associations in a new cohort both individually and in combination. We have identified loci significantly associated with the disease individually, but no genotypes individually or in pairs conferred a significantly greater risk of developing DCM than the population risk. However combining three loci together did result in the identification of a genotype which conferred a greater risk of disease than the overall population risk. This study suggests multiple rather than individual genetic factors, cooperating to influence DCM risk in IWH.
Multiple Genetic Associations with Irish Wolfhound Dilated Cardiomyopathy
Dunning, Mark D.; Brownlie, Serena
2016-01-01
Cardiac disease is a leading cause of morbidity and mortality in dogs and humans, with dilated cardiomyopathy being a large contributor to this. The Irish Wolfhound (IWH) is one of the most commonly affected breeds and one of the few breeds with genetic loci associated with the disease. Mutations in more than 50 genes are associated with human dilated cardiomyopathy (DCM), yet very few are also associated with canine DCM. Furthermore, none of the identified canine loci explain many cases of the disease and previous work has indicated that genotypes at multiple loci may act together to influence disease development. In this study, loci previously associated with DCM in IWH were tested for associations in a new cohort both individually and in combination. We have identified loci significantly associated with the disease individually, but no genotypes individually or in pairs conferred a significantly greater risk of developing DCM than the population risk. However combining three loci together did result in the identification of a genotype which conferred a greater risk of disease than the overall population risk. This study suggests multiple rather than individual genetic factors, cooperating to influence DCM risk in IWH. PMID:28070514
Chang, Audrey S; Bennett, Sarah M; Noor, Mohamed A F
2010-10-27
The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed "mule-like", to roughly 250 kilobases.
Chang, Audrey S.; Bennett, Sarah M.; Noor, Mohamed A. F.
2010-01-01
The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed “mule-like”, to roughly 250 kilobases. PMID:21060872
Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P
2017-01-01
Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.
Ahsan, Muhammad; Ek, Weronica E.; Karlsson, Torgny; Gyllensten, Ulf
2017-01-01
Associations between epigenetic alterations and disease status have been identified for many diseases. However, there is no strong evidence that epigenetic alterations are directly causal for disease pathogenesis. In this study, we combined SNP and DNA methylation data with measurements of protein biomarkers for cancer, inflammation or cardiovascular disease, to investigate the relative contribution of genetic and epigenetic variation on biomarker levels. A total of 121 protein biomarkers were measured and analyzed in relation to DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed epigenome-wide association study (EWAS) and genome-wide association study (GWAS) analyses, and integrated biomarker, DNA methylation and SNP data using between 698 and 1033 samples depending on data availability for the different analyses. We identified 124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units’ change per 1% change in DNA methylation levels and up to four standard units’ change per copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by underlying genetic variants and three EWAS signals were confounded by smoking. While some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methylation levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker levels. We present associations between protein biomarker and DNA methylation levels at numerous loci in the genome. The associations are likely to reflect the underlying pattern of genetic variants, specific environmental exposures, or represent secondary effects to the pathogenesis of disease. PMID:28915241
Genetic changes associated with testicular cancer susceptibility.
Pyle, Louise C; Nathanson, Katherine L
2016-10-01
Testicular germ cell tumor (TGCT) is a highly heritable cancer primarily affecting young white men. Genome-wide association studies (GWAS) have been particularly effective in identifying multiple common variants with strong contribution to TGCT risk. These loci identified through association studies have implicated multiple genes as associated with TGCT predisposition, many of which are unique among cancer types, and regulate processes such as pluripotency, sex specification, and microtubule assembly. Together these biologically plausible genes converge on pathways involved in male germ cell development and maturation, and suggest that perturbation of them confers susceptibility to TGCT, as a developmental defect of germ cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Bennett, Brian J.; Davis, Richard C.; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R. Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C.; Hazen, Stanley L.; Gargalovic, Peter S.; Lusis, Aldons J.
2015-01-01
Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression showed that the combined variations in plasma metabolites, including LDL/VLDL-cholesterol, trimethylamine N-oxide (TMAO), arginine, glucose and insulin, account for approximately 30 to 40% of the variation in atherosclerotic lesion area. Overall, our data provide a rich resource for studies of complex interactions underlying atherosclerosis. PMID:26694027
Identification of five novel modifier loci of ApcMin harbored in the BXH14 recombinant inbred strain
Siracusa, Linda D.
2012-01-01
Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc Min mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc Min mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc Min mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc Min males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene–gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies. Abbreviations:APCadenomatous polyposis coliGWASgenome-wide association studiesQTLquantitative trait lociSNPsingle-nucleotide polymorphism. PMID:22637734
Kos, Liborka; Conlon, Joseph
2009-08-01
Alopecia areata is one of the most frequent organ-restricted autoimmune diseases, yet its pathogenesis is still unclear. In addition, although alopecia areata often results in significant psychological distress, effective treatment is lacking. New potential susceptibility loci have been implicated, but the strongest evidence points to certain class II human leukocyte antigen alleles. There is new evidence for the collapse of hair follicle immune privilege as a key step in the pathogenesis of alopecia areata. There is also new basic science evidence for stress as a contributing factor in the development of alopecia areata. Few treatments for alopecia areata have been well evaluated in randomized trials. Although multiple potential susceptibility loci have been implicated, the genetics of alopecia areata is still unclear. The role of any potential environmental contributors is also unclear. Quality evidence for efficacy of currently used treatments for alopecia areata is lacking.
Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis.
Fingerlin, Tasha E; Murphy, Elissa; Zhang, Weiming; Peljto, Anna L; Brown, Kevin K; Steele, Mark P; Loyd, James E; Cosgrove, Gregory P; Lynch, David; Groshong, Steve; Collard, Harold R; Wolters, Paul J; Bradford, Williamson Z; Kossen, Karl; Seiwert, Scott D; du Bois, Roland M; Garcia, Christine Kim; Devine, Megan S; Gudmundsson, Gunnar; Isaksson, Helgi J; Kaminski, Naftali; Zhang, Yingze; Gibson, Kevin F; Lancaster, Lisa H; Cogan, Joy D; Mason, Wendi R; Maher, Toby M; Molyneaux, Philip L; Wells, Athol U; Moffatt, Miriam F; Selman, Moises; Pardo, Annie; Kim, Dong Soon; Crapo, James D; Make, Barry J; Regan, Elizabeth A; Walek, Dinesha S; Daniel, Jerry J; Kamatani, Yoichiro; Zelenika, Diana; Smith, Keith; McKean, David; Pedersen, Brent S; Talbert, Janet; Kidd, Raven N; Markin, Cheryl R; Beckman, Kenneth B; Lathrop, Mark; Schwarz, Marvin I; Schwartz, David A
2013-06-01
We performed a genome-wide association study of non-Hispanic, white individuals with fibrotic idiopathic interstitial pneumonias (IIPs; n = 1,616) and controls (n = 4,683), with follow-up replication analyses in 876 cases and 1,890 controls. We confirmed association with TERT at 5p15, MUC5B at 11p15 and the 3q26 region near TERC, and we identified seven newly associated loci (Pmeta = 2.4 × 10(-8) to 1.1 × 10(-19)), including FAM13A (4q22), DSP (6p24), OBFC1 (10q24), ATP11A (13q34), DPP9 (19p13) and chromosomal regions 7q22 and 15q14-15. Our results suggest that genes involved in host defense, cell-cell adhesion and DNA repair contribute to risk of fibrotic IIPs.
Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.
Zhang, Linbin; Sun, Tianai; Woldesellassie, Fitsum; Xiao, Hailian; Tao, Yun
2015-03-01
Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.
Sex Ratio Meiotic Drive as a Plausible Evolutionary Mechanism for Hybrid Male Sterility
Zhang, Linbin; Xiao, Hailian; Tao, Yun
2015-01-01
Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome – two patterns widely observed across animals. PMID:25822261
Peters, James E.; Lyons, Paul A.; Lee, James C.; Richard, Arianne C.; Fortune, Mary D.; Newcombe, Paul J.; Richardson, Sylvia; Smith, Kenneth G. C.
2016-01-01
Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases. PMID:27015630
Negligible impact of rare autoimmune-locus coding-region variants on missing heritability.
Hunt, Karen A; Mistry, Vanisha; Bockett, Nicholas A; Ahmad, Tariq; Ban, Maria; Barker, Jonathan N; Barrett, Jeffrey C; Blackburn, Hannah; Brand, Oliver; Burren, Oliver; Capon, Francesca; Compston, Alastair; Gough, Stephen C L; Jostins, Luke; Kong, Yong; Lee, James C; Lek, Monkol; MacArthur, Daniel G; Mansfield, John C; Mathew, Christopher G; Mein, Charles A; Mirza, Muddassar; Nutland, Sarah; Onengut-Gumuscu, Suna; Papouli, Efterpi; Parkes, Miles; Rich, Stephen S; Sawcer, Steven; Satsangi, Jack; Simmonds, Matthew J; Trembath, Richard C; Walker, Neil M; Wozniak, Eva; Todd, John A; Simpson, Michael A; Plagnol, Vincent; van Heel, David A
2013-06-13
Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.
Franceschini, Nora; Fox, Ervin; Zhang, Zhaogong; Edwards, Todd L.; Nalls, Michael A.; Sung, Yun Ju; Tayo, Bamidele O.; Sun, Yan V.; Gottesman, Omri; Adeyemo, Adebawole; Johnson, Andrew D.; Young, J. Hunter; Rice, Ken; Duan, Qing; Chen, Fang; Li, Yun; Tang, Hua; Fornage, Myriam; Keene, Keith L.; Andrews, Jeanette S.; Smith, Jennifer A.; Faul, Jessica D.; Guangfa, Zhang; Guo, Wei; Liu, Yu; Murray, Sarah S.; Musani, Solomon K.; Srinivasan, Sathanur; Velez Edwards, Digna R.; Wang, Heming; Becker, Lewis C.; Bovet, Pascal; Bochud, Murielle; Broeckel, Ulrich; Burnier, Michel; Carty, Cara; Chasman, Daniel I.; Ehret, Georg; Chen, Wei-Min; Chen, Guanjie; Chen, Wei; Ding, Jingzhong; Dreisbach, Albert W.; Evans, Michele K.; Guo, Xiuqing; Garcia, Melissa E.; Jensen, Rich; Keller, Margaux F.; Lettre, Guillaume; Lotay, Vaneet; Martin, Lisa W.; Moore, Jason H.; Morrison, Alanna C.; Mosley, Thomas H.; Ogunniyi, Adesola; Palmas, Walter; Papanicolaou, George; Penman, Alan; Polak, Joseph F.; Ridker, Paul M.; Salako, Babatunde; Singleton, Andrew B.; Shriner, Daniel; Taylor, Kent D.; Vasan, Ramachandran; Wiggins, Kerri; Williams, Scott M.; Yanek, Lisa R.; Zhao, Wei; Zonderman, Alan B.; Becker, Diane M.; Berenson, Gerald; Boerwinkle, Eric; Bottinger, Erwin; Cushman, Mary; Eaton, Charles; Nyberg, Fredrik; Heiss, Gerardo; Hirschhron, Joel N.; Howard, Virginia J.; Karczewsk, Konrad J.; Lanktree, Matthew B.; Liu, Kiang; Liu, Yongmei; Loos, Ruth; Margolis, Karen; Snyder, Michael; Go, Min Jin; Kim, Young Jin; Lee, Jong-Young; Jeon, Jae-Pil; Kim, Sung Soo; Han, Bok-Ghee; Cho, Yoon Shin; Sim, Xueling; Tay, Wan Ting; Ong, Rick Twee Hee; Seielstad, Mark; Liu, Jian Jun; Aung, Tin; Wong, Tien Yin; Teo, Yik Ying; Tai, E. Shyong; Chen, Chien-Hsiun; Chang, Li-ching; Chen, Yuan-Tsong; Wu, Jer-Yuarn; Kelly, Tanika N.; Gu, Dongfeng; Hixson, James E.; Sung, Yun Ju; He, Jiang; Tabara, Yasuharu; Kokubo, Yoshihiro; Miki, Tetsuro; Iwai, Naoharu; Kato, Norihiro; Takeuchi, Fumihiko; Katsuya, Tomohiro; Nabika, Toru; Sugiyama, Takao; Zhang, Yi; Huang, Wei; Zhang, Xuegong; Zhou, Xueya; Jin, Li; Zhu, Dingliang; Psaty, Bruce M.; Schork, Nicholas J.; Weir, David R.; Rotimi, Charles N.; Sale, Michele M.; Harris, Tamara; Kardia, Sharon L.R.; Hunt, Steven C.; Arnett, Donna; Redline, Susan; Cooper, Richard S.; Risch, Neil J.; Rao, D.C.; Rotter, Jerome I.; Chakravarti, Aravinda; Reiner, Alex P.; Levy, Daniel; Keating, Brendan J.; Zhu, Xiaofeng
2013-01-01
High blood pressure (BP) is more prevalent and contributes to more severe manifestations of cardiovascular disease (CVD) in African Americans than in any other United States ethnic group. Several small African-ancestry (AA) BP genome-wide association studies (GWASs) have been published, but their findings have failed to replicate to date. We report on a large AA BP GWAS meta-analysis that includes 29,378 individuals from 19 discovery cohorts and subsequent replication in additional samples of AA (n = 10,386), European ancestry (EA) (n = 69,395), and East Asian ancestry (n = 19,601). Five loci (EVX1-HOXA, ULK4, RSPO3, PLEKHG1, and SOX6) reached genome-wide significance (p < 1.0 × 10−8) for either systolic or diastolic BP in a transethnic meta-analysis after correction for multiple testing. Three of these BP loci (EVX1-HOXA, RSPO3, and PLEKHG1) lack previous associations with BP. We also identified one independent signal in a known BP locus (SOX6) and provide evidence for fine mapping in four additional validated BP loci. We also demonstrate that validated EA BP GWAS loci, considered jointly, show significant effects in AA samples. Consequently, these findings suggest that BP loci might have universal effects across studied populations, demonstrating that multiethnic samples are an essential component in identifying, fine mapping, and understanding their trait variability. PMID:23972371
Wu, Ying; Zou, Meng; Raulerson, Chelsea K.; Jackson, Kayla; Yuan, Wentao; Wang, Haifeng; Shou, Weihua; Wang, Ying; Luo, Jingchun; Lange, Leslie A.; Lange, Ethan M.; Gordon-Larsen, Penny; Du, Shufa; Huang, Wei; Mohlke, Karen L.
2018-01-01
To identify genetic contributions to type 2 diabetes (T2D) and related glycemic traits (fasting glucose, fasting insulin, and HbA1c), we conducted genome-wide association analyses (GWAS) in up to 7,178 Chinese subjects from nine provinces in the China Health and Nutrition Survey (CHNS). We examined patterns of population structure within CHNS and found that allele frequencies differed across provinces, consistent with genetic drift and population substructure. We further validated 32 previously described T2D- and glycemic trait-loci, including G6PC2 and SIX3-SIX2 associated with fasting glucose. At G6PC2, we replicated a known fasting glucose-associated variant (rs34177044) and identified a second signal (rs2232326), a low-frequency (4%), probably damaging missense variant (S324P). A variant within the lead fasting glucose-associated signal at SIX3-SIX2 co-localized with pancreatic islet expression quantitative trait loci (eQTL) for SIX3, SIX2, and three noncoding transcripts. To identify variants functionally responsible for the fasting glucose association at SIX3-SIX2, we tested five candidate variants for allelic differences in regulatory function. The rs12712928-C allele, associated with higher fasting glucose and lower transcript expression level, showed lower transcriptional activity in reporter assays and increased binding to GABP compared to the rs12712928-G, suggesting that rs12712928-C contributes to elevated fasting glucose levels by disrupting an islet enhancer, resulting in reduced gene expression. Taken together, these analyses identified multiple loci associated with glycemic traits across China, and suggest a regulatory mechanism at the SIX3-SIX2 fasting glucose GWAS locus. PMID:29621232
Kozak, C A; Hartley, J W; Morse, H C
1984-07-01
Mendelian segregation analysis was used to define genetic loci for the induction of infectious xenotropic murine leukemia virus in several laboratory and wild-derived mice. MA/My mice contain two loci for xenotropic virus inducibility, one of which, Bxv -1, is the only induction locus carried by five other inbred strains. The second, novel MA/My locus, designated Mxv -1, is unlinked to Bxv -1 and shows a lower efficiency of virus induction. The NZB mouse carries two induction loci; both are distinct from Bxv -1 since neither is linked to the Pep-3 locus on chromosome 1. Finally, one partially inbred strain derived from the wild Japanese mouse, Mus musculus molossinus, carries multiple (at least three) unlinked loci for induction of xenotropic virus. Although it is probable that inbred strains inherited xenotropic virus inducibility from Japanese mice, our data suggest that none of the induction loci carried by this particular M. m. molossinus strain are allelic with Bxv -1.
Kozak, C A; Hartley, J W; Morse, H C
1984-01-01
Mendelian segregation analysis was used to define genetic loci for the induction of infectious xenotropic murine leukemia virus in several laboratory and wild-derived mice. MA/My mice contain two loci for xenotropic virus inducibility, one of which, Bxv -1, is the only induction locus carried by five other inbred strains. The second, novel MA/My locus, designated Mxv -1, is unlinked to Bxv -1 and shows a lower efficiency of virus induction. The NZB mouse carries two induction loci; both are distinct from Bxv -1 since neither is linked to the Pep-3 locus on chromosome 1. Finally, one partially inbred strain derived from the wild Japanese mouse, Mus musculus molossinus, carries multiple (at least three) unlinked loci for induction of xenotropic virus. Although it is probable that inbred strains inherited xenotropic virus inducibility from Japanese mice, our data suggest that none of the induction loci carried by this particular M. m. molossinus strain are allelic with Bxv -1. PMID:6328046
Genetic variations in the serotonergic system contribute to amygdala volume in humans.
Li, Jin; Chen, Chunhui; Wu, Karen; Zhang, Mingxia; Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi
2015-01-01
The amygdala plays a critical role in emotion processing and psychiatric disorders associated with emotion dysfunction. Accumulating evidence suggests that amygdala structure is modulated by serotonin-related genes. However, there is a gap between the small contributions of single loci (less than 1%) and the reported 63-65% heritability of amygdala structure. To understand the "missing heritability," we systematically explored the contribution of serotonin genes on amygdala structure at the gene set level. The present study of 417 healthy Chinese volunteers examined 129 representative polymorphisms in genes from multiple biological mechanisms in the regulation of serotonin neurotransmission. A system-level approach using multiple regression analyses identified that nine SNPs collectively accounted for approximately 8% of the variance in amygdala volume. Permutation analyses showed that the probability of obtaining these findings by chance was low (p = 0.043, permuted for 1000 times). Findings showed that serotonin genes contribute moderately to individual differences in amygdala volume in a healthy Chinese sample. These results indicate that the system-level approach can help us to understand the genetic basis of a complex trait such as amygdala structure.
Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci
Zhao, Yuqi; Chen, Jing; Freudenberg, Johannes M.; Meng, Qingying; Rajpal, Deepak K.; Yang, Xia
2017-01-01
Objective Recent genome-wide association studies of coronary artery disease (CAD) have revealed 58 genome-wide significant and 148 suggestive genetic loci. However, the molecular mechanisms through which they contribute to CAD and the clinical implications of these findings remain largely unknown. We aim to retrieve gene subnetworks of the 206 CAD loci and identify and prioritize candidate regulators to better understand the biological mechanisms underlying the genetic associations. Approach and Results We devised a new integrative genomics approach that incorporated (1) candidate genes from the top CAD loci, (2) the complete genetic association results from the 1000 genomes-based CAD genome-wide association studies from the Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus the Coronary Artery Disease consortium, (3) tissue-specific gene regulatory networks that depict the potential relationship and interactions between genes, and (4) tissue-specific gene expression patterns between CAD patients and controls. The networks and top-ranked regulators according to these data-driven criteria were further queried against literature, experimental evidence, and drug information to evaluate their disease relevance and potential as drug targets. Our analysis uncovered several potential novel regulators of CAD such as LUM and STAT3, which possess properties suitable as drug targets. We also revealed molecular relations and potential mechanisms through which the top CAD loci operate. Furthermore, we found that multiple CAD-relevant biological processes such as extracellular matrix, inflammatory and immune pathways, complement and coagulation cascades, and lipid metabolism interact in the CAD networks. Conclusions Our data-driven integrative genomics framework unraveled tissue-specific relations among the candidate genes of the CAD genome-wide association studies loci and prioritized novel network regulatory genes orchestrating biological processes relevant to CAD. PMID:26966275
Identification of novel loci for the generation of reporter mice
Rebecchi, Monica; Levandis, Giovanna
2017-01-01
Abstract Deciphering the etiology of complex pathologies at molecular level requires longitudinal studies encompassing multiple biochemical pathways (apoptosis, proliferation, inflammation, oxidative stress). In vivo imaging of current reporter animals enabled the spatio-temporal analysis of specific molecular events, however, the lack of a multiplicity of loci for the generalized and regulated expression of the integrated transgenes hampers the creation of systems for the simultaneous analysis of more than a biochemical pathways at the time. We here developed and tested an in vivo-based methodology for the identification of multiple insertional loci suitable for the generation of reliable reporter mice. The validity of the methodology was tested with the generation of novel mice useful to report on inflammation and oxidative stress. PMID:27899606
Heritable Epigenomic Changes to the Maize Methylome Resulting from Tissue Culture.
Han, Zhaoxue; Crisp, Peter A; Stelpflug, Scott; Kaeppler, Shawn M; Li, Qing; Springer, Nathan M
2018-05-30
DNA methylation can contribute to the maintenance of genome integrity and regulation of gene expression. In most situations, DNA methylation patterns are inherited quite stably. However, changes in DNA methylation can occur at some loci as a result of tissue culture resulting in somaclonal variation. To investigate heritable epigenetic changes as a consequence of tissue culture, a sequence-capture bisulfite sequencing approach was implemented to monitor context-specific DNA methylation patterns in ∼15Mb of the maize genome for a population of plants that had been regenerated from tissue culture. Plants that have been regenerated from tissue culture exhibit gains and losses of DNA methylation at a subset of genomic regions. There was evidence for a high rate of homozygous changes to DNA methylation levels that occur consistently in multiple independent tissue culture lines suggesting that some loci are either targeted or hotspots for epigenetic variation. The consistent changes inherited following tissue culture include both gains and losses of DNA methylation and can affect CG, CHG or both contexts within a region. Only a subset of the tissue culture changes observed in callus plants are observed in the primary regnerants but the majority of DNA methylation changes present in primary regenerants are passed onto offspring. This study provides insights into the susceptibility of some loci and potential mechanisms that could contribute to altered DNA methylation and epigenetic state that occur during tissue culture in plant species. Copyright © 2018, Genetics.
Population- and individual-specific regulatory variation in Sardinia.
Pala, Mauro; Zappala, Zachary; Marongiu, Mara; Li, Xin; Davis, Joe R; Cusano, Roberto; Crobu, Francesca; Kukurba, Kimberly R; Gloudemans, Michael J; Reinier, Frederic; Berutti, Riccardo; Piras, Maria G; Mulas, Antonella; Zoledziewska, Magdalena; Marongiu, Michele; Sorokin, Elena P; Hess, Gaelen T; Smith, Kevin S; Busonero, Fabio; Maschio, Andrea; Steri, Maristella; Sidore, Carlo; Sanna, Serena; Fiorillo, Edoardo; Bassik, Michael C; Sawcer, Stephen J; Battle, Alexis; Novembre, John; Jones, Chris; Angius, Andrea; Abecasis, Gonçalo R; Schlessinger, David; Cucca, Francesco; Montgomery, Stephen B
2017-05-01
Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.
Bai, Xufeng; Zhao, Hu; Huang, Yong; Xie, Weibo; Han, Zhongmin; Zhang, Bo; Guo, Zilong; Yang, Lin; Dong, Haijiao; Xue, Weiya; Li, Guangwei; Hu, Gang; Hu, Yong; Xing, Yongzhong
2016-07-01
Panicle architecture determines the number of spikelets per panicle (SPP) and is highly associated with grain yield in rice ( L.). Understanding the genetic basis of panicle architecture is important for improving the yield of rice grain. In this study, we dissected panicle architecture traits into eight components, which were phenotyped from a germplasm collection of 529 cultivars. Multiple regression analysis revealed that the number of secondary branch (NSB) was the major factor that contributed to SPP. Genome-wide association analysis was performed independently for the eight particle architecture traits observed in the and rice subpopulations compared with the whole rice population. In total, 30 loci were associated with these traits. Of these, 13 loci were closely linked to known panicle architecture genes, and 17 novel loci were repeatedly identified in different environments. An association signal cluster was identified for NSB and number of spikelets per secondary branch (NSSB) in the region of 31.6 to 31.7 Mb on chromosome 4. In addition to the common associations detected in both and subpopulations, many associated loci were unique to one subpopulation. For example, and were specifically associated with panicle length (PL) in and rice, respectively. Moreover, the -mediated flowering genes and were associated with the formation of panicle architecture in rice. These results suggest that different gene networks regulate panicle architecture in and rice. Copyright © 2016 Crop Science Society of America.
Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan
2015-01-01
Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance explains the insignificant narrow-sense and significant broad-sense heritability by using a combination of careful statistical epistatic analyses and functional genetic experiments.
Franceschini, Nora; Fox, Ervin; Zhang, Zhaogong; Edwards, Todd L; Nalls, Michael A; Sung, Yun Ju; Tayo, Bamidele O; Sun, Yan V; Gottesman, Omri; Adeyemo, Adebawole; Johnson, Andrew D; Young, J Hunter; Rice, Ken; Duan, Qing; Chen, Fang; Li, Yun; Tang, Hua; Fornage, Myriam; Keene, Keith L; Andrews, Jeanette S; Smith, Jennifer A; Faul, Jessica D; Guangfa, Zhang; Guo, Wei; Liu, Yu; Murray, Sarah S; Musani, Solomon K; Srinivasan, Sathanur; Velez Edwards, Digna R; Wang, Heming; Becker, Lewis C; Bovet, Pascal; Bochud, Murielle; Broeckel, Ulrich; Burnier, Michel; Carty, Cara; Chasman, Daniel I; Ehret, Georg; Chen, Wei-Min; Chen, Guanjie; Chen, Wei; Ding, Jingzhong; Dreisbach, Albert W; Evans, Michele K; Guo, Xiuqing; Garcia, Melissa E; Jensen, Rich; Keller, Margaux F; Lettre, Guillaume; Lotay, Vaneet; Martin, Lisa W; Moore, Jason H; Morrison, Alanna C; Mosley, Thomas H; Ogunniyi, Adesola; Palmas, Walter; Papanicolaou, George; Penman, Alan; Polak, Joseph F; Ridker, Paul M; Salako, Babatunde; Singleton, Andrew B; Shriner, Daniel; Taylor, Kent D; Vasan, Ramachandran; Wiggins, Kerri; Williams, Scott M; Yanek, Lisa R; Zhao, Wei; Zonderman, Alan B; Becker, Diane M; Berenson, Gerald; Boerwinkle, Eric; Bottinger, Erwin; Cushman, Mary; Eaton, Charles; Nyberg, Fredrik; Heiss, Gerardo; Hirschhron, Joel N; Howard, Virginia J; Karczewsk, Konrad J; Lanktree, Matthew B; Liu, Kiang; Liu, Yongmei; Loos, Ruth; Margolis, Karen; Snyder, Michael; Psaty, Bruce M; Schork, Nicholas J; Weir, David R; Rotimi, Charles N; Sale, Michele M; Harris, Tamara; Kardia, Sharon L R; Hunt, Steven C; Arnett, Donna; Redline, Susan; Cooper, Richard S; Risch, Neil J; Rao, D C; Rotter, Jerome I; Chakravarti, Aravinda; Reiner, Alex P; Levy, Daniel; Keating, Brendan J; Zhu, Xiaofeng
2013-09-05
High blood pressure (BP) is more prevalent and contributes to more severe manifestations of cardiovascular disease (CVD) in African Americans than in any other United States ethnic group. Several small African-ancestry (AA) BP genome-wide association studies (GWASs) have been published, but their findings have failed to replicate to date. We report on a large AA BP GWAS meta-analysis that includes 29,378 individuals from 19 discovery cohorts and subsequent replication in additional samples of AA (n = 10,386), European ancestry (EA) (n = 69,395), and East Asian ancestry (n = 19,601). Five loci (EVX1-HOXA, ULK4, RSPO3, PLEKHG1, and SOX6) reached genome-wide significance (p < 1.0 × 10(-8)) for either systolic or diastolic BP in a transethnic meta-analysis after correction for multiple testing. Three of these BP loci (EVX1-HOXA, RSPO3, and PLEKHG1) lack previous associations with BP. We also identified one independent signal in a known BP locus (SOX6) and provide evidence for fine mapping in four additional validated BP loci. We also demonstrate that validated EA BP GWAS loci, considered jointly, show significant effects in AA samples. Consequently, these findings suggest that BP loci might have universal effects across studied populations, demonstrating that multiethnic samples are an essential component in identifying, fine mapping, and understanding their trait variability. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Clustering Genes of Common Evolutionary History
Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe
2016-01-01
Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent—due to events such as incomplete lineage sorting or horizontal gene transfer—it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such “process-agnostic” approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward’s method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta. We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301
Raelson, John V; Little, Randall D; Ruether, Andreas; Fournier, Hélène; Paquin, Bruno; Van Eerdewegh, Paul; Bradley, W E C; Croteau, Pascal; Nguyen-Huu, Quynh; Segal, Jonathan; Debrus, Sophie; Allard, René; Rosenstiel, Philip; Franke, Andre; Jacobs, Gunnar; Nikolaus, Susanna; Vidal, Jean-Michel; Szego, Peter; Laplante, Nathalie; Clark, Hilary F; Paulussen, René J; Hooper, John W; Keith, Tim P; Belouchi, Abdelmajid; Schreiber, Stefan
2007-09-11
Genome-wide association (GWA) studies offer a powerful unbiased method for the identification of multiple susceptibility genes for complex diseases. Here we report the results of a GWA study for Crohn's disease (CD) using family trios from the Quebec Founder Population (QFP). Haplotype-based association analyses identified multiple regions associated with the disease that met the criteria for genome-wide significance, with many containing a gene whose function appears relevant to CD. A proportion of these were replicated in two independent German Caucasian samples, including the established CD loci NOD2 and IBD5. The recently described IL23R locus was also identified and replicated. For this region, multiple individuals with all major haplotypes in the QFP were sequenced and extensive fine mapping performed to identify risk and protective alleles. Several additional loci, including a region on 3p21 containing several plausible candidate genes, a region near JAKMIP1 on 4p16.1, and two larger regions on chromosome 17 were replicated. Together with previously published loci, the spectrum of CD genes identified to date involves biochemical networks that affect epithelial defense mechanisms, innate and adaptive immune response, and the repair or remodeling of tissue.
Chaw, R. Crystal; Collin, Matthew; Wimmer, Marjorie; Helmrick, Kara-Leigh; Hayashi, Cheryl Y.
2017-01-01
Spiders swath their eggs with silk to protect developing embryos and hatchlings. Egg case silks, like other fibrous spider silks, are primarily composed of proteins called spidroins (spidroin = spider-fibroin). Silks, and thus spidroins, are important throughout the lives of spiders, yet the evolution of spidroin genes has been relatively understudied. Spidroin genes are notoriously difficult to sequence because they are typically very long (≥ 10 kb of coding sequence) and highly repetitive. Here, we investigate the evolution of spider silk genes through long-read sequencing of Bacterial Artificial Chromosome (BAC) clones. We demonstrate that the silver garden spider Argiope argentata has multiple egg case spidroin loci with a loss of function at one locus. We also use degenerate PCR primers to search the genomic DNA of congeneric species and find evidence for multiple egg case spidroin loci in other Argiope spiders. Comparative analyses show that these multiple loci are more similar at the nucleotide level within a species than between species. This pattern is consistent with concerted evolution homogenizing gene copies within a genome. More complicated explanations include convergent evolution or recent independent gene duplications within each species. PMID:29127108
Stable Gene Targeting in Human Cells Using Single-Strand Oligonucleotides with Modified Bases
Rios, Xavier; Briggs, Adrian W.; Christodoulou, Danos; Gorham, Josh M.; Seidman, Jonathan G.; Church, George M.
2012-01-01
Recent advances allow multiplexed genome engineering in E. coli, employing easily designed oligonucleotides to edit multiple loci simultaneously. A similar technology in human cells would greatly expedite functional genomics, both by enhancing our ability to test how individual variants such as single nucleotide polymorphisms (SNPs) are related to specific phenotypes, and potentially allowing simultaneous mutation of multiple loci. However, oligo-mediated targeting of human cells is currently limited by low targeting efficiencies and low survival of modified cells. Using a HeLa-based EGFP-rescue reporter system we show that use of modified base analogs can increase targeting efficiency, in part by avoiding the mismatch repair machinery. We investigate the effects of oligonucleotide toxicity and find a strong correlation between the number of phosphorothioate bonds and toxicity. Stably EGFP-corrected cells were generated at a frequency of ~0.05% with an optimized oligonucleotide design combining modified bases and reduced number of phosphorothioate bonds. We provide evidence from comparative RNA-seq analysis suggesting cellular immunity induced by the oligonucleotides might contribute to the low viability of oligo-corrected cells. Further optimization of this method should allow rapid and scalable genome engineering in human cells. PMID:22615794
Zuo, Chandler; Chen, Kailei; Keleş, Sündüz
2017-06-01
Current analytic approaches for querying large collections of chromatin immunoprecipitation followed by sequencing (ChIP-seq) data from multiple cell types rely on individual analysis of each data set (i.e., peak calling) independently. This approach discards the fact that functional elements are frequently shared among related cell types and leads to overestimation of the extent of divergence between different ChIP-seq samples. Methods geared toward multisample investigations have limited applicability in settings that aim to integrate 100s to 1000s of ChIP-seq data sets for query loci (e.g., thousands of genomic loci with a specific binding site). Recently, Zuo et al. developed a hierarchical framework for state-space matrix inference and clustering, named MBASIC, to enable joint analysis of user-specified loci across multiple ChIP-seq data sets. Although this versatile framework estimates both the underlying state-space (e.g., bound vs. unbound) and also groups loci with similar patterns together, its Expectation-Maximization-based estimation structure hinders its applicability with large number of loci and samples. We address this limitation by developing MAP-based asymptotic derivations from Bayes (MAD-Bayes) framework for MBASIC. This results in a K-means-like optimization algorithm that converges rapidly and hence enables exploring multiple initialization schemes and flexibility in tuning. Comparison with MBASIC indicates that this speed comes at a relatively insignificant loss in estimation accuracy. Although MAD-Bayes MBASIC is specifically designed for the analysis of user-specified loci, it is able to capture overall patterns of histone marks from multiple ChIP-seq data sets similar to those identified by genome-wide segmentation methods such as ChromHMM and Spectacle.
Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models
Sousa, Vitor C.; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody
2013-01-01
When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus). PMID:23457232
Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, J.; Terwilliger, J.D.; Bhattacharya, S.
1990-01-01
Multilocus linkage analysis of 62 family pedigrees with X chromosome-linked retinitis pigmentosa (XLRP) was undertaken to determine the presence of possible multiple disease loci and to reliability estimate their map location. Multilocus homogeneity tests furnish convincing evidence for the presence of two XLRP loci, the likelihood ratio being 6.4 {times} 10{sup 9}:1 in a favor of two versus a single XLRP locus and gave accurate estimates for their map location. In 60-75% of the families, location of an XLRP gene was estimated at 1 centimorgan distal to OTC, and in 25-40% of the families, an XLRP locus was located halfwaymore » between DXS14 (p58-1) and DXZ1 (Xcen), with an estimated recombination fraction of 25% between the two XLRP loci. There is also good evidence for third XLRP locus, midway between DXS28 (C7) and DXS164 (pERT87), supported by a likelihood ratio of 293:1 for three versus two XLRP loci.« less
Singh, A; Knox, R E; DePauw, R M; Singh, A K; Cuthbert, R D; Campbell, H L; Shorter, S; Bhavani, S
2014-11-01
In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies. Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT(®) and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.
Identifying Causal Variants at Loci with Multiple Signals of Association
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar
2014-01-01
Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. PMID:25104515
Identifying causal variants at loci with multiple signals of association.
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar
2014-10-01
Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20-50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. Copyright © 2014 by the Genetics Society of America.
John Syring; Ann Willyard; Richard Cronn; Aaron Liston
2005-01-01
Sequence data from nrITS and cpDNA have failed to fully resolve phylogenetic relationships among Pinus species. Four low-copy nuclear genes, developed from the screening of 73 mapped conifer anchor loci, were sequenced from 12 species representing all subsections. Individual loci do not uniformly support either the nrITS or cpDNA hypotheses and in...
Fu, Junling; Li, Ge; Li, Lujiao; Yin, Jinhua; Cheng, Hong; Han, Lanwen; Zhang, Qian; Li, Naishi; Xiao, Xinhua; Grant, Struan F.A.; Li, Mingyao; Gao, Shan; Mi, Jie; Li, Ming
2017-01-01
Genome-wide association studies have identified multiple variants associated with adult obesity, mostly in European-ancestry populations. We aimed to systematically assess the contribution of key loci, which had been previously shown to be associated in East Asian adults, to childhood obesity, related adipokine profiles and metabolic traits in a Chinese pediatric population. Twelve single-nucleotide polymorphisms (SNPs) plus metabolic profiles and levels of five adipokines (leptin, adiponectin, resistin, fibroblast growth factor 21 and retinol binding protein 4) were evaluated in 3,506 Chinese children and adolescents aged 6-18. After correction for multiple comparisons, six of these SNPs were robustly associated with childhood obesity: FTO-rs1558902 (P=5.6×10−5), MC4R-rs2331841 (P=4.4×10−4), GNPDA2-rs16858082 (P = 3.4×10−4), PCSK1-rs261967 (P = 0.001), SEC16B-rs516636 (P = 0.004) and MAP2K5-rs4776970 (P = 0.004), with odds ratios ranging from 1.211 to 1.421; while ITIH4-rs2535633 and BDNF-rs2030323 yielded nominal association with the same trait (P < 0.05). Moreover, the risk alleles of six SNPs displayed significant (P < 0.004) or nominal (P < 0.05) association with leptin levels, namely at in/near PCSK1, MC4R, FTO, MAP2K5, GNPDA2 and BDNF plus their cumulative genetic score yielded stronger association with increased leptin levels (P = 6.2×10−11). Our results reveal that key obesity-associated loci previously reported in Europeans, but also associated with East Asian adults, are also associated with obesity and/or metabolic quantitative traits in Chinese children. These associations coincide with six brain-expressed loci that correlate with leptin levels, thus may point to an important neuronal influence on body weight regulation in the pediatric setting. PMID:29212175
Fu, Junling; Li, Ge; Li, Lujiao; Yin, Jinhua; Cheng, Hong; Han, Lanwen; Zhang, Qian; Li, Naishi; Xiao, Xinhua; Grant, Struan F A; Li, Mingyao; Gao, Shan; Mi, Jie; Li, Ming
2017-11-07
Genome-wide association studies have identified multiple variants associated with adult obesity, mostly in European-ancestry populations. We aimed to systematically assess the contribution of key loci, which had been previously shown to be associated in East Asian adults, to childhood obesity, related adipokine profiles and metabolic traits in a Chinese pediatric population. Twelve single-nucleotide polymorphisms (SNPs) plus metabolic profiles and levels of five adipokines (leptin, adiponectin, resistin, fibroblast growth factor 21 and retinol binding protein 4) were evaluated in 3,506 Chinese children and adolescents aged 6-18. After correction for multiple comparisons, six of these SNPs were robustly associated with childhood obesity: FTO -rs1558902 ( P =5.6×10 -5 ), MC4R -rs2331841 ( P =4.4×10 -4 ), GNPDA2 -rs16858082 ( P = 3.4×10 -4 ), PCSK1 -rs261967 ( P = 0.001), SEC16B -rs516636 ( P = 0.004) and MAP2K5 -rs4776970 ( P = 0.004), with odds ratios ranging from 1.211 to 1.421; while ITIH4 -rs2535633 and BDNF -rs2030323 yielded nominal association with the same trait ( P < 0.05). Moreover, the risk alleles of six SNPs displayed significant ( P < 0.004) or nominal ( P < 0.05) association with leptin levels, namely at in/near PCSK1, MC4R, FTO, MAP2K5, GNPDA2 and BDNF plus their cumulative genetic score yielded stronger association with increased leptin levels ( P = 6.2×10 -11 ). Our results reveal that key obesity-associated loci previously reported in Europeans, but also associated with East Asian adults, are also associated with obesity and/or metabolic quantitative traits in Chinese children. These associations coincide with six brain-expressed loci that correlate with leptin levels, thus may point to an important neuronal influence on body weight regulation in the pediatric setting.
Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan
2017-01-01
Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE—petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations. PMID:28399170
Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan
2017-01-01
Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE-petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations.
Genetic variations in the serotonergic system contribute to amygdala volume in humans
Li, Jin; Chen, Chunhui; Wu, Karen; Zhang, Mingxia; Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K.; Dong, Qi
2015-01-01
The amygdala plays a critical role in emotion processing and psychiatric disorders associated with emotion dysfunction. Accumulating evidence suggests that amygdala structure is modulated by serotonin-related genes. However, there is a gap between the small contributions of single loci (less than 1%) and the reported 63–65% heritability of amygdala structure. To understand the “missing heritability,” we systematically explored the contribution of serotonin genes on amygdala structure at the gene set level. The present study of 417 healthy Chinese volunteers examined 129 representative polymorphisms in genes from multiple biological mechanisms in the regulation of serotonin neurotransmission. A system-level approach using multiple regression analyses identified that nine SNPs collectively accounted for approximately 8% of the variance in amygdala volume. Permutation analyses showed that the probability of obtaining these findings by chance was low (p = 0.043, permuted for 1000 times). Findings showed that serotonin genes contribute moderately to individual differences in amygdala volume in a healthy Chinese sample. These results indicate that the system-level approach can help us to understand the genetic basis of a complex trait such as amygdala structure. PMID:26500508
Genetic architecture of adiposity and organ weight using combined generation QTL analysis.
Fawcett, Gloria L; Roseman, Charles C; Jarvis, Joseph P; Wang, Bing; Wolf, Jason B; Cheverud, James M
2008-08-01
We present here a detailed study of the genetic contributions to adult body size and adiposity in the LG,SM advanced intercross line (AIL), an obesity model. This study represents a first step in fine-mapping obesity quantitative trait loci (QTLs) in an AIL. QTLs for adiposity in this model were previously isolated to chromosomes 1, 6, 7, 8, 9, 12, 13, and 18. This study focuses on heritable contributions and the genetic architecture of fatpad and organ weights. We analyzed both the F(2) and F(3) generations of the LG,SM AIL population single-nucleotide polymorphism (SNP) genotyped with a marker density of approximately 4 cM. We replicate 88% of the previously identified obesity QTLs and identify 13 new obesity QTLs. Nearly half of the single-trait QTLs were sex-specific. Several broad QTL regions were resolved into multiple, narrower peaks. The 113 single-trait QTLs for organs and body weight clustered into 27 pleiotropic loci. A large number of epistatic interactions are described which begin to elucidate potential interacting molecular networks. We present a relatively rapid means to obtain fine-mapping details from AILs using dense marker maps and consecutive generations. Analysis of the complex genetic architecture underlying fatpad and organ weights in this model may eventually help to elucidate not only heritable contributions to obesity but also common gene sets for obesity and its comorbidities.
Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines.
Divilov, Konstantin; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I
2018-05-01
Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F 1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified. Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F 1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate-high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.
Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi; Chen, Chunhui; He, Qinghua; Stern, Hal S; Li, He; Li, Jin; Li, Jun; Lessard, Jared; Lin, Chongde
2012-01-01
This study investigated the relation between genetic variations in the dopamine system and facial expression recognition. A sample of Chinese college students (n = 478) was given a facial expression recognition task. Subjects were genotyped for 98 loci [96 single-nucleotide polymorphisms (SNPs) and 2 variable number tandem repeats] in 16 genes involved in the dopamine neurotransmitter system, including its 4 subsystems: synthesis (TH, DDC, and DBH), degradation/transport (COMT,MAOA,MAOB, and SLC6A3), receptors (DRD1,DRD2,DRD3,DRD4, and DRD5), and modulation (NTS,NTSR1,NTSR2, and NLN). To quantify the total contributions of the dopamine system to emotion recognition, we used a series of multiple regression models. Permutation analyses were performed to assess the posterior probabilities of obtaining such results. Among the 78 loci that were included in the final analyses (after excluding 12 SNPs that were in high linkage disequilibrium and 8 that were not in Hardy-Weinberg equilibrium), 1 (for fear), 3 (for sadness), 5 (for anger), 13 (for surprise), and 15 (for disgust) loci exhibited main effects on the recognition of facial expressions. Genetic variations in the dopamine system accounted for 3% for fear, 6% for sadness, 7% for anger, 10% for surprise, and 18% for disgust, with the latter surviving a stringent permutation test. Genetic variations in the dopamine system (especially the dopamine synthesis and modulation subsystems) made significant contributions to individual differences in the recognition of disgust faces. Copyright © 2012 S. Karger AG, Basel.
Fractional populations in multiple gene inheritance.
Chung, Myung-Hoon; Kim, Chul Koo; Nahm, Kyun
2003-01-22
With complete knowledge of the human genome sequence, one of the most interesting tasks remaining is to understand the functions of individual genes and how they communicate. Using the information about genes (locus, allele, mutation rate, fitness, etc.), we attempt to explain population demographic data. This population evolution study could complement and enhance biologists' understanding about genes. We present a general approach to study population genetics in complex situations. In the present approach, multiple allele inheritance, multiple loci inheritance, natural selection and mutations are allowed simultaneously in order to consider a more realistic situation. A simulation program is presented so that readers can readily carry out studies with their own parameters. It is shown that the multiplicity of the loci greatly affects the demographic results of fractional population ratios. Furthermore, the study indicates that some high infant mortality rates due to congenital anomalies can be attributed to multiple loci inheritance. The simulation program can be downloaded from http://won.hongik.ac.kr/~mhchung/index_files/yapop.htm. In order to run this program, one needs Visual Studio.NET platform, which can be downloaded from http://msdn.microsoft.com/netframework/downloads/default.asp.
Knowles, L Lacey; Huang, Huateng; Sukumaran, Jeet; Smith, Stephen A
2018-03-01
Discordant gene trees are commonly encountered when sequences from thousands of loci are applied to estimate phylogenetic relationships. Several processes contribute to this discord. Yet, we have no methods that jointly model different sources of conflict when estimating phylogenies. An alternative to analyzing entire genomes or all the sequenced loci is to identify a subset of loci for phylogenetic analysis. If we can identify data partitions that are most likely to reflect descent from a common ancestor (i.e., discordant loci that indeed reflect incomplete lineage sorting [ILS], as opposed to some other process, such as lateral gene transfer [LGT]), we can analyze this subset using powerful coalescent-based species-tree approaches. Test data sets were simulated where discord among loci could arise from ILS and LGT. Data sets where analyzed using the newly developed program CLASSIPHY (Huang et al., ) to assess whether our ability to distinguish the cause of discord among loci varied when ILS and LGT occurred in the recent versus deep past and whether the accuracy of these inferences were affected by the mutational process. We show that accuracy of probabilistic classification of individual loci by the cause of discord differed when ILS and LGT events occurred more recently compared with the distant past and that the signal-to-noise ratio arising from the mutational process contributes to difficulties in inferring LGT data partitions. We discuss our findings in terms of the promise and limitations of identifying subsets of loci for species-tree inference that will not violate the underlying coalescent model (i.e., data partitions in which ILS, and not LGT, contributes to discord). We also discuss the empirical implications of our work given the many recalcitrant nodes in the tree of life (e.g., origins of angiosperms, amniotes, or Neoaves), and recent arguments for concatenating loci. © 2018 Botanical Society of America.
Maxwell, Taylor J.; Ballantyne, Christie M.; Cheverud, James M.; Guild, Cameron S.; Ndumele, Chiadi E.; Boerwinkle, Eric
2013-01-01
Relationship loci (rQTL) exist when the correlation between multiple traits varies by genotype. rQTL often occur due to gene-by-gene (G × G) or gene-by-environmental interactions, making them a powerful tool for detecting G × G. Here we present an empirical analysis of apolipoprotein E (APOE) with respect to lipid traits and incident CHD leading to the discovery of loci that interact with APOE to affect these traits. We found that the relationship between total cholesterol (TC) and triglycerides (ln TG) varies by APOE isoform genotype in African-American (AA) and European-American (EA) populations. The e2 allele is associated with strong correlation between ln TG and TC while the e4 allele leads to little or no correlation. This led to a priori hypotheses that APOE genotypes affect the relationship of TC and/or ln TG with incident CHD. We found that APOE*TC was significant (P = 0.016) for AA but not EA while APOE*ln TG was significant for EA (P = 0.027) but not AA. In both cases, e2e2 and e2e3 had strong relationships between TC and ln TG with CHD while e2e4 and e4e4 results in little or no relationship between TC and ln TG with CHD. Using ARIC GWAS data, scans for loci that significantly interact with APOE produced four loci for African Americans (one CHD, one TC, and two HDL). These interactions contribute to the rQTL pattern. rQTL are a powerful tool to identify loci that modify the relationship between risk factors and disease and substantially increase statistical power for detecting G × G. PMID:24097412
Moonesinghe, Ramal; Ioannidis, John P A; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J
2012-08-01
Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene-environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal.
Moonesinghe, Ramal; Ioannidis, John PA; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J
2012-01-01
Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene–environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal. PMID:22333905
A subset of skin tumor modifier loci determines survival time of tumor-bearing mice
Nagase, Hiroki; Mao, Jian-Hua; Balmain, Allan
1999-01-01
Studies of mouse models of human cancer have established the existence of multiple tumor modifiers that influence parameters of cancer susceptibility such as tumor multiplicity, tumor size, or the probability of malignant progression. We have carried out an analysis of skin tumor susceptibility in interspecific Mus musculus/Mus spretus hybrid mice and have identified another seven loci showing either significant (six loci) or suggestive (one locus) linkage to tumor susceptibility or resistance. A specific search was carried out for skin tumor modifier loci associated with time of survival after development of a malignant tumor. A combination of resistance alleles at three markers [D6Mit15 (Skts12), D7Mit12 (Skts2), and D17Mit7 (Skts10)], all of which are close to or the same as loci associated with carcinoma incidence and/or papilloma multiplicity, is significantly associated with increased survival of mice with carcinomas, whereas the reverse combination of susceptibility alleles is significantly linked to early mortality caused by rapid carcinoma growth (χ2 = 25.22; P = 5.1 × 10−8). These data indicate that host genetic factors may be used to predict carcinoma growth rate and/or survival of individual backcross mice exposed to the same carcinogenic stimulus and suggest that mouse models may provide an approach to the identification of genetic modifiers of cancer survival in humans. PMID:10611333
Janse, Marcel; Lamberts, Laetitia E; Franke, Lude; Raychaudhuri, Soumya; Ellinghaus, Eva; Muri Boberg, Kirsten; Melum, Espen; Folseraas, Trine; Schrumpf, Erik; Bergquist, Annika; Björnsson, Einar; Fu, Jingyuan; Jan Westra, Harm; Groen, Harry J M; Fehrmann, Rudolf S N; Smolonska, Joanna; van den Berg, Leonard H; Ophoff, Roel A; Porte, Robert J; Weismüller, Tobias J; Wedemeyer, Jochen; Schramm, Christoph; Sterneck, Martina; Günther, Rainer; Braun, Felix; Vermeire, Severine; Henckaerts, Liesbet; Wijmenga, Cisca; Ponsioen, Cyriel Y; Schreiber, Stefan; Karlsen, Tom H; Franke, Andre; Weersma, Rinse K
2011-06-01
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and fibrosis of the bile ducts. Both environmental and genetic factors contribute to its pathogenesis. To further clarify its genetic background, we investigated susceptibility loci recently identified for ulcerative colitis (UC) in a large cohort of 1,186 PSC patients and 1,748 controls. Single nucleotide polymorphisms (SNPs) tagging 13 UC susceptibility loci were initially genotyped in 854 PSC patients and 1,491 controls from Benelux (331 cases, 735 controls), Germany (265 cases, 368 controls), and Scandinavia (258 cases, 388 controls). Subsequently, a joint analysis was performed with an independent second Scandinavian cohort (332 cases, 257 controls). SNPs at chromosomes 2p16 (P-value 4.12 × 10(-4) ), 4q27 (P-value 4.10 × 10(-5) ), and 9q34 (P-value 8.41 × 10(-4) ) were associated with PSC in the joint analysis after correcting for multiple testing. In PSC patients without inflammatory bowel disease (IBD), SNPs at 4q27 and 9q34 were nominally associated (P < 0.05). We applied additional in silico analyses to identify likely candidate genes at PSC susceptibility loci. To identify nonrandom, evidence-based links we used GRAIL (Gene Relationships Across Implicated Loci) analysis showing interconnectivity between genes in six out of in total nine PSC-associated regions. Expression quantitative trait analysis from 1,469 Dutch and UK individuals demonstrated that five out of nine SNPs had an effect on cis-gene expression. These analyses prioritized IL2, CARD9, and REL as novel candidates. We have identified three UC susceptibility loci to be associated with PSC, harboring the putative candidate genes REL, IL2, and CARD9. These results add to the scarce knowledge on the genetic background of PSC and imply an important role for both innate and adaptive immunological factors. Copyright © 2011 American Association for the Study of Liver Diseases.
A genome-wide association search for type 2 diabetes genes in African Americans.
Palmer, Nicholette D; McDonough, Caitrin W; Hicks, Pamela J; Roh, Bong H; Wing, Maria R; An, S Sandy; Hester, Jessica M; Cooke, Jessica N; Bostrom, Meredith A; Rudock, Megan E; Talbert, Matthew E; Lewis, Joshua P; Ferrara, Assiamira; Lu, Lingyi; Ziegler, Julie T; Sale, Michele M; Divers, Jasmin; Shriner, Daniel; Adeyemo, Adebowale; Rotimi, Charles N; Ng, Maggie C Y; Langefeld, Carl D; Freedman, Barry I; Bowden, Donald W; Voight, Benjamin F; Scott, Laura J; Steinthorsdottir, Valgerdur; Morris, Andrew P; Dina, Christian; Welch, Ryan P; Zeggini, Eleftheria; Huth, Cornelia; Aulchenko, Yurii S; Thorleifsson, Gudmar; McCulloch, Laura J; Ferreira, Teresa; Grallert, Harald; Amin, Najaf; Wu, Guanming; Willer, Cristen J; Raychaudhuri, Soumya; McCarroll, Steve A; Langenberg, Claudia; Hofmann, Oliver M; Dupuis, Josée; Qi, Lu; Segrè, Ayellet V; van Hoek, Mandy; Navarro, Pau; Ardlie, Kristin; Balkau, Beverley; Benediktsson, Rafn; Bennett, Amanda J; Blagieva, Roza; Boerwinkle, Eric; Bonnycastle, Lori L; Boström, Kristina Bengtsson; Bravenboer, Bert; Bumpstead, Suzannah; Burtt, Noël P; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn; Couper, David J; Crawford, Gabe; Doney, Alex S F; Elliott, Katherine S; Elliott, Amanda L; Erdos, Michael R; Fox, Caroline S; Franklin, Christopher S; Ganser, Martha; Gieger, Christian; Grarup, Niels; Green, Todd; Griffin, Simon; Groves, Christopher J; Guiducci, Candace; Hadjadj, Samy; Hassanali, Neelam; Herder, Christian; Isomaa, Bo; Jackson, Anne U; Johnson, Paul R V; Jørgensen, Torben; Kao, Wen H L; Klopp, Norman; Kong, Augustine; Kraft, Peter; Kuusisto, Johanna; Lauritzen, Torsten; Li, Man; Lieverse, Aloysius; Lindgren, Cecilia M; Lyssenko, Valeriya; Marre, Michel; Meitinger, Thomas; Midthjell, Kristian; Morken, Mario A; Narisu, Narisu; Nilsson, Peter; Owen, Katharine R; Payne, Felicity; Perry, John R B; Petersen, Ann-Kristin; Platou, Carl; Proença, Christine; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, N William; Robertson, Neil R; Rocheleau, Ghislain; Roden, Michael; Sampson, Michael J; Saxena, Richa; Shields, Beverley M; Shrader, Peter; Sigurdsson, Gunnar; Sparsø, Thomas; Strassburger, Klaus; Stringham, Heather M; Sun, Qi; Swift, Amy J; Thorand, Barbara; Tichet, Jean; Tuomi, Tiinamaija; van Dam, Rob M; van Haeften, Timon W; van Herpt, Thijs; van Vliet-Ostaptchouk, Jana V; Walters, G Bragi; Weedon, Michael N; Wijmenga, Cisca; Witteman, Jacqueline; Bergman, Richard N; Cauchi, Stephane; Collins, Francis S; Gloyn, Anna L; Gyllensten, Ulf; Hansen, Torben; Hide, Winston A; Hitman, Graham A; Hofman, Albert; Hunter, David J; Hveem, Kristian; Laakso, Markku; Mohlke, Karen L; Morris, Andrew D; Palmer, Colin N A; Pramstaller, Peter P; Rudan, Igor; Sijbrands, Eric; Stein, Lincoln D; Tuomilehto, Jaakko; Uitterlinden, Andre; Walker, Mark; Wareham, Nicholas J; Watanabe, Richard M; Abecasis, Goncalo R; Boehm, Bernhard O; Campbell, Harry; Daly, Mark J; Hattersley, Andrew T; Hu, Frank B; Meigs, James B; Pankow, James S; Pedersen, Oluf; Wichmann, H-Erich; Barroso, Inês; Florez, Jose C; Frayling, Timothy M; Groop, Leif; Sladek, Rob; Thorsteinsdottir, Unnur; Wilson, James F; Illig, Thomas; Froguel, Philippe; van Duijn, Cornelia M; Stefansson, Kari; Altshuler, David; Boehnke, Michael; McCarthy, Mark I; Soranzo, Nicole; Wheeler, Eleanor; Glazer, Nicole L; Bouatia-Naji, Nabila; Mägi, Reedik; Randall, Joshua; Johnson, Toby; Elliott, Paul; Rybin, Denis; Henneman, Peter; Dehghan, Abbas; Hottenga, Jouke Jan; Song, Kijoung; Goel, Anuj; Egan, Josephine M; Lajunen, Taina; Doney, Alex; Kanoni, Stavroula; Cavalcanti-Proença, Christine; Kumari, Meena; Timpson, Nicholas J; Zabena, Carina; Ingelsson, Erik; An, Ping; O'Connell, Jeffrey; Luan, Jian'an; Elliott, Amanda; McCarroll, Steven A; Roccasecca, Rosa Maria; Pattou, François; Sethupathy, Praveen; Ariyurek, Yavuz; Barter, Philip; Beilby, John P; Ben-Shlomo, Yoav; Bergmann, Sven; Bochud, Murielle; Bonnefond, Amélie; Borch-Johnsen, Knut; Böttcher, Yvonne; Brunner, Eric; Bumpstead, Suzannah J; Chen, Yii-Der Ida; Chines, Peter; Clarke, Robert; Coin, Lachlan J M; Cooper, Matthew N; Crisponi, Laura; Day, Ian N M; de Geus, Eco J C; Delplanque, Jerome; Fedson, Annette C; Fischer-Rosinsky, Antje; Forouhi, Nita G; Frants, Rune; Franzosi, Maria Grazia; Galan, Pilar; Goodarzi, Mark O; Graessler, Jürgen; Grundy, Scott; Gwilliam, Rhian; Hallmans, Göran; Hammond, Naomi; Han, Xijing; Hartikainen, Anna-Liisa; Hayward, Caroline; Heath, Simon C; Hercberg, Serge; Hicks, Andrew A; Hillman, David R; Hingorani, Aroon D; Hui, Jennie; Hung, Joe; Jula, Antti; Kaakinen, Marika; Kaprio, Jaakko; Kesaniemi, Y Antero; Kivimaki, Mika; Knight, Beatrice; Koskinen, Seppo; Kovacs, Peter; Kyvik, Kirsten Ohm; Lathrop, G Mark; Lawlor, Debbie A; Le Bacquer, Olivier; Lecoeur, Cécile; Li, Yun; Mahley, Robert; Mangino, Massimo; Manning, Alisa K; Martínez-Larrad, María Teresa; McAteer, Jarred B; McPherson, Ruth; Meisinger, Christa; Melzer, David; Meyre, David; Mitchell, Braxton D; Mukherjee, Sutapa; Naitza, Silvia; Neville, Matthew J; Oostra, Ben A; Orrù, Marco; Pakyz, Ruth; Paolisso, Giuseppe; Pattaro, Cristian; Pearson, Daniel; Peden, John F; Pedersen, Nancy L; Perola, Markus; Pfeiffer, Andreas F H; Pichler, Irene; Polasek, Ozren; Posthuma, Danielle; Potter, Simon C; Pouta, Anneli; Province, Michael A; Psaty, Bruce M; Rayner, Nigel W; Rice, Kenneth; Ripatti, Samuli; Rivadeneira, Fernando; Rolandsson, Olov; Sandbaek, Annelli; Sandhu, Manjinder; Sanna, Serena; Sayer, Avan Aihie; Scheet, Paul; Seedorf, Udo; Sharp, Stephen J; Shields, Beverley; Sijbrands, Eric J G; Silveira, Angela; Simpson, Laila; Singleton, Andrew; Smith, Nicholas L; Sovio, Ulla; Swift, Amy; Syddall, Holly; Syvänen, Ann-Christine; Tanaka, Toshiko; Tönjes, Anke; Uitterlinden, André G; van Dijk, Ko Willems; Varma, Dhiraj; Visvikis-Siest, Sophie; Vitart, Veronique; Vogelzangs, Nicole; Waeber, Gérard; Wagner, Peter J; Walley, Andrew; Ward, Kim L; Watkins, Hugh; Wild, Sarah H; Willemsen, Gonneke; Witteman, Jaqueline C M; Yarnell, John W G; Zelenika, Diana; Zethelius, Björn; Zhai, Guangju; Zhao, Jing Hua; Zillikens, M Carola; Borecki, Ingrid B; Loos, Ruth J F; Meneton, Pierre; Magnusson, Patrik K E; Nathan, David M; Williams, Gordon H; Silander, Kaisa; Salomaa, Veikko; Smith, George Davey; Bornstein, Stefan R; Schwarz, Peter; Spranger, Joachim; Karpe, Fredrik; Shuldiner, Alan R; Cooper, Cyrus; Dedoussis, George V; Serrano-Ríos, Manuel; Lind, Lars; Palmer, Lyle J; Franks, Paul W; Ebrahim, Shah; Marmot, Michael; Kao, W H Linda; Pramstaller, Peter Paul; Wright, Alan F; Stumvoll, Michael; Hamsten, Anders; Buchanan, Thomas A; Valle, Timo T; Rotter, Jerome I; Siscovick, David S; Penninx, Brenda W J H; Boomsma, Dorret I; Deloukas, Panos; Spector, Timothy D; Ferrucci, Luigi; Cao, Antonio; Scuteri, Angelo; Schlessinger, David; Uda, Manuela; Ruokonen, Aimo; Jarvelin, Marjo-Riitta; Waterworth, Dawn M; Vollenweider, Peter; Peltonen, Leena; Mooser, Vincent; Sladek, Robert
2012-01-01
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
Awata, Takuya; Kawasaki, Eiji; Tanaka, Shoichiro; Ikegami, Hiroshi; Maruyama, Taro; Shimada, Akira; Nakanishi, Koji; Kobayashi, Tetsuro; Iizuka, Hiroyuki; Uga, Miho; Kawabata, Yumiko; Kanazawa, Yasuhiko; Kurihara, Susumu; Osaki, Masataka; Katayama, Shigehiro
2009-01-01
Recent genome-wide association studies have identified several novel type 1 diabetes (T1D) loci in white populations. In line with recent findings, we conducted a replication study of two loci on chromosome 12p13 and 16p13 and assessed their potential associations with thyroid autoimmunity in a Japanese population. Two single-nucleotide polymorphisms (SNPs), rs2292399 in ERBB3 on 12q13 and rs2903692 in CLEC16A (or KIAA0350) on 16p13, were analyzed in Japanese subjects consisting of 735 T1D patients, 330 patients with autoimmune thyroid disease (AITD), and 621 control subjects. According to a case-control study and logistic regression adjusting for sex and age, we observed that these SNPs in ERBB3 and CLEC16A were both significantly associated with T1D, with the risk alleles being consistent with those in white populations [adjusting odds ratio by multiplicative model: 1.37 (1.13-1.67), P = 0.001; and 1.28 (1.02-1.60), P = 0.030, respectively]. In both SNPs, the association was suggested to be stronger in T1D complicated with AITD (Graves' disease, Hashimoto's thyroiditis, or thyroid autoantibodies). Furthermore, a joint analysis, with the INS and CTLA4 SNPs, revealed that CTLA4 rs3087243, ERBB3 rs2292399, and CLEC16A rs2903692, but not INS rs689, were significant risk factors for the cooccurrence of AITD in Japanese T1D. We confirmed two loci on 12q13 and 16p13 that were identified by the independent genome-wide association studies in white populations, thus suggesting that these loci contribute to T1D susceptibility across different ethnic groups. In addition, these loci may also be associated with the cooccurrence of thyroid autoimmunity in T1D.
Chang, Audrey S.; Noor, Mohamed A. F.
2007-01-01
F1 hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F1 hybrid sterility. PMID:17277364
Chang, Audrey S; Noor, Mohamed A F
2007-05-01
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.
Liu, Weizhen; Maccaferri, Marco; Chen, Xianming; Laghetti, Gaetano; Pignone, Domenico; Pumphrey, Michael; Tuberosa, Roberto
2017-11-01
SNP-based genome scanning in worldwide domesticated emmer germplasm showed high genetic diversity, rapid linkage disequilibrium decay and 51 loci for stripe rust resistance, a large proportion of which were novel. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum), one of the oldest domesticated crops in the world, is a potentially rich reservoir of variation for improvement of resistance/tolerance to biotic and abiotic stresses in wheat. Resistance to stripe rust (Puccinia striiformis f. sp. tritici) in emmer wheat has been under-investigated. Here, we employed genome-wide association (GWAS) mapping with a mixed linear model to dissect effective stripe rust resistance loci in a worldwide collection of 176 cultivated emmer wheat accessions. Adult plants were tested in six environments and seedlings were evaluated with five races from the United States and one from Italy under greenhouse conditions. Five accessions were resistant across all experiments. The panel was genotyped with the wheat 90,000 Illumina iSelect single nucleotide polymorphism (SNP) array and 5106 polymorphic SNP markers with mapped positions were obtained. A high level of genetic diversity and fast linkage disequilibrium decay were observed. In total, we identified 14 loci associated with field resistance in multiple environments. Thirty-seven loci were significantly associated with all-stage (seedling) resistance and six of them were effective against multiple races. Of the 51 total loci, 29 were mapped distantly from previously reported stripe rust resistance genes or quantitative trait loci and represent newly discovered resistance loci. Our results suggest that GWAS is an effective method for characterizing genes in cultivated emmer wheat and confirm that emmer wheat is a rich source of stripe rust resistance loci that can be used for wheat improvement.
USDA-ARS?s Scientific Manuscript database
Polymorphic DNA markers, e.g. mini- or microsatellite (SSR) loci, are often removed from data analyses if an excess of homozygosity, presumably an indication of null alleles, is observed. However, exclusion of such loci can reduce available information if multiple loci carry null alleles. Because nu...
A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles
2014-04-01
time integration Approximate Riemann Fluxes (HLLE, HLLC) ◦ Robust mixture model for multi-material flows Multiple Equations of State ◦ Perfect Gas...Loci/CHEM: Chemically reacting compressible flow solver . ◦ Currently in production use by NASA for the simulation of rocket motors, plumes, and...vehicles Loci/DROPLET: Eulerian and Lagrangian multiphase solvers Loci/STREAM: pressure-based solver ◦ Developed by Streamline Numerics and
Zhang, Ge; Karns, Rebekah; Sun, Guangyun; Indugula, Subba Rao; Cheng, Hong; Havas-Augustin, Dubravka; Novokmet, Natalija; Durakovic, Zijad; Missoni, Sasa; Chakraborty, Ranajit; Rudan, Pavao; Deka, Ranjan
2012-01-01
Genome-wide association studies (GWAS) have identified many common variants associated with complex traits in human populations. Thus far, most reported variants have relatively small effects and explain only a small proportion of phenotypic variance, leading to the issues of 'missing' heritability and its explanation. Using height as an example, we examined two possible sources of missing heritability: first, variants with smaller effects whose associations with height failed to reach genome-wide significance and second, allelic heterogeneity due to the effects of multiple variants at a single locus. Using a novel analytical approach we examined allelic heterogeneity of height-associated loci selected from SNPs of different significance levels based on the summary data of the GIANT (stage 1) studies. In a sample of 1,304 individuals collected from an island population of the Adriatic coast of Croatia, we assessed the extent of height variance explained by incorporating the effects of less significant height loci and multiple effective SNPs at the same loci. Our results indicate that approximately half of the 118 loci that achieved stringent genome-wide significance (p-value<5×10(-8)) showed evidence of allelic heterogeneity. Additionally, including less significant loci (i.e., p-value<5×10(-4)) and accounting for effects of allelic heterogeneity substantially improved the variance explained in height.
Breeding of ozone resistant rice: relevance, approaches and challenges.
Frei, Michael
2015-02-01
Tropospheric ozone concentrations have been rising across Asia, and will continue to rise during the 21st century. Ozone affects rice yields through reductions in spikelet number, spikelet fertility, and grain size. Moreover, ozone leads to changes in rice grain and straw quality. Therefore the breeding of ozone tolerant rice varieties is warranted. The mapping of quantitative trait loci (QTL) using bi-parental populations identified several tolerance QTL mitigating symptom formation, grain yield losses, or the degradation of straw quality. A genome-wide association study (GWAS) demonstrated substantial natural genotypic variation in ozone tolerance in rice, and revealed that the genetic architecture of ozone tolerance in rice is dominated by multiple medium and small effect loci. Transgenic approaches targeting tolerance mechanisms such as antioxidant capacity are also discussed. It is concluded that the breeding of ozone tolerant rice can contribute substantially to the global food security, and is feasible using different breeding approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Monir, Md. Mamun; Zhu, Jun
2017-01-01
Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101
Discovery of rare, diagnostic AluYb8/9 elements in diverse human populations.
Feusier, Julie; Witherspoon, David J; Scott Watkins, W; Goubert, Clément; Sasani, Thomas A; Jorde, Lynn B
2017-01-01
Polymorphic human Alu elements are excellent tools for assessing population structure, and new retrotransposition events can contribute to disease. Next-generation sequencing has greatly increased the potential to discover Alu elements in human populations, and various sequencing and bioinformatics methods have been designed to tackle the problem of detecting these highly repetitive elements. However, current techniques for Alu discovery may miss rare, polymorphic Alu elements. Combining multiple discovery approaches may provide a better profile of the polymorphic Alu mobilome. Alu Yb8/9 elements have been a focus of our recent studies as they are young subfamilies (~2.3 million years old) that contribute ~30% of recent polymorphic Alu retrotransposition events. Here, we update our ME-Scan methods for detecting Alu elements and apply these methods to discover new insertions in a large set of individuals with diverse ancestral backgrounds. We identified 5,288 putative Alu insertion events, including several hundred novel Alu Yb8/9 elements from 213 individuals from 18 diverse human populations. Hundreds of these loci were specific to continental populations, and 23 non-reference population-specific loci were validated by PCR. We provide high-quality sequence information for 68 rare Alu Yb8/9 elements, of which 11 have hallmarks of an active source element. Our subfamily distribution of rare Alu Yb8/9 elements is consistent with previous datasets, and may be representative of rare loci. We also find that while ME-Scan and low-coverage, whole-genome sequencing (WGS) detect different Alu elements in 41 1000 Genomes individuals, the two methods yield similar population structure results. Current in-silico methods for Alu discovery may miss rare, polymorphic Alu elements. Therefore, using multiple techniques can provide a more accurate profile of Alu elements in individuals and populations. We improved our false-negative rate as an indicator of sample quality for future ME-Scan experiments. In conclusion, we demonstrate that ME-Scan is a good supplement for next-generation sequencing methods and is well-suited for population-level analyses.
A powerful approach reveals numerous expression quantitative trait haplotypes in multiple tissues.
Ying, Dingge; Li, Mulin Jun; Sham, Pak Chung; Li, Miaoxin
2018-04-26
Recently many studies showed single nucleotide polymorphisms (SNPs) affect gene expression and contribute to development of complex traits/diseases in a tissue context-dependent manner. However, little is known about haplotype's influence on gene expression and complex traits, which reflects the interaction effect between SNPs. In the present study, we firstly proposed a regulatory region guided eQTL haplotype association analysis approach, and then systematically investigate the expression quantitative trait loci (eQTL) haplotypes in 20 different tissues by the approach. The approach has a powerful design of reducing computational burden by the utilization of regulatory predictions for candidate SNP selection and multiple testing corrections on non-independent haplotypes. The application results in multiple tissues showed that haplotype-based eQTLs not only increased the number of eQTL genes in a tissue specific manner, but were also enriched in loci that associated with complex traits in a tissue-matched manner. In addition, we found that tag SNPs of eQTL haplotypes from whole blood were selectively enriched in certain combination of regulatory elements (e.g. promoters and enhancers) according to predicted chromatin states. In summary, this eQTL haplotype detection approach, together with the application results, shed insights into synergistic effect of sequence variants on gene expression and their susceptibility to complex diseases. The executable application "eHaplo" is implemented in Java and is publicly available at http://grass.cgs.hku.hk/limx/ehaplo/. jonsonfox@gmail.com, limiaoxin@mail.sysu.edu.cn. Supplementary data are available at Bioinformatics online.
The evolution of multiple isotypic IgM heavy chain genes in the shark.
Lee, Victor; Huang, Jing Li; Lui, Ming Fai; Malecek, Karolina; Ohta, Yuko; Mooers, Arne; Hsu, Ellen
2008-06-01
The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.
A Preliminary Genome-Wide Association Study of Pain-Related Fear: Implications for Orofacial Pain.
Randall, Cameron L; Wright, Casey D; Chernus, Jonathan M; McNeil, Daniel W; Feingold, Eleanor; Crout, Richard J; Neiswanger, Katherine; Weyant, Robert J; Shaffer, John R; Marazita, Mary L
2017-01-01
Acute and chronic orofacial pain can significantly impact overall health and functioning. Associations between fear of pain and the experience of orofacial pain are well-documented, and environmental, behavioral, and cognitive components of fear of pain have been elucidated. Little is known, however, regarding the specific genes contributing to fear of pain. A genome-wide association study (GWAS; N = 990) was performed to identify plausible genes that may predispose individuals to various levels of fear of pain. The total score and three subscales (fear of minor, severe, and medical/dental pain) of the Fear of Pain Questionnaire-9 (FPQ-9) were modeled in a variance components modeling framework to test for genetic association with 8.5 M genetic variants across the genome, while adjusting for sex, age, education, and income. Three genetic loci were significantly associated with fear of minor pain (8q24.13, 8p21.2, and 6q26; p < 5 × 10 -8 for all) near the genes TMEM65 , NEFM , NEFL , AGPAT4 , and PARK2 . Other suggestive loci were found for the fear of pain total score and each of the FPQ-9 subscales. Multiple genes were identified as possible candidates contributing to fear of pain. The findings may have implications for understanding and treating chronic orofacial pain.
Paternoster, Lavinia; Standl, Marie; Waage, Johannes; Baurecht, Hansjörg; Hotze, Melanie; Strachan, David P; Curtin, John A; Bønnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P; den Dekker, Herman T; Ferreira, Manuel A; Altmaier, Elisabeth; Sleiman, Patrick Ma; Xiao, Feng Li; Gonzalez, Juan R; Marenholz, Ingo; Kalb, Birgit; Yanes, Maria Pino; Xu, Cheng-Jian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M; Venturini, Cristina; Pennell, Craig E; Barton, Sheila J; Levin, Albert M; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Møller, Eskil; Lockett, Gabrielle A; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L; Henderson, A J; Kemp, John P; Zheng, Jie; Smith, George Davey; Rüschendorf, Franz; Bauerfeind, Anja; Lee-Kirsch, Min Ae; Arnold, Andreas; Homuth, Georg; Schmidt, Carsten O; Mangold, Elisabeth; Cichon, Sven; Keil, Thomas; Rodríguez, Elke; Peters, Annette; Franke, Andre; Lieb, Wolfgang; Novak, Natalija; Fölster-Holst, Regina; Horikoshi, Momoko; Pekkanen, Juha; Sebert, Sylvain; Husemoen, Lise L; Grarup, Niels; de Jongste, Johan C; Rivadeneira, Fernando; Hofman, Albert; Jaddoe, Vincent Wv; Pasmans, Suzanne Gma; Elbert, Niels J; Uitterlinden, André G; Marks, Guy B; Thompson, Philip J; Matheson, Melanie C; Robertson, Colin F; Ried, Janina S; Li, Jin; Zuo, Xian Bo; Zheng, Xiao Dong; Yin, Xian Yong; Sun, Liang Dan; McAleer, Maeve A; O'Regan, Grainne M; Fahy, Caoimhe Mr; Campbell, Linda E; Macek, Milan; Kurek, Michael; Hu, Donglei; Eng, Celeste; Postma, Dirkje S; Feenstra, Bjarke; Geller, Frank; Hottenga, Jouke Jan; Middeldorp, Christel M; Hysi, Pirro; Bataille, Veronique; Spector, Tim; Tiesler, Carla Mt; Thiering, Elisabeth; Pahukasahasram, Badri; Yang, James J; Imboden, Medea; Huntsman, Scott; Vilor-Tejedor, Natàlia; Relton, Caroline L; Myhre, Ronny; Nystad, Wenche; Custovic, Adnan; Weiss, Scott T; Meyers, Deborah A; Söderhäll, Cilla; Melén, Erik; Ober, Carole; Raby, Benjamin A; Simpson, Angela; Jacobsson, Bo; Holloway, John W; Bisgaard, Hans; Sunyer, Jordi; Hensch, Nicole M Probst; Williams, L Keoki; Godfrey, Keith M; Wang, Carol A; Boomsma, Dorret I; Melbye, Mads; Koppelman, Gerard H; Jarvis, Deborah; McLean, Wh Irwin; Irvine, Alan D; Zhang, Xue Jun; Hakonarson, Hakon; Gieger, Christian; Burchard, Esteban G; Martin, Nicholas G; Duijts, Liesbeth; Linneberg, Allan; Jarvelin, Marjo-Riitta; Noethen, Markus M; Lau, Susanne; Hübner, Norbert; Lee, Young-Ae; Tamari, Mayumi; Hinds, David A; Glass, Daniel; Brown, Sara J; Heinrich, Joachim; Evans, David M; Weidinger, Stephan
2015-12-01
Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis.
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation.
Andlauer, Till F M; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A; Loleit, Verena; Luessi, Felix; Meuth, Sven G; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram
2016-06-01
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation
Andlauer, Till F. M.; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A.; Loleit, Verena; Luessi, Felix; Meuth, Sven G.; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H.; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K.; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O.; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B.; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M.; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M.; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram
2016-01-01
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis. PMID:27386562
Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W; Gretarsdottir, Solveig; Anderson, Christopher D; Chong, Michael; Adams, Hieab H H; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M; Benavente, Oscar R; Bevan, Steve; Boncoraglio, Giorgio B; Brown, Robert D; Butterworth, Adam S; Carrera, Caty; Carty, Cara L; Chasman, Daniel I; Chen, Wei-Min; Cole, John W; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I W; DeStefano, Anita L; den Hoed, Marcel; Duan, Qing; Engelter, Stefan T; Falcone, Guido J; Gottesman, Rebecca F; Grewal, Raji P; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B; Hassan, Ahamad; Havulinna, Aki S; Heckbert, Susan R; Holliday, Elizabeth G; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I; Ikram, M Arfan; Ingelsson, Erik; Irvin, Marguerite R; Jian, Xueqiu; Jiménez-Conde, Jordi; Johnson, Julie A; Jukema, J Wouter; Kanai, Masahiro; Keene, Keith L; Kissela, Brett M; Kleindorfer, Dawn O; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M; Lin, Wei-Yu; Lindgren, Arne G; Lorentzen, Erik; Magnusson, Patrik K; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F; Meschia, James F; Mitchell, Braxton D; Mosley, Thomas H; Nalls, Michael A; Ninomiya, Toshiharu; O'Donnell, Martin J; Psaty, Bruce M; Pulit, Sara L; Rannikmäe, Kristiina; Reiner, Alexander P; Rexrode, Kathryn M; Rice, Kenneth; Rich, Stephen S; Ridker, Paul M; Rost, Natalia S; Rothwell, Peter M; Rotter, Jerome I; Rundek, Tatjana; Sacco, Ralph L; Sakaue, Saori; Sale, Michele M; Salomaa, Veikko; Sapkota, Bishwa R; Schmidt, Reinhold; Schmidt, Carsten O; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D; Thijs, Vincent N S; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M; Walters, Matthew; Wareham, Nicholas J; Wassertheil-Smoller, Sylvia; Wilson, James G; Wiggins, Kerri L; Yang, Qiong; Yusuf, Salim; Bis, Joshua C; Pastinen, Tomi; Ruusalepp, Arno; Schadt, Eric E; Koplev, Simon; Björkegren, Johan L M; Codoni, Veronica; Civelek, Mete; Smith, Nicholas L; Trégouët, David A; Christophersen, Ingrid E; Roselli, Carolina; Lubitz, Steven A; Ellinor, Patrick T; Tai, E Shyong; Kooner, Jaspal S; Kato, Norihiro; He, Jiang; van der Harst, Pim; Elliott, Paul; Chambers, John C; Takeuchi, Fumihiko; Johnson, Andrew D; Sanghera, Dharambir K; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W T; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B; Kittner, Steven J; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S; Howson, Joanna M M; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin; Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W; Gretarsdottir, Solveig; Anderson, Christopher D; Chong, Michael; Adams, Hieab H H; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M; Benavente, Oscar R; Bevan, Steve; Boncoraglio, Giorgio B; Brown, Robert D; Butterworth, Adam S; Carrera, Caty; Carty, Cara L; Chasman, Daniel I; Chen, Wei-Min; Cole, John W; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I W; DeStefano, Anita L; Hoed, Marcel den; Duan, Qing; Engelter, Stefan T; Falcone, Guido J; Gottesman, Rebecca F; Grewal, Raji P; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B; Hassan, Ahamad; Havulinna, Aki S; Heckbert, Susan R; Holliday, Elizabeth G; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I; Ikram, M Arfan; Ingelsson, Erik; Irvin, Marguerite R; Jian, Xueqiu; Jiménez-Conde, Jordi; Johnson, Julie A; Jukema, J Wouter; Kanai, Masahiro; Keene, Keith L; Kissela, Brett M; Kleindorfer, Dawn O; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M; Lin, Wei-Yu; Lindgren, Arne G; Lorentzen, Erik; Magnusson, Patrik K; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F; Meschia, James F; Mitchell, Braxton D; Mosley, Thomas H; Nalls, Michael A; Ninomiya, Toshiharu; O'Donnell, Martin J; Psaty, Bruce M; Pulit, Sara L; Rannikmäe, Kristiina; Reiner, Alexander P; Rexrode, Kathryn M; Rice, Kenneth; Rich, Stephen S; Ridker, Paul M; Rost, Natalia S; Rothwell, Peter M; Rotter, Jerome I; Rundek, Tatjana; Sacco, Ralph L; Sakaue, Saori; Sale, Michele M; Salomaa, Veikko; Sapkota, Bishwa R; Schmidt, Reinhold; Schmidt, Carsten O; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D; Thijs, Vincent N S; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M; Walters, Matthew; Wareham, Nicholas J; Wassertheil-Smoller, Sylvia; Wilson, James G; Wiggins, Kerri L; Yang, Qiong; Yusuf, Salim; Amin, Najaf; Aparicio, Hugo S; Arnett, Donna K; Attia, John; Beiser, Alexa S; Berr, Claudine; Buring, Julie E; Bustamante, Mariana; Caso, Valeria; Cheng, Yu-Ching; Choi, Seung Hoan; Chowhan, Ayesha; Cullell, Natalia; Dartigues, Jean-François; Delavaran, Hossein; Delgado, Pilar; Dörr, Marcus; Engström, Gunnar; Ford, Ian; Gurpreet, Wander S; Hamsten, Anders; Heitsch, Laura; Hozawa, Atsushi; Ibanez, Laura; Ilinca, Andreea; Ingelsson, Martin; Iwasaki, Motoki; Jackson, Rebecca D; Jood, Katarina; Jousilahti, Pekka; Kaffashian, Sara; Kalra, Lalit; Kamouchi, Masahiro; Kitazono, Takanari; Kjartansson, Olafur; Kloss, Manja; Koudstaal, Peter J; Krupinski, Jerzy; Labovitz, Daniel L; Laurie, Cathy C; Levi, Christopher R; Li, Linxin; Lind, Lars; Lindgren, Cecilia M; Lioutas, Vasileios; Liu, Yong Mei; Lopez, Oscar L; Makoto, Hirata; Martinez-Majander, Nicolas; Matsuda, Koichi; Minegishi, Naoko; Montaner, Joan; Morris, Andrew P; Muiño, Elena; Müller-Nurasyid, Martina; Norrving, Bo; Ogishima, Soichi; Parati, Eugenio A; Peddareddygari, Leema Reddy; Pedersen, Nancy L; Pera, Joanna; Perola, Markus; Pezzini, Alessandro; Pileggi, Silvana; Rabionet, Raquel; Riba-Llena, Iolanda; Ribasés, Marta; Romero, Jose R; Roquer, Jaume; Rudd, Anthony G; Sarin, Antti-Pekka; Sarju, Ralhan; Sarnowski, Chloe; Sasaki, Makoto; Satizabal, Claudia L; Satoh, Mamoru; Sattar, Naveed; Sawada, Norie; Sibolt, Gerli; Sigurdsson, Ásgeir; Smith, Albert; Sobue, Kenji; Soriano-Tárraga, Carolina; Stanne, Tara; Stine, O Colin; Stott, David J; Strauch, Konstantin; Takai, Takako; Tanaka, Hideo; Tanno, Kozo; Teumer, Alexander; Tomppo, Liisa; Torres-Aguila, Nuria P; Touze, Emmanuel; Tsugane, Shoichiro; Uitterlinden, Andre G; Valdimarsson, Einar M; van der Lee, Sven J; Völzke, Henry; Wakai, Kenji; Weir, David; Williams, Stephen R; Wolfe, Charles D A; Wong, Quenna; Xu, Huichun; Yamaji, Taiki; Sanghera, Dharambir K; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W T; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B; Kittner, Steven J; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S; Howson, Joanna M M; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin
2018-04-01
Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.
Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W.; Gretarsdottir, Solveig; Anderson, Christopher D.; Chong, Michael; Adams, Hieab H. H.; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M.; Benavente, Oscar R.; Bevan, Steve; Boncoraglio, Giorgio B.; Brown, Robert D.; Butterworth, Adam S.; Carrera, Caty; Carty, Cara L.; Chasman, Daniel I.; Chen, Wei-Min; Cole, John W.; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I. W.; DeStefano, Anita L.; den Hoed, Marcel; Duan, Qing; Engelter, Stefan T.; Falcone, Guido J.; Gottesman, Rebecca F.; Grewal, Raji P.; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B.; Hassan, Ahamad; Havulinna, Aki S.; Heckbert, Susan R.; Holliday, Elizabeth G.; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I.; Ikram, M. Arfan; ingelsson, Erik; Irvin, Marguerite R.; Jian, Xueqiu; Jimenez-Conde, Jordi; Johnson, Julie A.; Jukema, J. Wouter; Kanai, Masahiro; Keene, Keith L.; Kissela, Brett M.; Kleindorfer, Dawn O.; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A.; Langefeld, Carl D.; Langenberg, Claudia; Launer, Lenore J.; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M.; Lin, Wei-Yu; Lindgren, Arne G.; Lorentzen, Erik; Magnusson, Patrik K.; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F.; Meschia, James F.; Mitchell, Braxton D.; Mosley, Thomas H.; Nalls, Michael A.; Ninomiya, Toshiharu; O’Donnell, Martin J.; Psaty, Bruce M.; Pulit, Sara L.; Rannikmäe, Kristiina; Reiner, Alexander P.; Rexrode, Kathryn M.; Rice, Kenneth; Rich, Stephen S.; Ridker, Paul M.; Rost, Natalia S.; Rothwell, Peter M.; Rotter, Jerome I.; Rundek, Tatjana; Sacco, Ralph L.; Sakaue, Saori; Sale, Michele M.; Salomaa, Veikko; Sapkota, Bishwa R.; Schmidt, Reinhold; Schmidt, Carsten O.; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L. M.; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D.; Thijs, Vincent N. S.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M.; Walters, Matthew; Wareham, Nicholas J.; Wassertheil-Smoller, Sylvia; Wilson, James G.; Wiggins, Kerri L.; Yang, Qiong; Yusuf, Salim; Bis, Joshua C.; Pastinen, Tomi; Ruusalepp, Arno; Schadt, Eric E.; Koplev, Simon; Björkegren, Johan L. M.; Codoni, Veronica; Civelek, Mete; Smith, Nicholas L.; Tregouet, David A.; Christophersen, Ingrid E.; Roselli, Carolina; Lubitz, Steven A.; Ellinor, Patrick T.; Tai, E. Shyong; Kooner, Jaspal S.; Kato, Norihiro; He, Jiang; van der Harst, Pim; Elliott, Paul; Chambers, John C.; Takeuchi, Fumihiko; Johnson, Andrew D.; Sanghera, Dharambir K.; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W. T.; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C.; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B.; Kittner, Steven J.; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S.; Howson, Joanna M. M.; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin
2018-01-01
Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy. PMID:29531354
Kitzlerová, Eva; Lelková, Petra; Jirák, Roman; Zvěřová, Martina; Hroudová, Jana; Manukyan, Ada; Martásek, Pavel; Raboch, Jiří
2018-01-01
Background Several genetic susceptibility loci for major depressive disorder (MDD) or Alzheimer’s disease (AD) have been described. Interactions among polymorphisms are thought to explain the differences between low- and high-risk groups. We tested for the contribution of interactions between multiple functional polymorphisms in the risk of MDD or AD. Material/Methods A genetic association case-control study was performed in 68 MDD cases, 84 AD cases (35 of them with comorbid depression), and 90 controls. The contribution of 7 polymorphisms from 5 genes (APOE, HSPA1A, SLC6A4, HTR2A, and BDNF) related to risk of MDD or AD development was analyzed. Results Significant associations were found between MDD and interactions among polymorphisms in HSPA1A, SLC6A4, and BDNF or HSPA1A, BDNF, and APOE genes. For polymorphisms in the APOE gene in AD, significant differences were confirmed on the distributions of alleles and genotype rates compared to the control or MDD. Increased probability of comorbid depression was found in patients with AD who do not carry the ɛ4 allele of APOE. Conclusions Assessment of the interactions among polymorphisms of susceptibility loci in both MDD and AD confirmed a synergistic effect of genetic factors influencing inflammatory, serotonergic, and neurotrophic pathways at these heterogenous complex diseases. The effect of interactions was greater in MDD than in AD. A presence of the ɛ4 allele was confirmed as a genetic susceptibility factor in AD. Our findings indicate a role of APOE genotype in onset of comorbid depression in a subgroup of patients with AD who are not carriers of the APOE ɛ4 allele. PMID:29703883
Genetics of Rheumatoid Arthritis — A Comprehensive Review
Kurkó, Júlia; Besenyei, Timea; Laki, Judit; Glant, Tibor T.; Mikecz, Katalin
2013-01-01
The “Bermuda triangle” of genetics, environment and autoimmunity is involved in the pathogenesis of rheumatoid arthritis (RA). Various aspects of genetic contribution to the etiology, pathogenesis and outcome of RA are discussed in this review. The heritability of RA has been estimated to be about 60 %, while the contribution of HLA to heritability has been estimated to be 11–37 %. Apart from known shared epitope (SE) alleles, such as HLA-DRB1*01 and DRB1*04, other HLA alleles, such as HLA-DRB1*13 and DRB1*15 have been linked to RA susceptibility. A novel SE classification divides SE alleles into S1, S2, S3P and S3D groups, where primarily S2 and S3P groups have been associated with predisposition to seropositive RA. The most relevant non-HLA gene single nucleotide polymorphisms (SNPs) associated with RA include PTPN22, IL23R, TRAF1, CTLA4, IRF5, STAT4, CCR6, PADI4. Large genome-wide association studies (GWAS) have identified more than 30 loci involved in RA pathogenesis. HLA and some non-HLA genes may differentiate between anti-citrullinated protein antibody (ACPA) seropositive and seronegative RA. Genetic susceptibility has also been associated with environmental factors, primarily smoking. Some GWAS studies carried out in rodent models of arthritis have confirmed the role of human genes. For example, in the collagen-induced (CIA) and proteoglycan-induced arthritis (PgIA) models, two important loci — Pgia26/Cia5 and Pgia2/Cia2/Cia3, corresponding the human PTPN22/CD2 and TRAF1/C5 loci, respectively — have been identified. Finally, pharmacogenomics identified SNPs or multiple genetic signatures that may be associated with responses to traditional disease-modifying drugs and biologics. PMID:23288628
Genetics of rheumatoid arthritis - a comprehensive review.
Kurkó, Júlia; Besenyei, Timea; Laki, Judit; Glant, Tibor T; Mikecz, Katalin; Szekanecz, Zoltán
2013-10-01
The "Bermuda triangle" of genetics, environment and autoimmunity is involved in the pathogenesis of rheumatoid arthritis (RA). Various aspects of genetic contribution to the etiology, pathogenesis and outcome of RA are discussed in this review. The heritability of RA has been estimated to be about 60 %, while the contribution of HLA to heritability has been estimated to be 11-37 %. Apart from known shared epitope (SE) alleles, such as HLA-DRB1*01 and DRB1*04, other HLA alleles, such as HLA-DRB1*13 and DRB1*15 have been linked to RA susceptibility. A novel SE classification divides SE alleles into S1, S2, S3P and S3D groups, where primarily S2 and S3P groups have been associated with predisposition to seropositive RA. The most relevant non-HLA gene single nucleotide polymorphisms (SNPs) associated with RA include PTPN22, IL23R, TRAF1, CTLA4, IRF5, STAT4, CCR6, PADI4. Large genome-wide association studies (GWAS) have identified more than 30 loci involved in RA pathogenesis. HLA and some non-HLA genes may differentiate between anti-citrullinated protein antibody (ACPA) seropositive and seronegative RA. Genetic susceptibility has also been associated with environmental factors, primarily smoking. Some GWAS studies carried out in rodent models of arthritis have confirmed the role of human genes. For example, in the collagen-induced (CIA) and proteoglycan-induced arthritis (PgIA) models, two important loci - Pgia26/Cia5 and Pgia2/Cia2/Cia3, corresponding the human PTPN22/CD2 and TRAF1/C5 loci, respectively - have been identified. Finally, pharmacogenomics identified SNPs or multiple genetic signatures that may be associated with responses to traditional disease-modifying drugs and biologics.
Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network
Chen, Zhao; Tang, Hua; Qayyum, Rehan; Schick, Ursula M.; Nalls, Michael A.; Handsaker, Robert; Li, Jin; Lu, Yingchang; Yanek, Lisa R.; Keating, Brendan; Meng, Yan; van Rooij, Frank J.A.; Okada, Yukinori; Kubo, Michiaki; Rasmussen-Torvik, Laura; Keller, Margaux F.; Lange, Leslie; Evans, Michele; Bottinger, Erwin P.; Linderman, Michael D.; Ruderfer, Douglas M.; Hakonarson, Hakon; Papanicolaou, George; Zonderman, Alan B.; Gottesman, Omri; Thomson, Cynthia; Ziv, Elad; Singleton, Andrew B.; Loos, Ruth J.F.; Sleiman, Patrick M.A.; Ganesh, Santhi; McCarroll, Steven; Becker, Diane M.; Wilson, James G.; Lettre, Guillaume; Reiner, Alexander P.
2013-01-01
Laboratory red blood cell (RBC) measurements are clinically important, heritable and differ among ethnic groups. To identify genetic variants that contribute to RBC phenotypes in African Americans (AAs), we conducted a genome-wide association study in up to ∼16 500 AAs. The alpha-globin locus on chromosome 16pter [lead SNP rs13335629 in ITFG3 gene; P < 1E−13 for hemoglobin (Hgb), RBC count, mean corpuscular volume (MCV), MCH and MCHC] and the G6PD locus on Xq28 [lead SNP rs1050828; P < 1E − 13 for Hgb, hematocrit (Hct), MCV, RBC count and red cell distribution width (RDW)] were each associated with multiple RBC traits. At the alpha-globin region, both the common African 3.7 kb deletion and common single nucleotide polymorphisms (SNPs) appear to contribute independently to RBC phenotypes among AAs. In the 2p21 region, we identified a novel variant of PRKCE distinctly associated with Hct in AAs. In a genome-wide admixture mapping scan, local European ancestry at the 6p22 region containing HFE and LRRC16A was associated with higher Hgb. LRRC16A has been previously associated with the platelet count and mean platelet volume in AAs, but not with Hgb. Finally, we extended to AAs the findings of association of erythrocyte traits with several loci previously reported in Europeans and/or Asians, including CD164 and HBS1L-MYB. In summary, this large-scale genome-wide analysis in AAs has extended the importance of several RBC-associated genetic loci to AAs and identified allelic heterogeneity and pleiotropy at several previously known genetic loci associated with blood cell traits in AAs. PMID:23446634
2014-01-01
Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159
Another procedure for the preliminary ordering of loci based on two point lod scores.
Curtis, D
1994-01-01
Because of the difficulty of performing full likelihood analysis over multiple loci and the large numbers of possible orders, a number of methods have been proposed for quickly evaluating orders and, to a lesser extent, for generating good orders. A new method is proposed which uses a function which is moderately laborious to compute, the sum of lod scores between all pairs of loci. This function can be smoothly minimized by initially allowing the loci to be placed anywhere in space, and only subsequently constraining them to lie along a one-dimensional map. Application of this approach to sample data suggests that it has promise and might usefully be combined with other methods when loci need to be ordered.
Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci
USDA-ARS?s Scientific Manuscript database
Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholest...
Shangguan, J B; Li, Z B; Yuan, Y; Huang, Y S
2015-10-28
Tropical commercial sea cucumber Stichopus horrens is extensively distributed throughout the tropical Indo-Pacific region, and wild stocks have been severely depleted over the past decade. In this study, we used the microsatellite enrichment library of S. horrens to identify and characterize 13 microsatellite loci, including 11 polymorphic loci and 2 monomorphic loci. Among the 11 polymorphic loci, the number of alleles was 3-8. The observed and expected heterozygosity varied from 0.1364 to 0.8966 and from 0.1653 to 0.7551, respectively. Additionally, all 11 polymorphic loci showed moderate and high polymorphism with the polymorphism information content (0.271-0.7311). A total of 9 polymorphic loci were in Hardy-Weinberg equilibrium, except for 2 loci (adjusted P = 0.004545). Linkage disequilibrium was not detected in any pairs of polymorphic loci. The present study will be useful for studying genetic structure, population conservation, and breeding of wild S. horrens; moreover, our results contribute to the phylogeny and evolutionary research of Holothuroidea.
Tsumura, Y; Uchiyama, K; Moriguchi, Y; Ueno, S; Ihara-Ujino, T
2012-12-01
Local adaptation is important in evolutionary processes and speciation. We used multiple tests to identify several candidate genes that may be involved in local adaptation from 1026 loci in 14 natural populations of Cryptomeria japonica, the most economically important forestry tree in Japan. We also studied the relationships between genotypes and environmental variables to obtain information on the selective pressures acting on individual populations. Outlier loci were mapped onto a linkage map, and the positions of loci associated with specific environmental variables are considered. The outlier loci were not randomly distributed on the linkage map; linkage group 11 was identified as a genomic island of divergence. Three loci in this region were also associated with environmental variables such as mean annual temperature, daily maximum temperature, maximum snow depth, and so on. Outlier loci identified with high significance levels will be essential for conservation purposes and for future work on molecular breeding.
Kidd, Kenneth K; Pakstis, Andrew J; Speed, William C; Lagacé, Robert; Chang, Joseph; Wootton, Sharon; Haigh, Eva; Kidd, Judith R
2014-09-01
SNPs that are molecularly very close (<10kb) will generally have extremely low recombination rates, much less than 10(-4). Multiple haplotypes will often exist because of the history of the origins of the variants at the different sites, rare recombinants, and the vagaries of random genetic drift and/or selection. Such multiallelic haplotype loci are potentially important in forensic work for individual identification, for defining ancestry, and for identifying familial relationships. The new DNA sequencing capabilities currently available make possible continuous runs of a few hundred base pairs so that we can now determine the allelic combination of multiple SNPs on each chromosome of an individual, i.e., the phase, for multiple SNPs within a small segment of DNA. Therefore, we have begun to identify regions, encompassing two to four SNPs with an extent of <200bp that define multiallelic haplotype loci. We have identified candidate regions and have collected pilot data on many candidate microhaplotype loci. Here we present 31 microhaplotype loci that have at least three alleles, have high heterozygosity, are globally informative, and are statistically independent at the population level. This study of microhaplotype loci (microhaps) provides proof of principle that such markers exist and validates their usefulness for ancestry inference, lineage-clan-family inference, and individual identification. The true value of microhaplotypes will come with sequencing methods that can establish alleles unambiguously, including disentangling of mixtures, because a single sequencing run on a single strand of DNA will encompass all of the SNPs. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Mitochondrial Recombination Reveals Mito-Mito Epistasis in Yeast.
Wolters, John F; Charron, Guillaume; Gaspary, Alec; Landry, Christian R; Fiumera, Anthony C; Fiumera, Heather L
2018-05-01
Genetic variation in mitochondrial DNA (mtDNA) provides adaptive potential although the underlying genetic architecture of fitness components within mtDNAs is not known. To dissect functional variation within mtDNAs, we first identified naturally occurring mtDNAs that conferred high or low fitness in Saccharomyces cerevisiae by comparing growth in strains containing identical nuclear genotypes but different mtDNAs. During respiratory growth under temperature and oxidative stress conditions, mitotype effects were largely independent of nuclear genotypes even in the presence of mito-nuclear interactions. Recombinant mtDNAs were generated to determine fitness components within high- and low-fitness mtDNAs. Based on phenotypic distributions of isogenic strains containing recombinant mtDNAs, we found that multiple loci contributed to mitotype fitness differences. These mitochondrial loci interacted in epistatic, nonadditive ways in certain environmental conditions. Mito-mito epistasis ( i.e. , nonadditive interactions between mitochondrial loci) influenced fitness in progeny from four different crosses, suggesting that mito-mito epistasis is a widespread phenomenon in yeast and other systems with recombining mtDNAs. Furthermore, we found that interruption of coadapted mito-mito interactions produced recombinant mtDNAs with lower fitness. Our results demonstrate that mito-mito epistasis results in functional variation through mitochondrial recombination in fungi, providing modes for adaptive evolution and the generation of mito-mito incompatibilities. Copyright © 2018 by the Genetics Society of America.
Waage, Johannes; Baurecht, Hansjörg; Hotze, Melanie; Strachan, David P; Curtin, John A; Bønnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P; den Dekker, Herman T; Ferreira, Manuel A; Altmaier, Elisabeth; Sleiman, Patrick MA; Xiao, Feng Li; Gonzalez, Juan R; Marenholz, Ingo; Kalb, Birgit; Yanes, Maria Pino; Xu, Cheng-Jian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M; Venturini, Cristina; Pennell, Craig E; Barton, Sheila J; Levin, Albert M; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Møller, Eskil; Lockett, Gabrielle A; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L; Henderson, A J; Kemp, John P; Zheng, Jie; Smith, George Davey; Rüschendorf, Franz; Bauerfeind, Anja; Lee-Kirsch, Min Ae; Arnold, Andreas; Homuth, Georg; Schmidt, Carsten O; Mangold, Elisabeth; Cichon, Sven; Keil, Thomas; Rodríguez, Elke; Peters, Annette; Franke, Andre; Lieb, Wolfgang; Novak, Natalija; Fölster-Holst, Regina; Horikoshi, Momoko; Pekkanen, Juha; Sebert, Sylvain; Husemoen, Lise L; Grarup, Niels; de Jongste, Johan C; Rivadeneira, Fernando; Hofman, Albert; Jaddoe, Vincent WV; Pasmans, Suzanne GMA; Elbert, Niels J; Uitterlinden, André G; Marks, Guy B; Thompson, Philip J; Matheson, Melanie C; Robertson, Colin F; Ried, Janina S; Li, Jin; Zuo, Xian Bo; Zheng, Xiao Dong; Yin, Xian Yong; Sun, Liang Dan; McAleer, Maeve A; O'Regan, Grainne M; Fahy, Caoimhe MR; Campbell, Linda E; Macek, Milan; Kurek, Michael; Hu, Donglei; Eng, Celeste; Postma, Dirkje S; Feenstra, Bjarke; Geller, Frank; Hottenga, Jouke Jan; Middeldorp, Christel M; Hysi, Pirro; Bataille, Veronique; Spector, Tim; Tiesler, Carla MT; Thiering, Elisabeth; Pahukasahasram, Badri; Yang, James J; Imboden, Medea; Huntsman, Scott; Vilor-Tejedor, Natàlia; Relton, Caroline L; Myhre, Ronny; Nystad, Wenche; Custovic, Adnan; Weiss, Scott T; Meyers, Deborah A; Söderhäll, Cilla; Melén, Erik; Ober, Carole; Raby, Benjamin A; Simpson, Angela; Jacobsson, Bo; Holloway, John W; Bisgaard, Hans; Sunyer, Jordi; Hensch, Nicole M Probst; Williams, L Keoki; Godfrey, Keith M; Wang, Carol A; Boomsma, Dorret I; Melbye, Mads; Koppelman, Gerard H; Jarvis, Deborah; McLean, WH Irwin; Irvine, Alan D; Zhang, Xue Jun; Hakonarson, Hakon; Gieger, Christian; Burchard, Esteban G; Martin, Nicholas G; Duijts, Liesbeth; Linneberg, Allan; Jarvelin, Marjo-Riitta; Noethen, Markus M; Lau, Susanne; Hübner, Norbert; Lee, Young-Ae; Tamari, Mayumi; Hinds, David A; Glass, Daniel; Brown, Sara J; Heinrich, Joachim; Evans, David M; Weidinger, Stephan
2015-01-01
Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified 10 novel risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with novel secondary signals at 4 of these). Notably, the new loci include candidate genes with roles in regulation of innate host defenses and T-cell function, underscoring the important contribution of (auto-)immune mechanisms to atopic dermatitis pathogenesis. PMID:26482879
Chau, John H; Rahfeldt, Wolfgang A; Olmstead, Richard G
2018-03-01
Targeted sequence capture can be used to efficiently gather sequence data for large numbers of loci, such as single-copy nuclear loci. Most published studies in plants have used taxon-specific locus sets developed individually for a clade using multiple genomic and transcriptomic resources. General locus sets can also be developed from loci that have been identified as single-copy and have orthologs in large clades of plants. We identify and compare a taxon-specific locus set and three general locus sets (conserved ortholog set [COSII], shared single-copy nuclear [APVO SSC] genes, and pentatricopeptide repeat [PPR] genes) for targeted sequence capture in Buddleja (Scrophulariaceae) and outgroups. We evaluate their performance in terms of assembly success, sequence variability, and resolution and support of inferred phylogenetic trees. The taxon-specific locus set had the most target loci. Assembly success was high for all locus sets in Buddleja samples. For outgroups, general locus sets had greater assembly success. Taxon-specific and PPR loci had the highest average variability. The taxon-specific data set produced the best-supported tree, but all data sets showed improved resolution over previous non-sequence capture data sets. General locus sets can be a useful source of sequence capture targets, especially if multiple genomic resources are not available for a taxon.
Li, Dayong; Huang, Zhiyuan; Song, Shuhui; Xin, Yeyun; Mao, Donghai; Lv, Qiming; Zhou, Ming; Tian, Dongmei; Tang, Mingfeng; Wu, Qi; Liu, Xue; Chen, Tingting; Song, Xianwei; Fu, Xiqin; Zhao, Bingran; Liang, Chengzhi; Li, Aihong; Liu, Guozhen; Li, Shigui; Hu, Songnian; Cao, Xiaofeng; Yu, Jun; Yuan, Longping; Chen, Caiyan; Zhu, Lihuang
2016-01-01
Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world’s food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed. PMID:27663737
A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans
Palmer, Nicholette D.; McDonough, Caitrin W.; Hicks, Pamela J.; Roh, Bong H.; Wing, Maria R.; An, S. Sandy; Hester, Jessica M.; Cooke, Jessica N.; Bostrom, Meredith A.; Rudock, Megan E.; Talbert, Matthew E.; Lewis, Joshua P.; Ferrara, Assiamira; Lu, Lingyi; Ziegler, Julie T.; Sale, Michele M.; Divers, Jasmin; Shriner, Daniel; Adeyemo, Adebowale; Rotimi, Charles N.; Ng, Maggie C. Y.; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.
2012-01-01
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations. PMID:22238593
CBCL Pediatric Bipolar Disorder Profile and ADHD: Comorbidity and Quantitative Trait Loci Analysis
ERIC Educational Resources Information Center
McGough, James J.; Loo, Sandra K.; McCracken, James T.; Dang, Jeffery; Clark, Shaunna; Nelson, Stanley F.; Smalley, Susan L.
2008-01-01
The pediatric bipolar disorder profile of the Child Behavior checklist is used to differentiate patterns of comorbidity and to search for quantitative trait loci in multiple affected ADHD sibling pairs. The CBCL-PBD profiling identified 8 percent of individuals with severe psychopathology and increased rates of oppositional defiant, conduct and…
Kiryluk, Krzysztof; Li, Yifu; Sanna-Cherchi, Simone; Rohanizadegan, Mersedeh; Suzuki, Hitoshi; Eitner, Frank; Snyder, Holly J.; Choi, Murim; Hou, Ping; Scolari, Francesco; Izzi, Claudia; Gigante, Maddalena; Gesualdo, Loreto; Savoldi, Silvana; Amoroso, Antonio; Cusi, Daniele; Zamboli, Pasquale; Julian, Bruce A.; Novak, Jan; Wyatt, Robert J.; Mucha, Krzysztof; Perola, Markus; Kristiansson, Kati; Viktorin, Alexander; Magnusson, Patrik K.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Stefansson, Kari; Boland, Anne; Metzger, Marie; Thibaudin, Lise; Wanner, Christoph; Jager, Kitty J.; Goto, Shin; Maixnerova, Dita; Karnib, Hussein H.; Nagy, Judit; Panzer, Ulf; Xie, Jingyuan; Chen, Nan; Tesar, Vladimir; Narita, Ichiei; Berthoux, Francois; Floege, Jürgen; Stengel, Benedicte; Zhang, Hong; Lifton, Richard P.; Gharavi, Ali G.
2012-01-01
IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5×10−32–3×10−10), with heterogeneity detected only at the PSMB9/TAP1 locus (I2 = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5×10−4). A seven–SNP genetic risk score, which explained 4.7% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3×10−128). This model paralleled the known East–West gradient in disease risk. Moreover, the prediction of a South–North axis was confirmed by registry data showing that the prevalence of IgAN–attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world populations. These findings inform genetic, biological, and epidemiological investigations of IgAN and permit cross-comparison with other complex traits that share genetic risk loci and geographic patterns with IgAN. PMID:22737082
Sabri, Suriana; Steen, Jennifer A; Bongers, Mareike; Nielsen, Lars K; Vickers, Claudia E
2013-06-24
Metabolic engineering projects often require integration of multiple genes in order to control the desired phenotype. However, this often requires iterative rounds of engineering because many current insertion approaches are limited by the size of the DNA that can be transferred onto the chromosome. Consequently, construction of highly engineered strains is very time-consuming. A lack of well-characterised insertion loci is also problematic. A series of knock-in/knock-out (KIKO) vectors was constructed for integration of large DNA sequences onto the E. coli chromosome at well-defined loci. The KIKO plasmids target three nonessential genes/operons as insertion sites: arsB (an arsenite transporter); lacZ (β-galactosidase); and rbsA-rbsR (a ribose metabolism operon). Two homologous 'arms' target each insertion locus; insertion is mediated by λ Red recombinase through these arms. Between the arms is a multiple cloning site for the introduction of exogenous sequences and an antibiotic resistance marker (either chloramphenicol or kanamycin) for selection of positive recombinants. The resistance marker can subsequently be removed by flippase-mediated recombination. The insertion cassette is flanked by hairpin loops to isolate it from the effects of external transcription at the integration locus. To characterize each target locus, a xylanase reporter gene (xynA) was integrated onto the chromosomes of E. coli strains W and K-12 using the KIKO vectors. Expression levels varied between loci, with the arsB locus consistently showing the highest level of expression. To demonstrate the simultaneous use of all three loci in one strain, xynA, green fluorescent protein (gfp) and a sucrose catabolic operon (cscAKB) were introduced into lacZ, arsB and rbsAR respectively, and shown to be functional. The KIKO plasmids are a useful tool for efficient integration of large DNA fragments (including multiple genes and pathways) into E. coli. Chromosomal insertion provides stable expression without the need for continuous antibiotic selection. Three non-essential loci have been characterised as insertion loci; combinatorial insertion at all three loci can be performed in one strain. The largest insertion at a single site described here was 5.4 kb; we have used this method in other studies to insert a total of 7.3 kb at one locus and 11.3 kb across two loci. These vectors are particularly useful for integration of multigene cassettes for metabolic engineering applications.
Genetic relationships between feral cattle from Chirikof Island, Alaska and other breeds.
MacNeil, M D; Cronin, M A; Blackburn, H D; Richards, C M; Lockwood, D R; Alexander, L J
2007-06-01
The origin of cattle on Chirikof Island, off the coast of Alaska, is not well documented. We assessed genetic differentiation of cattle isolated on Chirikof Island from several breeds commonly used for commercial production in North America including breeds popularly believed to have contributed to the Chirikof Island population. A set of 34 microsatellite loci was used to genotype Angus, Charolais, Hereford, Highland, Limousin, Red Angus, Salers, Shorthorn, Simmental, Tarentaise and Texas Longhorn cattle sampled from North America and the Chirikof Island population. Resulting F(ST) statistics for these loci ranged from 0.06 to 0.22 and on average, 14% of total genetic variation was between breeds. Whether population structure was modelled as a bifurcating tree or genetic network, Chirikof Island cattle appeared to be unique and strongly differentiated relative to the other breeds that were sampled. Bayesian clustering for multiple-locus assignment to genetic groups indicated low levels of admixture in the Chirikof Island population. Thus, the Chirikof Island population may be a novel genetic resource of some importance for conservation and industry.
Schmitt, Katja; Richter, Christin; Backes, Christina; Meese, Eckart; Ruprecht, Klemens
2013-01-01
Human endogenous retroviruses (HERVs) of the HERV-W group comprise hundreds of loci in the human genome. Deregulated HERV-W expression and HERV-W locus ERVWE1-encoded Syncytin-1 protein have been implicated in the pathogenesis of multiple sclerosis (MS). However, the actual transcription of HERV-W loci in the MS context has not been comprehensively analyzed. We investigated transcription of HERV-W in MS brain lesions and white matter brain tissue from healthy controls by employing next-generation amplicon sequencing of HERV-W env-specific reverse transcriptase (RT) PCR products, thus revealing transcribed HERV-W loci and the relative transcript levels of those loci. We identified more than 100 HERV-W loci that were transcribed in the human brain, with a limited number of loci being predominantly transcribed. Importantly, relative transcript levels of HERV-W loci were very similar between MS and healthy brain tissue samples, refuting deregulated transcription of HERV-W env in MS brain lesions, including the high-level-transcribed ERVWE1 locus encoding Syncytin-1. Quantitative RT-PCR likewise did not reveal differences in MS regarding HERV-W env general transcript or ERVWE1- and ERVWE2-specific transcript levels. However, we obtained evidence for interindividual differences in HERV-W transcript levels. Reporter gene assays indicated promoter activity of many HERV-W long terminal repeats (LTRs), including structurally incomplete LTRs. Our comprehensive analysis of HERV-W transcription in the human brain thus provides important information on the biology of HERV-W in MS lesions and normal human brain, implications for study design, and mechanisms by which HERV-W may (or may not) be involved in MS. PMID:24109235
Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus.
Sanchez, Elena; Nadig, Ajay; Richardson, Bruce C; Freedman, Barry I; Kaufman, Kenneth M; Kelly, Jennifer A; Niewold, Timothy B; Kamen, Diane L; Gilkeson, Gary S; Ziegler, Julie T; Langefeld, Carl D; Alarcón, Graciela S; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Brown, Elizabeth E; Kimberly, Robert P; Reveille, John D; Vilá, Luis M; Merrill, Joan T; Anaya, Juan-Manuel; James, Judith A; Pons-Estel, Bernardo A; Martin, Javier; Park, So-Yeon; Bang, So-Young; Bae, Sang-Cheol; Moser, Kathy L; Vyse, Timothy J; Criswell, Lindsey A; Gaffney, Patrick M; Tsao, Betty P; Jacob, Chaim O; Harley, John B; Alarcón-Riquelme, Marta E; Sawalha, Amr H
2011-10-01
Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. 4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0 × 10(-6), OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Signifi cant associations were found between clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.
Hughes, Travis; Adler, Adam; Kelly, Jennifer A; Kaufman, Kenneth M; Williams, Adrienne H; Langefeld, Carl D; Brown, Elizabeth E; Alarcón, Graciela S; Kimberly, Robert P; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Boackle, Susan A; Stevens, Anne M; Reveille, John D; Sanchez, Elena; Martín, Javier; Niewold, Timothy B; Vilá, Luis M; Scofield, R Hal; Gilkeson, Gary S; Gaffney, Patrick M; Criswell, Lindsey A; Moser, Kathy L; Merrill, Joan T; Jacob, Chaim O; Tsao, Betty P; James, Judith A; Vyse, Timothy J; Alarcón-Riquelme, Marta E; Harley, John B; Richardson, Bruce C; Sawalha, Amr H
2012-02-01
Several confirmed genetic susceptibility loci for lupus have been described. To date, no clear evidence for genetic epistasis in lupus has been established. The aim of this study was to test for gene-gene interactions in a number of known lupus susceptibility loci. Eighteen single-nucleotide polymorphisms tagging independent and confirmed lupus susceptibility loci were genotyped in a set of 4,248 patients with lupus and 3,818 normal healthy control subjects of European descent. Epistasis was tested by a 2-step approach using both parametric and nonparametric methods. The false discovery rate (FDR) method was used to correct for multiple testing. We detected and confirmed gene-gene interactions between the HLA region and CTLA4, IRF5, and ITGAM and between PDCD1 and IL21 in patients with lupus. The most significant interaction detected by parametric analysis was between rs3131379 in the HLA region and rs231775 in CTLA4 (interaction odds ratio 1.19, Z = 3.95, P = 7.8 × 10(-5) [FDR ≤0.05], P for multifactor dimensionality reduction = 5.9 × 10(-45)). Importantly, our data suggest that in patients with lupus, the presence of the HLA lupus risk alleles in rs1270942 and rs3131379 increases the odds of also carrying the lupus risk allele in IRF5 (rs2070197) by 17% and 16%, respectively (P = 0.0028 and P = 0.0047, respectively). We provide evidence for gene-gene epistasis in systemic lupus erythematosus. These findings support a role for genetic interaction contributing to the complexity of lupus heritability. Copyright © 2012 by the American College of Rheumatology.
Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus
Sanchez, Elena; Nadig, Ajay; Richardson, Bruce C; Freedman, Barry I; Kaufman, Kenneth M; Kelly, Jennifer A; Niewold, Timothy B; Kamen, Diane L; Gilkeson, Gary S; Ziegler, Julie T; Langefeld, Carl D; Alarcón, Graciela S; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Brown, Elizabeth E; Kimberly, Robert P; Reveille, John D; Vilá, Luis M; Merrill, Joan T; Anaya, Juan-Manuel; James, Judith A; Pons-Estel, Bernardo A; Martin, Javier; Park, So-Yeon; Bang, So-Young; Bae, Sang-Cheol; Moser, Kathy L; Vyse, Timothy J; Criswell, Lindsey A; Gaffney, Patrick M; Tsao, Betty P; Jacob, Chaim O; Harley, John B; Alarcón-Riquelme, Marta E; Sawalha, Amr H
2011-01-01
Objective Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. Materials and methods 4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Results Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Conclusion Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future. PMID:21719445
The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.
Croll, Daniel; McDonald, Bruce A
2017-04-01
Local adaptation plays a key role in the evolutionary trajectory of host-pathogen interactions. However, the genetic architecture of local adaptation in host-pathogen systems is poorly understood. Fungal plant pathogens in agricultural ecosystems provide highly tractable models to quantify phenotypes and map traits to corresponding genomic loci. The outcome of crop-pathogen interactions is thought to be governed largely by gene-for-gene interactions. However, recent studies showed that virulence can be governed by quantitative trait loci and that many abiotic factors contribute to the outcome of the interaction. After introducing concepts of local adaptation and presenting examples from wild plant pathosystems, we focus this review on a major pathogen of wheat, Zymoseptoria tritici, to show how a multitude of traits can affect local adaptation. Zymoseptoria tritici adapted to different thermal environments across its distribution range, indicating that thermal adaptation may limit effective dispersal to different climates. The application of fungicides led to the rapid evolution of multiple, independent resistant populations. The degree of colony melanization showed strong pleiotropic effects with other traits, including trade-offs with colony growth rates and fungicide sensitivity. The success of the pathogen on its host can be assessed quantitatively by counting pathogen reproductive structures and measuring host damage based on necrotic lesions. Interestingly, these two traits can be weakly correlated and depend both on host and pathogen genotypes. Quantitative trait mapping studies showed that the genetic architecture of locally adapted traits varies from single loci with large effects to many loci with small individual effects. We discuss how local adaptation could hinder or accelerate the development of epidemics in agricultural ecosystems. © 2016 John Wiley & Sons Ltd.
Allelic Analysis of Sheath Blight Resistance with Association Mapping in Rice
Jia, Limeng; Yan, Wengui; Zhu, Chengsong; Agrama, Hesham A.; Jackson, Aaron; Yeater, Kathleen; Li, Xiaobai; Huang, Bihu; Hu, Biaolin; McClung, Anna; Wu, Dianxing
2012-01-01
Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with 155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries, entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles presented in an entry was highly and significantly correlated with the decrease of ShB rating (r = −0.535) or the increase of ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant alleles from various loci in a cultivar for enhanced ShB resistance in rice. PMID:22427867
Chauvet, Cristina; Crespo, Kimberley; Ménard, Annie; Roy, Julie; Deng, Alan Y
2013-11-15
Hypertension, the most frequently diagnosed clinical condition world-wide, predisposes individuals to morbidity and mortality, yet its underlying pathological etiologies are poorly understood. So far, a large number of quantitative trait loci (QTLs) have been identified in both humans and animal models, but how they function together in determining overall blood pressure (BP) in physiological settings is unknown. Here, we systematically and comprehensively performed pair-wise comparisons of individual QTLs to create a global picture of their functionality in an inbred rat model. Rather than each of numerous QTLs contributing to infinitesimal BP increments, a modularized pattern arises: two epistatic 'blocks' constitute basic functional 'units' for nearly all QTLs, designated as epistatic module 1 (EM1) and EM2. This modularization dictates the magnitude and scope of BP effects. Any EM1 member can contribute to BP additively to that of EM2, but not to those of the same module. Members of each EM display epistatic hierarchy, which seems to reflect a related functional pathway. Rat homologues of 11 human BP QTLs belong to either EM1 or EM2. Unique insights emerge into the novel genetic mechanism and hierarchy determining BP in the Dahl salt-sensitive SS/Jr (DSS) rat model that implicate a portion of human QTLs. Elucidating the pathways underlying EM1 and EM2 may reveal the genetic regulation of BP.
Genome-wide association study identifies multiple susceptibility loci for multiple myeloma
Mitchell, Jonathan S.; Li, Ni; Weinhold, Niels; Försti, Asta; Ali, Mina; van Duin, Mark; Thorleifsson, Gudmar; Johnson, David C.; Chen, Bowang; Halvarsson, Britt-Marie; Gudbjartsson, Daniel F.; Kuiper, Rowan; Stephens, Owen W.; Bertsch, Uta; Broderick, Peter; Campo, Chiara; Einsele, Hermann; Gregory, Walter A.; Gullberg, Urban; Henrion, Marc; Hillengass, Jens; Hoffmann, Per; Jackson, Graham H.; Johnsson, Ellinor; Jöud, Magnus; Kristinsson, Sigurður Y.; Lenhoff, Stig; Lenive, Oleg; Mellqvist, Ulf-Henrik; Migliorini, Gabriele; Nahi, Hareth; Nelander, Sven; Nickel, Jolanta; Nöthen, Markus M.; Rafnar, Thorunn; Ross, Fiona M.; da Silva Filho, Miguel Inacio; Swaminathan, Bhairavi; Thomsen, Hauke; Turesson, Ingemar; Vangsted, Annette; Vogel, Ulla; Waage, Anders; Walker, Brian A.; Wihlborg, Anna-Karin; Broyl, Annemiek; Davies, Faith E.; Thorsteinsdottir, Unnur; Langer, Christian; Hansson, Markus; Kaiser, Martin; Sonneveld, Pieter; Stefansson, Kari; Morgan, Gareth J.; Goldschmidt, Hartmut; Hemminki, Kari; Nilsson, Björn; Houlston, Richard S.
2016-01-01
Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10−8), 6q21 (rs9372120, P=9.09 × 10−15), 7q36.1 (rs7781265, P=9.71 × 10−9), 8q24.21 (rs1948915, P=4.20 × 10−11), 9p21.3 (rs2811710, P=1.72 × 10−13), 10p12.1 (rs2790457, P=1.77 × 10−8), 16q23.1 (rs7193541, P=5.00 × 10−12) and 20q13.13 (rs6066835, P=1.36 × 10−13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development. PMID:27363682
Justice, Anne E; Winkler, Thomas W; Feitosa, Mary F; Graff, Misa; Fisher, Virginia A; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S; Ahluwalia, Tarunveer S; Chu, Audrey Y; Heard-Costa, Nancy L; Lim, Elise; Perez, Jeremiah; Eicher, John D; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E; Jackson, Anne U; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P S; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A; Stančáková, Alena; Strawbridge, Rona J; Stringham, Heather M; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van der Most, Peter J; Van Vliet-Ostaptchouk, Jana V; Vedantam, Sailaja L; Verweij, Niek; Vink, Jacqueline M; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E; Zubair, Niha; Abecasis, Gonçalo R; Adair, Linda S; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J L; Bartz, Traci M; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M; Buyske, Steve; Campbell, Harry; Chambers, John C; Collins, Francis S; Curran, Joanne E; de Borst, Gert J; de Craen, Anton J M; de Geus, Eco J C; Dedoussis, George; Delgado, Graciela E; den Ruijter, Hester M; Eiriksdottir, Gudny; Eriksson, Anna L; Esko, Tõnu; Faul, Jessica D; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas D; Heath, Andrew C; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A; Jørgensen, Marit E; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Leander, Karin; Lee, Nanette R; Lind, Lars; Lindgren, Cecilia M; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A F; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G; McKenzie, Colin A; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W; Musk, Aw Bill; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Oldehinkel, Albertine J; Olden, Matthias; Ong, Ken K; Padmanabhan, Sandosh; Peyser, Patricia A; Pisinger, Charlotta; Porteous, David J; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rasmussen-Torvik, Laura J; Rawal, Rajesh; Rice, Treva; Ridker, Paul M; Rose, Lynda M; Bien, Stephanie A; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A; Sennblad, Bengt; Siemelink, Marten A; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A; Stott, David J; Swertz, Morris A; Swift, Amy J; Taylor, Kent D; Tayo, Bamidele O; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R G J; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A; Boomsma, Dorret I; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I; Chen, Yii-DerIda; Chines, Peter S; Cooper, Richard S; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans-Jörgen; Gudnason, Vilmundur; Haiman, Christopher A; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D; Wouter Jukema, J; Kardia, Sharon L R; Kivimaki, Mika; Kooner, Jaspal S; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I; Metspalu, Andres; Morris, Andrew P; Ohlsson, Claes; Palmer, Lyle J; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Smith, Blair H; Sørensen, Thorkild I A; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J; Weir, David R; Whitfield, John B; Wilson, James F; Tyrrell, Jessica; Frayling, Timothy M; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S; Hirschhorn, Joel N; Hunter, David J; Spector, Tim D; Strachan, David P; van Duijn, Cornelia M; Heid, Iris M; Mohlke, Karen L; Marchini, Jonathan; Loos, Ruth J F; Kilpeläinen, Tuomas O; Liu, Ching-Ti; Borecki, Ingrid B; North, Kari E; Cupples, L Adrienne
2017-04-26
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-Man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H-H; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B; Adair, Linda S; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; Chen, Yii-Der Ida; Shu, Xiao-Ou; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars G; Nielsen, Jonas Bille; Tse, Hung-Fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Kathiresan, Sekar; Mohlke, Karen L; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J
2017-12-01
Most genome-wide association studies have been of European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we used an exome array to examine protein-coding genetic variants in 47,532 East Asian individuals. We identified 255 variants at 41 loci that reached chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After a meta-analysis including >300,000 European samples, we identified an additional nine novel loci. Sixteen genes were identified by protein-altering variants in both East Asians and Europeans, and thus are likely to be functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci.
Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J.; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N.; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H.-H.; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B.; Adair, Linda S.; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; da Chen, Yii-Der I; Shu, XiaoOu; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K.; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars; Nielsen, Jonas Bille; Tse, Hung-fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y. Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Consortium, GLGC; Kathiresan, Sekar; Mohlke, Karen L.; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J
2017-01-01
Most genome-wide association studies have been conducted in European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we examined protein-coding genetic variants in 47,532 East Asian individuals using an exome array. We identified 255 variants at 41 loci reaching chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After meta-analysis with > 300,000 European samples, we identified an additional 9 novel loci. The same 16 genes were identified by the protein-altering variants in both East Asians and Europeans, likely pointing to the functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population-specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci. PMID:29083407
Justice, Anne E.; Winkler, Thomas W.; Feitosa, Mary F.; Graff, Misa; Fisher, Virginia A.; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S.; Ahluwalia, Tarunveer S.; Chu, Audrey Y.; Heard-Costa, Nancy L.; Lim, Elise; Perez, Jeremiah; Eicher, John D.; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F.; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E.; Jackson, Anne U.; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E.; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P. S.; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A.; Stančáková, Alena; Strawbridge, Rona J.; Stringham, Heather M.; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W.; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vedantam, Sailaja L.; Verweij, Niek; Vink, Jacqueline M.; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E.; Zubair, Niha; Abecasis, Gonçalo R.; Adair, Linda S.; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J. L.; Bartz, Traci M.; Beilby, John; Bergman, Richard N.; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L.; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M.; Buyske, Steve; Campbell, Harry; Chambers, John C.; Collins, Francis S.; Curran, Joanne E.; de Borst, Gert J.; de Craen, Anton J. M.; de Geus, Eco J. C.; Dedoussis, George; Delgado, Graciela E.; den Ruijter, Hester M.; Eiriksdottir, Gudny; Eriksson, Anna L.; Esko, Tõnu; Faul, Jessica D.; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B.; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas D.; Heath, Andrew C.; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J.; Hollensted, Mette; Holmen, Oddgeir L.; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L.; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A.; Jørgensen, Marit E.; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A.; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K.; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Leander, Karin; Lee, Nanette R.; Lind, Lars; Lindgren, Cecilia M.; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A. F.; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G.; McKenzie, Colin A.; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W.; Musk, AW (Bill); Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M.; Oldehinkel, Albertine J.; Olden, Matthias; Ong, Ken K.; Padmanabhan, Sandosh; Peyser, Patricia A.; Pisinger, Charlotta; Porteous, David J.; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rasmussen-Torvik, Laura J.; Rawal, Rajesh; Rice, Treva; Ridker, Paul M.; Rose, Lynda M.; Bien, Stephanie A.; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A.; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A.; Sennblad, Bengt; Siemelink, Marten A.; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A.; Stott, David J.; Swertz, Morris A.; Swift, Amy J.; Taylor, Kent D.; Tayo, Bamidele O.; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M.; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R. G. J.; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H. R.; Wong, Andrew; Wright, Alan F.; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A.; Boomsma, Dorret I.; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I.; Chen, Yii-DerIda; Chines, Peter S.; Cooper, Richard S.; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W.; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans- Jörgen; Gudnason, Vilmundur; Haiman, Christopher A.; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D.; Wouter Jukema, J; Kardia, Sharon L. R.; Kivimaki, Mika; Kooner, Jaspal S.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I.; Metspalu, Andres; Morris, Andrew P.; Ohlsson, Claes; Palmer, Lyle J.; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Smith, Blair H.; Sørensen, Thorkild I. A.; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J.; Weir, David R.; Whitfield, John B.; Wilson, James F.; Tyrrell, Jessica; Frayling, Timothy M.; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S.; Hirschhorn, Joel N.; Hunter, David J.; Spector, Tim D.; Strachan, David P.; van Duijn, Cornelia M.; Heid, Iris M.; Mohlke, Karen L.; Marchini, Jonathan; Loos, Ruth J. F.; Kilpeläinen, Tuomas O.; Liu, Ching-Ti; Borecki, Ingrid B.; North, Kari E.; Cupples, L Adrienne
2017-01-01
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution. PMID:28443625
Jung, Ju Yeon; Kim, Eun Hye; Oh, Yu-Li; Park, Hyun-Chul; Hwang, Jung Ho; Lim, Si-Keun
2017-09-01
We genotyped and calculated the forensic parameters of 10 non-CODIS loci and 2 CODIS loci of 990 Korean individuals using the Investigator Ⓡ HDplex kit. No significant deviations from Hardy-Weinberg equilibrium (after Bonferroni correction for multiple testing) or genetic linkage disequilibrium were observed. The calculated matching probability and power of discrimination ranged from 0.0080 to 0.2014, and 0.7986 to 0.9920, respectively. We conclude that the markers of the kit are highly informative corroborative tools for forensic DNA analysis.
McNeil, Casey L.; Bain, Clint L.; Macdonald, Stuart J.
2011-01-01
The observation that male genitalia diverge more rapidly than other morphological traits during evolution is taxonomically widespread and likely due to some form of sexual selection. One way to elucidate the evolutionary forces acting on these traits is to detail the genetic architecture of variation both within and between species, a program of research that is considerably more tractable in a model system. Drosophila melanogaster and its sibling species, D. simulans, D. mauritiana, and D. sechellia, are morphologically distinguishable only by the shape of the posterior lobe, a male-specific elaboration of the genital arch. We extend earlier studies identifying quantitative trait loci (QTL) responsible for lobe divergence across species and report the first genetic dissection of lobe shape variation within a species. Using an advanced intercross mapping design, we identify three autosomal QTL contributing to the difference in lobe shape between a pair of D. melanogaster inbred lines. The QTL each contribute 4.6–10.7% to shape variation, and two show a significant epistatic interaction. Interestingly, these intraspecific QTL map to the same locations as interspecific lobe QTL, implying some shared genetic control of the trait within and between species. As a first step toward a mechanistic understanding of natural lobe shape variation, we find an association between our QTL data and a set of genes that show sex-biased expression in the developing genital imaginal disc (the precursor of the adult genitalia). These genes are good candidates to harbor naturally segregating polymorphisms contributing to posterior lobe shape. PMID:22384345
Crist, Richard C; Roth, Jacquelyn J; Lisanti, Michael P; Siracusa, Linda D; Buchberg, Arthur M
2011-04-01
Colorectal cancer is a heterogeneous disease resulting from a combination of genetic and environmental factors. The C57BL/6J (B6) Apc (Min/+) mouse develops polyps throughout the gastrointestinal tract and has been a valuable model for understanding the genetic basis of intestinal tumorigenesis. Apc (Min/+) mice have been used to study known oncogenes and tumor suppressor genes on a controlled genetic background. These studies often utilize congenic knockout alleles, which can carry an unknown amount of residual donor DNA. The Apc (Min) model has also been used to identify modifer loci, known as Modifier of Min (Mom) loci, which alter Apc (Min) -mediated intestinal tumorigenesis. B6 mice carrying a knockout allele generated in WW6 embryonic stem cells were crossed to B6 Apc (Min/+) mice to determine the effect on polyp multiplicity. The newly generated colony developed significantly more intestinal polyps than Apc (Min/+) controls. Polyp multiplicity did not correlate with inheritance of the knockout allele, suggesting the presence of one or more modifier loci segregating in the colony. Genotyping of simple sequence length polymorphism (SSLP) markers revealed residual 129X1/SvJ genomic DNA within the congenic region of the parental knockout line. An analysis of polyp multiplicity data and SSLP genotyping indicated the presence of two Mom loci in the colony: 1) Mom12, a dominant modifier linked to the congenic region on chromosome 6, and 2) Mom13, which is unlinked to the congenic region and whose effect is masked by Mom12. The identification of Mom12 and Mom13 demonstrates the potential problems resulting from residual heterozygosity present in congenic lines.
Parapatric speciation in three islands: dynamics of geographical configuration of allele sharing
Iwasa, Yoh
2017-01-01
We studied the time to speciation by geographical isolation for a species living on three islands connected by rare migration. We assumed that incompatibility was controlled by a number of quantitative loci and that individuals differing in loci by more than a threshold did not mix genetically with each other. For each locus, we defined the geographical configuration (GC), which specifies islands with common alleles, and traced the stochastic transitions between different GCs. From these results, we calculated the changes in genetic distances. As a single migration event provides an opportunity for transitions in multiple loci, the GCs of different loci are correlated, which can be evaluated by constructing the stochastic differential equations of the number of loci with different GCs. Our model showed that the low number of incompatibility loci facilitates parapatric speciation and that migrants arriving as a group shorten the waiting time to speciation compared with the same number of migrants arriving individually. We also discuss how speciation rate changes with geographical structure. PMID:28386439
A Non-Degenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk
Blair, David R.; Lyttle, Christopher S.; Mortensen, Jonathan M.; Bearden, Charles F.; Jensen, Anders Boeck; Khiabanian, Hossein; Melamed, Rachel; Rabadan, Raul; Bernstam, Elmer V.; Brunak, Søren; Jensen, Lars Juhl; Nicolae, Dan; Shah, Nigam H.; Grossman, Robert L.; Cox, Nancy J.; White, Kevin P.; Rzhetsky, Andrey
2013-01-01
Summary Whereas countless highly penetrant variants have been associated with Mendelian disorders, the genetic etiologies underlying complex diseases remain largely unresolved. Here, we examine the extent to which Mendelian variation contributes to complex disease risk by mining the medical records of over 110 million patients. We detect thousands of associations between Mendelian and complex diseases, revealing a non-degenerate, phenotypic code that links each complex disorder to a unique collection of Mendelian loci. Using genome-wide association results, we demonstrate that common variants associated with complex diseases are enriched in the genes indicated by this “Mendelian code.” Finally, we detect hundreds of comorbidity associations among Mendelian disorders, and we use probabilistic genetic modeling to demonstrate that Mendelian variants likely contribute non-additively to the risk for a subset of complex diseases. Overall, this study illustrates a complementary approach for mapping complex disease loci and provides unique predictions concerning the etiologies of specific diseases. PMID:24074861
Dissection of complex adult traits in a mouse synthetic population.
Burke, David T; Kozloff, Kenneth M; Chen, Shu; West, Joshua L; Wilkowski, Jodi M; Goldstein, Steven A; Miller, Richard A; Galecki, Andrzej T
2012-08-01
Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%-10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology.
Smeland, Olav B; Frei, Oleksandr; Kauppi, Karolina; Hill, W David; Li, Wen; Wang, Yunpeng; Krull, Florian; Bettella, Francesco; Eriksen, Jon A; Witoelar, Aree; Davies, Gail; Fan, Chun C; Thompson, Wesley K; Lam, Max; Lencz, Todd; Chen, Chi-Hua; Ueland, Torill; Jönsson, Erik G; Djurovic, Srdjan; Deary, Ian J; Dale, Anders M; Andreassen, Ole A
2017-10-01
Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed. Accumulating evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction. To identify genomic regions jointly influencing schizophrenia and the cognitive domains of reaction time and verbal-numerical reasoning, as well as general cognitive function, a phenotype that captures the shared variation in performance across cognitive domains. Combining data from genome-wide association studies from multiple phenotypes using conditional false discovery rate analysis provides increased power to discover genetic variants and could elucidate shared molecular genetic mechanisms. Data from the following genome-wide association studies, published from July 24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics Consortium cohort (n = 79 757 [cases, 34 486; controls, 45 271]); verbal-numerical reasoning (n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) (n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888). Genetic loci identified by conditional false discovery rate analysis. Brain messenger RNA expression and brain expression quantitative trait locus functionality were determined. Among the participants in the genome-wide association studies, 21 loci jointly influencing schizophrenia and cognitive traits were identified: 2 loci shared between schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and reaction time, and 14 loci shared between schizophrenia and general cognitive function. One locus was shared between schizophrenia and 2 cognitive traits and represented the strongest shared signal detected (nearest gene TCF20; chromosome 22q13.2), and was shared between schizophrenia (z score, 5.01; P = 5.53 × 10-7), general cognitive function (z score, -4.43; P = 9.42 × 10-6), and verbal-numerical reasoning (z score, -5.43; P = 5.64 × 10-8). For 18 loci, schizophrenia risk alleles were associated with poorer cognitive performance. The implicated genes are expressed in the developmental and adult human brain. Replicable expression quantitative trait locus functionality was identified for 4 loci in the adult human brain. The discovered loci improve the understanding of the common genetic basis underlying schizophrenia and cognitive function, suggesting novel molecular genetic mechanisms.
IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas.
Valera, Alexandra; Balagué, Olga; Colomo, Luis; Martínez, Antonio; Delabie, Jan; Taddesse-Heath, Lekidelu; Jaffe, Elaine S; Campo, Elías
2010-11-01
Plasmablastic lymphoma (PBL) is an aggressive lymphoma characterized by a terminally differentiated B-cell phenotype that usually occurs in the immunocompromised or elderly patients. Although the clinical and pathologic characteristics of these tumors have been defined, the genetic alterations involved in their pathogenesis are not well known. In this study, we have investigated the chromosomal alterations of MYC, BCL2, BCL6, MALT1, PAX5, and IGH loci using fluorescence in situ hybridization in 42 PBL and 3 extracavitary primary effusion lymphomas. MYC rearrangements were identified in 20 of 41 (49%) PBL and the immunoglobulin (IG) genes were the partners in most tumors. MYC rearrangements were more common in Epstein-Barr virus (EBV)-positive (14 of 19, 74%) than EBV-negative (9 of 21, 43%) tumors (P<0.05). No rearrangements of BCL2, BCL6, MALT1, or PAX5 were detected in any PBL but gains of these loci were observed in 31% to 41% of the cases examined. Twelve of the 40 PBL in which 3 or more loci could be investigated had multiple simultaneous gains in 3 or more loci. No differences in the survival of the patients according to MYC were observed but the 4 patients with the longest survival (>50 mo) had no or low number of gains (<3). No rearrangements of any of these loci were seen in the primary effusion lymphomas. In conclusion, PBL are genetically characterized by frequent IG/MYC translocations and gains in multiple chromosomal loci. The oncogenic activation of MYC in these lymphomas may be an important pathogenetic element associated with EBV infection.
The genetics of multiple sclerosis: review of current and emerging candidates
Muñoz-Culla, Maider; Irizar, Haritz; Otaegui, David
2013-01-01
Multiple sclerosis (MS) is a complex disease in which environmental, genetic, and epigenetic factors determine the risk of developing the disease. The human leukocyte antigen region is the strongest susceptibility locus linked to MS, but it does not explain the whole heritability of the disease. To find other non-human leukocyte antigen loci associated with the disease, high-throughput genotyping, sequencing, and gene-expression studies have been performed, producing a valuable quantity of information. An overview of the genomic and expression studies is provided in this review, as well as microRNA-expression studies, highlighting the importance of combining all the layers of information in order to elucidate the causes or pathological mechanisms occurring in the disease. Genetics in MS is a promising field that is presumably going to be very productive in the next decade understanding the cross talk between all the factors contributing to the development of MS. PMID:24019748
Collin, Roxanne; Doyon, Kathy; Mullins-Dansereau, Victor; Karam, Martin; Chabot-Roy, Geneviève; Hillhouse, Erin E; Orthwein, Alexandre; Lesage, Sylvie
2018-04-25
Several immune regulatory cell types participate in the protection against autoimmune diseases such as autoimmune diabetes. Of these immunoregulatory cells, we and others have shown that peripheral CD4 - CD8 - double negative (DN) T cells can induce antigen-specific immune tolerance. Particularly, we have described that diabetes-prone mice exhibit a lower number of peripheral DN T cells compared to diabetes-resistant mice. Identifying the molecular pathways that influence the size of the DN T cell pool in peripheral lymphoid organs may thus be of interest for maintaining antigen-specific immune tolerance. Hence, through immunogenetic approaches, we found that two genetic loci linked to autoimmune diabetes susceptibility, namely Idd2 and Idd13, independently contribute to the partial restoration of DN T cell proportion in secondary lymphoid organs. We now extend these findings to show an interaction between the Idd2 and Idd13 loci in determining the number of DN T cells in secondary lymphoid organs. Using bioinformatics tools, we link potential biological pathways arising from interactions of genes encoded within the two loci. By focusing on cell cycle, we validate that both the Idd2 and Idd13 loci influence RAD51 expression as well as DN T cell progression through the cell cycle. Altogether, we find that genetic interactions between Idd2 and Idd13 loci modulate cell cycle progression, which contributes, at least in part, to defining the proportion of DN T cells in secondary lymphoid organs.
USDA-ARS?s Scientific Manuscript database
Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index (BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to d...
Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits.
Adriaens, M E; Bezzina, C R
2018-06-22
Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.
Isogenic mice exhibit sexually-dimorphic DNA methylation patterns across multiple tissues.
McCormick, Helen; Young, Paul E; Hur, Suzy S J; Booher, Keith; Chung, Hunter; Cropley, Jennifer E; Giannoulatou, Eleni; Suter, Catherine M
2017-12-13
Cytosine methylation is a stable epigenetic modification of DNA that plays an important role in both normal physiology and disease. Most diseases exhibit some degree of sexual dimorphism, but the extent to which epigenetic states are influenced by sex is understudied and poorly understood. To address this deficit we studied DNA methylation patterns across multiple reduced representation bisulphite sequencing datasets (from liver, heart, brain, muscle and spleen) derived from isogenic male and female mice. DNA methylation patterns varied significantly from tissue to tissue, as expected, but they also varied between the sexes, with thousands of sexually dimorphic loci identified. The loci affected were largely autonomous to each tissue, even within tissues derived from the same germ layer. At most loci, differences between genders were driven by females exhibiting hypermethylation relative to males; a proportion of these differences were independent of the presence of testosterone in males. Loci harbouring gender differences were clustered in ontologies related to tissue function. Our findings suggest that gender is underwritten in the epigenome in a tissue-specific and potentially sex hormone-independent manner. Gender-specific epigenetic states are likely to have important implications for understanding sexually dimorphic phenotypes in health and disease.
USDA-ARS?s Scientific Manuscript database
Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), and southwestern corn borer (SWCB), Diatraea grandiosella Dyar are damaging insect pests of maize resulting in significant yield and economic losses. A previous study identified quantitative trait loci (QTL) that contribute to reduced leaf-fe...
Ricaño-Ponce, Isis; Zhernakova, Daria V; Deelen, Patrick; Luo, Oscar; Li, Xingwang; Isaacs, Aaron; Karjalainen, Juha; Di Tommaso, Jennifer; Borek, Zuzanna Agnieszka; Zorro, Maria M; Gutierrez-Achury, Javier; Uitterlinden, Andre G; Hofman, Albert; van Meurs, Joyce; Netea, Mihai G; Jonkers, Iris H; Withoff, Sebo; van Duijn, Cornelia M; Li, Yang; Ruan, Yijun; Franke, Lude; Wijmenga, Cisca; Kumar, Vinod
2016-04-01
Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Multilocus adaptation associated with heat resistance in reef-building corals.
Bay, Rachael A; Palumbi, Stephen R
2014-12-15
The evolution of tolerance to future climate change depends on the standing stock of genetic variation for resistance to climate-related impacts, but genes contributing to climate tolerance in wild populations are poorly described in number and effect. Physiology and gene expression patterns have shown that corals living in naturally high-temperature microclimates are more resistant to bleaching because of both acclimation and fixed effects, including adaptation. To search for potential genetic correlates of these fixed effects, we genotyped 15,399 single nucleotide polymorphisms (SNPs) in 23 individual tabletop corals, Acropora hyacinthus, within a natural temperature mosaic in backreef lagoons on Ofu Island, American Samoa. Despite overall lack of population substructure, we identified 114 highly divergent SNPs as candidates for environmental selection, via multiple stringent outlier tests, and correlations with temperature. Corals from the warmest reef location had higher minor allele frequencies across these candidate SNPs, a pattern not seen for noncandidate loci. Furthermore, within backreef pools, colonies in the warmest microclimates had a higher number and frequency of alternative alleles at candidate loci. These data suggest mild selection for alternate alleles at many loci in these corals during high heat episodes and possible maintenance of extensive polymorphism through multilocus balancing selection in a heterogeneous environment. In this case, a natural population harbors a reservoir of alleles preadapted to high temperatures, suggesting potential for future evolutionary response to climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.
Franceschini, Nora; Carty, Cara L; Lu, Yingchang; Tao, Ran; Sung, Yun Ju; Manichaikul, Ani; Haessler, Jeff; Fornage, Myriam; Schwander, Karen; Zubair, Niha; Bien, Stephanie; Hindorff, Lucia A; Guo, Xiuqing; Bielinski, Suzette J; Ehret, Georg; Kaufman, Joel D; Rich, Stephen S; Carlson, Christopher S; Bottinger, Erwin P; North, Kari E; Rao, D C; Chakravarti, Aravinda; Barrett, Paula Q; Loos, Ruth J F; Buyske, Steven; Kooperberg, Charles
2016-01-01
Despite the substantial burden of hypertension in US minority populations, few genetic studies of blood pressure have been conducted in Hispanics and African Americans, and it is unclear whether many of the established loci identified in European-descent populations contribute to blood pressure variation in non-European descent populations. Using the Metabochip array, we sought to characterize the genetic architecture of previously identified blood pressure loci, and identify novel cardiometabolic variants related to systolic and diastolic blood pressure in a multi-ethnic US population including Hispanics (n = 19,706) and African Americans (n = 18,744). Several known blood pressure loci replicated in African Americans and Hispanics. Fourteen variants in three loci (KCNK3, FGF5, ATXN2-SH2B3) were significantly associated with blood pressure in Hispanics. The most significant diastolic blood pressure variant identified in our analysis, rs2586886/KCNK3 (P = 5.2 x 10-9), also replicated in independent Hispanic and European-descent samples. African American and trans-ethnic meta-analysis data identified novel variants in the FGF5, ULK4 and HOXA-EVX1 loci, which have not been previously associated with blood pressure traits. Our identification and independent replication of variants in KCNK3, a gene implicated in primary hyperaldosteronism, as well as a variant in HOTTIP (HOXA-EVX1) suggest that further work to clarify the roles of these genes may be warranted. Overall, our findings suggest that loci identified in European descent populations also contribute to blood pressure variation in diverse populations including Hispanics and African Americans-populations that are understudied for hypertension genetic risk factors.
Shakoor, Nadia; Ziegler, Greg; Dilkes, Brian P; Brenton, Zachary; Boyles, Richard; Connolly, Erin L; Kresovich, Stephen; Baxter, Ivan
2016-04-01
Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.
Convergence of GWA and candidate gene studies for alcoholism
Olfson, Emily; Bierut, Laura Jean
2012-01-01
Background Genome-wide association (GWA) studies have led to a paradigm shift in how researchers study the genetics underlying disease. Many GWA studies are now publicly available and can be used to examine whether or not previously proposed candidate genes are supported by GWA data. This approach is particularly important for the field of alcoholism because the contribution of many candidate genes remains controversial. Methods Using the Human Genome Epidemiology (HuGE) Navigator, we selected candidate genes for alcoholism that have been frequently examined in scientific articles in the past decade. Specific candidate loci as well as all the reported SNPs in candidate genes were examined in the Study of Alcohol Addiction: Genetics and Addiction (SAGE), a GWA study comparing alcohol dependent and non-dependent subjects. Results Several commonly reported candidate loci, including rs1800497 in DRD2, rs698 in ADH1C, rs1799971 in OPRM1 and rs4680 in COMT, are not replicated in SAGE (p> .05). Among candidate loci available for analysis, only rs279858 in GABRA2 (p=0.0052, OR=1.16) demonstrated a modest association. Examination of all SNPs reported in SAGE in over 50 candidate genes revealed no SNPs with large frequency differences between cases and controls and the lowest p value of any SNP was .0006. Discussion We provide evidence that several extensively studied candidate loci do not have a strong contribution to risk of developing alcohol dependence in European and African Ancestry populations. Due to lack of coverage, we were unable to rule out the contribution of other variants and these genes and particular loci warrant further investigation. Our analysis demonstrates that publicly available GWA results can be used to better understand which if any of previously proposed candidate genes contribute to disease. Furthermore, we illustrate how examining the convergence of candidate gene and GWA studies can help elucidate the genetic architecture of alcoholism and more generally complex diseases. PMID:22978509
Proactive control of proactive interference using the method of loci.
Bass, Willa S; Oswald, Karl M
2014-01-01
Proactive interferencebuilds up with exposure to multiple lists of similar items with a resulting reduction in recall. This study examined the effectiveness of using a proactive strategy of the method of loci to reduce proactive interference in a list recall paradigm of categorically similar words. While all participants reported using some form of strategy to recall list words, this study demonstrated that young adults were able to proactively use the method of loci after 25 min of instruction to reduce proactive interference as compared with other personal spontaneous strategies. The implications of this study are that top-down proactive strategies such as the method of loci can significantly reduce proactive interference, and that the use of image and sequence or location are especially useful in this regard.
Proactive control of proactive interference using the method of loci
Bass, Willa S.; Oswald, Karl M.
2014-01-01
Proactive interferencebuilds up with exposure to multiple lists of similar items with a resulting reduction in recall. This study examined the effectiveness of using a proactive strategy of the method of loci to reduce proactive interference in a list recall paradigm of categorically similar words. While all participants reported using some form of strategy to recall list words, this study demonstrated that young adults were able to proactively use the method of loci after 25 min of instruction to reduce proactive interference as compared with other personal spontaneous strategies. The implications of this study are that top-down proactive strategies such as the method of loci can significantly reduce proactive interference, and that the use of image and sequence or location are especially useful in this regard. PMID:25157300
Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis
Beecham, Ashley H; Patsopoulos, Nikolaos A; Xifara, Dionysia K; Davis, Mary F; Kemppinen, Anu; Cotsapas, Chris; Shahi, Tejas S; Spencer, Chris; Booth, David; Goris, An; Oturai, Annette; Saarela, Janna; Fontaine, Bertrand; Hemmer, Bernhard; Martin, Claes; Zipp, Frauke; D’alfonso, Sandra; Martinelli-Boneschi, Filippo; Taylor, Bruce; Harbo, Hanne F; Kockum, Ingrid; Hillert, Jan; Olsson, Tomas; Ban, Maria; Oksenberg, Jorge R; Hintzen, Rogier; Barcellos, Lisa F; Agliardi, Cristina; Alfredsson, Lars; Alizadeh, Mehdi; Anderson, Carl; Andrews, Robert; Søndergaard, Helle Bach; Baker, Amie; Band, Gavin; Baranzini, Sergio E; Barizzone, Nadia; Barrett, Jeffrey; Bellenguez, Céline; Bergamaschi, Laura; Bernardinelli, Luisa; Berthele, Achim; Biberacher, Viola; Binder, Thomas M C; Blackburn, Hannah; Bomfim, Izaura L; Brambilla, Paola; Broadley, Simon; Brochet, Bruno; Brundin, Lou; Buck, Dorothea; Butzkueven, Helmut; Caillier, Stacy J; Camu, William; Carpentier, Wassila; Cavalla, Paola; Celius, Elisabeth G; Coman, Irène; Comi, Giancarlo; Corrado, Lucia; Cosemans, Leentje; Cournu-Rebeix, Isabelle; Cree, Bruce A C; Cusi, Daniele; Damotte, Vincent; Defer, Gilles; Delgado, Silvia R; Deloukas, Panos; di Sapio, Alessia; Dilthey, Alexander T; Donnelly, Peter; Dubois, Bénédicte; Duddy, Martin; Edkins, Sarah; Elovaara, Irina; Esposito, Federica; Evangelou, Nikos; Fiddes, Barnaby; Field, Judith; Franke, Andre; Freeman, Colin; Frohlich, Irene Y; Galimberti, Daniela; Gieger, Christian; Gourraud, Pierre-Antoine; Graetz, Christiane; Graham, Andrew; Grummel, Verena; Guaschino, Clara; Hadjixenofontos, Athena; Hakonarson, Hakon; Halfpenny, Christopher; Hall, Gillian; Hall, Per; Hamsten, Anders; Harley, James; Harrower, Timothy; Hawkins, Clive; Hellenthal, Garrett; Hillier, Charles; Hobart, Jeremy; Hoshi, Muni; Hunt, Sarah E; Jagodic, Maja; Jelčić, Ilijas; Jochim, Angela; Kendall, Brian; Kermode, Allan; Kilpatrick, Trevor; Koivisto, Keijo; Konidari, Ioanna; Korn, Thomas; Kronsbein, Helena; Langford, Cordelia; Larsson, Malin; Lathrop, Mark; Lebrun-Frenay, Christine; Lechner-Scott, Jeannette; Lee, Michelle H; Leone, Maurizio A; Leppä, Virpi; Liberatore, Giuseppe; Lie, Benedicte A; Lill, Christina M; Lindén, Magdalena; Link, Jenny; Luessi, Felix; Lycke, Jan; Macciardi, Fabio; Männistö, Satu; Manrique, Clara P; Martin, Roland; Martinelli, Vittorio; Mason, Deborah; Mazibrada, Gordon; McCabe, Cristin; Mero, Inger-Lise; Mescheriakova, Julia; Moutsianas, Loukas; Myhr, Kjell-Morten; Nagels, Guy; Nicholas, Richard; Nilsson, Petra; Piehl, Fredrik; Pirinen, Matti; Price, Siân E; Quach, Hong; Reunanen, Mauri; Robberecht, Wim; Robertson, Neil P; Rodegher, Mariaemma; Rog, David; Salvetti, Marco; Schnetz-Boutaud, Nathalie C; Sellebjerg, Finn; Selter, Rebecca C; Schaefer, Catherine; Shaunak, Sandip; Shen, Ling; Shields, Simon; Siffrin, Volker; Slee, Mark; Sorensen, Per Soelberg; Sorosina, Melissa; Sospedra, Mireia; Spurkland, Anne; Strange, Amy; Sundqvist, Emilie; Thijs, Vincent; Thorpe, John; Ticca, Anna; Tienari, Pentti; van Duijn, Cornelia; Visser, Elizabeth M; Vucic, Steve; Westerlind, Helga; Wiley, James S; Wilkins, Alastair; Wilson, James F; Winkelmann, Juliane; Zajicek, John; Zindler, Eva; Haines, Jonathan L; Pericak-Vance, Margaret A; Ivinson, Adrian J; Stewart, Graeme; Hafler, David; Hauser, Stephen L; Compston, Alastair; McVean, Gil; De Jager, Philip; Sawcer, Stephen; McCauley, Jacob L
2013-01-01
Using the ImmunoChip custom genotyping array, we analysed 14,498 multiple sclerosis subjects and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (p-value < 1.0 × 10-4). In a replication phase, we combined these data with previous genome-wide association study (GWAS) data from an independent 14,802 multiple sclerosis subjects and 26,703 healthy controls. In these 80,094 individuals of European ancestry we identified 48 new susceptibility variants (p-value < 5.0 × 10-8); three found after conditioning on previously identified variants. Thus, there are now 110 established multiple sclerosis risk variants in 103 discrete loci outside of the Major Histocompatibility Complex. With high resolution Bayesian fine-mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalogue of multiple sclerosis risk variants and illustrates the value of fine-mapping in the resolution of GWAS signals. PMID:24076602
Linkage of loci associated with two pigment mutations on mouse chromosome 13.
Holcombe, R F; Stephenson, D A; Zweidler, A; Stewart, R M; Chapman, V M; Seidman, J G
1991-08-01
Progeny from one intra- and two inter-specific backcrosses between divergent strains of mice were typed to map multiple markers in relation to two pigment mutations on mouse chromosome 13, beige (bg) and pearl (pe). Both recessive mutants on a C57BL/6J background were crossed separately with laboratory strain PAC (M. domesticus) and the partially inbred M. musculus stock PWK. The intra- and inter-specific F1 hybrids were backcrossed to the C57BL/6J parental strain and DNA was prepared from progeny. Restriction fragment length polymorphisms were used to follow the segregation of alleles in the backcross offspring at loci identified with molecular probes. The linkage analysis defines the association between the bg and pe loci and the loci for the T-cell receptor gamma-chain gene (Tcrg), the spermatocyte specific histone gene (Hist1), the prolactin gene (Prl), the Friend murine leukaemia virus integration site 1 (Fim-1), the murine Hanukuh Factor gene (Muhf/Ctla-3) and the dihydrofolate reductase gene (Dhfr). This data confirms results of prior chromosomal mapping studies utilizing bg as an anchor locus, and provides previously unreported information defining the localization of the prolactin gene on mouse chromosome 13. The relationship of multiple loci in relation to pe is similarly defined. These results may help facilitate localization of the genes responsible for two human syndromes homologous with bg and pe, Chediak-Higashi syndrome and Hermansky-Pudlak syndrome.
Lowry, David B.; Willis, John H.
2010-01-01
The role of chromosomal inversions in adaptation and speciation is controversial. Historically, inversions were thought to contribute to these processes either by directly causing hybrid sterility or by facilitating the maintenance of co-adapted gene complexes. Because inversions suppress recombination when heterozygous, a recently proposed local adaptation mechanism predicts that they will spread if they capture alleles at multiple loci involved in divergent adaptation to contrasting environments. Many empirical studies have found inversion polymorphisms linked to putatively adaptive phenotypes or distributed along environmental clines. However, direct involvement of an inversion in local adaptation and consequent ecological reproductive isolation has not to our knowledge been demonstrated in nature. In this study, we discovered that a chromosomal inversion polymorphism is geographically widespread, and we test the extent to which it contributes to adaptation and reproductive isolation under natural field conditions. Replicated crosses between the prezygotically reproductively isolated annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus, revealed that alternative chromosomal inversion arrangements are associated with life-history divergence over thousands of kilometers across North America. The inversion polymorphism affected adaptive flowering time divergence and other morphological traits in all replicated crosses between four pairs of annual and perennial populations. To determine if the inversion contributes to adaptation and reproductive isolation in natural populations, we conducted a novel reciprocal transplant experiment involving outbred lines, where alternative arrangements of the inversion were reciprocally introgressed into the genetic backgrounds of each ecotype. Our results demonstrate for the first time in nature the contribution of an inversion to adaptation, an annual/perennial life-history shift, and multiple reproductive isolating barriers. These results are consistent with the local adaptation mechanism being responsible for the distribution of the two inversion arrangements across the geographic range of M. guttatus and that locally adaptive inversion effects contribute directly to reproductive isolation. Such a mechanism may be partially responsible for the observation that closely related species often differ by multiple chromosomal rearrangements. PMID:20927411
Howard, Sasha R; Guasti, Leonardo; Poliandri, Ariel; David, Alessia; Cabrera, Claudia P; Barnes, Michael R; Wehkalampi, Karoliina; O'Rahilly, Stephen; Aiken, Catherine E; Coll, Anthony P; Ma, Marcella; Rimmington, Debra; Yeo, Giles S H; Dunkel, Leo
2018-02-01
Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance. We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP. We performed whole-exome sequencing in 67 pedigrees (125 individuals with DP and 35 unaffected controls) from our unique cohort of familial self-limited DP. Using a whole-exome sequencing filtering pipeline one candidate gene [fat mass and obesity-associated gene (FTO)] was identified. In silico, in vitro, and mouse model studies were performed to investigate the pathogenicity of FTO variants and timing of puberty in FTO+/- mice. We identified potentially pathogenic, rare variants in genes in linkage disequilibrium with genome-wide association studies of age at menarche loci in 283 genes. Of these, five genes were implicated in the control of body mass. After filtering for segregation with trait, one candidate, FTO, was retained. Two FTO variants, found in 14 affected individuals from three families, were also associated with leanness in these patients with DP. One variant (p.Leu44Val) demonstrated altered demethylation activity of the mutant protein in vitro. Fto+/- mice displayed a significantly delayed timing of pubertal onset (P < 0.05). Mutations in genes implicated in body mass and timing of puberty in the general population may contribute to the pathogenesis of self-limited DP. Copyright © 2017 Endocrine Society
Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat.
Liu, Zhaohui; Zurn, Jason D; Kariyawasam, Gayan; Faris, Justin D; Shi, Gongjun; Hansen, Jana; Rasmussen, Jack B; Acevedo, Maricelis
2017-06-01
Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes. Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE-S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE-S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.
Genetic interactions contribute less than additive effects to quantitative trait variation in yeast
Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid
2015-01-01
Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231
Dickman, Christopher T D; Moehring, Amanda J
2013-01-01
When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW) sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56%) of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.
Microsphere-Based Multiplex Analysis of DNA Methylation in Acute Myeloid Leukemia
Wertheim, Gerald B.W.; Smith, Catherine; Figueroa, Maria E.; Kalos, Michael; Bagg, Adam; Carroll, Martin; Master, Stephen R.
2015-01-01
Aberrant regulation of DNA methylation is characteristic of cancer cells and clearly influences phenotypes of various malignancies. Despite clear correlations between DNA methylation and patient outcome, tests that directly measure multiple-locus DNA methylation are typically expensive and technically challenging. Previous studies have demonstrated that the prognosis of patients with acute myeloid leukemia can be predicted by the DNA methylation pattern of 18 loci. We have developed a novel strategy, termed microsphere HpaII tiny fragment enrichment by ligation-mediated PCR (MELP), to simultaneously analyze the DNA methylation pattern at these loci using methylation-specific DNA digestion, fluorescently labeled microspheres, and branched DNA hybridization. The method uses techniques that are inexpensive and easily performed in a molecular laboratory. MELP accurately reflects the methylation levels at each locus analyzed and segregates patients with acute myeloid leukemia into prognostic subgroups. Our results demonstrate the usefulness of MELP as a platform for simultaneous evaluation of DNA methylation of multiple loci. PMID:24373919
High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy
NASA Astrophysics Data System (ADS)
Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.
2017-05-01
Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.
Jerome, John P.; Bell, Julia A.; Plovanich-Jones, Anne E.; Barrick, Jeffrey E.; Brown, C. Titus; Mansfield, Linda S.
2011-01-01
The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64Mb genome to 200-500X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host. PMID:21283682
D. V. Shaw; R. W. Allard
1981-01-01
Two methods of estimating the proportion of self-fertilization as opposed to outcrossing in plant populations are described. The first method makes use of marker loci one at a time; the second method makes use of multiple marker loci simultaneously. Comparisons of the estimates of proportions of selfing and outcrossing obtained using the two methods are shown to yield...
Tzvetkov, Mladen V; Becker, Christian; Kulle, Bettina; Nürnberg, Peter; Brockmöller, Jürgen; Wojnowski, Leszek
2005-02-01
Whole-genome DNA amplification by multiple displacement (MD-WGA) is a promising tool to obtain sufficient DNA amounts from samples of limited quantity. Using Affymetrix' GeneChip Human Mapping 10K Arrays, we investigated the accuracy and allele amplification bias in DNA samples subjected to MD-WGA. We observed an excellent concordance (99.95%) between single-nucleotide polymorphisms (SNPs) called both in the nonamplified and the corresponding amplified DNA. This concordance was only 0.01% lower than the intra-assay reproducibility of the genotyping technique used. However, MD-WGA failed to amplify an estimated 7% of polymorphic loci. Due to the algorithm used to call genotypes, this was detected only for heterozygous loci. We achieved a 4.3-fold reduction of noncalled SNPs by combining the results from two independent MD-WGA reactions. This indicated that inter-reaction variations rather than specific chromosomal loci reduced the efficiency of MD-WGA. Consistently, we detected no regions of reduced amplification, with the exception of several SNPs located near chromosomal ends. Altogether, despite a substantial loss of polymorphic sites, MD-WGA appears to be the current method of choice to amplify genomic DNA for array-based SNP analyses. The number of nonamplified loci can be substantially reduced by amplifying each DNA sample in duplicate.
Wen, Wanqing; Kato, Norihiro; Hwang, Joo-Yeon; Guo, Xingyi; Tabara, Yasuharu; Li, Huaixing; Dorajoo, Rajkumar; Yang, Xiaobo; Tsai, Fuu-Jen; Li, Shengxu; Wu, Ying; Wu, Tangchun; Kim, Soriul; Guo, Xiuqing; Liang, Jun; Shungin, Dmitry; Adair, Linda S.; Akiyama, Koichi; Allison, Matthew; Cai, Qiuyin; Chang, Li-Ching; Chen, Chien-Hsiun; Chen, Yuan-Tsong; Cho, Yoon Shin; Choi, Bo Youl; Gao, Yutang; Go, Min Jin; Gu, Dongfeng; Han, Bok-Ghee; He, Meian; Hixson, James E.; Hu, Yanling; Huang, Tao; Isono, Masato; Jung, Keum Ji; Kang, Daehee; Kim, Young Jin; Kita, Yoshikuni; Lee, Juyoung; Lee, Nanette R.; Lee, Jeannette; Wang, Yiqin; Liu, Jian-Jun; Long, Jirong; Moon, Sanghoon; Nakamura, Yasuyuki; Nakatochi, Masahiro; Ohnaka, Keizo; Rao, Dabeeru; Shi, Jiajun; Sull, Jae Woong; Tan, Aihua; Ueshima, Hirotsugu; Wu, Chen; Xiang, Yong-Bing; Yamamoto, Ken; Yao, Jie; Ye, Xingwang; Yokota, Mitsuhiro; Zhang, Xiaomin; Zheng, Yan; Qi, Lu; Rotter, Jerome I.; Jee, Sun Ha; Lin, Dongxin; Mohlke, Karen L.; He, Jiang; Mo, Zengnan; Wu, Jer-Yuarn; Tai, E. Shyong; Lin, Xu; Miki, Tetsuro; Kim, Bong-Jo; Takeuchi, Fumihiko; Zheng, Wei; Shu, Xiao-Ou
2016-01-01
Sixty genetic loci associated with abdominal obesity, measured by waist circumference (WC) and waist-hip ratio (WHR), have been previously identified, primarily from studies conducted in European-ancestry populations. We conducted a meta-analysis of associations of abdominal obesity with approximately 2.5 million single nucleotide polymorphisms (SNPs) among 53,052 (for WC) and 48,312 (for WHR) individuals of Asian descent, and replicated 33 selected SNPs among 3,762 to 17,110 additional individuals. We identified four novel loci near the EFEMP1, ADAMTSL3 , CNPY2, and GNAS genes that were associated with WC after adjustment for body mass index (BMI); two loci near the NID2 and HLA-DRB5 genes associated with WHR after adjustment for BMI, and three loci near the CEP120, TSC22D2, and SLC22A2 genes associated with WC without adjustment for BMI. Functional enrichment analyses revealed enrichment of corticotropin-releasing hormone signaling, GNRH signaling, and/or CDK5 signaling pathways for those newly-identified loci. Our study provides additional insight on genetic contribution to abdominal obesity. PMID:26785701
Integrating evolutionary and functional approaches to infer adaptation at specific loci.
Storz, Jay F; Wheat, Christopher W
2010-09-01
Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally,population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation.
Genetics of Venous Thrombosis: Insights from a New Genome Wide Association Study
Germain, Marine; Saut, Noémie; Greliche, Nicolas; Dina, Christian; Lambert, Jean-Charles; Perret, Claire; Cohen, William; Oudot-Mellakh, Tiphaine; Antoni, Guillemette; Alessi, Marie-Christine; Zelenika, Diana; Cambien, François; Tiret, Laurence; Bertrand, Marion; Dupuy, Anne-Marie; Letenneur, Luc; Lathrop, Mark; Emmerich, Joseph; Amouyel, Philippe; Trégouët, David-Alexandre; Morange, Pierre-Emmanuel
2011-01-01
Background Venous Thrombosis (VT) is a common multifactorial disease associated with a major public health burden. Genetics factors are known to contribute to the susceptibility of the disease but how many genes are involved and their contribution to VT risk still remain obscure. We aimed to identify genetic variants associated with VT risk. Methodology/Principal Findings We conducted a genome-wide association study (GWAS) based on 551,141 SNPs genotyped in 1,542 cases and 1,110 controls. Twelve SNPs reached the genome-wide significance level of 2.0×10−8 and encompassed four known VT-associated loci, ABO, F5, F11 and FGG. By means of haplotype analyses, we also provided novel arguments in favor of a role of HIVEP1, PROCR and STAB2, three loci recently hypothesized to participate in the susceptibility to VT. However, no novel VT-associated loci came out of our GWAS. Using a recently proposed statistical methodology, we also showed that common variants could explain about 35% of the genetic variance underlying VT susceptibility among which 3% could be attributable to the main identified VT loci. This analysis additionally suggested that the common variants left to be identified are not uniformly distributed across the genome and that chromosome 20, itself, could contribute to ∼7% of the total genetic variance. Conclusions/Significance This study might also provide a valuable source of information to expand our understanding of biological mechanisms regulating quantitative biomarkers for VT. PMID:21980494
Vinayak, Sumiti; Alam, Md Tauqeer; Sem, Rithy; Shah, Naman K.; Susanti, Augustina I.; Lim, Pharath; Muth, Sinuon; Maguire, Jason D.; Rogers, William O.; Fandeur, Thierry; Barnwell, John W.; Escalante, Ananias A.; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R.; Udhayakumar, Venkatachalam
2011-01-01
Background The emergence of artesunate-mefloquine (AS+MQ)–resistant Plasmodium falciparum in the Thailand-Cambodia region is a major concern for malaria control. Studies indicate that copy number increase and key alleles in the pfmdr1 gene are associated with AS+MQ resistance. In the present study, we investigated evidence for a selective sweep around pfmdr1 because of the spread of adaptive mutation and/or multiple copies of this gene in the P. falciparum population in Cambodia. Methods We characterized 13 microsatellite loci flanking (± 99 kb) pfmdr1 in 93 single-clone P. falciparum infections, of which 31 had multiple copies and 62 had a single copy of the pfmdr1 gene. Results Genetic analysis revealed no difference in the mean (± standard deviation) expected heterozygosity (He) at loci around single (0.75 ± 0.03) and multiple (0.76 ± 0.04) copies of pfmdr1. Evidence of genetic hitchhiking with the selective sweep of certain haplotypes was seen around mutant (184F) pfmdr1 allele, irrespective of the copy number. There was an overall reduction of 28% in mean He (± SD) around mutant allele (0.56 ± 0.05), compared with wild-type allele (0.84 ± 0.02). Significant linkage disequilibrium was also observed between the loci flanking mutant pfmdr1 allele. Conclusion The 184F mutant allele is under selection, whereas amplification of pfmdr1 gene in this population occurs on multiple genetic backgrounds. PMID:20367478
Multiple New Loci Associated with Kidney Function and Chronic Kidney Disease: The CKDGen consortium
Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A.; Fuchsberger, Christian; Olden, Matthias; Glazer, Nicole L.; Parsa, Afshin; Gao, Xiaoyi; Yang, Qiong; Smith, Albert V.; O’Connell, Jeffrey R.; Li, Man; Schmidt, Helena; Tanaka, Toshiko; Isaacs, Aaron; Ketkar, Shamika; Hwang, Shih-Jen; Johnson, Andrew D.; Dehghan, Abbas; Teumer, Alexander; Paré, Guillaume; Atkinson, Elizabeth J.; Zeller, Tanja; Lohman, Kurt; Cornelis, Marilyn C.; Probst-Hensch, Nicole M.; Kronenberg, Florian; Tönjes, Anke; Hayward, Caroline; Aspelund, Thor; Eiriksdottir, Gudny; Launer, Lenore; Harris, Tamara B.; Rapmersaud, Evadnie; Mitchell, Braxton D.; Boerwinkle, Eric; Struchalin, Maksim; Cavalieri, Margherita; Singleton, Andrew; Giallauria, Francesco; Metter, Jeffery; de Boer, Ian; Haritunians, Talin; Lumley, Thomas; Siscovick, David; Psaty, Bruce M.; Zillikens, M. Carola; Oostra, Ben A.; Feitosa, Mary; Province, Michael; Levy, Daniel; de Andrade, Mariza; Turner, Stephen T.; Schillert, Arne; Ziegler, Andreas; Wild, Philipp S.; Schnabel, Renate B.; Wilde, Sandra; Muenzel, Thomas F.; Leak, Tennille S; Illig, Thomas; Klopp, Norman; Meisinger, Christa; Wichmann, H.-Erich; Koenig, Wolfgang; Zgaga, Lina; Zemunik, Tatijana; Kolcic, Ivana; Minelli, Cosetta; Hu, Frank B.; Johansson, Åsa; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Schreiber, Stefan; Aulchenko, Yurii S; Rivadeneira, Fernando; Uitterlinden, Andre G; Hofman, Albert; Imboden, Medea; Nitsch, Dorothea; Brandstätter, Anita; Kollerits, Barbara; Kedenko, Lyudmyla; Mägi, Reedik; Stumvoll, Michael; Kovacs, Peter; Boban, Mladen; Campbell, Susan; Endlich, Karlhans; Völzke, Henry; Kroemer, Heyo K.; Nauck, Matthias; Völker, Uwe; Polasek, Ozren; Vitart, Veronique; Badola, Sunita; Parker, Alexander N.; Ridker, Paul M.; Kardia, Sharon L. R.; Blankenberg, Stefan; Liu, Yongmei; Curhan, Gary C.; Franke, Andre; Rochat, Thierry; Paulweber, Bernhard; Prokopenko, Inga; Wang, Wei; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Shlipak, Michael G.; van Duijn, Cornelia M.; Borecki, Ingrid; Krämer, Bernhard K.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Witteman, Jacqueline C.; Pramstaller, Peter P.; Rettig, Rainer; Hastie, Nick; Chasman, Daniel I.; Kao, W. H.; Heid, Iris M.; Fox, Caroline S.
2010-01-01
Chronic kidney disease (CKD) is a significant public health problem, and recent genetic studies have identified common CKD susceptibility variants. The CKDGen consortium performed a meta-analysis of genome-wide association data in 67,093 Caucasian individuals from 20 population-based studies to identify new susceptibility loci for reduced renal function, estimated by serum creatinine (eGFRcrea), cystatin C (eGFRcys), and CKD (eGFRcrea <60 ml/min/1.73m2; n = 5,807 CKD cases). Follow-up of the 23 genome-wide significant loci (p<5×10−8) in 22,982 replication samples identified 13 novel loci for renal function and CKD (in or near LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2, DACH1, UBE2Q2, and SLC7A9) and 7 creatinine production and secretion loci (CPS1, SLC22A2, TMEM60, WDR37, SLC6A13, WDR72, BCAS3). These results further our understanding of biologic mechanisms of kidney function by identifying loci potentially influencing nephrogenesis, podocyte function, angiogenesis, solute transport, and metabolic functions of the kidney. PMID:20383146
Meta-analysis identifies common variants associated with body mass index in East Asians
Wen, Wanqing; Cho, Yoon Shin; Zheng, Wei; Dorajoo, Rajkumar; Kato, Norihiro; Qi, Lu; Chen, Chien-Hsiun; Delahanty, Ryan J.; Okada, Yukinori; Tabara, Yasuharu; Gu, Dongfeng; Zhu, Dingliang; Haiman, Christopher A.; Mo, Zengnan; Gao, Yu-Tang; Saw, Seang Mei; Go, Min Jin; Takeuchi, Fumihiko; Chang, Li-Ching; Kokubo, Yoshihiro; Liang, Jun; Hao, Mei; Marchand, Loic Le; Zhang, Yi; Hu, Yanling; Wong, Tien Yin; Long, Jirong; Han, Bok-Ghee; Kubo, Michiaki; Yamamoto, Ken; Su, Mei-Hsin; Miki, Tetsuro; Henderson, Brian E.; Song, Huaidong; Tan, Aihua; He, Jiang; Ng, Daniel P.-K.; Cai, Qiuyin; Tsunoda, Tatsuhiko; Tsai, Fuu-Jen; Iwai, Naoharu; Chen, Gary K.; Shi, Jiajun; Xu, Jianfeng; Sim, Xueling; Xiang, Yong-Bing; Maeda, Shiro; Ong, Rick T.H.; Li, Chun; Nakamura, Yusuke; Aung, Tin; Kamatani, Naoyuki; Liu, Jian Jun; Lu, Wei; Yokota, Mitsuhiro; Seielstad, Mark; Fann, Cathy S.J.; Wu, Jer-Yuarn; Lee, Jong-Young; Hu, Frank B.; Tanaka, Toshihiro; Tai, E. Shyong; Shu, Xiao Ou
2012-01-01
Multiple genetic loci associated with obesity or body mass index (BMI) have been identified through genome-wide association studies conducted predominantly in populations of European ancestry. We conducted a meta-analysis of associations between BMI and approximately 2.4 million SNPs in 27,715 East Asians, followed by in silico and de novo replication in 37,691 and 17,642 additional East Asians, respectively. We identified ten BMI-associated loci at the genome-wide significance level (P<5.0×10−8), including seven previously identified loci (FTO, SEC16B, MC4R, GIPR/QPCTL, ADCY3/RBJ, BDNF, and MAP2K5) and three novel loci in or near the CDKAL1,PCSK1, and GP2 genes. Three additional loci nearly reached the genome-wide significance threshold, including two previously identified loci in the GNPDA2 and TFAP2B genes and a new locus near PAX6, which all had P<5.0×10−7. Findings from this study may shed light on new pathways involved in obesity and demonstrate the value of conducting genetic studies in non-European populations. PMID:22344219
Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis.
Slayden, Richard A; Dawson, Clinton C; Cummings, Jason E
2018-06-01
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Analysis of multilocus zygotic associations.
Yang, Rong-Cai
2002-05-01
While nonrandom associations between zygotes at different loci (zygotic associations) frequently occur in Hardy-Weinberg disequilibrium populations, statistical analysis of such associations has received little attention. In this article, we describe the joint distributions of zygotes at multiple loci, which are completely characterized by heterozygosities at individual loci and various multilocus zygotic associations. These zygotic associations are defined in the same fashion as the usual multilocus linkage (gametic) disequilibria on the basis of gametic and allelic frequencies. The estimation and test procedures are described with details being given for three loci. The sampling properties of the estimates are examined through Monte Carlo simulation. The estimates of three-locus associations are not free of bias due to the presence of two-locus associations and vice versa. The power of detecting the zygotic associations is small unless different loci are strongly associated and/or sample sizes are large (>100). The analysis of zygotic associations not only offers an effective means of packaging numerous genic disequilibria required for a complete characterization of multilocus structure, but also provides opportunities for making inference about evolutionary and demographic processes through a comparative assessment of zygotic association vs. gametic disequilibrium for the same set of loci in nonequilibrium populations.
Russian Doll Genes and Complex Chromosome Rearrangements in Oxytricha trifallax
Braun, Jasper; Nabergall, Lukas; Neme, Rafik; Landweber, Laura F.; Saito, Masahico; Jonoska, Nataša
2018-01-01
Ciliates have two different types of nuclei per cell, with one acting as a somatic, transcriptionally active nucleus (macronucleus; abbr. MAC) and another serving as a germline nucleus (micronucleus; abbr. MIC). Furthermore, Oxytricha trifallax undergoes extensive genome rearrangements during sexual conjugation and post-zygotic development of daughter cells. These rearrangements are necessary because the precursor MIC loci are often both fragmented and scrambled, with respect to the corresponding MAC loci. Such genome architectures are remarkably tolerant of encrypted MIC loci, because RNA-guided processes during MAC development reorganize the gene fragments in the correct order to resemble the parental MAC sequence. Here, we describe the germline organization of several nested and highly scrambled genes in Oxytricha trifallax. These include cases with multiple layers of nesting, plus highly interleaved or tangled precursor loci that appear to deviate from previously described patterns. We present mathematical methods to measure the degree of nesting between precursor MIC loci, and revisit a method for a mathematical description of scrambling. After applying these methods to the chromosome rearrangement maps of O. trifallax we describe cases of nested arrangements with up to five layers of embedded genes, as well as the most scrambled loci in O. trifallax. PMID:29545465
Canella, Donatella; Bernasconi, David; Gilardi, Federica; LeMartelot, Gwendal; Migliavacca, Eugenia; Praz, Viviane; Cousin, Pascal; Delorenzi, Mauro; Hernandez, Nouria; Hernandez, Nouria; Delorenzi, Mauro; Deplancke, Bart; Desvergne, Béatrice; Guex, Nicolas; Herr, Winship; Naef, Felix; Rougemont, Jacques; Schibler, Ueli; Deplancke, Bart; Guex, Nicolas; Herr, Winship; Guex, Nicolas; Andersin, Teemu; Cousin, Pascal; Gilardi, Federica; Gos, Pascal; Le Martelot, Gwendal; Lammers, Fabienne; Canella, Donatella; Gilardi, Federica; Raghav, Sunil; Fabbretti, Roberto; Fortier, Arnaud; Long, Li; Vlegel, Volker; Xenarios, Ioannis; Migliavacca, Eugenia; Praz, Viviane; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; David, Fabrice; Jarosz, Yohan; Kuznetsov, Dmitry; Liechti, Robin; Martin, Olivier; Ross, Frederick; Sinclair, Lucas; Cajan, Julia; Krier, Irina; Leleu, Marion; Migliavacca, Eugenia; Molina, Nacho; Naldi, Aurélien; Rey, Guillaume; Symul, Laura; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; Bernasconi, David; Delorenzi, Mauro; Andersin, Teemu; Canella, Donatella; Gilardi, Federica; Le Martelot, Gwendal; Lammers, Fabienne; Raghav, Sunil
2012-01-01
The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes. PMID:22287103
Wang, Zhaoming; Zhu, Bin; Zhang, Mingfeng; Parikh, Hemang; Jia, Jinping; Chung, Charles C.; Sampson, Joshua N.; Hoskins, Jason W.; Hutchinson, Amy; Burdette, Laurie; Ibrahim, Abdisamad; Hautman, Christopher; Raj, Preethi S.; Abnet, Christian C.; Adjei, Andrew A.; Ahlbom, Anders; Albanes, Demetrius; Allen, Naomi E.; Ambrosone, Christine B.; Aldrich, Melinda; Amiano, Pilar; Amos, Christopher; Andersson, Ulrika; Andriole, Gerald; Andrulis, Irene L.; Arici, Cecilia; Arslan, Alan A.; Austin, Melissa A.; Baris, Dalsu; Barkauskas, Donald A.; Bassig, Bryan A.; Beane Freeman, Laura E.; Berg, Christine D.; Berndt, Sonja I.; Bertazzi, Pier Alberto; Biritwum, Richard B.; Black, Amanda; Blot, William; Boeing, Heiner; Boffetta, Paolo; Bolton, Kelly; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Brennan, Paul; Brinton, Louise A.; Brotzman, Michelle; Bueno-de-Mesquita, H. Bas; Buring, Julie E.; Butler, Mary Ann; Cai, Qiuyin; Cancel-Tassin, Geraldine; Canzian, Federico; Cao, Guangwen; Caporaso, Neil E.; Carrato, Alfredo; Carreon, Tania; Carta, Angela; Chang, Gee-Chen; Chang, I-Shou; Chang-Claude, Jenny; Che, Xu; Chen, Chien-Jen; Chen, Chih-Yi; Chen, Chung-Hsing; Chen, Constance; Chen, Kuan-Yu; Chen, Yuh-Min; Chokkalingam, Anand P.; Chu, Lisa W.; Clavel-Chapelon, Francoise; Colditz, Graham A.; Colt, Joanne S.; Conti, David; Cook, Michael B.; Cortessis, Victoria K.; Crawford, E. David; Cussenot, Olivier; Davis, Faith G.; De Vivo, Immaculata; Deng, Xiang; Ding, Ti; Dinney, Colin P.; Di Stefano, Anna Luisa; Diver, W. Ryan; Duell, Eric J.; Elena, Joanne W.; Fan, Jin-Hu; Feigelson, Heather Spencer; Feychting, Maria; Figueroa, Jonine D.; Flanagan, Adrienne M.; Fraumeni, Joseph F.; Freedman, Neal D.; Fridley, Brooke L.; Fuchs, Charles S.; Gago-Dominguez, Manuela; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Garcia-Closas, Reina; Gastier-Foster, Julie M.; Gaziano, J. Michael; Gerhard, Daniela S.; Giffen, Carol A.; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goggins, Michael; Gokgoz, Nalan; Goldstein, Alisa M.; Gonzalez, Carlos; Gorlick, Richard; Greene, Mark H.; Gross, Myron; Grossman, H. Barton; Grubb, Robert; Gu, Jian; Guan, Peng; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Hartge, Patricia; Hattinger, Claudia; Hayes, Richard B.; He, Qincheng; Helman, Lee; Henderson, Brian E.; Henriksson, Roger; Hoffman-Bolton, Judith; Hohensee, Chancellor; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hosgood, H. Dean; Hsiao, Chin-Fu; Hsing, Ann W.; Hsiung, Chao Agnes; Hu, Nan; Hu, Wei; Hu, Zhibin; Huang, Ming-Shyan; Hunter, David J.; Inskip, Peter D.; Ito, Hidemi; Jacobs, Eric J.; Jacobs, Kevin B.; Jenab, Mazda; Ji, Bu-Tian; Johansen, Christoffer; Johansson, Mattias; Johnson, Alison; Kaaks, Rudolf; Kamat, Ashish M.; Kamineni, Aruna; Karagas, Margaret; Khanna, Chand; Khaw, Kay-Tee; Kim, Christopher; Kim, In-Sam; Kim, Jin Hee; Kim, Yeul Hong; Kim, Young-Chul; Kim, Young Tae; Kang, Chang Hyun; Jung, Yoo Jin; Kitahara, Cari M.; Klein, Alison P.; Klein, Robert; Kogevinas, Manolis; Koh, Woon-Puay; Kohno, Takashi; Kolonel, Laurence N.; Kooperberg, Charles; Kratz, Christian P.; Krogh, Vittorio; Kunitoh, Hideo; Kurtz, Robert C.; Kurucu, Nilgun; Lan, Qing; Lathrop, Mark; Lau, Ching C.; Lecanda, Fernando; Lee, Kyoung-Mu; Lee, Maxwell P.; Le Marchand, Loic; Lerner, Seth P.; Li, Donghui; Liao, Linda M.; Lim, Wei-Yen; Lin, Dongxin; Lin, Jie; Lindstrom, Sara; Linet, Martha S.; Lissowska, Jolanta; Liu, Jianjun; Ljungberg, Börje; Lloreta, Josep; Lu, Daru; Ma, Jing; Malats, Nuria; Mannisto, Satu; Marina, Neyssa; Mastrangelo, Giuseppe; Matsuo, Keitaro; McGlynn, Katherine A.; McKean-Cowdin, Roberta; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Meltzer, Paul S.; Mensah, James E.; Miao, Xiaoping; Michaud, Dominique S.; Mondul, Alison M.; Moore, Lee E.; Muir, Kenneth; Niwa, Shelley; Olson, Sara H.; Orr, Nick; Panico, Salvatore; Park, Jae Yong; Patel, Alpa V.; Patino-Garcia, Ana; Pavanello, Sofia; Peeters, Petra H. M.; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Picci, Piero; Pike, Malcolm C.; Porru, Stefano; Prescott, Jennifer; Pu, Xia; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Riboli, Elio; Risch, Harvey A.; Rodabough, Rebecca J.; Rothman, Nathaniel; Ruder, Avima M.; Ryu, Jeong-Seon; Sanson, Marc; Schned, Alan; Schumacher, Fredrick R.; Schwartz, Ann G.; Schwartz, Kendra L.; Schwenn, Molly; Scotlandi, Katia; Seow, Adeline; Serra, Consol; Serra, Massimo; Sesso, Howard D.; Severi, Gianluca; Shen, Hongbing; Shen, Min; Shete, Sanjay; Shiraishi, Kouya; Shu, Xiao-Ou; Siddiq, Afshan; Sierrasesumaga, Luis; Sierri, Sabina; Loon Sihoe, Alan Dart; Silverman, Debra T.; Simon, Matthias; Southey, Melissa C.; Spector, Logan; Spitz, Margaret; Stampfer, Meir; Stattin, Par; Stern, Mariana C.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael Z.; Stram, Daniel O.; Strom, Sara S.; Su, Wu-Chou; Sund, Malin; Sung, Sook Whan; Swerdlow, Anthony; Tan, Wen; Tanaka, Hideo; Tang, Wei; Tang, Ze-Zhang; Tardon, Adonina; Tay, Evelyn; Taylor, Philip R.; Tettey, Yao; Thomas, David M.; Tirabosco, Roberto; Tjonneland, Anne; Tobias, Geoffrey S.; Toro, Jorge R.; Travis, Ruth C.; Trichopoulos, Dimitrios; Troisi, Rebecca; Truelove, Ann; Tsai, Ying-Huang; Tucker, Margaret A.; Tumino, Rosario; Van Den Berg, David; Van Den Eeden, Stephen K.; Vermeulen, Roel; Vineis, Paolo; Visvanathan, Kala; Vogel, Ulla; Wang, Chaoyu; Wang, Chengfeng; Wang, Junwen; Wang, Sophia S.; Weiderpass, Elisabete; Weinstein, Stephanie J.; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolk, Alicja; Wolpin, Brian M.; Wong, Maria Pik; Wrensch, Margaret; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xiang, Yong-Bing; Xu, Jun; Yang, Hannah P.; Yang, Pan-Chyr; Yatabe, Yasushi; Ye, Yuanqing; Yeboah, Edward D.; Yin, Zhihua; Ying, Chen; Yu, Chong-Jen; Yu, Kai; Yuan, Jian-Min; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Mirabello, Lisa; Savage, Sharon A.; Kraft, Peter; Chanock, Stephen J.; Yeager, Meredith; Landi, Maria Terese; Shi, Jianxin; Chatterjee, Nilanjan; Amundadottir, Laufey T.
2014-01-01
Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10−39; Region 3: rs2853677, P = 3.30 × 10−36 and PConditional = 2.36 × 10−8; Region 4: rs2736098, P = 3.87 × 10−12 and PConditional = 5.19 × 10−6, Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10−6; and Region 6: rs10069690, P = 7.49 × 10−15 and PConditional = 5.35 × 10−7) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10−18 and PConditional = 7.06 × 10−16). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci. PMID:25027329
Wain, Louise V.; Pedroso, Inti; Landers, John E.; Breen, Gerome; Shaw, Christopher E.; Leigh, P. Nigel; Brown, Robert H.
2009-01-01
Background The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS) has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs) in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty. Methodology and Principal Findings In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy) were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability. Conclusions and Significance Interpretation of CNV association findings must take into account the effects of filtering and combining CNV calls when based on early genome-wide genotyping platforms and modest study sizes. PMID:19997636
Yu, Lei; Chibnik, Lori B; Srivastava, Gyan P; Pochet, Nathalie; Yang, Jingyun; Xu, Jishu; Kozubek, James; Obholzer, Nikolaus; Leurgans, Sue E; Schneider, Julie A; Meissner, Alexander; De Jager, Philip L; Bennett, David A
2015-01-01
Recent large-scale genome-wide association studies have discovered several genetic variants associated with Alzheimer disease (AD); however, the extent to which DNA methylation in these AD loci contributes to the disease susceptibility remains unknown. To examine the association of brain DNA methylation in 28 reported AD loci with AD pathologies. Ongoing community-based clinical pathological cohort studies of aging and dementia (the Religious Orders Study and the Rush Memory and Aging Project) among 740 autopsied participants 66.0 to 108.3 years old. DNA methylation levels at individual CpG sites generated from dorsolateral prefrontal cortex tissue using a bead assay. Pathological diagnosis of AD by National Institute on Aging-Reagan criteria following a standard postmortem examination. Overall, 447 participants (60.4%) met the criteria for pathological diagnosis of AD. Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 was associated with pathological AD. The association was robustly retained after replacing the binary trait of pathological AD with 2 quantitative and molecular specific hallmarks of AD, namely, Aβ load and paired helical filament tau tangle density. Furthermore, RNA expression of transcripts of SORL1 and ABCA7 was associated with paired helical filament tau tangle density, and the expression of BIN1 was associated with Aβ load. Brain DNA methylation in multiple AD loci is associated with AD pathologies. The results provide further evidence that disruption of DNA methylation is involved in the pathological process of AD.
Chapman, Mark A; Pashley, Catherine H; Wenzler, Jessica; Hvala, John; Tang, Shunxue; Knapp, Steven J; Burke, John M
2008-11-01
Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sunflower (Helianthus annuus) lines. This sampling strategy allowed us to identify candidates for selectively important genes and investigate the likely timing of selection. Thirty-six genes showed evidence of selection during either domestication or improvement based on multiple criteria, and a sequence-based test of selection on a subset of these loci confirmed this result. In view of what is known about the structure of linkage disequilibrium across the sunflower genome, these genes are themselves likely to have been targeted by selection, rather than being merely linked to the actual targets. While the selection candidates showed a broad range of putative functions, they were enriched for genes involved in amino acid synthesis and protein catabolism. Given that a similar pattern has been detected in maize (Zea mays), this finding suggests that selection on amino acid composition may be a general feature of the evolution of crop plants. In terms of genomic locations, the selection candidates were significantly clustered near quantitative trait loci (QTL) that contribute to phenotypic differences between wild and cultivated sunflower, and specific instances of QTL colocalization provide some clues as to the roles that these genes may have played during sunflower evolution.
Genomics, Telomere Length, Epigenetics, and Metabolomics in the Nurses’ Health Studies
Aschard, Hugues; De Vivo, Immaculata; Michels, Karin B.; Kraft, Peter
2016-01-01
Objectives. To review the contribution of the Nurses’ Health Study (NHS) and NHS II to genomics, epigenetics, and metabolomics research. Methods. We performed a narrative review of the publications of the NHS and NHS II between 1990 and 2016 based on biospecimens, including blood and tumor tissue, collected from participants. Results. The NHS has contributed to the discovery of genetic loci influencing more than 45 complex human phenotypes, including cancers, diabetes, cardiovascular disease, reproductive characteristics, and anthropometric traits. The combination of genomewide genotype data with extensive exposure and lifestyle data has enabled the evaluation of gene–environment interactions. Furthermore, data suggest that longer telomere length increases risk of cancers not related to smoking, and that modifiable factors (e.g., diet) may have an impact on telomere length. “Omics” research in the NHS continues to expand, with epigenetics and metabolomics becoming greater areas of focus. Conclusions. The combination of prospective biomarker data and broad exposure information has enabled the NHS to participate in a variety of “omics” research, contributing to understanding of the epidemiology and biology of multiple complex diseases. PMID:27459442
Genomics, Telomere Length, Epigenetics, and Metabolomics in the Nurses' Health Studies.
Townsend, Mary K; Aschard, Hugues; De Vivo, Immaculata; Michels, Karin B; Kraft, Peter
2016-09-01
To review the contribution of the Nurses' Health Study (NHS) and NHS II to genomics, epigenetics, and metabolomics research. We performed a narrative review of the publications of the NHS and NHS II between 1990 and 2016 based on biospecimens, including blood and tumor tissue, collected from participants. The NHS has contributed to the discovery of genetic loci influencing more than 45 complex human phenotypes, including cancers, diabetes, cardiovascular disease, reproductive characteristics, and anthropometric traits. The combination of genomewide genotype data with extensive exposure and lifestyle data has enabled the evaluation of gene-environment interactions. Furthermore, data suggest that longer telomere length increases risk of cancers not related to smoking, and that modifiable factors (e.g., diet) may have an impact on telomere length. "Omics" research in the NHS continues to expand, with epigenetics and metabolomics becoming greater areas of focus. The combination of prospective biomarker data and broad exposure information has enabled the NHS to participate in a variety of "omics" research, contributing to understanding of the epidemiology and biology of multiple complex diseases.
Cammen, Kristina M; Wilcox, Lynsey A; Rosel, Patricia E; Wells, Randall S; Read, Andrew J
2015-02-01
The role the major histocompatibility complex (MHC) plays in response to exposure to environmental toxins is relatively poorly understood, particularly in comparison to its well-described role in pathogen immunity. We investigated associations between MHC diversity and resistance to brevetoxins in common bottlenose dolphins (Tursiops truncatus). A previous genome-wide association study investigating an apparent difference in harmful algal bloom (HAB) resistance among dolphin populations in the Gulf of Mexico identified genetic variation associated with survival in close genomic proximity to multiple MHC class II loci. Here, we characterized genetic variation at DQA, DQB, DRA, and DRB loci in dolphins from central-west Florida and the Florida Panhandle, including dolphins that died during HABs and dolphins presumed to have survived HAB exposure. We found that DRB and DQB exhibited patterns of genetic differentiation among geographic regions that differed from neutral microsatellite loci. In addition, genetic differentiation at DRB across multiple pairwise comparisons of live and dead dolphins was greater than differentiation observed at neutral loci. Our findings at these MHC loci did not approach the strength of association with survival previously described for a nearby genetic variant. However, the results provide evidence that selective pressures at the MHC vary among dolphin populations that differ in the frequency of HAB exposure and that the overall composition of DRB variants differs between dolphin survivors and non-survivors of HABs. These results may suggest a potential role of MHC diversity in variable survival of bottlenose dolphins exposed to HABs.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.
2016-01-01
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751
Genome-wide association studies for multiple diseases of the German Shepherd Dog
Tsai, Kate L.; Noorai, Rooksana E.; Starr-Moss, Alison N.; Quignon, Pascale; Rinz, Caitlin J.; Ostrander, Elaine A.; Steiner, Jörg M.; Murphy, Keith E.
2012-01-01
The German Shepherd Dog (GSD) is a popular working and companion breed for which over 50 hereditary diseases have been documented. Herein, SNP profiles for 197 GSDs were generated using the Affymetrix v2 canine SNP array for a genome-wide association study to identify loci associated with four diseases: pituitary dwarfism, degenerative myelopathy (DM), congenital megaesophagus (ME), and pancreatic acinar atrophy (PAA). A locus on Chr 9 is strongly associated with pituitary dwarfism and is proximal to a plausible candidate gene, LHX3. Results for DM confirm a major locus encompassing SOD1, in which an associated point mutation was previously identified, but do not suggest modifier loci. Several SNPs on Chr 12 are associated with ME and a 4.7 Mb haplotype block is present in affected dogs. Analysis of additional ME cases for a SNP within the haplotype provides further support for this association. Results for PAA indicate more complex genetic underpinnings. Several regions on multiple chromosomes reach genome-wide significance. However, no major locus is apparent and only two associated haplotype blocks, on Chrs 7 and 12 are observed. These data suggest that PAA may be governed by multiple loci with small effects, or it may be a heterogeneous disorder. PMID:22105877
Zhang, Kunpu; Wang, Junjun; Zhang, Liyi; Rong, Chaowu; Zhao, Fengwu; Peng, Tao; Li, Huimin; Cheng, Dongmei; Liu, Xin; Qin, Huanju; Zhang, Aimin; Tong, Yiping; Wang, Daowen
2013-01-01
Grain weight, an essential yield component, is under strong genetic control and markedly influenced by the environment. Here, by genome-wide association analysis with a panel of 94 elite common wheat varieties, 37 loci were found significantly associated with thousand-grain weight (TGW) in one or more environments differing in water and fertiliser levels. Five loci were stably associated with TGW under all 12 environments examined. Their elite alleles had positive effects on TGW. Four, two, three, and two loci were consistently associated with TGW in the irrigated and fertilised (IF), rainfed (RF), reduced nitrogen (RN), and reduced phosphorus (RP) environments. The elite alleles of the IF-specific loci enhanced TGW under well-resourced conditions, whereas those of the RF-, RN-, or RP-specific loci conferred tolerance to the TGW decrease when irrigation, nitrogen, or phosphorus were reduced. Moreover, the elite alleles of the environment-independent and -specific loci often acted additively to enhance TGW. Four additional loci were found associated with TGW in specific locations, one of which was shown to contribute to the TGW difference between two experimental sites. Further analysis of 14 associated loci revealed that nine affected both grain length and width, whereas the remaining loci influenced either grain length or width, indicating that these loci control grain weight by regulating kernel size. Finally, the elite allele of Xpsp3152 frequently co-segregated with the larger grain haplotype of TaGW2-6A, suggesting probable genetic and functional linkages between Xpsp3152 and GW2 that are important for grain weight control in cereal plants. Our study provides new knowledge on TGW control in elite common wheat lines, which may aid the improvement of wheat grain weight trait in further research. PMID:23469248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahani, Poupak; Chiu, Sally; Bowlus, Christopher L.
Obesity is a complex disease. To date, over 100 chromosomal loci for body weight, body fat, regional white adipose tissue weight, and other obesity-related traits have been identified in humans and in animal models. For most loci, the underlying genes are not yet identified; some of these chromosomal loci will be alleles of known obesity genes, whereas many will represent alleles of unknown genes. Microarray analysis allows simultaneous multiple gene and pathway discovery. cDNA and oligonucleotide arrays are commonly used to identify differentially expressed genes by surveys of large numbers of known and unnamed genes. Two papers previously identified genesmore » differentially expressed in adipose tissue of mouse models of obesity and diabetes by analysis of hybridization to Affymetrix oligonucleotide chips.« less
Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer.
Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Blank, Stephanie V; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J; Chung, Wendy K; Claes, Kathleen B M; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M; Eccles, Diana M; Ehrencrona, Hans; Ekici, Arif B; Eliassen, Heather; Ellis, Steve; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Gaudet, Mia M; Gayther, Simon A; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E; Herzog, Josef; Hogervorst, Frans B L; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Humphreys, Keith; Hunter, David J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G; Knight, Julia A; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L; Makalic, Enes; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W M; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M; Muranen, Taru A; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nordestgaard, Børge G; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Osorio, Ana; Park, Sue K; Peeters, Petra H; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J; Sanchez, Maria-Jose; Santella, Regina M; Sawyer, Elinor J; Schmidt, Daniel F; Schmidt, Marjanka K; Schmutzler, Rita K; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary B; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H M; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D P; Monteiro, Alvaro A N; García-Closas, Montserrat; Easton, Douglas F; Antoniou, Antonis C
2016-04-27
Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
Couch, Fergus J.; Kuchenbaecker, Karoline B.; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A.; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K.; Arver, Brita; Barile, Monica; Barkardottir, Rosa B.; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W.; Benitez, Javier; Blank, Stephanie V.; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J.; Chung, Wendy K.; Claes, Kathleen B. M.; Cox, Angela; Cross, Simon S.; Cunningham, Julie M.; Czene, Kamila; Daly, Mary B.; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C.; Dolcetti, Riccardo; Domchek, Susan M.; Dorfling, Cecilia M.; dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M.; Eccles, Diana M.; Ehrencrona, Hans; Ekici, Arif B.; Eliassen, Heather; Ellis, Steve; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D.; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D.; Ganz, Patricia A.; Gapstur, Susan M.; Garber, Judy; Gaudet, Mia M.; Gayther, Simon A.; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G.; Glendon, Gord; Godwin, Andrew K.; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Greene, Mark H.; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A.; Hamann, Ute; Hansen, Thomas V. O.; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E.; Herzog, Josef; Hogervorst, Frans B. L.; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Robert N.; Hopper, John L.; Humphreys, Keith; Hunter, David J.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M.; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y.; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G.; Knight, Julia A.; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L.; Makalic, Enes; Malone, Kathleen E.; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W. M.; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L.; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M.; Muranen, Taru A.; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Nordestgaard, Børge G.; Nussbaum, Robert L.; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I.; Olson, Janet E.; Osorio, Ana; Park, Sue K.; Peeters, Petra H.; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M.; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J.; Sanchez, Maria-Jose; Santella, Regina M.; Sawyer, Elinor J.; Schmidt, Daniel F.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F.; Sinilnikova, Olga M.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I.; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary B.; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E.; Tollenaar, Robert A. E. M.; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H. M.; van Rensburg, Elizabeth J.; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N.; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R.; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Monteiro, Alvaro A. N.; García-Closas, Montserrat; Easton, Douglas F.; Antoniou, Antonis C.
2016-01-01
Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10−8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction. PMID:27117709
Derived variants at six genes explain nearly half of size reduction in dog breeds.
Rimbault, Maud; Beale, Holly C; Schoenebeck, Jeffrey J; Hoopes, Barbara C; Allen, Jeremy J; Kilroy-Glynn, Paul; Wayne, Robert K; Sutter, Nathan B; Ostrander, Elaine A
2013-12-01
Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%-52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds.
Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.
2015-01-01
The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187
The effect of epistasis on sexually antagonistic genetic variation
Arnqvist, Göran; Vellnow, Nikolas; Rowe, Locke
2014-01-01
There is increasing evidence of segregating sexually antagonistic (SA) genetic variation for fitness in laboratory and wild populations, yet the conditions for the maintenance of such variation can be restrictive. Epistatic interactions between genes can contribute to the maintenance of genetic variance in fitness and we suggest that epistasis between SA genes should be pervasive. Here, we explore its effect on SA genetic variation in fitness using a two locus model with negative epistasis. Our results demonstrate that epistasis often increases the parameter space showing polymorphism for SA loci. This is because selection in one locus is affected by allele frequencies at the other, which can act to balance net selection in males and females. Increased linkage between SA loci had more marginal effects. We also show that under some conditions, large portions of the parameter space evolve to a state where male benefit alleles are fixed at one locus and female benefit alleles at the other. This novel effect of epistasis on SA loci, which we term the ‘equity effect’, may have important effects on population differentiation and may contribute to speciation. More generally, these results support the suggestion that epistasis contributes to population divergence. PMID:24870040
Convergence of genome-wide association and candidate gene studies for alcoholism.
Olfson, Emily; Bierut, Laura Jean
2012-12-01
Genome-wide association (GWA) studies have led to a paradigm shift in how researchers study the genetics underlying disease. Many GWA studies are now publicly available and can be used to examine whether or not previously proposed candidate genes are supported by GWA data. This approach is particularly important for the field of alcoholism because the contribution of many candidate genes remains controversial. Using the Human Genome Epidemiology (HuGE) Navigator, we selected candidate genes for alcoholism that have been frequently examined in scientific articles in the past decade. Specific candidate loci as well as all the reported single nucleotide polymorphisms (SNPs) in candidate genes were examined in the Study of Addiction: Genetics and Environment (SAGE), a GWA study comparing alcohol-dependent and nondependent subjects. Several commonly reported candidate loci, including rs1800497 in DRD2, rs698 in ADH1C, rs1799971 in OPRM1, and rs4680 in COMT, are not replicated in SAGE (p > 0.05). Among candidate loci available for analysis, only rs279858 in GABRA2 (p = 0.0052, OR = 1.16) demonstrated a modest association. Examination of all SNPs reported in SAGE in over 50 candidate genes revealed no SNPs with large frequency differences between cases and controls, and the lowest p-value of any SNP was 0.0006. We provide evidence that several extensively studied candidate loci do not have a strong contribution to risk of developing alcohol dependence in European and African ancestry populations. Owing to the lack of coverage, we were unable to rule out the contribution of other variants, and these genes and particular loci warrant further investigation. Our analysis demonstrates that publicly available GWA results can be used to better understand which if any of previously proposed candidate genes contribute to disease. Furthermore, we illustrate how examining the convergence of candidate gene and GWA studies can help elucidate the genetic architecture of alcoholism and more generally complex diseases. Copyright © 2012 by the Research Society on Alcoholism.
Pare, Guillaume; Mao, Shihong; Deng, Wei Q
2016-06-08
Despite considerable efforts, known genetic associations only explain a small fraction of predicted heritability. Regional associations combine information from multiple contiguous genetic variants and can improve variance explained at established association loci. However, regional associations are not easily amenable to estimation using summary association statistics because of sensitivity to linkage disequilibrium (LD). We now propose a novel method, LD Adjusted Regional Genetic Variance (LARGV), to estimate phenotypic variance explained by regional associations using summary statistics while accounting for LD. Our method is asymptotically equivalent to a multiple linear regression model when no interaction or haplotype effects are present. It has several applications, such as ranking of genetic regions according to variance explained or comparison of variance explained by two or more regions. Using height and BMI data from the Health Retirement Study (N = 7,776), we show that most genetic variance lies in a small proportion of the genome and that previously identified linkage peaks have higher than expected regional variance.
Pare, Guillaume; Mao, Shihong; Deng, Wei Q.
2016-01-01
Despite considerable efforts, known genetic associations only explain a small fraction of predicted heritability. Regional associations combine information from multiple contiguous genetic variants and can improve variance explained at established association loci. However, regional associations are not easily amenable to estimation using summary association statistics because of sensitivity to linkage disequilibrium (LD). We now propose a novel method, LD Adjusted Regional Genetic Variance (LARGV), to estimate phenotypic variance explained by regional associations using summary statistics while accounting for LD. Our method is asymptotically equivalent to a multiple linear regression model when no interaction or haplotype effects are present. It has several applications, such as ranking of genetic regions according to variance explained or comparison of variance explained by two or more regions. Using height and BMI data from the Health Retirement Study (N = 7,776), we show that most genetic variance lies in a small proportion of the genome and that previously identified linkage peaks have higher than expected regional variance. PMID:27273519
Young inversion with multiple linked QTLs under selection in a hybrid zone.
Lee, Cheng-Ruei; Wang, Baosheng; Mojica, Julius P; Mandáková, Terezie; Prasad, Kasavajhala V S K; Goicoechea, Jose Luis; Perera, Nadeesha; Hellsten, Uffe; Hundley, Hope N; Johnson, Jenifer; Grimwood, Jane; Barry, Kerrie; Fairclough, Stephen; Jenkins, Jerry W; Yu, Yeisoo; Kudrna, Dave; Zhang, Jianwei; Talag, Jayson; Golser, Wolfgang; Ghattas, Kathryn; Schranz, M Eric; Wing, Rod; Lysak, Martin A; Schmutz, Jeremy; Rokhsar, Daniel S; Mitchell-Olds, Thomas
2017-04-03
Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favoured alleles at multiple loci. However, it is unknown whether favoured mutations slowly accumulate on older inversions or if young inversions spread because they capture pre-existing adaptive quantitative trait loci (QTLs). By genetic mapping, chromosome painting and genome sequencing, we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.
Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.
Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun
2016-11-01
The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.
Young inversion with multiple linked QTLs under selection in a hybrid zone
Lee, Cheng-Ruei; Wang, Baosheng; Mojica, Julius; Mandáková, Terezie; Prasad, Kasavajhala V. S. K.; Goicoechea, Jose Luis; Perera, Nadeesha; Hellsten, Uffe; Hundley, Hope N.; Johnson, Jenifer; Grimwood, Jane; Barry, Kerrie; Fairclough, Stephen; Jenkins, Jerry W.; Yu, Yeisoo; Kudrna, Dave; Zhang, Jianwei; Talag, Jayson; Golser, Wolfgang; Ghattas, Katherine; Schranz, M. Eric; Wing, Rod; Lysak, Martin A.; Schmutz, Jeremy; Rokhsar, Daniel S.; Mitchell-Olds, Thomas
2017-01-01
Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favored alleles at multiple loci. However, it is unknown whether favored mutations slowly accumulate on older inversions or if young inversions spread because they capture preexisting adaptive Quantitative Trait Loci (QTLs). By genetic mapping, chromosome painting and genome sequencing we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation. PMID:28812690
Rossi Lafferriere, Natalia A; Antelo, Rafael; Alda, Fernando; Mårtensson, Dick; Hailer, Frank; Castroviejo-Fisher, Santiago; Ayarzagüena, José; Ginsberg, Joshua R; Castroviejo, Javier; Doadrio, Ignacio; Vilá, Carles; Amato, George
2016-01-01
The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius) has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%), leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela.
Genome-wide association study of colorectal cancer identifies six new susceptibility loci.
Schumacher, Fredrick R; Schmit, Stephanie L; Jiao, Shuo; Edlund, Christopher K; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P; Harju, John F; Idos, Gregory E; Lejbkowicz, Flavio; Manion, Frank J; McDonnell, Kevin; McNeil, Caroline E; Melas, Marilena; Rennert, Hedy S; Shi, Wei; Thomas, Duncan C; Van Den Berg, David J; Hutter, Carolyn M; Aragaki, Aaron K; Butterbach, Katja; Caan, Bette J; Carlson, Christopher S; Chanock, Stephen J; Curtis, Keith R; Fuchs, Charles S; Gala, Manish; Giovannucc, Edward L; Giocannucci, Edward L; Gogarten, Stephanie M; Hayes, Richard B; Henderson, Brian; Hunter, David J; Jackson, Rebecca D; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Kury, Sebastian; LaCroix, Andrea; Laurie, Cathy C; Laurie, Cecelia A; Lemire, Mathieu; Lemire, Mathiew; Levine, David; Ma, Jing; Makar, Karen W; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M; Wu, Kana; Kono, Suminori; West, Dee W; Berndt, Sonja I; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T; Chan, Andrew T; Chang-Claude, Jenny; Coetzee, Gerhard A; Conti, David V; Duggan, David; Figueiredo, Jane C; Fortini, Barbara K; Gallinger, Steven J; Gauderman, W James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A; Potter, John D; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B; Peters, Ulrike
2015-07-07
Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.
Ried, Janina S.; Jeff M., Janina; Chu, Audrey Y.; Bragg-Gresham, Jennifer L.; van Dongen, Jenny; Huffman, Jennifer E.; Ahluwalia, Tarunveer S.; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F.; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L.; Jackson, Anne U.; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L.; Nolte, Ilja M.; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M.; Salvi, Erika; Smith, Megan T.; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W.; Wang, Sophie R.; Wild, Sarah H.; Willems, Sara M.; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J. L.; Barlassina, Cristina; Bartz, Traci M.; Beilby, John; Bellis, Claire; Bergman, Richard N.; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W. K.; Chines, Peter S.; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J .C.; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G.; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G.; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S.; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G.; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L.; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E.; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M.; Kinnunen, Leena; Knekt, Paul B.; Koistinen, Heikki A.; Kolcic, Ivana; Kooner, Ishminder K.; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M.; Lichtner, Peter; Lindgren, Cecilia M.; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L.; Mcknight, Barbara; Mohlke, Karen L.; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E.; Morris, Andrew P.; Müller, Gabriele; Musk, Arthur W.; Narisu, Narisu; Ong, Ken K.; Oostra, Ben A.; Osmond, Clive; Palotie, Aarno; Pankow, James S.; Paternoster, Lavinia; Penninx, Brenda W.; Pichler, Irene; Pilia, Maria G.; Polašek, Ozren; Pramstaller, Peter P.; Raitakari, Olli T; Rankinen, Tuomo; Rao, D. C.; Rayner, Nigel W.; Ribel-Madsen, Rasmus; Rice, Treva K.; Richards, Marcus; Ridker, Paul M.; Rivadeneira, Fernando; Ryan, Kathy A.; Sanna, Serena; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P.; Strauch, Konstantin; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M.; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W.; Wright, Alan F.; Yerges-Armstrong, Laura M.; Hua Zhao, Jing; Carola Zillikens, M.; Boomsma, Dorret I.; Bouchard, Claude; Chambers, John C.; Chasman, Daniel I.; Cusi, Daniele; Gansevoort, Ron T.; Gieger, Christian; Hansen, Torben; Hicks, Andrew A.; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S.; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Palmer, Lyle J.; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M.; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E. H.; Shudiner, Alan R.; Smit, Jan H.; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Zeggini, Eleftheria; Abecasis, Goncalo R.; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; van Duijn, Cornelia M.; Fox, Caroline; Groop, Leif C.; Heid, Iris M.; Hunter, David J.; Kaplan, Robert C.; McCarthy, Mark I.; North, Kari E.; O'Connell, Jeffrey R.; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P.; Frayling, Timothy; Hirschhorn, Joel N.; Müller-Nurasyid, Martina; Loos, Ruth J. F.
2016-01-01
Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways. PMID:27876822
A GENOME WIDE ASSOCIATION STUDY FOR DIABETIC NEPHROPATHY GENES IN AFRICAN AMERICANS
McDonough, Caitrin W.; Palmer, Nicholette D.; Hicks, Pamela J.; Roh, Bong H.; An, S. Sandy; Cooke, Jessica N.; Hester, Jessica M.; Wing, Maria R.; Bostrom, Meredith A.; Rudock, Megan E.; Lewis, Joshua P.; Talbert, Matthew E.; Blevins, Rebecca A.; Lu, Lingyi; Ng, Maggie C.Y.; Sale, Michele M.; Divers, Jasmin; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.
2011-01-01
A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD. PMID:21150874
A genome-wide association study for diabetic nephropathy genes in African Americans.
McDonough, Caitrin W; Palmer, Nicholette D; Hicks, Pamela J; Roh, Bong H; An, S Sandy; Cooke, Jessica N; Hester, Jessica M; Wing, Maria R; Bostrom, Meredith A; Rudock, Megan E; Lewis, Joshua P; Talbert, Matthew E; Blevins, Rebecca A; Lu, Lingyi; Ng, Maggie C Y; Sale, Michele M; Divers, Jasmin; Langefeld, Carl D; Freedman, Barry I; Bowden, Donald W
2011-03-01
A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD.
Genetic Dissection of Leaf Development in Brassica rapa Using a Genetical Genomics Approach1[W
Xiao, Dong; Wang, Huange; Basnet, Ram Kumar; Zhao, Jianjun; Lin, Ke; Hou, Xilin; Bonnema, Guusje
2014-01-01
The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene BRASSICA RAPA KIP-RELATED PROTEIN2_A03 colocalized with QTLs for leaf shape and plant height; BRASSICA RAPA ERECTA_A09 colocalized with QTLs for leaf color and leaf shape; BRASSICA RAPA LONGIFOLIA1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, BRASSICA RAPA FLOWERING LOCUS C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa. PMID:24394778
Lee, Younghee; Han, Seonggyun; Kim, Dongwook; Kim, Dokyoon; Horgousluoglu, Emrin; Risacher, Shannon L; Saykin, Andrew J; Nho, Kwangsik
2018-01-01
Genetic variation in cis-regulatory elements related to splicing machinery and splicing regulatory elements (SREs) results in exon skipping and undesired protein products. We developed a splicing decision model to identify actionable loci among common SNPs for gene regulation. The splicing decision model identified SNPs affecting exon skipping by analyzing sequence-driven alternative splicing (AS) models and by scanning the genome for the regions with putative SRE motifs. We used non-Hispanic Caucasians with neuroimaging, and fluid biomarkers for Alzheimer's disease (AD) and identified 17,088 common exonic SNPs affecting exon skipping. GWAS identified one SNP (rs1140317) in HLA-DQB1 as significantly associated with entorhinal cortical thickness, AD neuroimaging biomarker, after controlling for multiple testing. Further analysis revealed that rs1140317 was significantly associated with brain amyloid-f deposition (PET and CSF). HLA-DQB1 is an essential immune gene and may regulate AS, thereby contributing to AD pathology. SRE may hold potential as novel therapeutic targets for AD.
The impact of the rate prior on Bayesian estimation of divergence times with multiple Loci.
Dos Reis, Mario; Zhu, Tianqi; Yang, Ziheng
2014-07-01
Bayesian methods provide a powerful way to estimate species divergence times by combining information from molecular sequences with information from the fossil record. With the explosive increase of genomic data, divergence time estimation increasingly uses data of multiple loci (genes or site partitions). Widely used computer programs to estimate divergence times use independent and identically distributed (i.i.d.) priors on the substitution rates for different loci. The i.i.d. prior is problematic. As the number of loci (L) increases, the prior variance of the average rate across all loci goes to zero at the rate 1/L. As a consequence, the rate prior dominates posterior time estimates when many loci are analyzed, and if the rate prior is misspecified, the estimated divergence times will converge to wrong values with very narrow credibility intervals. Here we develop a new prior on the locus rates based on the Dirichlet distribution that corrects the problematic behavior of the i.i.d. prior. We use computer simulation and real data analysis to highlight the differences between the old and new priors. For a dataset for six primate species, we show that with the old i.i.d. prior, if the prior rate is too high (or too low), the estimated divergence times are too young (or too old), outside the bounds imposed by the fossil calibrations. In contrast, with the new Dirichlet prior, posterior time estimates are insensitive to the rate prior and are compatible with the fossil calibrations. We re-analyzed a phylogenomic data set of 36 mammal species and show that using many fossil calibrations can alleviate the adverse impact of a misspecified rate prior to some extent. We recommend the use of the new Dirichlet prior in Bayesian divergence time estimation. [Bayesian inference, divergence time, relaxed clock, rate prior, partition analysis.]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Linkage Disequilibrium Under Recurrent Bottlenecks
Schaper, E.; Eriksson, A.; Rafajlovic, M.; Sagitov, S.; Mehlig, B.
2012-01-01
To model deviations from selectively neutral genetic variation caused by different forms of selection, it is necessary to first understand patterns of neutral variation. Best understood is neutral genetic variation at a single locus. But, as is well known, additional insights can be gained by investigating multiple loci. The resulting patterns reflect the degree of association (linkage) between loci and provide information about the underlying multilocus gene genealogies. The statistical properties of two-locus gene genealogies have been intensively studied for populations of constant size, as well as for simple demographic histories such as exponential population growth and single bottlenecks. By contrast, the combined effect of recombination and sustained demographic fluctuations is poorly understood. Addressing this issue, we study a two-locus Wright–Fisher model of a population subject to recurrent bottlenecks. We derive coalescent approximations for the covariance of the times to the most recent common ancestor at two loci in samples of two chromosomes. This covariance reflects the degree of association and thus linkage disequilibrium between these loci. We find, first, that an effective population-size approximation describes the numerically observed association between two loci provided that recombination occurs either much faster or much more slowly than the population-size fluctuations. Second, when recombination occurs frequently between but rarely within bottlenecks, we observe that the association of gene histories becomes independent of physical distance over a certain range of distances. Third, we show that in this case, a commonly used measure of linkage disequilibrium, σd2 (closely related to r^2), fails to capture the long-range association between two loci. The reason is that constituent terms, each reflecting the long-range association, cancel. Fourth, we analyze a limiting case in which the long-range association can be described in terms of a Xi coalescent allowing for simultaneous multiple mergers of ancestral lines. PMID:22048021
USDA-ARS?s Scientific Manuscript database
Cacao swollen shoot virus (CSSV) [Badnavirus, Caulimoviridae] causes swollen shoot disease of Theobroma cacao L. in West Africa. Since ~2000, various diagnostic tests have failed to detect CSSV in ~50-70% of symptomatic cacao plants, suggesting the possible emergence of new, previously uncharacteriz...
Laleh, Masoud Akbarzadeh; Naseri, Marzieh; Zonouzi, Ali Akbar Poursadegh; Zonouzi, Ahmad Poursadegh; Masoudi, Marjan; Ahangari, Najmeh; Shams, Leila; Nejatizadeh, Azim
2017-01-01
We aimed to determine the contribution of four DFNB loci and mutation analysis of gap junction beta-2 ( GJB2 ) and GJB4 genes in autosomal recessive nonsyndromic hearing loss (ARNSHL) in South of Iran. A total of 36 large ARNSHL pedigrees with at least two affected subjects were enrolled in the current study. The GJB2 and GJB4 genes mutations were screened using direct sequencing method. The GJB2 and GJB4 negative families were analyzed for the linkage to DFNB21, DFNB24, DFNB29, and DFNB42 loci by genotyping the corresponding STR markers using polymerase chain reaction-PAGE method. We found a homozygous nonsense mutation W77X and a homozygous missense mutation C169W in 5.55% of studied families in GJB2 and GJB4 genes, respectively. Five heterozygous mutations including V63G, A78T, and R127H in GJB2 gene, and R103C and R227W in GJB4 gene were detected. We identified two novel variations V63G in GJB2 and R227W in GJB4 . In silico analysis predicted that both novel variations are deleterious mutations. We did not unveil any linkage between DFNB21, DFNB24, DFNB29, and DFNB42 loci and ARNSHL among studied families. This is the first report of GJB2 and GJB4 mutations from Hormozgan population. According to the previous publications regarding GJB2 and GJB4 mutations, the distribution of the mutations is different from other parts of Iran that should be considered in primary health-care programs. Further investigations are needed to evaluate the contribution of other loci in ARNSHL subjects in South of Iran.
MACHADO, HEATHER E.; BERGLAND, ALAN O.; O’BRIEN, KATHERINE R.; BEHRMAN, EMILY L.; SCHMIDT, PAUL S.; PETROV, DMITRI A.
2016-01-01
Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. PMID:26523848
Romeo, Stefano; Yin, Wu; Kozlitina, Julia; Pennacchio, Len A.; Boerwinkle, Eric; Hobbs, Helen H.; Cohen, Jonathan C.
2008-01-01
The relative activity of lipoprotein lipase (LPL) in different tissues controls the partitioning of lipoprotein-derived fatty acids between sites of fat storage (adipose tissue) and oxidation (heart and skeletal muscle). Here we used a reverse genetic strategy to test the hypothesis that 4 angiopoietin-like proteins (ANGPTL3, -4, -5, and -6) play key roles in triglyceride (TG) metabolism in humans. We re-sequenced the coding regions of the genes encoding these proteins and identified multiple rare nonsynonymous (NS) sequence variations that were associated with low plasma TG levels but not with other metabolic phenotypes. Functional studies revealed that all mutant alleles of ANGPTL3 and ANGPTL4 that were associated with low plasma TG levels interfered either with the synthesis or secretion of the protein or with the ability of the ANGPTL protein to inhibit LPL. A total of 1% of the Dallas Heart Study population and 4% of those participants with a plasma TG in the lowest quartile had a rare loss-of-function mutation in ANGPTL3, ANGPTL4, or ANGPTL5. Thus, ANGPTL3, ANGPTL4, and ANGPTL5, but not ANGPTL6, play nonredundant roles in TG metabolism, and multiple alleles at these loci cumulatively contribute to variability in plasma TG levels in humans. PMID:19075393
Sung, Yun J; Winkler, Thomas W; de Las Fuentes, Lisa; Bentley, Amy R; Brown, Michael R; Kraja, Aldi T; Schwander, Karen; Ntalla, Ioanna; Guo, Xiuqing; Franceschini, Nora; Lu, Yingchang; Cheng, Ching-Yu; Sim, Xueling; Vojinovic, Dina; Marten, Jonathan; Musani, Solomon K; Li, Changwei; Feitosa, Mary F; Kilpeläinen, Tuomas O; Richard, Melissa A; Noordam, Raymond; Aslibekyan, Stella; Aschard, Hugues; Bartz, Traci M; Dorajoo, Rajkumar; Liu, Yongmei; Manning, Alisa K; Rankinen, Tuomo; Smith, Albert Vernon; Tajuddin, Salman M; Tayo, Bamidele O; Warren, Helen R; Zhao, Wei; Zhou, Yanhua; Matoba, Nana; Sofer, Tamar; Alver, Maris; Amini, Marzyeh; Boissel, Mathilde; Chai, Jin Fang; Chen, Xu; Divers, Jasmin; Gandin, Ilaria; Gao, Chuan; Giulianini, Franco; Goel, Anuj; Harris, Sarah E; Hartwig, Fernando Pires; Horimoto, Andrea R V R; Hsu, Fang-Chi; Jackson, Anne U; Kähönen, Mika; Kasturiratne, Anuradhani; Kühnel, Brigitte; Leander, Karin; Lee, Wen-Jane; Lin, Keng-Hung; 'an Luan, Jian; McKenzie, Colin A; Meian, He; Nelson, Christopher P; Rauramaa, Rainer; Schupf, Nicole; Scott, Robert A; Sheu, Wayne H H; Stančáková, Alena; Takeuchi, Fumihiko; van der Most, Peter J; Varga, Tibor V; Wang, Heming; Wang, Yajuan; Ware, Erin B; Weiss, Stefan; Wen, Wanqing; Yanek, Lisa R; Zhang, Weihua; Zhao, Jing Hua; Afaq, Saima; Alfred, Tamuno; Amin, Najaf; Arking, Dan; Aung, Tin; Barr, R Graham; Bielak, Lawrence F; Boerwinkle, Eric; Bottinger, Erwin P; Braund, Peter S; Brody, Jennifer A; Broeckel, Ulrich; Cabrera, Claudia P; Cade, Brian; Caizheng, Yu; Campbell, Archie; Canouil, Mickaël; Chakravarti, Aravinda; Chauhan, Ganesh; Christensen, Kaare; Cocca, Massimiliano; Collins, Francis S; Connell, John M; de Mutsert, Renée; de Silva, H Janaka; Debette, Stephanie; Dörr, Marcus; Duan, Qing; Eaton, Charles B; Ehret, Georg; Evangelou, Evangelos; Faul, Jessica D; Fisher, Virginia A; Forouhi, Nita G; Franco, Oscar H; Friedlander, Yechiel; Gao, He; Gigante, Bruna; Graff, Misa; Gu, C Charles; Gu, Dongfeng; Gupta, Preeti; Hagenaars, Saskia P; Harris, Tamara B; He, Jiang; Heikkinen, Sami; Heng, Chew-Kiat; Hirata, Makoto; Hofman, Albert; Howard, Barbara V; Hunt, Steven; Irvin, Marguerite R; Jia, Yucheng; Joehanes, Roby; Justice, Anne E; Katsuya, Tomohiro; Kaufman, Joel; Kerrison, Nicola D; Khor, Chiea Chuen; Koh, Woon-Puay; Koistinen, Heikki A; Komulainen, Pirjo; Kooperberg, Charles; Krieger, Jose E; Kubo, Michiaki; Kuusisto, Johanna; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lehne, Benjamin; Lewis, Cora E; Li, Yize; Lim, Sing Hui; Lin, Shiow; Liu, Ching-Ti; Liu, Jianjun; Liu, Jingmin; Liu, Kiang; Liu, Yeheng; Loh, Marie; Lohman, Kurt K; Long, Jirong; Louie, Tin; Mägi, Reedik; Mahajan, Anubha; Meitinger, Thomas; Metspalu, Andres; Milani, Lili; Momozawa, Yukihide; Morris, Andrew P; Mosley, Thomas H; Munson, Peter; Murray, Alison D; Nalls, Mike A; Nasri, Ubaydah; Norris, Jill M; North, Kari; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R; Palmer, Nicholette D; Pankow, James S; Pedersen, Nancy L; Peters, Annette; Peyser, Patricia A; Polasek, Ozren; Raitakari, Olli T; Renström, Frida; Rice, Treva K; Ridker, Paul M; Robino, Antonietta; Robinson, Jennifer G; Rose, Lynda M; Rudan, Igor; Sabanayagam, Charumathi; Salako, Babatunde L; Sandow, Kevin; Schmidt, Carsten O; Schreiner, Pamela J; Scott, William R; Seshadri, Sudha; Sever, Peter; Sitlani, Colleen M; Smith, Jennifer A; Snieder, Harold; Starr, John M; Strauch, Konstantin; Tang, Hua; Taylor, Kent D; Teo, Yik Ying; Tham, Yih Chung; Uitterlinden, André G; Waldenberger, Melanie; Wang, Lihua; Wang, Ya X; Wei, Wen Bin; Williams, Christine; Wilson, Gregory; Wojczynski, Mary K; Yao, Jie; Yuan, Jian-Min; Zonderman, Alan B; Becker, Diane M; Boehnke, Michael; Bowden, Donald W; Chambers, John C; Chen, Yii-Der Ida; de Faire, Ulf; Deary, Ian J; Esko, Tõnu; Farrall, Martin; Forrester, Terrence; Franks, Paul W; Freedman, Barry I; Froguel, Philippe; Gasparini, Paolo; Gieger, Christian; Horta, Bernardo Lessa; Hung, Yi-Jen; Jonas, Jost B; Kato, Norihiro; Kooner, Jaspal S; Laakso, Markku; Lehtimäki, Terho; Liang, Kae-Woei; Magnusson, Patrik K E; Newman, Anne B; Oldehinkel, Albertine J; Pereira, Alexandre C; Redline, Susan; Rettig, Rainer; Samani, Nilesh J; Scott, James; Shu, Xiao-Ou; van der Harst, Pim; Wagenknecht, Lynne E; Wareham, Nicholas J; Watkins, Hugh; Weir, David R; Wickremasinghe, Ananda R; Wu, Tangchun; Zheng, Wei; Kamatani, Yoichiro; Laurie, Cathy C; Bouchard, Claude; Cooper, Richard S; Evans, Michele K; Gudnason, Vilmundur; Kardia, Sharon L R; Kritchevsky, Stephen B; Levy, Daniel; O'Connell, Jeff R; Psaty, Bruce M; van Dam, Rob M; Sims, Mario; Arnett, Donna K; Mook-Kanamori, Dennis O; Kelly, Tanika N; Fox, Ervin R; Hayward, Caroline; Fornage, Myriam; Rotimi, Charles N; Province, Michael A; van Duijn, Cornelia M; Tai, E Shyong; Wong, Tien Yin; Loos, Ruth J F; Reiner, Alex P; Rotter, Jerome I; Zhu, Xiaofeng; Bierut, Laura J; Gauderman, W James; Caulfield, Mark J; Elliott, Paul; Rice, Kenneth; Munroe, Patricia B; Morrison, Alanna C; Cupples, L Adrienne; Rao, Dabeeru C; Chasman, Daniel I
2018-03-01
Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10 -8 ) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10 -8 ). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2). Copyright © 2018 American Society of Human Genetics. All rights reserved.
Genome wide association mapping for grain shape traits in indica rice.
Feng, Yue; Lu, Qing; Zhai, Rongrong; Zhang, Mengchen; Xu, Qun; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wei, Xinghua
2016-10-01
Using genome-wide association mapping, 47 SNPs within 27 significant loci were identified for four grain shape traits, and 424 candidate genes were predicted from public database. Grain shape is a key determinant of grain yield and quality in rice (Oryza sativa L.). However, our knowledge of genes controlling rice grain shape remains limited. Genome-wide association mapping based on linkage disequilibrium (LD) has recently emerged as an effective approach for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, association mapping based on 5291 single nucleotide polymorphisms (SNPs) was conducted to identify significant loci associated with grain shape traits in a global collection of 469 diverse rice accessions. A total of 47 SNPs were located in 27 significant loci for four grain traits, and explained ~44.93-65.90 % of the phenotypic variation for each trait. In total, 424 candidate genes within a 200 kb extension region (±100 kb of each locus) of these loci were predicted. Of them, the cloned genes GS3 and qSW5 showed very strong effects on grain length and grain width in our study. Comparing with previously reported QTLs for grain shape traits, we found 11 novel loci, including 3, 3, 2 and 3 loci for grain length, grain width, grain length-width ratio and thousand grain weight, respectively. Validation of these new loci would be performed in the future studies. These results revealed that besides GS3 and qSW5, multiple novel loci and mechanisms were involved in determining rice grain shape. These findings provided valuable information for understanding of the genetic control of grain shape and molecular marker assistant selection (MAS) breeding in rice.
Zhu, Xiaofeng; Feng, Tao; Tayo, Bamidele O; Liang, Jingjing; Young, J Hunter; Franceschini, Nora; Smith, Jennifer A; Yanek, Lisa R; Sun, Yan V; Edwards, Todd L; Chen, Wei; Nalls, Mike; Fox, Ervin; Sale, Michele; Bottinger, Erwin; Rotimi, Charles; Liu, Yongmei; McKnight, Barbara; Liu, Kiang; Arnett, Donna K; Chakravati, Aravinda; Cooper, Richard S; Redline, Susan
2015-01-08
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple-even distinct-traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10(-8)) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10(-7)) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Genomic analysis reveals extensive gene duplication within the bovine TRB locus
Connelley, Timothy; Aerts, Jan; Law, Andy; Morrison, W Ivan
2009-01-01
Background Diverse TR and IG repertoires are generated by V(D)J somatic recombination. Genomic studies have been pivotal in cataloguing the V, D, J and C genes present in the various TR/IG loci and describing how duplication events have expanded the number of these genes. Such studies have also provided insights into the evolution of these loci and the complex mechanisms that regulate TR/IG expression. In this study we analyze the sequence of the third bovine genome assembly to characterize the germline repertoire of bovine TRB genes and compare the organization, evolution and regulatory structure of the bovine TRB locus with that of humans and mice. Results The TRB locus in the third bovine genome assembly is distributed over 5 scaffolds, extending to ~730 Kb. The available sequence contains 134 TRBV genes, assigned to 24 subgroups, and 3 clusters of DJC genes, each comprising a single TRBD gene, 5–7 TRBJ genes and a single TRBC gene. Seventy-nine of the TRBV genes are predicted to be functional. Comparison with the human and murine TRB loci shows that the gene order, as well as the sequences of non-coding elements that regulate TRB expression, are highly conserved in the bovine. Dot-plot analyses demonstrate that expansion of the genomic TRBV repertoire has occurred via a complex and extensive series of duplications, predominantly involving DNA blocks containing multiple genes. These duplication events have resulted in massive expansion of several TRBV subgroups, most notably TRBV6, 9 and 21 which contain 40, 35 and 16 members respectively. Similarly, duplication has lead to the generation of a third DJC cluster. Analyses of cDNA data confirms the diversity of the TRBV genes and, in addition, identifies a substantial number of TRBV genes, predominantly from the larger subgroups, which are still absent from the genome assembly. The observed gene duplication within the bovine TRB locus has created a repertoire of phylogenetically diverse functional TRBV genes, which is substantially larger than that described for humans and mice. Conclusion The analyses completed in this study reveal that, although the gene content and organization of the bovine TRB locus are broadly similar to that of humans and mice, multiple duplication events have led to a marked expansion in the number of TRB genes. Similar expansions in other ruminant TR loci suggest strong evolutionary pressures in this lineage have selected for the development of enlarged sets of TR genes that can contribute to diverse TR repertoires. PMID:19393068
A case of false mother included with 46 autosomal STR markers.
Li, Li; Lin, Yuan; Liu, Yan; Zhu, Ruxin; Zhao, Zhenmin; Que, Tingzhi
2015-01-01
For solving a maternity case, 19 autosomal short tandem repeats (STRs) were amplified using the AmpFℓSTR(®) Sinofiler(TM) kit and PowerPlex(®) 16 System. Additional 27 autosomal STR loci were analyzed using two domestic kits AGCU 21+1 and STRtyper-10G. The combined maternity index (CMI) was calculated to be 3.3 × 10(13), but the putative mother denied that she had given birth to the child. In order to reach an accurate conclusion, further testing of 20 X-chromosomal short tandem repeats (X-STRs), 40 single nucleotide polymorphism (SNP) loci, and mitochondrial DNA (mtDNA) was carried out. The putative mother and the boy shared at least one allele at all 46 tested autosomal STR loci. But, according to the profile data of 20 X-STR and 40 SNP markers, different genotypes at 13 X-STR loci and five SNP loci excluded maternity. Mitochondrial profiles also clearly excluded the mother as a parent of the son because they have multiple differences. It was finally found that the putative mother is the sister of the biological father. Different kinds of genetic markers needfully supplement the use of autosomal STR loci in case where the putative parent is suspected to be related to the true parent.
Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A
2015-01-01
Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.
Genetic susceptibility for Alzheimer disease neuritic plaque pathology.
Shulman, Joshua M; Chen, Kewei; Keenan, Brendan T; Chibnik, Lori B; Fleisher, Adam; Thiyyagura, Pradeep; Roontiva, Auttawut; McCabe, Cristin; Patsopoulos, Nikolaos A; Corneveaux, Jason J; Yu, Lei; Huentelman, Matthew J; Evans, Denis A; Schneider, Julie A; Reiman, Eric M; De Jager, Philip L; Bennett, David A
2013-09-01
While numerous genetic susceptibility loci have been identified for clinical Alzheimer disease (AD), it is important to establish whether these variants are risk factors for the underlying disease pathology, including neuritic plaques. To investigate whether AD susceptibility loci from genome-wide association studies affect neuritic plaque pathology and to additionally identify novel risk loci for this trait. Candidate analysis of single-nucleotide polymorphisms and genome-wide association study in a joint clinicopathologic cohort, including 725 deceased subjects from the Religious Orders Study and the Rush Memory and Aging Project (2 prospective, community-based studies), followed by targeted validation in an independent neuroimaging cohort, including 114 subjects from multiple clinical and research centers. A quantitative measure of neuritic plaque pathologic burden, based on assessments of silver-stained tissue averaged from multiple brain regions. Validation based on β-amyloid load by immunocytochemistry, and replication with fibrillar β-amyloid positron emission tomographic imaging with Pittsburgh Compound B or florbetapir. Besides the previously reported APOE and CR1 loci, we found that the ABCA7 (rs3764650; P = .02) and CD2AP (rs9349407; P = .03) AD susceptibility loci are associated with neuritic plaque burden. In addition, among the top results of our genome-wide association study, we discovered a novel variant near the amyloid precursor protein gene (APP, rs2829887) that is associated with neuritic plaques (P = 3.3 × 10-6). This polymorphism was associated with postmortem β-amyloid load as well as fibrillar β-amyloid in 2 independent cohorts of adults with normal cognition. These findings enhance understanding of AD risk factors by relating validated susceptibility alleles to increased neuritic plaque pathology and implicate common genetic variation at the APP locus in the earliest, presymptomatic stages of AD.
Identification of Nine Novel Loci Associated with White Blood Cell Subtypes in a Japanese Population
Okada, Yukinori; Hirota, Tomomitsu; Kamatani, Yoichiro; Takahashi, Atsushi; Ohmiya, Hiroko; Kumasaka, Natsuhiko; Higasa, Koichiro; Yamaguchi-Kabata, Yumi; Hosono, Naoya; Nalls, Michael A.; Chen, Ming Huei; van Rooij, Frank J. A.; Smith, Albert V.; Tanaka, Toshiko; Couper, David J.; Zakai, Neil A.; Ferrucci, Luigi; Longo, Dan L.; Hernandez, Dena G.; Witteman, Jacqueline C. M.; Harris, Tamara B.; O'Donnell, Christopher J.; Ganesh, Santhi K.; Matsuda, Koichi; Tsunoda, Tatsuhiko; Tanaka, Toshihiro; Kubo, Michiaki; Nakamura, Yusuke; Tamari, Mayumi; Yamamoto, Kazuhiko; Kamatani, Naoyuki
2011-01-01
White blood cells (WBCs) mediate immune systems and consist of various subtypes with distinct roles. Elucidation of the mechanism that regulates the counts of the WBC subtypes would provide useful insights into both the etiology of the immune system and disease pathogenesis. In this study, we report results of genome-wide association studies (GWAS) and a replication study for the counts of the 5 main WBC subtypes (neutrophils, lymphocytes, monocytes, basophils, and eosinophils) using 14,792 Japanese subjects enrolled in the BioBank Japan Project. We identified 12 significantly associated loci that satisfied the genome-wide significance threshold of P<5.0×10−8, of which 9 loci were novel (the CDK6 locus for the neutrophil count; the ITGA4, MLZE, STXBP6 loci, and the MHC region for the monocyte count; the SLC45A3-NUCKS1, GATA2, NAALAD2, ERG loci for the basophil count). We further evaluated associations in the identified loci using 15,600 subjects from Caucasian populations. These WBC subtype-related loci demonstrated a variety of patterns of pleiotropic associations within the WBC subtypes, or with total WBC count, platelet count, or red blood cell-related traits (n = 30,454), which suggests unique and common functional roles of these loci in the processes of hematopoiesis. This study should contribute to the understanding of the genetic backgrounds of the WBC subtypes and hematological traits. PMID:21738478
Association of Alzheimer's disease GWAS loci with MRI markers of brain aging.
Chauhan, Ganesh; Adams, Hieab H H; Bis, Joshua C; Weinstein, Galit; Yu, Lei; Töglhofer, Anna Maria; Smith, Albert Vernon; van der Lee, Sven J; Gottesman, Rebecca F; Thomson, Russell; Wang, Jing; Yang, Qiong; Niessen, Wiro J; Lopez, Oscar L; Becker, James T; Phan, Thanh G; Beare, Richard J; Arfanakis, Konstantinos; Fleischman, Debra; Vernooij, Meike W; Mazoyer, Bernard; Schmidt, Helena; Srikanth, Velandai; Knopman, David S; Jack, Clifford R; Amouyel, Philippe; Hofman, Albert; DeCarli, Charles; Tzourio, Christophe; van Duijn, Cornelia M; Bennett, David A; Schmidt, Reinhold; Longstreth, William T; Mosley, Thomas H; Fornage, Myriam; Launer, Lenore J; Seshadri, Sudha; Ikram, M Arfan; Debette, Stephanie
2015-04-01
Whether novel risk variants of Alzheimer's disease (AD) identified through genome-wide association studies also influence magnetic resonance imaging-based intermediate phenotypes of AD in the general population is unclear. We studied association of 24 AD risk loci with intracranial volume, total brain volume, hippocampal volume (HV), white matter hyperintensity burden, and brain infarcts in a meta-analysis of genetic association studies from large population-based samples (N = 8175-11,550). In single-SNP based tests, AD risk allele of APOE (rs2075650) was associated with smaller HV (p = 0.0054) and CD33 (rs3865444) with smaller intracranial volume (p = 0.0058). In gene-based tests, there was associations of HLA-DRB1 with total brain volume (p = 0.0006) and BIN1 with HV (p = 0.00089). A weighted AD genetic risk score was associated with smaller HV (beta ± SE = -0.047 ± 0.013, p = 0.00041), even after excluding the APOE locus (p = 0.029). However, only association of AD genetic risk score with HV, including APOE, was significant after multiple testing correction (including number of independent phenotypes tested). These results suggest that novel AD genetic risk variants may contribute to structural brain aging in nondemented older community persons. Copyright © 2015 Elsevier Inc. All rights reserved.
Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.
2012-01-01
Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999
Huang, Xueqing; Ding, Jia; Effgen, Sigi; Turck, Franziska; Koornneef, Maarten
2013-08-01
Shoot branching is a major determinant of plant architecture. Genetic variants for reduced stem branching in the axils of cauline leaves of Arabidopsis were found in some natural accessions and also at low frequency in the progeny of multiparent crosses. Detailed genetic analysis using segregating populations derived from backcrosses with the parental lines and bulked segregant analysis was used to identify the allelic variation controlling reduced stem branching. Eight quantitative trait loci (QTLs) contributing to natural variation for reduced stem branching were identified (REDUCED STEM BRANCHING 1-8 (RSB1-8)). Genetic analysis showed that RSB6 and RSB7, corresponding to flowering time genes FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), epistatically regulate stem branching. Furthermore, FLOWERING LOCUS T (FT), which corresponds to RSB8 as demonstrated by fine-mapping, transgenic complementation and expression analysis, caused pleiotropic effects not only on flowering time, but, in the specific background of active FRI and FLC alleles, also on the RSB trait. The consequence of allelic variation only expressed in late-flowering genotypes revealed novel and thus far unsuspected roles of several genes well characterized for their roles in flowering time control. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng
2015-03-01
Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way for improving the precision of posterior time estimation. However, even if a huge amount of sequence data is analyzed, considerable uncertainty will persist in time estimates. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
Jagannath, Arun; Sodhi, Yashpal Singh; Gupta, Vibha; Mukhopadhyay, Arundhati; Arumugam, Neelakantan; Singh, Indira; Rohatgi, Soma; Burma, Pradeep Kumar; Pradhan, Akshay Kumar; Pental, Deepak
2011-04-01
Oil content and oil quality fractions (viz., oleic, linoleic and linolenic acid) are strongly influenced by the erucic acid pathway in oilseed Brassicas. Low levels of erucic acid in seed oil increases oleic acid content to nutritionally desirable levels, but also increases the linoleic and linolenic acid fractions and reduces oil content in Indian mustard (Brassica juncea). Analysis of phenotypic variability for oil quality fractions among a high-erucic Indian variety (Varuna), a low-erucic east-European variety (Heera) and a zero-erucic Indian variety (ZE-Varuna) developed by backcross breeding in this study indicated that lower levels of linoleic and linolenic acid in Varuna are due to substrate limitation caused by an active erucic acid pathway and not due to weaker alleles or enzyme limitation. To identify compensatory loci that could be used to increase oil content and maintain desirable levels of oil quality fractions under zero-erucic conditions, we performed Quantitative Trait Loci (QTL) mapping for the above traits on two independent F1 doubled haploid (F1DH) mapping populations developed from a cross between Varuna and Heera. One of the populations comprised plants segregating for erucic acid content (SE) and was used earlier for construction of a linkage map and QTL mapping of several yield-influencing traits in B. juncea. The second population consisted of zero-erucic acid individuals (ZE) for which, an Amplified Fragment Length Polymorphism (AFLP)-based framework linkage map was constructed in the present study. By QTL mapping for oil quality fractions and oil content in the ZE population, we detected novel loci contributing to the above traits. These loci did not co-localize with mapped locations of the fatty acid desaturase 2 (FAD2), fatty acid desaturase 3 (FAD3) or fatty acid elongase (FAE) genes unlike those of the SE population wherein major QTL were found to coincide with mapped locations of the FAE genes. Some of the new loci identified in the ZE population could be detected as 'weak' contributors (with LOD < 2.5) in the SE population in which their contribution to the traits was "masked" due to pleiotropic effects of erucic acid genes. The novel loci identified in this study could now be used to improve oil quality parameters and oil content in B. juncea under zero-erucic conditions.
Conservation genomics of threatened animal species.
Steiner, Cynthia C; Putnam, Andrea S; Hoeck, Paquita E A; Ryder, Oliver A
2013-01-01
The genomics era has opened up exciting possibilities in the field of conservation biology by enabling genomic analyses of threatened species that previously were limited to model organisms. Next-generation sequencing (NGS) and the collection of genome-wide data allow for more robust studies of the demographic history of populations and adaptive variation associated with fitness and local adaptation. Genomic analyses can also advance management efforts for threatened wild and captive populations by identifying loci contributing to inbreeding depression and disease susceptibility, and predicting fitness consequences of introgression. However, the development of genomic tools in wild species still carries multiple challenges, particularly those associated with computational and sampling constraints. This review provides an overview of the most significant applications of NGS and the implications and limitations of genomic studies in conservation.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
2016-09-09
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
New microsatellite loci for Prosopis alba and P. chilensis (Fabaceae)1
Bessega, Cecilia F.; Pometti, Carolina L.; Miller, Joe T.; Watts, Richard; Saidman, Beatriz O.; Vilardi, Juan C.
2013-01-01
• Premise of the study: As only six useful microsatellite loci that exhibit broad cross-amplification are so far available for Prosopis species, it is necessary to develop a larger number of codominant markers for population genetic studies. Simple sequence repeat (SSR) markers obtained for Prosopis species from a 454 pyrosequencing run were optimized and characterized for studies in P. alba and P. chilensis. • Methods and Results: Twelve markers that were successfully amplified showed polymorphism in P. alba and P. chilensis. The number of alleles per locus ranged between two and seven and heterozygosity estimates ranged from 0.2 to 0.8. Most of these loci cross-amplify in P. ruscifolia, P. flexuosa, P. kuntzei, P. glandulosa, and P. pallida. • Conclusions: These loci will enable genetic diversity studies of P. alba and P. chilensis and contribute to fine-scale population structure, indirect estimation of relatedness among individuals, and marker-assisted selection. PMID:25202541
Jensen, Lea M.; Kliebenstein, Daniel J.; Burow, Meike
2015-01-01
Quantitative trait loci (QTL) mapping studies enable identification of loci that are part of regulatory networks controlling various phenotypes. Detailed investigations of genes within these loci are required to ultimately understand the function of individual genes and how they interact with other players in the network. In this study, we use transgenic plants in combination with natural variation to investigate the regulatory role of the AOP3 gene found in GS-AOP locus previously suggested to contribute to the regulation of glucosinolate defense compounds. Phenotypic analysis and QTL mapping in F2 populations with different AOP3 transgenes support that the enzymatic function and the AOP3 RNA both play a significant role in controlling glucosinolate accumulation. Furthermore, we find different loci interacting with either the enzymatic activity or the RNA of AOP3 and thereby extend the regulatory network controlling glucosinolate accumulation. PMID:26442075
Identification of phasiRNAs in wild rice (Oryza rufipogon).
Liu, Yang; Wang, Yu; Zhu, Qian-Hao; Fan, Longjiang
2013-08-01
Plant miRNAs can trigger the production of phased, secondary siRNAs from either non-coding or protein-coding genes. In this study, at least 864 and 3,961 loci generating 21-nt and 24-nt phased siRNAs (phasiRNAs),respectively, were identified in three tissues from wild rice. Of these phasiRNA-producing loci, or PHAS genes, biogenesis of phasiRNAs in at least 160 of 21-nt and 254 of 24-nt loci could be triggered by interaction with miRNA(s). Developing seeds had more PHAS genes than leaves and roots. Genetic constrain on miRNA-triggered PHAS genes suggests that phasiRNAs might be one of the driving forces contributed to rice domestication.
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C A; Patsopoulos, Nikolaos A; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E; Edkins, Sarah; Gray, Emma; Booth, David R; Potter, Simon C; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D'alfonso, Sandra; Blackburn, Hannah; Martinelli Boneschi, Filippo; Liddle, Jennifer; Harbo, Hanne F; Perez, Marc L; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J; Barcellos, Lisa F; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P; Brassat, David; Broadley, Simon A; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M; Cavalla, Paola; Celius, Elisabeth G; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B; Cozen, Wendy; Cree, Bruce A C; Cross, Anne H; Cusi, Daniele; Daly, Mark J; Davis, Emma; de Bakker, Paul I W; Debouverie, Marc; D'hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F A; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G; Kilpatrick, Trevor J; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S; Leone, Maurizio A; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R; Link, Jenny; Liu, Jianjun; Lorentzen, Aslaug R; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L; Ramsay, Patricia P; Reunanen, Mauri; Reynolds, Richard; Rioux, John D; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J; Sellebjerg, Finn; Selmaj, Krzysztof W; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M A; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A; Tronczynska, Ewa; Casas, Juan P; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S; Wang, Kai; Mathew, Christopher G; Wason, James; Palmer, Colin N A; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C; Yaouanq, Jacqueline; Viswanathan, Ananth C; Zhang, Haitao; Wood, Nicholas W; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R; Pericak-Vance, Margaret A; Haines, Jonathan L; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J; De Jager, Philip L; Peltonen, Leena; Stewart, Graeme J; Hafler, David A; Hauser, Stephen L; McVean, Gil; Donnelly, Peter; Compston, Alastair
2011-08-10
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.
Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary.
Lekven, Arne C; Buckles, Gerri R; Kostakis, Nicholas; Moon, Randall T
2003-02-15
Wnt signals have been shown to be involved in multiple steps of vertebrate neural patterning, yet the relative contributions of individual Wnts to the process of brain regionalization is poorly understood. Wnt1 has been shown in the mouse to be required for the formation of the midbrain and the anterior hindbrain, but this function of wnt1 has not been explored in other model systems. Further, wnt1 is part of a Wnt cluster conserved in all vertebrates comprising wnt1 and wnt10b, yet the function of wnt10b during embryogenesis has not been explored. Here, we report that in zebrafish wnt10b is expressed in a pattern overlapping extensively with that of wnt1. We have generated a deficiency allele for these closely linked loci and performed morpholino antisense oligo knockdown to show that wnt1 and wnt10b provide partially redundant functions in the formation of the midbrain-hindbrain boundary (MHB). When both loci are deleted, the expression of pax2.1, en2, and her5 is lost in the ventral portion of the MHB beginning at the 8-somite stage. However, wnt1 and wnt10b are not required for the maintenance of fgf8, en3, wnt8b, or wnt3a expression. Embryos homozygous for the wnt1-wnt10b deficiency display a mild MHB phenotype, but are sensitized to reductions in either Pax2.1 or Fgf8; that is, in combination with mutant alleles of either of these loci, the morphological MHB is lost. Thus, wnt1 and wnt10b are required to maintain threshold levels of Pax2.1 and Fgf8 at the MHB. Copyright 2003 Elsevier Science (USA)
Lu, Xiangfeng; Huang, Jianfeng; Mo, Zengnan; He, Jiang; Wang, Laiyuan; Yang, Xueli; Tan, Aihua; Chen, Shufeng; Chen, Jing; Gu, C Charles; Chen, Jichun; Li, Ying; Zhao, Liancheng; Li, Hongfan; Hao, Yongchen; Li, Jianxin; Hixson, James E; Li, Yunzhi; Cheng, Min; Liu, Xiaoli; Cao, Jie; Liu, Fangcao; Huang, Chen; Shen, Chong; Shen, Jinjin; Yu, Ling; Xu, Lihua; Mu, Jianjun; Wu, Xianping; Ji, Xu; Guo, Dongshuang; Zhou, Zhengyuan; Yang, Zili; Wang, Renping; Yang, Jun; Yan, Weili; Peng, Xiaozhong; Gu, Dongfeng
2016-02-01
Multiple genetic loci associated with lipid levels have been identified predominantly in Europeans, and the issue of to what extent these genetic loci can predict blood lipid levels increases over time and the incidence of future hyperlipidemia remains largely unknown. We conducted a meta-analysis of genome-wide association studies of lipid levels in 8344 subjects followed by replication studies including 14 739 additional individuals. We replicated 17 previously reported loci. We also newly identified 3 Chinese-specific variants in previous regions (HLA-C, LIPG, and LDLR) with genome-wide significance. Almost all the variants contributed to lipid levels change and incident hyperlipidemia >8.1-year follow-up among 6428 individuals of a prospective cohort study. The strongest associations for lipid levels change were detected at LPL, TRIB1, APOA1-C3-A4-A5, LIPC, CETP, and LDLR (P range from 4.84×10(-4) to 4.62×10(-18)), whereas LPL, TRIB1, ABCA1, APOA1-C3-A4-A5, CETP, and APOE displayed significant strongest associations for incident hyperlipidemia (P range from 1.20×10(-3) to 4.67×10(-16)). The 4 lipids genetic risk scores were independently associated with linear increases in their corresponding lipid levels and risk of incident hyperlipidemia. A C-statistics analysis showed significant improvement in the prediction of incident hyperlipidemia on top of traditional risk factors including the baseline lipid levels. These findings identified some evidence for allelic heterogeneity in Chinese when compared with Europeans in relation to lipid associations. The individual variants and those cumulative effects were independent risk factors for lipids increase and incident hyperlipidemia. © 2015 American Heart Association, Inc.
Schielzeth, Holger; Rios Villamil, Alejandro; Burri, Reto
2018-03-25
Recent developments in sequencing technologies have facilitated genomewide mapping of phenotypic variation in natural populations. Such mapping efforts face a number of challenges potentially leading to low reproducibility. However, reproducible research forms the basis of scientific progress. We here discuss the options for replication and the reasons for potential nonreproducibility. We then review the evidence for reproducible quantitative trait loci (QTL) with a focus on natural animal populations. Existing case studies of replication fall into three categories: (i) traits that have been mapped to major effect loci (including chromosomal inversion and supergenes) by independent research teams; (ii) QTL fine-mapped in discovery populations; and (iii) attempts to replicate QTL across multiple populations. Major effect loci, in particular those associated with inversions, have been successfully replicated in several cases within and across populations. Beyond such major effect variants, replication has been more successful within than across populations, suggesting that QTL discovered in natural populations may often be population-specific. This suggests that biological causes (differences in linkage patterns, allele frequencies or context-dependencies of QTL) contribute to nonreproducibility. Evidence from other fields, notably animal breeding and QTL mapping in humans, suggests that a significant fraction of QTL is indeed reproducible in direction and magnitude at least within populations. However, there is also a large number of QTL that cannot be easily reproduced. We put forward that more studies should explicitly address the causes and context-dependencies of QTL signals, in particular to disentangle linkage differences, allele frequency differences and gene-by-environment interactions as biological causes of nonreproducibility of QTL, especially between populations. © 2018 John Wiley & Sons Ltd.
Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster.
Pasyukova, E G; Vieira, C; Mackay, T F
2000-01-01
In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested. PMID:11063689
Human-Specific Histone Methylation Signatures at Transcription Start Sites in Prefrontal Neurons
Cheung, Iris; Bharadwaj, Rahul; Chou, Hsin-Jung; Houston, Isaac B.; Peter, Cyril J.; Mitchell, Amanda C.; Yao, Wei-Dong; Myers, Richard H.; Chen, Jiang-fan; Preuss, Todd M.; Rogaev, Evgeny I.; Jensen, Jeffrey D.; Weng, Zhiping; Akbarian, Schahram
2012-01-01
Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5–1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans. PMID:23185133
Hamilton, Matthew B; Tartakovsky, Maria; Battocletti, Amy
2018-05-01
The genetic effective population size, N e , can be estimated from the average gametic disequilibrium (r2^) between pairs of loci, but such estimates require evaluation of assumptions and currently have few methods to estimate confidence intervals. speed-ne is a suite of matlab computer code functions to estimate Ne^ from r2^ with a graphical user interface and a rich set of outputs that aid in understanding data patterns and comparing multiple estimators. speed-ne includes functions to either generate or input simulated genotype data to facilitate comparative studies of Ne^ estimators under various population genetic scenarios. speed-ne was validated with data simulated under both time-forward and time-backward coalescent models of genetic drift. Three classes of estimators were compared with simulated data to examine several general questions: what are the impacts of microsatellite null alleles on Ne^, how should missing data be treated, and does disequilibrium contributed by reduced recombination among some loci in a sample impact Ne^. Estimators differed greatly in precision in the scenarios examined, and a widely employed Ne^ estimator exhibited the largest variances among replicate data sets. speed-ne implements several jackknife approaches to estimate confidence intervals, and simulated data showed that jackknifing over loci and jackknifing over individuals provided ~95% confidence interval coverage for some estimators and should be useful for empirical studies. speed-ne provides an open-source extensible tool for estimation of Ne^ from empirical genotype data and to conduct simulations of both microsatellite and single nucleotide polymorphism (SNP) data types to develop expectations and to compare Ne^ estimators. © 2018 John Wiley & Sons Ltd.
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segrè, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Mägi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Åsa; Zillikens, M.Carola; Feitosa, Mary F.; Esko, Tõnu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltán; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R.B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; König, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Müller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J.C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpeläinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Paré, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietiläinen, Kirsi H.; Pouta, Anneli; Ridderstråle, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G.Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; van Meurs, Joyce B.J.; Aben, Katja K.; Ardlie, Kristin G; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kähönen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimäki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Tönjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Grönberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G.Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Inês; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L.Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Riitta; Mooser, Vincent; Munroe, Patricia B.; Ouwehand, Willem H.; Penninx, Brenda W.; Pramstaller, Peter P.; Quertermous, Thomas; Rudan, Igor; Samani, Nilesh J.; Spector, Timothy D.; Völzke, Henry; Watkins, Hugh; Wilson, James F.; Groop, Leif C.; Haritunians, Talin; Hu, Frank B.; Kaplan, Robert C.; Metspalu, Andres; North, Kari E.; Schlessinger, David; Wareham, Nicholas J.; Hunter, David J.; O'Connell, Jeffrey R.; Strachan, David P.; Wichmann, H.-Erich; Borecki, Ingrid B.; van Duijn, Cornelia M.; Schadt, Eric E.; Thorsteinsdottir, Unnur; Peltonen, Leena; Uitterlinden, André; Visscher, Peter M.; Chatterjee, Nilanjan; Loos, Ruth J.F.; Boehnke, Michael; McCarthy, Mark I.; Ingelsson, Erik; Lindgren, Cecilia M.; Abecasis, Gonçalo R.; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N
2010-01-01
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence phenotype. Genome-wide association (GWA) studies have identified >600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the utility of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P=0.016), and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants, and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented amongst variants that alter amino acid structure of proteins and expression levels of nearby genes. Our data explain ∼10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to ∼16% of phenotypic variation (∼20% of heritable variation). Although additional approaches are needed to fully dissect the genetic architecture of polygenic human traits, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways. PMID:20881960
NASA Astrophysics Data System (ADS)
Li, Qi; Zheng, Xiaodong; Yu, Ruihai
2008-08-01
Five full-sib families of the Pacific oyster ( Crassostrea gigas) larvae were used to study the mode of inheritance at eight microsatellite loci, and the feasibility of these markers for kinship estimate was also examined. All eight microsatellite loci were compatible with Mendelian inheritance. Neither evidence of sex-linked barriers to transmission nor evidence of major barriers to fertilization between gametes from the parents was shown. Three of the eight loci showed the presence of null alleles in four families, demonstrating the need to conduct comprehensive species-specific inheritance studies for microsatellite loci used in population genetic studies. Although the null allele heterozygotes were considered as homozygotes in the calculation of genetic distance, offspring from five full-sib families were unambiguously discriminated in the neighbor-joining dendrogram. This result indicates that the microsatellite markers may be capable of discriminating between related and unrelated oyster larvae in the absence of pedigree information, and is applicable to the investigation of the effective number of parents contributing to the hatchery population of the Pacific oyster.
Huebinger, Ryan M.; Shewale, Shantanu J.; Koenig, Jessica L.; Mitchel, Jeffrey S.; O’Bryant, Sid E.; Waring, Stephen C.; Diaz-Arrastia, Ramon; Chasse, Scott
2015-01-01
Although 24 Alzheimer’s disease (AD) risk loci have been reliably identified, a large portion of the predicted heritability for AD remains unexplained. It is expected that additional loci of small effect will be identified with an increased sample size. However, the cost of a significant increase in Case-Control sample size is prohibitive. The current study tests whether exploring the genetic basis of endophenotypes, in this case based on putative blood biomarkers for AD, can accelerate the identification of susceptibility loci using modest sample sizes. Each endophenotype was used as the outcome variable in an independent GWAS. Endophenotypes were based on circulating concentrations of proteins that contributed significantly to a published blood-based predictive algorithm for AD. Endophenotypes included Monocyte Chemoattractant Protein 1 (MCP1), Vascular Cell Adhesion Molecule 1 (VCAM1), Pancreatic Polypeptide (PP), Beta2 Microglobulin (B2M), Factor VII (F7), Adiponectin (ADN) and Tenascin C (TN-C). Across the seven endophenotypes, 47 SNPs were associated with outcome with a p-value ≤1x10-7. Each signal was further characterized with respect to known genetic loci associated with AD. Signals for several endophenotypes were observed in the vicinity of CR1, MS4A6A/MS4A4E, PICALM, CLU, and PTK2B. The strongest signal was observed in association with Factor VII levels and was located within the F7 gene. Additional signals were observed in MAP3K13, ZNF320, ATP9B and TREM1. Conditional regression analyses suggested that the SNPs contributed to variation in protein concentration independent of AD status. The identification of two putatively novel AD loci (in the Factor VII and ATP9B genes), which have not been located in previous studies despite massive sample sizes, highlights the benefits of an endophenotypic approach for resolving the genetic basis for complex diseases. The coincidence of several of the endophenotypic signals with known AD loci may point to novel genetic interactions and should be further investigated. PMID:26625115
Barber, Robert C; Phillips, Nicole R; Tilson, Jeffrey L; Huebinger, Ryan M; Shewale, Shantanu J; Koenig, Jessica L; Mitchel, Jeffrey S; O'Bryant, Sid E; Waring, Stephen C; Diaz-Arrastia, Ramon; Chasse, Scott; Wilhelmsen, Kirk C
2015-01-01
Although 24 Alzheimer's disease (AD) risk loci have been reliably identified, a large portion of the predicted heritability for AD remains unexplained. It is expected that additional loci of small effect will be identified with an increased sample size. However, the cost of a significant increase in Case-Control sample size is prohibitive. The current study tests whether exploring the genetic basis of endophenotypes, in this case based on putative blood biomarkers for AD, can accelerate the identification of susceptibility loci using modest sample sizes. Each endophenotype was used as the outcome variable in an independent GWAS. Endophenotypes were based on circulating concentrations of proteins that contributed significantly to a published blood-based predictive algorithm for AD. Endophenotypes included Monocyte Chemoattractant Protein 1 (MCP1), Vascular Cell Adhesion Molecule 1 (VCAM1), Pancreatic Polypeptide (PP), Beta2 Microglobulin (B2M), Factor VII (F7), Adiponectin (ADN) and Tenascin C (TN-C). Across the seven endophenotypes, 47 SNPs were associated with outcome with a p-value ≤1x10(-7). Each signal was further characterized with respect to known genetic loci associated with AD. Signals for several endophenotypes were observed in the vicinity of CR1, MS4A6A/MS4A4E, PICALM, CLU, and PTK2B. The strongest signal was observed in association with Factor VII levels and was located within the F7 gene. Additional signals were observed in MAP3K13, ZNF320, ATP9B and TREM1. Conditional regression analyses suggested that the SNPs contributed to variation in protein concentration independent of AD status. The identification of two putatively novel AD loci (in the Factor VII and ATP9B genes), which have not been located in previous studies despite massive sample sizes, highlights the benefits of an endophenotypic approach for resolving the genetic basis for complex diseases. The coincidence of several of the endophenotypic signals with known AD loci may point to novel genetic interactions and should be further investigated.
Genetic affinities of the Siddis of South India: an emigrant population of East Africa.
Gauniyal, Mansi; Chahal, S M S; Kshatriya, Gautam K
2008-06-01
Historical records indicate that the Portuguese brought the African Siddis to Goa, India, as slaves about 500 years ago. Subsequently, the Siddis moved into the interior regions of the state of Karnataka, India, and have remained there ever since. Over time the Siddis have experienced considerable cultural changes because of their proximity to neighboring population groups. To understand the biological consequences of these changes, we studied the Siddis to determine the extent of genetic variation and the contributions from the African, European, and Indian ancestral populations. In the present study we typed the Siddis for 20 polymorphic serological, red cell, and Alu insertion-deletion loci. The overall pattern of phenotype (and genotype) distribution is in accordance with Hardy-Weinberg expectations. Considering the ethnohistorical records and the availability of secondary-source genetic data, we used two data sets in the analysis: one comprising eight serological and red cell enzyme markers with eight population groups and another comprising six Alu insertion-deletion markers with seven tribal groups of South India. The dendrograms generated from these two data sets on the basis of genetic distance analysis between the selected populations of African, European, and Indian descent reveals that the Siddis are closer to the Africans than they are to the South Indian populations. Genetic admixture analysis using a dihybrid model (19 loci) and a trihybrid model (10 loci and 8 loci) shows that the predominant influence comes from the Africans, a lesser contribution from the South Indians, and a slight contribution from the Portuguese. Thus the original composition of the African genes among the Siddis has been diluted to some extent by the contribution from southern Indian population groups. There is no nonrandom association of alleles among a set of 10 genetic marker systems considered in the present study. The demonstration of genetic homogeneity of the Siddis, despite their admixed origin, suggests the utility of this population for genetic and epidemiological studies.
Lee, James C; Biasci, Daniele; Roberts, Rebecca; Gearry, Richard B; Mansfield, John C; Ahmad, Tariq; Prescott, Natalie J; Satsangi, Jack; Wilson, David C; Jostins, Luke; Anderson, Carl A; Traherne, James A; Lyons, Paul A; Parkes, Miles; Smith, Kenneth G C
2017-02-01
For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself but instead the course that the disease takes over time (prognosis). Prognosis may vary substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants. To better characterize how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with disease prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn's disease is largely independent of the contribution to disease susceptibility and point to a biology of prognosis that could provide new therapeutic opportunities.
Lee, James C.; Biasci, Daniele; Roberts, Rebecca; Gearry, Richard B.; Mansfield, John C.; Ahmad, Tariq; Prescott, Natalie J.; Satsangi, Jack; Wilson, David C.; Jostins, Luke; Anderson, Carl A.; Traherne, James A.; Lyons, Paul A.; Parkes, Miles; Smith, Kenneth G.C.
2017-01-01
For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself, but the course the disease takes over time (prognosis)1–3. This varies substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis4–6, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants7–13. To better characterise how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn’s disease is largely independent from the contribution to disease susceptibility, and point to a biology of prognosis that could provide new therapeutic opportunities. PMID:28067912
Alonso-Perez, Elisa; Suarez-Gestal, Marian; Calaza, Manuel; Blanco, Francisco J; Suarez, Ana; Santos, Maria Jose; Papasteriades, Chryssa; Carreira, Patricia; Pullmann, Rudolf; Ordi-Ros, Josep; Marchini, Maurizio; Skopouli, Fotini N; Bijl, Marc; Barrizone, Nadia; Sebastiani, Gian Domenico; Migliaresi, Sergio; Witte, Torsten; Lauwerys, Bernard R; Kovacs, Attila; Ruzickova, Sarka; Gomez-Reino, Juan J; Gonzalez, Antonio
2014-06-19
We aimed to replicate a recent study which showed higher genetic risk load at 15 loci in men than in women with systemic lupus erythematosus (SLE). This difference was very significant, and it was interpreted as indicating that men require more genetic susceptibility than women to develop SLE. Nineteen SLE-associated loci (thirteen of which are shared with the previous study) were analyzed in 1,457 SLE patients and 1,728 healthy controls of European ancestry. Genetic risk load was calculated as sex-specific sum genetic risk scores (GRS(s)). Our results did not replicate those of the previous study at either the level of individual loci or the global level of GRS(s). GRS(s) were larger in women than in men (4.20 ± 1.07 in women vs. 3.27 ± 0.98 in men). This very significant difference (P < 10(-16)) was more dependent on the six new loci not included in the previous study (59% of the difference) than on the thirteen loci that are shared (the remaining 41%). However, the 13 shared loci also showed a higher genetic risk load in women than in men in our study (P = 6.6 × 10(-7)), suggesting that heterogeneity of participants, in addition to different loci, contributed to the opposite results. Our results show the lack of a clear trend toward higher genetic risk in one of the sexes for the analyzed SLE loci. They also highlight several limitations of assessments of genetic risk load, including the possibility of ascertainment bias with loci discovered in studies that have included mainly women.
2014-01-01
Introduction We aimed to replicate a recent study which showed higher genetic risk load at 15 loci in men than in women with systemic lupus erythematosus (SLE). This difference was very significant, and it was interpreted as indicating that men require more genetic susceptibility than women to develop SLE. Methods Nineteen SLE-associated loci (thirteen of which are shared with the previous study) were analyzed in 1,457 SLE patients and 1,728 healthy controls of European ancestry. Genetic risk load was calculated as sex-specific sum genetic risk scores (GRSs). Results Our results did not replicate those of the previous study at either the level of individual loci or the global level of GRSs. GRSs were larger in women than in men (4.20 ± 1.07 in women vs. 3.27 ± 0.98 in men). This very significant difference (P < 10−16) was more dependent on the six new loci not included in the previous study (59% of the difference) than on the thirteen loci that are shared (the remaining 41%). However, the 13 shared loci also showed a higher genetic risk load in women than in men in our study (P = 6.6 × 10−7), suggesting that heterogeneity of participants, in addition to different loci, contributed to the opposite results. Conclusion Our results show the lack of a clear trend toward higher genetic risk in one of the sexes for the analyzed SLE loci. They also highlight several limitations of assessments of genetic risk load, including the possibility of ascertainment bias with loci discovered in studies that have included mainly women. PMID:24946689
Stephan, Wolfgang
2016-01-01
In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.
Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C
NASA Technical Reports Server (NTRS)
Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.
1998-01-01
An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers.
Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C
2003-08-01
Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations.
Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C
2003-01-01
Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations. PMID:12930748
Kariuki, Silvia N.; Ghodke-Puranik, Yogita; Dorschner, Jessica M.; Chrabot, Beverly S.; Kelly, Jennifer A.; Tsao, Betty P.; Kimberly, Robert P.; Alarcón-Riquelme, Marta E.; Jacob, Chaim O.; Criswell, Lindsey A.; Sivils, Kathy L.; Langefeld, Carl D.; Harley, John B.; Skol, Andrew D.; Niewold, Timothy B.
2014-01-01
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon alpha (IFN-α) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. 40–50% of patients have high IFN-α, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs. low IFN-α in over 1550 SLE cases, including GWAS and replication cohorts. In meta-analysis, the top associations in European ancestry were PRKG1 rs7897633 (PMeta=2.75 × 10−8) and PNP rs1049564 (PMeta=1.24 × 10−7). We also found evidence for cross-ancestral background associations with the ANKRD44 and PLEKHF2 loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-α production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic subphenotypes becomes an attractive strategy for genetic discovery in complex disease. PMID:25338677
Early developmental gene enhancers affect subcortical volumes in the adult human brain.
Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E
2016-05-01
Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Derived variants at six genes explain nearly half of size reduction in dog breeds
Rimbault, Maud; Beale, Holly C.; Schoenebeck, Jeffrey J.; Hoopes, Barbara C.; Allen, Jeremy J.; Kilroy-Glynn, Paul; Wayne, Robert K.; Sutter, Nathan B.; Ostrander, Elaine A.
2013-01-01
Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%–52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds. PMID:24026177
Genome-wide analysis of epistasis in body mass index using multiple human populations.
Wei, Wen-Hua; Hemani, Gib; Gyenesei, Attila; Vitart, Veronique; Navarro, Pau; Hayward, Caroline; Cabrera, Claudia P; Huffman, Jennifer E; Knott, Sara A; Hicks, Andrew A; Rudan, Igor; Pramstaller, Peter P; Wild, Sarah H; Wilson, James F; Campbell, Harry; Hastie, Nicholas D; Wright, Alan F; Haley, Chris S
2012-08-01
We surveyed gene-gene interactions (epistasis) in human body mass index (BMI) in four European populations (n<1200) via exhaustive pair-wise genome scans where interactions were computed as F ratios by testing a linear regression model fitting two single-nucleotide polymorphisms (SNPs) with interactions against the one without. Before the association tests, BMI was corrected for sex and age, normalised and adjusted for relatedness. Neither single SNPs nor SNP interactions were genome-wide significant in either cohort based on the consensus threshold (P=5.0E-08) and a Bonferroni corrected threshold (P=1.1E-12), respectively. Next we compared sub genome-wide significant SNP interactions (P<5.0E-08) across cohorts to identify common epistatic signals, where SNPs were annotated to genes to test for gene ontology (GO) enrichment. Among the epistatic genes contributing to the commonly enriched GO terms, 19 were shared across study cohorts of which 15 are previously published genome-wide association loci, including CDH13 (cadherin 13) associated with height and SORCS2 (sortilin-related VPS10 domain containing receptor 2) associated with circulating insulin-like growth factor 1 and binding protein 3. Interactions between the 19 shared epistatic genes and those involving BMI candidate loci (P<5.0E-08) were tested across cohorts and found eight replicated at the SNP level (P<0.05) in at least one cohort, which were further tested and showed limited replication in a separate European population (n>5000). We conclude that genome-wide analysis of epistasis in multiple populations is an effective approach to provide new insights into the genetic regulation of BMI but requires additional efforts to confirm the findings.
King, David P; Paciga, Sara; Pickering, Eve; Benowitz, Neal L; Bierut, Laura J; Conti, David V; Kaprio, Jaakko; Lerman, Caryn; Park, Peter W
2012-02-01
Despite effective therapies for smoking cessation, most smokers find quitting difficult and most successful quitters relapse. Considerable evidence supports a genetic risk for nicotine dependence; however, less is known about the pharmacogenetics of smoking cessation. In the first pharmacogenetic investigation of the efficacy of varenicline and bupropion, we examined whether genes important in the pharmacodynamics and pharmacokinetics of these drugs and nicotine predict medication efficacy and adverse events. Subjects participated in randomized, double-blind, placebo-controlled smoking cessation clinical trials, comparing varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, with bupropion, a norepinephrine/dopamine reuptake inhibitor, and placebo. Primary analysis included 1175 smokers of European ancestry, and 785 single nucleotide polymorphisms from 24 genes, representing 254 linkage disequilibrium (LD) bins (genes included nAChR subunits, additional varenicline-specific genes, and genes involved in nicotine or bupropion metabolism). For varenicline, continuous abstinence (weeks 9-12) was associated with multiple nAChR subunit genes (including CHRNB2, CHRNA5, and CHRNA4) (OR=1.76; 95% CI: 1.23-2.52) (p<0.005); for bupropion, abstinence was associated with CYP2B6 (OR=1.78; 95% CI: 1.27-2.50) (p<0.001). Incidence of nausea was associated with several nAChR subunit genes (OR=0.50; 95% CI: 0.36-0.70) (p<0.0001) and time to relapse after quitting was associated with HTR3B (HR=1.97; 95% CI: 1.45-2.68) (p<0.0001). These data provide evidence for multiple genetic loci contributing to smoking cessation and therapeutic response. Different loci are associated with varenicline vs bupropion response, suggesting that additional research may identify clinically useful markers to guide treatment decisions.
Epistatic Effects Contribute to Variation in BMD in Fischer 344 × Lewis F2 Rats
Koller, Daniel L; Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J; Foroud, Tatiana; Turner, Charles H
2008-01-01
To further delineate the factors underlying the complex genetic architecture of BMD in the rat model, a genome screen for epistatic interactions was conducted. Several significant interactions were identified, involving both previously identified and novel QTLs. Introduction The variation in several of the risk factors for osteoporotic fracture, including BMD, has been shown to be caused largely by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We have previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 595 female F2 progeny of Fischer 344 and Lewis rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Materials and Methods Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted BMD (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine a genome-wide significance threshold for the epistasis or interaction LOD score corresponding to an α level of 0.01. Results and Conclusions Novel loci on chromosomes 12 and 15 showed a strong epistatic effect on total BMD at the femoral midshaft by pQCT (LOD = 5.4). A previously reported QTL on chromosome 7 was found to interact with a novel locus on chromosome 20 to affect whole lumbar BMD by pQCT (LOD = 6.2). These results provide new information regarding the mode of action of previously identified rat QTLs, as well as identifying novel loci that act in combination with known QTLs or with other novel loci to contribute to the risk factors for osteoporotic fracture. PMID:17907919
Epistatic effects contribute to variation in BMD in Fischer 344 x Lewis F2 rats.
Koller, Daniel L; Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J; Foroud, Tatiana; Turner, Charles H
2008-01-01
To further delineate the factors underlying the complex genetic architecture of BMD in the rat model, a genome screen for epistatic interactions was conducted. Several significant interactions were identified, involving both previously identified and novel QTLs. The variation in several of the risk factors for osteoporotic fracture, including BMD, has been shown to be caused largely by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We have previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 595 female F(2) progeny of Fischer 344 and Lewis rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted BMD (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine a genome-wide significance threshold for the epistasis or interaction LOD score corresponding to an alpha level of 0.01. Novel loci on chromosomes 12 and 15 showed a strong epistatic effect on total BMD at the femoral midshaft by pQCT (LOD = 5.4). A previously reported QTL on chromosome 7 was found to interact with a novel locus on chromosome 20 to affect whole lumbar BMD by pQCT (LOD = 6.2). These results provide new information regarding the mode of action of previously identified rat QTLs, as well as identifying novel loci that act in combination with known QTLs or with other novel loci to contribute to the risk factors for osteoporotic fracture.
Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H
2017-04-01
Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.
Robiou-du-Pont, Sébastien; Anand, Sonia S; Morrison, Katherine M; McDonald, Sarah D; Atkinson, Stephanie A; Teo, Koon K; Meyre, David
2017-01-01
Previous genome wide association studies (GWAS) identified associations of multiple common variants with diastolic and systolic blood pressure traits in adults. However, the contribution of these loci to variations of blood pressure in early life is unclear. We assessed the child and parental contributions of 33 GWAS single-nucleotide polymorphisms (SNPs) for blood pressure in 1,525 participants (515 children, 406 mothers and 237 fathers) of the Family Atherosclerosis Monitoring In early life (FAMILY) study followed-up for 5 years. Two genotype scores for systolic (29 SNPs) and diastolic (24 SNPs) blood pressure were built. Linear mixed-effect regressions showed significant association between rs1378942 in CSK and systolic blood pressure (β = 0.98±0.46, P = 3.4×10-2). The child genotype scores for diastolic and systolic blood pressure were not associated in children. Nominally significant parental genetic effects were found between the SNPs rs11191548 (CYP17A1) (paternal, β = 2.78±1.49, P = 6.1×10-2 for SBP and β = 3.60±1.24, P = 3.7×10-3 for DBP), rs17367504 (MTHFR) (paternal, β = 2.42±0.93, P = 9.3×10-3 for SBP and β = 1.89±0.80, P = 1.8×10-2 for DBP and maternal, β = -1.32±0.60, P = 2.9×10-2 and β = -1.97±0.77, P = 1.0×10-2, for SBP and DBP respectively) and child blood pressure. Our study supports the view that adult GWAS loci have a limited impact on blood pressure during the five first years of life. The parental genetic effects observed on blood pressure in children may suggest epigenetic mechanisms in the transmission of the risk of hypertension. Further replication is needed to confirm our results.
Laiba, Efrat; Glikaite, Ilana; Levy, Yael; Pasternak, Zohar; Fridman, Eyal
2016-04-01
The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.
MacKenzie, Scott M; Freel, E Marie; Connell, John M; Fraser, Robert; Davies, Eleanor
2017-03-07
The majority of genes contributing to the heritable component of blood pressure remain unidentified, but there is substantial evidence to suggest that common polymorphisms at loci involved in the biosynthesis of the corticosteroids aldosterone and cortisol are important. This view is supported by data from genome-wide association studies that consistently link the CYP17A1 locus to blood pressure. In this review article, we describe common polymorphisms at three steroidogenic loci (CYP11B2, CYP11B1 and CYP17A1) that alter gene transcription efficiency and levels of key steroids, including aldosterone. However, the mechanism by which this occurs remains unclear. While the renin angiotensin system is rightly regarded as the major driver of aldosterone secretion, there is increasing evidence that the contribution of corticotropin (ACTH) is also significant. In light of this, we propose that the differential response of variant CYP11B2, CYP11B1 and CYP17A1 genes to ACTH is an important determinant of blood pressure, tending to predispose individuals with an unfavourable genotype to hypertension.
Bertin, Angeline; Gouin, Nicolas; Baumel, Alex; Gianoli, Ernesto; Serratosa, Juan; Osorio, Rodomiro; Manel, Stephanie
2017-01-01
Positive species-genetic diversity correlations (SGDCs) are often thought to result from the parallel influence of neutral processes on genetic and species diversity. Yet, confounding effects of non-neutral mechanisms have not been explored. Here, we investigate the impact of non-neutral genetic diversity on SGDCs in high Andean wetlands. We compare correlations between plant species diversity and genetic diversity (GD) calculated with and without loci potentially under selection (outlier loci). The study system includes 2188 specimens from five species (three common aquatic macroinvertebrate and two dominant plant species) that were genotyped for 396 amplified fragment length polymorphism loci. We also appraise the importance of neutral processes on SGDCs by investigating the influence of habitat fragmentation features. Significant positive SGDCs were detected for all five species (mean SGDC = 0.52 ± 0.05). While only a few outlier loci were detected in each species, they resulted in significant decreases in GD and in SGDCs. This supports the hypothesis that neutral processes drive species-genetic diversity relationships in high Andean wetlands. Unexpectedly, the effects on genetic diversity GD of the habitat fragmentation characteristics in this study increased with the presence of outlier loci in two species. Overall, our results reveal pitfalls in using habitat features to infer processes driving SGDCs and show that a few loci potentially under selection are enough to cause a significant downward bias in SGDC. Investigating confounding effects of outlier loci thus represents a useful approach to evidence the contribution of neutral processes on species-genetic diversity relationships. © 2016 John Wiley & Sons Ltd.
Quattrini, Andrea M; Faircloth, Brant C; Dueñas, Luisa F; Bridge, Tom C L; Brugler, Mercer R; Calixto-Botía, Iván F; DeLeo, Danielle M; Forêt, Sylvain; Herrera, Santiago; Lee, Simon M Y; Miller, David J; Prada, Carlos; Rádis-Baptista, Gandhi; Ramírez-Portilla, Catalina; Sánchez, Juan A; Rodríguez, Estefanía; McFadden, Catherine S
2018-03-01
Anthozoans (e.g., corals, anemones) are an ecologically important and diverse group of marine metazoans that occur from shallow to deep waters worldwide. However, our understanding of the evolutionary relationships among the ~7,500 species within this class is hindered by the lack of phylogenetically informative markers that can be reliably sequenced across a diversity of taxa. We designed and tested 16,306 RNA baits to capture 720 ultraconserved element loci and 1,071 exon loci. Library preparation and target enrichment were performed on 33 taxa from all orders within the class Anthozoa. Following Illumina sequencing and Trinity assembly, we recovered 1,774 of 1,791 targeted loci. The mean number of loci recovered from each species was 638 ± 222, with more loci recovered from octocorals (783 ± 138 loci) than hexacorals (475 ± 187 loci). Parsimony informative sites ranged from 26 to 49% for alignments at differing hierarchical taxonomic levels (e.g., Anthozoa, Octocorallia, Hexacorallia). The per cent of variable sites within each of three genera (Acropora, Alcyonium, and Sinularia) for which multiple species were sequenced ranged from 4.7% to 30%. Maximum-likelihood analyses recovered highly resolved trees with topologies matching those supported by other studies, including the monophyly of the order Scleractinia. Our results demonstrate the utility of this target-enrichment approach to resolve phylogenetic relationships from relatively old to recent divergences. Redesigning the baits with improved affinities to capture loci within each subclass will provide a valuable toolset to address systematic questions, further our understanding of the timing of diversifications and help resolve long-standing controversial relationships in the class Anthozoa. © 2017 John Wiley & Sons Ltd.
Jin, Guangfu; Lu, Lingyi; Cooney, Kathleen A; Ray, Anna M; Zuhlke, Kimberly A; Lange, Ethan M; Cannon-Albright, Lisa A; Camp, Nicola J; Teerlink, Craig C; Fitzgerald, Liesel M; Stanford, Janet L; Wiley, Kathleen E; Isaacs, Sarah D; Walsh, Patrick C; Foulkes, William D; Giles, Graham G; Hopper, John L; Severi, Gianluca; Eeles, Ros; Easton, Doug; Kote-Jarai, Zsofia; Guy, Michelle; Rinckleb, Antje; Maier, Christiane; Vogel, Walther; Cancel-Tassin, Geraldine; Egrot, Christophe; Cussenot, Olivier; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Wiklund, Fredrik; Grönberg, Henrik; Emanuelsson, Monica; Whittemore, Alice S; Oakley-Girvan, Ingrid; Hsieh, Chih-Lin; Wahlfors, Tiina; Tammela, Teuvo; Schleutker, Johanna; Catalona, William J; Zheng, S Lilly; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng
2012-07-01
Multiple prostate cancer (PCa) risk-related loci have been discovered by genome-wide association studies (GWAS) based on case-control designs. However, GWAS findings may be confounded by population stratification if cases and controls are inadvertently drawn from different genetic backgrounds. In addition, since these loci were identified in cases with predominantly sporadic disease, little is known about their relationships with hereditary prostate cancer (HPC). The association between seventeen reported PCa susceptibility loci was evaluated with a family-based association test using 1,979 hereditary PCa families of European descent collected by members of the International Consortium for Prostate Cancer Genetics, with a total of 5,730 affected men. The risk alleles for 8 of the 17 loci were significantly over-transmitted from parents to affected offspring, including SNPs residing in 8q24 (regions 1, 2 and 3), 10q11, 11q13, 17q12 (region 1), 17q24 and Xp11. In subgroup analyses, three loci, at 8q24 (regions 1 and 2) plus 17q12, were significantly over-transmitted in hereditary PCa families with five or more affected members, while loci at 3p12, 8q24 (region 2), 11q13, 17q12 (region 1), 17q24 and Xp11 were significantly over-transmitted in HPC families with an average age of diagnosis at 65 years or less. Our results indicate that at least a subset of PCa risk-related loci identified by case-control GWAS are also associated with disease risk in HPC families.
Jin, Guangfu; Lu, Lingyi; Cooney, Kathleen A.; Ray, Anna M.; Zuhlke, Kimberly A.; Lange, Ethan M.; Cannon-Albright, Lisa A.; Camp, Nicola J.; Teerlink, Craig C.; FitzGerald, Liesel M.; Stanford, Janet L.; Wiley, Kathleen E.; Walsh, Patrick C.; Foulkes, William D.; Giles, Graham G.; Hopper, John L.; Severi, Gianluca; Eeles, Ros; Easton, Doug; Kote-Jarai, Zsofia; Guy, Michelle; Rinckleb, Antje; Maier, Christiane; Vogel, Walther; Cancel-Tassin, Geraldine; Egrot, Christophe; Cussenot, Olivier; Thibodeau, Stephen N.; McDonnell, Shannon K.; Schaid, Daniel J.; Wiklund, Fredrik; Grönberg, Henrik; Emanuelsson, Monica; Whittemore, Alice S.; Oakley-Girvan, Ingrid; Hsieh, Chih-Lin; Wahlfors, Tiina; Tammela, Teuvo; Schleutker, Johanna; Catalona, William J.; Zheng, S. Lilly; Isaacs, William B.
2012-01-01
Multiple prostate cancer (PCa) risk-related loci have been discovered by genome-wide association studies (GWAS) based on case–control designs. However, GWAS findings may be confounded by population stratification if cases and controls are inadvertently drawn from different genetic backgrounds. In addition, since these loci were identified in cases with predominantly sporadic disease, little is known about their relationships with hereditary prostate cancer (HPC). The association between seventeen reported PCa susceptibility loci was evaluated with a family-based association test using 1,979 hereditary PCa families of European descent collected by members of the International Consortium for Prostate Cancer Genetics, with a total of 5,730 affected men. The risk alleles for 8 of the 17 loci were significantly over-transmitted from parents to affected offspring, including SNPs residing in 8q24 (regions 1, 2 and 3), 10q11, 11q13, 17q12 (region 1), 17q24 and Xp11. In subgroup analyses, three loci, at 8q24 (regions 1 and 2) plus 17q12, were significantly over-transmitted in hereditary PCa families with five or more affected members, while loci at 3p12, 8q24 (region 2), 11q13, 17q12 (region 1), 17q24 and Xp11 were significantly over-transmitted in HPC families with an average age of diagnosis at 65 years or less. Our results indicate that at least a subset of PCa risk-related loci identified by case–control GWAS are also associated with disease risk in HPC families. PMID:22198737
Julià, Antonio; López-Longo, Francisco Javier; Pérez Venegas, José J; Bonàs-Guarch, Silvia; Olivé, Àlex; Andreu, José Luís; Aguirre-Zamorano, Mª Ángeles; Vela, Paloma; Nolla, Joan M; de la Fuente, José Luís Marenco; Zea, Antonio; Pego-Reigosa, José María; Freire, Mercedes; Díez, Elvira; Rodríguez-Almaraz, Esther; Carreira, Patricia; Blanco, Ricardo; Taboada, Víctor Martínez; López-Lasanta, María; Corbeto, Mireia López; Mercader, Josep M; Torrents, David; Absher, Devin; Marsal, Sara; Fernández-Nebro, Antonio
2018-05-30
Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with a complex genetic inheritance. Genome-wide association studies (GWAS) have significantly increased the number of significant loci associated with SLE risk. To date, however, established loci account for less than 30% of the disease heritability and additional risk variants have yet to be identified. Here we performed a GWAS followed by a meta-analysis to identify new genome-wide significant loci for SLE. We genotyped a cohort of 907 patients with SLE (cases) and 1524 healthy controls from Spain and performed imputation using the 1000 Genomes reference data. We tested for association using logistic regression with correction for the principal components of variation. Meta-analysis of the association results was subsequently performed on 7,110,321 variants using genetic data from a large cohort of 4036 patients with SLE and 6959 controls of Northern European ancestry. Genetic association was also tested at the pathway level after removing the effect of known risk loci using PASCAL software. We identified five new loci associated with SLE at the genome-wide level of significance (p < 5 × 10 - 8 ): GRB2, SMYD3, ST8SIA4, LAT2 and ARHGAP27. Pathway analysis revealed several biological processes significantly associated with SLE risk: B cell receptor signaling (p = 5.28 × 10 - 6 ), CTLA4 co-stimulation during T cell activation (p = 3.06 × 10 - 5 ), interleukin-4 signaling (p = 3.97 × 10 - 5 ) and cell surface interactions at the vascular wall (p = 4.63 × 10 - 5 ). Our results identify five novel loci for SLE susceptibility, and biologic pathways associated via multiple low-effect-size loci.
Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dracopoli, N.C.; Harnett, P.; Bale, S.J.
The gene for familial malignant melanoma and its precursor lesion, the dysplastic nevus, has been assigned to a region of the distal short arm of chromosome 1, which is frequently involved in karyotypic abnormalities in melanoma cells. The authors have examined loci on chromosome 1p for loss-of-constitutional heterozygosity in 35 melanomas and 21 melanoma cell lines to analyze the role of these abnormalities in melanocyte transformation. Loss-of-heterozygosity at loci on chromosome 1p was identified in 15/35 (43%) melanomas and 11/21 (52%) melanoma cell lines. Analysis of multiple metastases derived from the same patient and of melanoma and lymphoblastoid samples frommore » a family with hereditary melanoma showed that the loss-of-heterozygosity at loci on distal 1p is a late event in tumor progression, rather than the second mutation that would occur if melanoma were due to a cellular recessive mechanism. Comparisons with neuroblastoma and multiple endocrine neoplasia (MEN2) suggest that the frequent 1p loss-of-heterozygosity in these malignancies is a common late event of neuroectodermal tumor progression.« less
Alda, Fernando; Mårtensson, Dick; Hailer, Frank; Castroviejo-Fisher, Santiago; Ginsberg, Joshua R.; Castroviejo, Javier; Doadrio, Ignacio; Vilá, Carles; Amato, George
2016-01-01
The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius) has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%), leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela. PMID:26982578
Greenwald, William W; Li, He; Smith, Erin N; Benaglio, Paola; Nariai, Naoki; Frazer, Kelly A
2017-04-07
Genomic interaction studies use next-generation sequencing (NGS) to examine the interactions between two loci on the genome, with subsequent bioinformatics analyses typically including annotation, intersection, and merging of data from multiple experiments. While many file types and analysis tools exist for storing and manipulating single locus NGS data, there is currently no file standard or analysis tool suite for manipulating and storing paired-genomic-loci: the data type resulting from "genomic interaction" studies. As genomic interaction sequencing data are becoming prevalent, a standard file format and tools for working with these data conveniently and efficiently are needed. This article details a file standard and novel software tool suite for working with paired-genomic-loci data. We present the paired-genomic-loci (PGL) file standard for genomic-interactions data, and the accompanying analysis tool suite "pgltools": a cross platform, pypy compatible python package available both as an easy-to-use UNIX package, and as a python module, for integration into pipelines of paired-genomic-loci analyses. Pgltools is a freely available, open source tool suite for manipulating paired-genomic-loci data. Source code, an in-depth manual, and a tutorial are available publicly at www.github.com/billgreenwald/pgltools , and a python module of the operations can be installed from PyPI via the PyGLtools module.
Recapitulation of genome-wide association studies on body mass index in the Korean population.
Hong, K W; Oh, B
2012-08-01
Obesity is a risk factor for multiple disorders such as diabetes and cardiovascular disease. Recently, a genome-wide association study for body mass index (BMI) was conducted in 249 796 individuals of European ancestry by the Genetic Investigation of Anthropometric Traits (GIANT) consortium. They identified 14 known obesity susceptibility loci and 18 new loci associated with BMI at the genome-wide significance level (P<5 × 10⁻⁸). Because the prevalence and severity of obesity vary among ethnic groups, it is worthy to investigate these results in another ethnic population. We examined the BMI association of 19 single-nucleotide polymorphisms (SNPs) out of the 32 in 8842 individuals from the Korean Association Resource data, and found 12 SNPs to be associated with BMI in the Korean population. Eight loci, rs10968576 (BDNF), rs3817334 (MTCH2), rs1558902 (FTO), rs571312 (MC4R), rs543874 (SEC16B), rs987237 (TFAP2B), rs2867125 (TMEM18) and rs7138803 (FAIM2), were previously known obesity susceptibility loci, and the remaining four loci, rs1514175 (TNNI3K), rs206936 (NUDT3), rs4771122 (MTIF3) and rs2241423 (MAP2K5), were newly identified as BMI loci by the GIANT study. Further, all 12 SNPs showed the same direction of effect on BMI between the two ethnic groups, suggesting a similar genetic architecture governing the obesity.
Kar, Siddhartha P.; Beesley, Jonathan; Al Olama, Ali Amin; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J.; Thompson, Deborah J.; Kibel, Adam S.; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K.; Gentry-Maharaj, Aleksandra; Whittemore, Alice S.; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H.; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B.; Burwinkel, Barbara; Karlan, Beth Y.; Nordestgaard, Børge G.; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B.; Høgdall, Claus K.; Teerlink, Craig C.; Kang, Daehee; Tessier, Daniel C.; Schaid, Daniel J.; Stram, Daniel O.; Cramer, Daniel W.; Neal, David E.; Eccles, Diana; Flesch-Janys, Dieter; Velez Edwards, Digna R.; Wokozorczyk, Dominika; Levine, Douglas A.; Yannoukakos, Drakoulis; Sawyer, Elinor J.; Bandera, Elisa V.; Poole, Elizabeth M.; Goode, Ellen L.; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C.; Wiklund, Fredrik; Giles, Graham G.; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A.; Darabi, Hatef; Salvesen, Helga B.; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L.; Benítez, Javier; Doherty, Jennifer A.; Permuth, Jennifer B.; Chang-Claude, Jenny; Donovan, Jenny L.; Dennis, Joe; Schildkraut, Joellen M.; Schleutker, Johanna; Hopper, John L.; Kupryjanczyk, Jolanta; Park, Jong Y.; Figueroa, Jonine; Clements, Judith A.; Knight, Julia A.; Peto, Julian; Cunningham, Julie M.; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H.; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B.; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Fitzgerald, Liesel M.; Cook, Linda S.; Cannon-Albright, Lisa; Hooning, Maartje J.; Pike, Malcolm C.; Bolla, Manjeet K.; Luedeke, Manuel; Teixeira, Manuel R.; Goodman, Marc T.; Schmidt, Marjanka K.; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W.; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C.; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A. T.; Hou, Ming-Feng; Schoemaker, Minouk J.; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D.; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M.; Broberg, Per; Fasching, Peter A.; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K.; Stephenson, Robert A.; MacInnis, Robert J.; Hoover, Robert N.; Winqvist, Robert; Ness, Roberta; Milne, Roger L.; Travis, Ruth C.; Benlloch, Sara; Olson, Sara H.; McDonnell, Shannon K.; Tworoger, Shelley S.; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N.; Bojesen, Stig E.; Gapstur, Susan M.; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L.J.; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J.; Edwards, Todd L.; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J.; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L.; Berchuck, Andrew; Dunning, Alison M.; Simard, Jacques; Haiman, Christopher A.; Spurdle, Amanda; Sellers, Thomas A.; Hunter, David J.; Henderson, Brian E.; Kraft, Peter; Chanock, Stephen J.; Couch, Fergus J.; Hall, Per; Gayther, Simon A.; Easton, Douglas F.; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D.P.; Lambrechts, Diether
2016-01-01
Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10−8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10−5 in the three-cancer meta-analysis. PMID:27432226
USDA-ARS?s Scientific Manuscript database
High levels of aflatoxin contamination of maize can be deadly for exposed human populations. Resistance to aflatoxin accumulation in maize has been reported in multiple studies and acts at multiple steps where there is fungal-plant interaction. In this study, we report the identification and mapping...
Gregory Bonito; Matthew E. Smith; Michael Nowak; Rosanne A. Healy; Gonzalo Guevara; Efren Cazares; Akihiko Kinoshita; Eduardo R. Nouhra; Laura S. Dominguez; Leho Tedersoo; Claude Murat; Yun Wang; Baldomero Arroyo Moreno; Donald H. Pfister; Kazuhide Nara; Alessandra Zambonelli; James M. Trappe; Rytas Vilgalys
2013-01-01
In this study we reassessed the biogeography and origin of the Tuberaceae and their relatives using multiple loci and a global sampling of taxa. Multiple independent transitions from an aboveground to a belowground truffie fruiting body form have occurred in the Tuberaceae and in its newly recognized sister lineage...
Ghate, T; Deshpande, S; Bhargava, S
2017-05-01
Near isogenic lines (NILs) of sweet sorghum genotype S35 into which individual stay green loci were introgressed, were used to understand the contribution of Stay green loci to stem sugar accumulation and its remobilization under drought stress exposure. Sugar and starch content, activities of sugar metabolism enzymes and levels of their expression were studied in the 3rd (source) leaf from panicle and the 5th (sugar storing) internode of the three lines, in irrigated plants and in plants exposed to a brief drought exposure at the panicle emergence stage. Annotation of genes in the respective Stay green loci introgressed in the NILs was carried out using bioinformatics tools. The leaves of NILs accumulated more photoassimilates and the internodes accumulated more sugar, as compared to the parent S35 line. Drought stress exposure led to a decrease in the starch and sugar levels in leaves of all three lines, while an increase in sugar levels was observed in internodes of the NILs. Sugar fluxes were accompanied by alterations in the activities of sugar metabolizing enzymes as well as the expression of genes related to sugar metabolism and transport. Remobilization of sugars from the stem internodes was apparent in the NILs when subjected to drought stress, since the peduncle, which supports the panicle, showed an increase in the sugar content, even when photoassimation in source leaves was reduced. Several genes related to carbohydrate metabolism were located in the Stay green loci, which probably contributed to variation in the parameters studied. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Baker, Lauren A.; Kirkpatrick, Brian; Rosa, Guilherme J. M.; Gianola, Daniel; Valente, Bruno; Sumner, Julia P.; Baltzer, Wendy; Hao, Zhengling; Binversie, Emily E.; Volstad, Nicola; Piazza, Alexander; Sample, Susannah J.
2017-01-01
Anterior cruciate ligament (ACL) rupture is a common condition that can be devastating and life changing, particularly in young adults. A non-contact mechanism is typical. Second ACL ruptures through rupture of the contralateral ACL or rupture of a graft repair is also common. Risk of rupture is increased in females. ACL rupture is also common in dogs. Disease prevalence exceeds 5% in several dog breeds, ~100 fold higher than human beings. We provide insight into the genetic etiology of ACL rupture by genome-wide association study (GWAS) in a high-risk breed using 98 case and 139 control Labrador Retrievers. We identified 129 single nucleotide polymorphisms (SNPs) within 99 risk loci. Associated loci (P<5E-04) explained approximately half of phenotypic variance in the ACL rupture trait. Two of these loci were located in uncharacterized or non-coding regions of the genome. A chromosome 24 locus containing nine genes with diverse functions met genome-wide significance (P = 3.63E-0.6). GWAS pathways were enriched for c-type lectins, a gene set that includes aggrecan, a gene set encoding antimicrobial proteins, and a gene set encoding membrane transport proteins with a variety of physiological functions. Genotypic risk estimated for each dog based on the risk contributed by each GWAS locus showed clear separation of ACL rupture cases and controls. Power analysis of the GWAS data set estimated that ~172 loci explain the genetic contribution to ACL rupture in the Labrador Retriever. Heritability was estimated at 0.48. We conclude ACL rupture is a moderately heritable highly polygenic complex trait. Our results implicate c-type lectin pathways in ACL homeostasis. PMID:28379989
Multiple Loci are associated with dilated cardiomyopathy in Irish wolfhounds.
Philipp, Ute; Vollmar, Andrea; Häggström, Jens; Thomas, Anne; Distl, Ottmar
2012-01-01
Dilated cardiomyopathy (DCM) is a highly prevalent and often lethal disease in Irish wolfhounds. Complex segregation analysis indicated different loci involved in pathogenesis. Linear fixed and mixed models were used for the genome-wide association study. Using 106 DCM cases and 84 controls we identified one SNP significantly associated with DCM on CFA37 and five SNPs suggestively associated with DCM on CFA1, 10, 15, 21 and 17. On CFA37 MOGAT1 and ACSL3 two enzymes of the lipid metabolism were located near the identified SNP.
Multiple Loci Are Associated with Dilated Cardiomyopathy in Irish Wolfhounds
Philipp, Ute; Vollmar, Andrea; Häggström, Jens; Thomas, Anne; Distl, Ottmar
2012-01-01
Dilated cardiomyopathy (DCM) is a highly prevalent and often lethal disease in Irish wolfhounds. Complex segregation analysis indicated different loci involved in pathogenesis. Linear fixed and mixed models were used for the genome-wide association study. Using 106 DCM cases and 84 controls we identified one SNP significantly associated with DCM on CFA37 and five SNPs suggestively associated with DCM on CFA1, 10, 15, 21 and 17. On CFA37 MOGAT1 and ACSL3 two enzymes of the lipid metabolism were located near the identified SNP. PMID:22761652
McEwen, Jamie R; Vamosi, Jana C; Rogers, Sean M
2013-01-01
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst = 0.074-0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST = 0.041-0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.
U'Ren, Jana M; Schupp, James M; Pearson, Talima; Hornstra, Heidie; Friedman, Christine L Clark; Smith, Kimothy L; Daugherty, Rebecca R Leadem; Rhoton, Shane D; Leadem, Ben; Georgia, Shalamar; Cardon, Michelle; Huynh, Lynn Y; DeShazer, David; Harvey, Steven P; Robison, Richard; Gal, Daniel; Mayo, Mark J; Wagner, David; Currie, Bart J; Keim, Paul
2007-03-30
The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation) to that of the most diverse tandemly repeated regions found in other less diverse bacteria. The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were identical using previous typing methods. Given the health threat to humans and livestock and the potential for B. pseudomallei to be released intentionally, MLVA could prove to be an important tool for fine-scale epidemiological or forensic tracking of this increasingly important environmental pathogen.
Age- and gender-specific epistasis between ADA and TNF-α influences human life-expectancy.
Napolioni, Valerio; Carpi, Francesco M; Giannì, Paola; Sacco, Roberto; Di Blasio, Luca; Mignini, Fiorenzo; Lucarini, Nazzareno; Persico, Antonio M
2011-11-01
Aging is a complex phenotype with multiple determinants but a strong genetic component significantly impacts on survival to extreme ages. The dysregulation of immune responses occurring with increasing age is believed to contribute to human morbidity and mortality. Conversely, some genetic determinants of successful aging might reside in those polymorphisms for the immune system genes regulating immune responses. Here we examined the main effects of single loci and multi-locus interactions to test the hypothesis that the adenosine deaminase (ADA) and tumor necrosis factor alpha (TNF-α) genes may influence human life-expectancy. ADA (22G>A, rs73598374) and TNF-α (-308G>A, rs1800629; -238G>A, rs361525) functional SNPs have been determined for 1071 unrelated healthy individuals from Central Italy (18-106 years old) divided into three gender-specific age classes defined according to demographic information and accounting for the different survivals between sexes: for men (women), the first class consists of individuals<66 years old (<73 years old), the second class of individuals 66-88 years old (73-91 years old), and the third class of individuals>88 years old (>91 years old). Single-locus analysis showed that only ADA 22G>A is significantly associated with human life-expectancy in males (comparison 1 (age class 2 vs. age class 1), O.R. 1.943, P=0.036; comparison 2 (age class 3 vs. age class 2), O.R. 0.320, P=0.0056). Age- and gender-specific patterns of epistasis between ADA and TNF-α were found using Generalized Multifactor Dimensionality Reduction (GMDR). In comparison 1, a significant two-loci interaction occurs in females between ADA 22G>A and TNF-α -238G>A (Sign Test P=0.011). In comparison 2, both two-loci and three-loci interaction are significant associated with increased life-expectancy over 88 years in males. In conclusion, we report that a combination of functional SNPs within ADA and TNF-α genes can influence life-expectancy in a gender-specific manner and that males and females follow different pathways to attain longevity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Zhaoming; Zhu, Bin; Zhang, Mingfeng; Parikh, Hemang; Jia, Jinping; Chung, Charles C; Sampson, Joshua N; Hoskins, Jason W; Hutchinson, Amy; Burdette, Laurie; Ibrahim, Abdisamad; Hautman, Christopher; Raj, Preethi S; Abnet, Christian C; Adjei, Andrew A; Ahlbom, Anders; Albanes, Demetrius; Allen, Naomi E; Ambrosone, Christine B; Aldrich, Melinda; Amiano, Pilar; Amos, Christopher; Andersson, Ulrika; Andriole, Gerald; Andrulis, Irene L; Arici, Cecilia; Arslan, Alan A; Austin, Melissa A; Baris, Dalsu; Barkauskas, Donald A; Bassig, Bryan A; Beane Freeman, Laura E; Berg, Christine D; Berndt, Sonja I; Bertazzi, Pier Alberto; Biritwum, Richard B; Black, Amanda; Blot, William; Boeing, Heiner; Boffetta, Paolo; Bolton, Kelly; Boutron-Ruault, Marie-Christine; Bracci, Paige M; Brennan, Paul; Brinton, Louise A; Brotzman, Michelle; Bueno-de-Mesquita, H Bas; Buring, Julie E; Butler, Mary Ann; Cai, Qiuyin; Cancel-Tassin, Geraldine; Canzian, Federico; Cao, Guangwen; Caporaso, Neil E; Carrato, Alfredo; Carreon, Tania; Carta, Angela; Chang, Gee-Chen; Chang, I-Shou; Chang-Claude, Jenny; Che, Xu; Chen, Chien-Jen; Chen, Chih-Yi; Chen, Chung-Hsing; Chen, Constance; Chen, Kuan-Yu; Chen, Yuh-Min; Chokkalingam, Anand P; Chu, Lisa W; Clavel-Chapelon, Francoise; Colditz, Graham A; Colt, Joanne S; Conti, David; Cook, Michael B; Cortessis, Victoria K; Crawford, E David; Cussenot, Olivier; Davis, Faith G; De Vivo, Immaculata; Deng, Xiang; Ding, Ti; Dinney, Colin P; Di Stefano, Anna Luisa; Diver, W Ryan; Duell, Eric J; Elena, Joanne W; Fan, Jin-Hu; Feigelson, Heather Spencer; Feychting, Maria; Figueroa, Jonine D; Flanagan, Adrienne M; Fraumeni, Joseph F; Freedman, Neal D; Fridley, Brooke L; Fuchs, Charles S; Gago-Dominguez, Manuela; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M; Garcia-Closas, Montserrat; Garcia-Closas, Reina; Gastier-Foster, Julie M; Gaziano, J Michael; Gerhard, Daniela S; Giffen, Carol A; Giles, Graham G; Gillanders, Elizabeth M; Giovannucci, Edward L; Goggins, Michael; Gokgoz, Nalan; Goldstein, Alisa M; Gonzalez, Carlos; Gorlick, Richard; Greene, Mark H; Gross, Myron; Grossman, H Barton; Grubb, Robert; Gu, Jian; Guan, Peng; Haiman, Christopher A; Hallmans, Goran; Hankinson, Susan E; Harris, Curtis C; Hartge, Patricia; Hattinger, Claudia; Hayes, Richard B; He, Qincheng; Helman, Lee; Henderson, Brian E; Henriksson, Roger; Hoffman-Bolton, Judith; Hohensee, Chancellor; Holly, Elizabeth A; Hong, Yun-Chul; Hoover, Robert N; Hosgood, H Dean; Hsiao, Chin-Fu; Hsing, Ann W; Hsiung, Chao Agnes; Hu, Nan; Hu, Wei; Hu, Zhibin; Huang, Ming-Shyan; Hunter, David J; Inskip, Peter D; Ito, Hidemi; Jacobs, Eric J; Jacobs, Kevin B; Jenab, Mazda; Ji, Bu-Tian; Johansen, Christoffer; Johansson, Mattias; Johnson, Alison; Kaaks, Rudolf; Kamat, Ashish M; Kamineni, Aruna; Karagas, Margaret; Khanna, Chand; Khaw, Kay-Tee; Kim, Christopher; Kim, In-Sam; Kim, Jin Hee; Kim, Yeul Hong; Kim, Young-Chul; Kim, Young Tae; Kang, Chang Hyun; Jung, Yoo Jin; Kitahara, Cari M; Klein, Alison P; Klein, Robert; Kogevinas, Manolis; Koh, Woon-Puay; Kohno, Takashi; Kolonel, Laurence N; Kooperberg, Charles; Kratz, Christian P; Krogh, Vittorio; Kunitoh, Hideo; Kurtz, Robert C; Kurucu, Nilgun; Lan, Qing; Lathrop, Mark; Lau, Ching C; Lecanda, Fernando; Lee, Kyoung-Mu; Lee, Maxwell P; Le Marchand, Loic; Lerner, Seth P; Li, Donghui; Liao, Linda M; Lim, Wei-Yen; Lin, Dongxin; Lin, Jie; Lindstrom, Sara; Linet, Martha S; Lissowska, Jolanta; Liu, Jianjun; Ljungberg, Börje; Lloreta, Josep; Lu, Daru; Ma, Jing; Malats, Nuria; Mannisto, Satu; Marina, Neyssa; Mastrangelo, Giuseppe; Matsuo, Keitaro; McGlynn, Katherine A; McKean-Cowdin, Roberta; McNeill, Lorna H; McWilliams, Robert R; Melin, Beatrice S; Meltzer, Paul S; Mensah, James E; Miao, Xiaoping; Michaud, Dominique S; Mondul, Alison M; Moore, Lee E; Muir, Kenneth; Niwa, Shelley; Olson, Sara H; Orr, Nick; Panico, Salvatore; Park, Jae Yong; Patel, Alpa V; Patino-Garcia, Ana; Pavanello, Sofia; Peeters, Petra H M; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M; Picci, Piero; Pike, Malcolm C; Porru, Stefano; Prescott, Jennifer; Pu, Xia; Purdue, Mark P; Qiao, You-Lin; Rajaraman, Preetha; Riboli, Elio; Risch, Harvey A; Rodabough, Rebecca J; Rothman, Nathaniel; Ruder, Avima M; Ryu, Jeong-Seon; Sanson, Marc; Schned, Alan; Schumacher, Fredrick R; Schwartz, Ann G; Schwartz, Kendra L; Schwenn, Molly; Scotlandi, Katia; Seow, Adeline; Serra, Consol; Serra, Massimo; Sesso, Howard D; Severi, Gianluca; Shen, Hongbing; Shen, Min; Shete, Sanjay; Shiraishi, Kouya; Shu, Xiao-Ou; Siddiq, Afshan; Sierrasesumaga, Luis; Sierri, Sabina; Loon Sihoe, Alan Dart; Silverman, Debra T; Simon, Matthias; Southey, Melissa C; Spector, Logan; Spitz, Margaret; Stampfer, Meir; Stattin, Par; Stern, Mariana C; Stevens, Victoria L; Stolzenberg-Solomon, Rachael Z; Stram, Daniel O; Strom, Sara S; Su, Wu-Chou; Sund, Malin; Sung, Sook Whan; Swerdlow, Anthony; Tan, Wen; Tanaka, Hideo; Tang, Wei; Tang, Ze-Zhang; Tardon, Adonina; Tay, Evelyn; Taylor, Philip R; Tettey, Yao; Thomas, David M; Tirabosco, Roberto; Tjonneland, Anne; Tobias, Geoffrey S; Toro, Jorge R; Travis, Ruth C; Trichopoulos, Dimitrios; Troisi, Rebecca; Truelove, Ann; Tsai, Ying-Huang; Tucker, Margaret A; Tumino, Rosario; Van Den Berg, David; Van Den Eeden, Stephen K; Vermeulen, Roel; Vineis, Paolo; Visvanathan, Kala; Vogel, Ulla; Wang, Chaoyu; Wang, Chengfeng; Wang, Junwen; Wang, Sophia S; Weiderpass, Elisabete; Weinstein, Stephanie J; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K; Wolk, Alicja; Wolpin, Brian M; Wong, Maria Pik; Wrensch, Margaret; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S; Xiang, Yong-Bing; Xu, Jun; Yang, Hannah P; Yang, Pan-Chyr; Yatabe, Yasushi; Ye, Yuanqing; Yeboah, Edward D; Yin, Zhihua; Ying, Chen; Yu, Chong-Jen; Yu, Kai; Yuan, Jian-Min; Zanetti, Krista A; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Mirabello, Lisa; Savage, Sharon A; Kraft, Peter; Chanock, Stephen J; Yeager, Meredith; Landi, Maria Terese; Shi, Jianxin; Chatterjee, Nilanjan; Amundadottir, Laufey T
2014-12-15
Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Bokore, Firdissa E; Cuthbert, Richard D; Knox, Ron E; Randhawa, Harpinder S; Hiebert, Colin W; DePauw, Ron M; Singh, Asheesh K; Singh, Arti; Sharpe, Andrew G; N'Diaye, Amidou; Pozniak, Curtis J; McCartney, Curt; Ruan, Yuefeng; Berraies, Samia; Meyer, Brad; Munro, Catherine; Hay, Andy; Ammar, Karim; Huerta-Espino, Julio; Bhavani, Sridhar
2017-12-01
Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding. Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.
Ahn, Richard; Ding, Yuan Chun; Murray, Joseph; Fasano, Alessio; Green, Peter H. R.; Neuhausen, Susan L.; Garner, Chad
2012-01-01
Celiac disease is a common autoimmune disease caused by sensitivity to the dietary protein gluten. Forty loci have been implicated in the disease. All disease loci have been characterized as low-penetrance, with the exception of the high-risk genotypes in the HLA-DQA1 and HLA-DQB1 genes, which are necessary but not sufficient to cause the disease. The very strong effects from the known HLA loci and the genetically complex nature of the major histocompatibility complex (MHC) have precluded a thorough investigation of the region. The purpose of this study was to test the hypothesis that additional celiac disease loci exist within the extended MHC (xMHC). A set of 1898 SNPs was analyzed for association across the 7.6 Mb xMHC region in 1668 confirmed celiac disease cases and 517 unaffected controls. Conditional recursive partitioning was used to create an informative indicator of the known HLA-DQA1 and HLA-DQB1 high-risk genotypes that was included in the association analysis to account for their effects. A linkage disequilibrium-based grouping procedure was utilized to estimate the number of independent celiac disease loci present in the xMHC after accounting for the known effects. There was significant statistical evidence for four new independent celiac disease loci within the classic MHC region. This study is the first comprehensive association analysis of the xMHC in celiac disease that specifically accounts for the known HLA disease genotypes and the genetic complexity of the region. PMID:22615847
Viazovaia, A A; Solov'eva, N S; Zhuravlev, V Iu; Mokrousov, I V; Manicheva, O A; Vishnevskiĭ, B I; Narvskaia, O V
2013-01-01
Molecular-genetic characteristic of M. tuberculosis strains isolated from operation material of patients with tuberculous spondylitis. 107 strains of M. tuberculosis isolated in 2007 - 2011 from patients with spine tuberculosis were studied by methods of spoligotyping and MIRU-VNTR by 12 and 24 loci. Strains of genetic family Beijing dominated (n = 80), 78% of those had multiple drug resistance (MDR). Strains of genetic families T, H3 (Ural), LAM, Manu, H4 and S were also detected. Differentiating of 80 strains of Beijing genotype by MIRU-VNTR method by 24 loci revealed 24 variants (HGI = 0.83) including 7 clusters, the largest of those (100-32) included 23 strains (87% MDR). The leading role of Beijing genotype M. tuberculosis strains in development of tuberculous spondylitis with multiple drug resistance of the causative agent is shown.
Genetic data for 26 autosomal STR markers from Brazilian population.
Pereira, Tamiris Fátima Correia; Malaghini, Marcelo; Magalhães, João Carlos Maciel; Moura-Neto, Rodrigo; Sotomaior, Vanessa Santos
2018-01-19
The allelic frequency distributions and statistical forensic parameters of 26 mini short tandem repeat (mini-STR) loci in a sample of 1575 unrelated individuals from five different Brazilian regions were obtained. All the analyzed loci showed great diversity and were highly informative. The results were compared with those of the US Caucasian, African American, and Hispanic population studies. This study aimed to contribute to forensic analysis for human identification and inference of the evidential value in familial bond tests.
Hansen, Heidi; Ben-David, Merav; McDonald, David B
2008-03-01
In noninvasive genetic sampling, when genotyping error rates are high and recapture rates are low, misidentification of individuals can lead to overestimation of population size. Thus, estimating genotyping errors is imperative. Nonetheless, conducting multiple polymerase chain reactions (PCRs) at multiple loci is time-consuming and costly. To address the controversy regarding the minimum number of PCRs required for obtaining a consensus genotype, we compared consumer-style the performance of two genotyping protocols (multiple-tubes and 'comparative method') in respect to genotyping success and error rates. Our results from 48 faecal samples of river otters (Lontra canadensis) collected in Wyoming in 2003, and from blood samples of five captive river otters amplified with four different primers, suggest that use of the comparative genotyping protocol can minimize the number of PCRs per locus. For all but five samples at one locus, the same consensus genotypes were reached with fewer PCRs and with reduced error rates with this protocol compared to the multiple-tubes method. This finding is reassuring because genotyping errors can occur at relatively high rates even in tissues such as blood and hair. In addition, we found that loci that amplify readily and yield consensus genotypes, may still exhibit high error rates (7-32%) and that amplification with different primers resulted in different types and rates of error. Thus, assigning a genotype based on a single PCR for several loci could result in misidentification of individuals. We recommend that programs designed to statistically assign consensus genotypes should be modified to allow the different treatment of heterozygotes and homozygotes intrinsic to the comparative method. © 2007 The Authors.
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis
Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C.A.; Patsopoulos, Nikolaos A.; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E.; Edkins, Sarah; Gray, Emma; Booth, David R.; Potter, Simon C.; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D’alfonso, Sandra; Blackburn, Hannah; Boneschi, Filippo Martinelli; Liddle, Jennifer; Harbo, Hanne F.; Perez, Marc L.; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P.; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T.; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J.; Barcellos, Lisa F.; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E.; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P.; Brassat, David; Broadley, Simon A.; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M.; Cavalla, Paola; Celius, Elisabeth G.; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B.; Cozen, Wendy; Cree, Bruce A.C.; Cross, Anne H.; Cusi, Daniele; Daly, Mark J.; Davis, Emma; de Bakker, Paul I.W.; Debouverie, Marc; D’hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F.A.; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N.; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G.; Kilpatrick, Trevor J.; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S.; Leone, Maurizio A.; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R.; Link, Jenny; Liu, Jianjun; Lorentzen, Åslaug R.; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L.; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L.; Ramsay, Patricia P.; Reunanen, Mauri; Reynolds, Richard; Rioux, John D.; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P.; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A.; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J.; Sellebjerg, Finn; Selmaj, Krzysztof W.; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M.A.; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C.; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M.; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A.; Tronczynska, Ewa; Casas, Juan P.; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S.; Wang, Kai; Mathew, Christopher G.; Wason, James; Palmer, Colin N.A.; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C.; Yaouanq, Jacqueline; Viswanathan, Ananth C.; Zhang, Haitao; Wood, Nicholas W.; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R.; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J.; De Jager, Philip L.; Peltonen, Leena; Stewart, Graeme J.; Hafler, David A.; Hauser, Stephen L.; McVean, Gil; Donnelly, Peter; Compston, Alastair
2011-01-01
Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis. PMID:21833088
Analysis of the New Zealand Black contribution to lupus-like renal disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, C.G.; Rozzo, S.J.; Hirschfeld, H.F.
1995-03-01
F{sub 1} progeny of New Zealand Black (NZB) and New Zealand White (NZW) mice spontaneously develop an autoimmune process remarkably similar to human systemic lupus erythematosus. Previous studies have implicated major genetic contributions from the NZW MHC and from a dominant NZB gene on chromosome 4. To identify additional NZB contributions to lupus-like disease, (NZB x SM/J)F{sub 1} x NZW backcross mice were followed for the development of severe renal disease and were comprehensively genotyped. Despite a 50% incidence of disease significant associations between the presence of the NZB genotype and disease were noted on chromosomes 1, 4, 7, 10,more » 13, and 19. The data indicated that multiple NZB genes, in different combinations, contribute to severe renal disease, and that no single gene is required. To further investigate this NZB contribution, NZB x SM/J (NXSM) recombinant inbred (RI) strains were crossed with NZW mice, and F{sub 1} progeny were analyzed for the presence of lupus-like renal disease. Interestingly, nearly all of the (RI x NZW)F{sub 1} cohorts studies expressed some level of disease. Five RI strains generated a high incidence of disease, similar to (NZB x NZW)F{sub 1} mice, and nearly one-half of the cohorts developed disease at intermediate levels. Only two cohorts demonstrated very little disease, supporting the conclusion that multiple genes are capable of disease induction. Experiments correlating the genotypes of these RI strains with their ability to generate disease revealed that none of the disease-associated loci defined by the backcross analysis were present in all five RI strains that generated disease at high levels. Overall, both the backcross data and RI analysis provide additional support for the genetic complexity of lupus nephritis and uphold the conclusion that heterogeneous combinations of contributing NZB genes seem to operate in a threshold manner to generate the disease phenotype. 31 refs., 3 figs., 2 tabs.« less
Gioffré, Andrea; Correa Muñoz, Magnolia; Alvarado Pinedo, María F.; Vaca, Roberto; Morsella, Claudia; Fiorentino, María Andrea; Paolicchi, Fernando; Ruybal, Paula; Zumárraga, Martín; Travería, Gabriel E.; Romano, María Isabel
2015-01-01
Multiple-locus variable number-tandem repeat analysis (MLVA) of Mycobacterium avium subspecies paratuberculosis (MAP) isolates may contribute to the knowledge of strain diversity in Argentina. Although the diversity of MAP has been previously investigated in Argentina using IS900-RFLP, a small number of isolates were employed, and a low discriminative power was reached. The aim of the present study was to test the genetic diversity among MAP isolates using an MLVA approach based on 8 repetitive loci. We studied 97 isolates from cattle, goat and sheep and could describe 7 different patterns: INMV1, INMV2, INMV11, INMV13, INMV16, INMV33 and one incomplete pattern. INMV1 and INMV2 were the most frequent patterns, grouping 76.3% of the isolates. We were also able to demonstrate the coexistence of genotypes in herds and co-infection at the organism level. This study shows that all the patterns described are common to those described in Europe, suggesting an epidemiological link between the continents. PMID:26273274
Inheritance of stress-induced, ATF-2-dependent epigenetic change.
Seong, Ki-Hyeon; Li, Dong; Shimizu, Hideyuki; Nakamura, Ryoichi; Ishii, Shunsuke
2011-06-24
Atf1, the fission yeast homolog of activation transcription factor-2 (ATF-2), contributes to heterochromatin formation. However, the role of ATF-2 in chromatin assembly in higher organisms remains unknown. This study reveals that Drosophila ATF-2 (dATF-2) is required for heterochromatin assembly, whereas the stress-induced phosphorylation of dATF-2, via Mekk1-p38, disrupts heterochromatin. The dATF-2 protein colocalized with HP1, not only on heterochromatin but also at specific loci in euchromatin. Heat shock or osmotic stress induced phosphorylation of dATF-2 and resulted in its release from heterochromatin. This heterochromatic disruption was an epigenetic event that was transmitted to the next generation in a non-Mendelian fashion. When embryos were exposed to heat stress over multiple generations, the defective chromatin state was maintained over multiple successive generations, though it gradually returned to the normal state. The results suggest a mechanism by which the effects of stress are inherited epigenetically via the regulation of a tight chromatin structure. Copyright © 2011 Elsevier Inc. All rights reserved.
Holeski, Liza M; Monnahan, Patrick; Koseva, Boryana; McCool, Nick; Lindroth, Richard L; Kelly, John K
2014-03-13
Genotyping-by-sequencing methods have vastly improved the resolution and accuracy of genetic linkage maps by increasing both the number of marker loci as well as the number of individuals genotyped at these loci. Using restriction-associated DNA sequencing, we construct a dense linkage map for a panel of recombinant inbred lines derived from a cross between divergent ecotypes of Mimulus guttatus. We used this map to estimate recombination rate across the genome and to identify quantitative trait loci for the production of several secondary compounds (PPGs) of the phenylpropanoid pathway implicated in defense against herbivores. Levels of different PPGs are correlated across recombinant inbred lines suggesting joint regulation of the phenylpropanoid pathway. However, the three quantitative trait loci identified in this study each act on a distinct PPG. Finally, we map three putative genomic inversions differentiating the two parental populations, including a previously characterized inversion that contributes to life-history differences between the annual/perennial ecotypes. Copyright © 2014 Holeski et al.
Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia
2012-05-13
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
Davies, Gail; Lam, Max; Harris, Sarah E; Trampush, Joey W; Luciano, Michelle; Hill, W David; Hagenaars, Saskia P; Ritchie, Stuart J; Marioni, Riccardo E; Fawns-Ritchie, Chloe; Liewald, David C M; Okely, Judith A; Ahola-Olli, Ari V; Barnes, Catriona L K; Bertram, Lars; Bis, Joshua C; Burdick, Katherine E; Christoforou, Andrea; DeRosse, Pamela; Djurovic, Srdjan; Espeseth, Thomas; Giakoumaki, Stella; Giddaluru, Sudheer; Gustavson, Daniel E; Hayward, Caroline; Hofer, Edith; Ikram, M Arfan; Karlsson, Robert; Knowles, Emma; Lahti, Jari; Leber, Markus; Li, Shuo; Mather, Karen A; Melle, Ingrid; Morris, Derek; Oldmeadow, Christopher; Palviainen, Teemu; Payton, Antony; Pazoki, Raha; Petrovic, Katja; Reynolds, Chandra A; Sargurupremraj, Muralidharan; Scholz, Markus; Smith, Jennifer A; Smith, Albert V; Terzikhan, Natalie; Thalamuthu, Anbupalam; Trompet, Stella; van der Lee, Sven J; Ware, Erin B; Windham, B Gwen; Wright, Margaret J; Yang, Jingyun; Yu, Jin; Ames, David; Amin, Najaf; Amouyel, Philippe; Andreassen, Ole A; Armstrong, Nicola J; Assareh, Amelia A; Attia, John R; Attix, Deborah; Avramopoulos, Dimitrios; Bennett, David A; Böhmer, Anne C; Boyle, Patricia A; Brodaty, Henry; Campbell, Harry; Cannon, Tyrone D; Cirulli, Elizabeth T; Congdon, Eliza; Conley, Emily Drabant; Corley, Janie; Cox, Simon R; Dale, Anders M; Dehghan, Abbas; Dick, Danielle; Dickinson, Dwight; Eriksson, Johan G; Evangelou, Evangelos; Faul, Jessica D; Ford, Ian; Freimer, Nelson A; Gao, He; Giegling, Ina; Gillespie, Nathan A; Gordon, Scott D; Gottesman, Rebecca F; Griswold, Michael E; Gudnason, Vilmundur; Harris, Tamara B; Hartmann, Annette M; Hatzimanolis, Alex; Heiss, Gerardo; Holliday, Elizabeth G; Joshi, Peter K; Kähönen, Mika; Kardia, Sharon L R; Karlsson, Ida; Kleineidam, Luca; Knopman, David S; Kochan, Nicole A; Konte, Bettina; Kwok, John B; Le Hellard, Stephanie; Lee, Teresa; Lehtimäki, Terho; Li, Shu-Chen; Liu, Tian; Koini, Marisa; London, Edythe; Longstreth, Will T; Lopez, Oscar L; Loukola, Anu; Luck, Tobias; Lundervold, Astri J; Lundquist, Anders; Lyytikäinen, Leo-Pekka; Martin, Nicholas G; Montgomery, Grant W; Murray, Alison D; Need, Anna C; Noordam, Raymond; Nyberg, Lars; Ollier, William; Papenberg, Goran; Pattie, Alison; Polasek, Ozren; Poldrack, Russell A; Psaty, Bruce M; Reppermund, Simone; Riedel-Heller, Steffi G; Rose, Richard J; Rotter, Jerome I; Roussos, Panos; Rovio, Suvi P; Saba, Yasaman; Sabb, Fred W; Sachdev, Perminder S; Satizabal, Claudia L; Schmid, Matthias; Scott, Rodney J; Scult, Matthew A; Simino, Jeannette; Slagboom, P Eline; Smyrnis, Nikolaos; Soumaré, Aïcha; Stefanis, Nikos C; Stott, David J; Straub, Richard E; Sundet, Kjetil; Taylor, Adele M; Taylor, Kent D; Tzoulaki, Ioanna; Tzourio, Christophe; Uitterlinden, André; Vitart, Veronique; Voineskos, Aristotle N; Kaprio, Jaakko; Wagner, Michael; Wagner, Holger; Weinhold, Leonie; Wen, K Hoyan; Widen, Elisabeth; Yang, Qiong; Zhao, Wei; Adams, Hieab H H; Arking, Dan E; Bilder, Robert M; Bitsios, Panos; Boerwinkle, Eric; Chiba-Falek, Ornit; Corvin, Aiden; De Jager, Philip L; Debette, Stéphanie; Donohoe, Gary; Elliott, Paul; Fitzpatrick, Annette L; Gill, Michael; Glahn, David C; Hägg, Sara; Hansell, Narelle K; Hariri, Ahmad R; Ikram, M Kamran; Jukema, J Wouter; Vuoksimaa, Eero; Keller, Matthew C; Kremen, William S; Launer, Lenore; Lindenberger, Ulman; Palotie, Aarno; Pedersen, Nancy L; Pendleton, Neil; Porteous, David J; Räikkönen, Katri; Raitakari, Olli T; Ramirez, Alfredo; Reinvang, Ivar; Rudan, Igor; Dan Rujescu; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter W; Schofield, Peter R; Starr, John M; Steen, Vidar M; Trollor, Julian N; Turner, Steven T; Van Duijn, Cornelia M; Villringer, Arno; Weinberger, Daniel R; Weir, David R; Wilson, James F; Malhotra, Anil; McIntosh, Andrew M; Gale, Catharine R; Seshadri, Sudha; Mosley, Thomas H; Bressler, Jan; Lencz, Todd; Deary, Ian J
2018-05-29
General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10 -8 ) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
Asadi, N; Rahimi, A; Ghaheri, M; Kahrizi, D; Bagheri Dehbaghi, M; Khederzadeh, S; Banabazi, M H; Esmaeilkhanian, S; Veisi, B; Geravandi, M; Karim, H; Vaziri, S; Daneshgar, F; Zargooshi, J
2016-10-31
Apis florea is one of two species of small, wild honeybee. The present study was conducted to evaluate the genetic diversity of Apis florea honeybee from 48 nests (colonies) using microsatellite markers in the South of Iran. All honeybee samples were analyzed for six microsatellite loci (A88, A107, A7, B124, A113 and A35). The six loci had different numbers of alleles in the sampled colonies ranging from 7 (loci A107) to 3 (loci A7, A35). Gene diversity in Apis florea ranged from 0.491 to 0.595. This range probably reflects the spreading of nests in a large region with a varied climate. Phylogenetic tree showed two distinct clusters including a) Minab region samples and b) Bandar Abbas, Bandar Khamir and Qeshm Island regions. All of these regions are geographically rich, having varied vegetation and climate conditions. Our findings are an important contribution to the methods of studying distribution and conservation of Apis florea.
NASA Astrophysics Data System (ADS)
Xu, Kefeng; Li, Qi
2009-06-01
The inheritance mode of seven microsatellite markers was investigated in Patinopecten yessoensis larvae from four controlled crosses, and the feasibility of using these markers for kinship estimation was also examined. All the seven microsatellite loci were compatible with Mendelian inheritance. Neither sex-linked barriers to transmission nor major barriers to fertilization between gametes from the parents were evident. Two of the seven loci showed the presence of null alleles in two families, suggesting the need to conduct comprehensive species-specific inheritance studies for microsatellite loci used in population genetic studies. However, even if the null allele heterozygotes were considered as homozygotes in the calculation of genetic distance, offspring from four families were all unambiguously discriminated in the neighbor-joining dendrogram. This result indicates that the microsatellite markers used may be capable of discriminating between related and unrelated scallop larvae in the absence of pedigree information, and of investigating the effective number of parents contributing to the hatchery population of the Japanese scallop.
Allelic-based gene-gene interaction associated with quantitative traits.
Jung, Jeesun; Sun, Bin; Kwon, Deukwoo; Koller, Daniel L; Foroud, Tatiana M
2009-05-01
Recent studies have shown that quantitative phenotypes may be influenced not only by multiple single nucleotide polymorphisms (SNPs) within a gene but also by the interaction between SNPs at unlinked genes. We propose a new statistical approach that can detect gene-gene interactions at the allelic level which contribute to the phenotypic variation in a quantitative trait. By testing for the association of allelic combinations at multiple unlinked loci with a quantitative trait, we can detect the SNP allelic interaction whether or not it can be detected as a main effect. Our proposed method assigns a score to unrelated subjects according to their allelic combination inferred from observed genotypes at two or more unlinked SNPs, and then tests for the association of the allelic score with a quantitative trait. To investigate the statistical properties of the proposed method, we performed a simulation study to estimate type I error rates and power and demonstrated that this allelic approach achieves greater power than the more commonly used genotypic approach to test for gene-gene interaction. As an example, the proposed method was applied to data obtained as part of a candidate gene study of sodium retention by the kidney. We found that this method detects an interaction between the calcium-sensing receptor gene (CaSR), the chloride channel gene (CLCNKB) and the Na, K, 2Cl cotransporter gene (CLC12A1) that contributes to variation in diastolic blood pressure.
Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease
Jostins, Luke; Ripke, Stephan; Weersma, Rinse K; Duerr, Richard H; McGovern, Dermot P; Hui, Ken Y; Lee, James C; Schumm, L Philip; Sharma, Yashoda; Anderson, Carl A; Essers, Jonah; Mitrovic, Mitja; Ning, Kaida; Cleynen, Isabelle; Theatre, Emilie; Spain, Sarah L; Raychaudhuri, Soumya; Goyette, Philippe; Wei, Zhi; Abraham, Clara; Achkar, Jean-Paul; Ahmad, Tariq; Amininejad, Leila; Ananthakrishnan, Ashwin N; Andersen, Vibeke; Andrews, Jane M; Baidoo, Leonard; Balschun, Tobias; Bampton, Peter A; Bitton, Alain; Boucher, Gabrielle; Brand, Stephan; Büning, Carsten; Cohain, Ariella; Cichon, Sven; D’Amato, Mauro; De Jong, Dirk; Devaney, Kathy L; Dubinsky, Marla; Edwards, Cathryn; Ellinghaus, David; Ferguson, Lynnette R; Franchimont, Denis; Fransen, Karin; Gearry, Richard; Georges, Michel; Gieger, Christian; Glas, Jürgen; Haritunians, Talin; Hart, Ailsa; Hawkey, Chris; Hedl, Matija; Hu, Xinli; Karlsen, Tom H; Kupcinskas, Limas; Kugathasan, Subra; Latiano, Anna; Laukens, Debby; Lawrance, Ian C; Lees, Charlie W; Louis, Edouard; Mahy, Gillian; Mansfield, John; Morgan, Angharad R; Mowat, Craig; Newman, William; Palmieri, Orazio; Ponsioen, Cyriel Y; Potocnik, Uros; Prescott, Natalie J; Regueiro, Miguel; Rotter, Jerome I; Russell, Richard K; Sanderson, Jeremy D; Sans, Miquel; Satsangi, Jack; Schreiber, Stefan; Simms, Lisa A; Sventoraityte, Jurgita; Targan, Stephan R; Taylor, Kent D; Tremelling, Mark; Verspaget, Hein W; De Vos, Martine; Wijmenga, Cisca; Wilson, David C; Winkelmann, Juliane; Xavier, Ramnik J; Zeissig, Sebastian; Zhang, Bin; Zhang, Clarence K; Zhao, Hongyu; Silverberg, Mark S; Annese, Vito; Hakonarson, Hakon; Brant, Steven R; Radford-Smith, Graham; Mathew, Christopher G; Rioux, John D; Schadt, Eric E; Daly, Mark J; Franke, Andre; Parkes, Miles; Vermeire, Severine; Barrett, Jeffrey C; Cho, Judy H
2012-01-01
Crohn’s disease (CD) and ulcerative colitis (UC), the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry with rising prevalence in other populations1. Genome-wide association studies (GWAS) and subsequent meta-analyses of CD and UC2,3 as separate phenotypes implicated previously unsuspected mechanisms, such as autophagy4, in pathogenesis and showed that some IBD loci are shared with other inflammatory diseases5. Here we expand knowledge of relevant pathways by undertaking a meta-analysis of CD and UC genome-wide association scans, with validation of significant findings in more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional and balancing selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe striking overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD. PMID:23128233
Matsushita, Masaya; Ochiai, Hiroshi; Suzuki, Ken-Ichi T; Hayashi, Sayaka; Yamamoto, Takashi; Awazu, Akinori; Sakamoto, Naoaki
2017-12-15
The nuclear positioning and chromatin dynamics of eukaryotic genes are closely related to the regulation of gene expression, but they have not been well examined during early development, which is accompanied by rapid cell cycle progression and dynamic changes in nuclear organization, such as nuclear size and chromatin constitution. In this study, we focused on the early development of the sea urchin Hemicentrotus pulcherrimus and performed three-dimensional fluorescence in situ hybridization of gene loci encoding early histones (one of the types of histone in sea urchin). There are two non-allelic early histone gene loci per sea urchin genome. We found that during the morula stage, when the early histone gene expression levels are at their maximum, interchromosomal interactions were often formed between the early histone gene loci on separate chromosomes and that the gene loci were directed to locate to more interior positions. Furthermore, these interactions were associated with the active transcription of the early histone genes. Thus, such dynamic interchromosomal interactions may contribute to the efficient synthesis of early histone mRNA during the morula stage of sea urchin development. © 2017. Published by The Company of Biologists Ltd.
Ji, Jiansong; Xu, Min; Zhao, Zhongwei; Tu, Jianfei; Gao, Jun; Lu, Chenying; Song, Jingjing; Chen, Weiqian; Chen, Minjiang; Fan, Xiaoxi; Cheng, Xingyao; Lan, Xilin; Li, Jie
2016-04-19
Genome-wide association studies (GWAS) have identified three loci at 18q21 (rs4939827, rs7240004, and rs7229639), which maps to SMAD7 loci, were associated with risk of diseases of the digestive system. However, their associations with hepatocellular carcinoma (HCC) risk remain unknown. A case-control study was conducted to assess genetic associations with HCC risk and clinicopathologic development among Chinese Han population. Three SNPs were genotyped among 1,000 HCC cases and 1,000 controls using Sequenom Mass-ARRAY technology. We observed statistically significant associations for the three SMAD7 loci and HCC risk. Each copy of minor allele was associated with a 1.24-1.36 fold increased risk of HCC. We also found that significant differences were observed between rs4939827 and clinical TNM stage and vascular invasion, as well as rs7240004 and vascular invasion. We also established a genetic risk score (GRS) by summing the risk alleles. The GRS was significantly associated with increased risk of HCC and vascular invasion. Our data revealed the SMAD7 loci is associated with HCC susceptibility and its clinicopathologic development.
Esteves, Francisco; Gaspar, Jorge; Tavares, Adélcia; Moser, Inês; Antunes, Francisco; Mansinho, Kamal; Matos, Olga
2010-03-01
Pneumocystis jirovecii pneumonia (PcP) is an important opportunistic infection among immunocompromised patients. Genetic characterization of P. jirovecii isolated from HIV-positive patients, based on identification of multiple nucleotide sequences at eight distinct loci, was achieved by using PCR with DNA sequencing and RFLP. The present study showed that the mitochondrial large-subunit rRNA (mtLSU rRNA), the cytochrome b (CYB), the superoxide dismutase (SOD), the beta-tubulin (beta-tub), the dihydrofolate reductase (DHFR) and the dihydropteroate synthase (DHPS) loci sequences were more variable and therefore giving additional information than the thioredoxin reductase (Trr1) and the thymidylate synthase (TS) genes. Genotyping at those six most informative loci enabled the identification of 48 different P. jirovecii multilocus genotypes (MLGs). Significant statistical associations between infecting P. jirovecii genotypes and patients' age groups or PcP clinical status were found. Also, mtLSU rRNA sequences and specific genotypes from other three loci (CYB, SOD, and DHFR) were statistically associated. The results suggested large recombination between most P. jirovecii MLGs. However, one MLG occurred at a higher frequency than would be expected according to panmictic expectations, suggesting linkage disequilibrium and clonal propagation. The persistence of this specific MLG may be a consequence of clonal reproduction of this successful genotypic array in a P. jirovecii population with epidemic structure. The present study provided the description of multiple genomic regions of P. jirovecii, improving the understanding of genetic variability and frequency distribution of polymorphic genotypes, and exploring the criteria of clonality by testing over-representation of MLGs.
Muleta, Kebede T; Rouse, Matthew N; Rynearson, Sheri; Chen, Xianming; Buta, Bedada G; Pumphrey, Michael O
2017-08-04
The narrow genetic basis of resistance in modern wheat cultivars and the strong selection response of pathogen populations have been responsible for periodic and devastating epidemics of the wheat rust diseases. Characterizing new sources of resistance and incorporating multiple genes into elite cultivars is the most widely accepted current mechanism to achieve durable varietal performance against changes in pathogen virulence. Here, we report a high-density molecular characterization and genome-wide association study (GWAS) of stripe rust and stem rust resistance in 190 Ethiopian bread wheat lines based on phenotypic data from multi-environment field trials and seedling resistance screening experiments. A total of 24,281 single nucleotide polymorphism (SNP) markers filtered from the wheat 90 K iSelect genotyping assay was used to survey Ethiopian germplasm for population structure, genetic diversity and marker-trait associations. Upon screening for field resistance to stripe rust in the Pacific Northwest of the United States and Ethiopia over multiple growing seasons, and against multiple races of stripe rust and stem rust at seedling stage, eight accessions displayed resistance to all tested races of stem rust and field resistance to stripe rust in all environments. Our GWAS results show 15 loci were significantly associated with seedling and adult plant resistance to stripe rust at false discovery rate (FDR)-adjusted probability (P) <0.10. GWAS also detected 9 additional genomic regions significantly associated (FDR-adjusted P < 0.10) with seedling resistance to stem rust in the Ethiopian wheat accessions. Many of the identified resistance loci were mapped close to previously identified rust resistance genes; however, three loci on the short arms of chromosomes 5A and 7B for stripe rust resistance and two on chromosomes 3B and 7B for stem rust resistance may be novel. Our results demonstrate that considerable genetic variation resides within the landrace accessions that can be utilized to broaden the genetic base of rust resistance in wheat breeding germplasm. The molecular markers identified in this study should be useful in efficiently targeting the associated resistance loci in marker-assisted breeding for rust resistance in Ethiopia and other countries.
Dopa decarboxylase (Ddc) affects variation in Drosophila longevity.
De Luca, Maria; Roshina, Nataliya V; Geiger-Thornsberry, Gretchen L; Lyman, Richard F; Pasyukova, Elena G; Mackay, Trudy F C
2003-08-01
Mutational analyses in model organisms have shown that genes affecting metabolism and stress resistance regulate life span, but the genes responsible for variation in longevity in natural populations are largely unidentified. Previously, we mapped quantitative trait loci (QTLs) affecting variation in longevity between two Drosophila melanogaster strains. Here, we show that the longevity QTL in the 36E;38B cytogenetic interval on chromosome 2 contains multiple closely linked QTLs, including the Dopa decarboxylase (Ddc) locus. Complementation tests to mutations show that Ddc is a positional candidate gene for life span in these strains. Linkage disequilibrium (LD) mapping in a sample of 173 alleles from a single population shows that three common molecular polymorphisms in Ddc account for 15.5% of the genetic contribution to variance in life span from chromosome 2. The polymorphisms are in strong LD, and the effects of the haplotypes on longevity suggest that the polymorphisms are maintained by balancing selection. DDC catalyzes the final step in the synthesis of the neurotransmitters, dopamine and serotonin. Thus, these data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in individual life span.
Heid, Iris M; Jackson, Anne U; Randall, Joshua C; Winkler, Thomas W; Qi, Lu; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Zillikens, M Carola; Speliotes, Elizabeth K; Mägi, Reedik; Workalemahu, Tsegaselassie; White, Charles C; Bouatia-Naji, Nabila; Harris, Tamara B; Berndt, Sonja I; Ingelsson, Erik; Willer, Cristen J; Weedon, Michael N; Luan, Jian'an; Vedantam, Sailaja; Esko, Tõnu; Kilpeläinen, Tuomas O; Kutalik, Zoltán; Li, Shengxu; Monda, Keri L; Dixon, Anna L; Holmes, Christopher C; Kaplan, Lee M; Liang, Liming; Min, Josine L; Moffatt, Miriam F; Molony, Cliona; Nicholson, George; Schadt, Eric E; Zondervan, Krina T; Feitosa, Mary F; Ferreira, Teresa; Lango Allen, Hana; Weyant, Robert J; Wheeler, Eleanor; Wood, Andrew R; Estrada, Karol; Goddard, Michael E; Lettre, Guillaume; Mangino, Massimo; Nyholt, Dale R; Purcell, Shaun; Smith, Albert Vernon; Visscher, Peter M; Yang, Jian; McCarroll, Steven A; Nemesh, James; Voight, Benjamin F; Absher, Devin; Amin, Najaf; Aspelund, Thor; Coin, Lachlan; Glazer, Nicole L; Hayward, Caroline; Heard-Costa, Nancy L; Hottenga, Jouke-Jan; Johansson, Asa; Johnson, Toby; Kaakinen, Marika; Kapur, Karen; Ketkar, Shamika; Knowles, Joshua W; Kraft, Peter; Kraja, Aldi T; Lamina, Claudia; Leitzmann, Michael F; McKnight, Barbara; Morris, Andrew P; Ong, Ken K; Perry, John R B; Peters, Marjolein J; Polasek, Ozren; Prokopenko, Inga; Rayner, Nigel W; Ripatti, Samuli; Rivadeneira, Fernando; Robertson, Neil R; Sanna, Serena; Sovio, Ulla; Surakka, Ida; Teumer, Alexander; van Wingerden, Sophie; Vitart, Veronique; Zhao, Jing Hua; Cavalcanti-Proença, Christine; Chines, Peter S; Fisher, Eva; Kulzer, Jennifer R; Lecoeur, Cecile; Narisu, Narisu; Sandholt, Camilla; Scott, Laura J; Silander, Kaisa; Stark, Klaus; Tammesoo, Mari-Liis; Teslovich, Tanya M; Timpson, Nicholas John; Watanabe, Richard M; Welch, Ryan; Chasman, Daniel I; Cooper, Matthew N; Jansson, John-Olov; Kettunen, Johannes; Lawrence, Robert W; Pellikka, Niina; Perola, Markus; Vandenput, Liesbeth; Alavere, Helene; Almgren, Peter; Atwood, Larry D; Bennett, Amanda J; Biffar, Reiner; Bonnycastle, Lori L; Bornstein, Stefan R; Buchanan, Thomas A; Campbell, Harry; Day, Ian N M; Dei, Mariano; Dörr, Marcus; Elliott, Paul; Erdos, Michael R; Eriksson, Johan G; Freimer, Nelson B; Fu, Mao; Gaget, Stefan; Geus, Eco J C; Gjesing, Anette P; Grallert, Harald; Grässler, Jürgen; Groves, Christopher J; Guiducci, Candace; Hartikainen, Anna-Liisa; Hassanali, Neelam; Havulinna, Aki S; Herzig, Karl-Heinz; Hicks, Andrew A; Hui, Jennie; Igl, Wilmar; Jousilahti, Pekka; Jula, Antti; Kajantie, Eero; Kinnunen, Leena; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Kroemer, Heyo K; Krzelj, Vjekoslav; Kuusisto, Johanna; Kvaloy, Kirsti; Laitinen, Jaana; Lantieri, Olivier; Lathrop, G Mark; Lokki, Marja-Liisa; Luben, Robert N; Ludwig, Barbara; McArdle, Wendy L; McCarthy, Anne; Morken, Mario A; Nelis, Mari; Neville, Matt J; Paré, Guillaume; Parker, Alex N; Peden, John F; Pichler, Irene; Pietiläinen, Kirsi H; Platou, Carl G P; Pouta, Anneli; Ridderstråle, Martin; Samani, Nilesh J; Saramies, Jouko; Sinisalo, Juha; Smit, Jan H; Strawbridge, Rona J; Stringham, Heather M; Swift, Amy J; Teder-Laving, Maris; Thomson, Brian; Usala, Gianluca; van Meurs, Joyce B J; van Ommen, Gert-Jan; Vatin, Vincent; Volpato, Claudia B; Wallaschofski, Henri; Walters, G Bragi; Widen, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Witte, Daniel R; Zgaga, Lina; Zitting, Paavo; Beilby, John P; James, Alan L; Kähönen, Mika; Lehtimäki, Terho; Nieminen, Markku S; Ohlsson, Claes; Palmer, Lyle J; Raitakari, Olli; Ridker, Paul M; Stumvoll, Michael; Tönjes, Anke; Viikari, Jorma; Balkau, Beverley; Ben-Shlomo, Yoav; Bergman, Richard N; Boeing, Heiner; Smith, George Davey; Ebrahim, Shah; Froguel, Philippe; Hansen, Torben; Hengstenberg, Christian; Hveem, Kristian; Isomaa, Bo; Jørgensen, Torben; Karpe, Fredrik; Khaw, Kay-Tee; Laakso, Markku; Lawlor, Debbie A; Marre, Michel; Meitinger, Thomas; Metspalu, Andres; Midthjell, Kristian; Pedersen, Oluf; Salomaa, Veikko; Schwarz, Peter E H; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Valle, Timo T; Wareham, Nicholas J; Arnold, Alice M; Beckmann, Jacques S; Bergmann, Sven; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Collins, Francis S; Eiriksdottir, Gudny; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Hattersley, Andrew T; Hofman, Albert; Hu, Frank B; Illig, Thomas; Iribarren, Carlos; Jarvelin, Marjo-Riitta; Kao, W H Linda; Kaprio, Jaakko; Launer, Lenore J; Munroe, Patricia B; Oostra, Ben; Penninx, Brenda W; Pramstaller, Peter P; Psaty, Bruce M; Quertermous, Thomas; Rissanen, Aila; Rudan, Igor; Shuldiner, Alan R; Soranzo, Nicole; Spector, Timothy D; Syvanen, Ann-Christine; Uda, Manuela; Uitterlinden, André; Völzke, Henry; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Wright, Alan F; Abecasis, Gonçalo R; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Groop, Leif C; Haritunians, Talin; Hunter, David J; Kaplan, Robert C; North, Kari E; O'Connell, Jeffrey R; Peltonen, Leena; Schlessinger, David; Strachan, David P; Hirschhorn, Joel N; Assimes, Themistocles L; Wichmann, H-Erich; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Stefansson, Kari; Cupples, L Adrienne; Loos, Ruth J F; Barroso, Inês; McCarthy, Mark I; Fox, Caroline S; Mohlke, Karen L; Lindgren, Cecilia M
2010-11-01
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
He, Meian; Xu, Min; Zhang, Ben; Liang, Jun; Chen, Peng; Lee, Jong-Young; Johnson, Todd A; Li, Huaixing; Yang, Xiaobo; Dai, Juncheng; Liang, Liming; Gui, Lixuan; Qi, Qibin; Huang, Jinyan; Li, Yanping; Adair, Linda S; Aung, Tin; Cai, Qiuyin; Cheng, Ching-Yu; Cho, Myeong-Chan; Cho, Yoon Shin; Chu, Minjie; Cui, Bin; Gao, Yu-Tang; Go, Min Jin; Gu, Dongfeng; Gu, Weiqiong; Guo, Huan; Hao, Yongchen; Hong, Jie; Hu, Zhibin; Hu, Yanling; Huang, Jianfeng; Hwang, Joo-Yeon; Ikram, Mohammad Kamran; Jin, Guangfu; Kang, Dae-Hee; Khor, Chiea Chuen; Kim, Bong-Jo; Kim, Hung Tae; Kubo, Michiaki; Lee, Jeannette; Lee, Juyoung; Lee, Nanette R; Li, Ruoying; Li, Jun; Liu, JianJun; Longe, Jirong; Lu, Wei; Lu, Xiangfeng; Miao, Xiaoping; Okada, Yukinori; Ong, Rick Twee-Hee; Qiu, Gaokun; Seielstad, Mark; Sim, Xueling; Song, Huaidong; Takeuchi, Fumihiko; Tanaka, Toshihiro; Taylor, Phil R; Wang, Laiyuan; Wang, Weiqing; Wang, Yiqin; Wu, Chen; Wu, Ying; Xiang, Yong-Bing; Yamamoto, Ken; Yang, Handong; Liao, Ming; Yokota, Mitsuhiro; Young, Terri; Zhang, Xiaomin; Kato, Norihiro; Wang, Qing K; Zheng, Wei; Hu, Frank B; Lin, Dongxin; Shen, Hongbing; Teo, Yik Ying; Mo, Zengnan; Wong, Tien Yin; Lin, Xu; Mohlke, Karen L; Ning, Guang; Tsunoda, Tatsuhiko; Han, Bok-Ghee; Shu, Xiao-Ou; Tai, E Shyong; Wu, Tangchun; Qi, Lu
2015-03-15
Human height is associated with risk of multiple diseases and is profoundly determined by an individual's genetic makeup and shows a high degree of ethnic heterogeneity. Large-scale genome-wide association (GWA) analyses of adult height in Europeans have identified nearly 180 genetic loci. A recent study showed high replicability of results from Europeans-based GWA studies in Asians; however, population-specific loci may exist due to distinct linkage disequilibrium patterns. We carried out a GWA meta-analysis in 93 926 individuals from East Asia. We identified 98 loci, including 17 novel and 81 previously reported loci, associated with height at P < 5 × 10(-8), together explaining 8.89% of phenotypic variance. Among the newly identified variants, 10 are commonly distributed (minor allele frequency, MAF > 5%) in Europeans, with comparable frequencies with in Asians, and 7 single-nucleotide polymorphisms are with low frequency (MAF < 5%) in Europeans. In addition, our data suggest that novel biological pathway such as the protein tyrosine phosphatase family is involved in regulation of height. The findings from this study considerably expand our knowledge of the genetic architecture of human height in Asians. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Garner, Austin G; Kenney, Amanda M; Fishman, Lila; Sweigart, Andrea L
2016-07-01
In flowering plants, F1 hybrid seed lethality is a common outcome of crosses between closely related diploid species, but the genetic basis of this early-acting and potentially widespread form of postzygotic reproductive isolation is largely unknown. We intercrossed two closely related species of monkeyflower, Mimulus guttatus and Mimulus tilingii, to characterize the mechanisms and strength of postzygotic reproductive isolation. Then, using a reciprocal backcross design, we performed high-resolution genetic mapping to determine the genetic architecture of hybrid seed lethality and directly test for loci with parent-of-origin effects. We found that F1 hybrid seed lethality is an exceptionally strong isolating barrier between Mimulus species, with reciprocal crosses producing < 1% viable seeds. This form of postzygotic reproductive isolation appears to be highly polygenic, indicating that multiple incompatibility loci have accumulated rapidly between these closely related Mimulus species. It is also primarily caused by genetic loci with parent-of-origin effects, suggesting a possible role for imprinted genes in the evolution of Mimulus hybrid seed lethality. Our findings suggest that divergence in loci with parent-of-origin effects, which is probably driven by genomic coevolution within lineages, might be an important source of hybrid incompatibilities between flowering plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Heid, Iris M; Jackson, Anne U; Randall, Joshua C; Winkler, Thomas W; Qi, Lu; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Zillikens, M Carola; Speliotes, Elizabeth K; Mägi, Reedik; Workalemahu, Tsegaselassie; White, Charles C; Bouatia-Naji, Nabila; Harris, Tamara B; Berndt, Sonja I; Ingelsson, Erik; Willer, Cristen J; Weedon, Michael N; Luan, Jian’An; Vedantam, Sailaja; Esko, Tõnu; Kilpeläinen, Tuomas O; Kutalik, Zoltán; Li, Shengxu; Monda, Keri L; Dixon, Anna L; Holmes, Christopher C; Kaplan, Lee M; Liang, Liming; Min, Josine L; Moffatt, Miriam F; Molony, Cliona; Nicholson, George; Schadt, Eric E; Zondervan, Krina T; Feitosa, Mary F; Ferreira, Teresa; Allen, Hana Lango; Weyant, Robert J; Wheeler, Eleanor; Wood, Andrew R; Estrada, Karol; Goddard, Michael E; Lettre, Guillaume; Mangino, Massimo; Nyholt, Dale R; Purcell, Shaun; Smith, Albert Vernon; Visscher, Peter M; Yang, Jian; McCarroll, Steven A; Nemesh, James; Voight, Benjamin F; Absher, Devin; Amin, Najaf; Aspelund, Thor; Coin, Lachlan; Glazer, Nicole L; Hayward, Caroline; Heard-costa, Nancy L; Hottenga, Jouke-Jan; Johansson, Åsa; Johnson, Toby; Kaakinen, Marika; Kapur, Karen; Ketkar, Shamika; Knowles, Joshua W; Kraft, Peter; Kraja, Aldi T; Lamina, Claudia; Leitzmann, Michael F; McKnight, Barbara; Morris, Andrew P; Ong, Ken K; Perry, John R B; Peters, Marjolein J; Polasek, Ozren; Prokopenko, Inga; Rayner, Nigel W; Ripatti, Samuli; Rivadeneira, Fernando; Robertson, Neil R; Sanna, Serena; Sovio, Ulla; Surakka, Ida; Teumer, Alexander; van Wingerden, Sophie; Vitart, Veronique; Zhao, Jing Hua; Cavalcanti-Proença, Christine; Chines, Peter S; Fisher, Eva; Kulzer, Jennifer R; Lecoeur, Cecile; Narisu, Narisu; Sandholt, Camilla; Scott, Laura J; Silander, Kaisa; Stark, Klaus; Tammesoo, Mari-Liis; Teslovich, Tanya M; Timpson, Nicholas John; Watanabe, Richard M; Welch, Ryan; Chasman, Daniel I; Cooper, Matthew N; Jansson, John-Olov; Kettunen, Johannes; Lawrence, Robert W; Pellikka, Niina; Perola, Markus; Vandenput, Liesbeth; Alavere, Helene; Almgren, Peter; Atwood, Larry D; Bennett, Amanda J; Biffar, Reiner; Bonnycastle, Lori L; Bornstein, Stefan R; Buchanan, Thomas A; Campbell, Harry; Day, Ian N M; Dei, Mariano; Dörr, Marcus; Elliott, Paul; Erdos, Michael R; Eriksson, Johan G; Freimer, Nelson B; Fu, Mao; Gaget, Stefan; Geus, Eco J C; Gjesing, Anette P; Grallert, Harald; Gräßler, Jürgen; Groves, Christopher J; Guiducci, Candace; Hartikainen, Anna-Liisa; Hassanali, Neelam; Havulinna, Aki S; Herzig, Karl-Heinz; Hicks, Andrew A; Hui, Jennie; Igl, Wilmar; Jousilahti, Pekka; Jula, Antti; Kajantie, Eero; Kinnunen, Leena; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Kroemer, Heyo K; Krzelj, Vjekoslav; Kuusisto, Johanna; Kvaloy, Kirsti; Laitinen, Jaana; Lantieri, Olivier; Lathrop, G Mark; Lokki, Marja-Liisa; Luben, Robert N; Ludwig, Barbara; McArdle, Wendy L; McCarthy, Anne; Morken, Mario A; Nelis, Mari; Neville, Matt J; Paré, Guillaume; Parker, Alex N; Peden, John F; Pichler, Irene; Pietiläinen, Kirsi H; Platou, Carl G P; Pouta, Anneli; Ridderstråle, Martin; Samani, Nilesh J; Saramies, Jouko; Sinisalo, Juha; Smit, Jan H; Strawbridge, Rona J; Stringham, Heather M; Swift, Amy J; Teder-Laving, Maris; Thomson, Brian; Usala, Gianluca; van Meurs, Joyce B J; van Ommen, Gert-Jan; Vatin, Vincent; Volpato, Claudia B; Wallaschofski, Henri; Walters, G Bragi; Widen, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Witte, Daniel R; Zgaga, Lina; Zitting, Paavo; Beilby, John P; James, Alan L; Kähönen, Mika; Lehtimäki, Terho; Nieminen, Markku S; Ohlsson, Claes; Palmer, Lyle J; Raitakari, Olli; Ridker, Paul M; Stumvoll, Michael; Tönjes, Anke; Viikari, Jorma; Balkau, Beverley; Ben-Shlomo, Yoav; Bergman, Richard N; Boeing, Heiner; Smith, George Davey; Ebrahim, Shah; Froguel, Philippe; Hansen, Torben; Hengstenberg, Christian; Hveem, Kristian; Isomaa, Bo; Jørgensen, Torben; Karpe, Fredrik; Khaw, Kay-Tee; Laakso, Markku; Lawlor, Debbie A; Marre, Michel; Meitinger, Thomas; Metspalu, Andres; Midthjell, Kristian; Pedersen, Oluf; Salomaa, Veikko; Schwarz, Peter E H; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Valle, Timo T; Wareham, Nicholas J; Arnold, Alice M; Beckmann, Jacques S; Bergmann, Sven; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Collins, Francis S; Eiriksdottir, Gudny; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Hattersley, Andrew T; Hofman, Albert; Hu, Frank B; Illig, Thomas; Iribarren, Carlos; Jarvelin, Marjo-Riitta; Kao, W H Linda; Kaprio, Jaakko; Launer, Lenore J; Munroe, Patricia B; Oostra, Ben; Penninx, Brenda W; Pramstaller, Peter P; Psaty, Bruce M; Quertermous, Thomas; Rissanen, Aila; Rudan, Igor; Shuldiner, Alan R; Soranzo, Nicole; Spector, Timothy D; Syvanen, Ann-Christine; Uda, Manuela; Uitterlinden, André; Völzke, Henry; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Wright, Alan F; Abecasis, Gonçalo R; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Groop, Leif C; Haritunians, Talin; Hunter, David J; Kaplan, Robert C; North, Kari E; O’connell, Jeffrey R; Peltonen, Leena; Schlessinger, David; Strachan, David P; Hirschhorn, Joel N; Assimes, Themistocles L; Wichmann, H-Erich; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Stefansson, Kari; Cupples, L Adrienne; Loos, Ruth J F; Barroso, Inês; McCarthy, Mark I; Fox, Caroline S; Mohlke, Karen L; Lindgren, Cecilia M
2011-01-01
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions. PMID:20935629
Hey, Jody; Nielsen, Rasmus
2004-01-01
The genetic study of diverging, closely related populations is required for basic questions on demography and speciation, as well as for biodiversity and conservation research. However, it is often unclear whether divergence is due simply to separation or whether populations have also experienced gene flow. These questions can be addressed with a full model of population separation with gene flow, by applying a Markov chain Monte Carlo method for estimating the posterior probability distribution of model parameters. We have generalized this method and made it applicable to data from multiple unlinked loci. These loci can vary in their modes of inheritance, and inheritance scalars can be implemented either as constants or as parameters to be estimated. By treating inheritance scalars as parameters it is also possible to address variation among loci in the impact via linkage of recurrent selective sweeps or background selection. These methods are applied to a large multilocus data set from Drosophila pseudoobscura and D. persimilis. The species are estimated to have diverged approximately 500,000 years ago. Several loci have nonzero estimates of gene flow since the initial separation of the species, with considerable variation in gene flow estimates among loci, in both directions between the species. PMID:15238526
Martin, Jose-Ezequiel; Assassi, Shervin; Diaz-Gallo, Lina-Marcela; Broen, Jasper C.; Simeon, Carmen P.; Castellvi, Ivan; Vicente-Rabaneda, Esther; Fonollosa, Vicente; Ortego-Centeno, Norberto; González-Gay, Miguel A.; Espinosa, Gerard; Carreira, Patricia; Camps, Mayte; Sabio, Jose M.; D'alfonso, Sandra; Vonk, Madelon C.; Voskuyl, Alexandre E.; Schuerwegh, Annemie J.; Kreuter, Alexander; Witte, Torsten; Riemekasten, Gabriella; Hunzelmann, Nicolas; Airo, Paolo; Beretta, Lorenzo; Scorza, Raffaella; Lunardi, Claudio; Van Laar, Jacob; Chee, Meng May; Worthington, Jane; Herrick, Arianne; Denton, Christopher; Fonseca, Carmen; Tan, Filemon K.; Arnett, Frank; Zhou, Xiaodong; Reveille, John D.; Gorlova, Olga; Koeleman, Bobby P.C.; Radstake, Timothy R.D.J.; Vyse, Timothy; Mayes, Maureen D.; Alarcón-Riquelme, Marta E.; Martin, Javier
2013-01-01
Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are two archetypal systemic autoimmune diseases which have been shown to share multiple genetic susceptibility loci. In order to gain insight into the genetic basis of these diseases, we performed a pan-meta-analysis of two genome-wide association studies (GWASs) together with a replication stage including additional SSc and SLE cohorts. This increased the sample size to a total of 21 109 (6835 cases and 14 274 controls). We selected for replication 19 SNPs from the GWAS data. We were able to validate KIAA0319L (P = 3.31 × 10−11, OR = 1.49) as novel susceptibility loci for SSc and SLE. Furthermore, we also determined that the previously described SLE susceptibility loci PXK (P = 3.27 × 10−11, OR = 1.20) and JAZF1 (P = 1.11 × 10−8, OR = 1.13) are shared with SSc. Supporting these new discoveries, we observed that KIAA0319L was overexpressed in peripheral blood cells of SSc and SLE patients compared with healthy controls. With these, we add three (KIAA0319L, PXK and JAZF1) and one (KIAA0319L) new susceptibility loci for SSc and SLE, respectively, increasing significantly the knowledge of the genetic basis of autoimmunity. PMID:23740937
Berndt, Sonja I.; Camp, Nicola J.; Skibola, Christine F.; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S.; Smedby, Karin E.; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S.; Lan, Qing; Teras, Lauren R.; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R.; Hartge, Patricia; Purdue, Mark P.; Birmann, Brenda M.; Vajdic, Claire M.; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G.; Shanafelt, Tait D.; Novak, Anne J.; Kay, Neil E.; Liebow, Mark; Cunningham, Julie M.; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T.; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A.; Diver, W Ryan; Link, Brian K.; Weiner, George J.; Conde, Lucia; Bracci, Paige M.; Riby, Jacques; Arnett, Donna K.; Zhi, Degui; Leach, Justin M.; Holly, Elizabeth A.; Jackson, Rebecca D.; Tinker, Lesley F.; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G.; Achenbach, Sara J.; Vachon, Celine M.; Goldin, Lynn R.; Strom, Sara S.; Leis, Jose F.; Weinberg, J. Brice; Caporaso, Neil E.; Norman, Aaron D.; De Roos, Anneclaire J.; Morton, Lindsay M.; Severson, Richard K.; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María- Dolores; Vermeulen, Roel C. H.; Travis, Ruth C.; Southey, Melissa C.; Milne, Roger L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R.; Villano, Danylo J.; Maria, Ann; Spinelli, John J.; Gascoyne, Randy D.; Connors, Joseph M.; Bertrand, Kimberly A.; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M.; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E.; Snowden, John A.; Wright, Josh; Fraumeni, Joseph F.; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R.; Chanock, Stephen J.; Rothman, Nathaniel; Slager, Susan L.
2016-01-01
Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P=2.55 × 10−11), 6p25.2 (rs73718779, SERPINB6, P=1.97 × 10−8) and 3q28 (rs9815073, LPP, P=3.62 × 10−8), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P=1.00 × 10−11) in the combined analysis. We find suggestive evidence (P<5 × 10−7) for two additional new loci at 4q24 (rs10028805, BANK1, P=7.19 × 10−8) and 3p22.2 (rs1274963, CSRNP1, P=2.12 × 10−7). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility. PMID:26956414
Fung, Jennifer C.; Marshall, Wallace F.; Dernburg, Abby; Agard, David A.; Sedat, John W.
1998-01-01
The dynamics by which homologous chromosomes pair is currently unknown. Here, we use fluorescence in situ hybridization in combination with three-dimensional optical microscopy to show that homologous pairing of the somatic chromosome arm 2L in Drosophila occurs by independent initiation of pairing at discrete loci rather than by a processive zippering of sites along the length of chromosome. By evaluating the pairing frequencies of 11 loci on chromosome arm 2L over several timepoints during Drosophila embryonic development, we show that all 11 loci are paired very early in Drosophila development, within 13 h after egg deposition. To elucidate whether such pairing occurs by directed or undirected motion, we analyzed the pairing kinetics of histone loci during nuclear cycle 14. By measuring changes of nuclear length and correlating these changes with progression of time during cycle 14, we were able to express the pairing frequency and distance between homologous loci as a function of time. Comparing the experimentally determined dynamics of pairing to simulations based on previously proposed models of pairing motion, we show that the observed pairing kinetics are most consistent with a constrained random walk model and not consistent with a directed motion model. Thus, we conclude that simple random contacts through diffusion could suffice to allow pairing of homologous sites. PMID:9531544
Fung, J C; Marshall, W F; Dernburg, A; Agard, D A; Sedat, J W
1998-04-06
The dynamics by which homologous chromosomes pair is currently unknown. Here, we use fluorescence in situ hybridization in combination with three-dimensional optical microscopy to show that homologous pairing of the somatic chromosome arm 2L in Drosophila occurs by independent initiation of pairing at discrete loci rather than by a processive zippering of sites along the length of chromosome. By evaluating the pairing frequencies of 11 loci on chromosome arm 2L over several timepoints during Drosophila embryonic development, we show that all 11 loci are paired very early in Drosophila development, within 13 h after egg deposition. To elucidate whether such pairing occurs by directed or undirected motion, we analyzed the pairing kinetics of histone loci during nuclear cycle 14. By measuring changes of nuclear length and correlating these changes with progression of time during cycle 14, we were able to express the pairing frequency and distance between homologous loci as a function of time. Comparing the experimentally determined dynamics of pairing to simulations based on previously proposed models of pairing motion, we show that the observed pairing kinetics are most consistent with a constrained random walk model and not consistent with a directed motion model. Thus, we conclude that simple random contacts through diffusion could suffice to allow pairing of homologous sites.
Martin, Jose-Ezequiel; Assassi, Shervin; Diaz-Gallo, Lina-Marcela; Broen, Jasper C; Simeon, Carmen P; Castellvi, Ivan; Vicente-Rabaneda, Esther; Fonollosa, Vicente; Ortego-Centeno, Norberto; González-Gay, Miguel A; Espinosa, Gerard; Carreira, Patricia; Camps, Mayte; Sabio, Jose M; D'alfonso, Sandra; Vonk, Madelon C; Voskuyl, Alexandre E; Schuerwegh, Annemie J; Kreuter, Alexander; Witte, Torsten; Riemekasten, Gabriella; Hunzelmann, Nicolas; Airo, Paolo; Beretta, Lorenzo; Scorza, Raffaella; Lunardi, Claudio; Van Laar, Jacob; Chee, Meng May; Worthington, Jane; Herrick, Arianne; Denton, Christopher; Fonseca, Carmen; Tan, Filemon K; Arnett, Frank; Zhou, Xiaodong; Reveille, John D; Gorlova, Olga; Koeleman, Bobby P C; Radstake, Timothy R D J; Vyse, Timothy; Mayes, Maureen D; Alarcón-Riquelme, Marta E; Martin, Javier
2013-10-01
Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are two archetypal systemic autoimmune diseases which have been shown to share multiple genetic susceptibility loci. In order to gain insight into the genetic basis of these diseases, we performed a pan-meta-analysis of two genome-wide association studies (GWASs) together with a replication stage including additional SSc and SLE cohorts. This increased the sample size to a total of 21,109 (6835 cases and 14,274 controls). We selected for replication 19 SNPs from the GWAS data. We were able to validate KIAA0319L (P = 3.31 × 10(-11), OR = 1.49) as novel susceptibility loci for SSc and SLE. Furthermore, we also determined that the previously described SLE susceptibility loci PXK (P = 3.27 × 10(-11), OR = 1.20) and JAZF1 (P = 1.11 × 10(-8), OR = 1.13) are shared with SSc. Supporting these new discoveries, we observed that KIAA0319L was overexpressed in peripheral blood cells of SSc and SLE patients compared with healthy controls. With these, we add three (KIAA0319L, PXK and JAZF1) and one (KIAA0319L) new susceptibility loci for SSc and SLE, respectively, increasing significantly the knowledge of the genetic basis of autoimmunity.
Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.
Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K; Drong, Alexander W; Hayes, James E; Zhao, Jinghua; Pers, Tune H; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Del Greco M, Fabiola; Pasko, Dorota; Renström, Frida; Willems, Sara M; Mahajan, Anubha; Rose, Lynda M; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S; Ju Sung, Yun; Ramos, Yolande F; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J N; Crosslin, David R; Dale, Caroline E; Dastani, Zari; Day, Felix R; Deelen, Joris; Delgado, Graciela E; Demirkan, Ayse; Finucane, Francis M; Ford, Ian; Garcia, Melissa E; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A; Hunter, David J; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S; Jørgensen, Marit E; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P; Myers, Richard H; Männistö, Satu; Nalls, Mike A; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D; Rankinen, Tuomo; Rasmussen-Torvik, Laura J; Rathmann, Wolfgang; Rice, Treva K; Brent Richards, J; Ridker, Paul M; Sattar, Naveed; Savage, David B; Söderberg, Stefan; Timpson, Nicholas J; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I A; Sarzynski, Mark A; Rao, D C; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G; Heliövaara, Markku; Knekt, Paul B; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K; Viikari, Jorma S; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W; van Duijn, Cornelia M; Harris, Tamara B; Bouchard, Claude; Allison, Matthew A; Chasman, Daniel I; Ohlsson, Claes; Lind, Lars; Scott, Robert A; Langenberg, Claudia; Wareham, Nicholas J; Ferrucci, Luigi; Frayling, Timothy M; Pramstaller, Peter P; Borecki, Ingrid B; Waterworth, Dawn M; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B; Eline Slagboom, P; Grallert, Harald; Spector, Tim D; Jukema, J W; Klein, Robert J; Schadt, Erik E; Franks, Paul W; Lindgren, Cecilia M; Leibel, Rudolph L; Loos, Ruth J F
2016-02-01
Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
N'Diaye, Amidou; Haile, Jemanesh K; Cory, Aron T; Clarke, Fran R; Clarke, John M; Knox, Ron E; Pozniak, Curtis J
2017-01-01
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
[Use of multiple locus variable number tandem repeats analysis for the Brucella systematization].
Kulakov, Iu K; Kovalev, D A; Misetova, E N; Golovneva, S I; Liapustina, L V; Zheludkov, M M
2012-01-01
The methods of molecular-genetic differentiation to strain level acquire increasing significance in the current system of struggle with brucellosis. MLVA (multiple locus variable number tandem repeats analysis) was selected for molecular-genetic differentiation to strain level and simultaneous establishment of the genetic relationship of investigated Brucella strains. The goal of this work was MLVA typing of three pathogenic Brucella species strains with the analysis of stability of chosen loci, discrimination power and concordance to conventional phenotypic methods of the Brucella differentiation for use in systematization of brucellosis causing agents. Twenty six Brucella strains representing reference (n = 15), vaccine (n = 2) and field strains of three pathogenic Brucella species were tested: B. melitensis (n = 3), B. abortus (n = 2), B. suis (n = 2), and isolates (n = 2) with unidentified taxonomic position using MLVA with 9 pairs primers on known variable loci of Brucella genome. The analysis of the stability of chosen loci, discrimination power on Hunter-Gaston discrimination index (HGDI) and consistency to phenotypic methods of identification was performed. MLVA was confirmed for the results of phenotypic methods of identification, stability of the chosen loci in majority reference, and vaccine strains with a high index of variability HGDI 0.9969 for all loci. A dendrogram was plotted on the basis of MLVA data on distributed Brucella strains in related clusters according to its taxonomic species and biovar positions and construction of 25 genotypes. B. melitensis strains formed cluster related to the reference strain of B. melitensis 63/9 biovar 2. Australian isolates of Brucella 83-4 and Brucella 83-6 isolated from rodents formed a cluster distant from other strains of Brucella. MLVA is a promising method for differentiation of Brucella strains with known and unresolved taxonomic status for their systematization and creation of MLVA genotype catalogue that will promote qualitative improvement of brucellosis surveillance system in Russia.
Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice.
Kang, Eun Yong; Han, Buhm; Furlotte, Nicholas; Joo, Jong Wha J; Shih, Diana; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.
Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice
Joo, Jong Wha J.; Shih, Diana; Davis, Richard C.; Lusis, Aldons J.; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study. PMID:24415945
Sod1 deficiency reduces incubation time in mouse models of prion disease.
Akhtar, Shaheen; Grizenkova, Julia; Wenborn, Adam; Hummerich, Holger; Fernandez de Marco, Mar; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E
2013-01-01
Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02) and Sod1 (P<0.0001) suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.
Identification of multiple genetic susceptibility loci in Takayasu arteritis.
Saruhan-Direskeneli, Güher; Hughes, Travis; Aksu, Kenan; Keser, Gokhan; Coit, Patrick; Aydin, Sibel Z; Alibaz-Oner, Fatma; Kamalı, Sevil; Inanc, Murat; Carette, Simon; Hoffman, Gary S; Akar, Servet; Onen, Fatos; Akkoc, Nurullah; Khalidi, Nader A; Koening, Curry; Karadag, Omer; Kiraz, Sedat; Langford, Carol A; McAlear, Carol A; Ozbalkan, Zeynep; Ates, Askin; Karaaslan, Yasar; Maksimowicz-McKinnon, Kathleen; Monach, Paul A; Ozer, Hüseyin T; Seyahi, Emire; Fresko, Izzet; Cefle, Ayse; Seo, Philip; Warrington, Kenneth J; Ozturk, Mehmet A; Ytterberg, Steven R; Cobankara, Veli; Onat, A Mesut; Guthridge, Joel M; James, Judith A; Tunc, Ercan; Duzgun, Nurşen; Bıcakcıgil, Muge; Yentür, Sibel P; Merkel, Peter A; Direskeneli, Haner; Sawalha, Amr H
2013-08-08
Takayasu arteritis is a rare inflammatory disease of large arteries. The etiology of Takayasu arteritis remains poorly understood, but genetic contribution to the disease pathogenesis is supported by the genetic association with HLA-B*52. We genotyped ~200,000 genetic variants in two ethnically divergent Takayasu arteritis cohorts from Turkey and North America by using a custom-designed genotyping platform (Immunochip). Additional genetic variants and the classical HLA alleles were imputed and analyzed. We identified and confirmed two independent susceptibility loci within the HLA region (r(2) < 0.2): HLA-B/MICA (rs12524487, OR = 3.29, p = 5.57 × 10(-16)) and HLA-DQB1/HLA-DRB1 (rs113452171, OR = 2.34, p = 3.74 × 10(-9); and rs189754752, OR = 2.47, p = 4.22 × 10(-9)). In addition, we identified and confirmed a genetic association between Takayasu arteritis and the FCGR2A/FCGR3A locus on chromosome 1 (rs10919543, OR = 1.81, p = 5.89 × 10(-12)). The risk allele in this locus results in increased mRNA expression of FCGR2A. We also established the genetic association between IL12B and Takayasu arteritis (rs56167332, OR = 1.54, p = 2.18 × 10(-8)). Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Li, Haobing; Vaillancourt, René; Mendham, Neville; Zhou, Meixue
2008-08-27
Resistance to soil waterlogging stress is an important plant breeding objective in high rainfall or poorly drained areas across many countries in the world. The present study was conducted to identify quantitative trait loci (QTLs) associated with waterlogging tolerance (e.g. leaf chlorosis, plant survival and biomass reduction) in barley and compare the QTLs identified across two seasons and in two different populations using a composite map constructed with SSRs, RFLP and Diversity Array Technology (DArT) markers. Twenty QTLs for waterlogging tolerance related traits were found in the two barley double haploid (DH) populations. Several of these QTLs were validated through replication of experiments across seasons or by co-location across populations. Some of these QTLs affected multiple waterlogging tolerance related traits, for example, QTL Qwt4-1 contributed not only to reducing barley leaf chlorosis, but also increasing plant biomass under waterlogging stress, whereas other QTLs controlled both leaf chlorosis and plant survival. Improving waterlogging tolerance in barley is still at an early stage compared with other traits. QTLs identified in this study have made it possible to use marker assisted selection (MAS) in combination with traditional field selection to significantly enhance barley breeding for waterlogging tolerance. There may be some degree of homoeologous relationship between QTLs controlling barley waterlogging tolerance and that in other crops as discussed in this study.
Genetic architecture of the circadian clock and flowering time in Brassica rapa.
Lou, P; Xie, Q; Xu, X; Edwards, C E; Brock, M T; Weinig, C; McClung, C R
2011-08-01
The circadian clock serves to coordinate physiology and behavior with the diurnal cycles derived from the daily rotation of the earth. In plants, circadian rhythms contribute to growth and yield and, hence, to both agricultural productivity and evolutionary fitness. Arabidopsis thaliana has served as a tractable model species in which to dissect clock mechanism and function, but it now becomes important to define the extent to which the Arabidopsis model can be extrapolated to other species, including crops. Accordingly, we have extended our studies to the close Arabidopsis relative and crop species, Brassica rapa. We have investigated natural variation in circadian function and flowering time among multiple B. rapa collections. There is wide variation in clock function, based on a robust rhythm in cotyledon movement, within a collection of B. rapa accessions, wild populations and recombinant inbred lines (RILs) derived from a cross between parents from two distinct subspecies, a rapid cycling Chinese cabbage (ssp. pekinensis) and a Yellow Sarson oilseed (ssp. trilocularis). We further analyzed the RILs to identify the quantitative trait loci (QTL) responsible for this natural variation in clock period and temperature compensation, as well as for flowering time under different temperature and day length settings. Most clock and flowering-time QTL mapped to overlapping chromosomal loci. We have exploited micro-synteny between the Arabidopsis and B. rapa genomes to identify candidate genes for these QTL.
Breast Cancer Methylomes Establish an Epigenomic Foundation for Metastasis
Fang, Fang; Turcan, Sevin; Rimner, Andreas; Kaufman, Andrew; Giri, Dilip; Morris, Luc G. T.; Shen, Ronglai; Seshan, Venkatraman; Mo, Qianxing; Heguy, Adriana; Baylin, Stephen B.; Ahuja, Nita; Viale, Agnes; Massague, Joan; Norton, Larry; Vahdat, Linda T.; Moynahan, Mary Ellen; Chan, Timothy A.
2011-01-01
Cancer-specific alterations in DNA methylation are hallmarks of human malignancies; however, the nature of the breast cancer epigenome and its effects on metastatic behavior remain obscure. To address this issue, we used genome-wide analysis to characterize the methylomes of breast cancers with diverse metastatic behavior. Groups of breast tumors were characterized by the presence or absence of coordinate hypermethylation at a large number of genes, demonstrating a breast CpG island methylator phenotype (B-CIMP). The B-CIMP provided a distinct epigenomic profile and was a strong determinant of metastatic potential. Specifically, the presence of the B-CIMP in tumors was associated with low metastatic risk and survival, and the absence of the B-CIMP was associated with high metastatic risk and death. B-CIMP loci were highly enriched for genes that make up the metastasis transcriptome. Methylation at B-CIMP genes accounted for much of the transcriptomal diversity between breast cancers of varying prognosis, indicating a fundamental epigenomic contribution to metastasis. Comparison of the loci affected by the B-CIMP with those affected by the hypermethylator phenotype in glioma and colon cancer revealed that the CIMP signature was shared by multiple human malignancies. Our data provide a unifying epigenomic framework linking breast cancers with varying outcome and transcriptomic changes underlying metastasis. These findings significantly enhance our understanding of breast cancer oncogenesis and aid the development of new prognostic biomarkers for this common malignancy. PMID:21430268
van der Gaag, Kristiaan J; de Leeuw, Rick H; Laros, Jeroen F J; den Dunnen, Johan T; de Knijff, Peter
2018-07-01
Since two decades, short tandem repeats (STRs) are the preferred markers for human identification, routinely analysed by fragment length analysis. Here we present a novel set of short hypervariable autosomal microhaplotypes (MH) that have four or more SNPs in a span of less than 70 nucleotides (nt). These MHs display a discriminating power approaching that of STRs and provide a powerful alternative for the analysis;1;is of forensic samples that are problematic when the STR fragment size range exceeds the integrity range of severely degraded DNA or when multiple donors contribute to an evidentiary stain and STR stutter artefacts complicate profile interpretation. MH typing was developed using the power of massively parallel sequencing (MPS) enabling new powerful, fast and efficient SNP-based approaches. MH candidates were obtained from queries in data of the 1000 Genomes, and Genome of the Netherlands (GoNL) projects. Wet-lab analysis of 276 globally dispersed samples and 97 samples of nine large CEPH families assisted locus selection and corroboration of informative value. We infer that MHs represent an alternative marker type with good discriminating power per locus (allowing the use of a limited number of loci), small amplicon sizes and absence of stutter artefacts that can be especially helpful when unbalanced mixed samples are submitted for human identification. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations
Marinier, Eric; Zaheer, Rahat; Berry, Chrystal; Weedmark, Kelly A.; Domaratzki, Michael; Mabon, Philip; Knox, Natalie C.; Reimer, Aleisha R.; Graham, Morag R.; Chui, Linda; Patterson-Fortin, Laura; Zhang, Jian; Pagotto, Franco; Farber, Jeff; Mahony, Jim; Seyer, Karine; Bekal, Sadjia; Tremblay, Cécile; Isaac-Renton, Judy; Prystajecky, Natalie; Chen, Jessica; Slade, Peter
2017-01-01
Abstract The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using ‘big data’ approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune’s loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune. PMID:29048594
Multiple Novel Loci are Associated with Indices of Renal Function and Chronic Kidney Disease
Köttgen, Anna; Glazer, Nicole L; Dehghan, Abbas; Hwang, Shih-Jen; Katz, Ronit; Li, Man; Yang, Qiong; Gudnason, Vilmundur; Launer, Lenore J; Harris, Tamara B; Smith, Albert V; Arking, Dan E; Astor, Brad C; Boerwinkle, Eric; Ehret, Georg B; Ruczinski, Ingo; Scharpf, Robert B; Chen, Yii-Der Ida; de Boer, Ian H; Haritunians, Talin; Lumley, Thomas; Sarnak, Mark; Siscovick, David; Benjamin, Emelia J; Levy, Daniel; Upadhyay, Ashish; Aulchenko, Yurii S; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; van Duijn, Cornelia M; Chasman, Daniel I; Paré, Guillaume; Ridker, Paul M; Kao, WH Linda; Witteman, Jacqueline C; Coresh, Josef; Shlipak, Michael G; Fox, Caroline S
2011-01-01
Chronic kidney disease (CKD) has a heritable component and is an important global public health problem because of its high prevalence and morbidity.1 We conducted genome-wide association studies (GWAS) to identify susceptibility loci for glomerular filtration rate estimated by serum creatinine (eGFRcrea), cystatin C (eGFRcys), and CKD (eGFRcrea<60 ml/min/1.73m2) in European-ancestry participants of four populations-based cohorts (ARIC, CHS, FHS, RS; n=19,877, 2,388 CKD cases), and tested for external replication in 21,466 participants (1,932 CKD cases). Significant associations (p<5*10−8) were identified for SNPs with [1] CKD at the UMOD locus; [2] eGFRcrea at the UMOD, SHROOM3, and GATM/SPATA5L1 loci; [3] eGFRcys at the CST and STC1 loci. UMOD encodes the most common protein in human urine, Tamm-Horsfall protein,2 and rare mutations in UMOD cause Mendelian forms of kidney disease.3 Our findings provide new insights into CKD pathogenesis and underscore the importance of common genetic variants influencing renal function and disease. PMID:19430482
Verhoeven, Virginie J M; Hysi, Pirro G; Wojciechowski, Robert; Fan, Qiao; Guggenheim, Jeremy A; Höhn, René; MacGregor, Stuart; Hewitt, Alex W; Nag, Abhishek; Cheng, Ching-Yu; Yonova-Doing, Ekaterina; Zhou, Xin; Ikram, M Kamran; Buitendijk, Gabriëlle H S; McMahon, George; Kemp, John P; Pourcain, Beate St; Simpson, Claire L; Mäkelä, Kari-Matti; Lehtimäki, Terho; Kähönen, Mika; Paterson, Andrew D; Hosseini, S Mohsen; Wong, Hoi Suen; Xu, Liang; Jonas, Jost B; Pärssinen, Olavi; Wedenoja, Juho; Yip, Shea Ping; Ho, Daniel W H; Pang, Chi Pui; Chen, Li Jia; Burdon, Kathryn P; Craig, Jamie E; Klein, Barbara E K; Klein, Ronald; Haller, Toomas; Metspalu, Andres; Khor, Chiea-Chuen; Tai, E-Shyong; Aung, Tin; Vithana, Eranga; Tay, Wan-Ting; Barathi, Veluchamy A; Chen, Peng; Li, Ruoying; Liao, Jiemin; Zheng, Yingfeng; Ong, Rick T; Döring, Angela; Evans, David M; Timpson, Nicholas J; Verkerk, Annemieke J M H; Meitinger, Thomas; Raitakari, Olli; Hawthorne, Felicia; Spector, Tim D; Karssen, Lennart C; Pirastu, Mario; Murgia, Federico; Ang, Wei; Mishra, Aniket; Montgomery, Grant W; Pennell, Craig E; Cumberland, Phillippa M; Cotlarciuc, Ioana; Mitchell, Paul; Wang, Jie Jin; Schache, Maria; Janmahasatian, Sarayut; Janmahasathian, Sarayut; Igo, Robert P; Lass, Jonathan H; Chew, Emily; Iyengar, Sudha K; Gorgels, Theo G M F; Rudan, Igor; Hayward, Caroline; Wright, Alan F; Polasek, Ozren; Vatavuk, Zoran; Wilson, James F; Fleck, Brian; Zeller, Tanja; Mirshahi, Alireza; Müller, Christian; Uitterlinden, André G; Rivadeneira, Fernando; Vingerling, Johannes R; Hofman, Albert; Oostra, Ben A; Amin, Najaf; Bergen, Arthur A B; Teo, Yik-Ying; Rahi, Jugnoo S; Vitart, Veronique; Williams, Cathy; Baird, Paul N; Wong, Tien-Yin; Oexle, Konrad; Pfeiffer, Norbert; Mackey, David A; Young, Terri L; van Duijn, Cornelia M; Saw, Seang-Mei; Bailey-Wilson, Joan E; Stambolian, Dwight; Klaver, Caroline C; Hammond, Christopher J
2013-03-01
Refractive error is the most common eye disorder worldwide and is a prominent cause of blindness. Myopia affects over 30% of Western populations and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses, including 37,382 individuals from 27 studies of European ancestry and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in individuals of European ancestry, of which 8 were shared with Asians. Combined analysis identified 8 additional associated loci. The new loci include candidate genes with functions in neurotransmission (GRIA4), ion transport (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2 and BMP2) and eye development (SIX6 and PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for individuals carrying the highest genetic load. Our results, based on a large meta-analysis across independent multiancestry studies, considerably advance understanding of the mechanisms involved in refractive error and myopia.
Pillas, Demetris; Hoggart, Clive J; Evans, David M; O'Reilly, Paul F; Sipilä, Kirsi; Lähdesmäki, Raija; Millwood, Iona Y; Kaakinen, Marika; Netuveli, Gopalakrishnan; Blane, David; Charoen, Pimphen; Sovio, Ulla; Pouta, Anneli; Freimer, Nelson; Hartikainen, Anna-Liisa; Laitinen, Jaana; Vaara, Sarianna; Glaser, Beate; Crawford, Peter; Timpson, Nicholas J; Ring, Susan M; Deng, Guohong; Zhang, Weihua; McCarthy, Mark I; Deloukas, Panos; Peltonen, Leena; Elliott, Paul; Coin, Lachlan J M; Smith, George Davey; Jarvelin, Marjo-Riitta
2010-02-26
Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 5 loci at P<5x10(-8), and 5 with suggestive association (P<5x10(-6)). The loci included several genes with links to tooth and other organ development (KCNJ2, EDA, HOXB2, RAD51L1, IGF2BP1, HMGA2, MSRB3). Genes at four of the identified loci are implicated in the development of cancer. A variant within the HOXB gene cluster associated with occlusion defects requiring orthodontic treatment by age 31 years.
Sipilä, Kirsi; Lähdesmäki, Raija; Millwood, Iona Y.; Kaakinen, Marika; Netuveli, Gopalakrishnan; Blane, David; Charoen, Pimphen; Sovio, Ulla; Pouta, Anneli; Freimer, Nelson; Hartikainen, Anna-Liisa; Laitinen, Jaana; Vaara, Sarianna; Glaser, Beate; Crawford, Peter; Timpson, Nicholas J.; Ring, Susan M.; Deng, Guohong; Zhang, Weihua; McCarthy, Mark I.; Deloukas, Panos; Peltonen, Leena
2010-01-01
Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 5 loci at P<5×10−8, and 5 with suggestive association (P<5×10−6). The loci included several genes with links to tooth and other organ development (KCNJ2, EDA, HOXB2, RAD51L1, IGF2BP1, HMGA2, MSRB3). Genes at four of the identified loci are implicated in the development of cancer. A variant within the HOXB gene cluster associated with occlusion defects requiring orthodontic treatment by age 31 years. PMID:20195514
Talkowski, Michael E.; Rosenfeld, Jill A.; Blumenthal, Ian; Pillalamarri, Vamsee; Chiang, Colby; Heilbut, Adrian; Ernst, Carl; Hanscom, Carrie; Rossin, Elizabeth; Lindgren, Amelia; Pereira, Shahrin; Ruderfer, Douglas; Kirby, Andrew; Ripke, Stephan; Harris, David; Lee, Ji-Hyun; Ha, Kyungsoo; Kim, Hyung-Goo; Solomon, Benjamin D.; Gropman, Andrea L.; Lucente, Diane; Sims, Katherine; Ohsumi, Toshiro K.; Borowsky, Mark L.; Loranger, Stephanie; Quade, Bradley; Lage, Kasper; Miles, Judith; Wu, Bai-Lin; Shen, Yiping; Neale, Benjamin; Shaffer, Lisa G.; Daly, Mark J.; Morton, Cynthia C.; Gusella, James F.
2012-01-01
SUMMARY Balanced chromosomal abnormalities (BCAs) represent a reservoir of single gene disruptions in neurodevelopmental disorders (NDD). We sequenced BCAs in autism and related NDDs, revealing disruption of 33 loci in four general categories: 1) genes associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, CDKL5), 2) single gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, SNURF-SNRPN), 3) novel risk loci (e.g., CHD8, KIRREL3, ZNF507), and 4) genes associated with later onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, ANK3). We also discovered profoundly increased burden of copy number variants among 19,556 neurodevelopmental cases compared to 13,991 controls (p = 2.07×10−47) and enrichment of polygenic risk alleles from autism and schizophrenia genome-wide association studies (p = 0.0018 and 0.0009, respectively). Our findings suggest a polygenic risk model of autism incorporating loci of strong effect and indicate that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages. PMID:22521361
Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait.
Maurer, Matthew J; Sutardja, Lawrence; Pinel, Dominic; Bauer, Stefan; Muehlbauer, Amanda L; Ames, Tyler D; Skerker, Jeffrey M; Arkin, Adam P
2017-03-17
Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.
CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.
Deng, Wulan; Shi, Xinghua; Tjian, Robert; Lionnet, Timothée; Singer, Robert H
2015-09-22
Direct visualization of genomic loci in the 3D nucleus is important for understanding the spatial organization of the genome and its association with gene expression. Various DNA FISH methods have been developed in the past decades, all involving denaturing dsDNA and hybridizing fluorescent nucleic acid probes. Here we report a novel approach that uses in vitro constituted nuclease-deficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated caspase 9 (Cas9) complexes as probes to label sequence-specific genomic loci fluorescently without global DNA denaturation (Cas9-mediated fluorescence in situ hybridization, CASFISH). Using fluorescently labeled nuclease-deficient Cas9 (dCas9) protein assembled with various single-guide RNA (sgRNA), we demonstrated rapid and robust labeling of repetitive DNA elements in pericentromere, centromere, G-rich telomere, and coding gene loci. Assembling dCas9 with an array of sgRNAs tiling arbitrary target loci, we were able to visualize nonrepetitive genomic sequences. The dCas9/sgRNA binary complex is stable and binds its target DNA with high affinity, allowing sequential or simultaneous probing of multiple targets. CASFISH assays using differently colored dCas9/sgRNA complexes allow multicolor labeling of target loci in cells. In addition, the CASFISH assay is remarkably rapid under optimal conditions and is applicable for detection in primary tissue sections. This rapid, robust, less disruptive, and cost-effective technology adds a valuable tool for basic research and genetic diagnosis.
Riley, D E; Wagner, B; Polley, L; Krieger, J N
1995-01-01
The protozoan parasite Tritrichomonas foetus causes infertility and spontaneous abortion in cattle. In Saskatchewan, Canada, the culture prevalence of trichomonads was 65 of 1,048 (6%) among 1,048 bulls tested within a 1-year period ending in April 1994. Saskatchewan was previously thought to be free of the parasite. To confirm the culture results, possible T. foetus DNA presence was determined by the PCR. All of the 16 culture-positive isolates tested were PCR positive by a single-band test, but one PCR product was weak. DNA fingerprinting by both T17 PCR and randomly amplified polymorphic DNA PCR revealed genetic variation or polymorphism among the T. foetus isolates. T17 PCR also revealed conserved loci that distinguished these T. foetus isolates from Trichomonas vaginalis, from a variety of other protozoa, and from prokaryotes. TCO-1 PCR, a PCR test designed to sample DNA sequence homologous to the 5' flank of a highly conserved cell division control gene, detected genetic polymorphism at low stringency and a conserved, single locus at higher stringency. These findings suggested that T. foetus isolates exhibit both conserved genetic loci and polymorphic loci detectable by independent PCR methods. Both conserved and polymorphic genetic loci may prove useful for improved clinical diagnosis of T. foetus. The polymorphic loci detected by PCR suggested either a long history of infection or multiple lines of T. foetus infection in Saskatchewan. Polymorphic loci detected by PCR may provide data for epidemiologic studies of T. foetus. PMID:7615746
A map of local adaptation in Arabidopsis thaliana.
Fournier-Level, A; Korte, A; Cooper, M D; Nordborg, M; Schmitt, J; Wilczek, A M
2011-10-07
Local adaptation is critical for species persistence in the face of rapid environmental change, but its genetic basis is not well understood. Growing the model plant Arabidopsis thaliana in field experiments in four sites across the species' native range, we identified candidate loci for local adaptation from a genome-wide association study of lifetime fitness in geographically diverse accessions. Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation. Relative to genomic controls, high-fitness alleles were generally distributed closer to the site where they increased fitness, occupying specific and distinct climate spaces. Independent loci with different molecular functions contributed most strongly to fitness variation in each site. Independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.
Mapping Genetic Variants Associated with Beta-Adrenergic Responses in Inbred Mice
Hersch, Micha; Peter, Bastian; Kang, Hyun Min; Schüpfer, Fanny; Abriel, Hugues; Pedrazzini, Thierry; Eskin, Eleazar; Beckmann, Jacques S.
2012-01-01
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β 1-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10−8). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10−6). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied. PMID:22859963
McEwen, Jamie R.; Vamosi, Jana C.; Rogers, Sean M.
2013-01-01
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence. PMID:23874801
Anderson, Kylie L; Congdon, Bradley C
2013-06-01
The use of a multidisciplinary approach is becoming increasingly important when developing management strategies that mitigate the economic and biological costs associated with invasive pests. A framework of simulated dispersal is combined with life-history information and analyses of population genetic structure to investigate the invasion dynamics of a plant disease vector, the island sugarcane planthopper (Eumetopina flavipes), through an archipelago of significant Australian quarantine concern. Analysis of eight microsatellite loci from 648 individuals suggests that frequent, wind-assisted immigration from multiple sources in Papua New Guinea contributes significantly to repeated colonization of far northern islands. However, intermittent wind-assisted immigration better explains patterns of genetic diversity and structure in the southern islands and on the tip of mainland Australia. Significant population structuring associated with the presence of clusters of highly related individuals results from breeding in-situ following colonization, with little postestablishment movement. Results also suggest that less important secondary movements occur between islands; these appear to be human mediated and restricted by quarantine zones. Control of the planthopper may be very difficult on islands close to Papua New Guinea given the apparent propensity for multiple invasion, but may be achievable further south where local populations appear highly independent and isolated.
Hartati, Hartati; Utsunomiya, Yuri Tani; Sonstegard, Tad Stewart; Garcia, José Fernando; Jakaria, Jakaria; Muladno, Muladno
2015-07-04
Peranakan Ongole (PO) is a major Indonesian Bos indicus breed that derives from animals imported from India in the late 19(th) century. Early imports were followed by hybridization with the Bos javanicus subspecies of cattle. Here, we used genomic data to partition the ancestry components of PO cattle and map loci implicated in birth weight. We found that B. javanicus contributes about 6-7% to the average breed composition of PO cattle. Only two nearly fixed B. javanicus haplotypes were identified, suggesting that most of the B. javanicus variants are segregating under drift or by the action of balancing selection. The zebu component of the PO genome was estimated to derive from at least two distinct ancestral pools. Additionally, well-known loci underlying body size in other beef cattle breeds, such as the PLAG1 region on chromosome 14, were found to also affect birth weight in PO cattle. This study is the first attempt to characterize PO at the genome level, and contributes evidence of successful, stabilized B. indicus x B. javanicus hybridization. Additionally, previously described loci implicated in body size in worldwide beef cattle breeds also affect birth weight in PO cattle.
Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects.
Marshall, Christian R; Howrigan, Daniel P; Merico, Daniele; Thiruvahindrapuram, Bhooma; Wu, Wenting; Greer, Douglas S; Antaki, Danny; Shetty, Aniket; Holmans, Peter A; Pinto, Dalila; Gujral, Madhusudan; Brandler, William M; Malhotra, Dheeraj; Wang, Zhouzhi; Fajarado, Karin V Fuentes; Maile, Michelle S; Ripke, Stephan; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amin, Farooq; Atkins, Joshua; Bacanu, Silviu A; Belliveau, Richard A; Bergen, Sarah E; Bertalan, Marcelo; Bevilacqua, Elizabeth; Bigdeli, Tim B; Black, Donald W; Bruggeman, Richard; Buccola, Nancy G; Buckner, Randy L; Bulik-Sullivan, Brendan; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Cairns, Murray J; Campion, Dominique; Cantor, Rita M; Carr, Vaughan J; Carrera, Noa; Catts, Stanley V; Chambert, Kimberley D; Cheng, Wei; Cloninger, C Robert; Cohen, David; Cormican, Paul; Craddock, Nick; Crespo-Facorro, Benedicto; Crowley, James J; Curtis, David; Davidson, Michael; Davis, Kenneth L; Degenhardt, Franziska; Del Favero, Jurgen; DeLisi, Lynn E; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H; Farh, Kai-How; Farrell, Martilias S; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B; Friedman, Joseph I; Forstner, Andreas J; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S; Giegling, Ina; Giusti-Rodríguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I; Gratten, Jacob; de Haan, Lieuwe; Hamshere, Marian L; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M; Henskens, Frans A; Herms, Stefan; Hirschhorn, Joel N; Hoffmann, Per; Hofman, Andrea; Huang, Hailiang; Ikeda, Masashi; Joa, Inge; Kähler, Anna K; Kahn, René S; Kalaydjieva, Luba; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C; Kelly, Brian J; Kennedy, James L; Kim, Yunjung; Knowles, James A; Konte, Bettina; Laurent, Claudine; Lee, Phil; Lee, S Hong; Legge, Sophie E; Lerer, Bernard; Levy, Deborah L; Liang, Kung-Yee; Lieberman, Jeffrey; Lönnqvist, Jouko; Loughland, Carmel M; Magnusson, Patrik K E; Maher, Brion S; Maier, Wolfgang; Mallet, Jacques; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W; McDonald, Colm; McIntosh, Andrew M; Meier, Sandra; Meijer, Carin J; Melle, Ingrid; Mesholam-Gately, Raquelle I; Metspalu, Andres; Michie, Patricia T; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W; Müller-Myhsok, Bertram; Murphy, Kieran C; Murray, Robin M; Myin-Germeys, Inez; Nenadic, Igor; Nertney, Deborah A; Nestadt, Gerald; Nicodemus, Kristin K; Nisenbaum, Laura; Nordin, Annelie; O'Callaghan, Eadbhard; O'Dushlaine, Colm; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; O'Neill, F Anthony; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N; Parkhomenko, Elena; Pato, Michele T; Paunio, Tiina; Perkins, Diana O; Pers, Tune H; Pietiläinen, Olli; Pimm, Jonathan; Pocklington, Andrew J; Powell, John; Price, Alkes; Pulver, Ann E; Purcell, Shaun M; Quested, Digby; Rasmussen, Henrik B; Reichenberg, Abraham; Reimers, Mark A; Richards, Alexander L; Roffman, Joshua L; Roussos, Panos; Ruderfer, Douglas M; Salomaa, Veikko; Sanders, Alan R; Savitz, Adam; Schall, Ulrich; Schulze, Thomas G; Schwab, Sibylle G; Scolnick, Edward M; Scott, Rodney J; Seidman, Larry J; Shi, Jianxin; Silverman, Jeremy M; Smoller, Jordan W; Söderman, Erik; Spencer, Chris C A; Stahl, Eli A; Strengman, Eric; Strohmaier, Jana; Stroup, T Scott; Suvisaari, Jaana; Svrakic, Dragan M; Szatkiewicz, Jin P; Thirumalai, Srinivas; Tooney, Paul A; Veijola, Juha; Visscher, Peter M; Waddington, John; Walsh, Dermot; Webb, Bradley T; Weiser, Mark; Wildenauer, Dieter B; Williams, Nigel M; Williams, Stephanie; Witt, Stephanie H; Wolen, Aaron R; Wormley, Brandon K; Wray, Naomi R; Wu, Jing Qin; Zai, Clement C; Adolfsson, Rolf; Andreassen, Ole A; Blackwood, Douglas H R; Bramon, Elvira; Buxbaum, Joseph D; Cichon, Sven; Collier, David A; Corvin, Aiden; Daly, Mark J; Darvasi, Ariel; Domenici, Enrico; Esko, Tõnu; Gejman, Pablo V; Gill, Michael; Gurling, Hugh; Hultman, Christina M; Iwata, Nakao; Jablensky, Assen V; Jönsson, Erik G; Kendler, Kenneth S; Kirov, George; Knight, Jo; Levinson, Douglas F; Li, Qingqin S; McCarroll, Steven A; McQuillin, Andrew; Moran, Jennifer L; Mowry, Bryan J; Nöthen, Markus M; Ophoff, Roel A; Owen, Michael J; Palotie, Aarno; Pato, Carlos N; Petryshen, Tracey L; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P; Rujescu, Dan; Sklar, Pamela; St Clair, David; Walters, James T R; Werge, Thomas; Sullivan, Patrick F; O'Donovan, Michael C; Scherer, Stephen W; Neale, Benjamin M; Sebat, Jonathan
2017-01-01
Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11, P = 5.7 × 10 -15 ), which persisted after excluding loci implicated in previous studies (OR = 1.07, P = 1.7 × 10 -6 ). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 × 10 -11 ) and neurobehavioral phenotypes in mouse (OR = 1.18, P = 7.3 × 10 -5 ). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination.
Jelinic, Petar; Pellegrino, Jessica; David, Gregory
2011-01-01
Transcription requires the progression of RNA polymerase II (RNAP II) through a permissive chromatin structure. Recent studies of Saccharomyces cerevisiae have demonstrated that the yeast Sin3 protein contributes to the restoration of the repressed chromatin structure at actively transcribed loci. Yet, the mechanisms underlying the restoration of the repressive chromatin structure at transcribed loci and its significance in gene expression have not been investigated in mammals. We report here the identification of a mammalian complex containing the corepressor Sin3B, the histone deacetylase HDAC1, Mrg15, and the PHD finger-containing Pf1 and show that this complex plays important roles in regulation of transcription. We demonstrate that this complex localizes at discrete loci approximately 1 kb downstream of the transcription start site of transcribed genes, and this localization requires both Pf1's and Mrg15's interaction with chromatin. Inactivation of this mammalian complex promotes increased RNAP II progression within transcribed regions and subsequent increased transcription. Our results define a novel mammalian complex that contributes to the regulation of transcription and point to divergent uses of the Sin3 protein homologues throughout evolution in the modulation of transcription. PMID:21041482
Paparini, Andrea; Yang, Rongchang; Chen, Linda; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una M
2017-11-01
Currently, the systematics, biology and epidemiology of piscine Cryptosporidium species are poorly understood. Here, we compared Sanger ‒ and next-generation ‒ sequencing (NGS), of piscine Cryptosporidium, at the 18S rRNA and actin genes. The hosts comprised 11 ornamental fish species, spanning four orders and eight families. The objectives were: to (i) confirm the rich genetic diversity of the parasite and the high frequency of mixed infections; and (ii) explore the potential of NGS in the presence of complex genetic mixtures. By Sanger sequencing, four main genotypes were obtained at the actin locus, while for the 18S locus, seven genotypes were identified. At both loci, NGS revealed frequent mixed infections, consisting of one highly dominant variant plus substantially rarer genotypes. Both sequencing methods detected novel Cryptosporidium genotypes at both loci, including a novel and highly abundant actin genotype that was identified by both Sanger sequencing and NGS. Importantly, this genotype accounted for 68·9% of all NGS reads from all samples (249 585/362 372). The present study confirms that aquarium fish can harbour a large and unexplored Cryptosporidium genetic diversity. Although commonly used in molecular parasitology studies, nested PCR prevents quantitative comparisons and thwarts the advantages of NGS, when this latter approach is used to investigate multiple infections.
Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.
Zhou, Xiaogang; Liao, Haicheng; Chern, Mawsheng; Yin, Junjie; Chen, Yufei; Wang, Jianping; Zhu, Xiaobo; Chen, Zhixiong; Yuan, Can; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Liu, Jiali; Qian, Yangwen; Wang, Wenming; Wu, Xianjun; Li, Ping; Zhu, Lihuang; Li, Shigui; Ronald, Pamela C; Chen, Xuewei
2018-03-20
Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL ( OsPAL1-7 ) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae , supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice. Copyright © 2018 the Author(s). Published by PNAS.
A versatile system for rapid multiplex genome-edited CAR T cell generation
Ren, Jiangtao; Zhang, Xuhua; Liu, Xiaojun; Fang, Chongyun; Jiang, Shuguang; June, Carl H.; Zhao, Yangbing
2017-01-01
The therapeutic potential of CRISPR system has already been demonstrated in many instances and begun to overlap with the rapidly expanding field of cancer immunotherapy, especially on the production of genetically modified T cell receptor or chimeric antigen receptor (CAR) T cells. Efficient genomic disruption of multiple gene loci to generate universal donor cells, as well as potent effector T cells resistant to multiple inhibitory pathways such as PD-1 and CTLA4 is an attractive strategy for cell therapy. In this study, we accomplished rapid and efficient multiplex genomic editing, and re-directing T cells with antigen specific CAR via a one-shot CRISPR protocol by incorporation of multiple gRNAs in a CAR lentiviral vector. High efficient double knockout of endogenous TCR and HLA class I could be easily achieved to generate allogeneic universal CAR T cells. We also generated Fas-resistant universal CAR T cells by triple gene disruption. Simultaneous gene editing of four gene loci using the one-shot CRISPR protocol to generate allogeneic universal T cells deficient of both PD1 and CTLA-4 was also attempted. PMID:28199983
Rew, Mary Beth; Robbins, Jooke; Mattila, David; Palsbøll, Per J; Bérube, Martine
2011-04-01
Genetic identification of individuals is now commonplace, enabling the application of tagging methods to elusive species or species that cannot be tagged by traditional methods. A key aspect is determining the number of loci required to ensure that different individuals have non-matching multi-locus genotypes. Closely related individuals are of particular concern because of elevated matching probabilities caused by their recent co-ancestry. This issue may be addressed by increasing the number of loci to a level where full siblings (the relatedness category with the highest matching probability) are expected to have non-matching multi-locus genotypes. However, increasing the number of loci to meet this "full-sib criterion" greatly increases the laboratory effort, which in turn may increase the genotyping error rate resulting in an upward-biased mark-recapture estimate of abundance as recaptures are missed due to genotyping errors. We assessed the contribution of false matches from close relatives among 425 maternally related humpback whales, each genotyped at 20 microsatellite loci. We observed a very low (0.5-4%) contribution to falsely matching samples from pairs of first-order relatives (i.e., parent and offspring or full siblings). The main contribution to falsely matching individuals from close relatives originated from second-order relatives (e.g., half siblings), which was estimated at 9%. In our study, the total number of observed matches agreed well with expectations based upon the matching probability estimated for unrelated individuals, suggesting that the full-sib criterion is overly conservative, and would have required a 280% relative increase in effort. We suggest that, under most circumstances, the overall contribution to falsely matching samples from close relatives is likely to be low, and hence applying the full-sib criterion is unnecessary. In those cases where close relatives may present a significant issue, such as unrepresentative sampling, we propose three different genotyping strategies requiring only a modest increase in effort, which will greatly reduce the number of false matches due to the presence of related individuals.
Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J; Thompson, Deborah J; Kibel, Adam S; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K; Gentry-Maharaj, Aleksandra; Whittemore, Alice S; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B; Burwinkel, Barbara; Karlan, Beth Y; Nordestgaard, Børge G; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B; Høgdall, Claus K; Teerlink, Craig C; Kang, Daehee; Tessier, Daniel C; Schaid, Daniel J; Stram, Daniel O; Cramer, Daniel W; Neal, David E; Eccles, Diana; Flesch-Janys, Dieter; Edwards, Digna R Velez; Wokozorczyk, Dominika; Levine, Douglas A; Yannoukakos, Drakoulis; Sawyer, Elinor J; Bandera, Elisa V; Poole, Elizabeth M; Goode, Ellen L; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C; Wiklund, Fredrik; Giles, Graham G; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A; Darabi, Hatef; Salvesen, Helga B; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L; Benítez, Javier; Doherty, Jennifer A; Permuth, Jennifer B; Chang-Claude, Jenny; Donovan, Jenny L; Dennis, Joe; Schildkraut, Joellen M; Schleutker, Johanna; Hopper, John L; Kupryjanczyk, Jolanta; Park, Jong Y; Figueroa, Jonine; Clements, Judith A; Knight, Julia A; Peto, Julian; Cunningham, Julie M; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A; Massuger, Leon F A G; Fitzgerald, Liesel M; Cook, Linda S; Cannon-Albright, Lisa; Hooning, Maartje J; Pike, Malcolm C; Bolla, Manjeet K; Luedeke, Manuel; Teixeira, Manuel R; Goodman, Marc T; Schmidt, Marjanka K; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A T; Hou, Ming-Feng; Schoemaker, Minouk J; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M; Broberg, Per; Fasching, Peter A; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K; Stephenson, Robert A; MacInnis, Robert J; Hoover, Robert N; Winqvist, Robert; Ness, Roberta; Milne, Roger L; Travis, Ruth C; Benlloch, Sara; Olson, Sara H; McDonnell, Shannon K; Tworoger, Shelley S; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N; Bojesen, Stig E; Gapstur, Susan M; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L J; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J; Edwards, Todd L; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L; Berchuck, Andrew; Dunning, Alison M; Simard, Jacques; Haiman, Christopher A; Spurdle, Amanda; Sellers, Thomas A; Hunter, David J; Henderson, Brian E; Kraft, Peter; Chanock, Stephen J; Couch, Fergus J; Hall, Per; Gayther, Simon A; Easton, Douglas F; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D P; Lambrechts, Diether
2016-09-01
Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.
Spracklen, Cassandra N; Chen, Peng; Kim, Young Jin; Wang, Xu; Cai, Hui; Li, Shengxu; Long, Jirong; Wu, Ying; Wang, Ya Xing; Takeuchi, Fumihiko; Wu, Jer-Yuarn; Jung, Keum-Ji; Hu, Cheng; Akiyama, Koichi; Zhang, Yonghong; Moon, Sanghoon; Johnson, Todd A; Li, Huaixing; Dorajoo, Rajkumar; He, Meian; Cannon, Maren E; Roman, Tamara S; Salfati, Elias; Lin, Keng-Hung; Guo, Xiuqing; Sheu, Wayne H H; Absher, Devin; Adair, Linda S; Assimes, Themistocles L; Aung, Tin; Cai, Qiuyin; Chang, Li-Ching; Chen, Chien-Hsiun; Chien, Li-Hsin; Chuang, Lee-Ming; Chuang, Shu-Chun; Du, Shufa; Fan, Qiao; Fann, Cathy S J; Feranil, Alan B; Friedlander, Yechiel; Gordon-Larsen, Penny; Gu, Dongfeng; Gui, Lixuan; Guo, Zhirong; Heng, Chew-Kiat; Hixson, James; Hou, Xuhong; Hsiung, Chao Agnes; Hu, Yao; Hwang, Mi Yeong; Hwu, Chii-Min; Isono, Masato; Juang, Jyh-Ming Jimmy; Khor, Chiea-Chuen; Kim, Yun Kyoung; Koh, Woon-Puay; Kubo, Michiaki; Lee, I-Te; Lee, Sun-Ju; Lee, Wen-Jane; Liang, Kae-Woei; Lim, Blanche; Lim, Sing-Hui; Liu, Jianjun; Nabika, Toru; Pan, Wen-Harn; Peng, Hao; Quertermous, Thomas; Sabanayagam, Charumathi; Sandow, Kevin; Shi, Jinxiu; Sun, Liang; Tan, Pok Chien; Tan, Shu-Pei; Taylor, Kent D; Teo, Yik-Ying; Toh, Sue-Anne; Tsunoda, Tatsuhiko; van Dam, Rob M; Wang, Aili; Wang, Feijie; Wang, Jie; Wei, Wen Bin; Xiang, Yong-Bing; Yao, Jie; Yuan, Jian-Min; Zhang, Rong; Zhao, Wanting; Chen, Yii-Der Ida; Rich, Stephen S; Rotter, Jerome I; Wang, Tzung-Dau; Wu, Tangchun; Lin, Xu; Han, Bok-Ghee; Tanaka, Toshihiro; Cho, Yoon Shin; Katsuya, Tomohiro; Jia, Weiping; Jee, Sun-Ha; Chen, Yuan-Tsong; Kato, Norihiro; Jonas, Jost B; Cheng, Ching-Yu; Shu, Xiao-Ou; He, Jiang; Zheng, Wei; Wong, Tien-Yin; Huang, Wei; Kim, Bong-Jo; Tai, E-Shyong; Mohlke, Karen L; Sim, Xueling
2017-05-01
Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers.
Amos, Christopher I; Dennis, Joe; Wang, Zhaoming; Byun, Jinyoung; Schumacher, Fredrick R; Gayther, Simon A; Casey, Graham; Hunter, David J; Sellers, Thomas A; Gruber, Stephen B; Dunning, Alison M; Michailidou, Kyriaki; Fachal, Laura; Doheny, Kimberly; Spurdle, Amanda B; Li, Yafang; Xiao, Xiangjun; Romm, Jane; Pugh, Elizabeth; Coetzee, Gerhard A; Hazelett, Dennis J; Bojesen, Stig E; Caga-Anan, Charlisse; Haiman, Christopher A; Kamal, Ahsan; Luccarini, Craig; Tessier, Daniel; Vincent, Daniel; Bacot, François; Van Den Berg, David J; Nelson, Stefanie; Demetriades, Stephen; Goldgar, David E; Couch, Fergus J; Forman, Judith L; Giles, Graham G; Conti, David V; Bickeböller, Heike; Risch, Angela; Waldenberger, Melanie; Brüske-Hohlfeld, Irene; Hicks, Belynda D; Ling, Hua; McGuffog, Lesley; Lee, Andrew; Kuchenbaecker, Karoline; Soucy, Penny; Manz, Judith; Cunningham, Julie M; Butterbach, Katja; Kote-Jarai, Zsofia; Kraft, Peter; FitzGerald, Liesel; Lindström, Sara; Adams, Marcia; McKay, James D; Phelan, Catherine M; Benlloch, Sara; Kelemen, Linda E; Brennan, Paul; Riggan, Marjorie; O'Mara, Tracy A; Shen, Hongbing; Shi, Yongyong; Thompson, Deborah J; Goodman, Marc T; Nielsen, Sune F; Berchuck, Andrew; Laboissiere, Sylvie; Schmit, Stephanie L; Shelford, Tameka; Edlund, Christopher K; Taylor, Jack A; Field, John K; Park, Sue K; Offit, Kenneth; Thomassen, Mads; Schmutzler, Rita; Ottini, Laura; Hung, Rayjean J; Marchini, Jonathan; Amin Al Olama, Ali; Peters, Ulrike; Eeles, Rosalind A; Seldin, Michael F; Gillanders, Elizabeth; Seminara, Daniela; Antoniou, Antonis C; Pharoah, Paul D P; Chenevix-Trench, Georgia; Chanock, Stephen J; Simard, Jacques; Easton, Douglas F
2017-01-01
Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126-35. ©2016 AACR. ©2016 American Association for Cancer Research.
The OncoArray Consortium: a Network for Understanding the Genetic Architecture of Common Cancers
Amos, Christopher I.; Dennis, Joe; Wang, Zhaoming; Byun, Jinyoung; Schumacher, Fredrick R.; Gayther, Simon A.; Casey, Graham; Hunter, David J.; Sellers, Thomas A.; Gruber, Stephen B.; Dunning, Alison M.; Michailidou, Kyriaki; Fachal, Laura; Doheny, Kimberly; Spurdle, Amanda B.; Li, Yafang; Xiao, Xiangjun; Romm, Jane; Pugh, Elizabeth; Coetzee, Gerhard A.; Hazelett, Dennis J.; Bojesen, Stig E.; Caga-Anan, Charlisse; Haiman, Christopher A.; Kamal, Ahsan; Luccarini, Craig; Tessier, Daniel; Vincent, Daniel; Bacot, François; Van Den Berg, David J.; Nelson, Stefanie; Demetriades, Stephen; Goldgar, David E.; Couch, Fergus J.; Forman, Judith L.; Giles, Graham G.; Conti, David V.; Bickeböller, Heike; Risch, Angela; Waldenberger, Melanie; Brüske, Irene; Hicks, Belynda D.; Ling, Hua; McGuffog, Lesley; Lee, Andrew; Kuchenbaecker, Karoline B.; Soucy, Penny; Manz, Judith; Cunningham, Julie M.; Butterbach, Katja; Kote-Jarai, Zsofia; Kraft, Peter; FitzGerald, Liesel M.; Lindström, Sara; Adams, Marcia; McKay, James D.; Phelan, Catherine M.; Benlloch, Sara; Kelemen, Linda E.; Brennan, Paul; Riggan, Marjorie; O’Mara, Tracy A.; Shen, Hongbin; Shi, Yongyong; Thompson, Deborah J.; Goodman, Marc T.; Nielsen, Sune F.; Berchuck, Andrew; Laboissiere, Sylvie; Schmit, Stephanie L.; Shelford, Tameka; Edlund, Christopher K.; Taylor, Jack A.; Field, John K.; Park, Sue K.; Offit, Kenneth; Thomassen, Mads; Schmutzler, Rita; Ottini, Laura; Hung, Rayjean J.; Marchini, Jonathan; Al Olama, Ali Amin; Peters, Ulrike; Eeles, Rosalind A.; Seldin, Michael F.; Gillanders, Elizabeth; Seminara, Daniela; Antoniou, Antonis C.; Pharoah, Paul D.; Chenevix-Trench, Georgia; Chanock, Stephen J.; Simard, Jacques; Easton, Douglas F.
2016-01-01
Background Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers and cancer related traits. Methods The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. Results The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Conclusions Results from these analyses will enable researchers to identify new susceptibility loci, perform fine mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental and lifestyle related exposures. Impact Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. PMID:27697780
Genome-wide association study identifies multiple loci influencing human serum metabolite levels
Kettunen, Johannes; Tukiainen, Taru; Sarin, Antti-Pekka; Ortega-Alonso, Alfredo; Tikkanen, Emmi; Lyytikäinen, Leo-Pekka; Kangas, Antti J; Soininen, Pasi; Würtz, Peter; Silander, Kaisa; Dick, Danielle M; Rose, Richard J; Savolainen, Markku J; Viikari, Jorma; Kähönen, Mika; Lehtimäki, Terho; Pietiläinen, Kirsi H; Inouye, Michael; McCarthy, Mark I; Jula, Antti; Eriksson, Johan; Raitakari, Olli T; Salomaa, Veikko; Kaprio, Jaakko; Järvelin, Marjo-Riitta; Peltonen, Leena; Perola, Markus; Freimer, Nelson B; Ala-Korpela, Mika; Palotie, Aarno; Ripatti, Samuli
2013-01-01
Nuclear magnetic resonance assays allow for measurement of a wide range of metabolic phenotypes. We report here the results of a GWAS on 8,330 Finnish individuals genotyped and imputed at 7.7 million SNPs for a range of 216 serum metabolic phenotypes assessed by NMR of serum samples. We identified significant associations (P < 2.31 × 10−10) at 31 loci, including 11 for which there have not been previous reports of associations to a metabolic trait or disorder. Analyses of Finnish twin pairs suggested that the metabolic measures reported here show higher heritability than comparable conventional metabolic phenotypes. In accordance with our expectations, SNPs at the 31 loci associated with individual metabolites account for a greater proportion of the genetic component of trait variance (up to 40%) than is typically observed for conventional serum metabolic phenotypes. The identification of such associations may provide substantial insight into cardiometabolic disorders. PMID:22286219
Multiple convergent supergene evolution events in mating-type chromosomes.
Branco, Sara; Carpentier, Fantin; Rodríguez de la Vega, Ricardo C; Badouin, Hélène; Snirc, Alodie; Le Prieur, Stéphanie; Coelho, Marco A; de Vienne, Damien M; Hartmann, Fanny E; Begerow, Dominik; Hood, Michael E; Giraud, Tatiana
2018-05-21
Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.
Ruibal, Monica P; Peakall, Rod; Smith, Leon M; Linde, Celeste C
2013-03-01
Phylogenetic and microsatellite markers were developed for Tulasnella mycorrhizal fungi to investigate fungal species identity and diversity. These markers will be useful in future studies investigating the phylogenetic relationship of the fungal symbionts, specificity of orchid-mycorrhizal associations, and the role of mycorrhizae in orchid speciation within several orchid genera. • We generated partial genome sequences of two Tulasnella symbionts originating from Chiloglottis and Drakaea orchid species with 454 genome sequencing. Cross-genus transferability across mycorrhizal symbionts associated with multiple genera of Australian orchids (Arthrochilus, Chiloglottis, Drakaea, and Paracaleana) was found for seven phylogenetic loci. Five loci showed cross-transferability to Tulasnella from other orchid genera, and two to Sebacina. Furthermore, 11 polymorphic microsatellite loci were developed for Tulasnella from Chiloglottis. • Highly informative markers were obtained, allowing investigation of mycorrhizal diversity of Tulasnellaceae associated with a wide variety of terrestrial orchids in Australia and potentially worldwide.
Laurin, Nancy; Milot, Emmanuel
2014-03-01
Allele frequencies and forensically relevant population statistics were estimated for the short tandem repeat (STR) loci of the AmpFℓSTR® Identifiler® Plus and PowerPlex® 16 HS amplification kits, including D2S1338, D19S433, Penta D, and Penta E, for three First Nations Aboriginal populations and for Caucasians in Canada. The cumulative power of discrimination was ≥ 0.999999999999984 and the cumulative power of exclusion was ≥ 0.999929363 for both amplification systems in all populations. No significant departure from Hardy-Weinberg equilibrium was detected for D2S1338, D19S433, Penta D, and Penta E or the 13 Combined DNA Index System core STR loci after correction for multiple testing. Significant genetic diversity was observed between these four populations. Comparison with published frequency data for other populations is also presented.
Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease.
Jostins, Luke; Ripke, Stephan; Weersma, Rinse K; Duerr, Richard H; McGovern, Dermot P; Hui, Ken Y; Lee, James C; Schumm, L Philip; Sharma, Yashoda; Anderson, Carl A; Essers, Jonah; Mitrovic, Mitja; Ning, Kaida; Cleynen, Isabelle; Theatre, Emilie; Spain, Sarah L; Raychaudhuri, Soumya; Goyette, Philippe; Wei, Zhi; Abraham, Clara; Achkar, Jean-Paul; Ahmad, Tariq; Amininejad, Leila; Ananthakrishnan, Ashwin N; Andersen, Vibeke; Andrews, Jane M; Baidoo, Leonard; Balschun, Tobias; Bampton, Peter A; Bitton, Alain; Boucher, Gabrielle; Brand, Stephan; Büning, Carsten; Cohain, Ariella; Cichon, Sven; D'Amato, Mauro; De Jong, Dirk; Devaney, Kathy L; Dubinsky, Marla; Edwards, Cathryn; Ellinghaus, David; Ferguson, Lynnette R; Franchimont, Denis; Fransen, Karin; Gearry, Richard; Georges, Michel; Gieger, Christian; Glas, Jürgen; Haritunians, Talin; Hart, Ailsa; Hawkey, Chris; Hedl, Matija; Hu, Xinli; Karlsen, Tom H; Kupcinskas, Limas; Kugathasan, Subra; Latiano, Anna; Laukens, Debby; Lawrance, Ian C; Lees, Charlie W; Louis, Edouard; Mahy, Gillian; Mansfield, John; Morgan, Angharad R; Mowat, Craig; Newman, William; Palmieri, Orazio; Ponsioen, Cyriel Y; Potocnik, Uros; Prescott, Natalie J; Regueiro, Miguel; Rotter, Jerome I; Russell, Richard K; Sanderson, Jeremy D; Sans, Miquel; Satsangi, Jack; Schreiber, Stefan; Simms, Lisa A; Sventoraityte, Jurgita; Targan, Stephan R; Taylor, Kent D; Tremelling, Mark; Verspaget, Hein W; De Vos, Martine; Wijmenga, Cisca; Wilson, David C; Winkelmann, Juliane; Xavier, Ramnik J; Zeissig, Sebastian; Zhang, Bin; Zhang, Clarence K; Zhao, Hongyu; Silverberg, Mark S; Annese, Vito; Hakonarson, Hakon; Brant, Steven R; Radford-Smith, Graham; Mathew, Christopher G; Rioux, John D; Schadt, Eric E; Daly, Mark J; Franke, Andre; Parkes, Miles; Vermeire, Severine; Barrett, Jeffrey C; Cho, Judy H
2012-11-01
Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations. Genome-wide association studies and subsequent meta-analyses of these two diseases as separate phenotypes have implicated previously unsuspected mechanisms, such as autophagy, in their pathogenesis and showed that some IBD loci are shared with other inflammatory diseases. Here we expand on the knowledge of relevant pathways by undertaking a meta-analysis of Crohn's disease and ulcerative colitis genome-wide association scans, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci, that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional (consistently favouring one allele over the course of human history) and balancing (favouring the retention of both alleles within populations) selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe considerable overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.
Biological, clinical and population relevance of 95 loci for blood lipids.
Teslovich, Tanya M; Musunuru, Kiran; Smith, Albert V; Edmondson, Andrew C; Stylianou, Ioannis M; Koseki, Masahiro; Pirruccello, James P; Ripatti, Samuli; Chasman, Daniel I; Willer, Cristen J; Johansen, Christopher T; Fouchier, Sigrid W; Isaacs, Aaron; Peloso, Gina M; Barbalic, Maja; Ricketts, Sally L; Bis, Joshua C; Aulchenko, Yurii S; Thorleifsson, Gudmar; Feitosa, Mary F; Chambers, John; Orho-Melander, Marju; Melander, Olle; Johnson, Toby; Li, Xiaohui; Guo, Xiuqing; Li, Mingyao; Shin Cho, Yoon; Jin Go, Min; Jin Kim, Young; Lee, Jong-Young; Park, Taesung; Kim, Kyunga; Sim, Xueling; Twee-Hee Ong, Rick; Croteau-Chonka, Damien C; Lange, Leslie A; Smith, Joshua D; Song, Kijoung; Hua Zhao, Jing; Yuan, Xin; Luan, Jian'an; Lamina, Claudia; Ziegler, Andreas; Zhang, Weihua; Zee, Robert Y L; Wright, Alan F; Witteman, Jacqueline C M; Wilson, James F; Willemsen, Gonneke; Wichmann, H-Erich; Whitfield, John B; Waterworth, Dawn M; Wareham, Nicholas J; Waeber, Gérard; Vollenweider, Peter; Voight, Benjamin F; Vitart, Veronique; Uitterlinden, Andre G; Uda, Manuela; Tuomilehto, Jaakko; Thompson, John R; Tanaka, Toshiko; Surakka, Ida; Stringham, Heather M; Spector, Tim D; Soranzo, Nicole; Smit, Johannes H; Sinisalo, Juha; Silander, Kaisa; Sijbrands, Eric J G; Scuteri, Angelo; Scott, James; Schlessinger, David; Sanna, Serena; Salomaa, Veikko; Saharinen, Juha; Sabatti, Chiara; Ruokonen, Aimo; Rudan, Igor; Rose, Lynda M; Roberts, Robert; Rieder, Mark; Psaty, Bruce M; Pramstaller, Peter P; Pichler, Irene; Perola, Markus; Penninx, Brenda W J H; Pedersen, Nancy L; Pattaro, Cristian; Parker, Alex N; Pare, Guillaume; Oostra, Ben A; O'Donnell, Christopher J; Nieminen, Markku S; Nickerson, Deborah A; Montgomery, Grant W; Meitinger, Thomas; McPherson, Ruth; McCarthy, Mark I; McArdle, Wendy; Masson, David; Martin, Nicholas G; Marroni, Fabio; Mangino, Massimo; Magnusson, Patrik K E; Lucas, Gavin; Luben, Robert; Loos, Ruth J F; Lokki, Marja-Liisa; Lettre, Guillaume; Langenberg, Claudia; Launer, Lenore J; Lakatta, Edward G; Laaksonen, Reijo; Kyvik, Kirsten O; Kronenberg, Florian; König, Inke R; Khaw, Kay-Tee; Kaprio, Jaakko; Kaplan, Lee M; Johansson, Asa; Jarvelin, Marjo-Riitta; Janssens, A Cecile J W; Ingelsson, Erik; Igl, Wilmar; Kees Hovingh, G; Hottenga, Jouke-Jan; Hofman, Albert; Hicks, Andrew A; Hengstenberg, Christian; Heid, Iris M; Hayward, Caroline; Havulinna, Aki S; Hastie, Nicholas D; Harris, Tamara B; Haritunians, Talin; Hall, Alistair S; Gyllensten, Ulf; Guiducci, Candace; Groop, Leif C; Gonzalez, Elena; Gieger, Christian; Freimer, Nelson B; Ferrucci, Luigi; Erdmann, Jeanette; Elliott, Paul; Ejebe, Kenechi G; Döring, Angela; Dominiczak, Anna F; Demissie, Serkalem; Deloukas, Panagiotis; de Geus, Eco J C; de Faire, Ulf; Crawford, Gabriel; Collins, Francis S; Chen, Yii-der I; Caulfield, Mark J; Campbell, Harry; Burtt, Noel P; Bonnycastle, Lori L; Boomsma, Dorret I; Boekholdt, S Matthijs; Bergman, Richard N; Barroso, Inês; Bandinelli, Stefania; Ballantyne, Christie M; Assimes, Themistocles L; Quertermous, Thomas; Altshuler, David; Seielstad, Mark; Wong, Tien Y; Tai, E-Shyong; Feranil, Alan B; Kuzawa, Christopher W; Adair, Linda S; Taylor, Herman A; Borecki, Ingrid B; Gabriel, Stacey B; Wilson, James G; Holm, Hilma; Thorsteinsdottir, Unnur; Gudnason, Vilmundur; Krauss, Ronald M; Mohlke, Karen L; Ordovas, Jose M; Munroe, Patricia B; Kooner, Jaspal S; Tall, Alan R; Hegele, Robert A; Kastelein, John J P; Schadt, Eric E; Rotter, Jerome I; Boerwinkle, Eric; Strachan, David P; Mooser, Vincent; Stefansson, Kari; Reilly, Muredach P; Samani, Nilesh J; Schunkert, Heribert; Cupples, L Adrienne; Sandhu, Manjinder S; Ridker, Paul M; Rader, Daniel J; van Duijn, Cornelia M; Peltonen, Leena; Abecasis, Gonçalo R; Boehnke, Michael; Kathiresan, Sekar
2010-08-05
Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
Rheumatoid arthritis: identifying and characterising polymorphisms using rat models
2016-01-01
ABSTRACT Rheumatoid arthritis is a chronic inflammatory joint disorder characterised by erosive inflammation of the articular cartilage and by destruction of the synovial joints. It is regulated by both genetic and environmental factors, and, currently, there is no preventative treatment or cure for this disease. Genome-wide association studies have identified ∼100 new loci associated with rheumatoid arthritis, in addition to the already known locus within the major histocompatibility complex II region. However, together, these loci account for only a modest fraction of the genetic variance associated with this disease and very little is known about the pathogenic roles of most of the risk loci identified. Here, we discuss how rat models of rheumatoid arthritis are being used to detect quantitative trait loci that regulate different arthritic traits by genetic linkage analysis and to positionally clone the underlying causative genes using congenic strains. By isolating specific loci on a fixed genetic background, congenic strains overcome the challenges of genetic heterogeneity and environmental interactions associated with human studies. Most importantly, congenic strains allow functional experimental studies be performed to investigate the pathological consequences of natural genetic polymorphisms, as illustrated by the discovery of several major disease genes that contribute to arthritis in rats. We discuss how these advances have provided new biological insights into arthritis in humans. PMID:27736747
Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun
2016-01-01
Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082
Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease
Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.
2015-01-01
The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739
Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee
2012-01-01
Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.
Wenzl, Peter; Li, Haobing; Carling, Jason; Zhou, Meixue; Raman, Harsh; Paul, Edie; Hearnden, Phillippa; Maier, Christina; Xia, Ling; Caig, Vanessa; Ovesná, Jaroslava; Cakir, Mehmet; Poulsen, David; Wang, Junping; Raman, Rosy; Smith, Kevin P; Muehlbauer, Gary J; Chalmers, Ken J; Kleinhofs, Andris; Huttner, Eric; Kilian, Andrzej
2006-01-01
Background Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. Results The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 ± 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 ± 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. Conclusion Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations. PMID:16904008
Nettleton, Jennifer A; McKeown, Nicola M; Kanoni, Stavroula; Lemaitre, Rozenn N; Hivert, Marie-France; Ngwa, Julius; van Rooij, Frank J A; Sonestedt, Emily; Wojczynski, Mary K; Ye, Zheng; Tanaka, Tosh; Garcia, Melissa; Anderson, Jennifer S; Follis, Jack L; Djousse, Luc; Mukamal, Kenneth; Papoutsakis, Constantina; Mozaffarian, Dariush; Zillikens, M Carola; Bandinelli, Stefania; Bennett, Amanda J; Borecki, Ingrid B; Feitosa, Mary F; Ferrucci, Luigi; Forouhi, Nita G; Groves, Christopher J; Hallmans, Goran; Harris, Tamara; Hofman, Albert; Houston, Denise K; Hu, Frank B; Johansson, Ingegerd; Kritchevsky, Stephen B; Langenberg, Claudia; Launer, Lenore; Liu, Yongmei; Loos, Ruth J; Nalls, Michael; Orho-Melander, Marju; Renstrom, Frida; Rice, Kenneth; Riserus, Ulf; Rolandsson, Olov; Rotter, Jerome I; Saylor, Georgia; Sijbrands, Eric J G; Sjogren, Per; Smith, Albert; Steingrímsdóttir, Laufey; Uitterlinden, André G; Wareham, Nicholas J; Prokopenko, Inga; Pankow, James S; van Duijn, Cornelia M; Florez, Jose C; Witteman, Jacqueline C M; Dupuis, Josée; Dedoussis, George V; Ordovas, Jose M; Ingelsson, Erik; Cupples, L Adrienne; Siscovick, David S; Franks, Paul W; Meigs, James B
2010-12-01
Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.
Richard, C W; Withers, D A; Meeker, T C; Maurer, S; Evans, G A; Myers, R M; Cox, D R
1991-01-01
We describe a high-resolution radiation hybrid map of the proximal long arm of human chromosome 11 containing the bcl-1 and multiple endocrine neoplasia type 1 (MEN-1) disease gene loci. We used X-ray irradiation and cell fusion to generate a panel of 102 hamster-human somatic cell hybrids containing fragments of human chromosome 11. Sixteen human loci in the 11q12-13 region were mapped by statistical analysis of the cosegregation of markers in these radiation hybrids. The most likely order for these loci is C1NH-OSBP-(CD5/CD20)-PGA-FTH1-COX8-PYGM -SEA-KRN1-(MTC/P11EH/HSTF1/INT2)-GST3- PPP1A. Our localization of the human protooncogene SEA between PYGM and INT2, two markers that flank MEN-1, suggests SEA as a potential candidate for the MEN-1 locus. We map two mitogenic fibroblast growth factor genes, HSTF1 and INT2, close to bcl-1, a mapping that is consistent with previously published data. Our map places the human leukocyte antigen genes CD5 and CD20 far from the bcl-1 locus, indicating that CD5 and CD20 expression is unlikely to be altered by bcl-1 rearrangements. PPP1A, which has been postulated as a MEN-1 candidate tumor suppressor gene, and GST3, a gene transcriptionally active in many human cancers, both map distal to the bcl-1 translocation cluster and the region containing MEN-1, and therefore are unlikely to be directly involved in bcl-1 or MEN-1. PMID:1684084
Genome-wide methylation analysis in Silver-Russell syndrome patients
Böhm, S; Frost, JM; Puszyk, W; Abu-Amero, S; Stanier, P; Schulz, R; Moore, GE; Oakey, RJ
2015-01-01
Silver-Russell Syndrome (SRS) is a clinically heterogeneous disorder characterised by severe in utero growth restriction and poor postnatal growth, body asymmetry, irregular craniofacial features and several additional minor malformations. The aetiology of SRS is complex and current evidence strongly implicates imprinted genes. Approximately half of all patients exhibit DNA hypomethylation at the H19/IGF2 imprinted domain, and around 10% have maternal uniparental disomy of chromosome 7. We measured DNA methylation in 18 SRS patients at >485,000 CpG sites using DNA methylation microarrays. Using a novel bioinformatics methodology specifically designed to identify subsets of patients with a shared epimutation, we analysed methylation changes genome-wide as well as at known imprinted regions to identify SRS-associated epimutations. Our analysis identifies epimutations at the previously characterised domains of H19/IGF2 and at imprinted regions on chromosome 7, providing proof of principle that our methodology can detect DNA methylation changes at imprinted loci. In addition we discovered two novel epimutations associated with SRS and located at imprinted loci previously linked to relevant mouse and human phenotypes. We identify RB1 as an additional imprinted locus associated with SRS, with a region near the RB1 DMR hypermethylated in 13/18 (~70 %) patients. We also report 6/18 (~33 %) patients were hypermethylated at a CpG island near the ANKRD11 gene. We do not observe consistent cooccurrence of epimutations at multiple imprinted loci in single SRS individuals. SRS is clinically heterogeneous and the absence of multiple imprinted loci epimutations reflects the heterogeneity at the molecular level. Further stratification of SRS patients by molecular phenotypes might aid the identification of disease causes. PMID:25563730
Richard, C W; Withers, D A; Meeker, T C; Maurer, S; Evans, G A; Myers, R M; Cox, D R
1991-12-01
We describe a high-resolution radiation hybrid map of the proximal long arm of human chromosome 11 containing the bcl-1 and multiple endocrine neoplasia type 1 (MEN-1) disease gene loci. We used X-ray irradiation and cell fusion to generate a panel of 102 hamster-human somatic cell hybrids containing fragments of human chromosome 11. Sixteen human loci in the 11q12-13 region were mapped by statistical analysis of the cosegregation of markers in these radiation hybrids. The most likely order for these loci is C1NH-OSBP-(CD5/CD20)-PGA-FTH1-COX8-PYGM -SEA-KRN1-(MTC/P11EH/HSTF1/INT2)-GST3- PPP1A. Our localization of the human protooncogene SEA between PYGM and INT2, two markers that flank MEN-1, suggests SEA as a potential candidate for the MEN-1 locus. We map two mitogenic fibroblast growth factor genes, HSTF1 and INT2, close to bcl-1, a mapping that is consistent with previously published data. Our map places the human leukocyte antigen genes CD5 and CD20 far from the bcl-1 locus, indicating that CD5 and CD20 expression is unlikely to be altered by bcl-1 rearrangements. PPP1A, which has been postulated as a MEN-1 candidate tumor suppressor gene, and GST3, a gene transcriptionally active in many human cancers, both map distal to the bcl-1 translocation cluster and the region containing MEN-1, and therefore are unlikely to be directly involved in bcl-1 or MEN-1.
Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward; Grallert, Harald; Glunk, Viktoria; Berulava, Tea; Lee, Heekyoung; Oskolkov, Nikolay; Fadista, Joao; Ehlers, Kerstin; Wahl, Simone; Hoffmann, Christoph; Qian, Kun; Rönn, Tina; Riess, Helene; Müller-Nurasyid, Martina; Bretschneider, Nancy; Schroeder, Timm; Skurk, Thomas; Horsthemke, Bernhard; Spieler, Derek; Klingenspor, Martin; Seifert, Martin; Kern, Michael J; Mejhert, Niklas; Dahlman, Ingrid; Hansson, Ola; Hauck, Stefanie M; Blüher, Matthias; Arner, Peter; Groop, Leif; Illig, Thomas; Suhre, Karsten; Hsu, Yi-Hsiang; Mellgren, Gunnar; Hauner, Hans; Laumen, Helmut
2014-01-16
Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia
2013-01-01
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228
Fan, Qiao; Verhoeven, Virginie J M; Wojciechowski, Robert; Barathi, Veluchamy A; Hysi, Pirro G; Guggenheim, Jeremy A; Höhn, René; Vitart, Veronique; Khawaja, Anthony P; Yamashiro, Kenji; Hosseini, S Mohsen; Lehtimäki, Terho; Lu, Yi; Haller, Toomas; Xie, Jing; Delcourt, Cécile; Pirastu, Mario; Wedenoja, Juho; Gharahkhani, Puya; Venturini, Cristina; Miyake, Masahiro; Hewitt, Alex W; Guo, Xiaobo; Mazur, Johanna; Huffman, Jenifer E; Williams, Katie M; Polasek, Ozren; Campbell, Harry; Rudan, Igor; Vatavuk, Zoran; Wilson, James F; Joshi, Peter K; McMahon, George; St Pourcain, Beate; Evans, David M; Simpson, Claire L; Schwantes-An, Tae-Hwi; Igo, Robert P; Mirshahi, Alireza; Cougnard-Gregoire, Audrey; Bellenguez, Céline; Blettner, Maria; Raitakari, Olli; Kähönen, Mika; Seppala, Ilkka; Zeller, Tanja; Meitinger, Thomas; Ried, Janina S; Gieger, Christian; Portas, Laura; van Leeuwen, Elisabeth M; Amin, Najaf; Uitterlinden, André G; Rivadeneira, Fernando; Hofman, Albert; Vingerling, Johannes R; Wang, Ya Xing; Wang, Xu; Tai-Hui Boh, Eileen; Ikram, M Kamran; Sabanayagam, Charumathi; Gupta, Preeti; Tan, Vincent; Zhou, Lei; Ho, Candice E H; Lim, Wan'e; Beuerman, Roger W; Siantar, Rosalynn; Tai, E-Shyong; Vithana, Eranga; Mihailov, Evelin; Khor, Chiea-Chuen; Hayward, Caroline; Luben, Robert N; Foster, Paul J; Klein, Barbara E K; Klein, Ronald; Wong, Hoi-Suen; Mitchell, Paul; Metspalu, Andres; Aung, Tin; Young, Terri L; He, Mingguang; Pärssinen, Olavi; van Duijn, Cornelia M; Jin Wang, Jie; Williams, Cathy; Jonas, Jost B; Teo, Yik-Ying; Mackey, David A; Oexle, Konrad; Yoshimura, Nagahisa; Paterson, Andrew D; Pfeiffer, Norbert; Wong, Tien-Yin; Baird, Paul N; Stambolian, Dwight; Wilson, Joan E Bailey; Cheng, Ching-Yu; Hammond, Christopher J; Klaver, Caroline C W; Saw, Seang-Mei; Rahi, Jugnoo S; Korobelnik, Jean-François; Kemp, John P; Timpson, Nicholas J; Smith, George Davey; Craig, Jamie E; Burdon, Kathryn P; Fogarty, Rhys D; Iyengar, Sudha K; Chew, Emily; Janmahasatian, Sarayut; Martin, Nicholas G; MacGregor, Stuart; Xu, Liang; Schache, Maria; Nangia, Vinay; Panda-Jonas, Songhomitra; Wright, Alan F; Fondran, Jeremy R; Lass, Jonathan H; Feng, Sheng; Zhao, Jing Hua; Khaw, Kay-Tee; Wareham, Nick J; Rantanen, Taina; Kaprio, Jaakko; Pang, Chi Pui; Chen, Li Jia; Tam, Pancy O; Jhanji, Vishal; Young, Alvin L; Döring, Angela; Raffel, Leslie J; Cotch, Mary-Frances; Li, Xiaohui; Yip, Shea Ping; Yap, Maurice K H; Biino, Ginevra; Vaccargiu, Simona; Fossarello, Maurizio; Fleck, Brian; Yazar, Seyhan; Tideman, Jan Willem L; Tedja, Milly; Deangelis, Margaret M; Morrison, Margaux; Farrer, Lindsay; Zhou, Xiangtian; Chen, Wei; Mizuki, Nobuhisa; Meguro, Akira; Mäkelä, Kari Matti
2016-03-29
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.
Fan, Qiao; Verhoeven, Virginie J. M.; Wojciechowski, Robert; Barathi, Veluchamy A.; Hysi, Pirro G.; Guggenheim, Jeremy A.; Höhn, René; Vitart, Veronique; Khawaja, Anthony P.; Yamashiro, Kenji; Hosseini, S Mohsen; Lehtimäki, Terho; Lu, Yi; Haller, Toomas; Xie, Jing; Delcourt, Cécile; Pirastu, Mario; Wedenoja, Juho; Gharahkhani, Puya; Venturini, Cristina; Miyake, Masahiro; Hewitt, Alex W.; Guo, Xiaobo; Mazur, Johanna; Huffman, Jenifer E.; Williams, Katie M.; Polasek, Ozren; Campbell, Harry; Rudan, Igor; Vatavuk, Zoran; Wilson, James F.; Joshi, Peter K.; McMahon, George; St Pourcain, Beate; Evans, David M.; Simpson, Claire L.; Schwantes-An, Tae-Hwi; Igo, Robert P.; Mirshahi, Alireza; Cougnard-Gregoire, Audrey; Bellenguez, Céline; Blettner, Maria; Raitakari, Olli; Kähönen, Mika; Seppala, Ilkka; Zeller, Tanja; Meitinger, Thomas; Ried, Janina S.; Gieger, Christian; Portas, Laura; van Leeuwen, Elisabeth M.; Amin, Najaf; Uitterlinden, André G.; Rivadeneira, Fernando; Hofman, Albert; Vingerling, Johannes R.; Wang, Ya Xing; Wang, Xu; Tai-Hui Boh, Eileen; Ikram, M. Kamran; Sabanayagam, Charumathi; Gupta, Preeti; Tan, Vincent; Zhou, Lei; Ho, Candice E. H.; Lim, Wan'e; Beuerman, Roger W.; Siantar, Rosalynn; Tai, E-Shyong; Vithana, Eranga; Mihailov, Evelin; Khor, Chiea-Chuen; Hayward, Caroline; Luben, Robert N.; Foster, Paul J.; Klein, Barbara E. K.; Klein, Ronald; Wong, Hoi-Suen; Mitchell, Paul; Metspalu, Andres; Aung, Tin; Young, Terri L.; He, Mingguang; Pärssinen, Olavi; van Duijn, Cornelia M.; Jin Wang, Jie; Williams, Cathy; Jonas, Jost B.; Teo, Yik-Ying; Mackey, David A.; Oexle, Konrad; Yoshimura, Nagahisa; Paterson, Andrew D.; Pfeiffer, Norbert; Wong, Tien-Yin; Baird, Paul N.; Stambolian, Dwight; Wilson, Joan E. Bailey; Cheng, Ching-Yu; Hammond, Christopher J.; Klaver, Caroline C. W.; Saw, Seang-Mei; Rahi, Jugnoo S.; Korobelnik, Jean-François; Kemp, John P.; Timpson, Nicholas J.; Smith, George Davey; Craig, Jamie E.; Burdon, Kathryn P.; Fogarty, Rhys D.; Iyengar, Sudha K.; Chew, Emily; Janmahasatian, Sarayut; Martin, Nicholas G.; MacGregor, Stuart; Xu, Liang; Schache, Maria; Nangia, Vinay; Panda-Jonas, Songhomitra; Wright, Alan F.; Fondran, Jeremy R.; Lass, Jonathan H.; Feng, Sheng; Zhao, Jing Hua; Khaw, Kay-Tee; Wareham, Nick J.; Rantanen, Taina; Kaprio, Jaakko; Pang, Chi Pui; Chen, Li Jia; Tam, Pancy O.; Jhanji, Vishal; Young, Alvin L.; Döring, Angela; Raffel, Leslie J.; Cotch, Mary-Frances; Li, Xiaohui; Yip, Shea Ping; Yap, Maurice K.H.; Biino, Ginevra; Vaccargiu, Simona; Fossarello, Maurizio; Fleck, Brian; Yazar, Seyhan; Tideman, Jan Willem L.; Tedja, Milly; Deangelis, Margaret M.; Morrison, Margaux; Farrer, Lindsay; Zhou, Xiangtian; Chen, Wei; Mizuki, Nobuhisa; Meguro, Akira; Mäkelä, Kari Matti
2016-01-01
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10−5), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia. PMID:27020472
Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis
Zuo, Xianbo; Sun, Liangdan; Yin, Xianyong; Gao, Jinping; Sheng, Yujun; Xu, Jinhua; Zhang, Jianzhong; He, Chundi; Qiu, Ying; Wen, Guangdong; Tian, Hongqing; Zheng, Xiaodong; Liu, Shengxiu; Wang, Wenjun; Li, Weiran; Cheng, Yuyan; Liu, Longdan; Chang, Yan; Wang, Zaixing; Li, Zenggang; Li, Longnian; Wu, Jianping; Fang, Ling; Shen, Changbing; Zhou, Fusheng; Liang, Bo; Chen, Gang; Li, Hui; Cui, Yong; Xu, Aie; Yang, Xueqin; Hao, Fei; Xu, Limin; Fan, Xing; Li, Yuzhen; Wu, Rina; Wang, Xiuli; Liu, Xiaoming; Zheng, Min; Song, Shunpeng; Ji, Bihua; Fang, Hong; Yu, Jianbin; Sun, Yongxin; Hui, Yan; Zhang, Furen; Yang, Rongya; Yang, Sen; Zhang, Xuejun
2015-01-01
Genome-wide association studies (GWASs) have reproducibly associated ∼40 susceptibility loci with psoriasis. However, the missing heritability is evident and the contributions of coding variants have not yet been systematically evaluated. Here, we present a large-scale whole-exome array analysis for psoriasis consisting of 42,760 individuals. We discover 16 SNPs within 15 new genes/loci associated with psoriasis, including C1orf141, ZNF683, TMC6, AIM2, IL1RL1, CASR, SON, ZFYVE16, MTHFR, CCDC129, ZNF143, AP5B1, SYNE2, IFNGR2 and 3q26.2-q27 (P<5.00 × 10−08). In addition, we also replicate four known susceptibility loci TNIP1, NFKBIA, IL12B and LCE3D–LCE3E. These susceptibility variants identified in the current study collectively account for 1.9% of the psoriasis heritability. The variant within AIM2 is predicted to impact protein structure. Our findings increase the number of genetic risk factors for psoriasis and highlight new and plausible biological pathways in psoriasis. PMID:25854761
Mattila, Tiina M; Aalto, Esa A; Toivainen, Tuomas; Niittyvuopio, Anne; Piltonen, Susanna; Kuittinen, Helmi; Savolainen, Outi
2016-01-01
Spatially varying selection can lead to population-specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location-specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population-specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population-specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species. © 2015 John Wiley & Sons Ltd.
Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production.
Thurber, Carrie S; Ma, Justin M; Higgins, Race H; Brown, Patrick J
2013-06-26
Sorghum is a tropical C4 cereal that recently adapted to temperate latitudes and mechanized grain harvest through selection for dwarfism and photoperiod-insensitivity. Quantitative trait loci for these traits have been introgressed from a dwarf temperate donor into hundreds of diverse sorghum landraces to yield the Sorghum Conversion lines. Here, we report the first comprehensive genomic analysis of the molecular changes underlying this adaptation. We apply genotyping-by-sequencing to 1,160 Sorghum Conversion lines and their exotic progenitors, and map donor introgressions in each Sorghum Conversion line. Many Sorghum Conversion lines carry unexpected haplotypes not found in either presumed parent. Genome-wide mapping of introgression frequencies reveals three genomic regions necessary for temperate adaptation across all Sorghum Conversion lines, containing the Dw1, Dw2, and Dw3 loci on chromosomes 9, 6, and 7 respectively. Association mapping of plant height and flowering time in Sorghum Conversion lines detects significant associations in the Dw1 but not the Dw2 or Dw3 regions. Subpopulation-specific introgression mapping suggests that chromosome 6 contains at least four loci required for temperate adaptation in different sorghum genetic backgrounds. The Dw1 region fractionates into separate quantitative trait loci for plant height and flowering time. Generating Sorghum Conversion lines has been accompanied by substantial unintended gene flow. Sorghum adaptation to temperate-zone grain production involves a small number of genomic regions, each containing multiple linked loci for plant height and flowering time. Further characterization of these loci will accelerate the adaptation of sorghum and related grasses to new production systems for food and fuel.
Brassac, Jonathan; Blattner, Frank R
2015-09-01
Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Genomic networks of hybrid sterility.
Turner, Leslie M; White, Michael A; Tautz, Diethard; Payseur, Bret A
2014-02-01
Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics.
Genomic Networks of Hybrid Sterility
Turner, Leslie M.; White, Michael A.; Tautz, Diethard; Payseur, Bret A.
2014-01-01
Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci (“Dobzhansky-Muller incompatibilities”). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL—but not cis eQTL—were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics. PMID:24586194
Scally, Mark; Schuenzel, Erin L; Stouthamer, Richard; Nunney, Leonard
2005-12-01
Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.
Adaptive Genetic Divergence along Narrow Environmental Gradients in Four Stream Insects
Watanabe, Kozo; Kazama, So; Omura, Tatsuo; Monaghan, Michael T.
2014-01-01
A central question linking ecology with evolutionary biology is how environmental heterogeneity can drive adaptive genetic divergence among populations. We examined adaptive divergence of four stream insects from six adjacent catchments in Japan by combining field measures of habitat and resource components with genome scans of non-neutral Amplified Fragment Length Polymorphism (AFLP) loci. Neutral genetic variation was used to measure gene flow and non-neutral genetic variation was used to test for adaptive divergence. We identified the environmental characteristics contributing to divergence by comparing genetic distances at non-neutral loci between sites with Euclidean distances for each of 15 environmental variables. Comparisons were made using partial Mantel tests to control for geographic distance. In all four species, we found strong evidence for non-neutral divergence along environmental gradients at between 6 and 21 loci per species. The relative contribution of these environmental variables to each species' ecological niche was quantified as the specialization index, S, based on ecological data. In each species, the variable most significantly correlated with genetic distance at non-neutral loci was the same variable along which each species was most narrowly distributed (i.e., highest S). These were gradients of elevation (two species), chlorophyll-a, and ammonia-nitrogen. This adaptive divergence occurred in the face of ongoing gene flow (F st = 0.01–0.04), indicating that selection was strong enough to overcome homogenization at the landscape scale. Our results suggest that adaptive divergence is pronounced, occurs along different environmental gradients for different species, and may consistently occur along the narrowest components of species' niche. PMID:24681871
Huerta-Chagoya, Alicia; Vázquez-Cárdenas, Paola; Moreno-Macías, Hortensia; Tapia-Maruri, Leonardo; Rodríguez-Guillén, Rosario; López-Vite, Erika; García-Escalante, Guadalupe; Escobedo-Aguirre, Fernando; Parra-Covarrubias, Adalberto; Cordero-Brieño, Roberto; Manzo-Carrillo, Lizette; Zacarías-Castillo, Rogelio; Vargas-García, Carlos; Aguilar-Salinas, Carlos; Tusié-Luna, Teresa
2015-01-01
Epidemiological and physiological similarities among Gestational Diabetes Mellitus (GDM) and Type 2 Diabetes (T2D) suggest that both diseases, share a common genetic background. T2D risk variants have been associated to GDM susceptibility. However, the genetic architecture of GDM is not yet completely understood. We analyzed 176 SNPs for 115 loci previously associated to T2D, GDM and body mass index (BMI), as well as a set of 118 Ancestry Informative Markers (AIMs), in 750 pregnant Mexican women. Association with GDM was found for two of the most frequently replicated T2D loci: a TCF7L2 haplotype (CTTC: rs7901695, rs4506565, rs7903146, rs12243326; P=2.16 x 10(-06); OR=2.95) and a KCNQ1 haplotype (TTT: rs2237892, rs163184, rs2237897; P=1.98 x 10(-05); OR=0.55). In addition, we found two loci associated to glycemic traits: CENTD2 (60' OGTT glycemia: rs1552224, P=0.03727) and MTNR1B (HOMA B: rs1387153, P=0.05358). Remarkably, a major susceptibility SLC16A11 locus for T2D in Mexicans was not shown to play a role in GDM risk. The fact that two of the main T2D associated loci also contribute to the risk of developing GDM in Mexicans, confirm that both diseases share a common genetic background. However, lack of association with a Native American contribution T2D risk haplotype, SLC16A11, suggests that other genetic mechanisms may be in play for GDM.
Genetic Determinants for Gestational Diabetes Mellitus and Related Metabolic Traits in Mexican Women
Huerta-Chagoya, Alicia; Vázquez-Cárdenas, Paola; Moreno-Macías, Hortensia; Tapia-Maruri, Leonardo; Rodríguez-Guillén, Rosario; López-Vite, Erika; García-Escalante, Guadalupe; Escobedo-Aguirre, Fernando; Parra-Covarrubias, Adalberto; Cordero-Brieño, Roberto; Manzo-Carrillo, Lizette; Zacarías-Castillo, Rogelio; Aguilar-Salinas, Carlos; Tusié-Luna, Teresa
2015-01-01
Epidemiological and physiological similarities among Gestational Diabetes Mellitus (GDM) and Type 2 Diabetes (T2D) suggest that both diseases, share a common genetic background. T2D risk variants have been associated to GDM susceptibility. However, the genetic architecture of GDM is not yet completely understood. We analyzed 176 SNPs for 115 loci previously associated to T2D, GDM and body mass index (BMI), as well as a set of 118 Ancestry Informative Markers (AIMs), in 750 pregnant Mexican women. Association with GDM was found for two of the most frequently replicated T2D loci: a TCF7L2 haplotype (CTTC: rs7901695, rs4506565, rs7903146, rs12243326; P=2.16x10-06; OR=2.95) and a KCNQ1 haplotype (TTT: rs2237892, rs163184, rs2237897; P=1.98x10-05; OR=0.55). In addition, we found two loci associated to glycemic traits: CENTD2 (60’ OGTT glycemia: rs1552224, P=0.03727) and MTNR1B (HOMA B: rs1387153, P=0.05358). Remarkably, a major susceptibility SLC16A11 locus for T2D in Mexicans was not shown to play a role in GDM risk. The fact that two of the main T2D associated loci also contribute to the risk of developing GDM in Mexicans, confirm that both diseases share a common genetic background. However, lack of association with a Native American contribution T2D risk haplotype, SLC16A11, suggests that other genetic mechanisms may be in play for GDM. PMID:25973943
Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations.
Lamontagne, Maxime; Bérubé, Jean-Christophe; Obeidat, Ma'en; Cho, Michael H; Hobbs, Brian D; Sakornsakolpat, Phuwanat; de Jong, Kim; Boezen, H Marike; Nickle, David; Hao, Ke; Timens, Wim; van den Berge, Maarten; Joubert, Philippe; Laviolette, Michel; Sin, Don D; Paré, Peter D; Bossé, Yohan
2018-05-15
Causal genes of chronic obstructive pulmonary disease (COPD) remain elusive. The current study aims at integrating genome-wide association studies (GWAS) and lung expression quantitative trait loci (eQTL) data to map COPD candidate causal genes and gain biological insights into the recently discovered COPD susceptibility loci. Two complementary genomic datasets on COPD were studied. First, the lung eQTL dataset which included whole-genome gene expression and genotyping data from 1038 individuals. Second, the largest COPD GWAS to date from the International COPD Genetics Consortium (ICGC) with 13 710 cases and 38 062 controls. Methods that integrated GWAS with eQTL signals including transcriptome-wide association study (TWAS), colocalization and Mendelian randomization-based (SMR) approaches were used to map causality genes, i.e. genes with the strongest evidence of being the functional effector at specific loci. These methods were applied at the genome-wide level and at COPD risk loci derived from the GWAS literature. Replication was performed using lung data from GTEx. We collated 129 non-overlapping risk loci for COPD from the GWAS literature. At the genome-wide scale, 12 new COPD candidate genes/loci were revealed and six replicated in GTEx including CAMK2A, DMPK, MYO15A, TNFRSF10A, BTN3A2 and TRBV30. In addition, we mapped candidate causal genes for 60 out of the 129 GWAS-nominated loci and 23 of them were replicated in GTEx. Mapping candidate causal genes in lung tissue represents an important contribution to the genetics of COPD, enriches our biological interpretation of GWAS findings, and brings us closer to clinical translation of genetic associations.
Lindström, I; Sundar, N; Lindh, J; Kironde, F; Kabasa, J D; Kwok, O C H; Dubey, J P; Smith, J E
2008-01-01
The genetic make-up of an infecting Toxoplasma gondii strain may be important for the outcome of infection and the risk of reactivation of chronic disease. In order to survey the distribution of different genotypes within an area, free-range chickens act as a good model species. In this study 85 chickens were used to investigate the prevalence, genotype and mouse virulence of T. gondii in Kampala, Uganda. Antibodies were detected in 40 chickens, of which 20 had MAT-titres of 1:20 or higher and were also positive by PCR. Genotyping of 5 loci (SAG1, SAG2, SAG3, BTUB and GRA6) showed that 6 strains belonged to genotype I, 8 to Type II and 1 to Type III. Five chickens had multiple infections; 3 individuals with Type I plus Type II and a further 2 harbouring Types I, II and III. Isolates were obtained from 9 chickens via bioassay in mice, 6 were Type II strains and 3 were from animals with mixed infection. This is the first set of African T. gondii strains to be genotyped at multiple loci and in addition to the 3 predominant lineages we found a small number of new polymorphisms and a high frequency of multiple infections.
Pérez-Collazos, Ernesto; Catalán, Pilar
2006-04-01
Vella pseudocytisus subsp. paui (Cruciferae) is a narrow endemic plant to the Teruel province (eastern Spain), which is listed in the National Catalogue of Endangered Species. Two distinct ploidy levels (diploid, 2n = 34, and tetraploid, 2n = 68) have been reported for this taxon that belongs to the core subtribe Vellinae, a western Mediterranean group of shrubby taxa with a chromosome base number of x = 17. Allozyme and AFLP analyses were conducted (a) to test for the ploidy and putative palaeo-allopolyploid origin of this taxon, (b) to explore levels of genetic diversity and spatial structure of its populations, and (c) to address in-situ and ex-situ strategies for its conservation. Six populations that covered the entire geographical range of this taxon were sampled and examined for 19 allozyme loci and three AFLP primer pair combinations. In addition, the gametic progenies of five individuals were analysed for two allozyme loci that showed fixed heterozygosity. Multiple banded allozyme profiles for most of the surveyed loci indicated the polyploidy of this taxon. Co-inherited fixed heterozygous patterns were exhibited by the gametophytic tissues of the mother plants. Both allozyme and AFLP markers detected high levels of genetic diversity, and a strong micro-spatial genetic structure was recovered from AFLP phenetic analyses and Mantel correlograms. Allozyme data support the hypothesis of an allotetraploid origin of Vella pseudocytisus subsp. paui that could be representative of other taxa of the core Vellinae group. AFLP data distinguished three geographically distinct groups with no genetic interaction among them. Allotetraploidy and outcrossing reproduction have probably contributed to maintenance of high levels of genetic variability of the populations, whereas habitat fragmentation may have enhanced the high genetic isolation observed among groups. In-situ microgenetic reserves and a selective sampling of germplasm stocks for ex-situ conservation of this taxon are proposed.
Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing
2010-01-01
The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830
Saini, J S; Kumar, A; Matharoo, K; Sokhi, J; Badaruddoza; Bhanwer, A J S
2012-12-15
The North West region of India is extremely important to understand the peopling of India, as it acted as a corridor to the foreign invaders from Eurasia and Central Asia. A series of these invasions along with multiple migrations led to intermixture of variable populations, strongly contributing to genetic variations. The present investigation was designed to explore the genetic diversities and affinities among the five major ethnic groups from North West India; Brahmin, Jat Sikh, Bania, Rajput and Gujjar. A total of 327 individuals of the abovementioned ethnic groups were analyzed for 4 Alu insertion marker loci (ACE, PV92, APO and D1) and a Single Nucleotide Polymorphism (SNP) rs2234693 in the intronic region of the ESR1 gene. Statistical analysis was performed to interpret the genetic structure and diversity of the population groups. Genotypes for ACE, APO, ESR1 and PV92 loci were found to be in Hardy-Weinberg equilibrium in all the ethnic groups, while significant departures were observed at the D1 locus in every investigated population after Bonferroni's correction. The average heterozygosity for all the loci in these ethnic groups was fairly substantial ranging from 0.3927 ± 0.1877 to 0.4333 ± 0.1416. Inbreeding coefficient indicated an overall 10% decrease in heterozygosity in these North West Indian populations. The gene differentiation among the populations was observed to be of the order of 0.013. Genetic distance estimates revealed that Gujjars were close to Banias and Jat Sikhs were close to Rajputs. Overall the study favored the recent division of the populations of North West India into largely endogamous groups. It was observed that the populations of North West India represent a more or less homogenous genetic entity, owing to their common ancestral history as well as geographical proximity. Copyright © 2012 Elsevier B.V. All rights reserved.
PÉREZ-COLLAZOS, ERNESTO; CATALÁN, PILAR
2006-01-01
• Background and Aims Vella pseudocytisus subsp. paui (Cruciferae) is a narrow endemic plant to the Teruel province (eastern Spain), which is listed in the National Catalogue of Endangered Species. Two distinct ploidy levels (diploid, 2n = 34, and tetraploid, 2n = 68) have been reported for this taxon that belongs to the core subtribe Vellinae, a western Mediterranean group of shrubby taxa with a chromosome base number of x = 17. Allozyme and AFLP analyses were conducted (a) to test for the ploidy and putative palaeo-allopolyploid origin of this taxon, (b) to explore levels of genetic diversity and spatial structure of its populations, and (c) to address in-situ and ex-situ strategies for its conservation. • Methods Six populations that covered the entire geographical range of this taxon were sampled and examined for 19 allozyme loci and three AFLP primer pair combinations. In addition, the gametic progenies of five individuals were analysed for two allozyme loci that showed fixed heterozygosity. • Key Results Multiple banded allozyme profiles for most of the surveyed loci indicated the polyploidy of this taxon. Co-inherited fixed heterozygous patterns were exhibited by the gametophytic tissues of the mother plants. Both allozyme and AFLP markers detected high levels of genetic diversity, and a strong micro-spatial genetic structure was recovered from AFLP phenetic analyses and Mantel correlograms. • Conclusions Allozyme data support the hypothesis of an allotetraploid origin of Vella pseudocytisus subsp. paui that could be representative of other taxa of the core Vellinae group. AFLP data distinguished three geographically distinct groups with no genetic interaction among them. Allotetraploidy and outcrossing reproduction have probably contributed to maintenance of high levels of genetic variability of the populations, whereas habitat fragmentation may have enhanced the high genetic isolation observed among groups. In-situ microgenetic reserves and a selective sampling of germplasm stocks for ex-situ conservation of this taxon are proposed. PMID:16495317
Lindström, Sara; Thompson, Deborah J.; Paterson, Andrew D.; Li, Jingmei; Gierach, Gretchen L.; Scott, Christopher; Stone, Jennifer; Douglas, Julie A.; dos-Santos-Silva, Isabel; Fernandez-Navarro, Pablo; Verghase, Jajini; Smith, Paula; Brown, Judith; Luben, Robert; Wareham, Nicholas J.; Loos, Ruth J.F.; Heit, John A.; Pankratz, V. Shane; Norman, Aaron; Goode, Ellen L.; Cunningham, Julie M.; deAndrade, Mariza; Vierkant, Robert A.; Czene, Kamila; Fasching, Peter A.; Baglietto, Laura; Southey, Melissa C.; Giles, Graham G.; Shah, Kaanan P.; Chan, Heang-Ping; Helvie, Mark A.; Beck, Andrew H.; Knoblauch, Nicholas W.; Hazra, Aditi; Hunter, David J.; Kraft, Peter; Pollan, Marina; Figueroa, Jonine D.; Couch, Fergus J.; Hopper, John L.; Hall, Per; Easton, Douglas F.; Boyd, Norman F.; Vachon, Celine M.; Tamimi, Rulla M.
2015-01-01
Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5×10−8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B, SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23, TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease susceptibility loci. PMID:25342443
Madsen, Thomas; Braun, Danielle; Peng, Gang; Parmigiani, Giovanni; Trippa, Lorenzo
2018-06-25
The Elston-Stewart peeling algorithm enables estimation of an individual's probability of harboring germline risk alleles based on pedigree data, and serves as the computational backbone of important genetic counseling tools. However, it remains limited to the analysis of risk alleles at a small number of genetic loci because its computing time grows exponentially with the number of loci considered. We propose a novel, approximate version of this algorithm, dubbed the peeling and paring algorithm, which scales polynomially in the number of loci. This allows extending peeling-based models to include many genetic loci. The algorithm creates a trade-off between accuracy and speed, and allows the user to control this trade-off. We provide exact bounds on the approximation error and evaluate it in realistic simulations. Results show that the loss of accuracy due to the approximation is negligible in important applications. This algorithm will improve genetic counseling tools by increasing the number of pathogenic risk alleles that can be addressed. To illustrate we create an extended five genes version of BRCAPRO, a widely used model for estimating the carrier probabilities of BRCA1 and BRCA2 risk alleles and assess its computational properties. © 2018 WILEY PERIODICALS, INC.
A genome-wide association meta-analysis identifies new childhood obesity loci
Bradfield, Jonathan P.; Taal, H. Rob; Timpson, Nicholas J.; Scherag, André; Lecoeur, Cecile; Warrington, Nicole M.; Hypponen, Elina; Holst, Claus; Valcarcel, Beatriz; Thiering, Elisabeth; Salem, Rany M.; Schumacher, Fredrick R.; Cousminer, Diana L.; Sleiman, Patrick M.A.; Zhao, Jianhua; Berkowitz, Robert I.; Vimaleswaran, Karani S.; Jarick, Ivonne; Pennell, Craig E.; Evans, David M.; St. Pourcain, Beate; Berry, Diane J.; Mook-Kanamori, Dennis O; Hofman, Albert; Rivadeinera, Fernando; Uitterlinden, André G.; van Duijn, Cornelia M.; van der Valk, Ralf J.P.; de Jongste, Johan C.; Postma, Dirkje S.; Boomsma, Dorret I.; Gauderman, William J.; Hassanein, Mohamed T.; Lindgren, Cecilia M.; Mägi, Reedik; Boreham, Colin A.G.; Neville, Charlotte E.; Moreno, Luis A.; Elliott, Paul; Pouta, Anneli; Hartikainen, Anna-Liisa; Li, Mingyao; Raitakari, Olli; Lehtimäki, Terho; Eriksson, Johan G.; Palotie, Aarno; Dallongeville, Jean; Das, Shikta; Deloukas, Panos; McMahon, George; Ring, Susan M.; Kemp, John P.; Buxton, Jessica L.; Blakemore, Alexandra I.F.; Bustamante, Mariona; Guxens, Mònica; Hirschhorn, Joel N.; Gillman, Matthew W.; Kreiner-Møller, Eskil; Bisgaard, Hans; Gilliland, Frank D.; Heinrich, Joachim; Wheeler, Eleanor; Barroso, Inês; O'Rahilly, Stephen; Meirhaeghe, Aline; Sørensen, Thorkild I.A.; Power, Chris; Palmer, Lyle J.; Hinney, Anke; Widen, Elisabeth; Farooqi, I. Sadaf; McCarthy, Mark I.; Froguel, Philippe; Meyre, David; Hebebrand, Johannes; Jarvelin, Marjo-Riitta; Jaddoe, Vincent W.V.; Smith, George Davey; Hakonarson, Hakon; Grant, Struan F.A.
2012-01-01
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1. PMID:22484627
DeFaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Goto, Akira; Merilä, Juha
2011-06-01
Examples of parallel evolution of phenotypic traits have been repeatedly demonstrated in threespine sticklebacks (Gasterosteus aculeatus) across their global distribution. Using these as a model, we performed a targeted genome scan--focusing on physiologically important genes potentially related to freshwater adaptation--to identify genetic signatures of parallel physiological evolution on a global scale. To this end, 50 microsatellite loci, including 26 loci within or close to (<6 kb) physiologically important genes, were screened in paired marine and freshwater populations from six locations across the Northern Hemisphere. Signatures of directional selection were detected in 24 loci, including 17 physiologically important genes, in at least one location. Although no loci showed consistent signatures of selection in all divergent population pairs, several outliers were common in multiple locations. In particular, seven physiologically important genes, as well as reference ectodysplasin gene (EDA), showed signatures of selection in three or more locations. Hence, although these results give some evidence for consistent parallel molecular evolution in response to freshwater colonization, they suggest that different evolutionary pathways may underlie physiological adaptation to freshwater habitats within the global distribution of the threespine stickleback. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Drong, Alexander W; Abbott, James; Wahl, Simone; Tan, Sian-Tsung; Scott, William R; Campanella, Gianluca; Chadeau-Hyam, Marc; Afzal, Uzma; Ahluwalia, Tarunveer S; Bonder, Marc Jan; Chen, Peng; Dehghan, Abbas; Edwards, Todd L; Esko, Tõnu; Go, Min Jin; Harris, Sarah E; Hartiala, Jaana; Kasela, Silva; Kasturiratne, Anuradhani; Khor, Chiea-Chuen; Kleber, Marcus E; Li, Huaixing; Yu Mok, Zuan; Nakatochi, Masahiro; Sapari, Nur Sabrina; Saxena, Richa; Stewart, Alexandre F R; Stolk, Lisette; Tabara, Yasuharu; Teh, Ai Ling; Wu, Ying; Wu, Jer-Yuarn; Zhang, Yi; Aits, Imke; Da Silva Couto Alves, Alexessander; Das, Shikta; Dorajoo, Rajkumar; Hopewell, Jemma C; Kim, Yun Kyoung; Koivula, Robert W; Luan, Jian’an; Lyytikäinen, Leo-Pekka; Nguyen, Quang N; Pereira, Mark A; Postmus, Iris; Raitakari, Olli T; Bryan, Molly Scannell; Scott, Robert A; Sorice, Rossella; Tragante, Vinicius; Traglia, Michela; White, Jon; Yamamoto, Ken; Zhang, Yonghong; Adair, Linda S; Ahmed, Alauddin; Akiyama, Koichi; Asif, Rasheed; Aung, Tin; Barroso, Inês; Bjonnes, Andrew; Braun, Timothy R; Cai, Hui; Chang, Li-Ching; Chen, Chien-Hsiun; Cheng, Ching-Yu; Chong, Yap-Seng; Collins, Rory; Courtney, Regina; Davies, Gail; Delgado, Graciela; Do, Loi D; Doevendans, Pieter A; Gansevoort, Ron T; Gao, Yu-Tang; Grammer, Tanja B; Grarup, Niels; Grewal, Jagvir; Gu, Dongfeng; Wander, Gurpreet S; Hartikainen, Anna-Liisa; Hazen, Stanley L; He, Jing; Heng, Chew-Kiat; Hixson, James E; Hofman, Albert; Hsu, Chris; Huang, Wei; Husemoen, Lise L N; Hwang, Joo-Yeon; Ichihara, Sahoko; Igase, Michiya; Isono, Masato; Justesen, Johanne M; Katsuya, Tomohiro; Kibriya, Muhammad G; Kim, Young Jin; Kishimoto, Miyako; Koh, Woon-Puay; Kohara, Katsuhiko; Kumari, Meena; Kwek, Kenneth; Lee, Nanette R; Lee, Jeannette; Liao, Jiemin; Lieb, Wolfgang; Liewald, David C M; Matsubara, Tatsuaki; Matsushita, Yumi; Meitinger, Thomas; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Mononen, Nina; Müller-Nurasyid, Martina; Nabika, Toru; Nakashima, Eitaro; Ng, Hong Kiat; Nikus, Kjell; Nutile, Teresa; Ohkubo, Takayoshi; Ohnaka, Keizo; Parish, Sarah; Paternoster, Lavinia; Peng, Hao; Peters, Annette; Pham, Son T; Pinidiyapathirage, Mohitha J; Rahman, Mahfuzar; Rakugi, Hiromi; Rolandsson, Olov; Ann Rozario, Michelle; Ruggiero, Daniela; Sala, Cinzia F; Sarju, Ralhan; Shimokawa, Kazuro; Snieder, Harold; Sparsø, Thomas; Spiering, Wilko; Starr, John M; Stott, David J; Stram, Daniel O; Sugiyama, Takao; Szymczak, Silke; Tang, W H Wilson; Tong, Lin; Trompet, Stella; Turjanmaa, Väinö; Ueshima, Hirotsugu; Uitterlinden, André G; Umemura, Satoshi; Vaarasmaki, Marja; van Dam, Rob M; van Gilst, Wiek H; van Veldhuisen, Dirk J; Viikari, Jorma S; Waldenberger, Melanie; Wang, Yiqin; Wang, Aili; Wilson, Rory; Wong, Tien-Yin; Xiang, Yong-Bing; Yamaguchi, Shuhei; Ye, Xingwang; Young, Robin D; Young, Terri L; Yuan, Jian-Min; Zhou, Xueya; Asselbergs, Folkert W; Ciullo, Marina; Clarke, Robert; Deloukas, Panos; Franke, Andre; Franks, Paul W; Franks, Steve; Friedlander, Yechiel; Gross, Myron D; Guo, Zhirong; Hansen, Torben; Jarvelin, Marjo-Riitta; Jørgensen, Torben; Jukema, J Wouter; kähönen, Mika; Kajio, Hiroshi; Kivimaki, Mika; Lee, Jong-Young; Lehtimäki, Terho; Linneberg, Allan; Miki, Tetsuro; Pedersen, Oluf; Samani, Nilesh J; Sørensen, Thorkild I A; Takayanagi, Ryoichi; Toniolo, Daniela; Ahsan, Habibul; Allayee, Hooman; Chen, Yuan-Tsong; Danesh, John; Deary, Ian J; Franco, Oscar H; Franke, Lude; Heijman, Bastiaan T; Holbrook, Joanna D; Isaacs, Aaron; Kim, Bong-Jo; Lin, Xu; Liu, Jianjun; März, Winfried; Metspalu, Andres; Mohlke, Karen L; Sanghera, Dharambir K; Shu, Xiao-Ou; van Meurs, Joyce B J; Vithana, Eranga; Wickremasinghe, Ananda R; Wijmenga, Cisca; Wolffenbuttel, Bruce H W; Yokota, Mitsuhiro; Zheng, Wei; Zhu, Dingliang; Vineis, Paolo; Kyrtopoulos, Soterios A; Kleinjans, Jos C S; McCarthy, Mark I; Soong, Richie; Gieger, Christian; Scott, James
2016-01-01
We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation. PMID:26390057
Kato, Norihiro; Loh, Marie; Takeuchi, Fumihiko; Verweij, Niek; Wang, Xu; Zhang, Weihua; Kelly, Tanika N; Saleheen, Danish; Lehne, Benjamin; Leach, Irene Mateo; Drong, Alexander W; Abbott, James; Wahl, Simone; Tan, Sian-Tsung; Scott, William R; Campanella, Gianluca; Chadeau-Hyam, Marc; Afzal, Uzma; Ahluwalia, Tarunveer S; Bonder, Marc Jan; Chen, Peng; Dehghan, Abbas; Edwards, Todd L; Esko, Tõnu; Go, Min Jin; Harris, Sarah E; Hartiala, Jaana; Kasela, Silva; Kasturiratne, Anuradhani; Khor, Chiea-Chuen; Kleber, Marcus E; Li, Huaixing; Yu Mok, Zuan; Nakatochi, Masahiro; Sapari, Nur Sabrina; Saxena, Richa; Stewart, Alexandre F R; Stolk, Lisette; Tabara, Yasuharu; Teh, Ai Ling; Wu, Ying; Wu, Jer-Yuarn; Zhang, Yi; Aits, Imke; Da Silva Couto Alves, Alexessander; Das, Shikta; Dorajoo, Rajkumar; Hopewell, Jemma C; Kim, Yun Kyoung; Koivula, Robert W; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Nguyen, Quang N; Pereira, Mark A; Postmus, Iris; Raitakari, Olli T; Bryan, Molly Scannell; Scott, Robert A; Sorice, Rossella; Tragante, Vinicius; Traglia, Michela; White, Jon; Yamamoto, Ken; Zhang, Yonghong; Adair, Linda S; Ahmed, Alauddin; Akiyama, Koichi; Asif, Rasheed; Aung, Tin; Barroso, Inês; Bjonnes, Andrew; Braun, Timothy R; Cai, Hui; Chang, Li-Ching; Chen, Chien-Hsiun; Cheng, Ching-Yu; Chong, Yap-Seng; Collins, Rory; Courtney, Regina; Davies, Gail; Delgado, Graciela; Do, Loi D; Doevendans, Pieter A; Gansevoort, Ron T; Gao, Yu-Tang; Grammer, Tanja B; Grarup, Niels; Grewal, Jagvir; Gu, Dongfeng; Wander, Gurpreet S; Hartikainen, Anna-Liisa; Hazen, Stanley L; He, Jing; Heng, Chew-Kiat; Hixson, James E; Hofman, Albert; Hsu, Chris; Huang, Wei; Husemoen, Lise L N; Hwang, Joo-Yeon; Ichihara, Sahoko; Igase, Michiya; Isono, Masato; Justesen, Johanne M; Katsuya, Tomohiro; Kibriya, Muhammad G; Kim, Young Jin; Kishimoto, Miyako; Koh, Woon-Puay; Kohara, Katsuhiko; Kumari, Meena; Kwek, Kenneth; Lee, Nanette R; Lee, Jeannette; Liao, Jiemin; Lieb, Wolfgang; Liewald, David C M; Matsubara, Tatsuaki; Matsushita, Yumi; Meitinger, Thomas; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Mononen, Nina; Müller-Nurasyid, Martina; Nabika, Toru; Nakashima, Eitaro; Ng, Hong Kiat; Nikus, Kjell; Nutile, Teresa; Ohkubo, Takayoshi; Ohnaka, Keizo; Parish, Sarah; Paternoster, Lavinia; Peng, Hao; Peters, Annette; Pham, Son T; Pinidiyapathirage, Mohitha J; Rahman, Mahfuzar; Rakugi, Hiromi; Rolandsson, Olov; Ann Rozario, Michelle; Ruggiero, Daniela; Sala, Cinzia F; Sarju, Ralhan; Shimokawa, Kazuro; Snieder, Harold; Sparsø, Thomas; Spiering, Wilko; Starr, John M; Stott, David J; Stram, Daniel O; Sugiyama, Takao; Szymczak, Silke; Tang, W H Wilson; Tong, Lin; Trompet, Stella; Turjanmaa, Väinö; Ueshima, Hirotsugu; Uitterlinden, André G; Umemura, Satoshi; Vaarasmaki, Marja; van Dam, Rob M; van Gilst, Wiek H; van Veldhuisen, Dirk J; Viikari, Jorma S; Waldenberger, Melanie; Wang, Yiqin; Wang, Aili; Wilson, Rory; Wong, Tien-Yin; Xiang, Yong-Bing; Yamaguchi, Shuhei; Ye, Xingwang; Young, Robin D; Young, Terri L; Yuan, Jian-Min; Zhou, Xueya; Asselbergs, Folkert W; Ciullo, Marina; Clarke, Robert; Deloukas, Panos; Franke, Andre; Franks, Paul W; Franks, Steve; Friedlander, Yechiel; Gross, Myron D; Guo, Zhirong; Hansen, Torben; Jarvelin, Marjo-Riitta; Jørgensen, Torben; Jukema, J Wouter; Kähönen, Mika; Kajio, Hiroshi; Kivimaki, Mika; Lee, Jong-Young; Lehtimäki, Terho; Linneberg, Allan; Miki, Tetsuro; Pedersen, Oluf; Samani, Nilesh J; Sørensen, Thorkild I A; Takayanagi, Ryoichi; Toniolo, Daniela; Ahsan, Habibul; Allayee, Hooman; Chen, Yuan-Tsong; Danesh, John; Deary, Ian J; Franco, Oscar H; Franke, Lude; Heijman, Bastiaan T; Holbrook, Joanna D; Isaacs, Aaron; Kim, Bong-Jo; Lin, Xu; Liu, Jianjun; März, Winfried; Metspalu, Andres; Mohlke, Karen L; Sanghera, Dharambir K; Shu, Xiao-Ou; van Meurs, Joyce B J; Vithana, Eranga; Wickremasinghe, Ananda R; Wijmenga, Cisca; Wolffenbuttel, Bruce H W; Yokota, Mitsuhiro; Zheng, Wei; Zhu, Dingliang; Vineis, Paolo; Kyrtopoulos, Soterios A; Kleinjans, Jos C S; McCarthy, Mark I; Soong, Richie; Gieger, Christian; Scott, James; Teo, Yik-Ying; He, Jiang; Elliott, Paul; Tai, E Shyong; van der Harst, Pim; Kooner, Jaspal S; Chambers, John C
2015-11-01
We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10(-11) to 5.0 × 10(-21)). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10(-6)). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
Bustamante, Ana V; Lucchesi, Paula M A; Parma, Alberto E
2009-10-01
The aim of this work was to adapt described MLVA protocols to the molecular typing and characterization of VTEC O157:H7 isolates from Argentina. Nine VNTR loci were amplified by PCR showing diversity values from 0.49 to 0.73. Nine MLVA profiles were observed and the cluster analysis indicated both unrelated and closely related VTEC O157:H7 strains. In spite of the limited number of isolates studied, the panel of VNTR used made it possible to perform a first approach of the high genetic diversity of native strains of O157:H7 by MLVA.
A role for a neo-sex chromosome in stickleback speciation.
Kitano, Jun; Ross, Joseph A; Mori, Seiichi; Kume, Manabu; Jones, Felicity C; Chan, Yingguang F; Absher, Devin M; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M; Kingsley, David M; Peichel, Catherine L
2009-10-22
Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated.
A role for a neo-sex chromosome in stickleback speciation
Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L.
2009-01-01
Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex chromosome turnover and speciation. Although closely related species often have different sex chromosome systems, it is unknown whether sex chromosome turnover contributes to the evolution of reproductive isolation between species. In this study, we show that a newly evolved sex chromosome harbours genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome harbours loci for male courtship display traits that contribute to behavioural isolation, while the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large-X effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data suggest that sex chromosome turnover might play a greater role in speciation than previously appreciated. PMID:19783981
Finnigan, Gregory C; Thorner, Jeremy
2016-07-07
Genome editing exploiting CRISPR/Cas9 has been adopted widely in academia and in the biotechnology industry to manipulate DNA sequences in diverse organisms. Molecular engineering of Cas9 itself and its guide RNA, and the strategies for using them, have increased efficiency, optimized specificity, reduced inappropriate off-target effects, and introduced modifications for performing other functions (transcriptional regulation, high-resolution imaging, protein recruitment, and high-throughput screening). Moreover, Cas9 has the ability to multiplex, i.e., to act at different genomic targets within the same nucleus. Currently, however, introducing concurrent changes at multiple loci involves: (i) identification of appropriate genomic sites, especially the availability of suitable PAM sequences; (ii) the design, construction, and expression of multiple sgRNA directed against those sites; (iii) potential difficulties in altering essential genes; and (iv) lingering concerns about "off-target" effects. We have devised a new approach that circumvents these drawbacks, as we demonstrate here using the yeast Saccharomyces cerevisiae First, any gene(s) of interest are flanked upstream and downstream with a single unique target sequence that does not normally exist in the genome. Thereafter, expression of one sgRNA and cotransformation with appropriate PCR fragments permits concomitant Cas9-mediated alteration of multiple genes (both essential and nonessential). The system we developed also allows for maintenance of the integrated, inducible Cas9-expression cassette or its simultaneous scarless excision. Our scheme-dubbed mCAL for " M: ultiplexing of C: as9 at A: rtificial L: oci"-can be applied to any organism in which the CRISPR/Cas9 methodology is currently being utilized. In principle, it can be applied to install synthetic sequences into the genome, to generate genomic libraries, and to program strains or cell lines so that they can be conveniently (and repeatedly) manipulated at multiple loci with extremely high efficiency. Copyright © 2016 Finnigan and Thorner.
Bekris, Lynn M.; Millard, Steven P.; Galloway, Nichole M.; Vuletic, Simona; Albers, John J.; Li, Ge; Galasko, Douglas R.; DeCarli, Charles; Farlow, Martin R.; Clark, Chris M.; Quinn, Joseph F.; Kaye, Jeffrey A.; Schellenberg, Gerard D.; Tsuang, Debby; Peskind, Elaine R.; Yu, Chang-En
2010-01-01
The ε4 allele of the apolipoprotein E gene (APOE) is associated with increased risk and earlier age at onset in late onset Alzheimer’s disease (AD). Other factors, such as expression level of apolipoprotein E protein (apoE), have been postulated to modify the APOE related risk of developing AD. Multiple loci in and outside of APOE are associated with a high risk of AD. The aim of this exploratory hypothesis generating investigation was to determine if some of these loci predict cerebrospinal fluid (CSF) apoE levels in healthy non-demented subjects. CSF apoE levels were measured from healthy non-demented subjects 21–87 years of age (n = 134). Backward regression models were used to evaluate the influence of 21 SNPs, within and surrounding APOE, on CSF apoE levels while taking into account age, gender, APOE ε4 and correlation between SNPs (linkage disequilibrium). APOE ε4 genotype does not predict CSF apoE levels. Three SNPs within the TOMM40 gene, one APOE promoter SNP and two SNPs within distal APOE enhancer elements (ME1 and BCR) predict CSF apoE levels. Further investigation of the genetic influence of these loci on apoE expression levels in the central nervous system is likely to provide new insight into apoE regulation as well as AD pathogenesis. PMID:18430993
McDermott, Shannon R.; Noor, Mohamed A. F.
2011-01-01
Taxa in the early stages of speciation may bear intraspecific allelic variation at loci conferring barrier traits in hybrids such as hybrid sterility. Additionally, hybridization may spread alleles that confer barrier traits to other taxa. Historically, few studies examine within- and between-species variation at loci conferring reproductive isolation. Here, we test for allelic variation within Drosophila persimilis and within the Bogota subspecies of D. pseudoobscura at regions previously shown to contribute to hybrid male sterility. We also test whether D. persimilis and the USA subspecies of D. pseudoobscura share an allele conferring hybrid sterility in a D. pseudoobscura bogotana genetic background. All loci conferred similar hybrid sterility effects across all strains studied, though we detected some statistically significant quantitative effect variation among D. persimilis alleles of some hybrid incompatibility QTLs. We also detected allelism between D. persimilis and D. pseudoobscura USA at a 2nd chromosome hybrid sterility QTL. We hypothesize that either the QTL is ancestral in D. persimilis and D. pseudoobscura USA and lost in D. pseudoobscura bogotana, or gene flow transferred the QTL from D. persimilis to D. pseudoobscura USA. We discuss our findings in the context of population features that may contribute to variation in hybrid incompatibilities. PMID:21729052
McDermott, Shannon R; Noor, Mohamed A F
2011-07-01
Taxa in the early stages of speciation may bear intraspecific allelic variation at loci conferring barrier traits in hybrids such as hybrid sterility. Additionally, hybridization may spread alleles that confer barrier traits to other taxa. Historically, few studies examine within- and between-species variation at loci conferring reproductive isolation. Here, we test for allelic variation within Drosophila persimilis and within the Bogota subspecies of D. pseudoobscura at regions previously shown to contribute to hybrid male sterility. We also test whether D. persimilis and the USA subspecies of D. pseudoobscura share an allele conferring hybrid sterility in a D. pseudoobscura bogotana genetic background. All loci conferred similar hybrid sterility effects across all strains studied, although we detected some statistically significant quantitative effect variation among D. persimilis alleles of some hybrid incompatibility QTLs. We also detected allelism between D. persimilis and D. pseudoobscura USA at a second chromosome hybrid sterility QTL. We hypothesize that either the QTL is ancestral in D. persimilis and D. pseudoobscura USA and lost in D. pseudoobscura bogotana, or gene flow transferred the QTL from D. persimilis to D. pseudoobscura USA. We discuss our findings in the context of population features that may contribute to variation in hybrid incompatibilities. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects
Marshall, Christian R.; Howrigan, Daniel P.; Merico, Daniele; Thiruvahindrapuram, Bhooma; Wu, Wenting; Greer, Douglas S.; Antaki, Danny; Shetty, Aniket; Holmans, Peter A.; Pinto, Dalila; Gujral, Madhusudan; Brandler, William M.; Malhotra, Dheeraj; Wang, Zhouzhi; Fajarado, Karin V. Fuentes; Maile, Michelle S.; Ripke, Stephan; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amin, Farooq; Atkins, Joshua; Bacanu, Silviu A.; Belliveau, Richard A.; Bergen, Sarah E.; Bertalan, Marcelo; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Bulik-Sullivan, Brendan; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Cairns, Murray J.; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberley D.; Cheng, Wei; Cloninger, C. Robert; Cohen, David; Cormican, Paul; Craddock, Nick; Crespo-Facorro, Benedicto; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L; Degenhardt, Franziska; Del Favero, Jurgen; DeLisi, Lynn E.; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farh, Kai-How; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedman, Joseph I.; Forstner, Andreas J.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodríguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Gratten, Jacob; de Haan, Lieuwe; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Huang, Hailiang; Ikeda, Masashi; Joa, Inge; Kähler, Anna K; Kahn, René S; Kalaydjieva, Luba; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Kim, Yunjung; Knowles, James A.; Konte, Bettina; Laurent, Claudine; Lee, Phil; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Levy, Deborah L.; Liang, Kung-Yee; Lieberman, Jeffrey; Lönnqvist, Jouko; Loughland, Carmel M.; Magnusson, Patrik K.E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Müller-Myhsok, Bertram; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; O’Neill, F. Anthony; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Perkins, Diana O.; Pers, Tune H.; Pietiläinen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Savitz, Adam; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Silverman, Jeremy M.; Smoller, Jordan W.; Söderman, Erik; Spencer, Chris C.A.; Stahl, Eli A.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Thirumalai, Srinivas; Tooney, Paul A.; Veijola, Juha; Visscher, Peter M.; Waddington, John; Walsh, Dermot; Webb, Bradley T.; Weiser, Mark; Wildenauer, Dieter B.; Williams, Nigel M.; Williams, Stephanie; Witt, Stephanie H.; Wolen, Aaron R.; Wormley, Brandon K.; Wray, Naomi R; Wu, Jing Qin; Zai, Clement C.; Adolfsson, Rolf; Andreassen, Ole A.; Blackwood, Douglas H.R.; Bramon, Elvira; Buxbaum, Joseph D.; Cichon, Sven; Collier, David A; Corvin, Aiden; Daly, Mark J.; Darvasi, Ariel; Domenici, Enrico; Esko, Tõnu; Gejman, Pablo V.; Gill, Michael; Gurling, Hugh; Hultman, Christina M.; Iwata, Nakao; Jablensky, Assen V.; Jönsson, Erik G; Kendler, Kenneth S; Kirov, George; Knight, Jo; Levinson, Douglas F.; Li, Qingqin S; McCarroll, Steven A; McQuillin, Andrew; Moran, Jennifer L.; Mowry, Bryan J.; Nöthen, Markus M.; Ophoff, Roel A.; Owen, Michael J.; Palotie, Aarno; Pato, Carlos N.; Petryshen, Tracey L.; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P.; Rujescu, Dan; Sklar, Pamela; St. Clair, David; Walters, James T.R.; Werge, Thomas; Sullivan, Patrick F.; O’Donovan, Michael C; Scherer, Stephen W.; Neale, Benjamin M.; Sebat, Jonathan
2017-01-01
Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination. PMID:27869829
Chao, Michael C.; Pritchard, Justin R.; Zhang, Yanjia J.; Rubin, Eric J.; Livny, Jonathan; Davis, Brigid M.; Waldor, Matthew K.
2013-01-01
The coupling of high-density transposon mutagenesis to high-throughput DNA sequencing (transposon-insertion sequencing) enables simultaneous and genome-wide assessment of the contributions of individual loci to bacterial growth and survival. We have refined analysis of transposon-insertion sequencing data by normalizing for the effect of DNA replication on sequencing output and using a hidden Markov model (HMM)-based filter to exploit heretofore unappreciated information inherent in all transposon-insertion sequencing data sets. The HMM can smooth variations in read abundance and thereby reduce the effects of read noise, as well as permit fine scale mapping that is independent of genomic annotation and enable classification of loci into several functional categories (e.g. essential, domain essential or ‘sick’). We generated a high-resolution map of genomic loci (encompassing both intra- and intergenic sequences) that are required or beneficial for in vitro growth of the cholera pathogen, Vibrio cholerae. This work uncovered new metabolic and physiologic requirements for V. cholerae survival, and by combining transposon-insertion sequencing and transcriptomic data sets, we also identified several novel noncoding RNA species that contribute to V. cholerae growth. Our findings suggest that HMM-based approaches will enhance extraction of biological meaning from transposon-insertion sequencing genomic data. PMID:23901011
Zhao, Lan-Juan; Xiao, Peng; Liu, Yong-Jun; Xiong, Dong-Hai; Shen, Hui; Recker, Robert R; Deng, Hong-Wen
2007-03-01
To identify quantitative trait loci (QTLs) that contribute to obesity, we performed a large-scale whole genome linkage scan (WGS) involving 4,102 individuals from 434 Caucasian families. The most pronounced linkage evidence was found at the genomic region 20p11-12 for fat mass (LOD = 3.31) and percentage fat mass (PFM) (LOD = 2.92). We also identified several regions showing suggestive linkage signals (threshold LOD = 1.9) for obesity phenotypes, including 5q35, 8q13, 10p12, and 17q11.
Williams, Bronwyn W; Scribner, Kim T
2010-01-01
Reintroductions and translocations are increasingly used to repatriate or increase probabilities of persistence for animal and plant species. Genetic and demographic characteristics of founding individuals and suitability of habitat at release sites are commonly believed to affect the success of these conservation programs. Genetic divergence among multiple source populations of American martens (Martes americana) and well documented introduction histories permitted analyses of post-introduction dispersion from release sites and development of genetic clusters in the Upper Peninsula (UP) of Michigan <50 years following release. Location and size of spatial genetic clusters and measures of individual-based autocorrelation were inferred using 11 microsatellite loci. We identified three genetic clusters in geographic proximity to original release locations. Estimated distances of effective gene flow based on spatial autocorrelation varied greatly among genetic clusters (30-90 km). Spatial contiguity of genetic clusters has been largely maintained with evidence for admixture primarily in localized regions, suggesting recent contact or locally retarded rates of gene flow. Data provide guidance for future studies of the effects of permeabilities of different land-cover and land-use features to dispersal and of other biotic and environmental factors that may contribute to the colonization process and development of spatial genetic associations.
Dutech, C; Fabreguettes, O; Capdevielle, X; Robin, C
2010-08-01
The occurrence of multiple introductions may be a crucial factor in the successful establishment of invasive species, but few studies focus on the introduction of fungal pathogens, despite their significant effect on invaded habitats. Although Cryphonectria parasitica, the chestnut blight fungus introduced in North America and Europe from Asia during the 20th century, caused dramatic changes in its new range, the history of its introduction is not well retraced in Europe. Using 10 microsatellite loci, we investigated the genetic diversity of 583 isolates in France, where several introductions have been hypothesized. Our analyses showed that the seven most frequent multilocus genotypes belonged to three genetic lineages, which had a different and geographically limited distribution. These results suggest that different introduction events occurred in France. Genetic recombination was low among these lineages, despite the presence of the two mating types in each chestnut stand analysed. The spatial distribution of lineages suggests that the history of introductions in France associated with the slow expansion of the disease has contributed to the low observed rate of recombination among the divergent lineages. However, we discuss the possibility that environmental conditions or viral interactions could locally reduce recombination among genotypes.
Resistance of Mice of the 129 Background to Yersinia pestis Maps to Multiple Loci on Chromosome 1
Tencati, Michael
2016-01-01
Yersinia pestis is a Gram-negative bacterium that is the causative agent of bubonic and pneumonic plague. It is commonly acquired by mammals such as rodents and humans via the bite of an infected flea. We previously reported that multiple substrains of the 129 mouse background are resistant to pigmentation locus-negative (pgm−) Yersinia pestis and that this phenotype maps to a 30-centimorgan (cM) region located on chromosome 1. In this study, we have further delineated this plague resistance locus to a region of less than 20 cM through the creation and phenotyping of recombinant offspring arising from novel crossovers in this region. Furthermore, our experiments have revealed that there are at least two alleles in this initial locus, both of which are required for resistance on a susceptible C57BL/6 background. These two alleles work in trans since resistance is restored in offspring possessing one allele contributed by each parent. Our studies also indicated that the Slc11a1 gene (formerly known as Nramp1) located within the chromosome1 locus is not responsible for conferring resistance to 129 mice. PMID:27481241
Insight into the molecular genetics of myopia
Li, Jiali
2017-01-01
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia. PMID:29386878
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, T.; Guy, C.; Speight, G.
Studies of the transmission of schizophrenia in families with affected members in several generations have suggested that an expanded trinucleotide repeat mechanism may contribute to the genetic inheritance of this disorder. Using repeat expansion detection (RED), we and others have previously found that the distribution of CAG/CTG repeat size is larger in patients with schizophrenia than in controls. In an attempt to identify the specific expanded CAG/CTG locus or loci associated with schizophrenia, we have now used an approach based on a CAG/CTG PCR screening set combined with RED data. This has allowed us to minimize genotyping while excluding 43more » polymorphic autosomal loci and 7 X-chromosomal loci from the screening set as candidates for expansion in schizophrenia with a very high degree of confidence. 18 refs., 1 tab.« less
Insight into the molecular genetics of myopia.
Li, Jiali; Zhang, Qingjiong
2017-01-01
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Amin Al Olama, Ali; Dadaev, Tokhir; Hazelett, Dennis J; Li, Qiuyan; Leongamornlert, Daniel; Saunders, Edward J; Stephens, Sarah; Cieza-Borrella, Clara; Whitmore, Ian; Benlloch Garcia, Sara; Giles, Graham G; Southey, Melissa C; Fitzgerald, Liesel; Gronberg, Henrik; Wiklund, Fredrik; Aly, Markus; Henderson, Brian E; Schumacher, Fredrick; Haiman, Christopher A; Schleutker, Johanna; Wahlfors, Tiina; Tammela, Teuvo L; Nordestgaard, Børge G; Key, Tim J; Travis, Ruth C; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Pharoah, Paul; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Thibodeau, Stephen N; Mcdonnell, Shannon K; Schaid, Daniel J; Maier, Christiane; Vogel, Walther; Luedeke, Manuel; Herkommer, Kathleen; Kibel, Adam S; Cybulski, Cezary; Wokołorczyk, Dominika; Kluzniak, Wojciech; Cannon-Albright, Lisa; Brenner, Hermann; Butterbach, Katja; Arndt, Volker; Park, Jong Y; Sellers, Thomas; Lin, Hui-Yi; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Batra, Jyotsna; Clements, Judith A; Spurdle, Amanda; Teixeira, Manuel R; Paulo, Paula; Maia, Sofia; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej; Govindasami, Koveela; Guy, Michelle; Lophatonanon, Artitaya; Muir, Kenneth; Viñuela, Ana; Brown, Andrew A; Freedman, Mathew; Conti, David V; Easton, Douglas; Coetzee, Gerhard A; Eeles, Rosalind A; Kote-Jarai, Zsofia
2015-10-01
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region. © The Author 2015. Published by Oxford University Press.
Wilairat, Prapon; Kümpornsin, Krittikorn; Chookajorn, Thanat
2016-05-01
Malaria is a major global health challenge with 300million new cases every year. The most effective regimen for treating Plasmodium falciparum malaria is based on artemisinin and its derivatives. The drugs are highly effective, resulting in rapid clearance of parasites even in severe P. falciparum malaria patients. During the last five years, artemisinin-resistant parasites have begun to emerge first in Cambodia and now in Thailand and Myanmar. At present, the level of artemisinin resistance is relatively low with clinical presentation of delayed artemisinin clearance (a longer time to reduce parasite load) and a small decrease in artemisinin sensitivity in cultured isolates. Nevertheless, multiple genetic loci associated with delayed parasite clearance have been reported, but they cannot account for a large portion of cases. Even the most well-studied kelch 13 propeller mutations cannot always predict the outcome of artemisinin treatment in vitro and in vivo. Here we propose that delayed clearance by artemisinin could be the result of convergent evolution, driven by multiple trajectories to overcome artemisinin-induced stress, but precluded to become full blown resistance by high fitness cost. Genetic association studies by several genome-wide approaches reveal linkage disequilibrium between multiple loci and delayed parasite clearance. Genetic manipulations at some of these loci already have resulted in loss in artemisinin sensitivity. The notion presented here is by itself consistent with existing evidence on artemisinin resistance and has the potential to be explored using available genomic data. Most important of all, molecular surveillance of artemisinin resistance based on multi-genic markers could be more informative than relying on any one particular molecular marker. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of multiple genetic loci on the pathogenesis from serum urate to gout
Dong, Zheng; Zhou, Jingru; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Yang, Yajun; Wang, Xiaofeng; Xu, Xia; Pang, Yafei; Zou, Hejian; Jin, Li; Wang, Jiucun
2017-01-01
Gout is a common arthritis resulting from increased serum urate, and many loci have been identified that are associated with serum urate and gout. However, their influence on the progression from elevated serum urate levels to gout is unclear. This study aims to explore systematically the effects of genetic variants on the pathogenesis in approximately 5,000 Chinese individuals. Six genes (PDZK1, GCKR, TRIM46, HNF4G, SLC17A1, LRRC16A) were determined to be associated with serum urate (PFDR < 0.05) in the Chinese population for the first time. ABCG2 and a novel gene, SLC17A4, contributed to the development of gout from hyperuricemia (OR = 1.56, PFDR = 3.68E-09; OR = 1.27, PFDR = 0.013, respectively). Also, HNF4G is a novel gene associated with susceptibility to gout (OR = 1.28, PFDR = 1.08E-03). In addition, A1CF and TRIM46 were identified as associated with gout in the Chinese population for the first time (PFDR < 0.05). The present study systematically determined genetic effects on the progression from elevated serum urate to gout and suggests that urate-associated genes functioning as urate transporters may play a specific role in the pathogenesis of gout. Furthermore, two novel gout-associated genes (HNF4G and SLC17A4) were identified. PMID:28252667
Effects of multiple genetic loci on the pathogenesis from serum urate to gout.
Dong, Zheng; Zhou, Jingru; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Yang, Yajun; Wang, Xiaofeng; Xu, Xia; Pang, Yafei; Zou, Hejian; Jin, Li; Wang, Jiucun
2017-03-02
Gout is a common arthritis resulting from increased serum urate, and many loci have been identified that are associated with serum urate and gout. However, their influence on the progression from elevated serum urate levels to gout is unclear. This study aims to explore systematically the effects of genetic variants on the pathogenesis in approximately 5,000 Chinese individuals. Six genes (PDZK1, GCKR, TRIM46, HNF4G, SLC17A1, LRRC16A) were determined to be associated with serum urate (P FDR < 0.05) in the Chinese population for the first time. ABCG2 and a novel gene, SLC17A4, contributed to the development of gout from hyperuricemia (OR = 1.56, P FDR = 3.68E-09; OR = 1.27, P FDR = 0.013, respectively). Also, HNF4G is a novel gene associated with susceptibility to gout (OR = 1.28, P FDR = 1.08E-03). In addition, A1CF and TRIM46 were identified as associated with gout in the Chinese population for the first time (P FDR < 0.05). The present study systematically determined genetic effects on the progression from elevated serum urate to gout and suggests that urate-associated genes functioning as urate transporters may play a specific role in the pathogenesis of gout. Furthermore, two novel gout-associated genes (HNF4G and SLC17A4) were identified.
Complex and multi-allelic copy number variation in human disease
McCarroll, Steven A.
2015-01-01
Hundreds of copy number variants are complex and multi-allelic, in that they have many structural alleles and have rearranged multiple times in the ancestors who contributed chromosomes to current humans. Not only are the relationships of these multi-allelic CNVs (mCNVs) to phenotypes generally unknown, but many mCNVs have not yet been described at the basic levels—alleles, allele frequencies, structural features—that support genetic investigation. To date, most reported disease associations to these variants have been ascertained through candidate gene studies. However, only a few associations have reached the level of acceptance defined by durable replications in many cohorts. This likely stems from longstanding challenges in making precise molecular measurements of the alleles individuals have at these loci. However, approaches for mCNV analysis are improving quickly, and some of the unique characteristics of mCNVs may assist future association studies. Their various structural alleles are likely to have different magnitudes of effect, creating a natural allelic series of growing phenotypic impact and giving investigators a set of natural predictions and testable hypotheses about the extent to which each allele of an mCNV predisposes to a phenotype. Also, mCNVs’ low-to-modest correlation to individual single-nucleotide polymorphisms (SNPs) may make it easier to distinguish between mCNVs and nearby SNPs as the drivers of an association signal, and perhaps, make it possible to preliminarily screen candidate loci, or the entire genome, for the many mCNV–disease relationships that remain to be discovered. PMID:26163405
Will, Jessica L; Kim, Hyun Seok; Clarke, Jessica; Painter, John C; Fay, Justin C; Gasch, Audrey P
2010-04-01
A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw-tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function-providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments-contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.
Consanguineous Iranian Kindreds with Severe Tourette Syndrome
Motlagh, Maria G.; Seddigh, Arshia; Dashti, Behnoosh; Leckman, James F.; Alaghband-Rad, Javad
2014-01-01
The search for vulnerability genes for Tourette syndrome has been ongoing for nearly three decades. The contribution of recessive loci with reduced penetrance is one possibility that has been difficult to explore. Homo-zygosity mapping has been successfully used to detect recessive loci within populations with high rates of consanguinity. Using this technique, even quite small inbred families can be informative due to autozygosity in which the two alleles at an autosomal locus are identical by descent (i.e., copies of a single ancestral gene). To explore the utility of this approach, we identified 12 consanguineous Iranian families. Remarkably, these families were seen with an unusual natural history characterized by the early onset of vocal tics and coprolalia and frequent comorbidity with obsessive-compulsive disorder. Genotyping the affected and unaffected members of these pedigrees has the potential to identify rare recessive contributions to this disorder. PMID:18785237
Haile, Jemanesh K.; Cory, Aron T.; Clarke, Fran R.; Clarke, John M.; Knox, Ron E.; Pozniak, Curtis J.
2017-01-01
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat. PMID:28135299
Gautier, Philippe; Loosli, Felix; Tay, Boon-Hui; Tay, Alice; Murdoch, Emma; Coutinho, Pedro; van Heyningen, Veronica; Brenner, Sydney; Venkatesh, Byrappa; Kleinjan, Dirk A.
2013-01-01
Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a “small eye” phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses. PMID:23359656
Multilocus lod scores in large pedigrees: combination of exact and approximate calculations.
Tong, Liping; Thompson, Elizabeth
2008-01-01
To detect the positions of disease loci, lod scores are calculated at multiple chromosomal positions given trait and marker data on members of pedigrees. Exact lod score calculations are often impossible when the size of the pedigree and the number of markers are both large. In this case, a Markov Chain Monte Carlo (MCMC) approach provides an approximation. However, to provide accurate results, mixing performance is always a key issue in these MCMC methods. In this paper, we propose two methods to improve MCMC sampling and hence obtain more accurate lod score estimates in shorter computation time. The first improvement generalizes the block-Gibbs meiosis (M) sampler to multiple meiosis (MM) sampler in which multiple meioses are updated jointly, across all loci. The second one divides the computations on a large pedigree into several parts by conditioning on the haplotypes of some 'key' individuals. We perform exact calculations for the descendant parts where more data are often available, and combine this information with sampling of the hidden variables in the ancestral parts. Our approaches are expected to be most useful for data on a large pedigree with a lot of missing data. (c) 2007 S. Karger AG, Basel
Multilocus Lod Scores in Large Pedigrees: Combination of Exact and Approximate Calculations
Tong, Liping; Thompson, Elizabeth
2007-01-01
To detect the positions of disease loci, lod scores are calculated at multiple chromosomal positions given trait and marker data on members of pedigrees. Exact lod score calculations are often impossible when the size of the pedigree and the number of markers are both large. In this case, a Markov Chain Monte Carlo (MCMC) approach provides an approximation. However, to provide accurate results, mixing performance is always a key issue in these MCMC methods. In this paper, we propose two methods to improve MCMC sampling and hence obtain more accurate lod score estimates in shorter computation time. The first improvement generalizes the block-Gibbs meiosis (M) sampler to multiple meiosis (MM) sampler in which multiple meioses are updated jointly, across all loci. The second one divides the computations on a large pedigree into several parts by conditioning on the haplotypes of some ‘key’ individuals. We perform exact calculations for the descendant parts where more data are often available, and combine this information with sampling of the hidden variables in the ancestral parts. Our approaches are expected to be most useful for data on a large pedigree with a lot of missing data. PMID:17934317
The human lexinome: Genes of language and reading
Gibson, Christopher J.; Gruen, Jeffrey R.
2008-01-01
Within the human genome, genetic mapping studies have identified ten regions of different chromosomes, known as DYX loci, in genetic linkage with dyslexia, and two, known as SLI loci, in genetic linkage with Specific Language Impairment. Further genetic studies have identified four dyslexia genes within the DYX loci: DYX1C1 on 15q, KIAA0319 and DCDC2 on 6p22, and ROBO1on 13q. FOXP2 on 7q has been implicated in the development of Speech-Language Disorder. No genes for Specific Language impairment have yet been identified within the two SLI loci. Functional studies have shown that all four dyslexia genes play roles in brain development, and ongoing molecular studies are attempting to elucidate how these genes exert their effects at a subcellular level. Taken together, these genes and loci likely represent only a fraction of the human lexinome, a term we introduce here to refer to the collection of all the genetic and protein elements involved in the development of human language, expression, and reading. Learning outcomes The reader will become familiar with (i) methods for identifying genes for complex diseases, (ii) the application of these methods in the elucidation of genes underlying disorders of language and reading, and (iii) the cellular pathways through which polymorphisms in these genes may contribute to the development of the disorders. PMID:18466916
Wang, Lu; Mariño-Ramírez, Leonardo
2017-01-01
Abstract Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5. The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification. PMID:27998931
Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids
Teslovich, Tanya M.; Musunuru, Kiran; Smith, Albert V.; Edmondson, Andrew C.; Stylianou, Ioannis M.; Koseki, Masahiro; Pirruccello, James P.; Ripatti, Samuli; Chasman, Daniel I.; Willer, Cristen J.; Johansen, Christopher T.; Fouchier, Sigrid W.; Isaacs, Aaron; Peloso, Gina M.; Barbalic, Maja; Ricketts, Sally L.; Bis, Joshua C.; Aulchenko, Yurii S.; Thorleifsson, Gudmar; Feitosa, Mary F.; Chambers, John; Orho-Melander, Marju; Melander, Olle; Johnson, Toby; Li, Xiaohui; Guo, Xiuqing; Li, Mingyao; Cho, Yoon Shin; Go, Min Jin; Kim, Young Jin; Lee, Jong-Young; Park, Taesung; Kim, Kyunga; Sim, Xueling; Ong, Rick Twee-Hee; Croteau-Chonka, Damien C.; Lange, Leslie A.; Smith, Joshua D.; Song, Kijoung; Zhao, Jing Hua; Yuan, Xin; Luan, Jian'an; Lamina, Claudia; Ziegler, Andreas; Zhang, Weihua; Zee, Robert Y.L.; Wright, Alan F.; Witteman, Jacqueline C.M.; Wilson, James F.; Willemsen, Gonneke; Wichmann, H-Erich; Whitfield, John B.; Waterworth, Dawn M.; Wareham, Nicholas J.; Waeber, Gérard; Vollenweider, Peter; Voight, Benjamin F.; Vitart, Veronique; Uitterlinden, Andre G.; Uda, Manuela; Tuomilehto, Jaakko; Thompson, John R.; Tanaka, Toshiko; Surakka, Ida; Stringham, Heather M.; Spector, Tim D.; Soranzo, Nicole; Smit, Johannes H.; Sinisalo, Juha; Silander, Kaisa; Sijbrands, Eric J.G.; Scuteri, Angelo; Scott, James; Schlessinger, David; Sanna, Serena; Salomaa, Veikko; Saharinen, Juha; Sabatti, Chiara; Ruokonen, Aimo; Rudan, Igor; Rose, Lynda M.; Roberts, Robert; Rieder, Mark; Psaty, Bruce M.; Pramstaller, Peter P.; Pichler, Irene; Perola, Markus; Penninx, Brenda W.J.H.; Pedersen, Nancy L.; Pattaro, Cristian; Parker, Alex N.; Pare, Guillaume; Oostra, Ben A.; O'Donnell, Christopher J.; Nieminen, Markku S.; Nickerson, Deborah A.; Montgomery, Grant W.; Meitinger, Thomas; McPherson, Ruth; McCarthy, Mark I.; McArdle, Wendy; Masson, David; Martin, Nicholas G.; Marroni, Fabio; Mangino, Massimo; Magnusson, Patrik K.E.; Lucas, Gavin; Luben, Robert; Loos, Ruth J. F.; Lokki, Maisa; Lettre, Guillaume; Langenberg, Claudia; Launer, Lenore J.; Lakatta, Edward G.; Laaksonen, Reijo; Kyvik, Kirsten O.; Kronenberg, Florian; König, Inke R.; Khaw, Kay-Tee; Kaprio, Jaakko; Kaplan, Lee M.; Johansson, Åsa; Jarvelin, Marjo-Riitta; Janssens, A. Cecile J.W.; Ingelsson, Erik; Igl, Wilmar; Hovingh, G. Kees; Hottenga, Jouke-Jan; Hofman, Albert; Hicks, Andrew A.; Hengstenberg, Christian; Heid, Iris M.; Hayward, Caroline; Havulinna, Aki S.; Hastie, Nicholas D.; Harris, Tamara B.; Haritunians, Talin; Hall, Alistair S.; Gyllensten, Ulf; Guiducci, Candace; Groop, Leif C.; Gonzalez, Elena; Gieger, Christian; Freimer, Nelson B.; Ferrucci, Luigi; Erdmann, Jeanette; Elliott, Paul; Ejebe, Kenechi G.; Döring, Angela; Dominiczak, Anna F.; Demissie, Serkalem; Deloukas, Panagiotis; de Geus, Eco J.C.; de Faire, Ulf; Crawford, Gabriel; Collins, Francis S.; Chen, Yii-der I.; Caulfield, Mark J.; Campbell, Harry; Burtt, Noel P.; Bonnycastle, Lori L.; Boomsma, Dorret I.; Boekholdt, S. Matthijs; Bergman, Richard N.; Barroso, Inês; Bandinelli, Stefania; Ballantyne, Christie M.; Assimes, Themistocles L.; Quertermous, Thomas; Altshuler, David; Seielstad, Mark; Wong, Tien Y.; Tai, E-Shyong; Feranil, Alan B.; Kuzawa, Christopher W.; Adair, Linda S.; Taylor, Herman A.; Borecki, Ingrid B.; Gabriel, Stacey B.; Wilson, James G.; Stefansson, Kari; Thorsteinsdottir, Unnur; Gudnason, Vilmundur; Krauss, Ronald M.; Mohlke, Karen L.; Ordovas, Jose M.; Munroe, Patricia B.; Kooner, Jaspal S.; Tall, Alan R.; Hegele, Robert A.; Kastelein, John J.P.; Schadt, Eric E.; Rotter, Jerome I.; Boerwinkle, Eric; Strachan, David P.; Mooser, Vincent; Holm, Hilma; Reilly, Muredach P.; Samani, Nilesh J; Schunkert, Heribert; Cupples, L. Adrienne; Sandhu, Manjinder S.; Ridker, Paul M; Rader, Daniel J.; van Duijn, Cornelia M.; Peltonen, Leena; Abecasis, Gonçalo R.; Boehnke, Michael; Kathiresan, Sekar
2010-01-01
Serum concentrations of total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with serum lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 × 10-8), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (e.g., CYP7A1, NPC1L1, and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and impact lipid traits in three non-European populations (East Asians, South Asians, and African Americans). Our results identify several novel loci associated with serum lipids that are also associated with CAD. Finally, we validated three of the novel genes—GALNT2, PPP1R3B, and TTC39B—with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD. PMID:20686565
Gyawali, Sanjaya; Harrington, Myrtle; Durkin, Jonathan; Horner, Kyla; Parkin, Isobel A P; Hegedus, Dwayne D; Bekkaoui, Diana; Buchwaldt, Lone
The fungal pathogen Sclerotinia sclerotiorum causes stem rot of oilseed rape ( Brassica napus ) worldwide. In preparation for genome-wide association mapping (GWAM) of sclerotinia resistance in B. napus , 152 accessions from diverse geographical regions were screened with a single Canadian isolate, #321. Plants were inoculated by attaching mycelium plugs to the main stem at full flower. Lesion lengths measured 7, 14 and 21 days after inoculation were used to calculate the area under the disease progress curve (AUDPC). Depth of penetration was noted and used to calculate percent soft and collapsed lesions (% s + c). The two disease traits were highly correlated ( r = 0.93). Partially resistant accessions (AUDPC <7 and % s + c <2) were identified primarily from South Korea and Japan with a few from Pakistan, China and Europe. Genotyping of accessions with 84 simple sequence repeat markers provided 690 polymorphic loci for GWAM. The general linear model in TASSEL best fitted the data when adjusted for population structure (STRUCTURE), GLM + Q. After correction for positive false discovery rate, 34 loci were significantly associated with both disease traits of which 21 alleles contributed to resistance, while the remaining enhanced susceptibility. The phenotypic variation explained by the loci ranged from 6 to 25 %. Five loci mapped to published quantitative trait loci conferring sclerotinia resistance in Chinese lines.
Dorajoo, R; Ong, R T-H; Sim, X; Wang, L; Liu, W; Tai, E S; Liu, J; Saw, S-M
2017-12-01
Recent genome-wide association studies have identified 103 adult obesity risk loci; however, it is unclear if these findings are relevant to East-Asian childhood body mass index (BMI) levels. We evaluated for paediatric obesity associations at these risk loci utilizing genome-wide data from Chinese childhood subjects in the Singapore Cohort study Of the Risk factors for Myopia study (N = 1006). A weighted gene-risk score of all adult obesity risk loci in the Singapore Cohort study Of the Risk factors for Myopia study showed strong associations with BMI at age 9 (p-value = 3.40 × 10 -12 ) and 4-year average BMI (age 9 to 12, p-value = 6.67 × 10 -8 ). Directionally consistent nominal associations for 15 index single nucleotide polymorphisms (SNPs) (p-value < 0.05) were observed. Pathway analysis with genes from these 15 replicating loci revealed over-representation for the G-protein-coupled receptor (GPCR)-mediated integration of entero-endocrine signalling pathway exemplified by L-cell (adjusted p-value = 0.018). Evaluations of birth weight to modify the effects of BMI risk SNPs in paediatric obesity did not reveal significant interactions, and these SNPs were generally not associated with birth weight. At least some common adult BMI risk variants predispose to paediatric obesity risk in East-Asians. © 2016 World Obesity Federation.
Cao, Zhe; Guo, Yufang; Yang, Qian; He, Yanhong; Fetouh, Mohammed; Warner, Ryan M; Deng, Zhanao
2018-05-15
A major bottleneck in plant breeding has been the much limited genetic base and much reduced genetic diversity in domesticated, cultivated germplasm. Identification and utilization of favorable gene loci or alleles from wild or progenitor species can serve as an effective approach to increasing genetic diversity and breaking this bottleneck in plant breeding. This study was conducted to identify quantitative trait loci (QTL) in wild or progenitor petunia species that can be used to improve important horticultural traits in garden petunia. An F 7 recombinant inbred population derived between Petunia axillaris and P. exserta was phenotyped for plant height, plant spread, plant size, flower counts, flower diameter, flower length, and days to anthesis, in Florida in two consecutive years. Transgressive segregation was observed for all seven traits in both years. The broad-sense heritability estimates for the traits ranged from 0.20 (days to anthesis) to 0.62 (flower length). A genome-wide genetic linkage map consisting 368 single nucleotide polymorphism bins and extending over 277 cM was searched to identify QTL for these traits. Nineteen QTL were identified and localized to five linkage groups. Eleven of the loci were identified consistently in both years; several loci explained up to 34.0% and 24.1% of the phenotypic variance for flower length and flower diameter, respectively. Multiple loci controlling different traits are co-localized in four intervals in four linkage groups. These intervals contain desirable alleles that can be introgressed into commercial petunia germplasm to expand the genetic base and improve plant performance and flower characteristics in petunia. Copyright © 2018, G3: Genes, Genomes, Genetics.
Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T
2014-01-01
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804
Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David
2017-05-01
Marijuana (Cannabis sativa L.) is a plant cultivated and trafficked worldwide as a source of fiber (hemp), medicine, and intoxicant. The development of a validated method using molecular techniques such as short tandem repeats (STRs) could serve as an intelligence tool to link multiple cases by means of genetic individualization or association of cannabis samples. For this purpose, a 13 loci STR multiplex method was developed, optimized, and validated according to relevant ISFG and SWGDAM guidelines. The STR multiplex consists of 13 previously described C. sativa STR loci: ANUCS501, 9269, 4910, 5159, ANUCS305, 9043, B05, 1528, 3735, CS1, D02, C11, and H06. A sequenced allelic ladder consisting of 56 alleles was designed to accurately genotype 101 C. sativa samples from three seizures provided by a U.S. Customs and Border Protection crime lab. Using an optimal range of DNA (0.5-1.0ng), validation studies revealed well-balanced electropherograms (inter-locus balance range: 0.500-1.296), relatively balanced heterozygous peaks (mean peak height ratio of 0.83 across all loci) with minimal artifacts and stutter ratio (mean stutter of 0.021 across all loci). This multi-locus system is relatively sensitive (0.13ng of template DNA) with a combined power of discrimination of 1 in 55 million. The 13 STR panel was found to be species specific for C. sativa; however, non-specific peaks were produced with Humulus lupulus. The results of this research demonstrate the robustness and applicability of this 13 loci STR system for forensic DNA profiling of marijuana samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Predicting nuclear gene coalescence from mitochondrial data: the three-times rule.
Palumbi, S R; Cipriano, F; Hare, M P
2001-05-01
Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three-times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three-times rule predicts nuclear gene patterns that can help detect the action of selection. The three-times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.
Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits
Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Del-Aguila, Jorge L.; Fernandez, Maria Victoria; Carrell, David; Black, Kathleen; Budde, John; Ma, ShengMei; Saef, Benjamin; Howells, Bill; Bertelsen, Sarah; Bailey, Matthew; Ridge, Perry G.; Hefti, Franz; Fillit, Howard; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Carrillo, Maria; Fleisher, Adam; Reeder, Stephanie; Trncic, Nadira; Burke, Anna; Tariot, Pierre; Reiman, Eric M.; Chen, Kewei; Sabbagh, Marwan N.; Beiden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Green, Robert C.; Marshall, Gad; Johnson, Keith A.; Sperling, Reisa A.; Snyder, Peter; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Bernick, Charles; Munic, Donna; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Relkin, Norman; Chaing, Gloria; Ravdin, Lisa; Paul, Steven; Flashman, Laura A.; Seltzer, Marc; Hynes, Mary L.; Santulli, Robert B.; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Friedl, Karl; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Borges-Neto, Salvador; James, Olga; Wong, Terence; Coleman, Edward; Schwartz, Adam; Cellar, Janet S.; Levey, Allan L.; Lah, James J.; Behan, Kelly; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Obisesan, Thomas O.; Wolday, Saba; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Tatsuoka, Curtis; Fatica, Parianne; Farlow, Martin R.; Saykin, Andrew J.; Foroud, Tatiana M.; Shen, Li; Faber, Kelly; Kim, Sungeun; Nho, Kwangsik; Marie Hake, Ann; Matthews, Brandy R.; Brosch, Jared R.; Herring, Scott; Hunt, Cynthia; Albert, Marilyn; Onyike, Chiadi; D’Agostino, Daniel; Kielb, Stephanie; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Petersen, Ronald; Jack, Clifford R.; Bernstein, Matthew; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Chertkow, Howard; Hosein, Chris; Mintzer, Jacob; Spicer, Kenneth; Bachman, David; Grossman, Hillel; Mitsis, Effie; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Potter, William; Buckholtz, Neil; Hsiao, John; Kittur, Smita; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Pogorelec, Dana M.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Johnson, Nancy; Chuang-Kuo; Kerwin, Diana; Bonakdarpour, Borna; Weintraub, Sandra; Grafman, Jordan; Lipowski, Kristine; Mesulam, Marek-Marsel; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Kaye, Jeffrey; Quinn, Joseph; Silbert, Lisa; Lind, Betty; Carter, Raina; Dolen, Sara; Borrie, Michael; Lee, T-Y; Bartha, Rob; Martinez, Walter; Villena, Teresa; Sadowsky, Carl; Khachaturian, Zaven; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Frank, Richard; Fleischman, Debra; Arfanakis, Konstantinos; Shah, Raj C.; deToledo-Morrell, Leyla; Sorensen, Greg; Finger, Elizabeth; Pasternack, Stephen; Rachinsky, Irina; Drost, Dick; Rogers, John; Kertesz, Andrew; Furst, Ansgar J.; Chad, Stevan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Mudge, Benita; Assaly, Michele; Fox, Nick; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Ekstam Smith, Karen; Burns, Jeffrey M.; Swerdlow, Russell H.; Brooks, William M.; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Natelson Love, Marissa; DeCarli, Charles; Carmichael, Owen; Olichney, John; Maillard, Pauline; Fletcher, Evan; Nguyen, Dana; Preda, Andrian; Potkin, Steven; Mulnard, Ruth A.; Thai, Gaby; McAdams-Ortiz, Catherine; Landau, Susan; Jagust, William; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Thompson, Paul; Donohue, Michael; Thomas, Ronald G.; Walter, Sarah; Gessert, Devon; Brewer, James; Vanderswag, Helen; Sather, Tamie; Jiminez, Gus; Balasubramanian, Archana B.; Mason, Jennifer; Sim, Iris; Aisen, Paul; Davis, Melissa; Morrison, Rosemary; Harvey, Danielle; Thal, Lean; Beckett, Laurel; Neylan, Thomas; Finley, Shannon; Weiner, Michael W.; Hayes, Jacqueline; Rosen, Howard J.; Miller, Bruce L.; Perry, David; Massoglia, Dino; Brawman-Mentzer, Olga; Schuff, Norbert; Smith, Charles D.; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Koeppe, Robert A.; Lord, Joanne L.; Heidebrink, Judith L.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Clark, Christopher M.; Trojanowki, John Q.; Shaw, Leslie M.; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Foster, Norm; Montine, Tom; Fruehling, J. Jay; Harding, Sandra; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Petrie, Eric C.; Peskind, Elaine; Li, Gail; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Smith, Amanda; Ashok Raj, Balebail; Fargher, Kristin; Kuller, Lew; Mathis, Chet; Ann Oakley, Mary; Lopez, Oscar L.; Simpson, Donna M.; Sink, Kaycee M.; Gordineer, Leslie; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Cairns, Nigel J.; Raichle, Marc; Morris, John C.; Householder, Erin; Taylor-Reinwald, Lisa; Holtzman, David; Ances, Beau; Carroll, Maria; Creech, Mary L.; Franklin, Erin; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Varma, Pradeep; MacAvoy, Martha G.; Carson, Richard E.; van Dyck, Christopher H.; Davies, Peter; Holtzman, David; Morris, John C.; Bales, Kelly; Pickering, Eve H.; Lee, Jin-Moo; Heitsch, Laura; Kauwe, John; Goate, Alison; Piccio, Laura; Cruchaga, Carlos
2016-01-01
Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes, and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels, and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r, and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects, and complex disease associations in the same locus.
Spataro, Pietro; Longobardi, Emiddia; Saraulli, Daniele; Rossi-Arnaud, Clelia
2013-01-01
The analysis of the interaction between repetition priming and age of acquisition may be used to shed further light on the question of which stages of elaboration are affected by this psycholinguistic variable. In the present study we applied this method in the context of two versions of a lexical decision task that differed in the type of non-words employed at test. When the non-words were illegal and unpronounceable, repetition priming was primarily based on the analysis of orthographic information, while phonological processes were additionally recruited only when using legal pronounceable non-words. The results showed a significant interaction between repetition priming and age of acquisition in both conditions, with priming being greater for late- than for early-acquired words. These findings support a multiple-loci account, indicating that age of acquisition influences implicit memory by facilitating the retrieval of both the orthographic and the phonological representations of studied words.
Ankarklev, Johan; Lebbad, Marianne; Einarsson, Elin; Franzén, Oscar; Ahola, Harri; Troell, Karin; Svärd, Staffan G
2018-06-01
Molecular epidemiology and genotyping studies of the parasitic protozoan Giardia intestinalis have proven difficult due to multiple factors, such as low discriminatory power in the commonly used genotyping loci, which has hampered molecular analyses of outbreak sources, zoonotic transmission and virulence types. Here we have focused on assemblage A Giardia and developed a high-resolution assemblage-specific multilocus sequence typing (MLST) method. Analyses of sequenced G. intestinalis assemblage A genomes from different sub-assemblages identified a set of six genetic loci with high genetic variability. DNA samples from both humans (n = 44) and animals (n = 18) that harbored Giardia assemblage A infections, were PCR amplified (557-700 bp products) and sequenced at the six novel genetic loci. Bioinformatic analyses showed five to ten-fold higher levels of polymorphic sites than what was previously found among assemblage A samples using the classic genotyping loci. Phylogenetically, a division of two major clusters in assemblage A became apparent, separating samples of human and animal origin. A subset of human samples (n = 9) from a documented Giardia outbreak in a Swedish day-care center, showed full complementarity at nine genetic loci (the six new and the standard BG, TPI and GDH loci), strongly suggesting one source of infection. Furthermore, three samples of human origin displayed MLST profiles that were phylogenetically more closely related to MLST profiles from animal derived samples, suggesting zoonotic transmission. These new genotyping loci enabled us to detect events of recombination between different assemblage A isolates but also between assemblage A and E isolates. In summary, we present a novel and expanded MLST strategy with significantly improved sensitivity for molecular analyses of virulence types, zoonotic potential and source tracking for assemblage A Giardia. Copyright © 2018. Published by Elsevier B.V.
Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair
2011-01-01
Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183
Replication of Caucasian loci associated with bone mineral density in Koreans.
Kim, Y A; Choi, H J; Lee, J Y; Han, B G; Shin, C S; Cho, N H
2013-10-01
Most bone mineral density (BMD) loci were reported in Caucasian genome-wide association studies (GWAS). This study investigated the association between 59 known BMD loci (+200 suggestive SNPs) and DXA-derived BMD in East Asian population with respect to sex and site specificity. We also identified four novel BMD candidate loci from the suggestive SNPs. Most GWAS have reported BMD-related variations in Caucasian populations. This study investigates whether the BMD loci discovered in Caucasian GWAS are also associated with BMD in East Asian ethnic samples. A total of 2,729 unrelated Korean individuals from a population-based cohort were analyzed. We selected 747 single-nucleotide polymorphisms (SNPs). These markers included 547 SNPs from 59 loci with genome-wide significance (GWS, p value less than 5 × 10(-8)) levels and 200 suggestive SNPs that showed weaker BMD association with p value less than 5 × 10(-5). After quality control, 535 GWS SNPs and 182 suggestive SNPs were included in the replication analysis. Of the 535 GWS SNPs, 276 from 25 loci were replicated (p < 0.05) in the Korean population with 51.6 % replication rate. Of the 182 suggestive variants, 16 were replicated (p < 0.05, 8.8 % of replication rate), and five reached a significant combined p value (less than 7.0 × 10(-5), 0.05/717 SNPs, corrected for multiple testing). Two markers (rs11711157, rs3732477) are for the same signal near the gene CPN2 (carboxypeptidase N, polypeptide 2). The other variants, rs6436440 and rs2291296, were located in the genes AP1S3 (adaptor-related protein complex 1, sigma 3 subunit) and RARB (retinoic acid receptor, beta). Our results illustrate ethnic differences in BMD susceptibility genes and underscore the need for further genetic studies in each ethnic group. We were also able to replicate some SNPs with suggestive associations. These SNPs may be BMD-related genetic markers and should be further investigated.
Wu, Chen; Yang, Handong; Yu, Dianke; Yang, Xiaobo; Zhang, Xiaomin; Wang, Yiqin; Sun, Jielin; Gao, Yong; Tan, Aihua; He, Yunfeng; Zhang, Haiying; Qin, Xue; Zhu, Jingwen; Li, Huaixing; Lin, Xu; Zhu, Jiang; Min, Xinwen; Lang, Mingjian; Li, Dongfeng; Zhai, Kan; Chang, Jiang; Tan, Wen; Yuan, Jing; Chen, Weihong; Wang, Youjie; Wei, Sheng; Miao, Xiaoping; Wang, Feng; Fang, Weimin; Liang, Yuan; Deng, Qifei; Dai, Xiayun; Lin, Dafeng; Huang, Suli; Guo, Huan; Lilly Zheng, S.; Xu, Jianfeng; Lin, Dongxin; Hu, Frank B.; Wu, Tangchun
2013-01-01
Plasma lipid levels are important risk factors for cardiovascular disease and are influenced by genetic and environmental factors. Recent genome wide association studies (GWAS) have identified several lipid-associated loci, but these loci have been identified primarily in European populations. In order to identify genetic markers for lipid levels in a Chinese population and analyze the heterogeneity between Europeans and Asians, especially Chinese, we performed a meta-analysis of two genome wide association studies on four common lipid traits including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) in a Han Chinese population totaling 3,451 healthy subjects. Replication was performed in an additional 8,830 subjects of Han Chinese ethnicity. We replicated eight loci associated with lipid levels previously reported in a European population. The loci genome wide significantly associated with TC were near DOCK7, HMGCR and ABO; those genome wide significantly associated with TG were near APOA1/C3/A4/A5 and LPL; those genome wide significantly associated with LDL were near HMGCR, ABO and TOMM40; and those genome wide significantly associated with HDL were near LPL, LIPC and CETP. In addition, an additive genotype score of eight SNPs representing the eight loci that were found to be associated with lipid levels was associated with higher TC, TG and LDL levels (P = 5.52×10-16, 1.38×10-6 and 5.59×10-9, respectively). These findings suggest the cumulative effects of multiple genetic loci on plasma lipid levels. Comparisons with previous GWAS of lipids highlight heterogeneity in allele frequency and in effect size for some loci between Chinese and European populations. The results from our GWAS provided comprehensive and convincing evidence of the genetic determinants of plasma lipid levels in a Chinese population. PMID:24386095
The evolution of resistance genes in multi-protein plant resistance systems.
Friedman, Aaron R; Baker, Barbara J
2007-12-01
The genomic perspective aids in integrating the analysis of single resistance (R-) genes into a higher order model of complex plant resistance systems. The majority of R-genes encode a class of proteins with nucleotide binding (NB) and leucine-rich repeat (LRR) domains. Several R-proteins act in multi-protein R-complexes that mediate interaction with pathogen effectors to induce resistance signaling. The complexity of these systems seems to have resulted from multiple rounds of plant-pathogen co-evolution. R-gene evolution is thought to be facilitated by the formation of R-gene clusters, which permit sequence exchanges via recombinatorial mispairing and generate high haplotypic diversity. This pattern of evolution may also generate diversity at other loci that contribute to the R-complex. The rate of recombination at R-clusters is not necessarily homogeneous or consistent over evolutionary time: recent evidence suggests that recombination at R-clusters is increased following pathogen infection, suggesting a mechanism that induces temporary genome instability in response to extreme stress. DNA methylation and chromatin modifications may allow this instability to be conditionally regulated and targeted to specific genome regions. Knowledge of natural R-gene evolution may contribute to strategies for artificial evolution of novel resistance specificities.
McDaniel, Stuart F; Willis, John H; Shaw, A Jonathan
2008-07-01
Divergent populations are intrinsically reproductively isolated when hybrids between them either fail to develop properly or do not produce viable offspring. Intrinsic isolation may result from Dobzhansky-Muller (DM) incompatibilities, in which deleterious interactions among genes or gene products lead to developmental problems or underdominant chromosome structure differences between the parents. These mechanisms can be tested by studying marker segregation patterns in a hybrid mapping population. Here we examine the genetic basis of abnormal development in hybrids between two geographically distant populations of the moss Ceratodon purpureus. Approximately half of the hybrid progeny exhibited a severely reduced growth rate in early gametophyte development. We identified four unlinked quantitative trait loci (QTL) that interacted asymmetrically to cause the abnormal development phenotype. This pattern is consistent with DM interactions. We also found an excess of recombination between three marker pairs in the abnormally developing progeny, relative to that estimated in the normal progeny. This suggests that structural differences in these regions contribute to hybrid breakdown. Two QTL coincided with inferred structural differences, consistent with recent theory suggesting that rearrangements may harbor population divergence alleles. These observations suggest that multiple complex genetic factors contribute to divergence among populations of C. purpureus.
2014-01-01
Background Trichomonas vaginalis is the most prevalent non-viral sexually transmitted parasite. Although the protist is presumed to reproduce asexually, 60% of its haploid genome contains transposable elements (TEs), known contributors to genome variability. The availability of a draft genome sequence and our collection of >200 global isolates of T. vaginalis facilitate the study and analysis of TE population dynamics and their contribution to genomic variability in this protist. Results We present here a pilot study of a subset of class II Tc1/mariner TEs that belong to the T. vaginalis Tvmar1 family. We report the genetic structure of 19 Tvmar1 loci, their ability to encode a full-length transposase protein, and their insertion frequencies in 94 global isolates from seven regions of the world. While most of the Tvmar1 elements studied exhibited low insertion frequencies, two of the 19 loci (locus 1 and locus 9) show high insertion frequencies of 1.00 and 0.96, respectively. The genetic structuring of the global populations identified by principal component analysis (PCA) of the Tvmar1 loci is in general agreement with published data based on genotyping, showing that Tvmar1 polymorphisms are a robust indicator of T. vaginalis genetic history. Analysis of expression of 22 genes flanking 13 Tvmar1 loci indicated significantly altered expression of six of the genes next to five Tvmar1 insertions, suggesting that the insertions have functional implications for T. vaginalis gene expression. Conclusions Our study is the first in T. vaginalis to describe Tvmar1 population dynamics and its contribution to genetic variability of the parasite. We show that a majority of our studied Tvmar1 insertion loci exist at very low frequencies in the global population, and insertions are variable between geographical isolates. In addition, we observe that low frequency insertion is related to reduced or abolished expression of flanking genes. While low insertion frequencies might be expected, we identified two Tvmar1 insertion loci that are fixed across global populations. This observation indicates that Tvmar1 insertion may have differing impacts and fitness costs in the host genome and may play varying roles in the adaptive evolution of T. vaginalis. PMID:24834134
Demirkan, Ayşe; van Duijn, Cornelia M; Ugocsai, Peter; Isaacs, Aaron; Pramstaller, Peter P; Liebisch, Gerhard; Wilson, James F; Johansson, Åsa; Rudan, Igor; Aulchenko, Yurii S; Kirichenko, Anatoly V; Janssens, A Cecile J W; Jansen, Ritsert C; Gnewuch, Carsten; Domingues, Francisco S; Pattaro, Cristian; Wild, Sarah H; Jonasson, Inger; Polasek, Ozren; Zorkoltseva, Irina V; Hofman, Albert; Karssen, Lennart C; Struchalin, Maksim; Floyd, James; Igl, Wilmar; Biloglav, Zrinka; Broer, Linda; Pfeufer, Arne; Pichler, Irene; Campbell, Susan; Zaboli, Ghazal; Kolcic, Ivana; Rivadeneira, Fernando; Huffman, Jennifer; Hastie, Nicholas D; Uitterlinden, Andre; Franke, Lude; Franklin, Christopher S; Vitart, Veronique; Nelson, Christopher P; Preuss, Michael; Bis, Joshua C; O'Donnell, Christopher J; Franceschini, Nora; Witteman, Jacqueline C M; Axenovich, Tatiana; Oostra, Ben A; Meitinger, Thomas; Hicks, Andrew A; Hayward, Caroline; Wright, Alan F; Gyllensten, Ulf; Campbell, Harry; Schmitz, Gerd
2012-01-01
Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10(-204)) and 10 loci for sphingolipids (smallest P-value = 3.10×10(-57)). After a correction for multiple comparisons (P-value<2.2×10(-9)), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.
Evaluation of European Schizophrenia GWAS Loci in Asian Populations via Comprehensive Meta-Analyses.
Xiao, Xiao; Luo, Xiong-Jian; Chang, Hong; Liu, Zichao; Li, Ming
2017-08-01
Schizophrenia is a severe and highly heritable neuropsychiatric disorder. Recent genetic analyses including genome-wide association studies (GWAS) have implicated multiple genome-wide significant variants for schizophrenia among European populations. However, many of these risk variants were not largely validated in other populations of different ancestry such as Asians. To validate whether these European GWAS significant loci are associated with schizophrenia in Asian populations, we conducted a systematic literature search and meta-analyses on 19 single nucleotide polymorphisms (SNPs) in Asian populations by combining all available case-control and family-based samples, including up to 30,000 individuals. We employed classical fixed (or random) effects inverse variance weighted methods to calculate summary odds ratios (ORs) and 95 % confidence intervals (CIs). Among the 19 GWAS loci, we replicated the risk associations of nine markers (e.g., SNPs at VRK2, ITIH3/4, NDST3, NOTCH4) surpassing significance level (two-tailed P < 0.05), and three additional SNPs in MIR137 and ZNF804A also showed trend associations (one-tailed P < 0.05). These risk associations are in the same directions of allelic effects between Asian replication samples and initial European GWAS findings, and the successful replications of these GWAS loci in a different ethnic group provide stronger evidence for their clinical associations with schizophrenia. Further studies, focusing on the molecular mechanisms of these GWAS significant loci, will become increasingly important for understanding of the pathogenesis to schizophrenia.
Gene-environment interaction involving recently identified colorectal cancer susceptibility loci
Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily
2014-01-01
BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789
Analysis of MHC class I genes across horse MHC haplotypes
Tallmadge, Rebecca L.; Campbell, Julie A.; Miller, Donald C.; Antczak, Douglas F.
2010-01-01
The genomic sequences of 15 horse Major Histocompatibility Complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and non-classical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal, and two to three non-classical sequences. Phylogenetic analysis was applied to these sequences and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The non-classical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine Major Histocompatibility Complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci. PMID:20099063
Pleiotropic Models of Polygenic Variation, Stabilizing Selection, and Epistasis
Gavrilets, S.; de-Jong, G.
1993-01-01
We show that in polymorphic populations many polygenic traits pleiotropically related to fitness are expected to be under apparent ``stabilizing selection'' independently of the real selection acting on the population. This occurs, for example, if the genetic system is at a stable polymorphic equilibrium determined by selection and the nonadditive contributions of the loci to the trait value either are absent, or are random and independent of those to fitness. Stabilizing selection is also observed if the polygenic system is at an equilibrium determined by a balance between selection and mutation (or migration) when both additive and nonadditive contributions of the loci to the trait value are random and independent of those to fitness. We also compare different viability models that can maintain genetic variability at many loci with respect to their ability to account for the strong stabilizing selection on an additive trait. Let V(m) be the genetic variance supplied by mutation (or migration) each generation, V(g) be the genotypic variance maintained in the population, and n be the number of the loci influencing fitness. We demonstrate that in mutation (migration)-selection balance models the strength of apparent stabilizing selection is order V(m)/V(g). In the overdominant model and in the symmetric viability model the strength of apparent stabilizing selection is approximately 1/(2n) that of total selection on the whole phenotype. We show that a selection system that involves pairwise additive by additive epistasis in maintaining variability can lead to a lower genetic load and genetic variance in fitness (approximately 1/(2n) times) than an equivalent selection system that involves overdominance. We show that, in the epistatic model, the apparent stabilizing selection on an additive trait can be as strong as the total selection on the whole phenotype. PMID:8325491
Böhmer, Anne C.; Bowes, John; Nikolić, Miloš; Ishorst, Nina; Wyatt, Niki; Hammond, Nigel L.; Gölz, Lina; Thieme, Frederic; Barth, Sandra; Schuenke, Hannah; Klamt, Johanna; Spielmann, Malte; Aldhorae, Khalid; Rojas-Martinez, Augusto; Nöthen, Markus M.; Rada-Iglesias, Alvaro; Dixon, Michael J.; Knapp, Michael; Mangold, Elisabeth
2017-01-01
Abstract Nonsyndromic cleft lip with or without cleft palate (nsCL/P) is among the most common human birth defects with multifactorial etiology. Here, we present results from a genome-wide imputation study of nsCL/P in which, after adding replication cohort data, four novel risk loci for nsCL/P are identified (at chromosomal regions 2p21, 14q22, 15q24 and 19p13). On a systematic level, we show that the association signals within this high-density dataset are enriched in functionally-relevant genomic regions that are active in both human neural crest cells (hNCC) and mouse embryonic craniofacial tissue. This enrichment is also detectable in hNCC regions primed for later activity. Using GCTA analyses, we suggest that 30% of the estimated variance in risk for nsCL/P in the European population can be attributed to common variants, with 25.5% contributed to by the 24 risk loci known to date. For each of these, we identify credible SNPs using a Bayesian refinement approach, with two loci harbouring only one probable causal variant. Finally, we demonstrate that there is no polygenic component of nsCL/P detectable that is shared with nonsyndromic cleft palate only (nsCPO). Our data suggest that, while common variants are strongly contributing to risk for nsCL/P, they do not seem to be involved in nsCPO which might be more often caused by rare deleterious variants. Our study generates novel insights into both nsCL/P and nsCPO etiology and provides a systematic framework for research into craniofacial development and malformation. PMID:28087736
USDA-ARS?s Scientific Manuscript database
Known genetic susceptibility loci for type 2 diabetes (T2D) explain only a small proportion of heritable T2D risk. We hypothesize that DNA methylation patterns may contribute to variation in diabetes-related risk factors, and this epigenetic variation across the genome can contribute to the missing ...
Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi
2015-05-01
Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.
Conservation of the introgressed European water frog complex using molecular tools.
Holsbeek, G; Maes, G E; De Meester, L; Volckaert, F A M
2009-03-01
In Belgium, the Pelophylax esculentus complex has recently been subjected to multiple introductions of non-native water frogs, increasing the occurrence of hybridisation events. In the present study, we tested the reliability of morphometric and recently developed microsatellite tools to identify introgression and to determine the origin of exotic Belgian water frogs. By analysing 150 individuals of each taxon of the P. esculentus complex and an additional 60 specimens of the introduced P. cf. bedriagae, we show that neither of the currently available tools appears to have sufficient power to reliably distinguish all Belgian water frog species. We therefore aimed at increasing the discriminatory power of a microsatellite identification tool by developing a new marker panel with additional microsatellite loci. By adding only two new microsatellite loci (RlCA5 and RlCA1b20), all taxa of the P. esculentus complex could be distinguished from each other with high confidence. Three more loci (Res3, Res5 and Res17) provided a powerful discrimination of the exotic species.
Willems, Sara M; Wright, Daniel J; Day, Felix R; Trajanoska, Katerina; Joshi, Peter K; Morris, John A; Matteini, Amy M; Garton, Fleur C; Grarup, Niels; Oskolkov, Nikolay; Thalamuthu, Anbupalam; Mangino, Massimo; Liu, Jun; Demirkan, Ayse; Lek, Monkol; Xu, Liwen; Wang, Guan; Oldmeadow, Christopher; Gaulton, Kyle J; Lotta, Luca A; Miyamoto-Mikami, Eri; Rivas, Manuel A; White, Tom; Loh, Po-Ru; Aadahl, Mette; Amin, Najaf; Attia, John R; Austin, Krista; Benyamin, Beben; Brage, Søren; Cheng, Yu-Ching; Cięszczyk, Paweł; Derave, Wim; Eriksson, Karl-Fredrik; Eynon, Nir; Linneberg, Allan; Lucia, Alejandro; Massidda, Myosotis; Mitchell, Braxton D; Miyachi, Motohiko; Murakami, Haruka; Padmanabhan, Sandosh; Pandey, Ashutosh; Papadimitriou, Ioannis; Rajpal, Deepak K; Sale, Craig; Schnurr, Theresia M; Sessa, Francesco; Shrine, Nick; Tobin, Martin D; Varley, Ian; Wain, Louise V; Wray, Naomi R; Lindgren, Cecilia M; MacArthur, Daniel G; Waterworth, Dawn M; McCarthy, Mark I; Pedersen, Oluf; Khaw, Kay-Tee; Kiel, Douglas P; Pitsiladis, Yannis; Fuku, Noriyuki; Franks, Paul W; North, Kathryn N; van Duijn, Cornelia M; Mather, Karen A; Hansen, Torben; Hansson, Ola; Spector, Tim; Murabito, Joanne M; Richards, J Brent; Rivadeneira, Fernando; Langenberg, Claudia; Perry, John R B; Wareham, Nick J; Scott, Robert A
2017-07-12
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10 -8 ) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality.
Ruibal, Monica P.; Peakall, Rod; Smith, Leon M.; Linde, Celeste C.
2013-01-01
• Premise of the study: Phylogenetic and microsatellite markers were developed for Tulasnella mycorrhizal fungi to investigate fungal species identity and diversity. These markers will be useful in future studies investigating the phylogenetic relationship of the fungal symbionts, specificity of orchid–mycorrhizal associations, and the role of mycorrhizae in orchid speciation within several orchid genera. • Methods and Results: We generated partial genome sequences of two Tulasnella symbionts originating from Chiloglottis and Drakaea orchid species with 454 genome sequencing. Cross-genus transferability across mycorrhizal symbionts associated with multiple genera of Australian orchids (Arthrochilus, Chiloglottis, Drakaea, and Paracaleana) was found for seven phylogenetic loci. Five loci showed cross-transferability to Tulasnella from other orchid genera, and two to Sebacina. Furthermore, 11 polymorphic microsatellite loci were developed for Tulasnella from Chiloglottis. • Conclusions: Highly informative markers were obtained, allowing investigation of mycorrhizal diversity of Tulasnellaceae associated with a wide variety of terrestrial orchids in Australia and potentially worldwide. PMID:25202528
Judson, Jessica L Martin; Knapp, Charles R; Welch, Mark E
2018-02-01
Inbreeding depression can have alarming impacts on threatened species with small population sizes. Assessing inbreeding has therefore become an important focus of conservation research. In this study, heterozygosity-fitness correlations (HFCs) were measured by genotyping 7 loci in 83 adult and 184 hatchling Lesser Antillean Iguanas, Iguana delicatissima, at a communal nesting site in Dominica to assess the role of inbreeding depression on hatchling fitness and recruitment to the adult population in this endangered species. We found insignificant correlations between multilocus heterozygosity and multiple fitness proxies in hatchlings and adults. Further, multilocus heterozygosity did not differ significantly between hatchlings and adults, which suggests that the survivorship of homozygous hatchlings does not differ markedly from that of their heterozygous counterparts. However, genotypes at two individual loci were correlated with hatching date, a finding consistent with the linkage between specific marker loci and segregating deleterious recessive alleles. These results provide only modest evidence that inbreeding depression influences the population dynamics of I. delicatissima on Dominica.
The immunogenetics of Behçet’s disease: A comprehensive review
Takeuchi, Masaki; Kastner, Daniel L; Remmers, Elaine F
2015-01-01
Behçet’s disease is a chronic multisystem inflammatory disorder characterized mainly by recurrent oral ulcers, ocular involvement, genital ulcers, and skin lesions, presenting with remissions and exacerbations. It is thought that both environmental and genetic factors contribute to its onset and development. Although the etiology of Behçet’s disease remains unclear, recent immunogenetic findings are providing clues to its pathogenesis. In addition to the positive association of HLA-B*51, which was identified more than four decades ago, and which has since been confirmed in multiple populations, recent studies report additional independent associations in the major histocompatibility complex class I region. HLA-B*15, -B*27, -B*57, and -A*26 are independent risk factors for Behçet’s disease, while HLA-B*49 and – A*03 are independent class I alleles that are protective for Behçet’s disease. Genome-wide association studies have identified associations with genome-wide significance (P < 5 × 10−8) in the IL23R–IL12RB2, IL10, STAT4, CCR1-CCR3, KLRC4, ERAP1, TNFAIP3, and FUT2 loci. In addition, targeted next-generation sequencing has revealed the involvement of rare nonsynonymous variants of IL23R, TLR4, NOD2, and MEFV in Behçet’s disease pathogenesis. Significant differences in gene function or mRNA expression associated with the risk alleles of the disease susceptibility loci suggest which genes in a disease-associated locus influence disease pathogenesis. These genes encompass both innate and adaptive immunity and confirm the importance of the predominant polarization towards helper T cell (Th) 1 versus Th2 cells, and the involvement of Th17 cells. In addition, epistasis observed between HLA-B*51 and the risk coding haplotype of the endoplasmic reticulum-associated protease, ERAP1, provides a clue that an HLA class I-peptide presentation-based mechanism contributes to this complex disease. PMID:26347074
Munns, Clare H.; Chung, Man-Kyo; Sanchez, Yuly E.; Amzel, L. Mario; Caterina, Michael J.
2015-01-01
Transient receptor potential vanilloid 1 (TRPV1) has been shown to alter its ionic selectivity profile in a time- and agonist-dependent manner. One hallmark of this dynamic process is an increased permeability to large cations such as N-methyl-d-glucamine (NMDG). In this study, we mutated residues throughout the TRPV1 pore domain to identify loci that contribute to dynamic large cation permeability. Using resiniferatoxin (RTX) as the agonist, we identified multiple gain-of-function substitutions within the TRPV1 pore turret (N628P and S629A), pore helix (F638A), and selectivity filter (M644A) domains. In all of these mutants, maximum NMDG permeability was substantially greater than that recorded in wild type TRPV1, despite similar or even reduced sodium current density. Two additional mutants, located in the pore turret (G618W) and selectivity filter (M644I), resulted in significantly reduced maximum NMDG permeability. M644A and M644I also showed increased and decreased minimum NMDG permeability, respectively. The phenotypes of this panel of mutants were confirmed by imaging the RTX-evoked uptake of the large cationic fluorescent dye YO-PRO1. Whereas none of the mutations selectively altered capsaicin-induced changes in NMDG permeability, the loss-of-function phenotypes seen with RTX stimulation of G618W and M644I were recapitulated in the capsaicin-evoked YO-PRO1 uptake assay. Curiously, the M644A substitution resulted in a loss, rather than a gain, in capsaicin-evoked YO-PRO1 uptake. Modeling of our mutations onto the recently determined TRPV1 structure revealed several plausible mechanisms for the phenotypes observed. We conclude that side chain interactions at a few specific loci within the TRPV1 pore contribute to the dynamic process of ionic selectivity. PMID:25568328
Munns, Clare H; Chung, Man-Kyo; Sanchez, Yuly E; Amzel, L Mario; Caterina, Michael J
2015-02-27
Transient receptor potential vanilloid 1 (TRPV1) has been shown to alter its ionic selectivity profile in a time- and agonist-dependent manner. One hallmark of this dynamic process is an increased permeability to large cations such as N-methyl-D-glucamine (NMDG). In this study, we mutated residues throughout the TRPV1 pore domain to identify loci that contribute to dynamic large cation permeability. Using resiniferatoxin (RTX) as the agonist, we identified multiple gain-of-function substitutions within the TRPV1 pore turret (N628P and S629A), pore helix (F638A), and selectivity filter (M644A) domains. In all of these mutants, maximum NMDG permeability was substantially greater than that recorded in wild type TRPV1, despite similar or even reduced sodium current density. Two additional mutants, located in the pore turret (G618W) and selectivity filter (M644I), resulted in significantly reduced maximum NMDG permeability. M644A and M644I also showed increased and decreased minimum NMDG permeability, respectively. The phenotypes of this panel of mutants were confirmed by imaging the RTX-evoked uptake of the large cationic fluorescent dye YO-PRO1. Whereas none of the mutations selectively altered capsaicin-induced changes in NMDG permeability, the loss-of-function phenotypes seen with RTX stimulation of G618W and M644I were recapitulated in the capsaicin-evoked YO-PRO1 uptake assay. Curiously, the M644A substitution resulted in a loss, rather than a gain, in capsaicin-evoked YO-PRO1 uptake. Modeling of our mutations onto the recently determined TRPV1 structure revealed several plausible mechanisms for the phenotypes observed. We conclude that side chain interactions at a few specific loci within the TRPV1 pore contribute to the dynamic process of ionic selectivity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Hystad, S M; Martin, J M; Graybosch, R A; Giroux, M J
2015-08-01
Characterized novel mutations present at Ppo loci account for the substantial reduction of the total kernel PPO activity present in a putative null Ppo - A1 genetic background. Wheat (Triticum aestivum) polyphenol oxidase (PPO) contributes to the time-dependent discoloration of Asian noodles. Wheat contains multiple paralogous and orthologous Ppo genes, Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2, expressed in wheat kernels. To date, wheat noodle color improvement efforts have focused on breeding cultivars containing Ppo-D1 and Ppo-A1 alleles conferring reduced PPO activity. A major impediment to wheat quality improvement is a lack of additional Ppo alleles conferring reduced kernel PPO. In this study, a previously reported very low PPO line, 07OR1074, was found to contain a novel allele at Ppo-A2 and null alleles at the Ppo-A1 and Ppo-D1 loci. To examine the impact of each mutation upon kernel PPO, populations were generated from crosses between 07OR1074 and the hard white spring wheat cultivars Choteau and Vida. Expression analysis using RNA-seq demonstrated no detectable Ppo-A1 transcripts in 07OR1074 while Ppo-D1 transcripts were present at less than 10% of that seen in Choteau and Vida. Novel markers specific for the Ppo-D1 and Ppo-A2 mutations discovered in 07OR1074, along with the Ppo-A1 STS marker, were used to screen segregating populations. Evaluation of lines indicated a substantial genotypic effect on PPO with Ppo-A1 and Ppo-D1 alleles contributing significantly to total PPO in both populations. These results show that the novel mutations in Ppo-A1 and Ppo-D1 present in 07OR1074 are both important to lowering overall wheat seed PPO activity and may be useful to produce more desirable and marketable wheat-based products.
Identifying the most likely contributors to a Y-STR mixture using the discrete Laplace method.
Andersen, Mikkel Meyer; Eriksen, Poul Svante; Mogensen, Helle Smidt; Morling, Niels
2015-03-01
In some crime cases, the male part of the DNA in a stain can only be analysed using Y chromosomal markers, e.g. Y-STRs. This may be the case in e.g. rape cases, where the male components can only be detected as Y-STR profiles, because the fraction of male DNA is much smaller than that of female DNA, which can mask the male results when autosomal STRs are investigated. Sometimes, mixtures of Y-STRs are observed, e.g. in rape cases with multiple offenders. In such cases, Y-STR mixture analysis is required, e.g. by mixture deconvolution, to deduce the most likely DNA profiles from the contributors. We demonstrate how the discrete Laplace method can be used to separate a two person Y-STR mixture, where the Y-STR profiles of the true contributors are not present in the reference dataset, which is often the case for Y-STR profiles in real case work. We also briefly discuss how to calculate the weight of the evidence using the likelihood ratio principle when a suspect's Y-STR profile fits into a two person mixture. We used three datasets with between 7 and 21 Y-STR loci: Denmark (n=181), Somalia (n=201) and Germany (n=3443). The Danish dataset with 21 loci was truncated to 15 and 10 loci to examine the effect of the number of loci. For each of these datasets, an out of sample simulation study was performed: A total of 550 mixtures were composed by randomly sampling two haplotypes, h1 and h2, from the dataset. We then used the discrete Laplace method on the remaining data (excluding h1 and h2) to rank the contributor pairs by the product of the contributors' estimated haplotype frequencies. Successful separation of mixtures (defined by the observation that the true contributor pair was among the 10 most likely contributor pairs) was found in 42-52% of the cases for 21 loci, 69-75% for 15 loci and 92-99% for 10 loci or less depending on the dataset and how the discrete Laplace model was chosen. Y-STR mixtures with many loci are difficult to separate, but even haplotypes with 21 Y-STR loci can be separated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Establishing the role of rare coding variants in known Parkinson's disease risk loci.
Jansen, Iris E; Gibbs, J Raphael; Nalls, Mike A; Price, T Ryan; Lubbe, Steven; van Rooij, Jeroen; Uitterlinden, André G; Kraaij, Robert; Williams, Nigel M; Brice, Alexis; Hardy, John; Wood, Nicholas W; Morris, Huw R; Gasser, Thomas; Singleton, Andrew B; Heutink, Peter; Sharma, Manu
2017-11-01
Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks. Copyright © 2017 Elsevier Inc. All rights reserved.
Haldane, Waddington and recombinant inbred lines: extension of their work to any number of genes.
Samal, Areejit; Martin, Olivier C
2017-11-01
In the early 1930s, J. B. S. Haldane and C. H. Waddington collaborated on the consequences of genetic linkage and inbreeding. One elegant mathematical genetics problem solved by them concerns recombinant inbred lines (RILs) produced via repeated self or brother-sister mating. In this classic contribution, Haldane and Waddington derived an analytical formula for the probabilities of 2-locus and 3-locus RIL genotypes. Specifically, the Haldane-Waddington formula gives the recombination rate R in such lines as a simple function of the per generation recombination rate r. Interestingly, for more than 80 years, an extension of this result to four or more loci remained elusive. In 2015, we generalized the Haldane-Waddington self-mating result to any number of loci. Our solution used self-consistent equations of the multi-locus probabilities 'for an infinite number of generations' and solved these by simple algebraic operations. In practice, our approach provides a quantum leap in the systems that can be handled: the cases of up to six loci can be solved by hand while a computer program implementing our mathematical formalism tackles up to 20 loci on standard desktop computers.
Candidate loci involved in domestication and improvement detected by a published 90K wheat SNP array
Gao, Lifeng; Zhao, Guangyao; Huang, Dawei; Jia, Jizeng
2017-01-01
Selection is one of the most important forces in crop evolution. Common wheat is a major world food crop and a typical allopolyploid with a huge and complex genome. We applied four approaches to detect loci selected in wheat during domestication and improvement. A total of 7,984 candidate loci were detected, accounting for 23.3% of all 34,317 SNPs analysed, a much higher proportion than estimated in previous reports. We constructed a first generation wheat selection map which revealed the following new insights on genome-wide selection: (1) diversifying selection acted by increasing, decreasing or not affecting gene frequencies; (2) the number of loci under selection during domestication was much higher than that during improvement; (3) the contribution to wheat improvement by the D sub-genome was relatively small due to the bottleneck of hexaploidisation and diversity can be expanded by using synthetic wheat and introgression lines; and (4) clustered selection regions occur throughout the wheat genome, including the centromere regions. This study will not only help future wheat breeding and evolutionary studies, but will also accelerate study of other crops, especially polyploids. PMID:28327671
NASA Astrophysics Data System (ADS)
Shangguan, Jingbo; Li, Zhongbao
2017-06-01
Thirty-five new microsatellite loci from the sea cucumbers Holothurian scabra (Jaeger, 1833) and Apostichopus japonicas (Selenka, 1867) were screened and characterized using the method of magnetic bead enrichment. Of the twenty-four polymorphic loci tested, eighteen were consistent with Hardy-Weinberg equilibrium after a modified false discovery rate (B-Y FDR) correction, whereas six showed statistically significant deviations (CHS2 and CHS11: P <0.014790; FCS1, FCS6, FCS8 and FCS14: P <0.015377). Furthermore, four species of plesiomorphous and related sea cucumbers (Holothurian scabra, Holothuria leucospilota, Stichopus horrens and Apostichopus japonicas) were tested for mutual cross-amplification using a total of ninety microsatellite loci. Although transferability and universality of all loci were generally low, the results of the cross-species study showed that the markers can be applied to identify individuals to species according to the presence or absence of specific microsatellite alleles. The microsatellite markers reported here will contribute to the study of genetic diversity, assisted breeding, and population conservation in sea cucumbers, as well as allow for the identification of individuals to closely related species.
NASA Astrophysics Data System (ADS)
Shangguan, Jingbo; Li, Zhongbao
2018-03-01
Thirty-five new microsatellite loci from the sea cucumbers Holothurian scabra (Jaeger, 1833) and Apostichopus japonicas (Selenka, 1867) were screened and characterized using the method of magnetic bead enrichment. Of the twenty-four polymorphic loci tested, eighteen were consistent with Hardy-Weinberg equilibrium after a modified false discovery rate (B-Y FDR) correction, whereas six showed statistically significant deviations (CHS2 and CHS11: P<0.014 790; FCS1, FCS6, FCS8 and FCS14: P<0.015 377). Furthermore, four species of plesiomorphous and related sea cucumbers ( Holothurian scabra, Holothuria leucospilota, Stichopus horrens and Apostichopus japonicas) were tested for mutual cross-amplification using a total of ninety microsatellite loci. Although transferability and universality of all loci were generally low, the results of the cross-species study showed that the markers can be applied to identify individuals to species according to the presence or absence of specific microsatellite alleles. The microsatellite markers reported here will contribute to the study of genetic diversity, assisted breeding, and population conservation in sea cucumbers, as well as allow for the identification of individuals to closely related species.
ERIC Educational Resources Information Center
Vaidya, Chandan J.; Stollstorff, Melanie
2008-01-01
Cognitive neuroscience studies of Attention Deficit Hyperactivity Disorder (ADHD) suggest multiple loci of pathology with respect to both cognitive domains and neural circuitry. Cognitive deficits extend beyond executive functioning to include spatial, temporal, and lower-level "nonexecutive" functions. Atypical functional anatomy extends beyond…
Yamada, Yoshiji; Kato, Kimihiko; Oguri, Mitsutoshi; Horibe, Hideki; Fujimaki, Tetsuo; Yasukochi, Yoshiki; Takeuchi, Ichiro; Sakuma, Jun
2018-07-01
Given that substantial genetic components have been shown in ischemic stroke, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH), heritability may be higher in early-onset than late-onset individuals with these conditions. Although genome-wide association studies (GWASs) have identified various genes and loci significantly associated with ischemic stroke, ICH, or intracranial aneurysm mainly in European ancestry populations, genetic variants that contribute to susceptibility to these disorders remain to be identified definitively. We performed exome-wide association studies (EWASs) to identify genetic variants that confer susceptibility to ischemic stroke, ICH, or SAH in early-onset subjects with these conditions. A total of 6,649 individuals aged ≤65 years were examined. For the EWAS of ischemic or hemorrhagic stroke, 6,224 individuals (450 subjects with ischemic stroke, 5,774 controls) or 6,179 individuals (261 subjects with ICH, 176 subjects with SAH, 5,742 controls), respectively, were examined. EWASs were performed with the use of Illumina Human Exome-12 v1.2 DNA Analysis BeadChip or Infinium Exome-24 v1.0 BeadChip. To compensate for multiple comparisons of allele frequencies with ischemic stroke, ICH, or SAH, we applied a false discovery rate (FDR) of <0.05 for statistical significance of association. The association of allele frequencies of 31,245 single nucleotide polymorphisms (SNPs) that passed quality control to ischemic stroke was examined with Fisher's exact test, and 31 SNPs were significantly (FDR <0.05) associated with ischemic stroke. The association of allele frequencies of 31,253 or 30,970 SNPs to ICH or SAH, respectively, was examined with Fisher's exact test, and six or two SNPs were significantly associated with ICH or SAH, respectively. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of hypertension and diabetes mellitus revealed that 12 SNPs were significantly [P<0.0004 (0.05/124)] related to ischemic stroke. Similar analysis with adjustment for age, sex, and the prevalence of hypertension revealed that six or two SNPs were significantly [P<0.0016 (0.05/32)] related to ICH or SAH, respectively. After examination of linkage disequilibrium of identified SNPs and results of previous GWASs, we identified HHIPL2, CTNNA3, LOC643770, UTP20 , and TRIB3 as susceptibility loci for ischemic stroke, DNTTIP2 and FAM205A as susceptibility loci for ICH, and FAM160A1 and OR52E4 as such loci for SAH. Therefore, to the best of our knowledge, we have newly identified nine genes that confer susceptibility to early-onset ischemic stroke, ICH, or SAH. Determination of genotypes for the SNPs in these genes may prove informative for assessment of the genetic risk for ischemic stroke, ICH, or SAH in Japanese.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Lawrence Mark; Miller, Phillip Isaac; Moro, Erik Allan
In the instance of multiple fragment impact on cased explosive, isolated curved shocks are generated in the explosive. These curved shocks propagate and may interact and form irregular or Mach reflections along the interaction loci, thereby producing a single shock that may be sufficient to initiate PBX-9501. However, the incident shocks are divergent and their intensity generally decreases as they expand, and the regions behind the Mach stem interaction loci are generally unsupported and allow release waves to rapidly affect the flow. The effects of release waves and divergent shocks may be considered theoretically through a “Shock Change Equation”.
Bustamante, Ana V.; Lucchesi, Paula M.A.; Parma, Alberto E.
2009-01-01
The aim of this work was to adapt described MLVA protocols to the molecular typing and characterization of VTEC O157:H7 isolates from Argentina. Nine VNTR loci were amplified by PCR showing diversity values from 0.49 to 0.73. Nine MLVA profiles were observed and the cluster analysis indicated both unrelated and closely related VTEC O157:H7 strains. In spite of the limited number of isolates studied, the panel of VNTR used made it possible to perform a first approach of the high genetic diversity of native strains of O157:H7 by MLVA. PMID:24031443
Genome-wide association study identifies multiple loci associated with bladder cancer risk
Figueroa, Jonine D.; Ye, Yuanqing; Siddiq, Afshan; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Prokunina-Olsson, Ludmila; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Dinney, Colin P.; Malats, Núria; Baris, Dalsu; Purdue, Mark; Jacobs, Eric J.; Albanes, Demetrius; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Tang, Wei; Bas Bueno-de-Mesquita, H.; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Kamat, Ashish M.; Lerner, Seth P.; Barton Grossman, H.; Lin, Jie; Gu, Jian; Pu, Xia; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Kogevinas, Manolis; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Schned, Alan; Armenti, Karla R.; Hosain, G.M.; Andriole, Gerald; Grubb, Robert; Black, Amanda; Ryan Diver, W.; Gapstur, Susan M.; Weinstein, Stephanie J.; Virtamo, Jarmo; Haiman, Chris A.; Landi, Maria T.; Caporaso, Neil; Fraumeni, Joseph F.; Vineis, Paolo; Wu, Xifeng; Silverman, Debra T.; Chanock, Stephen; Rothman, Nathaniel
2014-01-01
Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis. PMID:24163127
Bakkeren, G; Kronstad, J W
1994-01-01
Sexual compatibility requires self vs. non-self recognition. Genetically, two compatibility or mating-type systems govern recognition in heterothallic basidiomycete fungi such as the edible and woodrotting mushrooms and the economically important rust and smut phytopathogens. A bipolar system is defined by a single genetic locus (MAT) that can have two or multiple alleles. A tetrapolar system has two loci, each with two or more specificities. We have employed two species from the genus Ustilago (smut fungi) to discover a molecular explanation for the genetic difference in mating systems. Ustilago maydis, a tetrapolar species, has two genetically unlinked loci that encode the distinct mating functions of cell fusion (a locus) and subsequent sexual development and pathogenicity (b locus). We have recently described a b locus in a bipolar species, Ustilago hordei, wherein the existence of an a locus has been suspected, but not demonstrated. We report here the cloning of an allele of the a locus (a1) from U. hordei and the discovery that physical linkage of the a and b loci in this bipolar fungus accounts for the distinct mating system. Linkage establishes a large complex MAT locus in U. hordei; this locus appears to be in a region suppressed for recombination. Images PMID:7913746
Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis
Mayes, Maureen D.; Bossini-Castillo, Lara; Gorlova, Olga; Martin, José Ezequiel; Zhou, Xiaodong; Chen, Wei V.; Assassi, Shervin; Ying, Jun; Tan, Filemon K.; Arnett, Frank C.; Reveille, John D.; Guerra, Sandra; Teruel, María; Carmona, Francisco David; Gregersen, Peter K.; Lee, Annette T.; López-Isac, Elena; Ochoa, Eguzkine; Carreira, Patricia; Simeón, Carmen Pilar; Castellví, Iván; González-Gay, Miguel Ángel; Ortego-Centeno, Norberto; Ríos, Raquel; Callejas, José Luis; Navarrete, Nuria; García Portales, Rosa; Camps, María Teresa; Fernández-Nebro, Antonio; González-Escribano, María F.; Sánchez-Román, Julio; García-Hernández, Francisco José; Castillo, María Jesús; Aguirre, María Ángeles; Gómez-Gracia, Inmaculada; Fernández-Gutiérrez, Benjamín; Rodríguez-Rodríguez, Luis; Vicente, Esther; Andreu, José Luis; Fernández de Castro, Mónica; García de la Peña, Paloma; López-Longo, Francisco Javier; Martínez, Lina; Fonollosa, Vicente; Espinosa, Gerard; Tolosa, Carlos; Pros, Anna; Rodríguez Carballeira, Mónica; Narváez, Francisco Javier; Rubio Rivas, Manel; Ortiz Santamaría, Vera; Díaz, Bernardino; Trapiella, Luis; Freire, María del Carmen; Sousa, Adrián; Egurbide, María Victoria; Fanlo Mateo, Patricia; Sáez-Comet, Luis; Díaz, Federico; Hernández, Vanesa; Beltrán, Emma; Román-Ivorra, José Andrés; Grau, Elena; Alegre Sancho, Juan José; Blanco García, Francisco J.; Oreiro, Natividad; Fernández Sueiro, Luis; Zhernakova, Alexandra; Padyukov, Leonid; Alarcón-Riquelme, Marta; Wijmenga, Cisca; Brown, Matthew; Beretta, Lorenzo; Riemekasten, Gabriela; Witte, Torsten; Hunzelmann, Nicolas; Kreuter, Alexander; Distler, Jörg H.W.; Voskuyl, Alexandre E.; Schuerwegh, Annemie J.; Hesselstrand, Roger; Nordin, Annika; Airó, Paolo; Lunardi, Claudio; Shiels, Paul; van Laar, Jacob M.; Herrick, Ariane; Worthington, Jane; Denton, Christopher; Wigley, Fredrick M.; Hummers, Laura K.; Varga, John; Hinchcliff, Monique E.; Baron, Murray; Hudson, Marie; Pope, Janet E.; Furst, Daniel E.; Khanna, Dinesh; Phillips, Kristin; Schiopu, Elena; Segal, Barbara M.; Molitor, Jerry A.; Silver, Richard M.; Steen, Virginia D.; Simms, Robert W.; Lafyatis, Robert A.; Fessler, Barri J.; Frech, Tracy M.; AlKassab, Firas; Docherty, Peter; Kaminska, Elzbieta; Khalidi, Nader; Jones, Henry Niall; Markland, Janet; Robinson, David; Broen, Jasper; Radstake, Timothy R.D.J.; Fonseca, Carmen; Koeleman, Bobby P.; Martin, Javier
2014-01-01
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci. PMID:24387989
Tragante, Vinicius; Barnes, Michael R.; Ganesh, Santhi K.; Lanktree, Matthew B.; Guo, Wei; Franceschini, Nora; Smith, Erin N.; Johnson, Toby; Holmes, Michael V.; Padmanabhan, Sandosh; Karczewski, Konrad J.; Almoguera, Berta; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C.; Farrall, Martin; Fischer, Mary E.; Gaunt, Tom R.; Gho, Johannes M.I.H.; Gieger, Christian; Goel, Anuj; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E.; Leach, Irene Mateo; McDonough, Caitrin W.; Meijs, Matthijs F.L.; Melander, Olle; Nelson, Christopher P.; Nolte, Ilja M.; Pankratz, Nathan; Price, Tom S.; Shaffer, Jonathan; Shah, Sonia; Tomaszewski, Maciej; van der Most, Peter J.; Van Iperen, Erik P.A.; Vonk, Judith M.; Witkowska, Kate; Wong, Caroline O.L.; Zhang, Li; Beitelshees, Amber L.; Berenson, Gerald S.; Bhatt, Deepak L.; Brown, Morris; Burt, Amber; Cooper-DeHoff, Rhonda M.; Connell, John M.; Cruickshanks, Karen J.; Curtis, Sean P.; Davey-Smith, George; Delles, Christian; Gansevoort, Ron T.; Guo, Xiuqing; Haiqing, Shen; Hastie, Claire E.; Hofker, Marten H.; Hovingh, G. Kees; Kim, Daniel S.; Kirkland, Susan A.; Klein, Barbara E.; Klein, Ronald; Li, Yun R.; Maiwald, Steffi; Newton-Cheh, Christopher; O’Brien, Eoin T.; Onland-Moret, N. Charlotte; Palmas, Walter; Parsa, Afshin; Penninx, Brenda W.; Pettinger, Mary; Vasan, Ramachandran S.; Ranchalis, Jane E.; M Ridker, Paul; Rose, Lynda M.; Sever, Peter; Shimbo, Daichi; Steele, Laura; Stolk, Ronald P.; Thorand, Barbara; Trip, Mieke D.; van Duijn, Cornelia M.; Verschuren, W. Monique; Wijmenga, Cisca; Wyatt, Sharon; Young, J. Hunter; Zwinderman, Aeilko H.; Bezzina, Connie R.; Boerwinkle, Eric; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chasman, Daniel I.; Davidson, Karina W.; Doevendans, Pieter A.; Dominiczak, Anna F.; FitzGerald, Garret A.; Gums, John G.; Fornage, Myriam; Hakonarson, Hakon; Halder, Indrani; Hillege, Hans L.; Illig, Thomas; Jarvik, Gail P.; Johnson, Julie A.; Kastelein, John J.P.; Koenig, Wolfgang; Kumari, Meena; März, Winfried; Murray, Sarah S.; O’Connell, Jeffery R.; Oldehinkel, Albertine J.; Pankow, James S.; Rader, Daniel J.; Redline, Susan; Reilly, Muredach P.; Schadt, Eric E.; Kottke-Marchant, Kandice; Snieder, Harold; Snyder, Michael; Stanton, Alice V.; Tobin, Martin D.; Uitterlinden, André G.; van der Harst, Pim; van der Schouw, Yvonne T.; Samani, Nilesh J.; Watkins, Hugh; Johnson, Andrew D.; Reiner, Alex P.; Zhu, Xiaofeng; de Bakker, Paul I.W.; Levy, Daniel; Asselbergs, Folkert W.; Munroe, Patricia B.; Keating, Brendan J.
2014-01-01
Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ∼50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10−7) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification. PMID:24560520
Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H
1999-03-01
Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties.
Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H
1999-01-01
Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties. PMID:10049932
Fourteen Years of R/qtl: Just Barely Sustainable
Broman, Karl W.
2014-01-01
R/qtl is an R package for mapping quantitative trait loci (genetic loci that contribute to variation in quantitative traits) in experimental crosses. Its development began in 2000. There have been 38 software releases since 2001. The latest release contains 35k lines of R code and 24k lines of C code, plus 15k lines of code for the documentation. Challenges in the development and maintenance of the software are discussed. A key to the success of R/qtl is that it remains a central tool for the chief developer's own research work, and so its maintenance is of selfish importance. PMID:25364504
Seddon, Johanna M; Reynolds, Robyn; Yu, Yi; Rosner, Bernard
2014-01-01
To assess the independent impact of new genetic variants on conversion to advanced stages of AMD, controlling for established risk factors, and to determine the contribution of genes in predictive models. In this prospective longitudinal study of 2765 individuals, 777 subjects progressed to neovascular disease (NV) or geographic atrophy (GA) in either eye over 12 years. Recently reported genetic loci were assessed for their independent effects on incident advanced AMD after controlling for 6 established loci in 5 genes, and demographic, behavioral, and macular characteristics. New variants which remained significantly related to progression were then added to a final multivariate model to assess their independent effects. The contribution of genes to risk models was assessed using reclassification tables by determining risk within cross-classified quintiles for alternative models. THREE NEW GENETIC VARIANTS WERE SIGNIFICANTLY RELATED TO PROGRESSION: rare variant R1210C in CFH (hazard ratio (HR) 2.5, 95% confidence interval [CI] 1.2-5.3, P = 0.01), and common variants in genes COL8A1 (HR 2.0, 95% CI 1.1-3.5, P = 0.02) and RAD51B (HR 0.8, 95% CI 0.60-0.97, P = 0.03). The area under the curve statistic (AUC) was significantly higher for the 9 gene model (.884) vs the 0 gene model (.873), P = .01. AUC's for the 9 vs 6 gene models were not significantly different, but reclassification analyses indicated significant added information for more genes, with adjusted odds ratios (OR) for progression within 5 years per one quintile increase in risk score of 2.7, P<0.001 for the 9 vs 6 loci model, and OR 3.5, P<0.001 for the 9 vs. 0 gene model. Similar results were seen for NV and GA. Rare variant CFH R1210C and common variants in COL8A1 and RAD51B plus six genes in previous models contribute additional predictive information for advanced AMD beyond macular and behavioral phenotypes.
Seddon, Johanna M.; Reynolds, Robyn; Yu, Yi; Rosner, Bernard
2014-01-01
Objectives To assess the independent impact of new genetic variants on conversion to advanced stages of AMD, controlling for established risk factors, and to determine the contribution of genes in predictive models. Methods In this prospective longitudinal study of 2765 individuals, 777 subjects progressed to neovascular disease (NV) or geographic atrophy (GA) in either eye over 12 years. Recently reported genetic loci were assessed for their independent effects on incident advanced AMD after controlling for 6 established loci in 5 genes, and demographic, behavioral, and macular characteristics. New variants which remained significantly related to progression were then added to a final multivariate model to assess their independent effects. The contribution of genes to risk models was assessed using reclassification tables by determining risk within cross-classified quintiles for alternative models. Results Three new genetic variants were significantly related to progression: rare variant R1210C in CFH (hazard ratio (HR) 2.5, 95% confidence interval [CI] 1.2–5.3, P = 0.01), and common variants in genes COL8A1 (HR 2.0, 95% CI 1.1–3.5, P = 0.02) and RAD51B (HR 0.8, 95% CI 0.60–0.97, P = 0.03). The area under the curve statistic (AUC) was significantly higher for the 9 gene model (.884) vs the 0 gene model (.873), P = .01. AUC’s for the 9 vs 6 gene models were not significantly different, but reclassification analyses indicated significant added information for more genes, with adjusted odds ratios (OR) for progression within 5 years per one quintile increase in risk score of 2.7, P<0.001 for the 9 vs 6 loci model, and OR 3.5, P<0.001 for the 9 vs. 0 gene model. Similar results were seen for NV and GA. Conclusions Rare variant CFH R1210C and common variants in COL8A1 and RAD51B plus six genes in previous models contribute additional predictive information for advanced AMD beyond macular and behavioral phenotypes. PMID:24498017
Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca
2006-01-01
Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which most of the genes are unknown. PMID:16685651
Evaluation of European coeliac disease risk variants in a north Indian population
Senapati, Sabyasachi; Gutierrez-Achury, Javier; Sood, Ajit; Midha, Vandana; Szperl, Agata; Romanos, Jihane; Zhernakova, Alexandra; Franke, Lude; Alonso, Santos; Thelma, B K; Wijmenga, Cisca; Trynka, Gosia
2015-01-01
Studies in European populations have contributed to a better understanding of the genetics of complex diseases, for example, in coeliac disease (CeD), studies of over 23 000 European samples have reported association to the HLA locus and another 39 loci. However, these associations have not been evaluated in detail in other ethnicities. We sought to better understand how disease-associated loci that have been mapped in Europeans translate to a disease risk for a population with a different ethnic background. We therefore performed a validation of European risk loci for CeD in 497 cases and 736 controls of north Indian origin. Using a dense-genotyping platform (Immunochip), we confirmed the strong association to the HLA region (rs2854275, P=8.2 × 10−49). Three loci showed suggestive association (rs4948256, P=9.3 × 10−7, rs4758538, P=8.6 × 10−5 and rs17080877, P=2.7 × 10−5). We directly replicated five previously reported European variants (P<0.05; mapping to loci harbouring FASLG/TNFSF18, SCHIP1/IL12A, PFKFB3/PRKCQ, ZMIZ1 and ICOSLG). Using a transferability test, we further confirmed association at PFKFB3/PRKCQ (rs2387397, P=2.8 × 10−4) and PTPRK/THEMIS (rs55743914, P=3.4 × 10−4). The north Indian population has a higher degree of consanguinity than Europeans and we therefore explored the role of recessively acting variants, which replicated the HLA locus (rs9271850, P=3.7 × 10−23) and suggested a role of additional four loci. To our knowledge, this is the first replication study of CeD variants in a non-European population. PMID:25052311
Association of Genetic Loci With Glucose Levels in Childhood and Adolescence
Barker, Adam; Sharp, Stephen J.; Timpson, Nicholas J.; Bouatia-Naji, Nabila; Warrington, Nicole M.; Kanoni, Stavroula; Beilin, Lawrence J.; Brage, Soren; Deloukas, Panos; Evans, David M.; Grontved, Anders; Hassanali, Neelam; Lawlor, Deborah A.; Lecoeur, Cecile; Loos, Ruth J.F.; Lye, Stephen J.; McCarthy, Mark I.; Mori, Trevor A.; Ndiaye, Ndeye Coumba; Newnham, John P.; Ntalla, Ioanna; Pennell, Craig E.; St Pourcain, Beate; Prokopenko, Inga; Ring, Susan M.; Sattar, Naveed; Visvikis-Siest, Sophie; Dedoussis, George V.; Palmer, Lyle J.; Froguel, Philippe; Smith, George Davey; Ekelund, Ulf; Wareham, Nicholas J.; Langenberg, Claudia
2011-01-01
OBJECTIVE To investigate whether associations of common genetic variants recently identified for fasting glucose or insulin levels in nondiabetic adults are detectable in healthy children and adolescents. RESEARCH DESIGN AND METHODS A total of 16 single nucleotide polymorphisms (SNPs) associated with fasting glucose were genotyped in six studies of children and adolescents of European origin, including over 6,000 boys and girls aged 9–16 years. We performed meta-analyses to test associations of individual SNPs and a weighted risk score of the 16 loci with fasting glucose. RESULTS Nine loci were associated with glucose levels in healthy children and adolescents, with four of these associations reported in previous studies and five reported here for the first time (GLIS3, PROX1, SLC2A2, ADCY5, and CRY2). Effect sizes were similar to those in adults, suggesting age-independent effects of these fasting glucose loci. Children and adolescents carrying glucose-raising alleles of G6PC2, MTNR1B, GCK, and GLIS3 also showed reduced β-cell function, as indicated by homeostasis model assessment of β-cell function. Analysis using a weighted risk score showed an increase [β (95% CI)] in fasting glucose level of 0.026 mmol/L (0.021–0.031) for each unit increase in the score. CONCLUSIONS Novel fasting glucose loci identified in genome-wide association studies of adults are associated with altered fasting glucose levels in healthy children and adolescents with effect sizes comparable to adults. In nondiabetic adults, fasting glucose changes little over time, and our results suggest that age-independent effects of fasting glucose loci contribute to long-term interindividual differences in glucose levels from childhood onwards. PMID:21515849
Raffler, Johannes; Friedrich, Nele; Arnold, Matthias; Kacprowski, Tim; Rueedi, Rico; Altmaier, Elisabeth; Bergmann, Sven; Budde, Kathrin; Gieger, Christian; Homuth, Georg; Pietzner, Maik; Römisch-Margl, Werner; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wallaschofski, Henri; Nauck, Matthias; Völker, Uwe; Kastenmüller, Gabi; Suhre, Karsten
2015-01-01
Genome-wide association studies with metabolic traits (mGWAS) uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs) contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a well investigated topic in large mGWAS with over 150 known loci, metabolic detoxification through urinary excretion has only been addressed by few small mGWAS with only 11 associated loci so far. Here we report the largest mGWAS to date, combining targeted and non-targeted 1H NMR analysis of urine samples from 3,861 participants of the SHIP-0 cohort and 1,691 subjects of the KORA F4 cohort. We identified and replicated 22 loci with significant associations with urinary traits, 15 of which are new (HIBCH, CPS1, AGXT, XYLB, TKT, ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, SLC13A3). Two-thirds of the urinary loci also have a metabolite association in blood. For all but one of the 6 loci where significant associations target the same metabolite in blood and urine, the genetic effects have the same direction in both fluids. In contrast, for the SLC5A11 locus, we found increased levels of myo-inositol in urine whereas mGWAS in blood reported decreased levels for the same genetic variant. This might indicate less effective re-absorption of myo-inositol in the kidneys of carriers. In summary, our study more than doubles the number of known loci that influence urinary phenotypes. It thus allows novel insights into the relationship between blood homeostasis and its regulation through excretion. The newly discovered loci also include variants previously linked to chronic kidney disease (CPS1, SLC6A13), pulmonary hypertension (CPS1), and ischemic stroke (XYLB). By establishing connections from gene to disease via metabolic traits our results provide novel hypotheses about molecular mechanisms involved in the etiology of diseases. PMID:26352407
Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan
2015-07-01
Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.
Carlson, Hanqian L; Quinn, Jeffrey J; Yang, Yul W; Thornburg, Chelsea K; Chang, Howard Y; Stadler, H Scott
2015-12-01
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage.
Carlson, Hanqian L.; Quinn, Jeffrey J.; Yang, Yul W.; Thornburg, Chelsea K.; Chang, Howard Y.; Stadler, H. Scott
2015-01-01
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage. PMID:26633036
Larson, Nicholas B; McDonnell, Shannon K; Fogarty, Zach; Larson, Melissa C; Cheville, John; Riska, Shaun; Baheti, Saurabh; Weber, Alexandra M; Nair, Asha A; Wang, Liang; O'Brien, Daniel; Davila, Jaime; Schaid, Daniel J; Thibodeau, Stephen N
2017-10-17
Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis -acting associations due to study limitations. While trans -eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans -eQTL associations are mediated by cis -regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis -mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans -eQTL associations that were significantly mediated by cis -regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B , and target trans -genes with known HNF response elements ( MIA2 , SRC , SEMA6A , KIF12 ). We additionally identified evidence of cis -acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1 . The majority of these cis -mediator relationships demonstrated trans -eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.
Laukkanen-Ninios, R.; Ortiz Martínez, P.; Siitonen, A.; Fredriksson-Ahomaa, M.; Korkeala, H.
2013-01-01
Sporadic and epidemiologically linked Yersinia enterocolitica strains (n = 379) isolated from fecal samples from human patients, tonsil or fecal samples from pigs collected at slaughterhouses, and pork samples collected at meat stores were genotyped using multiple-locus variable-number tandem-repeat analysis (MLVA) with six loci, i.e., V2A, V4, V5, V6, V7, and V9. In total, 312 different MLVA types were found. Similar types were detected (i) in fecal samples collected from human patients over 2 to 3 consecutive years, (ii) in samples from humans and pigs, and (iii) in samples from pigs that originated from the same farms. Among porcine strains, we found farm-specific MLVA profiles. Variations in the numbers of tandem repeats from one to four for variable-number tandem-repeat (VNTR) loci V2A, V5, V6, and V7 were observed within a farm. MLVA was applicable for serotypes O:3, O:5,27, and O:9 and appeared to be a highly discriminating tool for distinguishing sporadic and outbreak-related strains. With long-term use, interpretation of the results became more challenging due to variations in more-discriminating loci, as was observed for strains originating from pig farms. Additionally, we encountered unexpectedly short V2A VNTR fragments and sequenced them. According to the sequencing results, updated guidelines for interpreting V2A VNTR results were prepared. PMID:23637293
Genetics of rheumatoid arthritis contributes to biology and drug discovery.
Okada, Yukinori; Wu, Di; Trynka, Gosia; Raj, Towfique; Terao, Chikashi; Ikari, Katsunori; Kochi, Yuta; Ohmura, Koichiro; Suzuki, Akari; Yoshida, Shinji; Graham, Robert R; Manoharan, Arun; Ortmann, Ward; Bhangale, Tushar; Denny, Joshua C; Carroll, Robert J; Eyler, Anne E; Greenberg, Jeffrey D; Kremer, Joel M; Pappas, Dimitrios A; Jiang, Lei; Yin, Jian; Ye, Lingying; Su, Ding-Feng; Yang, Jian; Xie, Gang; Keystone, Ed; Westra, Harm-Jan; Esko, Tõnu; Metspalu, Andres; Zhou, Xuezhong; Gupta, Namrata; Mirel, Daniel; Stahl, Eli A; Diogo, Dorothée; Cui, Jing; Liao, Katherine; Guo, Michael H; Myouzen, Keiko; Kawaguchi, Takahisa; Coenen, Marieke J H; van Riel, Piet L C M; van de Laar, Mart A F J; Guchelaar, Henk-Jan; Huizinga, Tom W J; Dieudé, Philippe; Mariette, Xavier; Bridges, S Louis; Zhernakova, Alexandra; Toes, Rene E M; Tak, Paul P; Miceli-Richard, Corinne; Bang, So-Young; Lee, Hye-Soon; Martin, Javier; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Rantapää-Dahlqvist, Solbritt; Arlestig, Lisbeth; Choi, Hyon K; Kamatani, Yoichiro; Galan, Pilar; Lathrop, Mark; Eyre, Steve; Bowes, John; Barton, Anne; de Vries, Niek; Moreland, Larry W; Criswell, Lindsey A; Karlson, Elizabeth W; Taniguchi, Atsuo; Yamada, Ryo; Kubo, Michiaki; Liu, Jun S; Bae, Sang-Cheol; Worthington, Jane; Padyukov, Leonid; Klareskog, Lars; Gregersen, Peter K; Raychaudhuri, Soumya; Stranger, Barbara E; De Jager, Philip L; Franke, Lude; Visscher, Peter M; Brown, Matthew A; Yamanaka, Hisashi; Mimori, Tsuneyo; Takahashi, Atsushi; Xu, Huji; Behrens, Timothy W; Siminovitch, Katherine A; Momohara, Shigeki; Matsuda, Fumihiko; Yamamoto, Kazuhiko; Plenge, Robert M
2014-02-20
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
Methylation at CPT1A locus is associated with lipoprotein subfraction profiles
USDA-ARS?s Scientific Manuscript database
Lipoprotein subfractions help discriminate cardiometabolic disease risk. Genetic loci validated as associating with lipoprotein measures do not account for a large proportion of the individual variation in lipoprotein measures. We hypothesized that DNA methylation levels across the genome contribute...
He, Liang; Kernogitski, Yelena; Kulminskaya, Irina; Loika, Yury; Arbeev, Konstantin G.; Loiko, Elena; Bagley, Olivia; Duan, Matt; Yashkin, Arseniy; Ukraintseva, Svetlana V.; Kovtun, Mikhail; Yashin, Anatoliy I.; Kulminski, Alexander M.
2016-01-01
Age-related diseases may result from shared biological mechanisms in intrinsic processes of aging. Genetic effects on age-related diseases are often modulated by environmental factors due to their little contribution to fitness or are mediated through certain endophenotypes. Identification of genetic variants with pleiotropic effects on both common complex diseases and endophenotypes may reveal potential conflicting evolutionary pressures and deliver new insights into shared genetic contribution to healthspan and lifespan. Here, we performed pleiotropic meta-analyses of genetic variants using five NIH-funded datasets by integrating univariate summary statistics for age-related diseases and endophenotypes. We investigated three groups of traits: (1) endophenotypes such as blood glucose, blood pressure, lipids, hematocrit, and body mass index, (2) time-to-event outcomes such as the age-at-onset of diabetes mellitus (DM), cancer, cardiovascular diseases (CVDs) and neurodegenerative diseases (NDs), and (3) both combined. In addition to replicating previous findings, we identify seven novel genome-wide significant loci (< 5e-08), out of which five are low-frequency variants. Specifically, from Group 2, we find rs7632505 on 3q21.1 in SEMA5B, rs460976 on 21q22.3 (1 kb from TMPRSS2) and rs12420422 on 11q24.1 predominantly associated with a variety of CVDs, rs4905014 in ITPK1 associated with stroke and heart failure, rs7081476 on 10p12.1 in ANKRD26 associated with multiple diseases including DM, CVDs, and NDs. From Group 3, we find rs8082812 on 18p11.22 and rs1869717 on 4q31.3 associated with both endophenotypes and CVDs. Our follow-up analyses show that rs7632505, rs4905014, and rs8082812 have age-dependent effects on coronary heart disease or stroke. Functional annotation suggests that most of these SNPs are within regulatory regions or DNase clusters and in linkage disequilibrium with expression quantitative trait loci, implying their potential regulatory influence on the expression of nearby genes. Our mediation analyses suggest that the effects of some SNPs are mediated by specific endophenotypes. In conclusion, these findings indicate that loci with pleiotropic effects on age-related disorders tend to be enriched in genes involved in underlying mechanisms potentially related to nervous, cardiovascular and immune system functions, stress resistance, inflammation, ion channels and hematopoiesis, supporting the hypothesis of shared pathological role of infection, and inflammation in chronic age-related diseases. PMID:27790247
Vieira, Alexandre R.; McHenry, Toby G.; Daack-Hirsch, Sandra; Murray, Jeffrey C.; Marazita, Mary L.
2009-01-01
We revisited 42 families with two or more cleft affected siblings that participated in previous studies and collected complete dental information. Genotypes from 1489 single nucleotide polymorphism (SNP) markers located in 150 candidate genes/loci were reanalyzed. Two sets of association analyses were carried out. First we ran the analysis solely on the cleft status. Second we assigned affection to any cleft or dental anomaly (tooth agenesis, supernumerary teeth, and microdontia), and repeated the analysis. Significant over-transmission was seen for a SNP in ANKS6 (rs4742741, 9q22.33; p=0.0004) when a dental anomaly phenotype was included in the analysis. Significant over-transmission was also seen for a SNP in ERBB2 (rs1810132, 17q21.1; p=0.0006). In the clefts only data, the most significant result was also for ERBB2 (p=0.0006). Other markers with suggestive p-values included IRF6 and 6q21-q23 loci. In contrast to the above results, suggestive over-transmission of markers in GART, DPF3, and NRXN3 were seen only when the dental anomaly phenotype was included in the analysis. These findings support the hypothesis that some loci may contribute to both clefts and congenital dental anomalies. Thus, including dental anomalies information in the genetics analysis of cleft lip and palate will provide new opportunities to map susceptibility loci for clefts. PMID:18978678
Mason, Christopher E.; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M.; Kallen, Roland G.; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B.
2010-01-01
Location analysis for estrogen receptor-α (ERα)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERα-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10–20% nucleotide deviation from the canonical ERE sequence. We demonstrate that ∼50% of all ERα-bound loci do not have a discernable ERE and show that most ERα-bound EREs are not perfect consensus EREs. Approximately one-third of all ERα-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERα-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERα binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers. PMID:20047966
Mason, Christopher E; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M; Kallen, Roland G; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B
2010-04-01
Location analysis for estrogen receptor-alpha (ERalpha)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERalpha-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10-20% nucleotide deviation from the canonical ERE sequence. We demonstrate that approximately 50% of all ERalpha-bound loci do not have a discernable ERE and show that most ERalpha-bound EREs are not perfect consensus EREs. Approximately one-third of all ERalpha-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERalpha-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERalpha binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.
Viana, M V C; Miranda, E A; de Francisco, A K; Carvalho, C A L; Waldschmidt, A M
2011-11-22
Microsatellite markers are a useful tool for ecological monitoring of natural and managed populations. A technical limitation is the necessity for investment in the development of primers. Heterologous primers can provide an alternative to searching for new loci. In bees, these markers have been used in populational and intracolonial genetic analyses. The genus Melipona has the largest number of species among bee genera, about 70, occurring throughout the Neotropical region. However, only five species of the genus Melipona have specific microsatellite markers. Given the great diversity of this genus, this number is not representative. We analyzed the transferability of 49 microsatellite loci to four other species of the genus Melipona (M. scutellaris, M. mondury, M. mandacaia, and M. quadrifasciata). Four individuals of each species, from different localities, were used in amplification tests. Primer pairs described for five Melipona species and for Trigona carbonaria were tested. Among the 49 loci, 22 gave amplification products for all four species, while three gave nonspecific bands and five showed no amplification products. The remaining loci varied in the pattern of amplification, according to the species examined. The number of alleles ranged from 1 to 6. The results demonstrate the possibility of using these heterologous markers in other Melipona species, increasing the number of loci that can be analyzed and contributing to further genetic analyses of intra- and intercolonial structure, which is required for conservation measure planning, genetic improvement and resolution of taxonomic problems.
Green, Nancy S.; Ender, Katherine L.; Pashankar, Farzana; Driscoll, Catherine; Giardina, Patricia J.; Mullen, Craig A.; Clark, Lorraine N.; Manwani, Deepa; Crotty, Jennifer; Kisselev, Sergey; Neville, Kathleen A.; Hoppe, Carolyn; Barral, Sandra
2013-01-01
Background Fetal hemoglobin level is a heritable complex trait that strongly correlates swith the clinical severity of sickle cell disease. Only few genetic loci have been identified as robustly associated with fetal hemoglobin in patients with sickle cell disease, primarily adults. The sole approved pharmacologic therapy for this disease is hydroxyurea, with effects largely attributable to induction of fetal hemoglobin. Methodology/Principal Findings In a multi-site observational analysis of children with sickle cell disease, candidate single nucleotide polymorphisms associated with baseline fetal hemoglobin levels in adult sickle cell disease were examined in children at baseline and induced by hydroxyurea therapy. For baseline levels, single marker analysis demonstrated significant association with BCL11A and the beta and epsilon globin loci (HBB and HBE, respectively), with an additive attributable variance from these loci of 23%. Among a subset of children on hydroxyurea, baseline fetal hemoglobin levels explained 33% of the variance in induced levels. The variant in HBE accounted for an additional 13% of the variance in induced levels, while variants in the HBB and BCL11A loci did not contribute beyond baseline levels. Conclusions/Significance These findings clarify the overlap between baseline and hydroxyurea-induced fetal hemoglobin levels in pediatric disease. Studies assessing influences of specific sequence variants in these and other genetic loci in larger populations and in unusual hydroxyurea responders are needed to further understand the maintenance and therapeutic induction of fetal hemoglobin in pediatric sickle cell disease. PMID:23409025
Bardet-Biedl syndrome and Usher syndrome.
Koenig, Rainer
2003-01-01
Bardet-Biedl syndrome (BBS) and Usher syndrome (USH) are the most prevalent syndromic forms of retinitis pigmentosa (RP), together they make up almost a quarter of the patients with RP. BBS is defined by the association of retinopathy, obesity, hypogonadism, renal dysfunction, postaxial polydactyly and mental retardation. This clinically complex syndrome is genetically heterogeneous with linkage to more than 6 loci, and 4 genes have been cloned so far. Recent molecular data present evidence that, in some instances, the clinical manifestation of BBS requires recessive mutations in 1 of the 6 BBS loci plus one or two additional mutations in a second BBS locus (tri- or tetra-allelic inheritance). USH is characterized by the combination of congenital or early-onset sensorineural deafness, RP, and variable degrees of vestibular dysfunction. Each of the three clinical types is genetically heterogeneous: 7 loci have been mapped for type 1, three loci for type 2, and two loci for type 3. Currently, 6 USH genes (MYO7A, USH1C, CDH23, PCDH15, USH2A, USH3) have been identified. Pathogenetically, mutations of the USH1 genes seem to result in defects of auditory and retinal sensory cells, the USH 2 phenotype is caused by defects of extracellular matrix or cell surface receptor proteins, and USH3 may be due to synaptic disturbances. The considerable contribution of syndromic forms of RP requires interdisciplinary approaches to the clinical and diagnostic management of RP patients.
Saarela, Jeffery M.; Sokoloff, Paul C.; Gillespie, Lynn J.; Consaul, Laurie L.; Bull, Roger D.
2013-01-01
Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA–trnH, psbK–psbI, atpF–atpH) collected for a subset of Poa and Puccinellia species, only atpF–atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species. PMID:24348895
NASA Astrophysics Data System (ADS)
Law, Philip J.; Sud, Amit; Mitchell, Jonathan S.; Henrion, Marc; Orlando, Giulia; Lenive, Oleg; Broderick, Peter; Speedy, Helen E.; Johnson, David C.; Kaiser, Martin; Weinhold, Niels; Cooke, Rosie; Sunter, Nicola J.; Jackson, Graham H.; Summerfield, Geoffrey; Harris, Robert J.; Pettitt, Andrew R.; Allsup, David J.; Carmichael, Jonathan; Bailey, James R.; Pratt, Guy; Rahman, Thahira; Pepper, Chris; Fegan, Chris; von Strandmann, Elke Pogge; Engert, Andreas; Försti, Asta; Chen, Bowang; Filho, Miguel Inacio Da Silva; Thomsen, Hauke; Hoffmann, Per; Noethen, Markus M.; Eisele, Lewin; Jöckel, Karl-Heinz; Allan, James M.; Swerdlow, Anthony J.; Goldschmidt, Hartmut; Catovsky, Daniel; Morgan, Gareth J.; Hemminki, Kari; Houlston, Richard S.
2017-01-01
B-cell malignancies (BCM) originate from the same cell of origin, but at different maturation stages and have distinct clinical phenotypes. Although genetic risk variants for individual BCMs have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. We explored genome-wide association studies of chronic lymphocytic leukaemia (CLL, N = 1,842), Hodgkin lymphoma (HL, N = 1,465) and multiple myeloma (MM, N = 3,790). We identified a novel pleiotropic risk locus at 3q22.2 (NCK1, rs11715604, P = 1.60 × 10-9) with opposing effects between CLL (P = 1.97 × 10-8) and HL (P = 3.31 × 10-3). Eight established non-HLA risk loci showed pleiotropic associations. Within the HLA region, Ser37 + Phe37 in HLA-DRB1 (P = 1.84 × 10-12) was associated with increased CLL and HL risk (P = 4.68 × 10-12), and reduced MM risk (P = 1.12 × 10-2), and Gly70 in HLA-DQB1 (P = 3.15 × 10-10) showed opposing effects between CLL (P = 3.52 × 10-3) and HL (P = 3.41 × 10-9). By integrating eQTL, Hi-C and ChIP-seq data, we show that the pleiotropic risk loci are enriched for B-cell regulatory elements, as well as an over-representation of binding of key B-cell transcription factors. These data identify shared biological pathways influencing the development of CLL, HL and MM. The identification of these risk loci furthers our understanding of the aetiological basis of BCMs.
Interaction of the GCKR and A1CF loci with alcohol consumption to influence the risk of gout.
Rasheed, Humaira; Stamp, Lisa K; Dalbeth, Nicola; Merriman, Tony R
2017-07-05
Some gout-associated loci interact with dietary exposures to influence outcome. The aim of this study was to systematically investigate interactions between alcohol exposure and urate-associated loci in gout. A total of 2792 New Zealand European and Polynesian (Māori or Pacific) people with or without gout were genotyped for 29 urate-associated genetic variants and tested for a departure from multiplicative interaction with alcohol exposure in the risk of gout. Publicly available data from 6892 European subjects were used to test for a departure from multiplicative interaction between specific loci and alcohol exposure for the risk of hyperuricemia (HU). Multivariate adjusted logistic and linear regression was done, including an interaction term. Interaction of any alcohol exposure with GCKR (rs780094) and A1CF (rs10821905) influenced the risk of gout in Europeans (interaction term 0.28, P = 1.5 × 10 -4 ; interaction term 0.29, P = 1.4 × 10 -4 , respectively). At A1CF, alcohol exposure suppressed the gout risk conferred by the A-positive genotype. At GCKR, alcohol exposure eliminated the genetic effect on gout. In the Polynesian sample set, there was no experiment-wide evidence for interaction with alcohol in the risk of gout (all P > 8.6 × 10 -4 ). However, at GCKR, there was nominal evidence for an interaction in a direction consistent the European observation (interaction term 0.62, P = 0.05). There was no evidence for an interaction of A1CF or GCKR with alcohol exposure in determining HU. These data support the hypothesis that alcohol influences the risk of gout via glucose and apolipoprotein metabolism. In the absence of alcohol exposure, genetic variants in the GCKR and A1CF genes have a stronger role in gout.
Clark, Shaunna L; McClay, Joseph L; Adkins, Daniel E; Aberg, Karolina A; Kumar, Gaurav; Nerella, Sri; Xie, Linying; Collins, Ann L; Crowley, James J; Quakenbush, Corey R; Hillard, Christopher E; Gao, Guimin; Shabalin, Andrey A; Peterson, Roseann E; Copeland, William E; Silberg, Judy L; Maes, Hermine; Sullivan, Patrick F; Costello, Elizabeth J; van den Oord, Edwin J
2016-05-01
Genome-wide association study meta-analyses have robustly implicated three loci that affect susceptibility for smoking: CHRNA5\\CHRNA3\\CHRNB4, CHRNB3\\CHRNA6 and EGLN2\\CYP2A6. Functional follow-up studies of these loci are needed to provide insight into biological mechanisms. However, these efforts have been hampered by a lack of knowledge about the specific causal variant(s) involved. In this study, we prioritized variants in terms of the likelihood they account for the reported associations. We employed targeted capture of the CHRNA5\\CHRNA3\\CHRNB4, CHRNB3\\CHRNA6, and EGLN2\\CYP2A6 loci and flanking regions followed by next-generation deep sequencing (mean coverage 78×) to capture genomic variation in 363 individuals. We performed single locus tests to determine if any single variant accounts for the association, and examined if sets of (rare) variants that overlapped with biologically meaningful annotations account for the associations. In total, we investigated 963 variants, of which 71.1% were rare (minor allele frequency < 0.01), 6.02% were insertion/deletions, and 51.7% were catalogued in dbSNP141. The single variant results showed that no variant fully accounts for the association in any region. In the variant set results, CHRNB4 accounts for most of the signal with significant sets consisting of directly damaging variants. CHRNA6 explains most of the signal in the CHRNB3\\CHRNA6 locus with significant sets indicating a regulatory role for CHRNA6. Significant sets in CYP2A6 involved directly damaging variants while the significant variant sets suggested a regulatory role for EGLN2. We found that multiple variants implicating multiple processes explain the signal. Some variants can be prioritized for functional follow-up. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
McClay, Joseph L.; Adkins, Daniel E.; Aberg, Karolina A.; Kumar, Gaurav; Nerella, Sri; Xie, Linying; Collins, Ann L.; Crowley, James J.; Quakenbush, Corey R.; Hillard, Christopher E.; Gao, Guimin; Shabalin, Andrey A.; Peterson, Roseann E.; Copeland, William E.; Silberg, Judy L.; Maes, Hermine; Sullivan, Patrick F.; Costello, Elizabeth J.; van den Oord, Edwin J.
2016-01-01
Abstract Introduction: Genome-wide association study meta-analyses have robustly implicated three loci that affect susceptibility for smoking: CHRNA5\\CHRNA3\\CHRNB4 , CHRNB3\\CHRNA6 and EGLN2\\CYP2A6 . Functional follow-up studies of these loci are needed to provide insight into biological mechanisms. However, these efforts have been hampered by a lack of knowledge about the specific causal variant(s) involved. In this study, we prioritized variants in terms of the likelihood they account for the reported associations. Methods: We employed targeted capture of the CHRNA5\\CHRNA3\\CHRNB4 , CHRNB3\\CHRNA6 , and EGLN2\\CYP2A6 loci and flanking regions followed by next-generation deep sequencing (mean coverage 78×) to capture genomic variation in 363 individuals. We performed single locus tests to determine if any single variant accounts for the association, and examined if sets of (rare) variants that overlapped with biologically meaningful annotations account for the associations. Results: In total, we investigated 963 variants, of which 71.1% were rare (minor allele frequency < 0.01), 6.02% were insertion/deletions, and 51.7% were catalogued in dbSNP141. The single variant results showed that no variant fully accounts for the association in any region. In the variant set results, CHRNB4 accounts for most of the signal with significant sets consisting of directly damaging variants. CHRNA6 explains most of the signal in the CHRNB3\\CHRNA6 locus with significant sets indicating a regulatory role for CHRNA6 . Significant sets in CYP2A6 involved directly damaging variants while the significant variant sets suggested a regulatory role for EGLN2 . Conclusions: We found that multiple variants implicating multiple processes explain the signal. Some variants can be prioritized for functional follow-up. PMID:26283763
Saarela, Jeffery M; Sokoloff, Paul C; Gillespie, Lynn J; Consaul, Laurie L; Bull, Roger D
2013-01-01
Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA-trnH, psbK-psbI, atpF-atpH) collected for a subset of Poa and Puccinellia species, only atpF-atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species.
The genetics of celiac disease: A comprehensive review of clinical implications.
Dieli-Crimi, Romina; Cénit, M Carmen; Núñez, Concepción
2015-11-01
Celiac disease (CD) is a complex immune-related disease with a very strong genetic component. Multiple genetic findings over the last decade have added to the already known MHC influence numerous genetic variants associated to CD susceptibility. Currently, it is well-established that 6 MHC and 39 non-MHC loci, including a higher number of independent genetic variants, are associated to disease risk. Moreover, additional regions have been recently implicated in the disease, which would increase the number of involved loci. Together, the firmly described genetic variants account for roughly 31% of CD heritability, being 25% explained by the MHC influence. These new variants represent markers of disease risk and turn the identification of the causal genes and the causal variants inside the associated loci, as well as their precise biological role on the disease, into a major challenge in CD research. Numerous studies have been developed with this aim showing the high impact of risk variants on gene expression. These studies also indicate a central role of CD4(+) T cells in CD pathogenesis and point to B cells as important players, which is in accordance with the key steps highlighted by the immunological models of pathogenesis. We comprehensively summarize the current knowledge about the genetic architecture of CD, characterized by multiple low-risk variants located within diverse loci which are most likely affecting genes with immune-related functions. These findings are leading to a better understanding of CD pathogenesis and helping in the design of new treatments. The repertoire of potential drug targets for CD has largely broadened last years, bringing us closer to get alternative or complementary treatments to the life-long gluten-free diet, the only effective treatment so far. Epigenetics and microbiota are emerging as potent factors modulating disease risk and putatively affecting disease manifestation, which are also being explored as therapeutic targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sargsyan, Ori
2012-05-25
Hitchhiking and severe bottleneck effects have impact on the dynamics of genetic diversity of a population by inducing homogenization at a single locus and at the genome-wide scale, respectively. As a result, identification and differentiation of the signatures of such events from DNA sequence data at a single locus is challenging. This study develops an analytical framework for identifying and differentiating recent homogenization events at multiple neutral loci in low recombination regions. The dynamics of genetic diversity at a locus after a recent homogenization event is modeled according to the infinite-sites mutation model and the Wright-Fisher model of reproduction withmore » constant population size. In this setting, I derive analytical expressions for the distribution, mean, and variance of the number of polymorphic sites in a random sample of DNA sequences from a locus affected by a recent homogenization event. Based on this framework, three likelihood-ratio based tests are presented for identifying and differentiating recent homogenization events at multiple loci. Lastly, I apply the framework to two data sets. First, I consider human DNA sequences from four non-coding loci on different chromosomes for inferring evolutionary history of modern human populations. The results suggest, in particular, that recent homogenization events at the loci are identifiable when the effective human population size is 50000 or greater in contrast to 10000, and the estimates of the recent homogenization events are agree with the “Out of Africa” hypothesis. Second, I use HIV DNA sequences from HIV-1-infected patients to infer the times of HIV seroconversions. The estimates are contrasted with other estimates derived as the mid-time point between the last HIV-negative and first HIV-positive screening tests. Finally, the results show that significant discrepancies can exist between the estimates.« less
Oyler-McCance, Sara J.; Cornman, Robert S.; Kenneth L. Jones,; Fike, Jennifer
2015-01-01
Sex chromosomes contribute disproportionately to species boundaries as they diverge faster than autosomes and often have reduced diversity. Their hemizygous nature contributes to faster divergence and reduced diversity, as do some types of selection. In birds, other factors (mating system and bottlenecks) can further decrease the effective population size of Z-linked loci and accelerate divergence (Fast-Z). We assessed Z-linked divergence and effective population sizes for two polygynous sage-grouse species and compared them to estimates from birds with various mating systems. We found lower diversity and higher FST for Z-linked loci than for autosomes, as expected. The πZ/πA ratio was 0.38 in Centrocercus minimus, 0.48 in Centrocercus urophasianus and 0.59 in a diverged, parapatric population of C. urophasianus, a broad range given the mating system among these groups is presumably equivalent. The full data set had unequal males and females across groups, so we compared an equally balanced reduced set of C. minimus and individuals pooled from both C. urophasianus subgroups recovering similar estimates: 0.54 for C. urophasianus and 0.38 for C. minimus. We provide further evidence that NeZ/NeA in birds is often lower than expected under random mating or monogamy. The lower ratio in C. minimus could be a consequence of stronger selection or drift acting on Z loci during speciation, as this species differs strongly from C. urophasianus in sexually selected characters with minimal mitochondrial divergence. As C. minimus also exhibited lower genomic diversity, it is possible that a more severe demographic history may contribute to its lower ratio.
Oyler-McCance, S J; Cornman, R S; Jones, K L; Fike, J A
2015-11-01
Sex chromosomes contribute disproportionately to species boundaries as they diverge faster than autosomes and often have reduced diversity. Their hemizygous nature contributes to faster divergence and reduced diversity, as do some types of selection. In birds, other factors (mating system and bottlenecks) can further decrease the effective population size of Z-linked loci and accelerate divergence (Fast-Z). We assessed Z-linked divergence and effective population sizes for two polygynous sage-grouse species and compared them to estimates from birds with various mating systems. We found lower diversity and higher FST for Z-linked loci than for autosomes, as expected. The π(Z)/π(A) ratio was 0.38 in Centrocercus minimus, 0.48 in Centrocercus urophasianus and 0.59 in a diverged, parapatric population of C. urophasianus, a broad range given the mating system among these groups is presumably equivalent. The full data set had unequal males and females across groups, so we compared an equally balanced reduced set of C. minimus and individuals pooled from both C. urophasianus subgroups recovering similar estimates: 0.54 for C. urophasianus and 0.38 for C. minimus. We provide further evidence that N(eZ)/N(eA) in birds is often lower than expected under random mating or monogamy. The lower ratio in C. minimus could be a consequence of stronger selection or drift acting on Z loci during speciation, as this species differs strongly from C. urophasianus in sexually selected characters with minimal mitochondrial divergence. As C. minimus also exhibited lower genomic diversity, it is possible that a more severe demographic history may contribute to its lower ratio.