Sample records for multiple modalities helps

  1. Matching Teaching and Learning Styles.

    ERIC Educational Resources Information Center

    Caudill, Gil

    1998-01-01

    Outlines three basic learning modalities--auditory, visual, and tactile--and notes that technology can help incorporate multiple modalities within each lesson, to meet the needs of most students. Discusses the importance in multiple modality teaching of effectively assessing students. Presents visual, auditory and tactile activity suggestions.…

  2. Multi-Modal Surrogates for Retrieving and Making Sense of Videos: Is Synchronization between the Multiple Modalities Optimal?

    ERIC Educational Resources Information Center

    Song, Yaxiao

    2010-01-01

    Video surrogates can help people quickly make sense of the content of a video before downloading or seeking more detailed information. Visual and audio features of a video are primary information carriers and might become important components of video retrieval and video sense-making. In the past decades, most research and development efforts on…

  3. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    PubMed

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  4. Manifold Regularized Multitask Feature Learning for Multimodality Disease Classification

    PubMed Central

    Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang

    2015-01-01

    Multimodality based methods have shown great advantages in classification of Alzheimer’s disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. PMID:25277605

  5. Multimodal Imaging of the Normal Eye.

    PubMed

    Kawali, Ankush; Pichi, Francesco; Avadhani, Kavitha; Invernizzi, Alessandro; Hashimoto, Yuki; Mahendradas, Padmamalini

    2017-10-01

    Multimodal imaging is the concept of "bundling" images obtained from various imaging modalities, viz., fundus photograph, fundus autofluorescence imaging, infrared (IR) imaging, simultaneous fluorescein and indocyanine angiography, optical coherence tomography (OCT), and, more recently, OCT angiography. Each modality has its pros and cons as well as its limitations. Combination of multiple imaging techniques will overcome their individual weaknesses and give a comprehensive picture. Such approach helps in accurate localization of a lesion and understanding the pathology in posterior segment. It is important to know imaging of normal eye before one starts evaluating pathology. This article describes multimodal imaging modalities in detail and discusses healthy eye features as seen on various imaging modalities mentioned above.

  6. Determination of Metastatic Potential in Breast Tumors by Global Molecular Characterization Using Multiple Modalities

    DTIC Science & Technology

    2010-10-01

    5 Results ...to disease prognosis and in determining the course of treatment for the patient (2) . Breast cancer is a highly heterogeneous and complex disease...progression is a challenge. Introduction of high density single nucleotide polymorphism (SNP) genotyping arrays has helped not only for whole genome

  7. Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease.

    PubMed

    Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B

    2016-01-01

    Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.

  8. Multi-modality imaging: Bird's eye view from the 2016 American Heart Association Scientific Sessions.

    PubMed

    AlJaroudi, Wael A; Lloyd, Steven G; Chaudhry, Farooq A; Hage, Fadi G

    2017-06-01

    This review summarizes key imaging studies that were presented in the American Heart Association Scientific Sessions 2016 related to the fields of nuclear cardiology, cardiac computed tomography, cardiac magnetic resonance, and echocardiography. This bird's eye view will inform readers about multiple studies from these different modalities. We hope that this general overview will be useful for those that did not attend the conference as well as to those that did since it is often difficult to get exposure to many abstracts at large meetings. The review, therefore, aims to help readers stay updated on the newest imaging studies presented at the meeting.

  9. Multi-modal data fusion using source separation: Two effective models based on ICA and IVA and their properties

    PubMed Central

    Adali, Tülay; Levin-Schwartz, Yuri; Calhoun, Vince D.

    2015-01-01

    Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the datasets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA) generalizes ICA to multiple datasets by exploiting the statistical dependence across the datasets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple datasets along with ICA. In this paper, we focus on two multivariate solutions for multi-modal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the Joint ICA model that has found wide application in medical imaging, and the second one is the the Transposed IVA model introduced here as a generalization of an approach based on multi-set canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods. PMID:26525830

  10. Information from Multiple Modalities Helps 5-Month-Olds Learn Abstract Rules

    ERIC Educational Resources Information Center

    Frank, Michael C.; Slemmer, Jonathan A.; Marcus, Gary F.; Johnson, Scott P.

    2009-01-01

    By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli ( Marcus et al., 1999 ), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract…

  11. Computer Based Behavioral Biometric Authentication via Multi-Modal Fusion

    DTIC Science & Technology

    2013-03-01

    the decisions made by each individual modality. Fusion of features is the simple concatenation of feature vectors from multiple modalities to be...of Features BayesNet MDL 330 LibSVM PCA 80 J48 Wrapper Evaluator 11 3.5.3 Ensemble Based Decision Level Fusion. In ensemble learning multiple ...The high fusion percentages validate our hypothesis that by combining features from multiple modalities, classification accuracy can be improved. As

  12. Imaging of a cat with perirenal pseudocysts.

    PubMed

    Essman, S C; Drost, W T; Hoover, J P; Lemire, T D; Chalman, J A

    2000-01-01

    A 16-year-old, neutered male, domestic short hair cat had abdominal distension and systemic hypertension. Radiography, ultrasonography, excretory urography, and renal scintigraphy were performed to establish the diagnosis and implement appropriate treatment. Bilateral perirenal pseudocysts were confirmed surgically and histopathologically. Following bilateral renal capsulectomy, systemic hypertension decreased and global glomerular filtration rate improved to normal limits. Multiple imaging modalities helped establish the diagnosis and guided implementation of appropriate treatment.

  13. Network inference from multimodal data: A review of approaches from infectious disease transmission.

    PubMed

    Ray, Bisakha; Ghedin, Elodie; Chunara, Rumi

    2016-12-01

    Networks inference problems are commonly found in multiple biomedical subfields such as genomics, metagenomics, neuroscience, and epidemiology. Networks are useful for representing a wide range of complex interactions ranging from those between molecular biomarkers, neurons, and microbial communities, to those found in human or animal populations. Recent technological advances have resulted in an increasing amount of healthcare data in multiple modalities, increasing the preponderance of network inference problems. Multi-domain data can now be used to improve the robustness and reliability of recovered networks from unimodal data. For infectious diseases in particular, there is a body of knowledge that has been focused on combining multiple pieces of linked information. Combining or analyzing disparate modalities in concert has demonstrated greater insight into disease transmission than could be obtained from any single modality in isolation. This has been particularly helpful in understanding incidence and transmission at early stages of infections that have pandemic potential. Novel pieces of linked information in the form of spatial, temporal, and other covariates including high-throughput sequence data, clinical visits, social network information, pharmaceutical prescriptions, and clinical symptoms (reported as free-text data) also encourage further investigation of these methods. The purpose of this review is to provide an in-depth analysis of multimodal infectious disease transmission network inference methods with a specific focus on Bayesian inference. We focus on analytical Bayesian inference-based methods as this enables recovering multiple parameters simultaneously, for example, not just the disease transmission network, but also parameters of epidemic dynamics. Our review studies their assumptions, key inference parameters and limitations, and ultimately provides insights about improving future network inference methods in multiple applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Percutaneous Tumor Ablation Tools: Microwave, Radiofrequency, or Cryoablation—What Should You Use and Why?

    PubMed Central

    Lubner, Meghan G.; Ziemlewicz, Timothy J.; Lee, Fred T.; Brace, Christopher L.

    2014-01-01

    Image-guided thermal ablation is an evolving and growing treatment option for patients with malignant disease of multiple organ systems. Treatment indications have been expanding to include benign tumors as well. Specifically, the most prevalent indications to date have been in the liver (primary and metastatic disease, as well as benign tumors such as hemangiomas and adenomas), kidney (primarily renal cell carcinoma, but also benign tumors such as angiomyolipomas and oncocytomas), lung (primary and metastatic disease), and soft tissue and/or bone (primarily metastatic disease and osteoid osteomas). Each organ system has different underlying tissue characteristics, which can have profound effects on the resulting thermal changes and ablation zone. Understanding these issues is important for optimizing clinical results. In addition, thermal ablation technology has evolved rapidly during the past several decades, with substantial technical and procedural improvements that can help improve clinical outcomes and safety profiles. Staying up to date on these developments is challenging but critical because the physical properties underlying the different ablation modalities and the appropriate use of adjuncts will have a tremendous effect on treatment results. Ultimately, combining an understanding of the physical properties of the ablation modalities with an understanding of the thermal kinetics in tissue and using the most appropriate ablation modality for each patient are key to optimizing clinical outcomes. Suggested algorithms are described that will help physicians choose among the various ablation modalities for individual patients. ©RSNA, 2014 PMID:25208284

  15. The optimal hormonal replacement modality selection for multiple organ procurement from brain-dead organ donors

    PubMed Central

    Mi, Zhibao; Novitzky, Dimitri; Collins, Joseph F; Cooper, David KC

    2015-01-01

    The management of brain-dead organ donors is complex. The use of inotropic agents and replacement of depleted hormones (hormonal replacement therapy) is crucial for successful multiple organ procurement, yet the optimal hormonal replacement has not been identified, and the statistical adjustment to determine the best selection is not trivial. Traditional pair-wise comparisons between every pair of treatments, and multiple comparisons to all (MCA), are statistically conservative. Hsu’s multiple comparisons with the best (MCB) – adapted from the Dunnett’s multiple comparisons with control (MCC) – has been used for selecting the best treatment based on continuous variables. We selected the best hormonal replacement modality for successful multiple organ procurement using a two-step approach. First, we estimated the predicted margins by constructing generalized linear models (GLM) or generalized linear mixed models (GLMM), and then we applied the multiple comparison methods to identify the best hormonal replacement modality given that the testing of hormonal replacement modalities is independent. Based on 10-year data from the United Network for Organ Sharing (UNOS), among 16 hormonal replacement modalities, and using the 95% simultaneous confidence intervals, we found that the combination of thyroid hormone, a corticosteroid, antidiuretic hormone, and insulin was the best modality for multiple organ procurement for transplantation. PMID:25565890

  16. The Integrated Taxonomy of Health Care: Classifying Both Complementary and Biomedical Practices Using a Uniform Classification Protocol

    PubMed Central

    Porcino, Antony; MacDougall, Colleen

    2009-01-01

    Background: Since the late 1980s, several taxonomies have been developed to help map and describe the interrelationships of complementary and alternative medicine (CAM) modalities. In these taxonomies, several issues are often incompletely addressed: A simple categorization process that clearly isolates a modality to a single conceptual categoryClear delineation of verticality—that is, a differentiation of scale being observed from individually applied techniques, through modalities (therapies), to whole medical systemsRecognition of CAM as part of the general field of health care Methods: Development of the Integrated Taxonomy of Health Care (ITHC) involved three stages: Development of a precise, uniform health glossaryAnalysis of the extant taxonomiesUse of an iterative process of classifying modalities and medical systems into categories until a failure to singularly classify a modality occurred, requiring a return to the glossary and adjustment of the classifying protocol Results: A full vertical taxonomy was developed that includes and clearly differentiates between techniques, modalities, domains (clusters of similar modalities), systems of health care (coordinated care system involving multiple modalities), and integrative health care. Domains are the classical primary focus of taxonomies. The ITHC has eleven domains: chemical/substance-based work, device-based work, soft tissue–focused manipulation, skeletal manipulation, fitness/movement instruction, mind–body integration/classical somatics work, mental/emotional–based work, bio-energy work based on physical manipulation, bio-energy modulation, spiritual-based work, unique assessments. Modalities are assigned to the domains based on the primary mode of interaction with the client, according the literature of the practitioners. Conclusions: The ITHC has several strengths: little interpretation is used while successfully assigning modalities to single domains; the issue of taxonomic verticality is fully resolved; and the design fully integrates the complementary health care fields of biomedicine and CAM. PMID:21589735

  17. The art and science of straight lines in radiology.

    PubMed

    Day, Cynthia M; Sodickson, Aaron

    2011-02-01

    The purpose of this article is to review the physical basis for straight radiographic lines, identify the possible components that may form a straight line interface in the body, provide illustrative examples across multiple organ systems and modalities, and explore how the detection of these interfaces can support specific diagnoses. Detection of a straight line interface can help the radiologist recognize otherwise difficult or subtle pathologic processes, and identification of its components can provide valuable clues to diagnosis.

  18. Multi-modality imaging: Bird's eye view from the 2017 American Heart Association Scientific Sessions.

    PubMed

    AlJaroudi, Wael A; Lloyd, Steven G; Hage, Fadi G

    2018-04-01

    This review summarizes key imaging studies that were presented in the American Heart Association Scientific Sessions 2017 related to the fields of nuclear cardiology, cardiac computed tomography, cardiac magnetic resonance, and echocardiography. The aim of this bird's eye view is to inform readers about multiple studies reported at the meeting from these different imaging modalities. While such a review is most useful for those that did not attend the conference, we find that a general overview may also be useful to those that did since it is often difficult to get exposure to many abstracts at large meetings. The review, therefore, aims to help readers stay updated on the newest imaging studies presented at the meeting and will hopefully stimulate new ideas for future research in imaging.

  19. Neural network fusion: a novel CT-MR aortic aneurysm image segmentation method

    NASA Astrophysics Data System (ADS)

    Wang, Duo; Zhang, Rui; Zhu, Jin; Teng, Zhongzhao; Huang, Yuan; Spiga, Filippo; Du, Michael Hong-Fei; Gillard, Jonathan H.; Lu, Qingsheng; Liò, Pietro

    2018-03-01

    Medical imaging examination on patients usually involves more than one imaging modalities, such as Computed Tomography (CT), Magnetic Resonance (MR) and Positron Emission Tomography(PET) imaging. Multimodal imaging allows examiners to benefit from the advantage of each modalities. For example, for Abdominal Aortic Aneurysm, CT imaging shows calcium deposits in the aorta clearly while MR imaging distinguishes thrombus and soft tissues better.1 Analysing and segmenting both CT and MR images to combine the results will greatly help radiologists and doctors to treat the disease. In this work, we present methods on using deep neural network models to perform such multi-modal medical image segmentation. As CT image and MR image of the abdominal area cannot be well registered due to non-affine deformations, a naive approach is to train CT and MR segmentation network separately. However, such approach is time-consuming and resource-inefficient. We propose a new approach to fuse the high-level part of the CT and MR network together, hypothesizing that neurons recognizing the high level concepts of Aortic Aneurysm can be shared across multiple modalities. Such network is able to be trained end-to-end with non-registered CT and MR image using shorter training time. Moreover network fusion allows a shared representation of Aorta in both CT and MR images to be learnt. Through experiments we discovered that for parts of Aorta showing similar aneurysm conditions, their neural presentations in neural network has shorter distances. Such distances on the feature level is helpful for registering CT and MR image.

  20. Alterations to multisensory and unisensory integration by stimulus competition

    PubMed Central

    Rowland, Benjamin A.; Stanford, Terrence R.; Stein, Barry E.

    2011-01-01

    In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations. PMID:21957224

  1. Alterations to multisensory and unisensory integration by stimulus competition.

    PubMed

    Pluta, Scott R; Rowland, Benjamin A; Stanford, Terrence R; Stein, Barry E

    2011-12-01

    In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations.

  2. Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments

    NASA Astrophysics Data System (ADS)

    Baronian, Vahan; Bourgeois, Laurent; Chapuis, Bastien; Recoquillay, Arnaud

    2018-07-01

    This paper presents an application of the linear sampling method to ultrasonic non destructive testing of an elastic waveguide. In particular, the NDT context implies that both the solicitations and the measurements are located on the surface of the waveguide and are given in the time domain. Our strategy consists in using a modal formulation of the linear sampling method at multiple frequencies, such modal formulation being justified theoretically in Bourgeois et al (2011 Inverse Problems 27 055001) for rigid obstacles and in Bourgeois and Lunéville (2013 Inverse Problems 29 025017) for cracks. Our strategy requires the inversion of some emission and reception matrices which deserve some special attention due to potential ill-conditioning. The feasibility of our method is proved with the help of artificial data as well as real data.

  3. Dynamic modal estimation using instrumental variables

    NASA Technical Reports Server (NTRS)

    Salzwedel, H.

    1980-01-01

    A method to determine the modes of dynamical systems is described. The inputs and outputs of a system are Fourier transformed and averaged to reduce the error level. An instrumental variable method that estimates modal parameters from multiple correlations between responses of single input, multiple output systems is applied to estimate aircraft, spacecraft, and off-shore platform modal parameters.

  4. Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging

    PubMed Central

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru

    2008-01-01

    Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788

  5. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction.

    PubMed

    Patel, Meenal J; Andreescu, Carmen; Price, Julie C; Edelman, Kathryn L; Reynolds, Charles F; Aizenstein, Howard J

    2015-10-01

    Currently, depression diagnosis relies primarily on behavioral symptoms and signs, and treatment is guided by trial and error instead of evaluating associated underlying brain characteristics. Unlike past studies, we attempted to estimate accurate prediction models for late-life depression diagnosis and treatment response using multiple machine learning methods with inputs of multi-modal imaging and non-imaging whole brain and network-based features. Late-life depression patients (medicated post-recruitment) (n = 33) and older non-depressed individuals (n = 35) were recruited. Their demographics and cognitive ability scores were recorded, and brain characteristics were acquired using multi-modal magnetic resonance imaging pretreatment. Linear and nonlinear learning methods were tested for estimating accurate prediction models. A learning method called alternating decision trees estimated the most accurate prediction models for late-life depression diagnosis (87.27% accuracy) and treatment response (89.47% accuracy). The diagnosis model included measures of age, Mini-mental state examination score, and structural imaging (e.g. whole brain atrophy and global white mater hyperintensity burden). The treatment response model included measures of structural and functional connectivity. Combinations of multi-modal imaging and/or non-imaging measures may help better predict late-life depression diagnosis and treatment response. As a preliminary observation, we speculate that the results may also suggest that different underlying brain characteristics defined by multi-modal imaging measures-rather than region-based differences-are associated with depression versus depression recovery because to our knowledge this is the first depression study to accurately predict both using the same approach. These findings may help better understand late-life depression and identify preliminary steps toward personalized late-life depression treatment. Copyright © 2015 John Wiley & Sons, Ltd.

  6. An Holistic Approach for Counsellors: Embracing Multiple Intelligences

    ERIC Educational Resources Information Center

    Booth, Rosslyn; O'Brien, Patrick John

    2008-01-01

    This paper explores a range of therapeutic modalities used by counsellors of children and positions those modalities within Gardner's theory of multiple intelligences. Research by O'Brien ("Gardner's theory of multiple intelligence and its implications for the counselling of children." Unpublished doctoral dissertation, Queensland University of…

  7. Effects of auditory and visual modalities in recall of words.

    PubMed

    Gadzella, B M; Whitehead, D A

    1975-02-01

    Ten experimental conditions were used to study the effects of auditory and visual (printed words, uncolored and colored pictures) modalities and their various combinations with college students. A recall paradigm was employed in which subjects responded in a written test. Analysis of data showed the auditory modality was superior to visual (pictures) ones but was not significantly different from visual (printed words) modality. In visual modalities, printed words were superior to colored pictures. Generally, conditions with multiple modes of representation of stimuli were significantly higher than for conditions with single modes. Multiple modalities, consisting of two or three modes, did not differ significantly from each other. It was concluded that any two modalities of the stimuli presented simultaneously were just as effective as three in recall of stimulus words.

  8. Modality-Driven Classification and Visualization of Ensemble Variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald

    Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no informationmore » about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. We apply a similar method to time-varying ensembles to illustrate the relationship between peak variance and bimodal or multimodal behavior. These classification schemes enable a deeper understanding of the behavior of the ensemble members by distinguishing between distributions that can be described by a single tendency and distributions which reflect divergent trends in the ensemble.« less

  9. A Game-Theory Based Incentive Framework for an Intelligent Traffic System as Part of a Smart City Initiative.

    PubMed

    Mei, Haibo; Poslad, Stefan; Du, Shuang

    2017-12-11

    Intelligent Transportation Systems (ITSs) can be applied to inform and incentivize travellers to help them make cognizant choices concerning their trip routes and transport modality use for their daily travel whilst achieving more sustainable societal and transport authority goals. However, in practice, it is challenging for an ITS to enable incentive generation that is context-driven and personalized, whilst supporting multi-dimensional travel goals. This is because an ITS has to address the situation where different travellers have different travel preferences and constraints for route and modality, in the face of dynamically-varying traffic conditions. Furthermore, personalized incentive generation also needs to dynamically achieve different travel goals from multiple travellers, in the face of their conducts being a mix of both competitive and cooperative behaviours. To address this challenge, a Rule-based Incentive Framework (RIF) is proposed in this paper that utilizes both decision tree and evolutionary game theory to process travel information and intelligently generate personalized incentives for travellers. The travel information processed includes travellers' mobile patterns, travellers' modality preferences and route traffic volume information. A series of MATLAB simulations of RIF was undertaken to validate RIF to show that it is potentially an effective way to incentivize travellers to change travel routes and modalities as an essential smart city service.

  10. Wide field of view CT and acromioclavicular joint instability: A technical innovation.

    PubMed

    Dyer, David R; Troupis, John M; Kamali Moaveni, Afshin

    2015-06-01

    A 21-year-old female with a traumatic shoulder injury is investigated and managed for symptoms relating to this injury. Pathology at the acromioclavicular joint is detected clinically; however, clinical examination and multiple imaging modalities do not reach a unified diagnosis on the grading of this acromioclavicular joint injury. When management appropriate to that suggested injury grading fail to help the patient's symptoms, further investigation methods were utilised. Wide field of view, dynamic CT (4D CT) is conducted on the patient's affected shoulder using a 320 × 0.5 mm detector multislice CT. Scans were conducted with a static table as the patient completed three movements of the affected shoulder. Capturing multiple data sets per second over a z-axis of 16 cm, measurements of the acromioclavicular joint were made, to show dynamic changes at the joint. Acromioclavicular (AC) joint translations were witnessed in three planes (a previously unrecognised pathology in the grading of acromioclavicular joint injuries). Translation in multiple planes was also not evident on careful clinical examination of this patient. AC joint width, anterior-posterior translation, superior-inferior translation and coracoclavicular width were measured with planar reconstructions while volume-rendered images and dynamic sequences aiding visual understanding of the pathology. Wide field of view dynamic CT (4D CT) is an accurate and quick modality to diagnose complex acromioclavicular joint injury. It provides dynamic information that no other modality can; 4D CT shows future benefits for clinical approach to diagnosis and management of acromioclavicular joint injury, and other musculoskeletal pathologies. © 2015 The Royal Australian and New Zealand College of Radiologists.

  11. Intraoperative utilization of advanced imaging modalities in a complex kidney stone case: a pilot case study.

    PubMed

    Christiansen, Andrew R; Shorti, Rami M; Smith, Cory D; Prows, William C; Bishoff, Jay T

    2018-05-01

    Despite the increasing use of advanced 3D imaging techniques and 3D printing, these techniques have not yet been comprehensively compared in a surgical setting. The purpose of this study is to explore the effectiveness of five different advanced imaging modalities during a complex renal surgical procedure. A patient with a horseshoe kidney and multiple large, symptomatic stones that had failed Extracorporeal Shock Wave Lithotripsy (ESWL) and ureteroscopy treatment was used for this evaluation. CT data were used to generate five different imaging modalities, including a 3D printed model, three different volume rendered models, and a geometric CAD model. A survey was used to evaluate the quality and breadth of the imaging modalities during four different phases of the laparoscopic procedure. In the case of a complex kidney procedure, the CAD model, 3D print, volume render on an autostereoscopic 3D display, interactive and basic volume render models demonstrated added insight and complemented the surgical procedure. CAD manual segmentation allowed tissue layers and/or kidney stones to be made colorful and semi-transparent, allowing easier navigation through abnormal vasculature. The 3D print allowed for simultaneous visualization of renal pelvis and surrounding vasculature. Our preliminary exploration indicates that various advanced imaging modalities, when properly utilized and supported during surgery, can be useful in complementing the CT data and laparoscopic display. This study suggests that various imaging modalities, such as ones utilized in this case, can be beneficial intraoperatively depending on the surgical step involved and may be more helpful than 3D printed models. We also present factors to consider when evaluating advanced imaging modalities during complex surgery.

  12. Selective Attention Modulates the Direction of Audio-Visual Temporal Recalibration

    PubMed Central

    Ikumi, Nara; Soto-Faraco, Salvador

    2014-01-01

    Temporal recalibration of cross-modal synchrony has been proposed as a mechanism to compensate for timing differences between sensory modalities. However, far from the rich complexity of everyday life sensory environments, most studies to date have examined recalibration on isolated cross-modal pairings. Here, we hypothesize that selective attention might provide an effective filter to help resolve which stimuli are selected when multiple events compete for recalibration. We addressed this question by testing audio-visual recalibration following an adaptation phase where two opposing audio-visual asynchronies were present. The direction of voluntary visual attention, and therefore to one of the two possible asynchronies (flash leading or flash lagging), was manipulated using colour as a selection criterion. We found a shift in the point of subjective audio-visual simultaneity as a function of whether the observer had focused attention to audio-then-flash or to flash-then-audio groupings during the adaptation phase. A baseline adaptation condition revealed that this effect of endogenous attention was only effective toward the lagging flash. This hints at the role of exogenous capture and/or additional endogenous effects producing an asymmetry toward the leading flash. We conclude that selective attention helps promote selected audio-visual pairings to be combined and subsequently adjusted in time but, stimulus organization exerts a strong impact on recalibration. We tentatively hypothesize that the resolution of recalibration in complex scenarios involves the orchestration of top-down selection mechanisms and stimulus-driven processes. PMID:25004132

  13. Selective attention modulates the direction of audio-visual temporal recalibration.

    PubMed

    Ikumi, Nara; Soto-Faraco, Salvador

    2014-01-01

    Temporal recalibration of cross-modal synchrony has been proposed as a mechanism to compensate for timing differences between sensory modalities. However, far from the rich complexity of everyday life sensory environments, most studies to date have examined recalibration on isolated cross-modal pairings. Here, we hypothesize that selective attention might provide an effective filter to help resolve which stimuli are selected when multiple events compete for recalibration. We addressed this question by testing audio-visual recalibration following an adaptation phase where two opposing audio-visual asynchronies were present. The direction of voluntary visual attention, and therefore to one of the two possible asynchronies (flash leading or flash lagging), was manipulated using colour as a selection criterion. We found a shift in the point of subjective audio-visual simultaneity as a function of whether the observer had focused attention to audio-then-flash or to flash-then-audio groupings during the adaptation phase. A baseline adaptation condition revealed that this effect of endogenous attention was only effective toward the lagging flash. This hints at the role of exogenous capture and/or additional endogenous effects producing an asymmetry toward the leading flash. We conclude that selective attention helps promote selected audio-visual pairings to be combined and subsequently adjusted in time but, stimulus organization exerts a strong impact on recalibration. We tentatively hypothesize that the resolution of recalibration in complex scenarios involves the orchestration of top-down selection mechanisms and stimulus-driven processes.

  14. Integration of Multi-Modal Biomedical Data to Predict Cancer Grade and Patient Survival.

    PubMed

    Phan, John H; Hoffman, Ryan; Kothari, Sonal; Wu, Po-Yen; Wang, May D

    2016-02-01

    The Big Data era in Biomedical research has resulted in large-cohort data repositories such as The Cancer Genome Atlas (TCGA). These repositories routinely contain hundreds of matched patient samples for genomic, proteomic, imaging, and clinical data modalities, enabling holistic and multi-modal integrative analysis of human disease. Using TCGA renal and ovarian cancer data, we conducted a novel investigation of multi-modal data integration by combining histopathological image and RNA-seq data. We compared the performances of two integrative prediction methods: majority vote and stacked generalization. Results indicate that integration of multiple data modalities improves prediction of cancer grade and outcome. Specifically, stacked generalization, a method that integrates multiple data modalities to produce a single prediction result, outperforms both single-data-modality prediction and majority vote. Moreover, stacked generalization reveals the contribution of each data modality (and specific features within each data modality) to the final prediction result and may provide biological insights to explain prediction performance.

  15. Composite PET and MRI for accurate localization and metabolic modeling: a very useful tool for research and clinic

    NASA Astrophysics Data System (ADS)

    Bidaut, Luc M.

    1991-06-01

    In order to help in analyzing PET data and really take advantage of their metabolic content, a system was designed and implemented to align and process data from various medical imaging modalities, particularly (but not only) for brain studies. Although this system is for now mostly used for anatomical localization, multi-modality ROIs and pharmaco-kinetic modeling, more multi-modality protocols will be implemented in the future, not only to help in PET reconstruction data correction and semi-automated ROI definition, but also for helping in improving diagnostic accuracy along with surgery and therapy planning.

  16. Imaging Evaluation of Acute Traumatic Brain Injury

    PubMed Central

    Mutch, Christopher A.; Talbott, Jason F.; Gean, Alisa

    2016-01-01

    SYNOPSIS Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it will also help predict patient outcomes. TBI consists of multiple pathoanatomical entities. Here we review the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each these pathoanatomic entities. We also briefly survey advanced imaging techniques, which include a number of promising areas of TBI research. PMID:27637393

  17. Most and Least Helpful Events in Three Supervision Modalities

    ERIC Educational Resources Information Center

    Fickling, Melissa J.; Borders, L. DiAnne; Mobley, Keith A.; Wester, Kelly

    2017-01-01

    The authors conducted a content analysis of supervisors' (n = 10) and supervisees' (n = 31) descriptions (n = 707) of most and least helpful significant events in individual, group, and triadic supervision across 1 semester. Categories by group for each modality and areas of agreement and disagreement are highlighted.

  18. Intranasal Insulin for Improving Cognitive Function in Multiple Sclerosis

    DTIC Science & Technology

    2017-10-01

    Insulin, Symbol Digit Modalities Test , Minimal Assessment of Cognitive Function in Multiple Sclerosis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...going to evaluate if intranasal insulin improves cognition in people with MS, as assessed by standardized cognitive assessment tests . 2. KEYWORDS...Multiple Sclerosis, Cognitive Impairment, Neurodegenerative diseases, Intranasal Insulin, Symbol Digit Modalities Test , Minimal Assessment of Cognitive

  19. Combinations of Multiple Neuroimaging Markers using Logistic Regression for Auxiliary Diagnosis of Alzheimer Disease and Mild Cognitive Impairment.

    PubMed

    Mao, Nini; Liu, Yunting; Chen, Kewei; Yao, Li; Wu, Xia

    2018-06-05

    Multiple neuroimaging modalities have been developed providing various aspects of information on the human brain. Used together and properly, these complementary multimodal neuroimaging data integrate multisource information which can facilitate a diagnosis and improve the diagnostic accuracy. In this study, 3 types of brain imaging data (sMRI, FDG-PET, and florbetapir-PET) were fused in the hope to improve diagnostic accuracy, and multivariate methods (logistic regression) were applied to these trimodal neuroimaging indices. Then, the receiver-operating characteristic (ROC) method was used to analyze the outcomes of the logistic classifier, with either each index, multiples from each modality, or all indices from all 3 modalities, to investigate their differential abilities to identify the disease. With increasing numbers of indices within each modality and across modalities, the accuracy of identifying Alzheimer disease (AD) increases to varying degrees. For example, the area under the ROC curve is above 0.98 when all the indices from the 3 imaging data types are combined. Using a combination of different indices, the results confirmed the initial hypothesis that different biomarkers were potentially complementary, and thus the conjoint analysis of multiple information from multiple sources would improve the capability to identify diseases such as AD and mild cognitive impairment. © 2018 S. Karger AG, Basel.

  20. A 24-Week Multi-Modality Exercise Program Improves Executive Control in Older Adults with a Self-Reported Cognitive Complaint: Evidence from the Antisaccade Task.

    PubMed

    Heath, Matthew; Shellington, Erin; Titheridge, Sam; Gill, Dawn P; Petrella, Robert J

    2017-01-01

    Exercise programs involving aerobic and resistance training (i.e., multiple-modality) have shown promise in improving cognition and executive control in older adults at risk, or experiencing, cognitive decline. It is, however, unclear whether cognitive training within a multiple-modality program elicits an additive benefit to executive/cognitive processes. This is an important question to resolve in order to identify optimal training programs that delay, or ameliorate, executive deficits in persons at risk for further cognitive decline. In the present study, individuals with a self-reported cognitive complaint (SCC) participated in a 24-week multiple-modality (i.e., the M2 group) exercise intervention program. In addition, a separate group of individuals with a SCC completed the same aerobic and resistance training as the M2 group but also completed a cognitive-based stepping task (i.e., multiple-modality, mind-motor intervention: M4 group). Notably, pre- and post-intervention executive control was examined via the antisaccade task (i.e., eye movement mirror-symmetrical to a target). Antisaccades are an ideal tool for the study of individuals with subtle executive deficits because of its hands- and language-free nature and because the task's neural mechanisms are linked to neuropathology in cognitive decline (i.e., prefrontal cortex). Results showed that M2 and M4 group antisaccade reaction times reliably decreased from pre- to post-intervention and the magnitude of the decrease was consistent across groups. Thus, multi-modality exercise training improved executive performance in persons with a SCC independent of mind-motor training. Accordingly, we propose that multiple-modality training provides a sufficient intervention to improve executive control in persons with a SCC.

  1. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Following the completion of the third test phase of the applicable ramped modal cycle, conduct the post... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped modal... locomotive notch settings. Ramped modal cycles combine multiple test modes of a discrete-mode steady-state...

  2. Graph theory findings in the pathophysiology of temporal lobe epilepsy

    PubMed Central

    Chiang, Sharon; Haneef, Zulfi

    2014-01-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. PMID:24831083

  3. A Game-Theory Based Incentive Framework for an Intelligent Traffic System as Part of a Smart City Initiative

    PubMed Central

    Mei, Haibo; Poslad, Stefan; Du, Shuang

    2017-01-01

    Intelligent Transportation Systems (ITSs) can be applied to inform and incentivize travellers to help them make cognizant choices concerning their trip routes and transport modality use for their daily travel whilst achieving more sustainable societal and transport authority goals. However, in practice, it is challenging for an ITS to enable incentive generation that is context-driven and personalized, whilst supporting multi-dimensional travel goals. This is because an ITS has to address the situation where different travellers have different travel preferences and constraints for route and modality, in the face of dynamically-varying traffic conditions. Furthermore, personalized incentive generation also needs to dynamically achieve different travel goals from multiple travellers, in the face of their conducts being a mix of both competitive and cooperative behaviours. To address this challenge, a Rule-based Incentive Framework (RIF) is proposed in this paper that utilizes both decision tree and evolutionary game theory to process travel information and intelligently generate personalized incentives for travellers. The travel information processed includes travellers’ mobile patterns, travellers’ modality preferences and route traffic volume information. A series of MATLAB simulations of RIF was undertaken to validate RIF to show that it is potentially an effective way to incentivize travellers to change travel routes and modalities as an essential smart city service. PMID:29232907

  4. Feature level fusion of hand and face biometrics

    NASA Astrophysics Data System (ADS)

    Ross, Arun A.; Govindarajan, Rohin

    2005-03-01

    Multibiometric systems utilize the evidence presented by multiple biometric sources (e.g., face and fingerprint, multiple fingers of a user, multiple matchers, etc.) in order to determine or verify the identity of an individual. Information from multiple sources can be consolidated in several distinct levels, including the feature extraction level, match score level and decision level. While fusion at the match score and decision levels have been extensively studied in the literature, fusion at the feature level is a relatively understudied problem. In this paper we discuss fusion at the feature level in 3 different scenarios: (i) fusion of PCA and LDA coefficients of face; (ii) fusion of LDA coefficients corresponding to the R,G,B channels of a face image; (iii) fusion of face and hand modalities. Preliminary results are encouraging and help in highlighting the pros and cons of performing fusion at this level. The primary motivation of this work is to demonstrate the viability of such a fusion and to underscore the importance of pursuing further research in this direction.

  5. Multiple-modality exercise and mind-motor training to improve cardiovascular health and fitness in older adults at risk for cognitive impairment: A randomized controlled trial.

    PubMed

    Boa Sorte Silva, Narlon C; Gregory, Michael A; Gill, Dawn P; Petrella, Robert J

    The effects of multiple-modality exercise on arterial stiffening and cardiovascular fitness has not been fully explored. To explore the influence of a 24-week multiple-modality exercise program associated with a mind-motor training in cardiovascular health and fitness in community-dwelling older adults, compared to multiple-modality exercise (M2) alone. Participants (n=127, aged 67.5 [7.3] years, 71% females) were randomized to either M4 or M2 groups. Both groups received multiple-modality exercise intervention (60min/day, 3days/week for 24-weeks); however, the M4 group underwent additional 15min of mind-motor training, whereas the M2 group received 15min of balance training. Participants were assessed at 24-weeks and after a 28-week non-contact follow-up (52-weeks). at 52-weeks, the M4 group demonstrated a greater VO2max (ml/kg/min) compared to the M2 group (mean difference: 2.39, 95% CI: 0. 61 to 4.16, p=0.009). Within-group analysis indicated that the M4 group demonstrated a positive change in VO2max at 24-weeks (mean change: 1.93, 95% CI: 0.82 to 3.05, p=0.001) and 52-weeks (4.02, 95% CI: 2.71 to 5.32, p=0.001). Similarly, the M2 group increased VO2max at 24-weeks (2.28, 95% CI: 1.23 to 3.32, p<0.001) and 52-weeks (1.63, 95% CI: 0.43 to 2.83, p=0.008). Additionally, the M2 group decreased 24h SBP (mmHg) at 24-weeks (-2.31, 95% CI: -4.61 to -0.01, p=0.049); whereas the M4 group improved 24h DBP (-1.6, 95% CI: -3.03 to -0.17, p=0.028) at 52-weeks. Mind-motor training associated with multiple-modality exercise can positively impact cardiovascular fitness to the same extent as multiple-modality exercise alone. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Eigensystem realization algorithm user's guide forVAX/VMS computers: Version 931216

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.

    1994-01-01

    The eigensystem realization algorithm (ERA) is a multiple-input, multiple-output, time domain technique for structural modal identification and minimum-order system realization. Modal identification is the process of calculating structural eigenvalues and eigenvectors (natural vibration frequencies, damping, mode shapes, and modal masses) from experimental data. System realization is the process of constructing state-space dynamic models for modern control design. This user's guide documents VAX/VMS-based FORTRAN software developed by the author since 1984 in conjunction with many applications. It consists of a main ERA program and 66 pre- and post-processors. The software provides complete modal identification capabilities and most system realization capabilities.

  7. T1 Recovery Is Predominantly Found in Black Holes and Is Associated with Clinical Improvement in Patients with Multiple Sclerosis.

    PubMed

    Thaler, C; Faizy, T D; Sedlacik, J; Holst, B; Stürner, K; Heesen, C; Stellmann, J-P; Fiehler, J; Siemonsen, S

    2017-02-01

    Quantitative MR imaging parameters help to evaluate disease progression in multiple sclerosis and increase correlation with clinical disability. We therefore hypothesized that T1 values might be a marker for ongoing tissue damage or even remyelination and may help increase clinical correlation. MR imaging was performed in 17 patients with relapsing-remitting MS at baseline and after 12 months of starting immunotherapy with dimethyl fumarate. On baseline images, lesion segmentation was performed for normal-appearing white matter, T2 hyperintense (FLAIR lesions), T1 hypointense (black holes), and contrast-enhancing lesions, and T1 relaxation times were obtained at baseline and after 12 months. Changes in clinical status were assessed by using the Expanded Disability Status Scale and Symbol Digit Modalities Test at both dates (Expanded Disability Status Scale-difference/Symbol Digit Modalities Test-diff). The highest T1 relaxation time at baseline was measured in black holes (1460.2 ± 209.46 ms) followed by FLAIR lesions (1400.38 ± 189.1 ms), pure FLAIR lesions (1327.5 ± 210.04 ms), contrast-enhancing lesions (1205.59 ± 199.95 ms), and normal-appearing white matter (851.34 ± 30.61 ms). After 12 months, T1 values had decreased significantly in black holes (1369.4 ± 267.81 ms), contrast-enhancing lesions (1079.57 ± 183.36 ms) (both P < .001), and normal-appearing white matter (841.98 ± 36.1 ms, P = .006). With the Jonckheere-Terpstra Test, better clinical scores were associated with decreasing T1 relaxation times in black holes ( P < .05). T1 relaxation time is a useful quantitative MR imaging technique, which helps detect changes in MS lesions with time. We assume that these changes are associated with the degree of myelination within the lesions themselves and are pronounced in black holes. Additionally, decreasing T1 values in black holes were associated with clinical improvement. © 2017 by American Journal of Neuroradiology.

  8. Modal control of an oblique wing aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, James D.

    1989-01-01

    A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.

  9. Asian Perspectives on Diagnostic and Therapeutic Strategies in Inflammatory Bowel Disease: Report and Analysis of a Survey with Questionnaires.

    PubMed

    Yoshida, Atsushi; Ueno, Fumiaki; Morizane, Toshio; Joh, Takashi; Kamiya, Takeshi; Takahashi, Shin''ichi; Tokunaga, Kengo; Iwakiri, Ryuichi; Kinoshita, Yoshikazu; Suzuki, Hidekazu; Naito, Yuji; Uchiyama, Kazuhiko; Fukodo, Shin; Chan, Francis K L; Halm, Ki-Baik; Kachintorn, Udom; Fock, Kwong Ming; Rani, Abdul Aziz; Syam, Ari Fahrial; Sollano, Jose D; Zhu, Qi

    2017-01-01

    Diagnostic and therapeutic strategies in inflammatory bowel disease (IBD) vary among countries in terms of availability of modalities, affordability of health care resource, health care policy and cultural background. This may be the case in different countries in Eastern Asia. The aim of this study was to determine and understand the differences in diagnostic and therapeutic strategies of IBD between Japan and the rest of Asian countries (ROA). Questionnaires with regard to clinical practice in IBD were distributed to members of the International Gastroenterology Consensus Symposium Study Group. The responders were allowed to select multiple items for each question, as multiple modalities are frequently utilized in the diagnosis and the management of IBD. Dependency and independency of selected items for each question were evaluated by the Bayesian network analysis. The selected diagnostic modalities were not very different between Japan and ROA, except for those related to small bowel investigations. Balloon-assisted enteroscopy and small bowel follow through are frequently used in Japan, while CT/MR enterography is popular in ROA. Therapeutic modalities for IBD depend on availability of such modalities in clinical practice. As far as modalities commonly available in both regions are concerned, there seemed to be similarity in the selection of each therapeutic modality. However, evaluation of dependency of separate therapeutic modalities by Bayesian network analysis disclosed some difference in therapeutic strategies between Japan and ROA. Although selected modalities showed some similarity, Bayesian network analysis elicited certain differences in the clinical approaches combining multiple modalities in various aspects of IBD between Japan and ROA. © 2016 S. Karger AG, Basel.

  10. An Evaluation of Multimodal Interactions with Technology while Learning Science Concepts

    ERIC Educational Resources Information Center

    Anastopoulou, Stamatina; Sharples, Mike; Baber, Chris

    2011-01-01

    This paper explores the value of employing multiple modalities to facilitate science learning with technology. In particular, it is argued that when multiple modalities are employed, learners construct strong relations between physical movement and visual representations of motion. Body interactions with visual representations, enabled by…

  11. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

    PubMed

    Liu, Manhua; Cheng, Danni; Wang, Kundong; Wang, Yaping

    2018-03-23

    Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.

  12. Human middle-ear model with compound eardrum and airway branching in mastoid air cells

    PubMed Central

    Keefe, Douglas H.

    2015-01-01

    An acoustical/mechanical model of normal adult human middle-ear function is described for forward and reverse transmission. The eardrum model included one component bound along the manubrium and another bound by the tympanic cleft. Eardrum components were coupled by a time-delayed impedance. The acoustics of the middle-ear cleft was represented by an acoustical transmission-line model for the tympanic cavity, aditus, antrum, and mastoid air cell system with variable amounts of excess viscothermal loss. Model parameters were fitted to published measurements of energy reflectance (0.25–13 kHz), equivalent input impedance at the eardrum (0.25–11 kHz), temporal-bone pressure in scala vestibuli and scala tympani (0.1–11 kHz), and reverse middle-ear impedance (0.25–8 kHz). Inner-ear fluid motion included cochlear and physiological third-window pathways. The two-component eardrum with time delay helped fit intracochlear pressure responses. A multi-modal representation of the eardrum and high-frequency modeling of the middle-ear cleft helped fit ear-canal responses. Input reactance at the eardrum was small at high frequencies due to multiple modal resonances. The model predicted the middle-ear efficiency between ear canal and cochlea, and the cochlear pressures at threshold. PMID:25994701

  13. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.

    PubMed

    Keefe, Douglas H

    2015-05-01

    An acoustical/mechanical model of normal adult human middle-ear function is described for forward and reverse transmission. The eardrum model included one component bound along the manubrium and another bound by the tympanic cleft. Eardrum components were coupled by a time-delayed impedance. The acoustics of the middle-ear cleft was represented by an acoustical transmission-line model for the tympanic cavity, aditus, antrum, and mastoid air cell system with variable amounts of excess viscothermal loss. Model parameters were fitted to published measurements of energy reflectance (0.25-13 kHz), equivalent input impedance at the eardrum (0.25-11 kHz), temporal-bone pressure in scala vestibuli and scala tympani (0.1-11 kHz), and reverse middle-ear impedance (0.25-8 kHz). Inner-ear fluid motion included cochlear and physiological third-window pathways. The two-component eardrum with time delay helped fit intracochlear pressure responses. A multi-modal representation of the eardrum and high-frequency modeling of the middle-ear cleft helped fit ear-canal responses. Input reactance at the eardrum was small at high frequencies due to multiple modal resonances. The model predicted the middle-ear efficiency between ear canal and cochlea, and the cochlear pressures at threshold.

  14. Case of possible multiple system atrophy with a characteristic imaging finding of open bladder neck during storage phase as an initial sign.

    PubMed

    Zhang, Lu; Haga, Nobuhiro; Ogawa, Soichiro; Matsuoka, Kanako; Koguchi, Tomoyuki; Akaihata, Hidenori; Hata, Junya; Kataoka, Masao; Ishibashi, Kei; Kojima, Yoshiyuki

    2017-11-01

    Multiple system atrophy is a neurodegenerative disease that affects autonomic and motor systems. Patients with multiple system atrophy usually experience lower urinary tract symptoms, which sometimes appear as an initial symptom before the emergence of the generalized symptoms. An open bladder neck during the filling phase on video urodynamic study is one characteristic imaging finding after the diagnosis of multiple system atrophy, but has not previously been reported at an early phase of the disease. We report a case in which an open bladder neck was observed on several imaging modalities before generalized symptoms emerged. Because occult neurogenic bladder might exist in patients whose lower urinary tract symptoms are resistant to pharmacotherapy, we report this case to raise awareness of the importance of sufficient imaging evaluations. An open bladder neck might be an important imaging finding for diagnosing multiple system atrophy, irrespective of the presence of generalized symptoms. This finding could help avoid false diagnosis and unnecessary treatment. © 2017 The Japanese Urological Association.

  15. Voxelwise multivariate analysis of multimodality magnetic resonance imaging

    PubMed Central

    Naylor, Melissa G.; Cardenas, Valerie A.; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin

    2015-01-01

    Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remains a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. PMID:23408378

  16. An Investigation on Revealing the Learning Modalities of Undergraduate Students

    ERIC Educational Resources Information Center

    Ünal, Menderes

    2015-01-01

    This study investigated learning modalities of undergraduate students in terms of their gender, departments, grades and academic achievements. The modalities/styles (visual, auditory and kinaesthetic) indicate learning preferences and help students find ways to study effectively, reach new information and solve problems. The study was conducted…

  17. Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    PubMed Central

    Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael

    2012-01-01

    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108

  18. Integrated Analysis and Visualization of Group Differences in Structural and Functional Brain Connectivity: Applications in Typical Ageing and Schizophrenia.

    PubMed

    Langen, Carolyn D; White, Tonya; Ikram, M Arfan; Vernooij, Meike W; Niessen, Wiro J

    2015-01-01

    Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-modal comparison plots" show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using "worm plots". Group differences in connections are examined with an existing visualization, the "connectogram". These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the "Statistical Analysis of Minimum cost path based Structural Connectivity" method and the average fractional anisotropy along the fiber. The functional measures were Pearson's correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies.

  19. Modality-specific selective attention attenuates multisensory integration.

    PubMed

    Mozolic, Jennifer L; Hugenschmidt, Christina E; Peiffer, Ann M; Laurienti, Paul J

    2008-01-01

    Stimuli occurring in multiple sensory modalities that are temporally synchronous or spatially coincident can be integrated together to enhance perception. Additionally, the semantic content or meaning of a stimulus can influence cross-modal interactions, improving task performance when these stimuli convey semantically congruent or matching information, but impairing performance when they contain non-matching or distracting information. Attention is one mechanism that is known to alter processing of sensory stimuli by enhancing perception of task-relevant information and suppressing perception of task-irrelevant stimuli. It is not known, however, to what extent attention to a single sensory modality can minimize the impact of stimuli in the unattended sensory modality and reduce the integration of stimuli across multiple sensory modalities. Our hypothesis was that modality-specific selective attention would limit processing of stimuli in the unattended sensory modality, resulting in a reduction of performance enhancements produced by semantically matching multisensory stimuli, and a reduction in performance decrements produced by semantically non-matching multisensory stimuli. The results from two experiments utilizing a cued discrimination task demonstrate that selective attention to a single sensory modality prevents the integration of matching multisensory stimuli that is normally observed when attention is divided between sensory modalities. Attention did not reliably alter the amount of distraction caused by non-matching multisensory stimuli on this task; however, these findings highlight a critical role for modality-specific selective attention in modulating multisensory integration.

  20. Overview of multi-input frequency domain modal testing methods with an emphasis on sine testing

    NASA Technical Reports Server (NTRS)

    Rost, Robert W.; Brown, David L.

    1988-01-01

    An overview of the current state of the art multiple-input, multiple-output modal testing technology is discussed. A very brief review of the current time domain methods is given. A detailed review of frequency and spatial domain methods is presented with an emphasis on sine testing.

  1. Roles of Frequency, Attitudes, and Multiple Intelligence Modality Surrounding Electricity Content-Based Reader's Theatre

    ERIC Educational Resources Information Center

    Hosier, Julie Winchester

    2009-01-01

    Integration of subjects is something elementary teachers must do to insure required objectives are covered. Science-based Reader's Theatre is one way to weave reading into science. This study examined the roles of frequency, attitudes, and Multiple Intelligence modalities surrounding Electricity Content-Based Reader's Theatre. This study used…

  2. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts.

    PubMed

    Pandey, Shilpa; Hakky, Michael; Kwak, Ellie; Jara, Hernan; Geyer, Carl A; Erbay, Sami H

    2013-05-01

    Neurovascular imaging studies are routinely used for the assessment of headaches and changes in mental status, stroke workup, and evaluation of the arteriovenous structures of the head and neck. These imaging studies are being performed with greater frequency as the aging population continues to increase. Magnetic resonance (MR) angiographic imaging techniques are helpful in this setting. However, mastering these techniques requires an in-depth understanding of the basic principles of physics, complex flow patterns, and the correlation of MR angiographic findings with conventional MR imaging findings. More than one imaging technique may be used to solve difficult cases, with each technique contributing unique information. Unfortunately, incorporating findings obtained with multiple imaging modalities may add to the diagnostic challenge. To ensure diagnostic accuracy, it is essential that the radiologist carefully evaluate the details provided by these modalities in light of basic physics principles, the fundamentals of various imaging techniques, and common neurovascular imaging pitfalls. ©RSNA, 2013.

  3. Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking

    PubMed Central

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715

  4. Online multi-modal robust non-negative dictionary learning for visual tracking.

    PubMed

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.

  5. Continuation of Weight Loss Treatment Is Associated with the Number of Self-Selected Treatment Modalities

    ERIC Educational Resources Information Center

    Martin, Corby K.; Drab-Hudson, Danae L.; York-Crowe, Emily; Mayville, Stephen B.; Yu, Ying; Greenway, Frank L.

    2007-01-01

    Behavior therapy is a cornerstone of weight loss treatment and behaviorists help direct patients' treatment. A novel design was used that allowed participants to choose different treatment modalities during behavioral weight loss treatment. The association between the selection of different treatment modalities and program completion was examined…

  6. Education Solutions for Child Poverty: New Modalities from New Zealand

    ERIC Educational Resources Information Center

    Airini

    2015-01-01

    This article describes education solutions to child poverty. Through a focus on New Zealand, the article explores the meaning of child poverty, children's perspectives on child poverty and solutions, and modalities in citizenship, social and economics education to help address child poverty. Four modalities are proposed: centre our work in…

  7. Linked independent component analysis for multimodal data fusion.

    PubMed

    Groves, Adrian R; Beckmann, Christian F; Smith, Steve M; Woolrich, Mark W

    2011-02-01

    In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data and searching for task- or disease-related changes in each modality separately. A major challenge in analysis is to find systematic approaches for fusing these differing data types together to automatically find patterns of related changes across multiple modalities, when they exist. Independent Component Analysis (ICA) is a popular unsupervised learning method that can be used to find the modes of variation in neuroimaging data across a group of subjects. When multimodal data is acquired for the subjects, ICA is typically performed separately on each modality, leading to incompatible decompositions across modalities. Using a modular Bayesian framework, we develop a novel "Linked ICA" model for simultaneously modelling and discovering common features across multiple modalities, which can potentially have completely different units, signal- and contrast-to-noise ratios, voxel counts, spatial smoothnesses and intensity distributions. Furthermore, this general model can be configured to allow tensor ICA or spatially-concatenated ICA decompositions, or a combination of both at the same time. Linked ICA automatically determines the optimal weighting of each modality, and also can detect single-modality structured components when present. This is a fully probabilistic approach, implemented using Variational Bayes. We evaluate the method on simulated multimodal data sets, as well as on a real data set of Alzheimer's patients and age-matched controls that combines two very different types of structural MRI data: morphological data (grey matter density) and diffusion data (fractional anisotropy, mean diffusivity, and tensor mode). Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Meaning Making through Multiple Modalities in a Biology Classroom: A Multimodal Semiotics Discourse Analysis

    ERIC Educational Resources Information Center

    Jaipal, Kamini

    2010-01-01

    The teaching of science is a complex process, involving the use of multiple modalities. This paper illustrates the potential of a multimodal semiotics discourse analysis framework to illuminate meaning-making possibilities during the teaching of a science concept. A multimodal semiotics analytical framework is developed and used to (1) analyze the…

  9. Psychophysical Isolation of the Modality Responsible for Detecting Multimodal Stimuli: A Chemosensory Example

    ERIC Educational Resources Information Center

    Nagata, Hisanori; Dalton, Pamela; Doolittle, Nadine; Breslin, Paul A. S.

    2005-01-01

    Multiple sense modalities can be stimulated conjointly by a physically complex item, such as a predator, and also by a physically solitary stimulus that acts on multiple receptor classes. As a prime example of this latter group, l-menthol from mint stimulates taste, smell, and several somatosensory submodalities. In 6 experiments that used a…

  10. Graph theory findings in the pathophysiology of temporal lobe epilepsy.

    PubMed

    Chiang, Sharon; Haneef, Zulfi

    2014-07-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Voxelwise multivariate analysis of multimodality magnetic resonance imaging.

    PubMed

    Naylor, Melissa G; Cardenas, Valerie A; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin

    2014-03-01

    Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remain a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. Copyright © 2013 Wiley Periodicals, Inc.

  12. Evaluation and nonsurgical management of rotator cuff calcific tendinopathy.

    PubMed

    Greis, Ari C; Derrington, Stephen M; McAuliffe, Matthew

    2015-04-01

    Rotator cuff calcific tendinopathy is a common finding that accounts for about 7% of patients with shoulder pain. There are numerous theories on the pathogenesis of rotator cuff calcific tendinopathy. The diagnosis is confirmed with radiography, MRI or ultrasound. There are numerous conservative treatment options available and most patients can be managed successfully without surgical intervention. Nonsteroidal anti-inflammatory drugs and multiple modalities are often used to manage pain and inflammation; physical therapy can help improve scapular mechanics and decrease dynamic impingement; ultrasound-guided needle aspiration and lavage techniques can provide long-term improvement in pain and function in these patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions.

    PubMed

    Valcarcel, Alessandra M; Linn, Kristin A; Vandekar, Simon N; Satterthwaite, Theodore D; Muschelli, John; Calabresi, Peter A; Pham, Dzung L; Martin, Melissa Lynne; Shinohara, Russell T

    2018-03-08

    Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WMLs) in multiple sclerosis. While WMLs have been studied for over two decades using MRI, automated segmentation remains challenging. Although the majority of statistical techniques for the automated segmentation of WMLs are based on single imaging modalities, recent advances have used multimodal techniques for identifying WMLs. Complementary modalities emphasize different tissue properties, which help identify interrelated features of lesions. Method for Inter-Modal Segmentation Analysis (MIMoSA), a fully automatic lesion segmentation algorithm that utilizes novel covariance features from intermodal coupling regression in addition to mean structure to model the probability lesion is contained in each voxel, is proposed. MIMoSA was validated by comparison with both expert manual and other automated segmentation methods in two datasets. The first included 98 subjects imaged at Johns Hopkins Hospital in which bootstrap cross-validation was used to compare the performance of MIMoSA against OASIS and LesionTOADS, two popular automatic segmentation approaches. For a secondary validation, a publicly available data from a segmentation challenge were used for performance benchmarking. In the Johns Hopkins study, MIMoSA yielded average Sørensen-Dice coefficient (DSC) of .57 and partial AUC of .68 calculated with false positive rates up to 1%. This was superior to performance using OASIS and LesionTOADS. The proposed method also performed competitively in the segmentation challenge dataset. MIMoSA resulted in statistically significant improvements in lesion segmentation performance compared with LesionTOADS and OASIS, and performed competitively in an additional validation study. Copyright © 2018 by the American Society of Neuroimaging.

  14. Toward Non-Invasive and Automatic Intravenous Infiltration Detection: Evaluation of Bioimpedance and Skin Strain in a Pig Model.

    PubMed

    Bicen, A Ozan; West, Leanne L; Cesar, Liliana; Inan, Omer T

    2018-01-01

    Intravenous (IV) therapy is prevalent in hospital settings, where fluids are typically delivered with an IV into a peripheral vein of the patient. IV infiltration is the inadvertent delivery of fluids into the extravascular space rather than into the vein (and requires urgent treatment to avoid scarring and severe tissue damage), for which medical staff currently needs to check patients periodically. In this paper, the performance of two non-invasive sensing modalities, electrical bioimpedance (EBI), and skin strain sensing, for the automatic detection of IV infiltration was investigated in an animal model. Infiltrations were physically simulated on the hind limb of anesthetized pigs, where the sensors for EBI and skin strain sensing were co-located. The obtained data were used to examine the ability to distinguish between infusion into the vein and an infiltration event using bioresistance and bioreactance (derived from EBI), as well as skin strain. Skin strain and bioresistance sensing could achieve detection rates greater than 0.9 for infiltration fluid volumes of 2 and 10 mL, respectively, for a given false positive, i.e., false alarm rate of 0.05. Furthermore, the fusion of multiple sensing modalities could achieve a detection rate of 0.97 with a false alarm rate of 0.096 for 5mL fluid volume of infiltration. EBI and skin strain sensing can enable non-invasive and real-time IV infiltration detection systems. Fusion of multiple sensing modalities can help to detect expanded range of leaking fluid volumes. The provided performance results and comparisons in this paper are an important step towards clinical translation of sensing technologies for detecting IV infiltration.

  15. Toward Non-Invasive and Automatic Intravenous Infiltration Detection: Evaluation of Bioimpedance and Skin Strain in a Pig Model

    PubMed Central

    Bicen, A. Ozan; West, Leanne L.; Cesar, Liliana

    2018-01-01

    Intravenous (IV) therapy is prevalent in hospital settings, where fluids are typically delivered with an IV into a peripheral vein of the patient. IV infiltration is the inadvertent delivery of fluids into the extravascular space rather than into the vein (and requires urgent treatment to avoid scarring and severe tissue damage), for which medical staff currently needs to check patients periodically. In this paper, the performance of two non-invasive sensing modalities, electrical bioimpedance (EBI), and skin strain sensing, for the automatic detection of IV infiltration was investigated in an animal model. Infiltrations were physically simulated on the hind limb of anesthetized pigs, where the sensors for EBI and skin strain sensing were co-located. The obtained data were used to examine the ability to distinguish between infusion into the vein and an infiltration event using bioresistance and bioreactance (derived from EBI), as well as skin strain. Skin strain and bioresistance sensing could achieve detection rates greater than 0.9 for infiltration fluid volumes of 2 and 10 mL, respectively, for a given false positive, i.e., false alarm rate of 0.05. Furthermore, the fusion of multiple sensing modalities could achieve a detection rate of 0.97 with a false alarm rate of 0.096 for 5mL fluid volume of infiltration. EBI and skin strain sensing can enable non-invasive and real-time IV infiltration detection systems. Fusion of multiple sensing modalities can help to detect expanded range of leaking fluid volumes. The provided performance results and comparisons in this paper are an important step towards clinical translation of sensing technologies for detecting IV infiltration. PMID:29692956

  16. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    NASA Technical Reports Server (NTRS)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  17. Physician perceptions of the value of physical modalities in the treatment of musculoskeletal disease.

    PubMed

    Rush, P J; Shore, A

    1994-06-01

    We randomly surveyed 100 specialists in rehabilitation medicine and 100 rheumatologists concerning their perceptions of the value of 11 different physical modalities--cold, active and passive exercise, interferential current, laser, magnetotherapy, microwave, shortwave diathermy, traction, ultrasound and transcutaneous nerve stimulation in the treatment of seven different musculoskeletal conditions--acute arthritis, joint contracture, neck pain, back pain, tendinitis, reflex sympathetic dystrophy and frozen shoulder. There were significant differences in the perceived benefits of modalities which varied by modality and condition. Overall, rehabilitation medicine specialists regarded modalities to be helpful more often than rheumatologists (P < 0.001).

  18. Laser biostimulation therapy planning supported by imaging

    NASA Astrophysics Data System (ADS)

    Mester, Adam R.

    2018-04-01

    Ultrasonography and MR imaging can help to identify the area and depth of different lesions, like injury, overuse, inflammation, degenerative diseases. The appropriate power density, sufficient dose and direction of the laser treatment can be optimally estimated. If required minimum 5 mW photon density and required optimal energy dose: 2-4 Joule/cm2 wouldn't arrive into the depth of the target volume - additional techniques can help: slight compression of soft tissues can decrease the tissue thickness or multiple laser diodes can be used. In case of multiple diode clusters light scattering results deeper penetration. Another method to increase the penetration depth is a second pulsation (in kHz range) of laser light. (So called continuous wave laser itself has inherent THz pulsation by temporal coherence). Third solution of higher light intensity in the target volume is the multi-gate technique: from different angles the same joint can be reached based on imaging findings. Recent developments is ultrasonography: elastosonography and tissue harmonic imaging with contrast material offer optimal therapy planning. While MRI is too expensive modality for laser planning images can be optimally used if a diagnostic MRI already was done. Usual DICOM images offer "postprocessing" measurements in mm range.

  19. Modal analysis using a Fourier analyzer, curve-fitting, and modal tuning

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chung, Y. T.

    1981-01-01

    The proposed modal test program differs from single-input methods in that preliminary data may be acquired using multiple inputs, and modal tuning procedures may be employed to define closely spaced frquency modes more accurately or to make use of frequency response functions (FRF's) which are based on several input locations. In some respects the proposed modal test proram resembles earlier sine-sweep and sine-dwell testing in that broadband FRF's are acquired using several input locations, and tuning is employed to refine the modal parameter estimates. The major tasks performed in the proposed modal test program are outlined. Data acquisition and FFT processing, curve fitting, and modal tuning phases are described and examples are given to illustrate and evaluate them.

  20. Effects of Non-Driving Related Task Modalities on Takeover Performance in Highly Automated Driving.

    PubMed

    Wandtner, Bernhard; Schömig, Nadja; Schmidt, Gerald

    2018-04-01

    Aim of the study was to evaluate the impact of different non-driving related tasks (NDR tasks) on takeover performance in highly automated driving. During highly automated driving, it is allowed to engage in NDR tasks temporarily. However, drivers must be able to take over control when reaching a system limit. There is evidence that the type of NDR task has an impact on takeover performance, but little is known about the specific task characteristics that account for performance decrements. Thirty participants drove in a simulator using a highly automated driving system. Each participant faced five critical takeover situations. Based on assumptions of Wickens's multiple resource theory, stimulus and response modalities of a prototypical NDR task were systematically manipulated. Additionally, in one experimental group, the task was locked out simultaneously with the takeover request. Task modalities had significant effects on several measures of takeover performance. A visual-manual texting task degraded performance the most, particularly when performed handheld. In contrast, takeover performance with an auditory-vocal task was comparable to a baseline without any task. Task lockout was associated with faster hands-on-wheel times but not altered brake response times. Results showed that NDR task modalities are relevant factors for takeover performance. An NDR task lockout was highly accepted by the drivers and showed moderate benefits for the first takeover reaction. Knowledge about the impact of NDR task characteristics is an enabler for adaptive takeover concepts. In addition, it might help regulators to make decisions on allowed NDR tasks during automated driving.

  1. Characterization of identification errors and uses in localization of poor modal correlation

    NASA Astrophysics Data System (ADS)

    Martin, Guillaume; Balmes, Etienne; Chancelier, Thierry

    2017-05-01

    While modal identification is a mature subject, very few studies address the characterization of errors associated with components of a mode shape. This is particularly important in test/analysis correlation procedures, where the Modal Assurance Criterion is used to pair modes and to localize at which sensors discrepancies occur. Poor correlation is usually attributed to modeling errors, but clearly identification errors also occur. In particular with 3D Scanning Laser Doppler Vibrometer measurement, many transfer functions are measured. As a result individual validation of each measurement cannot be performed manually in a reasonable time frame and a notable fraction of measurements is expected to be fairly noisy leading to poor identification of the associated mode shape components. The paper first addresses measurements and introduces multiple criteria. The error measures the difference between test and synthesized transfer functions around each resonance and can be used to localize poorly identified modal components. For intermediate error values, diagnostic of the origin of the error is needed. The level evaluates the transfer function amplitude in the vicinity of a given mode and can be used to eliminate sensors with low responses. A Noise Over Signal indicator, product of error and level, is then shown to be relevant to detect poorly excited modes and errors due to modal property shifts between test batches. Finally, a contribution is introduced to evaluate the visibility of a mode in each transfer. Using tests on a drum brake component, these indicators are shown to provide relevant insight into the quality of measurements. In a second part, test/analysis correlation is addressed with a focus on the localization of sources of poor mode shape correlation. The MACCo algorithm, which sorts sensors by the impact of their removal on a MAC computation, is shown to be particularly relevant. Combined with the error it avoids keeping erroneous modal components. Applied after removal of poor modal components, it provides spatial maps of poor correlation, which help localizing mode shape correlation errors and thus prepare the selection of model changes in updating procedures.

  2. Scan Patterns Predict Sentence Production in the Cross-Modal Processing of Visual Scenes

    ERIC Educational Resources Information Center

    Coco, Moreno I.; Keller, Frank

    2012-01-01

    Most everyday tasks involve multiple modalities, which raises the question of how the processing of these modalities is coordinated by the cognitive system. In this paper, we focus on the coordination of visual attention and linguistic processing during speaking. Previous research has shown that objects in a visual scene are fixated before they…

  3. Roles of frequency, attitudes, and multiple intelligence modality surrounding Electricity Content-Based Reader's Theatre

    NASA Astrophysics Data System (ADS)

    Hosier, Julie Winchester

    Integration of subjects is something elementary teachers must do to insure required objectives are covered. Science-based Reader's Theatre is one way to weave reading into science. This study examined the roles of frequency, attitudes, and Multiple Intelligence modalities surrounding Electricity Content-Based Reader's Theatre. This study used quasi-experimental, repeated measures ANOVA with time as a factor design. A convenience sample of two fifth-grade classrooms participated in the study for eighteen weeks. Five Electricity Achievement Tests were given throughout the study to assess students' growth. A Student Reader's Theatre Attitudinal Survey revealed students' attitudes before and after Electricity Content-Based Reader's Theatre treatment. The Multiple Intelligence Inventory for Kids (Faris, 2007) examined whether Multiple Intelligence modality played a role in achievement on Electricity Test 4, the post-treatment test. Analysis using repeated measures ANOVA and an independent t-test found that students in the experimental group, which practiced its student-created Electricity Content-Based Reader's Theatre skits ten times versus two times for the for control group, did significantly better on Electricity Achievement Test 4, t(76) = 3.018, p = 0.003. Dependent t-tests did not find statistically significant differences between students' attitudes about Electricity Content-Based Reader's Theatre before and after treatment. A Kruskal-Wallis test found no statistically significant difference between the various Multiple Intelligence modalities score mean ranks (x2 = 5.57, df = 2, alpha = .062). Qualitative data do, however, indicate students had strong positive feelings about Electricity Content-Based Reader's Theatre after treatment. Students indicated it to be motivating, confidence-building, and a fun way to learn about science; however, they disliked writing their own scripts. Examining the frequency, attitudes, and Multiple Intelligence modalities lead to the conclusion that the role of frequency had the greatest impact on the success of Electricity Content-Based Reader's Theatre. The participating teachers, students, and research found integrating science and reading through Electricity Content-Based Reader's Theatre beneficial.

  4. Active Prior Tactile Knowledge Transfer for Learning Tactual Properties of New Objects

    PubMed Central

    Feng, Di

    2018-01-01

    Reusing the tactile knowledge of some previously-explored objects (prior objects) helps us to easily recognize the tactual properties of new objects. In this paper, we enable a robotic arm equipped with multi-modal artificial skin, like humans, to actively transfer the prior tactile exploratory action experiences when it learns the detailed physical properties of new objects. These experiences, or prior tactile knowledge, are built by the feature observations that the robot perceives from multiple sensory modalities, when it applies the pressing, sliding, and static contact movements on objects with different action parameters. We call our method Active Prior Tactile Knowledge Transfer (APTKT), and systematically evaluated its performance by several experiments. Results show that the robot improved the discrimination accuracy by around 10% when it used only one training sample with the feature observations of prior objects. By further incorporating the predictions from the observation models of prior objects as auxiliary features, our method improved the discrimination accuracy by over 20%. The results also show that the proposed method is robust against transferring irrelevant prior tactile knowledge (negative knowledge transfer). PMID:29466300

  5. Dual-modality imaging with a ultrasound-gamma device for oncology

    NASA Astrophysics Data System (ADS)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  6. Barriers to help-seeking for a gambling problem: the experiences of gamblers who have sought specialist assistance and the perceptions of those who have not.

    PubMed

    Pulford, Justin; Bellringer, Maria; Abbott, Max; Clarke, Dave; Hodgins, David; Williams, Jeremy

    2009-03-01

    This paper presents barriers to help-seeking data as reported by users of a national gambling helpline (help-seekers, HS, N = 125) as well as data pertaining to perceived barriers to seeking help as reported by gamblers recruited from the general population (non-help-seekers, NHS, N = 104). All data were collected via a structured, multi-modal survey. When asked to identify actual or perceived barriers to seeking help, responses indicative of pride (78% of HS participants, 84% of NHS participants), shame (73% of HS participants, 84% of NHS participants) or denial (87% of NHS participants) were most frequently reported. These three factors were also most often identified as the real or perceived primary barrier to help-seeking (collectively accounting for 55% of HS, and 60% of NHS, responses to this question) and were the only barriers to be identified by more than 10% of either HS and NHS participants without prompting. It was of note, however, that participants in both groups identified multiple barriers to help-seeking (mean of 6.7 and 12.2, respectively) and that, when presented with a list of 21 possible barrier items, NHS participants endorsed 19 of the listed items significantly more often than their HS counterparts. The implications of these findings, with respect to promoting greater or earlier help-seeking activity amongst problem gamblers, are discussed.

  7. Dynamic Dependence Analysis : Modeling and Inference of Changing Dependence Among Multiple Time-Series

    DTIC Science & Technology

    2009-06-01

    isolation. In addition to being inherently multi-modal, human perception takes advantages of multiple sources of information within a single modality...restric- tion was reasonable for the applications we looked at. However, consider using a TIM to model a teacher student relationship among moving objects...That is, imagine one teacher object demonstrating a behavior for a student object. The student can observe the teacher and then recreate the behavior

  8. A wireless modular multi-modal multi-node patch platform for robust biosignal monitoring.

    PubMed

    Pantelopoulos, Alexandros; Saldivar, Enrique; Roham, Masoud

    2011-01-01

    In this paper a wireless modular, multi-modal, multi-node patch platform is described. The platform comprises low-cost semi-disposable patch design aiming at unobtrusive ambulatory monitoring of multiple physiological parameters. Owing to its modular design it can be interfaced with various low-power RF communication and data storage technologies, while the data fusion of multi-modal and multi-node features facilitates measurement of several biosignals from multiple on-body locations for robust feature extraction. Preliminary results of the patch platform are presented which illustrate the capability to extract respiration rate from three different independent metrics, which combined together can give a more robust estimate of the actual respiratory rate.

  9. Learning Across Senses: Cross-Modal Effects in Multisensory Statistical Learning

    PubMed Central

    Mitchel, Aaron D.; Weiss, Daniel J.

    2014-01-01

    It is currently unknown whether statistical learning is supported by modality-general or modality-specific mechanisms. One issue within this debate concerns the independence of learning in one modality from learning in other modalities. In the present study, the authors examined the extent to which statistical learning across modalities is independent by simultaneously presenting learners with auditory and visual streams. After establishing baseline rates of learning for each stream independently, they systematically varied the amount of audiovisual correspondence across 3 experiments. They found that learners were able to segment both streams successfully only when the boundaries of the audio and visual triplets were in alignment. This pattern of results suggests that learners are able to extract multiple statistical regularities across modalities provided that there is some degree of cross-modal coherence. They discuss the implications of their results in light of recent claims that multisensory statistical learning is guided by modality-independent mechanisms. PMID:21574745

  10. Multi-Modality Imaging in the Evaluation and Treatment of Mitral Regurgitation.

    PubMed

    Bouchard, Marc-André; Côté-Laroche, Claudia; Beaudoin, Jonathan

    2017-10-13

    Mitral regurgitation (MR) is frequent and associated with increased mortality and morbidity when severe. It may be caused by intrinsic valvular disease (primary MR) or ventricular deformation (secondary MR). Imaging has a critical role to document the severity, mechanism, and impact of MR on heart function as selected patients with MR may benefit from surgery whereas other will not. In patients planned for a surgical intervention, imaging is also important to select candidates for mitral valve (MV) repair over replacement and to predict surgical success. Although standard transthoracic echocardiography is the first-line modality to evaluate MR, newer imaging modalities like three-dimensional (3D) transesophageal echocardiography, stress echocardiography, cardiac magnetic resonance (CMR), and computed tomography (CT) are emerging and complementary tools for MR assessment. While some of these modalities can provide insight into MR severity, others will help to determine its mechanism. Understanding the advantages and limitations of each imaging modality is important to appreciate their respective role for MR assessment and help to resolve eventual discrepancies between different diagnostic methods. With the increasing use of transcatheter mitral procedures (repair or replacement) for high-surgical-risk patients, multimodality imaging has now become even more important to determine eligibility, preinterventional planning, and periprocedural guidance.

  11. Multimodal Sparse Coding for Event Detection

    DTIC Science & Technology

    2015-10-13

    classification tasks based on single modality. We present multimodal sparse coding for learning feature representations shared across multiple modalities...The shared representa- tions are applied to multimedia event detection (MED) and evaluated in compar- ison to unimodal counterparts, as well as other...and video tracks from the same multimedia clip, we can force the two modalities to share a similar sparse representation whose benefit includes robust

  12. Scientific and industrial challenges of developing nanoparticle-based theranostics and multiple-modality contrast agents for clinical application

    NASA Astrophysics Data System (ADS)

    Wáng, Yì Xiáng J.; Idée, Jean-Marc; Corot, Claire

    2015-10-01

    Designing of theranostics and dual or multi-modality contrast agents are currently two of the hottest topics in biotechnology and biomaterials science. However, for single entity theranostics, a right ratio of their diagnostic component and their therapeutic component may not always be realized in a composite suitable for clinical application. For dual/multiple modality molecular imaging agents, after in vivo administration, there is an optimal time window for imaging, when an agent is imaged by one modality, the pharmacokinetics of this agent may not allow imaging by another modality. Due to reticuloendothelial system clearance, efficient in vivo delivery of nanoparticles to the lesion site is sometimes difficult. The toxicity of these entities also remains poorly understood. While the medical need of theranostics is admitted, the business model remains to be established. There is an urgent need for a global and internationally harmonized re-evaluation of the approval and marketing processes of theranostics. However, a reasonable expectation exists that, in the near future, the current obstacles will be removed, thus allowing the wide use of these very promising agents.

  13. Modal vector estimation for closely spaced frequency modes

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chung, Y. T.; Blair, M.

    1982-01-01

    Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.

  14. Enhancing Academic Performance: Seven Perceptual Styles of Learning.

    ERIC Educational Resources Information Center

    Higbee, Jeanne L.; And Others

    1991-01-01

    Presents Galbraith and James's taxonomy of seven perceptual modalities (i.e., print, aural, interactive, visual, haptic, kinesthetic, and olfactory). Discusses ways educators can demonstrate perceptual modalities in the classroom and help students identify their personal style of learning. Explains how this knowledge can facilitate learning in a…

  15. Automatic modal identification of cable-supported bridges instrumented with a long-term monitoring system

    NASA Astrophysics Data System (ADS)

    Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.

    2003-08-01

    An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.

  16. Visual and tactile length matching in spatial neglect.

    PubMed

    Bisiach, Edoardo; McIntosh, Robert D; Dijkerman, H Chris; McClements, Kevin I; Colombo, Mariarosa; Milner, A David

    2004-01-01

    Previous studies have shown that many patients with spatial neglect underestimate the horizontal extent of leftwardly located shapes (presented on screen or on paper) relative to rightwardly located shapes. This has been used to help explain their leftward biases in line bisection. In the present study we have tested patients with right hemisphere damage, either with or without neglect, on a comparable length matching task, but using 3-dimensional objects. The task was executed first visually without tactile contact, and second through touch without vision. In both sense modalities, we found that patients with neglect, but not those without, tended to underestimate leftward located objects relative to rightward located objects, differing significantly in this regard from healthy subjects. However these lateral biases were not as frequent or as pronounced as in previous studies using 2-D visual shapes. Despite the similar asymmetries in the two sense modalities, we found only a small correlation between them, and clear double dissociations were observed among our patients. We conclude that leftward length underestimation cannot be attributed to any one single cause. First it cannot be entirely due to impairments in the visual pathways, such as hemianopia and/or processing biases, since the disorder is also seen in the tactile modality. At the same time, however, length underestimation phenomena cannot be fully explained as a disruption of a supramodal central size processor, since they can occur in either vision or touch alone. Our data would fit best with a multiple-factor model in which some patients show leftward length underestimation for modality-specific reasons, while others do so due to a more high-level disruption of size judgements.

  17. Alternative Fuels Data Center: Multi-Modal Transportation

    Science.gov Websites

    examples of resources to help travelers use multi-modal transportation. OpenTripPlanner Map - an online transportation modes including transit (bus or train), walking, and bicycling 511 - a one-stop source from the of alternative transportation modes. A 2010 evaluation by the Oregon Transportation Research and

  18. Irritable bowel syndrome in children: Current knowledge, challenges and opportunities

    PubMed Central

    Devanarayana, Niranga Manjuri; Rajindrajith, Shaman

    2018-01-01

    Irritable bowel syndrome (IBS) is a common and troublesome disorder in children with an increasing prevalence noted during the past two decades. It has a significant effect on the lives of affected children and their families and poses a significant burden on healthcare systems. Standard symptom-based criteria for diagnosis of pediatric IBS have changed several times during the past two decades and there are some differences in interpreting symptoms between different cultures. This has posed a problem when using them to diagnose IBS in clinical practice. A number of potential patho-physiological mechanisms have been described, but so far the exact underlying etiology of IBS is unclear. A few potential therapeutic modalities have been tested in children and only a small number of them have shown some benefit. In addition, most of the described patho-physiological mechanisms and treatment options are based on adult studies. These have surfaced as challenges when dealing with pediatric IBS and they need to be overcome for effective management of children with IBS. Recently suggested top-down and bottom-up models help integrating reported patho-physiological mechanisms and will provide an opportunity for better understanding of the diseases process. Treatment trials targeting single treatment modalities are unlikely to have clinically meaningful therapeutic effects on IBS with multiple integrating patho-physiologies. Trials focusing on multiple combined pharmacological and non-pharmacological therapies are likely to yield more benefit. In addition to treatment, in the future, attention should be paid for possible prevention strategies for IBS. PMID:29881232

  19. Robust energy-absorbing compensators for the ACTEX II test article

    NASA Astrophysics Data System (ADS)

    Blaurock, Carl A.; Miller, David W.; Nye, Ted

    1995-05-01

    The paper addresses the problem of satellite solar panel vibration. A multi-layer vibration control scheme is investigated using a flight test article. Key issues in the active control portion are presented in the paper. The paper discusses the primary control design drivers, which are the time variations in modal frequencies due to configuration and thermal changes. A local control design approach is investigated, but found to be unworkable due to sensor/actuator non-collocation. An alternate design process uses linear robust control techniques, by describing the modal shifts as uncertainties. Multiple modal design, alpha- shifted multiple model, and a feedthrough compensation scheme are examined. Ground and simulation tests demonstrate that the resulting controllers provide significant vibration reduction in the presence of expected system variations.

  20. Modality matters for the expression of inducible defenses: introducing a concept of predator modality.

    PubMed

    Herzog, Quirin; Laforsch, Christian

    2013-11-18

    Inducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. This heterogeneity is often used synonymously to quantitative changes in predation risk, depending on the abundance and impact of predators. However, differences in 'modality', that is, the qualitative aspect of natural selection caused by predators, can also cause heterogeneity. For instance, predators of the small planktonic crustacean Daphnia have been divided into two functional groups of predators: vertebrates and invertebrates. Predators of both groups are known to cause different defenses, yet predators of the same group are considered to cause similar responses. In our study we question that thought and address the issue of how multiple predators affect the expression and evolution of inducible defenses. We exposed D. barbata to chemical cues released by Triops cancriformis and Notonecta glauca, respectively. We found for the first time that two invertebrate predators induce different shapes of the same morphological defensive traits in Daphnia, rather than showing gradual or opposing reaction norms. Additionally, we investigated the adaptive value of those defenses in direct predation trials, pairing each morphotype (non-induced, Triops-induced, Notonecta-induced) against the other two and exposed them to one of the two predators. Interestingly, against Triops, both induced morphotypes offered equal protection. To explain this paradox we introduce a 'concept of modality' in multipredator regimes. Our concept categorizes two-predator-prey systems into three major groups (functionally equivalent, functionally inverse and functionally diverse). Furthermore, the concept includes optimal responses and costs of maladaptions of prey phenotypes in environments where both predators co-occur or where they alternate. With D. barbata, we introduce a new multipredator-prey system with a wide array of morphological inducible defenses. Based on a 'concept of modality', we give possible explanations how evolution can favor specialized defenses over a general defense. Additionally, our concept not only helps to classify different multipredator-systems, but also stresses the significance of costs of phenotype-environment mismatching in addition to classic 'costs of plasticity'. With that, we suggest that 'modality' matters as an important factor in understanding and explaining the evolution of inducible defenses.

  1. Using recovery modalities between training sessions in elite athletes: does it help?

    PubMed

    Barnett, Anthony

    2006-01-01

    Achieving an appropriate balance between training and competition stresses and recovery is important in maximising the performance of athletes. A wide range of recovery modalities are now used as integral parts of the training programmes of elite athletes to help attain this balance. This review examined the evidence available as to the efficacy of these recovery modalities in enhancing between-training session recovery in elite athletes. Recovery modalities have largely been investigated with regard to their ability to enhance the rate of blood lactate removal following high-intensity exercise or to reduce the severity and duration of exercise-induced muscle injury and delayed onset muscle soreness (DOMS). Neither of these reflects the circumstances of between-training session recovery in elite athletes. After high-intensity exercise, rest alone will return blood lactate to baseline levels well within the normal time period between the training sessions of athletes. The majority of studies examining exercise-induced muscle injury and DOMS have used untrained subjects undertaking large amounts of unfamiliar eccentric exercise. This model is unlikely to closely reflect the circumstances of elite athletes. Even without considering the above limitations, there is no substantial scientific evidence to support the use of the recovery modalities reviewed to enhance the between-training session recovery of elite athletes. Modalities reviewed were massage, active recovery, cryotherapy, contrast temperature water immersion therapy, hyperbaric oxygen therapy, nonsteroidal anti-inflammatory drugs, compression garments, stretching, electromyostimulation and combination modalities. Experimental models designed to reflect the circumstances of elite athletes are needed to further investigate the efficacy of various recovery modalities for elite athletes. Other potentially important factors associated with recovery, such as the rate of post-exercise glycogen synthesis and the role of inflammation in the recovery and adaptation process, also need to be considered in this future assessment.

  2. Multiple piezo-patch energy harvesters on a thin plate with respective AC-DC conversion

    NASA Astrophysics Data System (ADS)

    Aghakhani, Amirreza; Basdogan, Ipek

    2018-03-01

    Piezoelectric patch energy harvesters can be directly integrated to plate-like structures which are widely used in automotive, marine and aerospace applications, to convert vibrational energy to electrical energy. This paper presents two different AC-DC conversion techniques for multiple patch harvesters, namely single rectifier and respective rectifiers. The first case considers all the piezo-patches are connected in parallel to a single rectifier, whereas in the second case, each harvester is respectively rectified and then connected in parallel to a smoothing capacitor and a resistive load. The latter configuration of AC-DC conversion helps to avoid the electrical charge cancellation which is a problem with the multiple harvesters attached to different locations of the host plate surface. Equivalent circuit model of the multiple piezo-patch harvesters is developed in the SPICE software to simulate the electrical response. The system parameters are obtained from the modal analysis solution of the plate. Simulations of the voltage frequency response functions (FRFs) for the standard AC input - AC output case are conducted and validated by experimental data. Finally, for the AC input - DC output case, numerical simulation and experimental results of the power outputs of multiple piezo-patch harvesters with multiple AC-DC converters are obtained for a wide range of resistive loads and compared with the same array of harvesters connected to a single AC-DC converter.

  3. Importance of Multimodal MRI in Characterizing Brain Tissue and Its Potential Application for Individual Age Prediction.

    PubMed

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Peran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2016-09-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.

  4. A Multi-Modal Active Learning Experience for Teaching Social Categorization

    ERIC Educational Resources Information Center

    Schwarzmueller, April

    2011-01-01

    This article details a multi-modal active learning experience to help students understand elements of social categorization. Each student in a group dynamics course observed two groups in conflict and identified examples of in-group bias, double-standard thinking, out-group homogeneity bias, law of small numbers, group attribution error, ultimate…

  5. Functionalization of Tactile Sensation for Robot Based on Haptograph and Modal Decomposition

    NASA Astrophysics Data System (ADS)

    Yokokura, Yuki; Katsura, Seiichiro; Ohishi, Kiyoshi

    In the real world, robots should be able to recognize the environment in order to be of help to humans. A video camera and a laser range finder are devices that can help robots recognize the environment. However, these devices cannot obtain tactile information from environments. Future human-assisting-robots should have the ability to recognize haptic signals, and a disturbance observer can possibly be used to provide the robot with this ability. In this study, a disturbance observer is employed in a mobile robot to functionalize the tactile sensation. This paper proposes a method that involves the use of haptograph and modal decomposition for the haptic recognition of road environments. The haptograph presents a graphic view of the tactile information. It is possible to classify road conditions intuitively. The robot controller is designed by considering the decoupled modal coordinate system, which consists of translational and rotational modes. Modal decomposition is performed by using a quarry matrix. Once the robot is provided with the ability to recognize tactile sensations, its usefulness to humans will increase.

  6. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    PubMed Central

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709

  7. Molecular Imaging of Experimental Abdominal Aortic Aneurysms

    PubMed Central

    Ramaswamy, Aneesh K.; Hamilton, Mark; Joshi, Rucha V.; Kline, Benjamin P.; Li, Rui; Wang, Pu; Goergen, Craig J.

    2013-01-01

    Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease. PMID:23737735

  8. Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs

    PubMed Central

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-01

    Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194

  9. Eye closure helps memory by reducing cognitive load and enhancing visualisation.

    PubMed

    Vredeveldt, Annelies; Hitch, Graham J; Baddeley, Alan D

    2011-10-01

    Closing the eyes helps memory. We investigated the mechanisms underlying the eyeclosure effect by exposing 80 eyewitnesses to different types of distraction during the witness interview: blank screen (control), eyes closed, visual distraction, and auditory distraction. We examined the cognitive load hypothesis by comparing any type of distraction (visual or auditory) with minimal distraction (blank screen or eyes closed). We found recall to be significantly better when distraction was minimal, providing evidence that eyeclosure reduces cognitive load. We examined the modality-specific interference hypothesis by comparing the effects of visual and auditory distraction on recall of visual and auditory information. Visual and auditory distraction selectively impaired memory for information presented in the same modality, supporting the role of visualisation in the eyeclosure effect. Analysis of recall in terms of grain size revealed that recall of basic information about the event was robust, whereas recall of specific details was prone to both general and modality-specific disruptions.

  10. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  11. The sensory substrate of multimodal communication in brown-headed cowbirds: are females sensory 'specialists' or 'generalists'?

    PubMed

    Ronald, Kelly L; Sesterhenn, Timothy M; Fernandez-Juricic, Esteban; Lucas, Jeffrey R

    2017-11-01

    Many animals communicate with multimodal signals. While we have an understanding of multimodal signal production, we know relatively less about receiver filtering of multimodal signals and whether filtering capacity in one modality influences filtering in a second modality. Most multimodal signals contain a temporal element, such as change in frequency over time or a dynamic visual display. We examined the relationship in temporal resolution across two modalities to test whether females are (1) sensory 'specialists', where a trade-off exists between the sensory modalities, (2) sensory 'generalists', where a positive relationship exists between the modalities, or (3) whether no relationship exists between modalities. We used female brown-headed cowbirds (Molothrus ater) to investigate this question as males court females with an audiovisual display. We found a significant positive relationship between female visual and auditory temporal resolution, suggesting that females are sensory 'generalists'. Females appear to resolve information well across multiple modalities, which may select for males that signal their quality similarly across modalities.

  12. Bayesian operational modal analysis with asynchronous data, part I: Most probable value

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Chen; Au, Siu-Kui

    2018-01-01

    In vibration tests, multiple sensors are used to obtain detailed mode shape information about the tested structure. Time synchronisation among data channels is required in conventional modal identification approaches. Modal identification can be more flexibly conducted if this is not required. Motivated by the potential gain in feasibility and economy, this work proposes a Bayesian frequency domain method for modal identification using asynchronous 'output-only' ambient data, i.e. 'operational modal analysis'. It provides a rigorous means for identifying the global mode shape taking into account the quality of the measured data and their asynchronous nature. This paper (Part I) proposes an efficient algorithm for determining the most probable values of modal properties. The method is validated using synthetic and laboratory data. The companion paper (Part II) investigates identification uncertainty and challenges in applications to field vibration data.

  13. The Coordinate Orthogonality Check (corthog)

    NASA Astrophysics Data System (ADS)

    Avitabile, P.; Pechinsky, F.

    1998-05-01

    A new technique referred to as the coordinate orthogonality check (CORTHOG) helps to identify how each physical degree of freedom contributes to the overall orthogonality relationship between analytical and experimental modal vectors on a mass-weighted basis. Using the CORTHOG technique together with the pseudo-orthogonality check (POC) clarifies where potential discrepancies exist between the analytical and experimental modal vectors. CORTHOG improves the understanding of the correlation (or lack of correlation) that exists between modal vectors. The CORTHOG theory is presented along with the evaluation of several cases to show the use of the technique.

  14. Hypothesis: neoplasms in myotonic dystrophy

    PubMed Central

    Hilbert, James E.; Martens, William; Thornton, Charles A.; Moxley, Richard T.; Greene, Mark H.

    2011-01-01

    Tumorigenesis is a multi-step process due to an accumulation of genetic mutations in multiple genes in diverse pathways which ultimately lead to loss of control over cell growth. It is well known that inheritance of rare germline mutations in genes involved in tumorigenesis pathways confer high lifetime risk of neoplasia in affected individuals. Furthermore, a substantial number of multiple malformation syndromes include cancer susceptibility in their phenotype. Studies of the mechanisms underlying these inherited syndromes have added to the understanding of both normal development and the pathophysiology of carcinogenesis. Myotonic dystrophy (DM) represents a group of autosomal dominant, multisystemic diseases that share the clinical features of myotonia, muscle weakness, and early-onset cataracts. Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) result from unstable nucleotide repeat expansions in their respective genes. There have been multiple reports of tumors in individuals with DM, most commonly benign calcifying cutaneous tumors known as pilomatricomas. We provide a summary of the tumors reported in DM and a hypothesis for a possible mechanism of tumorigenesis. We hope to stimulate further study into the potential role of DM genes in tumorigenesis, and help define DM pathogenesis, and facilitate developing novel treatment modalities. PMID:19642006

  15. Multi-modal automatic montaging of adaptive optics retinal images

    PubMed Central

    Chen, Min; Cooper, Robert F.; Han, Grace K.; Gee, James; Brainard, David H.; Morgan, Jessica I. W.

    2016-01-01

    We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download. PMID:28018714

  16. Polyarteritis nodosa: MDCT as a 'One-Stop Shop' Modality for Whole-Body Arterial Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, W.-L.; Tsai, I-C.; Lee Tain, E-mail: s841082@ym.edu.t

    Polyarteritis nodosa is a rare disease, which is characterized by aneurysm formation and occlusion in the arteries of multiple systems. Due to its extensive involvement, whole-body evaluation is necessary for diagnosis and treatment monitoring. We report a case of polyarteritis nodosa using multidetector-row computed tomography (MDCT) as a 'one-stop shop' modality for whole-body arterial evaluation. With precise protocol design, MDCT can be used as a reliable noninvasive modality providing comprehensive whole-body arterial evaluation.

  17. A modal parameter extraction procedure applicable to linear time-invariant dynamic systems

    NASA Technical Reports Server (NTRS)

    Kurdila, A. J.; Craig, R. R., Jr.

    1985-01-01

    Modal analysis has emerged as a valuable tool in many phases of the engineering design process. Complex vibration and acoustic problems in new designs can often be remedied through use of the method. Moreover, the technique has been used to enhance the conceptual understanding of structures by serving to verify analytical models. A new modal parameter estimation procedure is presented. The technique is applicable to linear, time-invariant systems and accommodates multiple input excitations. In order to provide a background for the derivation of the method, some modal parameter extraction procedures currently in use are described. Key features implemented in the new technique are elaborated upon.

  18. A physics based method for combining multiple anatomy models with application to medical simulation.

    PubMed

    Zhu, Yanong; Magee, Derek; Ratnalingam, Rishya; Kessel, David

    2009-01-01

    We present a physics based approach to the construction of anatomy models by combining components from different sources; different image modalities, protocols, and patients. Given an initial anatomy, a mass-spring model is generated which mimics the physical properties of the solid anatomy components. This helps maintain valid spatial relationships between the components, as well as the validity of their shapes. Combination can be either replacing/modifying an existing component, or inserting a new component. The external forces that deform the model components to fit the new shape are estimated from Gradient Vector Flow and Distance Transform maps. We demonstrate the applicability and validity of the described approach in the area of medical simulation, by showing the processes of non-rigid surface alignment, component replacement, and component insertion.

  19. Unitary vs Multiple Semantics: PET Studies of Word and Picture Processing

    ERIC Educational Resources Information Center

    Bright, P.; Moss, H.; Tyler, L. K.

    2004-01-01

    In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990;…

  20. Cargo identification algorithms facilitating unmanned/unattended inspection at high throughput portals

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2007-10-01

    A simple model is presented of a possible inspection regimen applied to each leg of a cargo containers' journey between its point of origin and destination. Several candidate modalities are proposed to be used at multiple remote locations to act as a pre-screen inspection as the target approaches a perimeter and as the primary inspection modality at the portal. Information from multiple data sets are fused to optimize the costs and performance of a network of such inspection systems. A series of image processing algorithms are presented that automatically process X-ray images of containerized cargo. The goal of this processing is to locate the container in a real time stream of traffic traversing a portal without impeding the flow of commerce. Such processing may facilitate the inclusion of unmanned/unattended inspection systems in such a network. Several samples of the processing applied to data collected from deployed systems are included. Simulated data from a notional cargo inspection system with multiple sensor modalities and advanced data fusion algorithms are also included to show the potential increased detection and throughput performance of such a configuration.

  1. Appraisal of unimodal cues during agonistic interactions in Maylandia zebra

    PubMed Central

    Ben Ammar, Imen; Fernandez, Marie S.A.; Boyer, Nicolas; Attia, Joël; Fonseca, Paulo J.; Amorim, M. Clara P.; Beauchaud, Marilyn

    2017-01-01

    Communication is essential during social interactions including animal conflicts and it is often a complex process involving multiple sensory channels or modalities. To better understand how different modalities interact during communication, it is fundamental to study the behavioural responses to both the composite multimodal signal and each unimodal component with adequate experimental protocols. Here we test how an African cichlid, which communicates with multiple senses, responds to different sensory stimuli in a social relevant scenario. We tested Maylandia zebra males with isolated chemical (urine or holding water coming both from dominant males), visual (real opponent or video playback) and acoustic (agonistic sounds) cues during agonistic interactions. We showed that (1) these fish relied mostly on the visual modality, showing increased aggressiveness in response to the sight of a real contestant but no responses to urine or agonistic sounds presented separately, (2) video playback in our study did not appear appropriate to test the visual modality and needs more technical prospecting, (3) holding water provoked territorial behaviours and seems to be promising for the investigation into the role of the chemical channel in this species. Our findings suggest that unimodal signals are non-redundant but how different sensory modalities interplay during communication remains largely unknown in fish. PMID:28785523

  2. When Do Pictures Help Learning from Expository Text? Multimedia and Modality Effects in Primary Schools

    ERIC Educational Resources Information Center

    Herrlinger, Simone; Höffler, Tim N.; Opfermann, Maria; Leutner, Detlev

    2017-01-01

    Adding pictures to a text is very common in today's education and might be especially beneficial for elementary school children, whose abilities to read and understand pure text have not yet been fully developed. Our study examined whether adding pictures supports learning of a biology text in fourth grade and whether the text modality (spoken or…

  3. Learning Styles of the Special Needs Student (K-6). Instructor's Manual. Project: Least Restrictive Environment. MCC Inservice Training for Regular Classroom Teachers. Year III, 1980-1981.

    ERIC Educational Resources Information Center

    Newman, Elizabeth

    The instructor's manual considers the inservice training topic of special needs students' learning styles and their implications for regular class teachers. Activities are described to help participants understand modality learning and informal tests to determine modality strengths. Teaching strategies for auditory and visual weaknesses are…

  4. Modeling the Development of Audiovisual Cue Integration in Speech Perception

    PubMed Central

    Getz, Laura M.; Nordeen, Elke R.; Vrabic, Sarah C.; Toscano, Joseph C.

    2017-01-01

    Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues. PMID:28335558

  5. Modeling the Development of Audiovisual Cue Integration in Speech Perception.

    PubMed

    Getz, Laura M; Nordeen, Elke R; Vrabic, Sarah C; Toscano, Joseph C

    2017-03-21

    Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues.

  6. Multiset singular value decomposition for joint analysis of multi-modal data: application to fingerprint analysis

    NASA Astrophysics Data System (ADS)

    Emge, Darren K.; Adalı, Tülay

    2014-06-01

    As the availability and use of imaging methodologies continues to increase, there is a fundamental need to jointly analyze data that is collected from multiple modalities. This analysis is further complicated when, the size or resolution of the images differ, implying that the observation lengths of each of modality can be highly varying. To address this expanding landscape, we introduce the multiset singular value decomposition (MSVD), which can perform a joint analysis on any number of modalities regardless of their individual observation lengths. Through simulations, the inter modal relationships across the different modalities which are revealed by the MSVD are shown. We apply the MSVD to forensic fingerprint analysis, showing that MSVD joint analysis successfully identifies relevant similarities for further analysis, significantly reducing the processing time required. This reduction, takes this technique from a laboratory method to a useful forensic tool with applications across the law enforcement and security regimes.

  7. Professional efficiencies for diagnostic imaging services rendered by different physicians: analysis of recent medicare multiple procedure payment reduction policy.

    PubMed

    Duszak, Richard; Silva, Ezequiel; Kim, Angela J; Barr, Robert M; Donovan, William D; Kassing, Pamela; McGinty, Geraldine; Allen, Bibb

    2013-09-01

    The aim of this study was to quantify potential physician work efficiencies and appropriate multiple procedure payment reductions for different same-session diagnostic imaging studies interpreted by different physicians in the same group practice. Medicare Resource-Based Relative Value Scale data were analyzed to determine the relative contributions of various preservice, intraservice, and postservice physician diagnostic imaging work activities. An expert panel quantified potential duplications in professional work activities when separate examinations were performed during the same session by different physicians within the same group practice. Maximum potential work duplications for various imaging modalities were calculated and compared with those used as the basis of CMS payment policy. No potential intraservice work duplication was identified when different examination interpretations were rendered by different physicians in the same group practice. When multiple interpretations within the same modality were rendered by different physicians, maximum potential duplicated preservice and postservice activities ranged from 5% (radiography, fluoroscopy, and nuclear medicine) to 13.6% (CT). Maximum mean potential duplicated work relative value units ranged from 0.0049 (radiography and fluoroscopy) to 0.0413 (CT). This equates to overall potential total work reductions ranging from 1.39% (nuclear medicine) to 2.73% (CT). Across all modalities, this corresponds to maximum Medicare professional component physician fee reductions of 1.23 ± 0.38% (range, 0.95%-1.87%) for services within the same modality, much less than an order of magnitude smaller than those implemented by CMS. For services from different modalities, potential duplications were too small to quantify. Although potential efficiencies exist in physician preservice and postservice work when same-session, same-modality imaging services are rendered by different physicians in the same group practice, these are relatively minuscule and have been grossly overestimated by current CMS payment policy. Greater transparency and methodologic rigor in government payment policy development are warranted. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Assessment of learning styles of undergraduate medical students using the VARK questionnaire and the influence of sex and academic performance.

    PubMed

    Urval, Rathnakar P; Kamath, Ashwin; Ullal, Sheetal; Shenoy, Ashok K; Shenoy, Nandita; Udupa, Laxminarayana A

    2014-09-01

    While there are several tools to study learning styles of students, the visual-aural-read/write-kinesthetic (VARK) questionnaire is a simple, freely available, easy to administer tool that encourages students to describe their behavior in a manner they can identify with and accept. The aim is to understand the preferred sensory modality (or modalities) of students for learning. Teachers can use this knowledge to facilitate student learning. Moreover, students themselves can use this knowledge to change their learning habits. Five hundred undergraduate students belonging to two consecutive batches in their second year of undergraduate medical training were invited to participate in the exercise. Consenting students (415 students, 83%) were administered a printed form of version 7.0 of the VARK questionnaire. Besides the questionnaire, we also collected demographic data, academic performance data (marks obtained in 10th and 12th grades and last university examination), and self-perceived learning style preferences. The majority of students in our study had multiple learning preferences (68.7%). The predominant sensory modality of learning was aural (45.5%) and kinesthetic (33.1%). The learning style preference was not influenced by either sex or previous academic performance. Although we use a combination of teaching methods, there has not been an active effort to determine whether these adequately address the different types of learners. We hope these data will help us better our course contents and make learning a more fruitful experience. Copyright © 2014 The American Physiological Society.

  9. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetterly, K

    2014-06-01

    Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalitiesmore » include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.« less

  10. Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors

    PubMed Central

    Choi, Jong-Suk; Bang, Jae Won; Heo, Hwan; Park, Kang Ryoung

    2015-01-01

    Most previous research into emotion recognition used either a single modality or multiple modalities of physiological signal. However, the former method allows for limited enhancement of accuracy, and the latter has the disadvantages that its performance can be affected by head or body movements. Further, the latter causes inconvenience to the user due to the sensors attached to the body. Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies. Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors. Experimental results based on the t-test, the effect size and the sum of all of the correlation values with other modalities showed that facial temperature and subjective evaluation are more reliable than electroencephalogram (EEG) and eye blinking rate for the evaluation of fear. PMID:26205268

  11. A Multimodal Communication Program for Aphasia during Inpatient Rehabilitation: A Case Study

    PubMed Central

    Wallace, Sarah E.; Purdy, Mary; Skidmore, Elizabeth

    2014-01-01

    BACKGROUND Communication is essential for successful rehabilitation, yet few aphasia treatments have been investigated during the acute stroke phase. Alternative modality use including gesturing, writing, or drawing has been shown to increase communicative effectiveness in people with chronic aphasia. Instruction in alternative modality use during acute stroke may increase patient communication and participation, therefore resulting in fewer adverse situations and improved rehabilitation outcomes. OBJECTIVE The study purpose was to explore a multimodal communication program for aphasia (MCPA) implemented during acute stroke rehabilitation. MCPA aims to improve communication modality production, and to facilitate switching among modalities to resolve communication breakdowns. METHODS Two adults with severe aphasia completed MCPA beginning at 2 and 3 weeks post onset a single left-hemisphere stroke. Probes completed during each session allowed for evaluation of modality production and modality switching accuracy. RESULTS Participants completed MCPA (10 and 14 treatment sessions respectively) and their performance on probes suggested increased accuracy in the production of various alternate communication modalities. However, increased switching to an alternate modality was noted for only one participant. CONCLUSIONS Further investigation of multimodal treatment during inpatient rehabilitation is warranted. In particular, comparisons between multimodal and standard treatments would help determine appropriate interventions for this setting. PMID:25227547

  12. Music to My Eyes: Cross-Modal Interactions in the Perception of Emotions in Musical Performance

    ERIC Educational Resources Information Center

    Vines, Bradley W.; Krumhansl, Carol L.; Wanderley, Marcelo M.; Dalca, Ioana M.; Levitin, Daniel J.

    2011-01-01

    We investigate non-verbal communication through expressive body movement and musical sound, to reveal higher cognitive processes involved in the integration of emotion from multiple sensory modalities. Participants heard, saw, or both heard and saw recordings of a Stravinsky solo clarinet piece, performed with three distinct expressive styles:…

  13. Two Modalities of the Contextualized Courseware in Three Modalities of Classroom Use

    ERIC Educational Resources Information Center

    Akpinar, Yavuz; Sengül, Özlem

    2018-01-01

    This study investigated the effect of various combinations of contextualization and teacher support on achievement and critical thinking. Two specially-designed sets of courseware were used to teach a unit on logic, one based on a single context and one based on multiple contexts. The participants were 151 9th graders in two vocational high…

  14. Label-aligned Multi-task Feature Learning for Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Zu, Chen; Jie, Biao; Liu, Mingxia; Chen, Songcan

    2015-01-01

    Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. PMID:26572145

  15. Three-way parallel independent component analysis for imaging genetics using multi-objective optimization.

    PubMed

    Ulloa, Alvaro; Jingyu Liu; Vergara, Victor; Jiayu Chen; Calhoun, Vince; Pattichis, Marios

    2014-01-01

    In the biomedical field, current technology allows for the collection of multiple data modalities from the same subject. In consequence, there is an increasing interest for methods to analyze multi-modal data sets. Methods based on independent component analysis have proven to be effective in jointly analyzing multiple modalities, including brain imaging and genetic data. This paper describes a new algorithm, three-way parallel independent component analysis (3pICA), for jointly identifying genomic loci associated with brain function and structure. The proposed algorithm relies on the use of multi-objective optimization methods to identify correlations among the modalities and maximally independent sources within modality. We test the robustness of the proposed approach by varying the effect size, cross-modality correlation, noise level, and dimensionality of the data. Simulation results suggest that 3p-ICA is robust to data with SNR levels from 0 to 10 dB and effect-sizes from 0 to 3, while presenting its best performance with high cross-modality correlations, and more than one subject per 1,000 variables. In an experimental study with 112 human subjects, the method identified links between a genetic component (pointing to brain function and mental disorder associated genes, including PPP3CC, KCNQ5, and CYP7B1), a functional component related to signal decreases in the default mode network during the task, and a brain structure component indicating increases of gray matter in brain regions of the default mode region. Although such findings need further replication, the simulation and in-vivo results validate the three-way parallel ICA algorithm presented here as a useful tool in biomedical data decomposition applications.

  16. The Effect of Basis Selection on Static and Random Acoustic Response Prediction Using a Nonlinear Modal Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2005-01-01

    An investigation of the effect of basis selection on geometric nonlinear response prediction using a reduced-order nonlinear modal simulation is presented. The accuracy is dictated by the selection of the basis used to determine the nonlinear modal stiffness. This study considers a suite of available bases including bending modes only, bending and membrane modes, coupled bending and companion modes, and uncoupled bending and companion modes. The nonlinear modal simulation presented is broadly applicable and is demonstrated for nonlinear quasi-static and random acoustic response of flat beam and plate structures with isotropic material properties. Reduced-order analysis predictions are compared with those made using a numerical simulation in physical degrees-of-freedom to quantify the error associated with the selected modal bases. Bending and membrane responses are separately presented to help differentiate the bases.

  17. Complementary and alternative medicine use in children with cystic fibrosis.

    PubMed

    Giangioppo, Sandra; Kalaci, Odion; Radhakrishnan, Arun; Fleischer, Erin; Itterman, Jennifer; Lyttle, Brian; Price, April; Radhakrishnan, Dhenuka

    2016-11-01

    To estimate the overall prevalence of complementary and alternative medicine use among children with cystic fibrosis, determine specific modalities used, predictors of use and subjective helpfulness or harm from individual modalities. Of 53 children attending the cystic fibrosis clinic in London, Ontario (100% recruitment), 79% had used complementary and alternative medicine. The most commonly used modalities were air purifiers, humidifiers, probiotics, and omega-3 fatty acids. Family complementary and alternative medicine use was the only independent predictor of overall use. The majority of patients perceived benefit from specific modalities for cystic fibrosis symptoms. Given the high frequency and number of modalities used and lack of patient and disease characteristics predicting use, we recommend that health care providers should routinely ask about complementary and alternative medicine among all pediatric cystic fibrosis patients and assist patients in understanding the potential benefits and risks to make informed decisions about its use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Multi-modality imaging: Bird's-eye view from the 2014 American Heart Association Scientific Sessions.

    PubMed

    AlJaroudi, Wael A; Einstein, Andrew J; Chaudhry, Farooq A; Lloyd, Steven G; Hage, Fadi G

    2015-04-01

    A large number of studies were presented at the 2014 American Heart Association Scientific Sessions. In this review, we will summarize key studies in nuclear cardiology, computed tomography, echocardiography, and cardiac magnetic resonance imaging. This brief review will be helpful for readers of the Journal who are interested in being updated on the latest research covering these imaging modalities.

  19. Estimating free-body modal parameters from tests of a constrained structure

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    1993-01-01

    Hardware advances in suspension technology for ground tests of large space structures provide near on-orbit boundary conditions for modal testing. Further advances in determining free-body modal properties of constrained large space structures have been made, on the analysis side, by using time domain parameter estimation and perturbing the stiffness of the constraints over multiple sub-tests. In this manner, passive suspension constraint forces, which are fully correlated and therefore not usable for spectral averaging techniques, are made effectively uncorrelated. The technique is demonstrated with simulated test data.

  20. Multiple-modality exercise and mind-motor training to improve mobility in older adults: A randomized controlled trial.

    PubMed

    Boa Sorte Silva, Narlon C; Gill, Dawn P; Gregory, Michael A; Bocti, John; Petrella, Robert J

    2018-03-01

    To investigate the effects of multiple-modality exercise with or without additional mind-motor training on mobility outcomes in older adults with subjective cognitive complaints. This was a 24-week randomized controlled trial with a 28-week no-contact follow-up. Community-dwelling older adults underwent a thrice -weekly, Multiple-Modality exercise and Mind-Motor (M4) training or Multiple-Modality (M2) exercise with an active control intervention (balance, range of motion and breathing exercises). Study outcomes included differences between groups at 24weeks and after the no-contact follow-up (i.e., 52weeks) in usual and dual-task (DT, i.e., serial sevens [S7] and phonemic verbal fluency [VF] tasks) gait velocity, step length and cycle time variability, as well as DT cognitive accuracy. 127 participants (mean age 67.5 [7.3] years, 71% women) were randomized to either M2 (n=64) or M4 (n=63) groups. Participants were assessed at baseline, intervention endpoint (24weeks), and study endpoint (52weeks). At 24weeks, the M2 group demonstrated greater improvements in usual gait velocity, usual step length, and DT gait velocity (VF) compared to the M4 group, and no between- or within-group changes in DT accuracy were observed. At 52weeks, the M2 group retained the gains in gait velocity and step length, whereas the M4 group demonstrated trends for improvement (p=0.052) in DT cognitive accuracy (VF). Our results suggest that additional mind-motor training was not effective to improve mobility outcomes. In fact, participants in the active control group experienced greater benefits as a result of the intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Learning style preferences of first-year dental students at King Saud University in Riyadh, Saudi Arabia: influence of gender and GPA.

    PubMed

    Al-Saud, Loulwa Mohammed Saad

    2013-10-01

    The aim of this study was to investigate the learning style preferences of a group of first-year dental students and their relation to gender and past academic performance. A total of 113 first-year dental students (forty-two female, seventy-one male) at King Saud University in Riyadh, Saudi Arabia, participated. The Visual, Aural, Read-write, and Kinesthetic (VARK) questionnaire was used to determine the students' preferred mode of learning. This sixteen-item questionnaire defines preference of learning based on the sensory modalities: visual, aural, reading/writing, and kinesthetic. More than half (59 percent) of the students were found to have multimodal learning preferences. The most common single learning preferences were aural (20 percent) followed by kinesthetic (15.2 percent). Gender differences were not statistically significant. However, a statistically significant difference was found in the mean values of GPA in relation to the students' learning style preferences (p=0.019). Students with a single learning style preference had a lower mean GPA than those with multiple (quad-modal) learning style preferences. For effective instruction, dental educators need to broaden their range of presentation styles to help create more positive and effective learning environments for all students.

  2. Convergent and invariant object representations for sight, sound, and touch.

    PubMed

    Man, Kingson; Damasio, Antonio; Meyer, Kaspar; Kaplan, Jonas T

    2015-09-01

    We continuously perceive objects in the world through multiple sensory channels. In this study, we investigated the convergence of information from different sensory streams within the cerebral cortex. We presented volunteers with three common objects via three different modalities-sight, sound, and touch-and used multivariate pattern analysis of functional magnetic resonance imaging data to map the cortical regions containing information about the identity of the objects. We could reliably predict which of the three stimuli a subject had seen, heard, or touched from the pattern of neural activity in the corresponding early sensory cortices. Intramodal classification was also successful in large portions of the cerebral cortex beyond the primary areas, with multiple regions showing convergence of information from two or all three modalities. Using crossmodal classification, we also searched for brain regions that would represent objects in a similar fashion across different modalities of presentation. We trained a classifier to distinguish objects presented in one modality and then tested it on the same objects presented in a different modality. We detected audiovisual invariance in the right temporo-occipital junction, audiotactile invariance in the left postcentral gyrus and parietal operculum, and visuotactile invariance in the right postcentral and supramarginal gyri. Our maps of multisensory convergence and crossmodal generalization reveal the underlying organization of the association cortices, and may be related to the neural basis for mental concepts. © 2015 Wiley Periodicals, Inc.

  3. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    PubMed

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  4. Long-range dismount activity classification: LODAC

    NASA Astrophysics Data System (ADS)

    Garagic, Denis; Peskoe, Jacob; Liu, Fang; Cuevas, Manuel; Freeman, Andrew M.; Rhodes, Bradley J.

    2014-06-01

    Continuous classification of dismount types (including gender, age, ethnicity) and their activities (such as walking, running) evolving over space and time is challenging. Limited sensor resolution (often exacerbated as a function of platform standoff distance) and clutter from shadows in dense target environments, unfavorable environmental conditions, and the normal properties of real data all contribute to the challenge. The unique and innovative aspect of our approach is a synthesis of multimodal signal processing with incremental non-parametric, hierarchical Bayesian machine learning methods to create a new kind of target classification architecture. This architecture is designed from the ground up to optimally exploit correlations among the multiple sensing modalities (multimodal data fusion) and rapidly and continuously learns (online self-tuning) patterns of distinct classes of dismounts given little a priori information. This increases classification performance in the presence of challenges posed by anti-access/area denial (A2/AD) sensing. To fuse multimodal features, Long-range Dismount Activity Classification (LODAC) develops a novel statistical information theoretic approach for multimodal data fusion that jointly models multimodal data (i.e., a probabilistic model for cross-modal signal generation) and discovers the critical cross-modal correlations by identifying components (features) with maximal mutual information (MI) which is efficiently estimated using non-parametric entropy models. LODAC develops a generic probabilistic pattern learning and classification framework based on a new class of hierarchical Bayesian learning algorithms for efficiently discovering recurring patterns (classes of dismounts) in multiple simultaneous time series (sensor modalities) at multiple levels of feature granularity.

  5. Development and Alpha Testing of QuitIT: An Interactive Video Game to Enhance Skills for Coping With Smoking Urges.

    PubMed

    Krebs, Paul; Burkhalter, Jack E; Snow, Bert; Fiske, Jeff; Ostroff, Jamie S

    2013-09-11

    Despite many efforts at developing relapse prevention interventions, most smokers relapse to tobacco use within a few months after quitting. Interactive games offer a novel strategy for helping people develop the skills required for successful tobacco cessation. The objective of our study was to develop a video game that enables smokers to practice strategies for coping with smoking urges and maintaining smoking abstinence. Our team of game designers and clinical psychologists are creating a video game that integrates the principles of smoking behavior change and relapse prevention. We have reported the results of expert and end-user feedback on an alpha version of the game. The alpha version of the game consisted of a smoking cue scenario often encountered by smokers. We recruited 5 experts in tobacco cessation research and 20 current and former smokers, who each played through the scenario. Mixed methods were used to gather feedback on the relevance of cessation content and usability of the game modality. End-users rated the interface from 3.0 to 4.6/5 in terms of ease of use and from 2.9 to 4.1/5 in terms of helpfulness of cessation content. Qualitative themes showed several user suggestions for improving the user interface, pacing, and diversity of the game characters. In addition, the users confirmed a high degree of game immersion, identification with the characters and situations, and appreciation for the multiple opportunities to practice coping strategies. This study highlights the procedures for translating behavioral principles into a game dynamic and shows that our prototype has a strong potential for engaging smokers. A video game modality exemplifies problem-based learning strategies for tobacco cessation and is an innovative step in behavioral management of tobacco use.

  6. Computational Intelligence Techniques for Tactile Sensing Systems

    PubMed Central

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-01-01

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646

  7. Computational intelligence techniques for tactile sensing systems.

    PubMed

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-06-19

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  8. Shapes, scents and sounds: quantifying the full multi-sensory basis of conceptual knowledge.

    PubMed

    Hoffman, Paul; Lambon Ralph, Matthew A

    2013-01-01

    Contemporary neuroscience theories assume that concepts are formed through experience in multiple sensory-motor modalities. Quantifying the contribution of each modality to different object categories is critical to understanding the structure of the conceptual system and to explaining category-specific knowledge deficits. Verbal feature listing is typically used to elicit this information but has a number of drawbacks: sensory knowledge often cannot easily be translated into verbal features and many features are experienced in multiple modalities. Here, we employed a more direct approach in which subjects rated their knowledge of objects in each sensory-motor modality separately. Compared with these ratings, feature listing over-estimated the importance of visual form and functional knowledge and under-estimated the contributions of other sensory channels. An item's sensory rating proved to be a better predictor of lexical-semantic processing speed than the number of features it possessed, suggesting that ratings better capture the overall quantity of sensory information associated with a concept. Finally, the richer, multi-modal rating data not only replicated the sensory-functional distinction between animals and non-living things but also revealed novel distinctions between different types of artefact. Hierarchical cluster analyses indicated that mechanical devices (e.g., vehicles) were distinct from other non-living objects because they had strong sound and motion characteristics, making them more similar to animals in this respect. Taken together, the ratings align with neuroscience evidence in suggesting that a number of distinct sensory processing channels make important contributions to object knowledge. Multi-modal ratings for 160 objects are provided as supplementary materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Evaluating the Relationship between Simulation and Clinical Decision-Making in Physical Therapy Students

    ERIC Educational Resources Information Center

    Macauley, Kelly

    2017-01-01

    Physical therapy students are frequently ill-prepared to practice in the dynamic healthcare environment immediately after graduation. Implementing other teaching modalities may help to better prepare physical therapy graduates. Medical student and nursing education have effectively used simulation to help prepare students effectively for clinical…

  10. Feature-based fusion of medical imaging data.

    PubMed

    Calhoun, Vince D; Adali, Tülay

    2009-09-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. There have been a number of approaches proposed for combining or fusing multitask or multimodal information. These can be roughly divided into those that attempt to study convergence of multimodal imaging, for example, how function and structure are related in the same region of the brain, and those that attempt to study the complementary nature of modalities, for example, utilizing temporal EEG information and spatial functional magnetic resonance imaging information. Within each of these categories, one can attempt data integration (the use of one imaging modality to improve the results of another) or true data fusion (in which multiple modalities are utilized to inform one another). We review both approaches and present a recent computational approach that first preprocesses the data to compute features of interest. The features are then analyzed in a multivariate manner using independent component analysis. We describe the approach in detail and provide examples of how it has been used for different fusion tasks. We also propose a method for selecting which combination of modalities provides the greatest value in discriminating groups. Finally, we summarize and describe future research topics.

  11. Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Zhou, Zijian; Wang, Zhiyong; Xue, Yunxin; Zeng, Yun; Gao, Jinhao; Zhu, Lei; Zhang, Xianzhong; Liu, Gang; Chen, Xiaoyuan

    2013-08-01

    This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability.This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02797j

  12. Autonomous Modal Identification of the Space Shuttle Tail Rudder

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; James, George H., III; Zimmerman, David C.

    1997-01-01

    Autonomous modal identification automates the calculation of natural vibration frequencies, damping, and mode shapes of a structure from experimental data. This technology complements damage detection techniques that use continuous or periodic monitoring of vibration characteristics. The approach shown in the paper incorporates the Eigensystem Realization Algorithm (ERA) as a data analysis engine and an autonomous supervisor to condense multiple estimates of modal parameters using ERA's Consistent-Mode Indicator and correlation of mode shapes. The procedure was applied to free-decay responses of a Space Shuttle tail rudder and successfully identified the seven modes of the structure below 250 Hz. The final modal parameters are a condensed set of results for 87 individual ERA cases requiring approximately five minutes of CPU time on a DEC Alpha computer.

  13. Imaging trends in suspected appendicitis-a Canadian perspective.

    PubMed

    Tan, Victoria F; Patlas, Michael N; Katz, Douglas S

    2017-06-01

    The purpose of our study was to assess trends in the imaging of suspected appendicitis in adult patients in emergency departments of academic centers in Canada. A questionnaire was sent to all 17 academic centers in Canada to be completed by a radiologist who works in emergency radiology. The questionnaires were sent and collected over a period of 4 months from October 2015 to February 2016. Sixteen centers (94%) responded to the questionnaire. Eleven respondents (73%) use IV contrast-enhanced computed tomography (CT) as the imaging modality of choice for all patients with suspected appendicitis. Thirteen respondents (81%) use ultrasound as the first modality of choice in imaging pregnant patients with suspected appendicitis. Eleven respondents (69%) use ultrasound (US) as the first modality of choice in patients younger than 40 years of age. Ten respondents (67%) use ultrasound as the first imaging modality in female patients younger than 40 years of age. When CT is used, 81% use non-focused CT of the abdomen and pelvis, and 44% of centers use oral contrast. Thirteen centers (81%) have ultrasound available 24 h a day/7 days a week. At 12 centers (75%), ultrasound is performed by ultrasound technologists. Four centers (40%) perform magnetic resonance imaging (MRI) in suspected appendicitis in adult patients at the discretion of the attending radiologist. Eleven centers (69%) have MRI available 24/7. All 16 centers (100%) use unenhanced MRI. Various imaging modalities are available for the work-up of suspected appendicitis. Although there are North American societal guidelines and recommendations regarding the appropriateness of the multiple imaging modalities, significant heterogeneity in the first-line modalities exist, which vary depending on the patient demographics and resource availability. Imaging trends in the use of the first-line modalities should be considered in order to plan for the availability of the imaging examinations and to consider plans for an imaging algorithm to permit standardization across multiple centers. While this study examined the imaging trends specifically in Canada, there are implications to other countries seeking to streamline imaging protocols and determining appropriateness of the first-line imaging modalities.

  14. Making electronic prescribing alerts more effective: scenario-based experimental study in junior doctors

    PubMed Central

    Shah, Priya; Wyatt, Jeremy C; Makubate, Boikanyo; Cross, Frank W

    2011-01-01

    Objective Expert authorities recommend clinical decision support systems to reduce prescribing error rates, yet large numbers of insignificant on-screen alerts presented in modal dialog boxes persistently interrupt clinicians, limiting the effectiveness of these systems. This study compared the impact of modal and non-modal electronic (e-) prescribing alerts on prescribing error rates, to help inform the design of clinical decision support systems. Design A randomized study of 24 junior doctors each performing 30 simulated prescribing tasks in random order with a prototype e-prescribing system. Using a within-participant design, doctors were randomized to be shown one of three types of e-prescribing alert (modal, non-modal, no alert) during each prescribing task. Measurements The main outcome measure was prescribing error rate. Structured interviews were performed to elicit participants' preferences for the prescribing alerts and their views on clinical decision support systems. Results Participants exposed to modal alerts were 11.6 times less likely to make a prescribing error than those not shown an alert (OR 11.56, 95% CI 6.00 to 22.26). Those shown a non-modal alert were 3.2 times less likely to make a prescribing error (OR 3.18, 95% CI 1.91 to 5.30) than those not shown an alert. The error rate with non-modal alerts was 3.6 times higher than with modal alerts (95% CI 1.88 to 7.04). Conclusions Both kinds of e-prescribing alerts significantly reduced prescribing error rates, but modal alerts were over three times more effective than non-modal alerts. This study provides new evidence about the relative effects of modal and non-modal alerts on prescribing outcomes. PMID:21836158

  15. Modality dependency of familiarity ratings of Japanese words.

    PubMed

    Amano, S; Kondo, T; Kakehi, K

    1995-07-01

    Familiarity ratings for a large number of aurally and visually presented Japanese words wer measured for 11 subjects, in order to investigate the modality dependency of familiarity. The correlation coefficient between auditory and visual ratings was .808, which is lower than that observed for English words, suggesting that a substantial portion of the mental lexicon is modality dependent. It was shown that the modality dependency is greater for low-familiarity words than it is for medium- or high-familiarity words. This difference between the low- and the medium- or high-familiarity words has a relationship to orthography. That is, the dependency is larger in words consisting only of kanji, which may have multiple pronunciations and usually represent meaning, than it is in words consisting only of hiragana or katakana, which have a single pronunciation and usually do not represent meaning. These results indicate that the idiosyncratic characteristics of Japanese orthography contribute to the modality dependency.

  16. Direct system parameter identification of mechanical structures with application to modal analysis

    NASA Technical Reports Server (NTRS)

    Leuridan, J. M.; Brown, D. L.; Allemang, R. J.

    1982-01-01

    In this paper a method is described to estimate mechanical structure characteristics in terms of mass, stiffness and damping matrices using measured force input and response data. The estimated matrices can be used to calculate a consistent set of damped natural frequencies and damping values, mode shapes and modal scale factors for the structure. The proposed technique is attractive as an experimental modal analysis method since the estimation of the matrices does not require previous estimation of frequency responses and since the method can be used, without any additional complications, for multiple force input structure testing.

  17. A method for experimental modal separation

    NASA Technical Reports Server (NTRS)

    Hallauer, W. L., Jr.

    1977-01-01

    A method is described for the numerical simulation of multiple-shaker modal survey testing using simulated experimental data to optimize the shaker force-amplitude distribution for the purpose of isolating individual modes of vibration. Inertia, damping, stiffness, and model data are stored on magnetic disks, available by direct access to the interactive FORTRAN programs which perform all computations required by this relative force amplitude distribution method.

  18. [Pay attention to the application of the international intraocular retinoblastoma classification and sequential multiple modality treatment].

    PubMed

    Fan, X Q

    2017-08-11

    Retinoblastoma (RB) is the most common intraocular malignancy in childhood. It may seriously affect vision, and even threaten the life. The early diagnosis rate of RB in China remains low, and the majority of patients are at late phase with high rates of enucleation and mortality. The International Intraocular Retinoblastoma Classification and TNM staging system are guidances for therapeutic choices and bases for prognosis evaluation. Based on the sequential multi-method treatment modality, chemotherapy combined with local therapy is the mainstream in dealing with RB, which may maximize the results of eye saving and even vision retaining. New therapeutic techniques including supra-selective ophthalmic artery interventional chemotherapy and intravitreal chemotherapy can further improve the efficacy of treatment, especially the eye salvage rate. The overall level of RB treatment should be improved by promoting the international staging, new therapeutic techniques, and the sequential multiple modality treatment. (Chin J Ophthalmol, 2017, 53: 561 - 565) .

  19. Dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.

    2001-09-01

    In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.

  20. Modality Switching in a Property Verification Task: An ERP Study of What Happens When Candles Flicker after High Heels Click

    PubMed Central

    Collins, Jennifer; Pecher, Diane; Zeelenberg, René; Coulson, Seana

    2011-01-01

    The perceptual modalities associated with property words, such as flicker or click, have previously been demonstrated to affect subsequent property verification judgments (Pecher et al., 2003). Known as the conceptual modality switch effect, this finding supports the claim that brain systems for perception and action help subserve the representation of concepts. The present study addressed the cognitive and neural substrate of this effect by recording event-related potentials (ERPs) as participants performed a property verification task with visual or auditory properties in key trials. We found that for visual property verifications, modality switching was associated with an increased amplitude N400. For auditory verifications, switching led to a larger late positive complex. Observed ERP effects of modality switching suggest property words access perceptual brain systems. Moreover, the timing and pattern of the effects suggest perceptual systems impact the decision-making stage in the verification of auditory properties, and the semantic stage in the verification of visual properties. PMID:21713128

  1. Modality Switching in a Property Verification Task: An ERP Study of What Happens When Candles Flicker after High Heels Click.

    PubMed

    Collins, Jennifer; Pecher, Diane; Zeelenberg, René; Coulson, Seana

    2011-01-01

    The perceptual modalities associated with property words, such as flicker or click, have previously been demonstrated to affect subsequent property verification judgments (Pecher et al., 2003). Known as the conceptual modality switch effect, this finding supports the claim that brain systems for perception and action help subserve the representation of concepts. The present study addressed the cognitive and neural substrate of this effect by recording event-related potentials (ERPs) as participants performed a property verification task with visual or auditory properties in key trials. We found that for visual property verifications, modality switching was associated with an increased amplitude N400. For auditory verifications, switching led to a larger late positive complex. Observed ERP effects of modality switching suggest property words access perceptual brain systems. Moreover, the timing and pattern of the effects suggest perceptual systems impact the decision-making stage in the verification of auditory properties, and the semantic stage in the verification of visual properties.

  2. Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections

    NASA Astrophysics Data System (ADS)

    Wakazuki, Y.

    2015-12-01

    A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.

  3. Regression-based pediatric norms for the brief visuospatial memory test: revised and the symbol digit modalities test.

    PubMed

    Smerbeck, A M; Parrish, J; Yeh, E A; Hoogs, M; Krupp, Lauren B; Weinstock-Guttman, B; Benedict, R H B

    2011-04-01

    The Brief Visuospatial Memory Test - Revised (BVMTR) and the Symbol Digit Modalities Test (SDMT) oral-only administration are known to be sensitive to cerebral disease in adult samples, but pediatric norms are not available. A demographically balanced sample of healthy control children (N = 92) ages 6-17 was tested with the BVMTR and SDMT. Multiple regression analysis (MRA) was used to develop demographically controlled normative equations. This analysis provided equations that were then used to construct demographically adjusted z-scores for the BVMTR Trial 1, Trial 2, Trial 3, Total Learning, and Delayed Recall indices, as well as the SDMT total correct score. To demonstrate the utility of this approach, a comparison group of children with acute disseminated encephalomyelitis (ADEM) or multiple sclerosis (MS) were also assessed. We find that these visual processing tests discriminate neurological patients from controls. As the tests are validated in adult multiple sclerosis, they are likely to be useful in monitoring pediatric onset multiple sclerosis patients as they transition into adulthood.

  4. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.

    PubMed

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A S; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H; Choyke, Peter L; Urano, Yasuteru

    2007-11-01

    Current contrast agents generally have one function and can only be imaged in monochrome; therefore, the majority of imaging methods can only impart uniparametric information. A single nanoparticle has the potential to be loaded with multiple payloads. Such multimodality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multicolor in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near-infrared emission. To this end, we synthesized nanoprobes with multimodal and multicolor potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and five-color near-infrared optical lymphatic imaging using a multiple-excitation spectrally resolved fluorescence imaging technique.

  5. Audition and vision share spatial attentional resources, yet attentional load does not disrupt audiovisual integration.

    PubMed

    Wahn, Basil; König, Peter

    2015-01-01

    Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.

  6. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    PubMed Central

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior. PMID:29535614

  7. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    PubMed

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior.

  8. The physiologic basis and clinical applications of cryotherapy and thermotherapy for the pain practitioner.

    PubMed

    Nadler, Scott F; Weingand, Kurt; Kruse, Roger J

    2004-07-01

    Cryotherapy and thermotherapy are useful adjuncts for the treatment of musculoskeletal injuries. Clinicians treating these conditions should be aware of current research findings regarding these modalities, because their choice of modality may affect the ultimate outcome of the patient being treated. Through a better understanding of these modalities, clinicians can optimize their present treatment strategies. Although cold and hot treatment modalities both decrease pain and muscle spasm, they have opposite effects on tissue metabolism, blood flow, inflammation, edema, and connective tissue extensibility. Cryotherapy decreases these effects while thermotherapy increases them. Continuous low-level cryotherapy and thermotherapy are newer concepts in therapeutic modalities. Both modalities provide significant pain relief with a low side-effect profile. Contrast therapy, which alternates between hot and cold treatment modalities, provides no additional therapeutic benefits compared with cryotherapy or thermotherapy alone. Complications of cryotherapy include nerve damage, frostbite, Raynaud's phenomenon, cold-induced urticaria, and slowed wound healing. With thermotherapy, skin burns may occur, especially in patients with diabetes mellitus, multiple sclerosis, poor circulation, and spinal cord injuries. In individuals with rheumatoid arthritis, deep-heating modalities should be used with caution because increased inflammation may occur. Whirlpool and other types of hydrotherapy have caused infections of the skin, urogenital, and pulmonary systems. Additionally, ultrasound should not be used in patients with joint prostheses.

  9. Sight and sound converge to form modality-invariant representations in temporo-parietal cortex

    PubMed Central

    Man, Kingson; Kaplan, Jonas T.; Damasio, Antonio; Meyer, Kaspar

    2013-01-01

    People can identify objects in the environment with remarkable accuracy, irrespective of the sensory modality they use to perceive them. This suggests that information from different sensory channels converges somewhere in the brain to form modality-invariant representations, i.e., representations that reflect an object independently of the modality through which it has been apprehended. In this functional magnetic resonance imaging study of human subjects, we first identified brain areas that responded to both visual and auditory stimuli and then used crossmodal multivariate pattern analysis to evaluate the neural representations in these regions for content-specificity (i.e., do different objects evoke different representations?) and modality-invariance (i.e., do the sight and the sound of the same object evoke a similar representation?). While several areas became activated in response to both auditory and visual stimulation, only the neural patterns recorded in a region around the posterior part of the superior temporal sulcus displayed both content-specificity and modality-invariance. This region thus appears to play an important role in our ability to recognize objects in our surroundings through multiple sensory channels and to process them at a supra-modal (i.e., conceptual) level. PMID:23175818

  10. Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution.

    PubMed

    Tran, Nhiem; Bye, Nicole; Moffat, Bradford A; Wright, David K; Cuddihy, Andrew; Hinton, Tracey M; Hawley, Adrian M; Reynolds, Nicholas P; Waddington, Lynne J; Mulet, Xavier; Turnley, Ann M; Morganti-Kossmann, M Cristina; Muir, Benjamin W

    2017-02-01

    Engineered nanoparticles with multiple complementary imaging modalities are of great benefit to the rapid treatment and diagnosis of disease in various organs. Herein, we report the formulation of cubosomes and hexosomes that carry multiple amphiphilic imaging contrast agents in their self-assembled lipid bilayers. This is the first report of the use of both near infrared fluorescent (NIRF) imaging and gadolinium lipid based magnetic resonance (MR) imaging modalities in cubosomes and hexosomes. High-throughput screening was used to rapidly optimize formulations with desirable nano-architectures and low in vitro cytotoxicity. The dual-modal imaging nanoparticles in vivo biodistribution and organ specific contrast enhancement were then studied. The NIRF in vivo imaging results indicated accumulation of both cubosomes and hexosomes in the liver and spleen of mice up to 20h post-injection. Remarkably, the biodistribution of the nanoparticle formulations was affected by the mesophase (i.e. cubic or hexagonal), a finding of significant importance for the future use of these compounds, with hexosomes showing higher accumulation in the spleen than the liver compared to cubosomes. Furthermore, in vivo MRI data of animals injected with either type of lyotropic liquid crystal nanoparticle displayed enhanced contrast in the liver and spleen. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities.

    PubMed

    Fujisaki, Waka; Nishida, Shin'ya

    2010-08-07

    The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information ('what') across different channels, temporal coincidence ('when') along with spatial coincidence ('where') provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2-3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4-9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed 'what' and 'when' properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in 'when' processing, the binding performance reflects the central temporal limit of integrating 'when' and 'what' properties.

  12. Modal identification of dynamic mechanical systems

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Kundra, T. K.

    1992-07-01

    This paper reviews modal identification techniques which are now helping designers all over the world to improve the dynamic behavior of vibrating engineering systems. In this context the need to develop more accurate and faster parameter identification is ever increasing. A new dynamic stiffness matrix based identification method which is highly accurate, fast and system-dynamic-modification compatible is presented. The technique is applicable to all those multidegree-of-freedom systems where full receptance matrix can be experimentally measured.

  13. Cos-Gaussian modal field of a terahertz rectangular metal waveguide filled with multiple slices of dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing

    2018-06-01

    Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.

  14. Modal smoothing for analysis of room reflections measured with spherical microphone and loudspeaker arrays.

    PubMed

    Morgenstern, Hai; Rafaely, Boaz

    2018-02-01

    Spatial analysis of room acoustics is an ongoing research topic. Microphone arrays have been employed for spatial analyses with an important objective being the estimation of the direction-of-arrival (DOA) of direct sound and early room reflections using room impulse responses (RIRs). An optimal method for DOA estimation is the multiple signal classification algorithm. When RIRs are considered, this method typically fails due to the correlation of room reflections, which leads to rank deficiency of the cross-spectrum matrix. Preprocessing methods for rank restoration, which may involve averaging over frequency, for example, have been proposed exclusively for spherical arrays. However, these methods fail in the case of reflections with equal time delays, which may arise in practice and could be of interest. In this paper, a method is proposed for systems that combine a spherical microphone array and a spherical loudspeaker array, referred to as multiple-input multiple-output systems. This method, referred to as modal smoothing, exploits the additional spatial diversity for rank restoration and succeeds where previous methods fail, as demonstrated in a simulation study. Finally, combining modal smoothing with a preprocessing method is proposed in order to increase the number of DOAs that can be estimated using low-order spherical loudspeaker arrays.

  15. Potential and Limitations of the Modal Characterization of a Spacecraft Bus Structure by Means of Active Structure Elements

    NASA Technical Reports Server (NTRS)

    Grillenbeck, Anton M.; Dillinger, Stephan A.; Elliott, Kenny B.

    1998-01-01

    Theoretical and experimental studies have been performed to investigate the potential and limitations of the modal characterization of a typical spacecraft bus structure by means of active structure elements. The aim of these studies has been test and advance tools for performing an accurate on-orbit modal identification which may be characterized by the availability of a generally very limited test instrumentation, autonomous excitation capabilities by active structure elements and a zero-g environment. The NASA LARC CSI Evolutionary Testbed provided an excellent object for the experimental part of this study program. The main subjects of investigation were: (1) the selection of optimum excitation and measurement to unambiguously identify modes of interest; (2) the applicability of different types of excitation means with focus on active structure elements; and (3) the assessment of the modal identification potential of different types of excitation functions and modal analysis tools. Conventional as well as dedicated modal analysis tools were applied to determine modal parameters and mode shapes. The results will be presented and discussed based on orthogonality checks as well as on suitable indicators for the quality of the acquired modes with respect to modal purity. In particular, the suitability for modal analysis of the acquired frequency response functions as obtained by excitation with active structure elements will be demonstrated with the help of reciprocity checks. Finally, the results will be summarized in a procedure to perform an on-orbit modal identification, including an indication of limitation to be observed.

  16. A perception theory in mind-body medicine: guided imagery and mindful meditation as cross-modal adaptation.

    PubMed

    Bedford, Felice L

    2012-02-01

    A new theory of mind-body interaction in healing is proposed based on considerations from the field of perception. It is suggested that the combined effect of visual imagery and mindful meditation on physical healing is simply another example of cross-modal adaptation in perception, much like adaptation to prism-displaced vision. It is argued that psychological interventions produce a conflict between the perceptual modalities of the immune system and vision (or touch), which leads to change in the immune system in order to realign the modalities. It is argued that mind-body interactions do not exist because of higher-order cognitive thoughts or beliefs influencing the body, but instead result from ordinary interactions between lower-level perceptual modalities that function to detect when sensory systems have made an error. The theory helps explain why certain illnesses may be more amenable to mind-body interaction, such as autoimmune conditions in which a sensory system (the immune system) has made an error. It also renders sensible erroneous changes, such as those brought about by "faith healers," as conflicts between modalities that are resolved in favor of the wrong modality. The present view provides one of very few psychological theories of how guided imagery and mindfulness meditation bring about positive physical change. Also discussed are issues of self versus non-self, pain, cancer, body schema, attention, consciousness, and, importantly, developing the concept that the immune system is a rightful perceptual modality. Recognizing mind-body healing as perceptual cross-modal adaptation implies that a century of cross-modal perception research is applicable to the immune system.

  17. Clients and carers perception of mental illness and factors that influence help-seeking: Where they go first and why.

    PubMed

    Chilale, Harris K; Silungwe, Ndumanene Devlin; Gondwe, Saulos; Masulani-Mwale, Charles

    2017-08-01

    In Northern Malawi, the duration of untreated psychosis (DUP) is longer than that in high-income countries. The reasons for the delay in help-seeking are not known, although studies show multiple reasons. This research was conducted to establish health care help-seeking behaviours and identify barriers that exist between service users and health care providers. The study also intended to establish the beliefs that clients and family members have regarding the causes of mental illness which profoundly shape help-seeking, care giving process and outcomes. The study employed the exploratory phenomenological method, utilizing focus group discussions (FGDs) in the sampled population. The Health Belief Model and Disease Explanatory Models were conveniently chosen a priori by researchers to develop guide questions to explore clients' and carers' perceptions of the illness and their health care help-seeking behaviours. Results show a bio-psycho-social inclination of disease causation and help-seeking behaviour. Causes of mental illness are understood in three categories, namely: physical/biological, psychological and socio-cultural. The majority of participants attributed mental illness to socio-cultural factors, with witchcraft, spirit possession and curses as main determinants. Causal perceptions also influenced help-seeking pathways. Many participants reported consulting traditional healers first, for diagnosis and to know who was responsible. In this study, it has been found that help-seeking is influenced by the understanding of the source of the illness - which has a bio-psychosocial inclination. The socio-cultural explanation of witchcraft and spirit possession is dominant and a determinant of help-seeking behaviour. While participants noted benefits to hospital treatment, barriers and bio-psychosocial in nature were also noted. Guardians and not clients hold the key to choice of treatment modality and therefore a potential ally in all treatment interventions promotive, preventive and curative. There is need for strengthening of a bio-psychosocial intervention model in the treatment of mental illness.

  18. Mobile Phone Interventions for the Secondary Prevention of Cardiovascular Disease.

    PubMed

    Park, Linda G; Beatty, Alexis; Stafford, Zoey; Whooley, Mary A

    2016-01-01

    Mobile health in the form of text messaging and mobile applications provides an innovative and effective approach to promote prevention and management of cardiovascular disease (CVD); however, the magnitude of these effects is unclear. Through a comprehensive search of databases from 2002-2016, we conducted a quantitative systematic review. The selected studies were critically evaluated to extract and summarize pertinent characteristics and outcomes. A large majority of studies (22 of 28, 79%) demonstrated text messaging, mobile applications, and telemonitoring via mobile phones were effective in improving outcomes. Some key factors associated with successful interventions included personalized messages with tailored advice, greater engagement (2-way text messaging, higher frequency of messages), and use of multiple modalities. Overall, text messaging appears more effective than smartphone-based interventions. Incorporating principles of behavioral activation will help promote and sustain healthy lifestyle behaviors in patients with CVD that result in improved clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The devil is in the details: an analysis of the subtleties between phosphodiesterase inhibitors for erectile dysfunction.

    PubMed

    Smith-Harrison, L I; Patel, Abhishek; Smith, Ryan P

    2016-04-01

    Erectile dysfunction (ED) is a common sexual disorder with numerous etiologies involving multiple organ systems that leads to significant distress and decreased quality of life for the affected men. Fortunately, there are several modalities and interventions for treating ED. Oral medications, intra-urethral compounds, intracorporeal injections, vacuum-assist devices and surgically implanted prostheses are all part of the treatment algorithm. One of the first-lines and certainly the most widely used options for treating ED is the family of oral phosphodiesterase type 5 inhibitors (PDE5I). The introduction of these medications in the late 1990s revolutionized the field of sexual medicine. Currently there are no guidelines and minimal literature to help providers choose among drugs in this class. This review will address differences in efficacy and side effects between various members of the oral selective phosphodiesterase-5 inhibitor class of drugs.

  20. Knowledge as a Service at the Point of Care.

    PubMed

    Shellum, Jane L; Freimuth, Robert R; Peters, Steve G; Nishimura, Rick A; Chaudhry, Rajeev; Demuth, Steve J; Knopp, Amy L; Miksch, Timothy A; Milliner, Dawn S

    2016-01-01

    An electronic health record (EHR) can assist the delivery of high-quality patient care, in part by providing the capability for a broad range of clinical decision support, including contextual references (e.g., Infobuttons), alerts and reminders, order sets, and dashboards. All of these decision support tools are based on clinical knowledge; unfortunately, the mechanisms for managing rules, order sets, Infobuttons, and dashboards are often unrelated, making it difficult to coordinate the application of clinical knowledge to various components of the clinical workflow. Additional complexity is encountered when updating enterprise-wide knowledge bases and delivering the content through multiple modalities to different consumers. We present the experience of Mayo Clinic as a case study to examine the requirements and implementation challenges related to knowledge management across a large, multi-site medical center. The lessons learned through the development of our knowledge management and delivery platform will help inform the future development of interoperable knowledge resources.

  1. Knowledge as a Service at the Point of Care

    PubMed Central

    Shellum, Jane L.; Freimuth, Robert R.; Peters, Steve G.; Nishimura, Rick A.; Chaudhry, Rajeev; Demuth, Steve J.; Knopp, Amy L.; Miksch, Timothy A.; Milliner, Dawn S.

    2016-01-01

    An electronic health record (EHR) can assist the delivery of high-quality patient care, in part by providing the capability for a broad range of clinical decision support, including contextual references (e.g., Infobuttons), alerts and reminders, order sets, and dashboards. All of these decision support tools are based on clinical knowledge; unfortunately, the mechanisms for managing rules, order sets, Infobuttons, and dashboards are often unrelated, making it difficult to coordinate the application of clinical knowledge to various components of the clinical workflow. Additional complexity is encountered when updating enterprise-wide knowledge bases and delivering the content through multiple modalities to different consumers. We present the experience of Mayo Clinic as a case study to examine the requirements and implementation challenges related to knowledge management across a large, multi-site medical center. The lessons learned through the development of our knowledge management and delivery platform will help inform the future development of interoperable knowledge resources. PMID:28269911

  2. Mobile Phone Interventions for the Secondary Prevention of Cardiovascular Disease

    PubMed Central

    Park, Linda G.; Beatty, Alexis; Stafford, Zoey; Whooley, Mary A.

    2016-01-01

    Mobile health in the form of text messaging and mobile applications provides an innovative and effective approach to promote prevention and management of cardiovascular disease (CVD); however, the magnitude of these effects is unclear. Through a comprehensive search of databases from 2002–2016, we conducted a quantitative systematic review. The selected studies were critically evaluated to extract and summarize pertinent characteristics and outcomes. A large majority of studies (22 of 28, 79%) demonstrated text messaging, mobile applications, and telemonitoring via mobile phones were effective in improving outcomes. Some key factors associated with successful interventions included personalized messages with tailored advice, greater engagement (2-way text messaging, higher frequency of messages), and use of multiple modalities. Overall, text messaging appears more effective than smartphone-based interventions. Incorporating principles of behavioral activation will help promote and sustain healthy lifestyle behaviors in patients with CVD that result in improved clinical outcomes. PMID:27001245

  3. Molecular Signaling in Tumorigenesis of Gastric Cancer

    PubMed

    Molaei, Fatemeh; Forghanifard, Mohammad Mahdi; Fahim, Yasaman; Abbaszadegan, Mohammad Reza

    2018-07-01

    Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/β-catenin signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of cell signaling pathways may help to develop new therapeutic targets for GC.

  4. Information from multiple modalities helps 5-month-olds learn abstract rules.

    PubMed

    Frank, Michael C; Slemmer, Jonathan A; Marcus, Gary F; Johnson, Scott P

    2009-07-01

    By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli (Marcus et al., 1999), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract rules. We habituated 5-month-olds to simple abstract patterns (ABA or ABB) instantiated in coordinated looming visual shapes and speech sounds (Experiment 1), shapes alone (Experiment 2), and speech sounds accompanied by uninformative but coordinated shapes (Experiment 3). Infants showed evidence of rule learning only in the presence of the informative multimodal cues. We hypothesize that the additional evidence present in these multimodal displays was responsible for the success of younger infants in learning rules, congruent with both a Bayesian account and with the Intersensory Redundancy Hypothesis.

  5. Phase retrieval in generalized optical interferometry systems.

    PubMed

    Farriss, Wesley E; Fienup, James R; Malhotra, Tanya; Vamivakas, A Nick

    2018-02-05

    Modal analysis of an optical field via generalized interferometry (GI) is a novel technique that treats said field as a linear superposition of transverse modes and recovers the amplitudes of modal weighting coefficients. We use phase retrieval by nonlinear optimization to recover the phase of these modal weighting coefficients. Information diversity increases the robustness of the algorithm by better constraining the solution. Additionally, multiple sets of random starting phase values assist the algorithm in overcoming local minima. The algorithm was able to recover nearly all coefficient phases for simulated fields consisting of up to 21 superpositioned Hermite Gaussian modes from simulated data and proved to be resilient to shot noise.

  6. Equalizer tap length requirement for mode group delay-compensated fiber link with weakly random mode coupling.

    PubMed

    Bai, Neng; Li, Guifang

    2014-02-24

    The equalizer tap length requirement is investigated analytically and numerically for differential modal group delay (DMGD) compensated fiber link with weakly random mode coupling. Each span of the DMGD compensated link comprises multiple pairs of fibers which have opposite signs of DMGD. The result reveals that under weak random mode coupling, the required tap length of the equalizer is proportional to modal group delay of a single DMGD compensated pair, instead of the total modal group delay (MGD) of the entire link. By using small DMGD compensation step sizes, the required tap length (RTL) can be potentially reduced by 2 orders of magnitude.

  7. Recreational multifamily therapy for troubled children.

    PubMed

    Greenfield, B J; Senecal, J

    1995-07-01

    Recreation-based family groups were formed as modalities in the treatment of school-age children enrolled at a day treatment center and of preschoolers with potential for enrollment. The groups, which had psychoeducational and self-help components, were successful in involving hitherto unwilling parents in their children's treatment, in helping them acquire parenting skills, and in reducing family conflict.

  8. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques.

    PubMed

    Shui, Wuyang; Zhou, Mingquan; Chen, Shi; Pan, Zhouxian; Deng, Qingqiong; Yao, Yong; Pan, Hui; He, Taiping; Wang, Xingce

    2017-01-01

    Virtual digital resources and printed models have become indispensable tools for medical training and surgical planning. Nevertheless, printed models of soft tissue organs are still challenging to reproduce. This study adopts open source packages and a low-cost desktop 3D printer to convert multiple modalities of medical images to digital resources (volume rendering images and digital models) and lifelike printed models, which are useful to enhance our understanding of the geometric structure and complex spatial nature of anatomical organs. Neuroimaging technologies such as CT, CTA, MRI, and TOF-MRA collect serial medical images. The procedures for producing digital resources can be divided into volume rendering and medical image reconstruction. To verify the accuracy of reconstruction, this study presents qualitative and quantitative assessments. Subsequently, digital models are archived as stereolithography format files and imported to the bundled software of the 3D printer. The printed models are produced using polylactide filament materials. We have successfully converted multiple modalities of medical images to digital resources and printed models for both hard organs (cranial base and tooth) and soft tissue organs (brain, blood vessels of the brain, the heart chambers and vessel lumen, and pituitary tumor). Multiple digital resources and printed models were provided to illustrate the anatomical relationship between organs and complicated surrounding structures. Three-dimensional printing (3DP) is a powerful tool to produce lifelike and tangible models. We present an available and cost-effective method for producing both digital resources and printed models. The choice of modality in medical images and the processing approach is important when reproducing soft tissue organs models. The accuracy of the printed model is determined by the quality of organ models and 3DP. With the ongoing improvement of printing techniques and the variety of materials available, 3DP will become an indispensable tool in medical training and surgical planning.

  9. Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Yang, Rennong; Chevalier, Guillaume; Shah, Rajiv C.; Romijnders, Rob

    2018-04-01

    Data analytics helps basketball teams to create tactics. However, manual data collection and analytics are costly and ineffective. Therefore, we applied a deep bidirectional long short-term memory (BLSTM) and mixture density network (MDN) approach. This model is not only capable of predicting a basketball trajectory based on real data, but it also can generate new trajectory samples. It is an excellent application to help coaches and players decide when and where to shoot. Its structure is particularly suitable for dealing with time series problems. BLSTM receives forward and backward information at the same time, while stacking multiple BLSTMs further increases the learning ability of the model. Combined with BLSTMs, MDN is used to generate a multi-modal distribution of outputs. Thus, the proposed model can, in principle, represent arbitrary conditional probability distributions of output variables. We tested our model with two experiments on three-pointer datasets from NBA SportVu data. In the hit-or-miss classification experiment, the proposed model outperformed other models in terms of the convergence speed and accuracy. In the trajectory generation experiment, eight model-generated trajectories at a given time closely matched real trajectories.

  10. Current Options for Determining Fracture Union

    PubMed Central

    2014-01-01

    Determining whether a bone fracture is healed is one of the most important and fundamental clinical determinations made in orthopaedics. However, there are currently no standardized methods of assessing fracture union, which in turn has created significant disagreement among orthopaedic surgeons in both clinical and research settings. An extensive amount of research has been dedicated to finding novel and reliable ways of determining healing with some promising results. Recent advancements in imaging techniques and introduction of new radiographic scores have helped decrease the amount of disagreement on this topic among physicians. The knowledge gained from biomechanical studies of bone healing has helped us refine our tools and create more efficient and practical research instruments. Additionally, a deeper understanding of the molecular pathways involved in the bone healing process has led to emergence of serologic markers as possible candidates in assessment of fracture union. In addition to our current physician centered methods, patient-centered approaches assessing quality of life and function are gaining popularity in assessment of fracture union. Despite these advances, assessment of union remains an imperfect practice in the clinical setting. Therefore, clinicians need to draw on multiple modalities that directly and indirectly measure or correlate with bone healing when counseling patients. PMID:26556422

  11. Neural practice effect during cross-modal selective attention: Supra-modal and modality-specific effects.

    PubMed

    Xia, Jing; Zhang, Wei; Jiang, Yizhou; Li, You; Chen, Qi

    2018-05-16

    Practice and experiences gradually shape the central nervous system, from the synaptic level to large-scale neural networks. In natural multisensory environment, even when inundated by streams of information from multiple sensory modalities, our brain does not give equal weight to different modalities. Rather, visual information more frequently receives preferential processing and eventually dominates consciousness and behavior, i.e., visual dominance. It remains unknown, however, the supra-modal and modality-specific practice effect during cross-modal selective attention, and moreover whether the practice effect shows similar modality preferences as the visual dominance effect in the multisensory environment. To answer the above two questions, we adopted a cross-modal selective attention paradigm in conjunction with the hybrid fMRI design. Behaviorally, visual performance significantly improved while auditory performance remained constant with practice, indicating that visual attention more flexibly adapted behavior with practice than auditory attention. At the neural level, the practice effect was associated with decreasing neural activity in the frontoparietal executive network and increasing activity in the default mode network, which occurred independently of the modality attended, i.e., the supra-modal mechanisms. On the other hand, functional decoupling between the auditory and the visual system was observed with the progress of practice, which varied as a function of the modality attended. The auditory system was functionally decoupled with both the dorsal and ventral visual stream during auditory attention while was decoupled only with the ventral visual stream during visual attention. To efficiently suppress the irrelevant visual information with practice, auditory attention needs to additionally decouple the auditory system from the dorsal visual stream. The modality-specific mechanisms, together with the behavioral effect, thus support the visual dominance model in terms of the practice effect during cross-modal selective attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Structural damage detection for in-service highway bridge under operational and environmental variability

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Li, Jingcheng; Jang, Shinae; Sun, Xiaorong; Christenson, Richard

    2015-03-01

    Structural health monitoring has drawn significant attention in the past decades with numerous methodologies and applications for civil structural systems. Although many researchers have developed analytical and experimental damage detection algorithms through vibration-based methods, these methods are not widely accepted for practical structural systems because of their sensitivity to uncertain environmental and operational conditions. The primary environmental factor that influences the structural modal properties is temperature. The goal of this article is to analyze the natural frequency-temperature relationships and detect structural damage in the presence of operational and environmental variations using modal-based method. For this purpose, correlations between natural frequency and temperature are analyzed to select proper independent variables and inputs for the multiple linear regression model and neural network model. In order to capture the changes of natural frequency, confidence intervals to detect the damages for both models are generated. A long-term structural health monitoring system was installed on an in-service highway bridge located in Meriden, Connecticut to obtain vibration and environmental data. Experimental testing results show that the variability of measured natural frequencies due to temperature is captured, and the temperature-induced changes in natural frequencies have been considered prior to the establishment of the threshold in the damage warning system. This novel approach is applicable for structural health monitoring system and helpful to assess the performance of the structure for bridge management and maintenance.

  13. Review of Strategies to Enhance Outcomes for Patients with Type 2 Diabetes: Payers' Perspective

    PubMed Central

    Greenapple, Rhonda

    2011-01-01

    Background Diabetes and its clinical consequences exact a great toll on patients and on society in terms of its effects on morbidity and mortality and its staggering economic impact. Objective To review various programs and strategies that aim at enhancing adherence to antihyperglycemic therapy and suggest the best approach to improving patient outcomes and reducing healthcare costs. Discussion Treatment goals for patients with diabetes have been defined, and multiple safe and effective medications are available. Nevertheless, the majority of patients with diabetes fail to achieve treatment goals, because of difficulty with adherence to medication regimens and lifestyle modifications, and because of economic barriers. This article discusses various initiatives developed to improve patient outcomes, including consumer-driven health plans and wellness and prevention programs. Furthermore, economic incentives to patients, such as value-based insurance design, may increase adherence; nevertheless, evidence suggests that such programs alone provide only modest gains. Primary providers in disease management programs can include nurses, case managers, or pharmacists. Supportive interventions across several modalities have been shown to be effective. Conclusion An approach that uses a combination of strategies designed to impact patients' health-related behaviors across a variety of modalities may help to improve outcomes and reduce costs. Additional novel, innovative interdisciplinary initiatives are necessary to effect meaningful change that can facilitate improved health outcomes for patients with diabetes and maximize cost-effectiveness approaches for payers. PMID:25126364

  14. Low Complexity Track Initialization and Fusion for Multi-Modal Sensor Networks

    DTIC Science & Technology

    2012-11-08

    feature was demonstrated via the simulations. Aerospace 2011work further documents our investigation of multiple target tracking filters in...bounds that determine how well a sensor network can resolve and localize multiple targets as a function of the operating parameters such as sensor...probability density (PHD) filter for binary measurements using proximity sensors. 15. SUBJECT TERMS proximity sensors, PHD filter, multiple

  15. Cross-Modal Retrieval With CNN Visual Features: A New Baseline.

    PubMed

    Wei, Yunchao; Zhao, Yao; Lu, Canyi; Wei, Shikui; Liu, Luoqi; Zhu, Zhenfeng; Yan, Shuicheng

    2017-02-01

    Recently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval. To further enhance the representational ability of CNN visual features, based on the pretrained CNN model on ImageNet, a fine-tuning step is performed by using the open source Caffe CNN library for each target data set. Besides, we propose a deep semantic matching method to address the cross-modal retrieval problem with respect to samples which are annotated with one or multiple labels. Extensive experiments on five popular publicly available data sets well demonstrate the superiority of CNN visual features for cross-modal retrieval.

  16. Retrospective Analysis of Communication Events - Understanding the Dynamics of Collaborative Multi-Party Discourse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowell, Andrew J.; Haack, Jereme N.; McColgin, Dave W.

    2006-06-08

    This research is aimed at understanding the dynamics of collaborative multi-party discourse across multiple communication modalities. Before we can truly make sig-nificant strides in devising collaborative communication systems, there is a need to understand how typical users utilize com-putationally supported communications mechanisms such as email, instant mes-saging, video conferencing, chat rooms, etc., both singularly and in conjunction with traditional means of communication such as face-to-face meetings, telephone calls and postal mail. Attempting to un-derstand an individual’s communications profile with access to only a single modal-ity is challenging at best and often futile. Here, we discuss the development of RACE –more » Retrospective Analysis of Com-munications Events – a test-bed prototype to investigate issues relating to multi-modal multi-party discourse.« less

  17. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals

    PubMed Central

    Longmire, Michelle R.; Ogawa, Mikako; Choyke, Peter L.

    2012-01-01

    In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references). PMID:21607237

  18. Using a Smart City IoT to Incentivise and Target Shifts in Mobility Behaviour—Is It a Piece of Pie?

    PubMed Central

    Poslad, Stefan; Ma, Athen; Wang, Zhenchen; Mei, Haibo

    2015-01-01

    Whilst there is an increasing capability to instrument smart cities using fixed and mobile sensors to produce the big data to better understand and manage transportation use, there still exists a wide gap between the sustainability goals of smart cities, e.g., to promote less private car use at peak times, with respect to their ability to more dynamically support individualised shifts in multi-modal transportation use to help achieve such goals. We describe the development of the tripzoom system developed as part of the SUNSET—SUstainable social Network SErvices for Transport—project to research and develop a mobile and fixed traffic sensor system to help facilitate individual mobility shifts. Its main novelty was its ability to use mobile sensors to classify common multiple urban transportation modes, to generate information-rich individual and group mobility profiles and to couple this with the use of a targeted incentivised marketplace to gamify travel. This helps to promote mobility shifts towards achieving sustainability goals. This system was trialled in three European country cities operated as Living Labs over six months. Our main findings were that we were able to accomplish a level of behavioural shifts in travel behaviour. Hence, we have provided a proof-of-concept system that uses positive incentives to change individual travel behaviour. PMID:26053752

  19. Using a Smart City IoT to Incentivise and Target Shifts in Mobility Behaviour--Is It a Piece of Pie?

    PubMed

    Poslad, Stefan; Ma, Athen; Wang, Zhenchen; Mei, Haibo

    2015-06-04

    Whilst there is an increasing capability to instrument smart cities using fixed and mobile sensors to produce the big data to better understand and manage transportation use, there still exists a wide gap between the sustainability goals of smart cities, e.g., to promote less private car use at peak times, with respect to their ability to more dynamically support individualised shifts in multi-modal transportation use to help achieve such goals. We describe the development of the tripzoom system developed as part of the SUNSET-SUstainable social Network SErvices for Transport-project to research and develop a mobile and fixed traffic sensor system to help facilitate individual mobility shifts. Its main novelty was its ability to use mobile sensors to classify common multiple urban transportation modes, to generate information-rich individual and group mobility profiles and to couple this with the use of a targeted incentivised marketplace to gamify travel. This helps to promote mobility shifts towards achieving sustainability goals. This system was trialled in three European country cities operated as Living Labs over six months. Our main findings were that we were able to accomplish a level of behavioural shifts in travel behaviour. Hence, we have provided a proof-of-concept system that uses positive incentives to change individual travel behaviour.

  20. Modal Testing of the NPSAT1 Engineering Development Unit

    DTIC Science & Technology

    2012-07-01

    erkläre ich, dass die vorliegende Master Arbeit von mir selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt...logarithmic scale . As 5 Figure 2 shows, natural frequencies are indicated by large values of the first CMIF (peaks), and multiple modes can be detected by...structure’s behavior. Ewins even states, “that no large- scale modal test should be permitted to proceed until some preliminary SDOF analyses have

  1. Experimental Modal Analysis and Dynamic Component Synthesis. Volume 3. Modal Parameter Estimation

    DTIC Science & Technology

    1987-12-01

    residues as well as poles is achieved. A singular value decomposition method has been used to develop a complex mode indicator function ( CMIF )[70...which can be used to help determine the number of poles before the analysis. The CMIF is formed by performing a singular value decomposition of all of...servo systems which can include both low and high damping modes. "• CMIF can be used to indicate close or repeated eigenvalues before the parameter

  2. Pediatric providers and radiology examinations: knowledge and comfort levels regarding ionizing radiation and potential complications of imaging.

    PubMed

    Wildman-Tobriner, Benjamin; Parente, Victoria M; Maxfield, Charles M

    2017-12-01

    Pediatric providers should understand the basic risks of the diagnostic imaging tests they order and comfortably discuss those risks with parents. Appreciating providers' level of understanding is important to guide discussions and enhance relationships between radiologists and pediatric referrers. To assess pediatric provider knowledge of diagnostic imaging modalities that use ionizing radiation and to understand provider concerns about risks of imaging. A 6-question survey was sent via email to 390 pediatric providers (faculty, trainees and midlevel providers) from a single academic institution. A knowledge-based question asked providers to identify which radiology modalities use ionizing radiation. Subjective questions asked providers about discussions with parents, consultations with radiologists, and complications of imaging studies. One hundred sixty-nine pediatric providers (43.3% response rate) completed the survey. Greater than 90% of responding providers correctly identified computed tomography (CT), fluoroscopy and radiography as modalities that use ionizing radiation, and ultrasound and magnetic resonance imaging (MRI) as modalities that do not. Fewer (66.9% correct, P<0.001) knew that nuclear medicine utilizes ionizing radiation. A majority of providers (82.2%) believed that discussions with radiologists regarding ionizing radiation were helpful, but 39.6% said they rarely had time to do so. Providers were more concerned with complications of sedation and cost than they were with radiation-induced cancer, renal failure or anaphylaxis. Providers at our academic referral center have a high level of basic knowledge regarding modalities that use ionizing radiation, but they are less aware of ionizing radiation use in nuclear medicine studies. They find discussions with radiologists helpful and are concerned about complications of sedation and cost.

  3. Arithmetic Memory Is Modality Specific.

    PubMed

    Myers, Timothy; Szücs, Dénes

    2015-01-01

    In regards to numerical cognition and working memory, it is an open question as to whether numbers are stored into and retrieved from a central abstract representation or from separate notation-specific representations. This study seeks to help answer this by utilizing the numeral modality effect (NME) in three experiments to explore how numbers are processed by the human brain. The participants were presented with numbers (1-9) as either Arabic digits or written number words (Arabic digits and dot matrices in Experiment 2) at the first (S1) and second (S2) stimuli. The participant's task was to add the first two stimuli together and verify whether the answer (S3), presented simultaneously with S2, was correct. We hypothesized that if reaction time (RT) at S2/S3 depends on the modality of S1 then numbers are retrieved from modality specific memory stores. Indeed, RT depended on the modality of S1 whenever S2 was an Arabic digit which argues against the concept of numbers being stored and retrieved from a central, abstract representation.

  4. Arithmetic Memory Is Modality Specific

    PubMed Central

    Myers, Timothy; Szücs, Dénes

    2015-01-01

    In regards to numerical cognition and working memory, it is an open question as to whether numbers are stored into and retrieved from a central abstract representation or from separate notation-specific representations. This study seeks to help answer this by utilizing the numeral modality effect (NME) in three experiments to explore how numbers are processed by the human brain. The participants were presented with numbers (1–9) as either Arabic digits or written number words (Arabic digits and dot matrices in Experiment 2) at the first (S1) and second (S2) stimuli. The participant’s task was to add the first two stimuli together and verify whether the answer (S3), presented simultaneously with S2, was correct. We hypothesized that if reaction time (RT) at S2/S3 depends on the modality of S1 then numbers are retrieved from modality specific memory stores. Indeed, RT depended on the modality of S1 whenever S2 was an Arabic digit which argues against the concept of numbers being stored and retrieved from a central, abstract representation. PMID:26716692

  5. The therapeutic effectiveness of using visual art modalities with the bereaved: a systematic review.

    PubMed

    Weiskittle, Rachel E; Gramling, Sandra E

    2018-01-01

    Bereaved individuals are increasingly considered at risk for negative psychological and physiological outcomes. Visual art modalities are often incorporated into grief therapy interventions, and clinical application of art therapy techniques with the bereaved has been widely documented. Although clinicians and recipients of these interventions advocate for their helpfulness in adapting to bereavement, research investigating the efficacy of visual art modalities has produced equivocal results and has not yet been synthesized to establish empirical support across settings. Accordingly, this review critically evaluates the existent literature on the effectiveness of visual art modalities with the bereaved and offers suggestions for future avenues of research. A total of 27 studies were included in the current review. Meta-analysis was not possible because of clinical heterogeneity and insufficient comparable data on outcome measures across studies. A narrative synthesis reports that therapeutic application of visual art modalities was associated with positive changes such as continuing bonds with the deceased and meaning making. Modest and conflicting preliminary evidence was found to support treatment effectiveness in alleviating negative grief symptoms such as general distress, functional impairment, and symptoms of depression and anxiety.

  6. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.

    PubMed

    Kemp, Jessica A; Shim, Min Suk; Heo, Chan Yeong; Kwon, Young Jik

    2016-03-01

    The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Direct calculation of modal parameters from matrix orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Guillaume, Patrick

    2011-10-01

    The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.

  8. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications.

    PubMed

    Glick, Hannah; Sharma, Anu

    2017-01-01

    This review explores cross-modal cortical plasticity as a result of auditory deprivation in populations with hearing loss across the age spectrum, from development to adulthood. Cross-modal plasticity refers to the phenomenon when deprivation in one sensory modality (e.g. the auditory modality as in deafness or hearing loss) results in the recruitment of cortical resources of the deprived modality by intact sensory modalities (e.g. visual or somatosensory systems). We discuss recruitment of auditory cortical resources for visual and somatosensory processing in deafness and in lesser degrees of hearing loss. We describe developmental cross-modal re-organization in the context of congenital or pre-lingual deafness in childhood and in the context of adult-onset, age-related hearing loss, with a focus on how cross-modal plasticity relates to clinical outcomes. We provide both single-subject and group-level evidence of cross-modal re-organization by the visual and somatosensory systems in bilateral, congenital deafness, single-sided deafness, adults with early-stage, mild-moderate hearing loss, and individual adult and pediatric patients exhibit excellent and average speech perception with hearing aids and cochlear implants. We discuss a framework in which changes in cortical resource allocation secondary to hearing loss results in decreased intra-modal plasticity in auditory cortex, accompanied by increased cross-modal recruitment of auditory cortices by the other sensory systems, and simultaneous compensatory activation of frontal cortices. The frontal cortices, as we will discuss, play an important role in mediating cognitive compensation in hearing loss. Given the wide range of variability in behavioral performance following audiological intervention, changes in cortical plasticity may play a valuable role in the prediction of clinical outcomes following intervention. Further, the development of new technologies and rehabilitation strategies that incorporate brain-based biomarkers may help better serve hearing impaired populations across the lifespan. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Postinflammatory hyperpigmentation in patients with skin of color.

    PubMed

    Shokeen, Divya

    2016-01-01

    Postinflammatory hyperpigmentation (PIH) has posed a substantial challenge for patients with higher Fitzpatrick skin types, specifically types III to VI. Treatment modalities pose a number of limitations due to the number of treatments required, potential side effects, and overall efficacy. Fortunately, multiple therapies have been delineated that can be moderately to highly efficacious in treating PIH in patients with skin of color. This article will review some of these modalities and procedures for this common patient concern.

  10. Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission.

    PubMed

    Hu, Tao; Li, Juhao; Ge, Dawei; Wu, Zhongying; Tian, Yu; Shen, Lei; Liu, Yaping; Chen, Su; Li, Zhengbin; He, Yongqi; Chen, Zhangyuan

    2018-04-02

    Weakly coupled-mode division multiplexing (MDM) over few-mode fibers (FMF) for short-reach transmission has attracted great interest, which can avoid multiple-input-multiple-output digital signal processing (MIMO-DSP) by greatly suppressing modal crosstalk. In this paper, step-index FMF supporting 4 linearity polarization (LP) modes for MIMO-free transmission is designed and fabricated for the first time, to our knowledge. Modal crosstalk of the fiber is suppressed by increasing the mode effective refractive index differences. The same fabrication method as standard single-mode fiber is adopted so that it is practical and cost-effective. The mode multiplexer/demultiplexer (MUX/DEMUX) consists of cascaded mode-selective couplers (MSCs), which are designed and fabricated by tapering the proposed FMF with single-mode fiber (SMF). The mode MUX and DEMUX achieve very low modal crosstalk not only for the multiplexing/demultiplexing but also for the coupling to/from the FMF. Based on the fabricated FMF and mode MUX/DEMUX, we successfully demonstrate the first simultaneous 4-modes (LP 01 , LP 11 , LP 21 & LP 31 ) 10-km FMF transmission with 10-Gb/s intensity modulation and MIMO-free direct detection (IM/DD). The modal crosstalk of the whole transmission link is successfully suppressed to less than -16.5 dB. The experimental results indicate that FMF with simple step-index structure supporting 4 weakly-coupled modes is feasible.

  11. A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities

    PubMed Central

    Fujisaki, Waka; Nishida, Shin'ya

    2010-01-01

    The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information (‘what’) across different channels, temporal coincidence (‘when’) along with spatial coincidence (‘where’) provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2–3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4–9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed ‘what’ and ‘when’ properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in ‘when’ processing, the binding performance reflects the central temporal limit of integrating ‘when’ and ‘what’ properties. PMID:20335212

  12. Comparing solutions to the expectancy-value muddle in the theory of planned behaviour.

    PubMed

    O' Sullivan, B; McGee, H; Keegan, O

    2008-11-01

    The authors of the Theories of Reasoned Action (TRA) and Planned Behaviour (TPB) recommended a method for statistically analysing the relationship between the indirect belief-based measures and the direct measures of attitude, subjective norm, and perceived behavioural control (PBC). However, there is a growing awareness that this yields statistically uninterpretable results. This study's objective was to compare two solutions to what has been called the 'expectancy-value muddle'. These solutions were (i) optimal scoring of modal beliefs and (ii) individual beliefs without multiplicative composites. Cross-sectional data were collected by telephone interview. Participants were 110 first-degree relatives (FDRs) of patients diagnosed with colorectal cancer (CRC), who were offered CRC screening in the study hospital (83% response rate). Participants were asked to rate the TPB constructs in relation to attending for CRC screening. There was no significant difference in the correlation between behavioural beliefs and attitude for rescaled modal and individual beliefs. This was also the case for control beliefs and PBC. By contrast, there was a large correlation between rescaled modal normative beliefs and subjective norm, whereas individual normative beliefs did not correlate with subjective norm. Using individual beliefs without multiplicative composites allows for a fairly unproblematic interpretation of the relationship between the indirect and direct TPB constructs (French & Hankins, 2003). Therefore, it is recommended that future studies consider using individual measures of behavioural and control beliefs without multiplicative composites and examine a different way of measuring individual normative beliefs without multiplicative composites to that used in this study.

  13. Alignment of multimodality, 2D and 3D breast images

    NASA Astrophysics Data System (ADS)

    Grevera, George J.; Udupa, Jayaram K.

    2003-05-01

    In a larger effort, we are studying methods to improve the specificity of the diagnosis of breast cancer by combining the complementary information available from multiple imaging modalities. Merging information is important for a number of reasons. For example, contrast uptake curves are an indication of malignancy. The determination of anatomical locations in corresponding images from various modalities is necessary to ascertain the extent of regions of tissue. To facilitate this fusion, registration becomes necessary. We describe in this paper a framework in which 2D and 3D breast images from MRI, PET, Ultrasound, and Digital Mammography can be registered to facilitate this goal. Briefly, prior to image acquisition, an alignment grid is drawn on the breast skin. Modality-specific markers are then placed at the indicated grid points. Images are then acquired by a specific modality with the modality specific external markers in place causing the markers to appear in the images. This is the first study that we are aware of that has undertaken the difficult task of registering 2D and 3D images of such a highly deformable (the breast) across such a wide variety of modalities. This paper reports some very preliminary results from this project.

  14. Neural network for intelligent query of an FBI forensic database

    NASA Astrophysics Data System (ADS)

    Uvanni, Lee A.; Rainey, Timothy G.; Balasubramanian, Uma; Brettle, Dean W.; Weingard, Fred; Sibert, Robert W.; Birnbaum, Eric

    1997-02-01

    Examiner is an automated fired cartridge case identification system utilizing a dual-use neural network pattern recognition technology, called the statistical-multiple object detection and location system (S-MODALS) developed by Booz(DOT)Allen & Hamilton, Inc. in conjunction with Rome Laboratory. S-MODALS was originally designed for automatic target recognition (ATR) of tactical and strategic military targets using multisensor fusion [electro-optical (EO), infrared (IR), and synthetic aperture radar (SAR)] sensors. Since S-MODALS is a learning system readily adaptable to problem domains other than automatic target recognition, the pattern matching problem of microscopic marks for firearms evidence was analyzed using S-MODALS. The physics; phenomenology; discrimination and search strategies; robustness requirements; error level and confidence level propagation that apply to the pattern matching problem of military targets were found to be applicable to the ballistic domain as well. The Examiner system uses S-MODALS to rank a set of queried cartridge case images from the most similar to the least similar image in reference to an investigative fired cartridge case image. The paper presents three independent tests and evaluation studies of the Examiner system utilizing the S-MODALS technology for the Federal Bureau of Investigation.

  15. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices.

    PubMed

    Zheng, Jing-Jing; Li, Shu-Jing; Zhang, Xiao-Di; Miao, Wan-Ying; Zhang, Dinghong; Yao, Haishan; Yu, Xiang

    2014-03-01

    Sensory experience is critical to development and plasticity of neural circuits. Here we report a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling. Unimodal sensory deprivation from birth through whisker deprivation or dark rearing reduced excitatory synaptic transmission in the correspondent sensory cortex and cross-modally in other sensory cortices. Sensory experience regulated synthesis and secretion of the neuropeptide oxytocin as well as its level in the cortex. Both in vivo oxytocin injection and increased sensory experience elevated excitatory synaptic transmission in multiple sensory cortices and significantly rescued the effects of sensory deprivation. Together, these results identify a new function for oxytocin in promoting cross-modal, experience-dependent cortical development. This link between sensory experience and oxytocin is particularly relevant to autism, where hypersensitivity or hyposensitivity to sensory inputs is prevalent and oxytocin is a hotly debated potential therapy.

  16. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model

    NASA Technical Reports Server (NTRS)

    Sunshine, Jessica M.; Pieters, Carle M.

    1993-01-01

    The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.

  17. Integrated corridor management (ICM) knowledge and technology transfer (KTT).

    DOT National Transportation Integrated Search

    2014-01-01

    The ICM approach involves aggressive, proactive integration of infrastructure along major corridors so that transportation professionals can fully leverage all existing modal choices and assets. ICM helps transportation leaders improve travel time re...

  18. The interactions of multisensory integration with endogenous and exogenous attention

    PubMed Central

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-01-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. PMID:26546734

  19. The interactions of multisensory integration with endogenous and exogenous attention.

    PubMed

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-02-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mapping the Margins in Higher Education: On the Promise of Intersectionality Frameworks in Research and Discourse

    ERIC Educational Resources Information Center

    Museus, Samuel D.; Griffin, Kimberly A.

    2011-01-01

    "Intersectionality" can be defined as the "relationships among multiple social dimensions and modalities of social relations and subject formations." In simpler terms, it can be defined as the processes through which multiple social identities converge and ultimately shape individual and group experiences. In this article, the authors discuss the…

  1. Conceptual Structure within and between Modalities

    PubMed Central

    Dilkina, Katia; Lambon Ralph, Matthew A.

    2012-01-01

    Current views of semantic memory share the assumption that conceptual representations are based on multimodal experience, which activates distinct modality-specific brain regions. This proposition is widely accepted, yet little is known about how each modality contributes to conceptual knowledge and how the structure of this contribution varies across these multiple information sources. We used verbal feature lists, features from drawings, and verbal co-occurrence statistics from latent semantic analysis to examine the informational structure in four domains of knowledge: perceptual, functional, encyclopedic, and verbal. The goals of the analysis were three-fold: (1) to assess the structure within individual modalities; (2) to compare structures between modalities; and (3) to assess the degree to which concepts organize categorically or randomly. Our results indicated significant and unique structure in all four modalities: perceptually, concepts organize based on prominent features such as shape, size, color, and parts; functionally, they group based on use and interaction; encyclopedically, they arrange based on commonality in location or behavior; and verbally, they group associatively or relationally. Visual/perceptual knowledge gives rise to the strongest hierarchical organization and is closest to classic taxonomic structure. Information is organized somewhat similarly in the perceptual and encyclopedic domains, which differs significantly from the structure in the functional and verbal domains. Notably, the verbal modality has the most unique organization, which is not at all categorical but also not random. The idiosyncrasy and complexity of conceptual structure across modalities raise the question of how all of these modality-specific experiences are fused together into coherent, multifaceted yet unified concepts. Accordingly, both methodological and theoretical implications of the present findings are discussed. PMID:23293593

  2. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach.

    PubMed

    Liang, Muxuan; Li, Zhizhong; Chen, Ting; Zeng, Jianyang

    2015-01-01

    Identification of cancer subtypes plays an important role in revealing useful insights into disease pathogenesis and advancing personalized therapy. The recent development of high-throughput sequencing technologies has enabled the rapid collection of multi-platform genomic data (e.g., gene expression, miRNA expression, and DNA methylation) for the same set of tumor samples. Although numerous integrative clustering approaches have been developed to analyze cancer data, few of them are particularly designed to exploit both deep intrinsic statistical properties of each input modality and complex cross-modality correlations among multi-platform input data. In this paper, we propose a new machine learning model, called multimodal deep belief network (DBN), to cluster cancer patients from multi-platform observation data. In our integrative clustering framework, relationships among inherent features of each single modality are first encoded into multiple layers of hidden variables, and then a joint latent model is employed to fuse common features derived from multiple input modalities. A practical learning algorithm, called contrastive divergence (CD), is applied to infer the parameters of our multimodal DBN model in an unsupervised manner. Tests on two available cancer datasets show that our integrative data analysis approach can effectively extract a unified representation of latent features to capture both intra- and cross-modality correlations, and identify meaningful disease subtypes from multi-platform cancer data. In addition, our approach can identify key genes and miRNAs that may play distinct roles in the pathogenesis of different cancer subtypes. Among those key miRNAs, we found that the expression level of miR-29a is highly correlated with survival time in ovarian cancer patients. These results indicate that our multimodal DBN based data analysis approach may have practical applications in cancer pathogenesis studies and provide useful guidelines for personalized cancer therapy.

  3. An improved EMD method for modal identification and a combined static-dynamic method for damage detection

    NASA Astrophysics Data System (ADS)

    Yang, Jinping; Li, Peizhen; Yang, Youfa; Xu, Dian

    2018-04-01

    Empirical mode decomposition (EMD) is a highly adaptable signal processing method. However, the EMD approach has certain drawbacks, including distortions from end effects and mode mixing. In the present study, these two problems are addressed using an end extension method based on the support vector regression machine (SVRM) and a modal decomposition method based on the characteristics of the Hilbert transform. The algorithm includes two steps: using the SVRM, the time series data are extended at both endpoints to reduce the end effects, and then, a modified EMD method using the characteristics of the Hilbert transform is performed on the resulting signal to reduce mode mixing. A new combined static-dynamic method for identifying structural damage is presented. This method combines the static and dynamic information in an equilibrium equation that can be solved using the Moore-Penrose generalized matrix inverse. The combination method uses the differences in displacements of the structure with and without damage and variations in the modal force vector. Tests on a four-story, steel-frame structure were conducted to obtain static and dynamic responses of the structure. The modal parameters are identified using data from the dynamic tests and improved EMD method. The new method is shown to be more accurate and effective than the traditional EMD method. Through tests with a shear-type test frame, the higher performance of the proposed static-dynamic damage detection approach, which can detect both single and multiple damage locations and the degree of the damage, is demonstrated. For structures with multiple damage, the combined approach is more effective than either the static or dynamic method. The proposed EMD method and static-dynamic damage detection method offer improved modal identification and damage detection, respectively, in structures.

  4. Teaching Foreign Trade in English through the Modalities Based on Competences and Using Moodle (Enseñanza del régimen de comercio exterior a través de las modalidades centradas en el desarrollo de competencias y con el uso de Moodle)

    ERIC Educational Resources Information Center

    Correa Díaz, Ana María

    2012-01-01

    With the new approach to guide the learning process of students with a model based on the development of competences, and in comparison with the traditional lecture-based learning, it is necessary to start working with the teaching modalities that help to achieve this objective. With that in mind, the aim of the study reported in this article was…

  5. AIDS: The Role of Imaging Modalities and Infection Control Policies

    PubMed Central

    Moore-Stovall, Joyce

    1988-01-01

    The availability of imaging modalities, such as the chest radiograph, gallium scan, double-contrast barium enema, computed tomography, and nuclear magnetic resonance, are very helpful in the diagnosis, treatment, and follow-up evaluation of patients with acquired immunodeficiency syndrome (AIDS). Because this syndrome causes irreversible destruction of the immune system, patients are susceptible to a multitude of opportunistic infections and malignancies. Health care professionals and the general public would be less fearful and apprehensive of AIDS victims if properly informed about the communicability of this syndrome. PMID:3047412

  6. Design, Simulation, Fabrication and Testing of a Bio-Inspired Amphibious Robot with Multiple Modes of Mobility

    DTIC Science & Technology

    2012-01-01

    performance. Ob- stacle climbing using the tail is compared to results from a previous robot with a posterior body segment and body flexion joint. Actual...3. Mechanisms of Locomotion for Multi-Modal Mobility 3.1. Gate and Tail Design Demands of multi-modal locomotion motivated a quadruped design for...tail instead of a rear body segment simplifies waterproofing design requirements and adds stability both on land and in water. This new morphology is

  7. The impact of attentional, linguistic, and visual features during object naming

    PubMed Central

    Clarke, Alasdair D. F.; Coco, Moreno I.; Keller, Frank

    2013-01-01

    Object detection and identification are fundamental to human vision, and there is mounting evidence that objects guide the allocation of visual attention. However, the role of objects in tasks involving multiple modalities is less clear. To address this question, we investigate object naming, a task in which participants have to verbally identify objects they see in photorealistic scenes. We report an eye-tracking study that investigates which features (attentional, visual, and linguistic) influence object naming. We find that the amount of visual attention directed toward an object, its position and saliency, along with linguistic factors such as word frequency, animacy, and semantic proximity, significantly influence whether the object will be named or not. We then ask how features from different modalities are combined during naming, and find significant interactions between saliency and position, saliency and linguistic features, and attention and position. We conclude that when the cognitive system performs tasks such as object naming, it uses input from one modality to constraint or enhance the processing of other modalities, rather than processing each input modality independently. PMID:24379792

  8. Neonatal Restriction of Tactile Inputs Leads to Long-Lasting Impairments of Cross-Modal Processing

    PubMed Central

    Röder, Brigitte; Hanganu-Opatz, Ileana L.

    2015-01-01

    Optimal behavior relies on the combination of inputs from multiple senses through complex interactions within neocortical networks. The ontogeny of this multisensory interplay is still unknown. Here, we identify critical factors that control the development of visual-tactile processing by combining in vivo electrophysiology with anatomical/functional assessment of cortico-cortical communication and behavioral investigation of pigmented rats. We demonstrate that the transient reduction of unimodal (tactile) inputs during a short period of neonatal development prior to the first cross-modal experience affects feed-forward subcortico-cortical interactions by attenuating the cross-modal enhancement of evoked responses in the adult primary somatosensory cortex. Moreover, the neonatal manipulation alters cortico-cortical interactions by decreasing the cross-modal synchrony and directionality in line with the sparsification of direct projections between primary somatosensory and visual cortices. At the behavioral level, these functional and structural deficits resulted in lower cross-modal matching abilities. Thus, neonatal unimodal experience during defined developmental stages is necessary for setting up the neuronal networks of multisensory processing. PMID:26600123

  9. ADMultiImg: a novel missing modality transfer learning based CAD system for diagnosis of MCI due to AD using incomplete multi-modality imaging data

    NASA Astrophysics Data System (ADS)

    Liu, Xiaonan; Chen, Kewei; Wu, Teresa; Weidman, David; Lure, Fleming; Li, Jing

    2018-02-01

    Alzheimer's Disease (AD) is the most common cause of dementia and currently has no cure. Treatments targeting early stages of AD such as Mild Cognitive Impairment (MCI) may be most effective to deaccelerate AD, thus attracting increasing attention. However, MCI has substantial heterogeneity in that it can be caused by various underlying conditions, not only AD. To detect MCI due to AD, NIA-AA published updated consensus criteria in 2011, in which the use of multi-modality images was highlighted as one of the most promising methods. It is of great interest to develop a CAD system based on automatic, quantitative analysis of multi-modality images and machine learning algorithms to help physicians more adequately diagnose MCI due to AD. The challenge, however, is that multi-modality images are not universally available for many patients due to cost, access, safety, and lack of consent. We developed a novel Missing Modality Transfer Learning (MMTL) algorithm capable of utilizing whatever imaging modalities are available for an MCI patient to diagnose the patient's likelihood of MCI due to AD. Furthermore, we integrated MMTL with radiomics steps including image processing, feature extraction, and feature screening, and a post-processing for uncertainty quantification (UQ), and developed a CAD system called "ADMultiImg" to assist clinical diagnosis of MCI due to AD using multi-modality images together with patient demographic and genetic information. Tested on ADNI date, our system can generate a diagnosis with high accuracy even for patients with only partially available image modalities (AUC=0.94), and therefore may have broad clinical utility.

  10. Implementation and applications of dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho

    2004-06-01

    In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.

  11. Improving visual spatial working memory in younger and older adults: effects of cross-modal cues.

    PubMed

    Curtis, Ashley F; Turner, Gary R; Park, Norman W; Murtha, Susan J E

    2017-11-06

    Spatially informative auditory and vibrotactile (cross-modal) cues can facilitate attention but little is known about how similar cues influence visual spatial working memory (WM) across the adult lifespan. We investigated the effects of cues (spatially informative or alerting pre-cues vs. no cues), cue modality (auditory vs. vibrotactile vs. visual), memory array size (four vs. six items), and maintenance delay (900 vs. 1800 ms) on visual spatial location WM recognition accuracy in younger adults (YA) and older adults (OA). We observed a significant interaction between spatially informative pre-cue type, array size, and delay. OA and YA benefitted equally from spatially informative pre-cues, suggesting that attentional orienting prior to WM encoding, regardless of cue modality, is preserved with age.  Contrary to predictions, alerting pre-cues generally impaired performance in both age groups, suggesting that maintaining a vigilant state of arousal by facilitating the alerting attention system does not help visual spatial location WM.

  12. Imaging and machine learning techniques for diagnosis of Alzheimer's disease.

    PubMed

    Mirzaei, Golrokh; Adeli, Anahita; Adeli, Hojjat

    2016-12-01

    Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.

  13. Measuring functional connectivity using MEG: Methodology and comparison with fcMRI

    PubMed Central

    Brookes, Matthew J.; Hale, Joanne R.; Zumer, Johanna M.; Stevenson, Claire M.; Francis, Susan T.; Barnes, Gareth R.; Owen, Julia P.; Morris, Peter G.; Nagarajan, Srikantan S.

    2011-01-01

    Functional connectivity (FC) between brain regions is thought to be central to the way in which the brain processes information. Abnormal connectivity is thought to be implicated in a number of diseases. The ability to study FC is therefore a key goal for neuroimaging. Functional connectivity (fc) MRI has become a popular tool to make connectivity measurements but the technique is limited by its indirect nature. A multimodal approach is therefore an attractive means to investigate the electrodynamic mechanisms underlying hemodynamic connectivity. In this paper, we investigate resting state FC using fcMRI and magnetoencephalography (MEG). In fcMRI, we exploit the advantages afforded by ultra high magnetic field. In MEG we apply envelope correlation and coherence techniques to source space projected MEG signals. We show that beamforming provides an excellent means to measure FC in source space using MEG data. However, care must be taken when interpreting these measurements since cross talk between voxels in source space can potentially lead to spurious connectivity and this must be taken into account in all studies of this type. We show good spatial agreement between FC measured independently using MEG and fcMRI; FC between sensorimotor cortices was observed using both modalities, with the best spatial agreement when MEG data are filtered into the β band. This finding helps to reduce the potential confounds associated with each modality alone: while it helps reduce the uncertainties in spatial patterns generated by MEG (brought about by the ill posed inverse problem), addition of electrodynamic metric confirms the neural basis of fcMRI measurements. Finally, we show that multiple MEG based FC metrics allow the potential to move beyond what is possible using fcMRI, and investigate the nature of electrodynamic connectivity. Our results extend those from previous studies and add weight to the argument that neural oscillations are intimately related to functional connectivity and the BOLD response. PMID:21352925

  14. Development and Alpha Testing of QuitIT: An Interactive Video Game to Enhance Skills for Coping With Smoking Urges

    PubMed Central

    Fiske, Jeff

    2013-01-01

    Background Despite many efforts at developing relapse prevention interventions, most smokers relapse to tobacco use within a few months after quitting. Interactive games offer a novel strategy for helping people develop the skills required for successful tobacco cessation. Objective The objective of our study was to develop a video game that enables smokers to practice strategies for coping with smoking urges and maintaining smoking abstinence. Our team of game designers and clinical psychologists are creating a video game that integrates the principles of smoking behavior change and relapse prevention. We have reported the results of expert and end-user feedback on an alpha version of the game. Methods The alpha version of the game consisted of a smoking cue scenario often encountered by smokers. We recruited 5 experts in tobacco cessation research and 20 current and former smokers, who each played through the scenario. Mixed methods were used to gather feedback on the relevance of cessation content and usability of the game modality. Results End-users rated the interface from 3.0 to 4.6/5 in terms of ease of use and from 2.9 to 4.1/5 in terms of helpfulness of cessation content. Qualitative themes showed several user suggestions for improving the user interface, pacing, and diversity of the game characters. In addition, the users confirmed a high degree of game immersion, identification with the characters and situations, and appreciation for the multiple opportunities to practice coping strategies. Conclusions This study highlights the procedures for translating behavioral principles into a game dynamic and shows that our prototype has a strong potential for engaging smokers. A video game modality exemplifies problem-based learning strategies for tobacco cessation and is an innovative step in behavioral management of tobacco use. PMID:24025236

  15. The dual loop model: its relation to language and other modalities

    PubMed Central

    Rijntjes, Michel; Weiller, Cornelius; Bormann, Tobias; Musso, Mariacristina

    2012-01-01

    The current neurobiological consensus of a general dual loop system scaffolding human and primate brains gives evidence that the dorsal and ventral connections subserve similar functions, independent of the modality and species. However, most current commentators agree that although bees dance and chimpanzees grunt, these systems of communication differ qualitatively from human language. So why is language unique to humans? We discuss anatomical differences between humans and other animals, the meaning of lesion studies in patients, the role of inner speech, and compare functional imaging studies in language with other modalities in respect to the dual loop model. These aspects might be helpful for understanding what kind of biological system the language faculty is, and how it relates to other systems in our own species and others. PMID:22783188

  16. Breast Cancer Screening, Mammography, and Other Modalities.

    PubMed

    Fiorica, James V

    2016-12-01

    This article is an overview of the modalities available for breast cancer screening. The modalities discussed include digital mammography, digital breast tomosynthesis, breast ultrasonography, magnetic resonance imaging, and clinical breast examination. There is a review of pertinent randomized controlled trials, studies and meta-analyses which contributed to the evolution of screening guidelines. Ultimately, 5 major medical organizations formulated the current screening guidelines in the United States. The lack of consensus in these guidelines represents an ongoing controversy about the optimal timing and method for breast cancer screening in women. For mammography screening, the Breast Imaging Reporting and Data System lexicon is explained which corresponds with recommended clinical management. The presentation and discussion of the data in this article are designed to help the clinician individualize breast cancer screening for each patient.

  17. [How to start a neuroimaging study].

    PubMed

    Narumoto, Jin

    2012-06-01

    In order to help researchers understand how to start a neuroimaging study, several tips are described in this paper. These include 1) Choice of an imaging modality, 2) Statistical method, and 3) Interpretation of the results. 1) There are several imaging modalities available in clinical research. Advantages and disadvantages of each modality are described. 2) Statistical Parametric Mapping, which is the most common statistical software for neuroimaging analysis, is described in terms of parameter setting in normalization and level of significance. 3) In the discussion section, the region which shows a significant difference between patients and normal controls should be discussed in relation to the neurophysiology of the disease, making reference to previous reports from neuroimaging studies in normal controls, lesion studies and animal studies. A typical pattern of discussion is described.

  18. Modal Analysis for Grid Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signalmore » stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.« less

  19. A comparison of "Train-the-Trainer" and expert training modalities for hearing protection use in construction.

    PubMed

    Trabeau, Maggie; Neitzel, Richard; Meischke, Hendrika; Daniell, William E; Seixas, Noah S

    2008-02-01

    Few assessments have been conducted on the impact of a "Train-the-Trainer" (T3) approach for training delivery. The present study compared the effectiveness of a noise induced hearing loss (NIHL) prevention training delivered using "Train-the-Trainer" and expert trainer modalities. Participating construction companies were assigned to the Train-the-Trainer or expert trainer modalities. Workers were recruited from each company and then trained. The effectiveness of the modalities was assessed through the use of surveys. The accuracy of self-reported hearing protection device (HPD) use was also evaluated through on-site observation. Post-training scores for hearing conservation knowledge, perceived barriers, and current and intended future use of HPDs improved significantly for both training modalities. Subjects trained by T3 trainers significantly increased their beliefs regarding general susceptibility to NIHL, desire to prevent NIHL, and ability to recognize, and control hazardous noise exposures. The expert-trained groups significantly increased their beliefs regarding the benefits of HPD use and ability to ask for help with HPDs. The only changes that were significantly different between modalities were in general susceptibility to NIHL and effective use of HPDs. However, these beliefs differed significantly between subjects in the two-modality groups prior to training. Self-reported HPD use was poorly correlated with observed use, calling into question the validity of survey-based HPD use measures in this context. The training improved beliefs regarding HPD use, increased workers' hearing conservation knowledge, and increased self-reported HPD use. The effectiveness of the training was not found to be dependent on training modality.

  20. Hearing regulates Drosophila aggression.

    PubMed

    Versteven, Marijke; Vanden Broeck, Lies; Geurten, Bart; Zwarts, Liesbeth; Decraecker, Lisse; Beelen, Melissa; Göpfert, Martin C; Heinrich, Ralf; Callaerts, Patrick

    2017-02-21

    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly's auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level.

  1. Hearing regulates Drosophila aggression

    PubMed Central

    Versteven, Marijke; Vanden Broeck, Lies; Geurten, Bart; Zwarts, Liesbeth; Decraecker, Lisse; Beelen, Melissa; Göpfert, Martin C.; Heinrich, Ralf; Callaerts, Patrick

    2017-01-01

    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly’s auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level. PMID:28115690

  2. Recent technological advances in pediatric brain tumor surgery.

    PubMed

    Zebian, Bassel; Vergani, Francesco; Lavrador, José Pedro; Mukherjee, Soumya; Kitchen, William John; Stagno, Vita; Chamilos, Christos; Pettorini, Benedetta; Mallucci, Conor

    2017-01-01

    X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.

  3. Incorporating Pets into Acute Inpatient Rehabilitation: A Case Study.

    PubMed

    Burres, Stephanie; Edwards, Nancy E; Beck, Alan M; Richards, Elizabeth

    2016-11-01

    The use of animals in various healthcare settings dates as far back as the 19th century, and is still a widely practiced intervention even today. The use of animals in the acute rehabilitation setting is a common practice that benefits both the patient's therapy progression and allows the opportunity for financial reimbursement for the facility. As acute rehabilitation facilities continue to cope with ever changing rules and guidelines, the use of alternate modalities can help the facility overcome difficult challenges while focusing on the needs of the patients. The use of animal assisted therapy is illustrated with a stroke patient at an acute rehabilitation facility who benefited from implementing a pet therapy regimen when regular therapy modalities were not helping. Incorporating animal assisted therapy in acute rehabilitation settings is described to obtain greater satisfaction for patients and staff and to facilitate reimbursement for rehabilitation settings. © 2016 Association of Rehabilitation Nurses.

  4. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group.

    PubMed

    Cavo, Michele; Terpos, Evangelos; Nanni, Cristina; Moreau, Philippe; Lentzsch, Suzanne; Zweegman, Sonja; Hillengass, Jens; Engelhardt, Monika; Usmani, Saad Z; Vesole, David H; San-Miguel, Jesus; Kumar, Shaji K; Richardson, Paul G; Mikhael, Joseph R; da Costa, Fernando Leal; Dimopoulos, Meletios-Athanassios; Zingaretti, Chiara; Abildgaard, Niels; Goldschmidt, Hartmut; Orlowski, Robert Z; Chng, Wee Joo; Einsele, Hermann; Lonial, Sagar; Barlogie, Bart; Anderson, Kenneth C; Rajkumar, S Vincent; Durie, Brian G M; Zamagni, Elena

    2017-04-01

    The International Myeloma Working Group consensus aimed to provide recommendations for the optimal use of 18 fluorodeoxyglucose ( 18 F-FDG) PET/CT in patients with multiple myeloma and other plasma cell disorders, including smouldering multiple myeloma and solitary plasmacytoma. 18 F-FDG PET/CT can be considered a valuable tool for the work-up of patients with both newly diagnosed and relapsed or refractory multiple myeloma because it assesses bone damage with relatively high sensitivity and specificity, and detects extramedullary sites of proliferating clonal plasma cells while providing important prognostic information. The use of 18 F-FDG PET/CT is mandatory to confirm a suspected diagnosis of solitary plasmacytoma, provided that whole-body MRI is unable to be performed, and to distinguish between smouldering and active multiple myeloma, if whole-body X-ray (WBXR) is negative and whole-body MRI is unavailable. Based on the ability of 18 F-FDG PET/CT to distinguish between metabolically active and inactive disease, this technique is now the preferred functional imaging modality to evaluate and to monitor the effect of therapy on myeloma-cell metabolism. Changes in FDG avidity can provide an earlier evaluation of response to therapy compared to MRI scans, and can predict outcomes, particularly for patients who are eligible to receive autologous stem-cell transplantation. 18 F-FDG PET/CT can be coupled with sensitive bone marrow-based techniques to detect minimal residual disease (MRD) inside and outside the bone marrow, helping to identify those patients who are defined as having imaging MRD negativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The therapeutic effectiveness of using visual art modalities with the bereaved: a systematic review

    PubMed Central

    Gramling, Sandra E

    2018-01-01

    Bereaved individuals are increasingly considered at risk for negative psychological and physiological outcomes. Visual art modalities are often incorporated into grief therapy interventions, and clinical application of art therapy techniques with the bereaved has been widely documented. Although clinicians and recipients of these interventions advocate for their helpfulness in adapting to bereavement, research investigating the efficacy of visual art modalities has produced equivocal results and has not yet been synthesized to establish empirical support across settings. Accordingly, this review critically evaluates the existent literature on the effectiveness of visual art modalities with the bereaved and offers suggestions for future avenues of research. A total of 27 studies were included in the current review. Meta-analysis was not possible because of clinical heterogeneity and insufficient comparable data on outcome measures across studies. A narrative synthesis reports that therapeutic application of visual art modalities was associated with positive changes such as continuing bonds with the deceased and meaning making. Modest and conflicting preliminary evidence was found to support treatment effectiveness in alleviating negative grief symptoms such as general distress, functional impairment, and symptoms of depression and anxiety. PMID:29440940

  6. Efficacy of spinal cord stimulators in treating peripheral neuropathy: a case series.

    PubMed

    Abd-Elsayed, Alaa; Schiavoni, Nick; Sachdeva, Harsh

    2016-02-01

    Peripheral neuropathy is a common cause of pain, and it is increasing in prevalence. Peripheral neuropathic pain is very hard to treat and can be resistant to multiple pain management modalities. Our series aimed at testing the efficacy of spinal cord stimulators (SCSs) in treating resistant painful peripheral neuropathy. Case 1: A 79-year-old man presented to our clinic with long-standing history of painful peripheral diabetic neuropathy resistant to conservative management. After failure of all possible modalities, we offered the patient an SCS trial that was very successful, and we proceeded with the permanent implant that continued to help with his pain and allowed the patient to wean down his medications. Case 2: A 60-year-old man presented with chronic peripheral neuropathy secondary to HIV, patient failed all conservative and procedural management. Patient then had an SCS trial that relieved his pain significantly. Unfortunately, we did not proceed with the implant due to deterioration of the patient general health. Case 3: A 39-year-old woman presented with painful peripheral neuropathy secondary to chemotherapy for breast cancer. After failure of medication management and procedures, patient had a SCS trial that improved her pain and we then proceeded with performing the permanent implant that controlled her pain. We presented 3 cases with chronic painful peripheral neuropathy secondary to HIV, diabetes mellitus, and chemotherapy that was resistant to conservative pain management and procedures that was successfully treated with neurostimulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  8. Multiscale imaging of bone microdamage

    PubMed Central

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  9. Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness

    PubMed Central

    Calhoun, Vince D; Sui, Jing

    2016-01-01

    It is becoming increasingly clear that combining multi-modal brain imaging data is able to provide more information for individual subjects by exploiting the rich multimodal information that exists. However, the number of studies that do true multimodal fusion (i.e. capitalizing on joint information among modalities) is still remarkably small given the known benefits. In part, this is because multi-modal studies require broader expertise in collecting, analyzing, and interpreting the results than do unimodal studies. In this paper, we start by introducing the basic reasons why multimodal data fusion is important and what it can do, and importantly how it can help us avoid wrong conclusions and help compensate for imperfect brain imaging studies. We also discuss the challenges that need to be confronted for such approaches to be more widely applied by the community. We then provide a review of the diverse studies that have used multimodal data fusion (primarily focused on psychosis) as well as provide an introduction to some of the existing analytic approaches. Finally, we discuss some up-and-coming approaches to multi-modal fusion including deep learning and multimodal classification which show considerable promise. Our conclusion is that multimodal data fusion is rapidly growing, but it is still underutilized. The complexity of the human brain coupled with the incomplete measurement provided by existing imaging technology makes multimodal fusion essential in order to mitigate against misdirection and hopefully provide a key to finding the missing link(s) in complex mental illness. PMID:27347565

  10. Correlation of breast image alignment using biomechanical modelling

    NASA Astrophysics Data System (ADS)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  11. Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness.

    PubMed

    Calhoun, Vince D; Sui, Jing

    2016-05-01

    It is becoming increasingly clear that combining multi-modal brain imaging data is able to provide more information for individual subjects by exploiting the rich multimodal information that exists. However, the number of studies that do true multimodal fusion (i.e. capitalizing on joint information among modalities) is still remarkably small given the known benefits. In part, this is because multi-modal studies require broader expertise in collecting, analyzing, and interpreting the results than do unimodal studies. In this paper, we start by introducing the basic reasons why multimodal data fusion is important and what it can do, and importantly how it can help us avoid wrong conclusions and help compensate for imperfect brain imaging studies. We also discuss the challenges that need to be confronted for such approaches to be more widely applied by the community. We then provide a review of the diverse studies that have used multimodal data fusion (primarily focused on psychosis) as well as provide an introduction to some of the existing analytic approaches. Finally, we discuss some up-and-coming approaches to multi-modal fusion including deep learning and multimodal classification which show considerable promise. Our conclusion is that multimodal data fusion is rapidly growing, but it is still underutilized. The complexity of the human brain coupled with the incomplete measurement provided by existing imaging technology makes multimodal fusion essential in order to mitigate against misdirection and hopefully provide a key to finding the missing link(s) in complex mental illness.

  12. Non-ablative fractional resurfacing in combination with topical tretinoin cream as a field treatment modality for multiple actinic keratosis: a pilot study and a review of other field treatment modalities.

    PubMed

    Prens, Sebastiaan P; de Vries, Karin; Neumann, H A Martino; Prens, Errol P

    2013-06-01

    Actinic keratoses (AK) are premalignant lesions occurring mainly in sun-damaged skin. Current topical treatment options for AK and photo-damaged skin such as liquid nitrogen and electrosurgery are not suitable for field treatment. Otherwise, therapies suitable for field treatment bring along considerable patient discomfort. Non-ablative fractional resurfacing has emerged as a logical treatment option especially for field treatment of AK. To evaluate the clinical efficacy of fractional laser therapy for clearing AK and improving skin quality. To compare patient friendliness of the "fractional" therapy with those reported for other field treatment modalities. Ten patients with Fitzpatrick skin type I to III with multiple AK and extensive sun-damaged skin, received 5-10 sessions with a 4-week interval using a 1550 nm Erbium-Glass Fractionated laser (Sellas, Korea). Four weeks and 24 weeks after the last treatment the clinical results were evaluated by an independent physician. The mean degree of improvement, in terms of reduction in the number of AK and improvement of skin texture, was 54% on a 4 point PGA scale, and persisted for approximately 6 months. The biggest advantage of fractional laser treatment, besides the eradication of AK and a clear rejuvenation effect, is the absence of "downtime". Fractional non-ablative resurfacing induces significant reduction in the number of AK and improves the skin quality. Also all patients preferred fractional laser therapy above other AK treatment modalities.

  13. [Physical inactivity and associated factors in adults, São Paulo, Brazil].

    PubMed

    Zanchetta, Luane Margarete; Barros, Marilisa Berti de Azevedo; César, Chester Luiz Galvão; Carandina, Luana; Goldbaum, Moisés; Alves, Maria Cecília Goi Porto

    2010-09-01

    To analyze the prevalence of overall and leisure time physical inactivity and associated factors and types of exercises or sports modalities according to schooling in 2,050 adults from 18 to 59 years of age - state of São Paulo, Brazil. Population-based cross-sectional study with a stratified sample of clusters performed in multiple stages. Physical inactivity was determined using the short version of the International Physical Activity Questionnaire - IPAQ and by a question on the regular practice of leisure time physical activity. Data analysis took the sample design into account. Prevalence of physical inactivity during leisure was higher among women. Poisson multiple regression model in man indicated that overall sedentarism was lower among single and separated men, students and without car in the household. Leisure physical inactivity was greater among men over forty years, among those with less schooling and full-time students. Overall physical inactivity was more prevalent among woman with more schooling, with less qualified occupations and widows. Leisure physical inactivity decreased with age and schooling. Among modalities practiced for leisure, walking was more prevalent among women and football was more prevalent among men. Most modalities were directly associated with schooling; approximately 25% of the individuals with more than 12 years of schooling practiced walking. These results suggest that interventions and public policies to promote physical activity should consider differences in gender and socioeconomic status as well as the preferences for different modalities and the context in which the physical activity is practiced.

  14. Effect of stimulus type and temperature on EEG reactivity in cardiac arrest.

    PubMed

    Fantaneanu, Tadeu A; Tolchin, Benjamin; Alvarez, Vincent; Friolet, Raymond; Avery, Kathleen; Scirica, Benjamin M; O'Brien, Molly; Henderson, Galen V; Lee, Jong Woo

    2016-11-01

    Electroencephalogram (EEG) background reactivity is a reliable outcome predictor in cardiac arrest patients post therapeutic hypothermia. However, there is no consensus on modality testing and prior studies reveal only fair to moderate agreement rates. The aim of this study was to explore different stimulus modalities and report interrater agreements. We studied a multicenter, prospectively collected cohort of cardiac arrest patients who underwent therapeutic hypothermia between September 2014 and December 2015. We identified patients with reactivity data and evaluated interrater agreements of different stimulus modalities tested in hypothermia and normothermia. Of the 60 patients studied, agreement rates were moderate to substantial during hypothermia and fair to moderate during normothermia. Bilateral nipple pressure is more sensitive (80%) when compared to other modalities in eliciting a reactive background in hypothermia. Auditory, nasal tickle, nailbed pressure and nipple pressure reactivity were associated with good outcomes in both hypothermia and normothermia. EEG reactivity varies depending on the stimulus testing modality as well as the temperature during which stimulation is performed, with nipple pressure emerging as the most sensitive during hypothermia for reactivity and outcome determination. This highlights the importance of multiple stimulus testing modalities in EEG reactivity determination to reduce false negatives and optimize prognostication. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Rewriting the Script: Multiple Modalities in a High School Humanities Classroom

    ERIC Educational Resources Information Center

    Block, Joshua

    2014-01-01

    In this article, Joshua Block states that his high school students are creators discovering how to express their ideas and emotions in multiple, complex ways. He teaches students who write their lives through words on pages as they fill journal after journal. There are others who constantly write and create in the form of tweets, photos, videos,…

  16. A multiple camera tongue switch for a child with severe spastic quadriplegic cerebral palsy.

    PubMed

    Leung, Brian; Chau, Tom

    2010-01-01

    The present study proposed a video-based access technology that facilitated a non-contact tongue protrusion access modality for a 7-year-old boy with severe spastic quadriplegic cerebral palsy (GMFCS level 5). The proposed system featured a centre camera and two peripheral cameras to extend coverage of the frontal face view of this user for longer durations. The child participated in a descriptive case study. The participant underwent 3 months of tongue protrusion training while the multiple camera tongue switch prototype was being prepared. Later, the participant was brought back for five experiment sessions where he worked on a single-switch picture matching activity, using the multiple camera tongue switch prototype in a controlled environment. The multiple camera tongue switch achieved an average sensitivity of 82% and specificity of 80%. In three of the experiment sessions, the peripheral cameras were associated with most of the true positive switch activations. These activations would have been missed by a centre-camera-only setup. The study demonstrated proof-of-concept of a non-contact tongue access modality implemented by a video-based system involving three cameras and colour video processing.

  17. Abdominal ultrasound and medical education.

    PubMed

    García de Casasola Sánchez, G; Torres Macho, J; Casas Rojo, J M; Cubo Romano, P; Antón Santos, J M; Villena Garrido, V; Diez Lobato, R

    2014-04-01

    Ultrasound is a very versatile diagnostic modality that permits real-time visualization of multiple internal organs. It is of invaluable help for the physical examination of the patients. To assess if ultrasound can be incorporated into medical education and if the students can perform a basic abdominal ultrasound examination without the necessity of a long period of training. Twelve medical students were trained in basic abdominal ultrasound during a 15-h training program including a 5-h theoretical and practical course and supervised practice in 20 selected patients. Subsequently, we conducted an evaluation test that assessed the ability of students to obtain the ultrasound views and to detect various pathologies in five different patients. The students were able to correctly identify the abdominal views more than 90% of the times. This percentage was only lower (80%) in the right subcostal view to locate the gallbladder. The accuracy or global efficiency of the ultrasound for the diagnosis of relevant pathological findings of the patients was greater than 90% (91.1% gallstones, abdominal aortic aneurysm 100%; splenomegaly 98.3%, ascites 100%; dilated inferior vena cava 100%; acute urinary retention 100%). The ultrasound may be a feasible learning tool in medical education. Ultrasound can help students to improve the physical examination. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  18. [Sulfide ooze mud and sodium chloride baths in treating osteoarthrosis patients].

    PubMed

    Novikova, N V

    1989-01-01

    Humoral immunity initially affected in patients with osteoarthrosis returns to normal under the influence of a multiple-modality treatment involving application of sulphide moor in combination with sodium chloride baths.

  19. [Physical factors in the treatment of patients with osteoarthrosis and venous insufficiency].

    PubMed

    Tereshina, L G; Oranskiĭ, I E; Kozlova, L A; Veselkova, E E

    1995-01-01

    Comparative evaluation of two variants of multiple modality treatment for osteoarthritis gives preference to combination of decimetric wave radiation and effervescent baths over magnetotherapy combination with effervescent baths.

  20. A clinically oriented comprehensive pictorial review of canine elbow anatomy.

    PubMed

    Constantinescu, Gheorghe M; Constantinescu, Ileana A

    2009-02-01

    The clinically oriented canine elbow anatomy in its complexity earned a high importance in surgery especially after multiple imaging modalities have been used in the benefit of diagnosis and treatment of canine elbow disorders. The bony, joint, and muscular structures, the arteries, the veins and the nerves supplying the elbow are described and illustrated in textbooks and atlases in the context of the comparative anatomy. Nevertheless, there is no publication focused on all of these structures described together from the skin to the bones in a systematic and topographic order, nor through cross and/or sagittal and coronal sections. The figures used in this article are original and drawn after dissection, cross, sagittal, and coronal sections of the elbow structures. The sections are correlated to the multiple imaging modalities shown in the next article.

  1. Challenges and Support When Teaching Science Through an Integrated Inquiry and Literacy Approach

    NASA Astrophysics Data System (ADS)

    Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Ove Sørvik, Gard

    2014-12-01

    In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible dynamics between science inquiry and literacy in an integrated science approach. Six teachers and their students were recruited from a professional development course for the current classroom study. The teachers were to try out the Budding Science teaching model. This paper presents an overall video analysis of our material demonstrating variations and patterns of inquiry-based science and literacy activities. Our analysis revealed that multiple learning modalities (read it, write it, do it, and talk it) are used in the integrated approach; oral activities dominate. The inquiry phases shifted throughout the students' investigations, but the consolidating phases of discussion and communication were given less space. The data phase of inquiry seems essential as a driving force for engaging in science learning in consolidating situations. The multiple learning modalities were integrated in all inquiry phases, but to a greater extent in preparation and data. Our results indicate that literacy activities embedded in science inquiry provide support for teaching and learning science; however, the greatest challenge for teachers is to find the time and courage to exploit the discussion and communication phases to consolidate the students' conceptual learning.

  2. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.

    PubMed

    Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann

    2018-04-01

    Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. On-Line Modal State Monitoring of Slowly Time-Varying Structures

    NASA Technical Reports Server (NTRS)

    Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.

    1997-01-01

    Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.

  4. Experimental investigation of an inversion technique for the determination of broadband duct mode amplitudes by the use of near-field sensor arrays.

    PubMed

    Castres, Fabrice O; Joseph, Phillip F

    2007-08-01

    This paper is an experimental investigation of an inverse technique for deducing the amplitudes of the modes radiated from a turbofan engine, including schemes for stablizing the solution. The detection of broadband modes generated by a laboratory-scaled fan inlet is performed using a near-field array of microphones arranged in a geodesic geometry. This array geometry is shown to allow a robust and accurate modal inversion. The sound power radiated from the fan inlet and the coherence function between different modal amplitudes are also presented. The knowledge of such modal content is useful in helping to characterize the source mechanisms of fan broadband noise generation, for determining the most appropriate mode distribution model for duct liner predictions, and for making sound power measurements of the radiated sound field.

  5. Novel mouth-exercising device for oral submucous fibrosis.

    PubMed

    Patil, Pravinkumar G; Patil, Smita P

    2012-10-01

    Oral submucous fibrosis (OSMF) is a chronic inflammatory disease resulting in progressive juxtaepithelial fibrosis of the oral soft tissues and can cause increasing difficulty in mastication, swallowing, speaking, and mouth opening. The treatment of severe trismus requires a combination of surgical release and physiotherapy. Often physiotherapy alone can modify tissue remodeling in OSMF to increase oral opening. This article describes the fabrication and use of a new mouth-exercising device that helps the patient to squeeze/stretch the cheek mucosa to increase elasticity. The device can be used as a sole treatment modality or can be used in association with pharmacological and surgical treatment modalities for OSMF. Improvement in mouth opening was observed in four OSMF patients treated with a mouth-exercising device for 6 months as a sole treatment modality. © 2012 by the American College of Prosthodontists.

  6. A cooperative function for multisensory stimuli in the induction of approach behavior of a potential mate

    PubMed Central

    Ågmo, Anders

    2017-01-01

    Intrasexual competition is an important element of natural selection in which the most attractive conspecific has a considerable reproductive advantage over the others. The conspecifics that are approached first often become the preferred mate partners, and could thus from a biological perspective have a reproductive advantage. This underlines the importance of the initial approach and raises the question of what induces this approach, or what makes a conspecific attractive. Identification of the sensory modalities crucial for the activation of approach is necessary for elucidating the central nervous processes involved in the activation of sexual motivation and eventually copulatory behavior. The initial approach to a potential mate depends on distant stimuli in the modalities of audition, olfaction, vision, and other undefined characteristics. This study investigated the role of the different modalities and the combination of these modalities in the sexual incentive value of a female rat. This study provides evidence that the presence of a single-sensory stimulus with one modality (olfaction, vision, or ‘others’, but not audition) is sufficient to attenuate the preference for a social contact with a male rat. However, a multisensory stimulus of multiple modalities is necessary to induce preference for the stimulus over social contact to a level of an intact receptive female. The initial approach behavior, therefore, seems to be induced by the combination of at least two modalities among which olfaction is crucial. This suggests that there is a cooperative function for the different modalities in the induction of approach behavior of a potential mate. PMID:28306729

  7. Biological fiducial point based registration for multiple brain tissues reconstructed from different imaging modalities

    NASA Astrophysics Data System (ADS)

    Wu, Huiqun; Zhou, Gangping; Geng, Xingyun; Zhang, Xiaofeng; Jiang, Kui; Tang, Lemin; Zhou, Guomin; Dong, Jiancheng

    2013-10-01

    With the development of computer aided navigation system, more and more tissues shall be reconstructed to provide more useful information for surgical pathway planning. In this study, we aimed to propose a registration framework for different reconstructed tissues from multi-modalities based on some fiducial points on lateral ventricles. A male patient with brain lesion was admitted and his brain scans were performed by different modalities. Then, the different brain tissues were segmented in different modality with relevant suitable algorithms. Marching cubes were calculated for three dimensional reconstructions, and then the rendered tissues were imported to a common coordinate system for registration. Four pairs of fiducial markers were selected to calculate the rotation and translation matrix using least-square measure method. The registration results were satisfied in a glioblastoma surgery planning as it provides the spatial relationship between tumors and surrounding fibers as well as vessels. Hence, our framework is of potential value for clinicians to plan surgery.

  8. Visualization of Time-Series Sensor Data to Inform the Design of Just-In-Time Adaptive Stress Interventions.

    PubMed

    Sharmin, Moushumi; Raij, Andrew; Epstien, David; Nahum-Shani, Inbal; Beck, J Gayle; Vhaduri, Sudip; Preston, Kenzie; Kumar, Santosh

    2015-09-01

    We investigate needs, challenges, and opportunities in visualizing time-series sensor data on stress to inform the design of just-in-time adaptive interventions (JITAIs). We identify seven key challenges: massive volume and variety of data, complexity in identifying stressors, scalability of space, multifaceted relationship between stress and time, a need for representation at multiple granularities, interperson variability, and limited understanding of JITAI design requirements due to its novelty. We propose four new visualizations based on one million minutes of sensor data (n=70). We evaluate our visualizations with stress researchers (n=6) to gain first insights into its usability and usefulness in JITAI design. Our results indicate that spatio-temporal visualizations help identify and explain between- and within-person variability in stress patterns and contextual visualizations enable decisions regarding the timing, content, and modality of intervention. Interestingly, a granular representation is considered informative but noise-prone; an abstract representation is the preferred starting point for designing JITAIs.

  9. Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images.

    PubMed

    Lu, Donghuan; Popuri, Karteek; Ding, Gavin Weiguang; Balachandar, Rakesh; Beg, Mirza Faisal

    2018-04-09

    Alzheimer's Disease (AD) is a progressive neurodegenerative disease where biomarkers for disease based on pathophysiology may be able to provide objective measures for disease diagnosis and staging. Neuroimaging scans acquired from MRI and metabolism images obtained by FDG-PET provide in-vivo measurements of structure and function (glucose metabolism) in a living brain. It is hypothesized that combining multiple different image modalities providing complementary information could help improve early diagnosis of AD. In this paper, we propose a novel deep-learning-based framework to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network. Our method delivers 82.4% accuracy in identifying the individuals with mild cognitive impairment (MCI) who will convert to AD at 3 years prior to conversion (86.4% combined accuracy for conversion within 1-3 years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD, and a 86.3% specificity in classifying non-demented controls improving upon results in published literature.

  10. Practical Applications of Digital Pathology.

    PubMed

    Saeed-Vafa, Daryoush; Magliocco, Anthony M

    2015-04-01

    Virtual microscopy and advances in machine learning have paved the way for the ever-expanding field of digital pathology. Multiple image-based computing environments capable of performing automated quantitative and morphological analyses are the foundation on which digital pathology is built. The applications for digital pathology in the clinical setting are numerous and are explored along with the digital software environments themselves, as well as the different analytical modalities specific to digital pathology. Prospective studies, case-control analyses, meta-analyses, and detailed descriptions of software environments were explored that pertained to digital pathology and its use in the clinical setting. Many different software environments have advanced platforms capable of improving digital pathology and potentially influencing clinical decisions. The potential of digital pathology is vast, particularly with the introduction of numerous software environments available for use. With all the digital pathology tools available as well as those in development, the field will continue to advance, particularly in the era of personalized medicine, providing health care professionals with more precise prognostic information as well as helping them guide treatment decisions.

  11. Visualization of Time-Series Sensor Data to Inform the Design of Just-In-Time Adaptive Stress Interventions

    PubMed Central

    Sharmin, Moushumi; Raij, Andrew; Epstien, David; Nahum-Shani, Inbal; Beck, J. Gayle; Vhaduri, Sudip; Preston, Kenzie; Kumar, Santosh

    2015-01-01

    We investigate needs, challenges, and opportunities in visualizing time-series sensor data on stress to inform the design of just-in-time adaptive interventions (JITAIs). We identify seven key challenges: massive volume and variety of data, complexity in identifying stressors, scalability of space, multifaceted relationship between stress and time, a need for representation at multiple granularities, interperson variability, and limited understanding of JITAI design requirements due to its novelty. We propose four new visualizations based on one million minutes of sensor data (n=70). We evaluate our visualizations with stress researchers (n=6) to gain first insights into its usability and usefulness in JITAI design. Our results indicate that spatio-temporal visualizations help identify and explain between- and within-person variability in stress patterns and contextual visualizations enable decisions regarding the timing, content, and modality of intervention. Interestingly, a granular representation is considered informative but noise-prone; an abstract representation is the preferred starting point for designing JITAIs. PMID:26539566

  12. Using Science Songs to Enhance Learning: An Interdisciplinary Approach

    PubMed Central

    Crowther, Gregory

    2012-01-01

    Music is recognized as an effective mode of teaching young children but is rarely used in university-level science courses. This article reviews the somewhat limited evidence on whether and how content-rich music might affect college students' understanding of science and offers practical suggestions for incorporating music into courses. Aside from aiding memorization, songs may potentially improve learning by helping students feel relaxed and welcome in stressful settings, engaging students through multiple modes (verbal vs. nonverbal) and modalities (auditory vs. visual vs. kinesthetic) simultaneously, challenging students to integrate and “own” the material through the medium of song lyrics, and increasing students' time on task outside of class through enjoyable listening or songwriting assignments. Students may produce content-rich songs of good quality if given sufficient assistance and encouragement by instructors and peers. The challenges ahead include 1) defining the circumstances in which music is most likely to promote learning and 2) developing rubrics for evaluating the quality of songs. PMID:22383614

  13. Multidrug Resistance and Cancer Stem Cells in Neuroblastoma and Hepatoblastoma

    PubMed Central

    Alisi, Anna; Cho, William C.; Locatelli, Franco; Fruci, Doriana

    2013-01-01

    Chemotherapy is one of the major modalities in treating cancers. However, its effectiveness is limited by the acquisition of multidrug resistance (MDR). Several mechanisms could explain the up-regulation of MDR genes/proteins in cancer after chemotherapy. It is known that cancer stem cells (CSCs) play a role as master regulators. Therefore, understanding the mechanisms that regulate some traits of CSCs may help design efficient strategies to overcome chemoresistance. Different CSC phenotypes have been identified, including those found in some pediatric malignancies. As solid tumors in children significantly differ from those observed in adults, this review aims at providing an overview of the mechanistic relationship between MDR and CSCs in common solid tumors, and, in particular, focuses on clinical as well as experimental evidence of the relations between CSCs and MDR in neuroblastoma and hepatoblastoma. Finally, some novel approaches, such as concomitant targeting of multiple key transcription factors governing the stemness of CSCs, as well as nanoparticle-based approaches will also be briefly addressed. PMID:24351843

  14. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4 to 25 kHz

    PubMed Central

    Rosowski, John J.; Cheng, Jeffrey Tao; Ravicz, Michael E.; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-01-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f > 4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined. PMID:19328841

  15. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz.

    PubMed

    Rosowski, John J; Cheng, Jeffrey Tao; Ravicz, Michael E; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-07-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f>4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined.

  16. Prediction of Cognitive States During Flight Simulation Using Multimodal Psychophysiological Sensing

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Stephens, Chad L.; Milletich, Robert J.; Heinich, Christina M.; Last, Mary Carolyn; Napoli, Nicholas J.; Abraham, Nijo A.; Prinzel, Lawrence J.; Motter, Mark A.; Pope, Alan T.

    2017-01-01

    The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents.

  17. Overcoming wound complications in head and neck salvage surgery.

    PubMed

    Kwon, Daniel; Genden, Eric M; de Bree, Remco; Rodrigo, Juan P; Rinaldo, Alessandra; Sanabria, Alvaro; Rapidis, Alexander D; Takes, Robert P; Ferlito, Alfio

    2018-04-21

    Loco-regional treatment failure after radiotherapy with or without chemotherapy and/or prior surgery represents a significant portion of head and neck cancer patients. Due to a wide array of biological interactions, these patients have a significantly increased risk of complications related to wound healing. Review of the current literature was performed for wound healing pathophysiology, head and neck salvage surgery, and wound therapy. The biology of altered wound healing in the face of previous surgery and chemoradiotherapy is well described in the literature. This is reflected in multiple clinical studies demonstrating increased rates of wound healing complications in salvage surgery, most commonly in the context of previous irradiation. Despite these disadvantages, multiple studies have described strategies to optimize healing outcomes. The literature supports preoperative optimization of known wound healing factors, adjunctive wound care modalities, and microvascular free tissue transfer for salvage surgery defects and wounds. Previously treated head and neck patients requiring salvage surgery have had a variety of disadvantages related to wound healing. Recognition and treatment of these factors can help to reverse adverse tissue conditions. A well-informed approach to salvage surgery with utilization of free vascularized or pedicled tissue transfer as well as optimizing wound healing factors is essential to obtaining favorable outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Animal and in silico models for the study of sarcomeric cardiomyopathies

    PubMed Central

    Duncker, Dirk J.; Bakkers, Jeroen; Brundel, Bianca J.; Robbins, Jeff; Tardiff, Jil C.; Carrier, Lucie

    2015-01-01

    Over the past decade, our understanding of cardiomyopathies has improved dramatically, due to improvements in screening and detection of gene defects in the human genome as well as a variety of novel animal models (mouse, zebrafish, and drosophila) and in silico computational models. These novel experimental tools have created a platform that is highly complementary to the naturally occurring cardiomyopathies in cats and dogs that had been available for some time. A fully integrative approach, which incorporates all these modalities, is likely required for significant steps forward in understanding the molecular underpinnings and pathogenesis of cardiomyopathies. Finally, novel technologies, including CRISPR/Cas9, which have already been proved to work in zebrafish, are currently being employed to engineer sarcomeric cardiomyopathy in larger animals, including pigs and non-human primates. In the mouse, the increased speed with which these techniques can be employed to engineer precise ‘knock-in’ models that previously took years to make via multiple rounds of homologous recombination-based gene targeting promises multiple and precise models of human cardiac disease for future study. Such novel genetically engineered animal models recapitulating human sarcomeric protein defects will help bridging the gap to translate therapeutic targets from small animal and in silico models to the human patient with sarcomeric cardiomyopathy. PMID:25600962

  19. Multimodal biometric system using rank-level fusion approach.

    PubMed

    Monwar, Md Maruf; Gavrilova, Marina L

    2009-08-01

    In many real-world applications, unimodal biometric systems often face significant limitations due to sensitivity to noise, intraclass variability, data quality, nonuniversality, and other factors. Attempting to improve the performance of individual matchers in such situations may not prove to be highly effective. Multibiometric systems seek to alleviate some of these problems by providing multiple pieces of evidence of the same identity. These systems help achieve an increase in performance that may not be possible using a single-biometric indicator. This paper presents an effective fusion scheme that combines information presented by multiple domain experts based on the rank-level fusion integration method. The developed multimodal biometric system possesses a number of unique qualities, starting from utilizing principal component analysis and Fisher's linear discriminant methods for individual matchers (face, ear, and signature) identity authentication and utilizing the novel rank-level fusion method in order to consolidate the results obtained from different biometric matchers. The ranks of individual matchers are combined using the highest rank, Borda count, and logistic regression approaches. The results indicate that fusion of individual modalities can improve the overall performance of the biometric system, even in the presence of low quality data. Insights on multibiometric design using rank-level fusion and its performance on a variety of biometric databases are discussed in the concluding section.

  20. Capsule endoscopy in Crohn’s disease: Are we seeing any better?

    PubMed Central

    Hudesman, David; Mazurek, Jonathan; Swaminath, Arun

    2014-01-01

    Crohn’s disease (CD) is a complex, immune-mediated disorder that often requires a multi-modality approach for optimal diagnosis and management. While traditional methods include ileocolonoscopy and radiologic modalities, increasingly, capsule endoscopy (CE) has been incorporated into the algorithm for both the diagnosis and monitoring of CD. Multiple studies have examined the utility of this emerging technology in the management of CD, and have compared it to other available modalities. CE offers a noninvasive approach to evaluate areas of the small bowel that are difficult to reach with traditional endoscopy. Furthermore, CE maybe favored in specific sub segments of patients with inflammatory bowel disease (IBD), such as those with IBD unclassified (IBD-U), pediatric patients and patients with CD who have previously undergone surgery. PMID:25278698

  1. TLD linearity vs. beam energy and modality.

    PubMed

    Troncalli, Andrew J; Chapman, Jane

    2002-01-01

    Thermoluminescent dosimetry (TLD) is considered to be a valuable dosimetric tool in determining patient dose. Lithium fluoride doped with magnesium and titanium (TLD-100) is widely used, as it does not display widely divergent energy dependence. For many years, we have known that TLD-100 shows supralinearity to dose. In a radiotherapy clinic, there are multiple energies and modality beams. This work investigates whether individual linearity corrections must be used for each beam or whether a single correction can be applied to all beams. The response of TLD as a function of dose was measured from 25 cGy to 1000 cGy on both electrons and photons from 6 to 18 MeV. This work shows that, within our measurement uncertainty, TLD-100 exhibits supralinearity at all megavoltage energies and modalities.

  2. Older users, multimodal reminders and assisted living technology.

    PubMed

    Warnock, David; McGee-Lennon, Marilyn; Brewster, Stephen

    2012-09-01

    The primary users of assisted living technology are older people who are likely to have one or more sensory impairments. Multimodal technology allows users to interact via non-impaired senses and provides alternative ways to interact if primary interaction methods fail. An empirical user study was carried out with older participants which evaluated the performance, disruptiveness and subjective workload of visual, audio, tactile and olfactory notifications then compared the results with earlier findings in younger participants. It was found that disruption and subjective workload were not affected by modality, although some modalities were more effective at delivering information accurately. It is concluded that although further studies need to be carried out in a real-world settings, the findings support the argument for multiple modalities in assisted living technology.

  3. A dual-learning paradigm can simultaneously train multiple characteristics of walking

    PubMed Central

    Toliver, Alexis; Bastian, Amy J.

    2016-01-01

    Impairments in human motor patterns are complex: what is often observed as a single global deficit (e.g., limping when walking) is actually the sum of several distinct abnormalities. Motor adaptation can be useful to teach patients more normal motor patterns, yet conventional training paradigms focus on individual features of a movement, leaving others unaddressed. It is known that under certain conditions, distinct movement components can be simultaneously adapted without interference. These previous “dual-learning” studies focused solely on short, planar reaching movements, yet it is unknown whether these findings can generalize to a more complex behavior like walking. Here we asked whether a dual-learning paradigm, incorporating two distinct motor adaptation tasks, can be used to simultaneously train multiple components of the walking pattern. We developed a joint-angle learning task that provided biased visual feedback of sagittal joint angles to increase peak knee or hip flexion during the swing phase of walking. Healthy, young participants performed this task independently or concurrently with another locomotor adaptation task, split-belt treadmill adaptation, where subjects adapted their step length symmetry. We found that participants were able to successfully adapt both components of the walking pattern simultaneously, without interference, and at the same rate as adapting either component independently. This leads us to the interesting possibility that combining rehabilitation modalities within a single training session could be used to help alleviate multiple deficits at once in patients with complex gait impairments. PMID:26961100

  4. Multi-modal quality of service project

    DOT National Transportation Integrated Search

    2001-03-01

    The overall purpose of this research project has been to help develop a quality of service analysis for transit, pedestrian, and bicycle modes. It has been driver by four major objectives which have shaped the research agenda since the summer of 1998...

  5. Cross-modal work helps OMC improve the safety of commercial transportation

    DOT National Transportation Integrated Search

    1997-01-01

    This article describes the Commercial Vehicle Information System (CVIS), designed to deploy a national safety program for the U.S. commercial trucking fleet. CVIS is built around a safety analysis algorithm called SafeStat which constructs a profile ...

  6. Multi Modal Anticipation in Fuzzy Space

    NASA Astrophysics Data System (ADS)

    Asproth, Viveca; Holmberg, Stig C.; Hâkansson, Anita

    2006-06-01

    We are all stakeholders in the geographical space, which makes up our common living and activity space. This means that a careful, creative, and anticipatory planning, design, and management of that space will be of paramount importance for our sustained life on earth. Here it is shown that the quality of such planning could be significantly increased with help of a computer based modelling and simulation tool. Further, the design and implementation of such a tool ought to be guided by the conceptual integration of some core concepts like anticipation and retardation, multi modal system modelling, fuzzy space modelling, and multi actor interaction.

  7. Simple design of slanted grating with simplified modal method.

    PubMed

    Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun

    2014-02-15

    A simplified modal method (SMM) is presented that offers a clear physical image for subwavelength slanted grating. The diffraction characteristic of the slanted grating under Littrow configuration is revealed by the SMM as an equivalent rectangular grating, which is in good agreement with rigorous coupled-wave analysis. Based on the equivalence, we obtained an effective analytic solution for simplifying the design and optimization of a slanted grating. It offers a new approach for design of the slanted grating, e.g., a 1×2 beam splitter can be easily designed. This method should be helpful for designing various new slanted grating devices.

  8. Surface coating influence on elastic properties of spruce wood by means of holographic vibration mode visualization

    NASA Astrophysics Data System (ADS)

    Bongova, M.; Urgela, Stanislav

    1999-07-01

    Physicoacoustical properties of wood influenced by surface coating are studied by modal analysis. Resonant spruce plates were coated by stain, nitrocellulose varnish, special violin paint and shellac. The modal testing was performed by electronic speckle pattern interferometry. For this purpose, equipment called VIBROVIZER was used. The collected values of physicoacoustical characteristics (density, Young's modulus, acoustic constant) were compared using the graphic plots of data. The 3D plots help to evaluate wooden plates from a viewpoint of the quality control. This fact offers new opportunity for musical instrument manufacturers.

  9. Multiple-modality program for standoff detection of roadside hazards

    NASA Astrophysics Data System (ADS)

    Williams, Kathryn; Middleton, Seth; Close, Ryan; Luke, Robert H.; Suri, Rajiv

    2016-05-01

    The U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is executing a program to assess the performance of a variety of sensor modalities for standoff detection of roadside explosive hazards. The program objective is to identify an optimal sensor or combination of fused sensors to incorporate with autonomous detection algorithms into a system of systems for use in future route clearance operations. This paper provides an overview of the program, including a description of the sensors under consideration, sensor test events, and ongoing data analysis.

  10. Pharmacological Stress Cardiovascular Magnetic Resonance

    PubMed Central

    Chotenimitkhun, Runyawan; Hundley, W. Gregory

    2013-01-01

    Over the past decade, cardiovascular magnetic resonance (CMR) has evolved into a cardiac stress testing modality that can be used to diagnose myocardial ischemia using intravenous dobutamine or vasodilator perfusion agents such as adenosine or dipyridamole. Because CMR produces high-resolution tomographic images of the human heart in multiple imaging planes, it has become a highly attractive noninvasive testing modality for those suspected of having myocardial ischemia. The purpose of this article is to review the clinical, diagnostic, and prognostic utility of stress CMR testing for patients with (or suspected of having) coronary artery disease. PMID:21566427

  11. Active damping of modal vibrations by force apportioning

    NASA Technical Reports Server (NTRS)

    Hallauer, W. L., Jr.

    1980-01-01

    Force apportioning, a method of active structural damping based on that used in modal vibration testing of isolating modes by multiple shaker excitation, was analyzed and numerically simulated. A distribution of as few forces as possible on the structure is chosen so as to maximally affect selected vibration modes while minimally exciting all other modes. The accuracy of numerical simulations of active damping, active damping of higher-frequency modes, and studies of imperfection sensitivity are discussed. The computer programs developed are described and possible refinements of the research are examined.

  12. Multimodal browsing using VoiceXML

    NASA Astrophysics Data System (ADS)

    Caccia, Giuseppe; Lancini, Rosa C.; Peschiera, Giuseppe

    2003-06-01

    With the increasing development of devices such as personal computers, WAP and personal digital assistants connected to the World Wide Web, end users feel the need to browse the Internet through multiple modalities. We intend to investigate on how to create a user interface and a service distribution platform granting the user access to the Internet through standard I/O modalities and voice simultaneously. Different architectures are evaluated suggesting the more suitable for each client terminal (PC o WAP). In particular the design of the multimodal usermachine interface considers the synchronization issue between graphical and voice contents.

  13. Modality-Driven Classification and Visualization of Ensemble Variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald

    Paper for the IEEE Visualization Conference Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space.

  14. Neurocognitive insights on conceptual knowledge and its breakdown

    PubMed Central

    Lambon Ralph, Matthew A.

    2014-01-01

    Conceptual knowledge reflects our multi-modal ‘semantic database’. As such, it brings meaning to all verbal and non-verbal stimuli, is the foundation for verbal and non-verbal expression and provides the basis for computing appropriate semantic generalizations. Multiple disciplines (e.g. philosophy, cognitive science, cognitive neuroscience and behavioural neurology) have striven to answer the questions of how concepts are formed, how they are represented in the brain and how they break down differentially in various neurological patient groups. A long-standing and prominent hypothesis is that concepts are distilled from our multi-modal verbal and non-verbal experience such that sensation in one modality (e.g. the smell of an apple) not only activates the intramodality long-term knowledge, but also reactivates the relevant intermodality information about that item (i.e. all the things you know about and can do with an apple). This multi-modal view of conceptualization fits with contemporary functional neuroimaging studies that observe systematic variation of activation across different modality-specific association regions dependent on the conceptual category or type of information. A second vein of interdisciplinary work argues, however, that even a smorgasbord of multi-modal features is insufficient to build coherent, generalizable concepts. Instead, an additional process or intermediate representation is required. Recent multidisciplinary work, which combines neuropsychology, neuroscience and computational models, offers evidence that conceptualization follows from a combination of modality-specific sources of information plus a transmodal ‘hub’ representational system that is supported primarily by regions within the anterior temporal lobe, bilaterally. PMID:24324236

  15. An investigation of response and stimulus modality transfer effects after dual-task training in younger and older.

    PubMed

    Lussier, Maxime; Gagnon, Christine; Bherer, Louis

    2012-01-01

    It has been shown that dual-task training leads to significant improvement in dual-task performance in younger and older adults. However, the extent to which training benefits to untrained tasks requires further investigation. The present study assessed (a) whether dual-task training leads to cross-modality transfer in untrained tasks using new stimuli and/or motor responses modalities, (b) whether transfer effects are related to improved ability to prepare and maintain multiple task-set and/or enhanced response coordination, (c) whether there are age-related differences in transfer effects. Twenty-three younger and 23 older adults were randomly assigned to dual-task training or control conditions. All participants were assessed before and after training on three dual-task transfer conditions; (1) stimulus modality transfer (2) response modality transfer (3) stimulus and response modalities transfer task. Training group showed larger improvement than the control group in the three transfer dual-task conditions, which suggests that training leads to more than specific learning of stimuli/response associations. Attentional costs analyses showed that training led to improved dual-task cost, only in conditions that involved new stimuli or response modalities, but not both. Moreover, training did not lead to a reduced task-set cost in the transfer conditions, which suggests some limitations in transfer effects that can be expected. Overall, the present study supports the notion that cognitive plasticity for attentional control is preserved in late adulthood.

  16. An eye movement analysis of the effect of interruption modality on primary task resumption.

    PubMed

    Ratwani, Raj; Trafton, J Gregory

    2010-06-01

    We examined the effect of interruption modality (visual or auditory) on primary task (visual) resumption to determine which modality was the least disruptive. Theories examining interruption modality have focused on specific periods of the interruption timeline. Preemption theory has focused on the switch from the primary task to the interrupting task. Multiple resource theory has focused on interrupting tasks that are to be performed concurrently with the primary task. Our focus was on examining how interruption modality influences task resumption.We leverage the memory-for-goals theory, which suggests that maintaining an associative link between environmental cues and the suspended primary task goal is important for resumption. Three interruption modality conditions were examined: auditory interruption with the primary task visible, auditory interruption with a blank screen occluding the primary task, and a visual interruption occluding the primary task. Reaction time and eye movement data were collected. The auditory condition with the primary task visible was the least disruptive. Eye movement data suggest that participants in this condition were actively maintaining an associative link between relevant environmental cues on the primary task interface and the suspended primary task goal during the interruption. These data suggest that maintaining cue association is the important factor for reducing the disruptiveness of interruptions, not interruption modality. Interruption-prone computing environments should be designed to allow for the user to have access to relevant primary task cues during an interruption to minimize disruptiveness.

  17. Damage identification in beams using speckle shearography and an optimal spatial sampling

    NASA Astrophysics Data System (ADS)

    Mininni, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J. V.

    2016-10-01

    Over the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.

  18. The influence of the visual modality on language structure and conventionalization: insights from sign language and gesture.

    PubMed

    Perniss, Pamela; Özyürek, Asli; Morgan, Gary

    2015-01-01

    For humans, the ability to communicate and use language is instantiated not only in the vocal modality but also in the visual modality. The main examples of this are sign languages and (co-speech) gestures. Sign languages, the natural languages of Deaf communities, use systematic and conventionalized movements of the hands, face, and body for linguistic expression. Co-speech gestures, though non-linguistic, are produced in tight semantic and temporal integration with speech and constitute an integral part of language together with speech. The articles in this issue explore and document how gestures and sign languages are similar or different and how communicative expression in the visual modality can change from being gestural to grammatical in nature through processes of conventionalization. As such, this issue contributes to our understanding of how the visual modality shapes language and the emergence of linguistic structure in newly developing systems. Studying the relationship between signs and gestures provides a new window onto the human ability to recruit multiple levels of representation (e.g., categorical, gradient, iconic, abstract) in the service of using or creating conventionalized communicative systems. Copyright © 2015 Cognitive Science Society, Inc.

  19. Modal Analysis Using the Singular Value Decomposition and Rational Fraction Polynomials

    DTIC Science & Technology

    2017-04-06

    information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...results. The programs are designed for experimental datasets with multiple drive and response points and have proven effective even for systems with... designed for experimental datasets with multiple drive and response points and have proven effective even for systems with numerous closely-spaced

  20. Increasing Retention of Adult Learners in Telecourses through the Incorporation of Learning-Centered Instructional Strategies and the Use of Multiple Modalities for Content Delivery and Interaction.

    ERIC Educational Resources Information Center

    Nelson, Lin M.

    A project was undertaken to increase retention in a health education telecourse by incorporating a competency-based orientation to distance learning and learner-centered instructional strategies into the telecourse, and by using multiple media for content delivery and interaction. A general orientation to distance learning was developed that…

  1. Assessing the Effectiveness of E-learning Integration in College Physics in the Alamo Community Colleges District

    NASA Astrophysics Data System (ADS)

    Zhou, Qiaoying

    Academic achievement and student participation in physics are lower than desired. Research has shown that there is a shortage of college students entering science and technology fields such as physics. E-learning may provide the technology-oriented Net Generation learner an option for taking courses such as physics in a course modality with which they are most comfortable thus garnering more participation and higher academic achievement. A quantitative ex-post facto study was performed to compare face-to-face and E-learning modalities on course completion and physics achievement for an entire introductory physics course. The theoretical framework for this study was based on the constructivist theory of education that implies a student-centered learning process. The sample consisted of 116 students enrolled in introductory physics courses at four 2-year community colleges in Texas. Course completion, SAT scores, Force Concept Inventory examination scores, as well as demographic information and employment information were examined. Linear and ordinal multiple regression analysis were used to determine if course modality is predictive of physics achievement while controlling for general scholastic aptitude, current employment, the presence of children in the home, and teacher evaluations. The results showed that students in the E-learning course performed better on the Force Concept Inventory than those in the traditional course both in the multiple regression analysis, beta = .61, p < .001, and in the ordinal regression analysis, Wald(1) = 18.83, p < .001. A chi-square test was used to determine if course completion rates differ between students in the two course modalities. The results showed no difference in course completion rates between students in the two course modalities, chi 2(1, n = 116) = 1.02, p = .312. It was concluded that students in an E-learning course modality had higher physics achievement but were no more likely to complete the introductory physics course than students were in a face-to-face modality. It was recommended that other colleges and universities should develop and test E-learning courses for introductory physics, that larger sample sizes should be used in future studies, and that additional outcome variables including the likelihood that a student chooses physics as a major or the likelihood that a student completes a physics degree should be examined.

  2. LapTrain: multi-modality training curriculum for laparoscopic cholecystectomy-results of a randomized controlled trial.

    PubMed

    Kowalewski, K F; Garrow, C R; Proctor, T; Preukschas, A A; Friedrich, M; Müller, P C; Kenngott, H G; Fischer, L; Müller-Stich, B P; Nickel, F

    2018-02-12

    Multiple training modalities for laparoscopy have different advantages, but little research has been conducted on the benefit of a training program that includes multiple different training methods compared to one method only. This study aimed to evaluate benefits of a combined multi-modality training program for surgical residents. Laparoscopic cholecystectomy (LC) was performed on a porcine liver as the pre-test. Randomization was stratified for experience to the multi-modality Training group (12 h of training on Virtual Reality (VR) and box trainer) or Control group (no training). The post-test consisted of a VR LC and porcine LC. Performance was rated with the Global Operative Assessment of Laparoscopic Skills (GOALS) score by blinded experts. Training (n = 33) and Control (n = 31) were similar in the pre-test (GOALS: 13.7 ± 3.4 vs. 14.7 ± 2.6; p = 0.198; operation time 57.0 ± 18.1 vs. 63.4 ± 17.5 min; p = 0.191). In the post-test porcine LC, Training had improved GOALS scores (+ 2.84 ± 2.85 points, p < 0.001), while Control did not (+ 0.55 ± 2.34 points, p = 0.154). Operation time in the post-test was shorter for Training vs. Control (40.0 ± 17.0 vs. 55.0 ± 22.2 min; p = 0.012). Junior residents improved GOALS scores to the level of senior residents (pre-test: 13.7 ± 2.7 vs. 18.3 ± 2.9; p = 0.010; post-test: 15.5 ± 3.4 vs. 18.8 ± 3.8; p = 0.120) but senior residents remained faster (50.1 ± 20.6 vs. 25.0 ± 1.9 min; p < 0.001). No differences were found between groups on the post-test VR trainer. Structured multi-modality training is beneficial for novices to improve basics and overcome the initial learning curve in laparoscopy as well as to decrease operation time for LCs in different stages of experience. Future studies should evaluate multi-modality training in comparison with single modalities. German Clinical Trials Register DRKS00011040.

  3. Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.

    PubMed

    Frank, Sebastian M; Sun, Liwei; Forster, Lisa; Tse, Peter U; Greenlee, Mark W

    2016-12-14

    The midposterior fundus of the Sylvian fissure in the human brain is central to the cortical processing of vestibular cues. At least two vestibular areas are located at this site: the parietoinsular vestibular cortex (PIVC) and the posterior insular cortex (PIC). It is now well established that activity in sensory systems is subject to cross-modal attention effects. Attending to a stimulus in one sensory modality enhances activity in the corresponding cortical sensory system, but simultaneously suppresses activity in other sensory systems. Here, we wanted to probe whether such cross-modal attention effects also target the vestibular system. To this end, we used a visual multiple-object tracking task. By parametrically varying the number of tracked targets, we could measure the effect of attentional load on the PIVC and the PIC while holding the perceptual load constant. Participants performed the tracking task during functional magnetic resonance imaging. Results show that, compared with passive viewing of object motion, activity during object tracking was suppressed in the PIVC and enhanced in the PIC. Greater attentional load, induced by increasing the number of tracked targets, was associated with a corresponding increase in the suppression of activity in the PIVC. Activity in the anterior part of the PIC decreased with increasing load, whereas load effects were absent in the posterior PIC. Results of a control experiment show that attention-induced suppression in the PIVC is stronger than any suppression evoked by the visual stimulus per se. Overall, our results suggest that attention has a cross-modal modulatory effect on the vestibular cortex during visual object tracking. In this study we investigate cross-modal attention effects in the human vestibular cortex. We applied the visual multiple-object tracking task because it is known to evoke attentional load effects on neural activity in visual motion-processing and attention-processing areas. Here we demonstrate a load-dependent effect of attention on the activation in the vestibular cortex, despite constant visual motion stimulation. We find that activity in the parietoinsular vestibular cortex is more strongly suppressed the greater the attentional load on the visual tracking task. These findings suggest cross-modal attentional modulation in the vestibular cortex. Copyright © 2016 the authors 0270-6474/16/3612720-09$15.00/0.

  4. Vocal and neural responses to unexpected changes in voice pitch auditory feedback during register transitions

    PubMed Central

    Patel, Sona; Lodhavia, Anjli; Frankford, Saul; Korzyukov, Oleg; Larson, Charles R.

    2016-01-01

    Objective/Hypothesis It is known that singers are able to control their voice to maintain a relatively constant vocal quality while transitioning between vocal registers; however, the neural mechanisms underlying this effect are not understood. It was hypothesized that greater attention to the acoustical feedback of the voice and increased control of the vocal musculature during register transitions compared to singing within a register would be represented as neurological differences in event-related potentials (ERPs). Study Design/Methods Nine singers sang musical notes at the high end of the modal register (the boundary between the modal and head/falsetto registers) and at the low end (the boundary between the modal and fry/pulse registers). While singing, the pitch of the voice auditory feedback was unexpectedly shifted either into the adjacent register (“toward” the register boundary) or within the modal register (“away from” the boundary). Singers were instructed to maintain a constant pitch and ignore any changes to their voice feedback. Results Vocal response latencies and magnitude of the accompanying N1 and P2 ERPs were greatest at the lower (modal-fry) boundary when the pitch shift carried the subjects’ voices into the fry register as opposed to remaining within the modal register. Conclusions These findings suggest that when a singer lowers the pitch of their voice such that it enters the fry register from the modal register, there is increased sensory-motor control of the voice, reflected as increased magnitude of the neural potentials to help minimize qualitative changes in the voice. PMID:26739860

  5. Segmentation of British Sign Language (BSL): mind the gap!

    PubMed

    Orfanidou, Eleni; McQueen, James M; Adam, Robert; Morgan, Gary

    2015-01-01

    This study asks how users of British Sign Language (BSL) recognize individual signs in connected sign sequences. We examined whether this is achieved through modality-specific or modality-general segmentation procedures. A modality-specific feature of signed languages is that, during continuous signing, there are salient transitions between sign locations. We used the sign-spotting task to ask if and how BSL signers use these transitions in segmentation. A total of 96 real BSL signs were preceded by nonsense signs which were produced in either the target location or another location (with a small or large transition). Half of the transitions were within the same major body area (e.g., head) and half were across body areas (e.g., chest to hand). Deaf adult BSL users (a group of natives and early learners, and a group of late learners) spotted target signs best when there was a minimal transition and worst when there was a large transition. When location changes were present, both groups performed better when transitions were to a different body area than when they were within the same area. These findings suggest that transitions do not provide explicit sign-boundary cues in a modality-specific fashion. Instead, we argue that smaller transitions help recognition in a modality-general way by limiting lexical search to signs within location neighbourhoods, and that transitions across body areas also aid segmentation in a modality-general way, by providing a phonotactic cue to a sign boundary. We propose that sign segmentation is based on modality-general procedures which are core language-processing mechanisms.

  6. Using Mind Maps to Improve Medical Student Performance in a Pharmacology Course at Kunming Medical University.

    PubMed

    Ying, Guo; Jianping, Xie; Haiyun, Luo; Xia, Li; Jianyu, Yang; Qun, Xuan; Jianyun, Yu

    2017-07-01

    To determine whether students using mind maps would improve their performance in a final examination at the end of lecture-based pharmacology course. Aquasi-experimental study. Kunming Medical University, from September 2014 to January 2015. One hundred and twenty-two (122) third year undergraduate medical students, starting a 48-hour lecturebased pharmacology course, volunteered to use mind maps as one of their study strategies (intervention group), while the remaining 100 students in the class continued to use their usual study strategies (control group) over the duration of the course. The performance of both groups in the final course examination was compared. Students in the intervention group also completed a questionnaire on the usefulness of mind maps during the course and in preparation for the final examination. The students' performance of intervention group was superior to performance of the control group in all parts of a multi-modal final examination. For the multiple choice questions and comprehensive scores, average marks of 45.97 ±7.22 and 68.07 ±12.77, respectively were acquired by the control group, and 51.77 ±4.95 (p<0.01) and 80.05 ±7.54 (p<0.01), respectively by the intervention group. The median IQR scores for "filling in the blanks" questions, short answers questions and case analyses, were 6.00 (6.00), 8.00 (3.50), 8.75 (5.88), respectively for the control group, and were all significantly higher at 8.00 (4.00) (p=0.024), 10.00 (2.00) (p<0.001), and 11.00 (3.25) (p=0.002), respectively for the interventiongroup. Questionnaire responses showed that 95.45% thought that mind maps helped them to prepare more efficiently for the final exam; 90.91% believed that mind maps helped them to better understand all of pharmacology. Ninety-one percent also thought that mind maps would help them to better understand other disciplines, and 86.36% students would like the lecturers to utilize mind mapping as an alternative to conventional teaching formats, such as the use of Power Point. The addition of mind maps to students' study of pharmacology at Kunming Medical University improved their performance in all aspects of a multi-modal final examination.

  7. Interesting images: Multiple coronary artery aneurysms.

    PubMed

    Howard, Jonathon M; Viswanath, Omar; Armas, Alfredo; Santana, Orlando; Rosen, Gerald P

    2017-01-01

    We present the case of a 65-year-old male who presented with stable angina and dyspnea on exertion. His initial workup yielded a positive treadmill stress test for reversible apical ischemia, and transthoracic echocardiogram demonstrated impaired systolic function. Cardiac catheterization was then performed, revealing severe atherosclerotic disease including multiple coronary artery aneurysms. As a result, the patient was advised to and subsequently underwent a coronary artery bypass graft. This case highlights the presence of multiple coronary artery aneurysms and the ability to appreciate these pathologic findings on multiple imaging modalities, including coronary angiogram, transesophageal echocardiography, and direct visualization through the surgical field.

  8. Interesting Images: Multiple Coronary Artery Aneurysms

    PubMed Central

    Howard, Jonathon M; Viswanath, Omar; Armas, Alfredo; Santana, Orlando; Rosen, Gerald P

    2017-01-01

    We present the case of a 65-year-old male who presented with stable angina and dyspnea on exertion. His initial workup yielded a positive treadmill stress test for reversible apical ischemia, and transthoracic echocardiogram demonstrated impaired systolic function. Cardiac catheterization was then performed, revealing severe atherosclerotic disease including multiple coronary artery aneurysms. As a result, the patient was advised to and subsequently underwent a coronary artery bypass graft. This case highlights the presence of multiple coronary artery aneurysms and the ability to appreciate these pathologic findings on multiple imaging modalities, including coronary angiogram, transesophageal echocardiography, and direct visualization through the surgical field. PMID:28701599

  9. Cross-sectional imaging in cancers of the head and neck: how we review and report.

    PubMed

    Tshering Vogel, Dechen Wangmo; Thoeny, Harriet C

    2016-08-03

    Cancer of the head and neck is the sixth most frequent cancer worldwide and associated with significant morbidity. The head and neck area is complex and divided into various anatomical and functional subunits. Imaging is performed by cross-sectional modalities like computed tomography, magnetic resonance imaging, ultrasound and positron emission tomography-computed tomography, usually with fluorine-18-deoxy-D-glucose. Therefore, knowledge of the cross-sectional anatomy is very important. This article seeks to give an overview of the various cross-sectional imaging modalities used in the evaluation of head and neck cancers. It briefly describes the anatomy of the extracranial head and neck and the role of imaging as well as the imaging appearance of tumours and their extension to lymph nodes, bone and surrounding tissue. The advantages and disadvantages as well as basic requirements of the various modalities are described along with ways of optimizing imaging quality. A general guideline for prescription of the various modalities is given. Pitfalls are many and varied and can be due to anatomical variation, due to pathology which can be misinterpreted and technical due to peculiarities of the various imaging modalities. Knowledge of these pitfalls can help to avoid misinterpretation. The important points to be mentioned while reporting are also enumerated.

  10. Annual Technology Transfer Report FY 2017

    DOT National Transportation Integrated Search

    2018-04-01

    The U.S. Department of Transportation (U.S. DOT) is the Federal steward of the Nation's transportation system. U.S. DOT consists of multiple modal operating administrations (OAs) that carry out mission-related research, development, and technology (R...

  11. Gaze and Feet as Additional Input Modalities for Interacting with Geospatial Interfaces

    NASA Astrophysics Data System (ADS)

    Çöltekin, A.; Hempel, J.; Brychtova, A.; Giannopoulos, I.; Stellmach, S.; Dachselt, R.

    2016-06-01

    Geographic Information Systems (GIS) are complex software environments and we often work with multiple tasks and multiple displays when we work with GIS. However, user input is still limited to mouse and keyboard in most workplace settings. In this project, we demonstrate how the use of gaze and feet as additional input modalities can overcome time-consuming and annoying mode switches between frequently performed tasks. In an iterative design process, we developed gaze- and foot-based methods for zooming and panning of map visualizations. We first collected appropriate gestures in a preliminary user study with a small group of experts, and designed two interaction concepts based on their input. After the implementation, we evaluated the two concepts comparatively in another user study to identify strengths and shortcomings in both. We found that continuous foot input combined with implicit gaze input is promising for supportive tasks.

  12. Comparisons of Remote Sensing Retrievals and in situ Measurements of Aerosol Fine Mode Fraction during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; O'Neill, Norm

    2006-01-01

    We present sunphotometer-retrieved and in situ fine mode fractions (FMF) measured onboard the same aircraft during the ACE-Asia experiment. Comparisons indicate that the latter can be used to identify whether the aerosol under observation is dominated by a mixture of modes or a single mode. Differences between retrieved and in situ FMF range from 5-20%. When profiles contained multiple layers of aerosols, the retrieved and measured FMF were segregated by layers. The comparison of layered and total FMF from the same profile indicates that columnar values are intermediate to those derived from layers. As a result, a remotely sensed FMF cannot be used to distinguish whether the aerosol under observation is composed of layers each with distinctive modal features or all layers with the same modal features. Thus, the use of FMF in multiple layer environments does not provide unique information on the aerosol under observation.

  13. Output-only modal dynamic identification of frames by a refined FDD algorithm at seismic input and high damping

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Ferrari, Rosalba; Rizzi, Egidio

    2016-02-01

    The present paper deals with the seismic modal dynamic identification of frame structures by a refined Frequency Domain Decomposition (rFDD) algorithm, autonomously formulated and implemented within MATLAB. First, the output-only identification technique is outlined analytically and then employed to characterize all modal properties. Synthetic response signals generated prior to the dynamic identification are adopted as input channels, in view of assessing a necessary condition for the procedure's efficiency. Initially, the algorithm is verified on canonical input from random excitation. Then, modal identification has been attempted successfully at given seismic input, taken as base excitation, including both strong motion data and single and multiple input ground motions. Rather than different attempts investigating the role of seismic response signals in the Time Domain, this paper considers the identification analysis in the Frequency Domain. Results turn-out very much consistent with the target values, with quite limited errors in the modal estimates, including for the damping ratios, ranging from values in the order of 1% to 10%. Either seismic excitation and high values of damping, resulting critical also in case of well-spaced modes, shall not fulfill traditional FFD assumptions: this shows the consistency of the developed algorithm. Through original strategies and arrangements, the paper shows that a comprehensive rFDD modal dynamic identification of frames at seismic input is feasible, also at concomitant high damping.

  14. Interventional Therapies for Chronic Low Back Pain: A Focused Review (Efficacy and Outcomes)

    PubMed Central

    Patel, Vikram B.; Wasserman, Ronald; Imani, Farnad

    2015-01-01

    Context: Lower back pain is considered to be one of the most common complaints that brings a patient to a pain specialist. Several modalities in interventional pain management are known to be helpful to a patient with chronic low back pain. Proper diagnosis is required for appropriate intervention to provide optimal benefits. From simple trigger point injections for muscular pain to a highly complex intervention such as a spinal cord stimulator are very effective if chosen properly. The aim of this article is to provide the reader with a comprehensive reading for treatment of lower back pain using interventional modalities. Evidence Acquisition: Extensive search for published literature was carried out online using PubMed, Cochrane database and Embase for the material used in this manuscript. This article describes the most common modalities available to an interventional pain physician along with the most relevant current and past references for the treatment of lower back pain. All the graphics and images were prepared by and belong to the author. Results: This review article describes the most common modalities available to an interventional pain physician along with the most relevant current and past references for the treatment of lower back pain. All the graphics and images belong to the author. Although it is beyond the scope of this review article to include a very detailed description of each procedure along with complete references, a sincere attempt has been made to comprehensively cover this very complex and perplexing topic. Conclusion: Lower back pain is a major healthcare issue and this review article will help educate the pain practitioners about the current evidence based treatment options. PMID:26484298

  15. Brain Imaging in Alzheimer Disease

    PubMed Central

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  16. Multi-modal measurement of the myelin-to-axon diameter g-ratio in preterm-born neonates and adult controls.

    PubMed

    Melbourne, Andrew; Eaton-Rosen, Zach; De Vita, Enrico; Bainbridge, Alan; Cardoso, Manuel Jorge; Price, David; Cady, Ernest; Kendall, Giles S; Robertson, Nicola J; Marlow, Neil; Ourselin, Sébastien

    2014-01-01

    Infants born prematurely are at increased risk of adverse functional outcome. The measurement of white matter tissue composition and structure can help predict functional performance and this motivates the search for new multi-modal imaging biomarkers. In this work we develop a novel combined biomarker from diffusion MRI and multi-component T2 relaxation measurements in a group of infants born very preterm and scanned between 30 and 40 weeks equivalent gestational age. We also investigate this biomarker on a group of seven adult controls, using a multi-modal joint model-fitting strategy. The proposed emergent biomarker is tentatively related to axonal energetic efficiency (in terms of axonal membrane charge storage) and conduction velocity and is thus linked to the tissue electrical properties, giving it a good theoretical justification as a predictive measurement of functional outcome.

  17. X-ray cargo container inspection system with few-view projection imaging

    NASA Astrophysics Data System (ADS)

    Duan, Xinhui; Cheng, Jianping; Zhang, Li; Xing, Yuxiang; Chen, Zhiqiang; Zhao, Ziran

    2009-01-01

    An X-ray cargo inspection system with few-view projection imaging is developed for detecting contraband in air containers. This paper describes this developing inspection system, including its configuration and the process of inspection using three imaging modalities: digital radiography (DR), few view imaging and computed tomography (CT). The few-view imaging can provide 3D images with much faster scanning speed than CT and do great help to quickly locate suspicious cargo in a container. An algorithm to reconstruct tomographic images from severely sparse projection data of few-view imaging is discussed. A cooperative work manner of the three modalities is presented to make the inspection more convenient and effective. Numerous experiments of performance tests and modality comparison are performed on our system for inspecting air containers. Results demonstrate the effectiveness of our methods and implementation of few-view imaging in practical inspection systems.

  18. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  19. Development of the "Treatment beliefs in knee and hip OsteoArthritis (TOA)" questionnaire.

    PubMed

    Selten, Ellen M H; Vriezekolk, Johanna E; Schers, Henk J; Nijhof, Marc W; van der Laan, Willemijn H; van der Meulen-Dilling, Roelien G; Geenen, Rinie; van den Ende, Cornelia H M

    2017-09-19

    Use of conservative treatment modalities in osteoarthritis (OA) is suboptimal, which appears to be partly due to patients' beliefs about treatments. The aim of this study was to develop a research instrument assessing patients' beliefs about various treatment modalities of hip and knee OA: the 'Treatment beliefs in OA (TOA) questionnaire'. The item pool that was retrieved from interviews with patients and healthcare providers comprised beliefs regarding five treatment modalities: physical activity, pain medication, physiotherapy, injections and arthroplasty. After an extensive selection procedure, a draft questionnaire with 200 items was constructed. Descriptive analyses and exploratory factor analyses with oblique rotation were conducted for each treatment modality separately to decide upon the final questionnaire. Internal consistency and test-retest reliability were determined. The final questionnaire comprised 60 items. It was completed by 351 patients with knee or hip OA. Each of the five treatment modalities yielded a two factor solution with 37% to 51% explained variance and high face validity. Factor I included 'positive treatment beliefs' and factor II 'negative treatment beliefs'. Internal consistency (Cronbach α's from 0.72 to 0.87) and test-retest reliability (i.e. intraclass correlation coefficient from 0.66-0.88; standard error of measurement from 0.06-0.11) were satisfactory to good. The TOA questionnaire is the first questionnaire assessing positive and negative treatment beliefs regarding five treatment modalities for knee and hip OA. The instrument will help to understand whether and to what extent treatment beliefs influence treatment choices.

  20. Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law

    NASA Astrophysics Data System (ADS)

    Legrand, Mathias; Junca, Stéphane; Heng, Sokly

    2017-04-01

    The dynamics of a N-degree-of-freedom autonomous oscillator undergoing an energy-preserving impact law on one of its masses is investigated in the light of nonlinear modal analysis. The impacted rigid foundation provides a natural Poincaré section of the investigated system from which is formulated a smooth First Return Map well-defined away from the grazing trajectory. In order to focus on the impact-induced nonlinearity, the oscillator is assumed linear. Continuous one-parameter families of T-periodic orbits featuring one impact per period and lying on two-dimensional invariant manifolds in the state-space are shown to exist. The geometry of these piecewise-smooth manifolds is such that a linear "flat" portion (on which contact is not activated) is continuously attached to a purely nonlinear portion (on which contact is activated once per period) exhibiting a velocity discontinuity through a grazing orbit. These features explain the newly introduced terminology "Nonsmooth modal analysis". The stability of the periodic orbits lying on the invariant manifolds is also explored by calculating the eigenvalues of the linearized First Return Map. Internal resonances and multiple impacts per period are not addressed in this work. However, the pre-stressed case is succinctly described and extensions to multiple oscillators as well as self-contact are discussed.

  1. Effectiveness of CO2 laser with subcision in patients with acne scars.

    PubMed

    Anupama, Y G; Wahab, Afthab Jameela

    2016-11-01

    Post-acne facial scarring has always been a challenge to treat. It requires multiple therapeutic modalities as single modality is not hundred percent effective. Therefore, we have combined CO 2 laser resurfacing with subcision in patients with acne scars for better results. The aim is to study the effectiveness and side effects of CO 2 laser with subcision in patients with atrophic acne scars. Fifty patients were selected for the study. Baseline grading was done with Goodman and Baron grading system. Twenty-five patients were randomly selected for subcision followed by CO 2 laser and the remaining patients were selected for CO 2 laser alone. The treatment was done for four sessions at 4-week interval. Clinical photographs were obtained for evaluation. CO 2 laser with subcision showed excellent response in grade-2 and -3 acne scars. Statistically there is a significant difference between CO 2 laser following subcision and CO 2 laser alone at 5% level (p < 0.05). Both procedures were well tolerated with minimal side effects. The highly versatile CO 2 laser is useful for treating acne scars. Subcision prior to the CO 2 laser procedure showed better improvement when compared to CO 2 laser alone. Thus, in acne scars, multiple therapeutic modalities achieve better results.

  2. Joint sparse representation for robust multimodal biometrics recognition.

    PubMed

    Shekhar, Sumit; Patel, Vishal M; Nasrabadi, Nasser M; Chellappa, Rama

    2014-01-01

    Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.

  3. The Roles of Relative Linguistic Proficiency and Modality Switching in Language Switch Cost: Evidence from Chinese Visual Unimodal and Bimodal Bilinguals.

    PubMed

    Lu, Aitao; Wang, Lu; Guo, Yuyang; Zeng, Jiahong; Zheng, Dongping; Wang, Xiaolu; Shao, Yulan; Wang, Ruiming

    2017-09-01

    The current study investigated the mechanism of language switching in unbalanced visual unimodal bilinguals as well as balanced and unbalanced bimodal bilinguals during a picture naming task. All three groups exhibited significant switch costs across two languages, with symmetrical switch cost in balanced bimodal bilinguals and asymmetrical switch cost in unbalanced unimodal bilinguals and bimodal bilinguals. Moreover, the relative proficiency of the two languages but not their absolute proficiency had an effect on language switch cost. For the bimodal bilinguals the language switch cost also arose from modality switching. These findings suggest that the language switch cost might originate from multiple sources from both outside (e.g., modality switching) and inside (e.g., the relative proficiency of the two languages) the linguistic lexicon.

  4. Nano- and micro-electromechanical switch dynamics

    NASA Astrophysics Data System (ADS)

    Pulskamp, Jeffrey S.; Proie, Robert M.; Polcawich, Ronald G.

    2013-01-01

    This paper reports theoretical analysis and experimental results on the dynamics of piezoelectric MEMS mechanical logic relays. The multiple degree of freedom analytical model, based on modal decomposition, utilizes modal parameters obtained from finite element analysis and an analytical model of piezoelectric actuation. The model accounts for exact device geometry, damping, drive waveform variables, and high electric field piezoelectric nonlinearity. The piezoelectrically excited modal force is calculated directly and provides insight into design optimization for switching speed. The model accurately predicts the propagation delay dependence on actuation voltage of mechanically distinct relay designs. The model explains the observed discrepancies in switching speed of these devices relative to single degree of freedom switching speed models and suggests the strong potential for improved switching speed performance in relays designed for mechanical logic and RF circuits through the exploitation of higher order vibrational modes.

  5. Bronchoscopic modalities to diagnose sarcoidosis.

    PubMed

    Benzaquen, Sadia; Aragaki-Nakahodo, Alejandro Adolfo

    2017-09-01

    Several studies have investigated different bronchoscopic techniques to obtain tissue diagnosis in patients with suspected sarcoidosis when the diagnosis cannot be based on clinicoradiographic findings alone. In this review, we will describe the most recent and relevant evidence from different bronchoscopic modalities to diagnose sarcoidosis. Despite multiple available bronchoscopic modalities to procure tissue samples to diagnose sarcoidosis, the vast majority of evidence favors endobronchial ultrasound transbronchial needle aspiration to diagnose Scadding stages 1 and 2 sarcoidosis. Transbronchial lung cryobiopsy is a new technique that is mainly used to aid in the diagnosis of undifferentiated interstitial lung disease; however, we will discuss its potential use in sarcoidosis. This review illustrates the limited information about the different bronchoscopic techniques to aid in the diagnosis of pulmonary sarcoidosis. However, it demonstrates that the combination of available bronchoscopic techniques increases the diagnostic yield for suspected sarcoidosis.

  6. Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework.

    PubMed

    Daemi, Mehdi; Harris, Laurence R; Crawford, J Douglas

    2016-01-01

    Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory cortices based on retinal and cochlear stimulations. Currently, it is not known how the brain compares the temporal and spatial features of these sensory representations to decide whether they originate from the same or separate sources in space. Here, we propose a computational model of how the brain might solve such a task. We reduce the visual and auditory information to time-varying, finite-dimensional signals. We introduce controlled, leaky integrators as working memory that retains the sensory information for the limited time-course of task implementation. We propose our model within an evidence-based, decision-making framework, where the alternative plan units are saliency maps of space. A spatiotemporal similarity measure, computed directly from the unimodal signals, is suggested as the criterion to infer common or separate causes. We provide simulations that (1) validate our model against behavioral, experimental results in tasks where the participants were asked to report common or separate causes for cross-modal stimuli presented with arbitrary spatial and temporal disparities. (2) Predict the behavior in novel experiments where stimuli have different combinations of spatial, temporal, and reliability features. (3) Illustrate the dynamics of the proposed internal system. These results confirm our spatiotemporal similarity measure as a viable criterion for causal inference, and our decision-making framework as a viable mechanism for target selection, which may be used by the brain in cross-modal situations. Further, we suggest that a similar approach can be extended to other cognitive problems where working memory is a limiting factor, such as target selection among higher numbers of stimuli and selections among other modality combinations.

  7. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway* | Office of Cancer Genomics

    Cancer.gov

    Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumors and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood.

  8. Efficacy of treatment of trochanteric bursitis: a systematic review.

    PubMed

    Lustenberger, David P; Ng, Vincent Y; Best, Thomas M; Ellis, Thomas J

    2011-09-01

    Trochanteric bursitis (TB) is a self-limiting disorder in the majority of patients and typically responds to conservative measures. However, multiple courses of nonoperative treatment or surgical intervention may be necessary in refractory cases. The purpose of this systematic review was to evaluate the efficacy of the treatment of TB. A literature search in the PubMed, MEDLINE, CINAHL, and ISI Web of Knowledge databases was performed for all English language studies up to April 2010. Terms combined in a Boolean search were greater trochanteric pain syndrome, trochanteric bursitis, trochanteric, bursitis, surgery, therapy, drug therapy, physical therapy, rehabilitation, injection, Z-plasty, Z-lengthening, aspiration, bursectomy, bursoscopy, osteotomy, and tendon repair. All studies directly involving the treatment of TB were reviewed by 2 authors and selected for further analysis. Expert opinion and review articles were excluded, as well as case series with fewer than 5 patients. Twenty-four articles were identified. According to the system described by Wright et al, 2 studies, each with multiple arms, qualified as level I evidence, 1 as level II, 1 as level III, and the rest as level IV. More than 950 cases were included. The authors extracted data regarding the type of intervention, level of evidence, mean age of patients, patient gender, number of hips in the study, symptom duration before the study, mean number of injections before the study, prior hip surgeries, patient satisfaction, length of follow-up, baseline scores, and follow-up scores for the visual analog scale (VAS) and Harris Hip Scores (HHS). Symptom resolution and the ability to return to activity ranged from 49% to 100% with corticosteroid injection as the primary treatment modality with and without multimodal conservative therapy. Two comparative studies (levels II and III) found low-energy shock-wave therapy (SWT) to be superior to other nonoperative modalities. Multiple surgical options for persistent TB have been reported, including bursectomy (n = 2), longitudinal release of the iliotibial band (n = 2), proximal or distal Z-plasty (n = 4), osteotomy (n = 1), and repair of gluteus medius tears (n = 4). Efficacy among surgical techniques varied depending on the clinical outcome measure, but all were superior to corticosteroid therapy and physical therapy according to the VAS and HHS in both comparison studies and between studies. This systematic review found that traditional nonoperative treatment helped most patients, SWT was a good alternative, and surgery was effective in refractory cases.

  9. Multi-modal intelligent seizure acquisition (MISA) system--a new approach towards seizure detection based on full body motion measures.

    PubMed

    Conradsen, Isa; Beniczky, Sandor; Wolf, Peter; Terney, Daniella; Sams, Thomas; Sorensen, Helge B D

    2009-01-01

    Many epilepsy patients cannot call for help during a seizure, because they are unconscious or because of the affection of their motor system or speech function. This can lead to injuries, medical complications and at worst death. An alarm system setting off at seizure onset could help to avoid hazards. Today no reliable alarm systems are available. A Multi-modal Intelligent Seizure Acquisition (MISA) system based on full body motion data seems as a good approach towards detection of epileptic seizures. The system is the first to provide a full body description for epilepsy applications. Three test subjects were used for this pilot project. Each subject simulated 15 seizures and in addition performed some predefined normal activities, during a 4-hour monitoring with electromyography (EMG), accelerometer, magnetometer and gyroscope (AMG), electrocardiography (ECG), electroencephalography (EEG) and audio and video recording. The results showed that a non-subject specific MISA system developed on data from the modalities: accelerometer (ACM), gyroscope and EMG is able to detect 98% of the simulated seizures and at the same time mistakes only 4 of the normal movements for seizures. If the system is individualized (subject specific) it is able to detect all simulated seizures with a maximum of 1 false positive. Based on the results from the simulated seizures and normal movements the MISA system seems to be a promising approach to seizure detection.

  10. Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning.

    PubMed

    Zuluaga, Maria A; Rodionov, Roman; Nowell, Mark; Achhala, Sufyan; Zombori, Gergely; Mendelson, Alex F; Cardoso, M Jorge; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sébastien

    2015-08-01

    Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying significantly associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer-assisted planning systems that can optimise the safety profile of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Twelve paired data sets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coefficient was 0.89 ± 0.04, representing a statistically significantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ± 0.03). Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.

  11. MO-G-9A-01: Imaging Refresher for Standard of Care Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labby, Z; Sensakovic, W; Hipp, E

    2014-06-15

    Imaging techniques and technology which were previously the domain of diagnostic medicine are becoming increasingly integrated and utilized in radiation therapy (RT) clinical practice. As such, there are a number of specific imaging topics that are highly applicable to modern radiation therapy physics. As imaging becomes more widely integrated into standard clinical radiation oncology practice, the impetus is on RT physicists to be informed and up-to-date on those imaging modalities relevant to the design and delivery of therapeutic radiation treatments. For example, knowing that, for a given situation, a fluid attenuated inversion recovery (FLAIR) image set is most likely whatmore » the physician would like to import and contour is helpful, but may not be sufficient to providing the best quality of care. Understanding the physics of how that pulse sequence works and why it is used could help assess its utility and determine if it is the optimal sequence for aiding in that specific clinical situation. It is thus important that clinical medical physicists be able to understand and explain the physics behind the imaging techniques used in all aspects of clinical radiation oncology practice. This session will provide the basic physics for a variety of imaging modalities for applications that are highly relevant to radiation oncology practice: computed tomography (CT) (including kV, MV, cone beam CT [CBCT], and 4DCT), positron emission tomography (PET)/CT, magnetic resonance imaging (MRI), and imaging specific to brachytherapy (including ultrasound and some brachytherapy specific topics in MR). For each unique modality, the image formation process will be reviewed, trade-offs between image quality and other factors (e.g. imaging time or radiation dose) will be clarified, and typically used cases for each modality will be introduced. The current and near-future uses of these modalities and techniques in radiation oncology clinical practice will also be discussed. Learning Objectives: To review the basic physical science principles of CT, PET, MR, and ultrasound imaging. To understand how the images are created, and present their specific role in patient management and treatment planning for therapeutic radiation (both external beam and brachytherapy). To discuss when and how each specific imaging modality is currently used in clinical practice, as well as how they may come to be used in the near future.« less

  12. BINDING, SPATIAL ATTENTION AND PERCEPTUAL AWARENESS

    PubMed Central

    Robertson, Lynn C.

    2012-01-01

    The world is experienced as a unified whole, but sensory systems do not deliver it to the brain in this way. Signals from different sensory modalities are initially registered in separate brain areas —even within a modality, features of the sensory mosaic such as colour, size, shape and motion are fragmented and registered in specialized areas of the cortex. How does this information become bound together in experience? Findings from the study of abnormal binding — for example, after stroke — and unusual binding — as in synaesthesia — might help us to understand the cognitive and neural mechanisms that contribute to solving this ‘binding problem’. PMID:12563280

  13. Beat-to-beat heart rate estimation fusing multimodal video and sensor data

    PubMed Central

    Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen

    2015-01-01

    Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference. PMID:26309754

  14. Unique usage of a partially covered metal stent for drainage of a pancreatic pseudocyst via endosonography-guided transcystgastrostomy.

    PubMed

    Nici, Anthony J; Hussain, Syed A; Kim, Sang H; Mehta, Preeti

    2012-05-01

    Pancreatic pseudocysts are frequent complications of pancreatitis episodes. The current therapeutic modalities for drainage of pancreatic pseudocysts include surgical, percutaneous, and endoscopic drainage modalities. Endosonography-assisted endoscopic drainage of these pseudocysts with the placement of multiple plastic or fully covered self-expanding biliary metal stents is becoming more commonly carried out. The present case report discusses the unique and successful drainage of a pancreatic pseudocyst with the placement of a partially covered self-expanding metal stent. © 2012 The Authors. Digestive Endoscopy © 2012 Japan Gastroenterological Endoscopy Society.

  15. Beat-to-beat heart rate estimation fusing multimodal video and sensor data.

    PubMed

    Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen

    2015-08-01

    Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference.

  16. Central venous catheterization training: current perspectives on the role of simulation

    PubMed Central

    Soffler, Morgan I; Hayes, Margaret M; Smith, C Christopher

    2018-01-01

    Simulation is a popular and effective training modality in medical education across a variety of domains. Central venous catheterization (CVC) is commonly undertaken by trainees, and carries significant risk for patient harm when carried out incorrectly. Multiple studies have evaluated the efficacy of simulation-based training programs, in comparison with traditional training modalities, on learner and patient outcomes. In this review, we discuss relevant adult learning principles that support simulation-based CVC training, review the literature on simulation-based CVC training, and highlight the use of simulation-based CVC training programs at various institutions. PMID:29872360

  17. Noninvasive Imaging in Coronary Artery Disease

    PubMed Central

    Heo, Ran; Nakazato, Ryo; Kalra, Dan; Min, James K.

    2014-01-01

    Noninvasive cardiac imaging is widely used to evaluate the presence of coronary artery disease. Recently, with improvements in imaging technology, noninvasive imaging has also been used for evaluation of the presence, severity, and prognosis of coronary artery disease. Coronary CT angiography and MRI of coronary arteries provide an anatomical assessment of coronary stenosis, whereas the hemodynamic significance of a coronary artery stenosis can be assessed by stress myocardial perfusion imaging, such as SPECT/PET and stress MRI. For appropriate use of multiple imaging modalities, the strengths and limitations of each modality are discussed in this review. PMID:25234083

  18. Central venous catheterization training: current perspectives on the role of simulation.

    PubMed

    Soffler, Morgan I; Hayes, Margaret M; Smith, C Christopher

    2018-01-01

    Simulation is a popular and effective training modality in medical education across a variety of domains. Central venous catheterization (CVC) is commonly undertaken by trainees, and carries significant risk for patient harm when carried out incorrectly. Multiple studies have evaluated the efficacy of simulation-based training programs, in comparison with traditional training modalities, on learner and patient outcomes. In this review, we discuss relevant adult learning principles that support simulation-based CVC training, review the literature on simulation-based CVC training, and highlight the use of simulation-based CVC training programs at various institutions.

  19. Research Gaps in Practice Guidelines for Acute Postoperative Pain Management in Adults: Findings From a Review of the Evidence for an American Pain Society Clinical Practice Guideline.

    PubMed

    Gordon, Debra B; de Leon-Casasola, Oscar A; Wu, Christopher L; Sluka, Kathleen A; Brennan, Timothy J; Chou, Roger

    2016-02-01

    Acute postoperative pain is a common clinical condition that, when poorly controlled, can result in a number of significant negative consequences. The American Pain Society commissioned an evidence-based guideline on the management of postoperative pain to promote evidence-based, safe, and effective perioperative pain management. An interdisciplinary panel developed 31 key questions and inclusion criteria to guide the evidence review. Investigators reviewed 6556 abstracts from multiple electronic databases up to November 2012, an updated evidence review to October 2014, and key references suggested by expert reviewers. More than 800 primary studies not included in a systematic review and 107 systematic reviews were included. Despite a large body of evidence, a number of critical research gaps were identified where only low-quality or insufficient evidence was found to help guide clinical practice recommendations. This report identifies evidence gaps including optimal methods and timing of perioperative patient education, nonpharmacological modalities, combinations of analgesic techniques, monitoring of patient response to treatment, techniques for neuraxial and regional analgesia, and organizational care delivery models. Recommendations to help guide the design of future perioperative studies are offered. Acute postoperative pain is a common clinical condition requiring an evidence-based, planned, and multimodal approach. Despite the plethora of published evidence, much of it is weak and key questions remain unanswered. Researchers are encouraged to work together to produce strong evidence to help guide clinical decisions in perioperative pain management. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  20. Surgical planning for microsurgical excision of cerebral arterio-venous malformations using virtual reality technology.

    PubMed

    Ng, Ivan; Hwang, Peter Y K; Kumar, Dinesh; Lee, Cheng Kiang; Kockro, Ralf A; Sitoh, Y Y

    2009-05-01

    To evaluate the feasibility of surgical planning using a virtual reality platform workstation in the treatment of cerebral arterio-venous malformations (AVMs) Patient-specific data of multiple imaging modalities were co-registered, fused and displayed as a 3D stereoscopic object on the Dextroscope, a virtual reality surgical planning platform. This system allows for manipulation of 3D data and for the user to evaluate and appreciate the angio-architecture of the nidus with regards to position and spatial relationships of critical feeders and draining veins. We evaluated the ability of the Dextroscope to influence surgical planning by providing a better understanding of the angio-architecture as well as its impact on the surgeon's pre- and intra-operative confidence and ability to tackle these lesions. Twenty four patients were studied. The mean age was 29.65 years. Following pre-surgical planning on the Dextroscope, 23 patients underwent microsurgical resection after pre-surgical virtual reality planning, during which all had documented complete resection of the AVM. Planning on the virtual reality platform allowed for identification of critical feeders and draining vessels in all patients. The appreciation of the complex patient specific angio-architecture to establish a surgical plan was found to be invaluable in the conduct of the procedure and was found to enhance the surgeon's confidence significantly. Surgical planning of resection of an AVM with a virtual reality system allowed detailed and comprehensive analysis of 3D multi-modality imaging data and, in our experience, proved very helpful in establishing a good surgical strategy, enhancing intra-operative spatial orientation and increasing surgeon's confidence.

  1. Ontology-aided feature correlation for multi-modal urban sensing

    NASA Astrophysics Data System (ADS)

    Misra, Archan; Lantra, Zaman; Jayarajah, Kasthuri

    2016-05-01

    The paper explores the use of correlation across features extracted from different sensing channels to help in urban situational understanding. We use real-world datasets to show how such correlation can improve the accuracy of detection of city-wide events by combining metadata analysis with image analysis of Instagram content. We demonstrate this through a case study on the Singapore Haze. We show that simple ontological relationships and reasoning can significantly help in automating such correlation-based understanding of transient urban events.

  2. Radiobiological concepts for treatment planning of schemes that combines external beam radiotherapy and systemic targeted radiotherapy

    NASA Astrophysics Data System (ADS)

    Fabián Calderón Marín, Carlos; González González, Joaquín Jorge; Laguardia, Rodolfo Alfonso

    2017-09-01

    The combination of radiotherapy modalities with external bundles and systemic radiotherapy (CIERT) could be a reliable alternative for patients with multiple lesions or those where treatment planning maybe difficult because organ(s)-at-risk (OARs) constraints. Radiobiological models should have the capacity for predicting the biological irradiation response considering the differences in the temporal pattern of dose delivering in both modalities. Two CIERT scenarios were studied: sequential combination in which one modality is executed following the other one and concurrent combination when both modalities are running simultaneously. Expressions are provided for calculation of the dose-response magnitudes Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP). General results on radiobiological modeling using the linear-quadratic (LQ) model are also discussed. Inter-subject variation of radiosensitivity and volume irradiation effect in CIERT are studied. OARs should be under control during the planning in concurrent CIERT treatment as the administered activity is increased. The formulation presented here may be used for biological evaluation of prescriptions and biological treatment planning of CIERT schemes in clinical situation.

  3. Towards an intelligent framework for multimodal affective data analysis.

    PubMed

    Poria, Soujanya; Cambria, Erik; Hussain, Amir; Huang, Guang-Bin

    2015-03-01

    An increasingly large amount of multimodal content is posted on social media websites such as YouTube and Facebook everyday. In order to cope with the growth of such so much multimodal data, there is an urgent need to develop an intelligent multi-modal analysis framework that can effectively extract information from multiple modalities. In this paper, we propose a novel multimodal information extraction agent, which infers and aggregates the semantic and affective information associated with user-generated multimodal data in contexts such as e-learning, e-health, automatic video content tagging and human-computer interaction. In particular, the developed intelligent agent adopts an ensemble feature extraction approach by exploiting the joint use of tri-modal (text, audio and video) features to enhance the multimodal information extraction process. In preliminary experiments using the eNTERFACE dataset, our proposed multi-modal system is shown to achieve an accuracy of 87.95%, outperforming the best state-of-the-art system by more than 10%, or in relative terms, a 56% reduction in error rate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Radiological Evaluation of Ambiguous Genitalia with Various Imaging Modalities

    NASA Astrophysics Data System (ADS)

    Ravi, N.; Bindushree, Kadakola

    2012-07-01

    Disorders of sex development (DSDs) are congenital conditions in which the development of chromosomal, gonadal, or anatomic sex is atypical. These can be classified broadly into four categories on the basis of gonadal histologic features: female pseudohermaphroditism (46,XX with two ovaries); male pseudohermaphroditism (46,XY with two testes); true hermaphroditism (ovotesticular DSD) (both ovarian and testicular tissues); and gonadal dysgenesis, either mixed (a testis and a streak gonad) or pure (bilateral streak gonads). Imaging plays an important role in demonstrating the anatomy and associated anomalies. Ultrasonography is the primary modality for demonstrating internal organs and magnetic resonance imaging is used as an adjunct modality to assess for internal gonads and genitalia. Early and appropriate gender assignment is necessary for healthy physical and psychologic development of children with ambiguous genitalia. Gender assignment can be facilitated with a team approach that involves a pediatric endocrinologist, geneticist, urologist, psychiatrist, social worker, neonatologist, nurse, and radiologist, allowing timely diagnosis and proper management. We describe case series on ambiguous genitalia presented to our department who were evaluated with multiple imaging modalities.

  5. What is the role of imaging in the clinical diagnosis of osteoarthritis and disease management?

    PubMed

    Wang, Xia; Oo, Win Min; Linklater, James M

    2018-05-01

    While OA is predominantly diagnosed on the basis of clinical criteria, imaging may aid with differential diagnosis in clinically suspected cases. While plain radiographs are traditionally the first choice of imaging modality, MRI and US also have a valuable role in assessing multiple pathologic features of OA, although each has particular advantages and disadvantages. Although modern imaging modalities provide the capability to detect a wide range of osseous and soft tissue (cartilage, menisci, ligaments, synovitis, effusion) OA-related structural damage, this extra information has not yet favourably influenced the clinical decision-making and management process. Imaging is recommended if there are unexpected rapid changes in clinical outcomes to determine whether it relates to disease severity or an additional diagnosis. On developing specific treatments, imaging serves as a sensitive tool to measure treatment response. This narrative review aims to describe the role of imaging modalities to aid in OA diagnosis, disease progression and management. It also provides insight into the use of these modalities in finding targeted treatment strategies in clinical research.

  6. Aids to Computer-Based Multimedia Learning.

    ERIC Educational Resources Information Center

    Mayer, Richard E.; Moreno, Roxana

    2002-01-01

    Presents a cognitive theory of multimedia learning that draws on dual coding theory, cognitive load theory, and constructivist learning theory and derives some principles of instructional design for fostering multimedia learning. These include principles of multiple representation, contiguity, coherence, modality, and redundancy. (SLD)

  7. Meniere's Disease.

    ERIC Educational Resources Information Center

    Schessel, David A.

    1997-01-01

    Meniere's disease is characterized by unpredictable spells of severe vertigo and fluctuations in hearing and tinnitus. This article discusses the incidence of Meniere's disease, the present status of our understanding of this disease, controversies in its diagnosis, and the multiple therapeutic modalities recruited in its treatment. (Contains…

  8. Unitary vs multiple semantics: PET studies of word and picture processing.

    PubMed

    Bright, P; Moss, H; Tyler, L K

    2004-06-01

    In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990; Lambon Ralph, Graham, Patterson, & Hodges, 1999; Rapp, Hillis, & Caramazza, 1993)? We present an analysis of four PET studies (three semantic categorisation tasks and one lexical decision task), two of which employ words as stimuli and two of which employ pictures. Using conjunction analyses, we found robust semantic activation, common to both input modalities in anterior and medial aspects of the left fusiform gyrus, left parahippocampal and perirhinal cortices, and left inferior frontal gyrus (BA 47). There were modality-specific activations in both temporal poles (words) and occipitotemporal cortices (pictures). We propose that the temporal poles are involved in processing both words and pictures, but their engagement might be primarily determined by the level of specificity at which an object is processed. Activation in posterior temporal regions associated with picture processing most likely reflects intermediate, pre-semantic stages of visual processing. Our data are most consistent with a hierarchically structured, unitary system of semantic representations for both verbal and visual modalities, subserved by anterior regions of the inferior temporal cortex.

  9. Analysis of dermoscopy teaching modalities in United States dermatology residency programs

    PubMed Central

    Chen, Yun An; Rill, Joanne; Seiverling, Elizabeth V.

    2017-01-01

    The use of dermoscopy in dermatology residency programs is on the rise (over 94% of chief residents reported using a dermatoscope in 2013) [1]. Despite increased use (100% of our surveyed residents reported using a dermatoscope), dermoscopy training is one of the aspects of United States dermatology residency training with the lowest resident satisfaction [2]. Diagnostic accuracy with dermoscopy is highly correlated with the amount of dermoscopy training the user has undertaken [3]. We sought to analyze dermoscopy use in US Dermatology residencies to better understand resident dermoscopy utilization and teaching modalities. We found residents learn dermoscopy via multiple teaching modalities. The most commonly reported dermoscopy teaching modality was didactic lectures, followed by time in clinic with a dermoscopy expert. Of the different teaching modalities, time in the clinic with a dermoscopy expert was reported to be the most effective. We also found that the majority of dermatology residents receive didactic dermoscopy lectures and clinical dermoscopy training on the differentiation of benign nevi from melanoma using dermoscopy, the detection of basal cell carcinoma, and the identification of seborrheic keratosis. However, few residents receive dedicated training on the use of dermoscopy in the evaluation of inflammatory dermatoses and skin infections despite dermoscopy’s demonstrated value in both areas [4–7]. PMID:29085718

  10. Modality-independent coding of spatial layout in the human brain

    PubMed Central

    Wolbers, Thomas; Klatzky, Roberta L.; Loomis, Jack M.; Wutte, Magdalena G.; Giudice, Nicholas A.

    2011-01-01

    Summary In many non-human species, neural computations of navigational information such as position and orientation are not tied to a specific sensory modality [1, 2]. Rather, spatial signals are integrated from multiple input sources, likely leading to abstract representations of space. In contrast, the potential for abstract spatial representations in humans is not known, as most neuroscientific experiments on human navigation have focused exclusively on visual cues. Here, we tested the modality independence hypothesis with two fMRI experiments that characterized computations in regions implicated in processing spatial layout [3]. According to the hypothesis, such regions should be recruited for spatial computation of 3-D geometric configuration, independent of a specific sensory modality. In support of this view, sighted participants showed strong activation of the parahippocampal place area (PPA) and the retrosplenial cortex (RSC) for visual and haptic exploration of information-matched scenes but not objects. Functional connectivity analyses suggested that these effects were not related to visual recoding, which was further supported by a similar preference for haptic scenes found with blind participants. Taken together, these findings establish the PPA/RSC network as critical in modality-independent spatial computations and provide important evidence for a theory of high-level abstract spatial information processing in the human brain. PMID:21620708

  11. Cross-Modal Correspondence Among Vision, Audition, and Touch in Natural Objects: An Investigation of the Perceptual Properties of Wood.

    PubMed

    Kanaya, Shoko; Kariya, Kenji; Fujisaki, Waka

    2016-10-01

    Certain systematic relationships are often assumed between information conveyed from multiple sensory modalities; for instance, a small figure and a high pitch may be perceived as more harmonious. This phenomenon, termed cross-modal correspondence, may result from correlations between multi-sensory signals learned in daily experience of the natural environment. If so, we would observe cross-modal correspondences not only in the perception of artificial stimuli but also in perception of natural objects. To test this hypothesis, we reanalyzed data collected previously in our laboratory examining perceptions of the material properties of wood using vision, audition, and touch. We compared participant evaluations of three perceptual properties (surface brightness, sharpness of sound, and smoothness) of the wood blocks obtained separately via vision, audition, and touch. Significant positive correlations were identified for all properties in the audition-touch comparison, and for two of the three properties regarding in the vision-touch comparison. By contrast, no properties exhibited significant positive correlations in the vision-audition comparison. These results suggest that we learn correlations between multi-sensory signals through experience; however, the strength of this statistical learning is apparently dependent on the particular combination of sensory modalities involved. © The Author(s) 2016.

  12. Damage detection of building structures under ambient excitation through the analysis of the relationship between the modal participation ratio and story stiffness

    NASA Astrophysics Data System (ADS)

    Park, Hyo Seon; Oh, Byung Kwan

    2018-03-01

    This paper presents a new approach for the damage detection of building structures under ambient excitation based on the inherent modal characteristics. In this study, without the extraction of modal parameters widely utilized in the previous studies on damage detection, a new index called the modal participation ratio (MPR), which is a representative value of the modal response extracted from dynamic responses measured in ambient vibration tests, is proposed to evaluate the change of the system of a structure according to the reduction of the story stiffness. The relationship between the MPR, representing a modal contribution for a specific mode and degree of freedom in buildings, and the story stiffness damage factor (SSDF), representing the extent of reduction in the story stiffness, is analyzed in various damage scenarios. From the analyses with three examples, several rules for the damage localization of building structures are found based on the characteristics of the MPR variation for the first mode subject to change in the SSDF. In addition, a damage severity function, derived from the relationship between the MPR for the first mode in the lowest story and the SSDF, is constructed to identify the severity of story stiffness reduction. Furthermore, the locations and severities of multiple damages are identified via the superposition of the presented damage severity functions. The presented method was applied to detect damage in a three-dimensional reinforced concrete (RC) structure.

  13. Intracarotid amobarbital procedure: I. Prediction of decreased modality-specific memory scores after temporal lobectomy.

    PubMed

    Wyllie, E; Naugle, R; Awad, I; Chelune, G; Lüders, H; Dinner, D; Skibinski, C; Ahl, J

    1991-01-01

    To assess predictive value of the intracarotid amobarbital procedure (IAP) for decreased postoperative modality-specific memory, we studied 37 temporal lobectomy patients with intractable partial epilepsy who were selected for operation independent of preoperative IAP findings. When ipsilateral IAP failure was defined by an absolute method as a retention score less than 67%, the results were not associated with decreased modality-specific memory after operation. When ipsilateral IAP failure was defined by a comparative method as a retention score at least 20% lower after ipsilateral than contralateral injection, the results showed greater differences between groups, but differences still did not achieve statistical significance. Four left-resection patients who failed the ipsilateral IAP had a median postoperative change in the Wechsler Memory Scale-Revised (WMS-R) Verbal Memory Index score of -14%, whereas 16 left-resection patients who passed the ipsilateral IAP had a mean postoperative change in the WMS-R Verbal Memory Index score of -7.5% (p = 0.12). These results suggested that the IAP interpreted comparatively may be a helpful adjunctive test in assessment of relative risk for modality-specific memory dysfunction after temporal lobectomy, but larger series of operated patients are needed to confirm this possibility. In this series, complete amnesia was not noted after ipsilateral injection, even in patients with postoperative modality-specific memory decline.

  14. Non-parametric combination and related permutation tests for neuroimaging.

    PubMed

    Winkler, Anderson M; Webster, Matthew A; Brooks, Jonathan C; Tracey, Irene; Smith, Stephen M; Nichols, Thomas E

    2016-04-01

    In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-based representations of the brain, including non-imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodology, such that instead of a two-phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  15. Diagnosis and Characterization of Patellofemoral Instability: Review of Available Imaging Modalities.

    PubMed

    Haj-Mirzaian, Arya; Thawait, Gaurav K; Tanaka, Miho J; Demehri, Shadpour

    2017-06-01

    Patellofemoral instability (PI) is defined as single or multiple episodes of patellar dislocation. Imaging modalities are useful for characterization of patellar malalignment, maltracking, underlying morphologic abnormalities, and stabilizing soft-tissue injuries. Using these findings, orthopedic surgeons can decide when to operate, determine the best operation, and measure degree of correction postoperatively in PI patients. Also, these methods assist with PI diagnosis in some suspicious cases. Magnetic resonance imaging is the preferred method especially in the setting of acute dislocations. Multidetector computed tomography allows a more accurate assessment for malalignment such as patellar tilt and lateral subluxation and secondary osteoarthritis. Dynamic magnetic resonance imaging and 4-dimensional computed tomography have been introduced for better kinematic assessment of the patellofemoral maltracking during extension-flexion motions. In this review article, we will discuss the currently available evidence regarding both the conventional and the novel imaging modalities that can be used for diagnosis and characterization of PI.

  16. A collaborative interaction and visualization multi-modal environment for surgical planning.

    PubMed

    Foo, Jung Leng; Martinez-Escobar, Marisol; Peloquin, Catherine; Lobe, Thom; Winer, Eliot

    2009-01-01

    The proliferation of virtual reality visualization and interaction technologies has changed the way medical image data is analyzed and processed. This paper presents a multi-modal environment that combines a virtual reality application with a desktop application for collaborative surgical planning. Both visualization applications can function independently but can also be synced over a network connection for collaborative work. Any changes to either application is immediately synced and updated to the other. This is an efficient collaboration tool that allows multiple teams of doctors with only an internet connection to visualize and interact with the same patient data simultaneously. With this multi-modal environment framework, one team working in the VR environment and another team from a remote location working on a desktop machine can both collaborate in the examination and discussion for procedures such as diagnosis, surgical planning, teaching and tele-mentoring.

  17. An overview of clinical and experimental treatment modalities for port wine stains

    PubMed Central

    Chen, Jennifer K.; Ghasri, Pedram; Aguilar, Guillermo; van Drooge, Anne Margreet; Wolkerstorfer, Albert; Kelly, Kristen M.; Heger, Michal

    2014-01-01

    Port wine stains (PWS) are the most common vascular malformation of the skin, occurring in 0.3% to 0.5% of the population. Noninvasive laser irradiation with flashlamp-pumped pulsed dye lasers (selective photothermolysis) currently comprises the gold standard treatment of PWS; however, the majority of PWS fail to clear completely after selective photothermolysis. In this review, the clinically used PWS treatment modalities (pulsed dye lasers, alexandrite lasers, neodymium:yttrium-aluminum-garnet lasers, and intense pulsed light) and techniques (combination approaches, multiple passes, and epidermal cooling) are discussed. Retrospective analysis of clinical studies published between 1990 and 2011 was performed to determine therapeutic efficacies for each clinically used modality/technique. In addition, factors that have resulted in the high degree of therapeutic recalcitrance are identified, and emerging experimental treatment strategies are addressed, including the use of photodynamic therapy, immunomodulators, angiogenesis inhibitors, hypobaric pressure, and site-specific pharmaco-laser therapy. PMID:22305042

  18. Integrating Iris and Signature Traits for Personal Authentication Using User-Specific Weighting

    PubMed Central

    Viriri, Serestina; Tapamo, Jules R.

    2012-01-01

    Biometric systems based on uni-modal traits are characterized by noisy sensor data, restricted degrees of freedom, non-universality and are susceptible to spoof attacks. Multi-modal biometric systems seek to alleviate some of these drawbacks by providing multiple evidences of the same identity. In this paper, a user-score-based weighting technique for integrating the iris and signature traits is presented. This user-specific weighting technique has proved to be an efficient and effective fusion scheme which increases the authentication accuracy rate of multi-modal biometric systems. The weights are used to indicate the importance of matching scores output by each biometrics trait. The experimental results show that our biometric system based on the integration of iris and signature traits achieve a false rejection rate (FRR) of 0.08% and a false acceptance rate (FAR) of 0.01%. PMID:22666032

  19. Physicians Mutual Aid Group: A Response to AIDS-Related Burnout.

    ERIC Educational Resources Information Center

    Garside, Bruce

    1993-01-01

    Describes origins and functioning of physician's mutual aid group for physicians providing primary care to people with Acquired Immune Deficiency Syndrome (AIDS). Offers suggestions related to overcoming resistance physicians might have to participating in such a group and reviews modalities that were helpful in facilitating participants' ability…

  20. College Peer Counselor Teaching Modalities: Sequelae in the Life and Work of Graduates

    ERIC Educational Resources Information Center

    Hatcher, Sherry L.; Shields, C. Comfort; Wierba, Elizabeth E.; Hatcher-Ross, Juliet L.; Hanley, Steven J.

    2014-01-01

    This study examined extended influences of peer helping courses on graduates' self-reported experiences of interpersonal relationships, communication skills, and ongoing engagement with the training. The 109 participants included 49 college graduates who completed a peer counseling theory course, 47 graduated psychology concentrators who took a…

  1. Critical Pedagogy as Public Modality: Glenn Beck's Undemocratic Defensive Citizenship

    ERIC Educational Resources Information Center

    Childers, Jay P.; Meserko, Vincent M.

    2013-01-01

    For many communication scholars, critical pedagogy has proven a valuable teaching approach intended to strengthen democracy and empower the disenfranchised. However, the pedagogical practice becomes problematic when employed as a way to help the already enfranchised maintain their privileged position. This is the very problem posed by the…

  2. 77 FR 15037 - Agency Information Collection Activities: Proposed Collection; Comment Request-Special Nutrition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... assistance and training. Specifically, this study will help FNS obtain: [ssquf] General descriptive data on... programs in schools; [ssquf] Data related to program administration for designing and revising program... this notice include: [ssquf] Conducting a multi-modal (e.g. paper, Web, and telephone) survey of...

  3. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    PubMed

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  4. Physiotherapy for ankylosing spondylitis: evidence and application.

    PubMed

    Passalent, Laura A

    2011-03-01

    Ankylosing spondylitis (AS) is a disease that tends to affect younger individuals, many of whom are in the prime of their lives; therefore, incorporating the most up-to-date evidence into physiotherapy practice is critical. The purpose of this review is to update the most recent evidence related to physiotherapy intervention for AS and highlight the application of the findings to current physiotherapy research and clinical practice. The results of this review add to the evidence supporting physiotherapy as an intervention for AS. The emphasis continues to be on exercise as the most studied physiotherapy modality, with very few studies examining other physiotherapy modalities. Results of the studies reviewed support the use of exercise, spa therapy, manual therapy and electrotherapeutic modalities. In addition, the results of this review help to understand who might benefit from certain interventions, as well as barriers to management. A review of recently published articles has resulted in a number of studies that support the body of literature describing physiotherapy as an effective form of intervention for AS. In order to continue to build on the existing research, further examination into physiotherapy modalities, beyond exercise-based intervention, needs to be explored.

  5. Differences in Multi-Modal Ultrasound Imaging between Triple Negative and Non-Triple Negative Breast Cancer.

    PubMed

    Li, Ziyao; Tian, Jiawei; Wang, Xiaowei; Wang, Ying; Wang, Zhenzhen; Zhang, Lei; Jing, Hui; Wu, Tong

    2016-04-01

    The objective of this study was to identify multi-modal ultrasound imaging parameters that could potentially help to differentiate between triple negative breast cancer (TNBC) and non-TNBC. Conventional ultrasonography, ultrasound strain elastography and 3-D ultrasound (3-D-US) findings from 50 TNBC and 179 non-TNBC patients were retrospectively reviewed. Immunohistochemical examination was used as the reference gold standard for cancer subtyping. Different ultrasound modalities were initially analyzed to define TNBC-related features. Subsequently, logistic regression analysis was applied to TNBC-related features to establish models for predicting TNBC. TNBCs often presented as micro-lobulated, markedly hypo-echoic masses with an abrupt interface (p = 0.015, 0.0015 and 0.004, compared with non-TNBCs, respectively) on conventional ultrasound, and showed a diminished retraction pattern phenomenon in the coronal plane (p = 0.035) on 3-D-US. Our findings suggest that B-mode ultrasound and 3-D-US in multi-modality ultrasonography could be a useful non-invasive technique for differentiating TNBCs from non-TNBCs. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Pain control methods in use and perceived effectiveness by patients with Ehlers-Danlos syndrome: a descriptive study.

    PubMed

    Arthur, Karen; Caldwell, Karen; Forehand, Samantha; Davis, Keith

    2016-01-01

    The purpose of this study was to assess the pain control methods in use by patients who have Ehlers-Danlos Syndrome (EDS), a group of connective tissue disorders, and their perceived effectiveness. This descriptive study involved 1179 adults diagnosed with EDS who completed an anonymous on-line survey. The survey consisted of demographics information, the Patient Reported Outcomes Measurement Information System (PROMIS) Pain-Behavior, PROMIS Pain-Interference, and Neuro QOL Satisfaction with Social Roles and Activities scales, as well as a modified version of the Pain Management Strategies Survey. Respondents reported having to seek out confirmation of their EDS diagnosis with multiple healthcare providers, which implies the difficulty many people with EDS face when trying to gain access to appropriate treatment. Patients with EDS experience higher levels of pain interference and lower satisfaction with social roles and activities compared to national norms. Among the treatment modalities in this study, those perceived as most helpful for acute pain control were opioids, surgical interventions, splints and braces, avoidance of potentially dangerous activities and heat therapy. Chronic pain treatments rated as most helpful were opioids, splints or braces and surgical interventions. For methods used for both acute and chronic pain, those perceived as most helpful were opioids, massage therapies, splints or braces, heat therapy and avoiding potentially dangerous activities. EDS is a complex, multi-systemic condition that can be difficult to diagnose and poses challenges for healthcare practitioners who engage with EDS patients in holistic care. Improved healthcare provider knowledge of EDS is needed, and additional research on the co-occurring diagnoses with EDS may assist in comprehensive pain management for EDS patients. Ehlers-Danlos Syndrome (EDS) is a group of connective tissue disorders associated with defective production of collagen, which can dramatically reduce musculoskeletal functioning by symptoms of joint laxity and frequent dislocations eventually leading to disability. Respondents to an on-line survey reported having to seek out confirmation of their EDS diagnosis with multiple physicians, which implies the difficulty many people with EDS face when trying to gain access to appropriate treatment. Participants with EDS reported the most helpful methods for managing acute pain were opioids, surgical interventions, splints and braces, heat therapy, nerve blocks and physical therapy, while chronic pain was treated most effectively with opioids, heat therapy, splints or braces and surgical interventions.

  7. Comparison of two stand-alone CADe systems at multiple operating points

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Chen, Weijie; Pezeshk, Aria; Petrick, Nicholas

    2015-03-01

    Computer-aided detection (CADe) systems are typically designed to work at a given operating point: The device displays a mark if and only if the level of suspiciousness of a region of interest is above a fixed threshold. To compare the standalone performances of two systems, one approach is to select the parameters of the systems to yield a target false-positive rate that defines the operating point, and to compare the sensitivities at that operating point. Increasingly, CADe developers offer multiple operating points, which necessitates the comparison of two CADe systems involving multiple comparisons. To control the Type I error, multiple-comparison correction is needed for keeping the family-wise error rate (FWER) less than a given alpha-level. The sensitivities of a single modality at different operating points are correlated. In addition, the sensitivities of the two modalities at the same or different operating points are also likely to be correlated. It has been shown in the literature that when test statistics are correlated, well-known methods for controlling the FWER are conservative. In this study, we compared the FWER and power of three methods, namely the Bonferroni, step-up, and adjusted step-up methods in comparing the sensitivities of two CADe systems at multiple operating points, where the adjusted step-up method uses the estimated correlations. Our results indicate that the adjusted step-up method has a substantial advantage over other the two methods both in terms of the FWER and power.

  8. Somatosensory impairment and its association with balance limitation in people with multiple sclerosis.

    PubMed

    Jamali, Akram; Sadeghi-Demneh, Ebrahim; Fereshtenajad, Niloufar; Hillier, Susan

    2017-09-01

    Somatosensory impairments are common in multiple sclerosis. However, little data are available to characterize the nature and frequency of these problems in people with multiple sclerosis. To investigate the frequency of somatosensory impairments and identify any association with balance limitations in people with multiple sclerosis. The design was a prospective cross-sectional study, involving 82 people with multiple sclerosis and 30 healthy controls. Tactile and proprioceptive sensory acuity were measured using the Rivermead Assessment of Somatosensory Performance. Vibration duration was assessed using a tuning fork. Duration for the Timed Up and Go Test and reaching distance of the Functional Reach Test were measured to assess balance limitations. The normative range of sensory modalities was defined using cut-off points in the healthy participants. The multivariate linear regression was used to identify the significant predictors of balance in people with multiple sclerosis. Proprioceptive impairments (66.7%) were more common than tactile (60.8%) and vibration impairments (44.9%). Somatosensory impairments were more frequent in the lower limb (78.2%) than the upper limb (64.1%). All sensory modalities were significantly associated with the Timed Up and Go and Functional Reach tests (p<0.05). The Timed Up and Go test was independently predicted by the severity of the neurological lesion, Body Mass Index, ataxia, and tactile sensation (R2=0.58), whereas the Functional Reach test was predicted by the severity of the neurological lesion, lower limb strength, and vibration sense (R2=0.49). Somatosensory impairments are very common in people with multiple sclerosis. These impairments are independent predictors of balance limitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effectiveness of Psychotherapy in Personality Disorders Not Otherwise Specified: A Comparison of Different Treatment Modalities.

    PubMed

    Horn, Eva K; Bartak, Anna; Meerman, Anke M M A; Rossum, Bert V; Ziegler, Uli M; Thunnissen, Moniek; Soons, Mirjam; Andrea, Helene; Hamers, Elisabeth F M; Emmelkamp, Paul M G; Stijnen, Theo; Busschbach, Jan J V; Verheul, Roel

    2015-01-01

    Although personality disorder not otherwise specified (PDNOS) is highly prevalent and associated with a high burden of disease, only a few treatment studies in this patient group exist. This study is the first to investigate the effectiveness of different modalities of psychotherapy in patients with PDNOS, i.e., short-term (up to 6 months) and long-term (more than 6 months) outpatient, day hospital, and inpatient psychotherapy. A total of 205 patients with PDNOS were assigned to one of six treatment modalities. Effectiveness was assessed over 60 months after baseline. The primary outcome measure was symptom severity, and the secondary outcome measures included psychosocial functioning and quality of life. The study design was quasi-experimental, and the multiple propensity score was used to control for initial differences between treatment groups. All treatment modalities showed positive outcomes, especially in terms of improvements of symptom severity and social role functioning. At 12-month follow-up, after adjustment for initial differences between the treatment groups, short-term outpatient psychotherapy and short-term inpatient psychotherapy showed most improvement and generally outperformed the other modalities concerning symptom severity. At 60 months after baseline, effectiveness remained but observed differences between modalities mostly diminished. Patients with PDNOS benefit from psychotherapy both at short-term and long-term follow-up. Short-term outpatient psychotherapy and short-term inpatient psychotherapy seem to be superior to the other treatment modalities at 12-month follow-up. At 60-month follow-up, treatments showed mostly comparable effectiveness. The effectiveness of different modalities of psychotherapy in patients with PDNOS (i.e., short-term vs long-term; outpatient versus day hospital versus inpatient psychotherapy) has not yet been compared. Different modalities of psychotherapy are effective for patients with PDNOS, and positive effects remain after 5 years. In patients with PDNOS short-term (less than 6 months) outpatient psychotherapy and short-term inpatient psychotherapy seem to be superior to the four other treatment modalities at 12-month follow-up. At 60-month follow-up, treatments showed mostly comparable effectiveness. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms

    NASA Astrophysics Data System (ADS)

    Taylor, Brian Kyle

    The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of maneuvers followed by odor-modulated undirected exploration of its environment. In the Odor and No Wind environment, animals become biased towards the area of the arena where odor is located compared to the No Odor and No Wind environment. Robot and animal results are compared to learn more about both.

  11. Addressing practical challenges in utility optimization of mobile wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Eswaran, Sharanya; Misra, Archan; La Porta, Thomas; Leung, Kin

    2008-04-01

    This paper examines the practical challenges in the application of the distributed network utility maximization (NUM) framework to the problem of resource allocation and sensor device adaptation in a mission-centric wireless sensor network (WSN) environment. By providing rich (multi-modal), real-time information about a variety of (often inaccessible or hostile) operating environments, sensors such as video, acoustic and short-aperture radar enhance the situational awareness of many battlefield missions. Prior work on the applicability of the NUM framework to mission-centric WSNs has focused on tackling the challenges introduced by i) the definition of an individual mission's utility as a collective function of multiple sensor flows and ii) the dissemination of an individual sensor's data via a multicast tree to multiple consuming missions. However, the practical application and performance of this framework is influenced by several parameters internal to the framework and also by implementation-specific decisions. This is made further complex due to mobile nodes. In this paper, we use discrete-event simulations to study the effects of these parameters on the performance of the protocol in terms of speed of convergence, packet loss, and signaling overhead thereby addressing the challenges posed by wireless interference and node mobility in ad-hoc battlefield scenarios. This study provides better understanding of the issues involved in the practical adaptation of the NUM framework. It also helps identify potential avenues of improvement within the framework and protocol.

  12. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  13. Spatial accessibility to healthcare services in Shenzhen, China: improving the multi-modal two-step floating catchment area method by estimating travel time via online map APIs.

    PubMed

    Tao, Zhuolin; Yao, Zaoxing; Kong, Hui; Duan, Fei; Li, Guicai

    2018-05-09

    Shenzhen has rapidly grown into a megacity in the recent decades. It is a challenging task for the Shenzhen government to provide sufficient healthcare services. The spatial configuration of healthcare services can influence the convenience for the consumers to obtain healthcare services. Spatial accessibility has been widely adopted as a scientific measurement for evaluating the rationality of the spatial configuration of healthcare services. The multi-modal two-step floating catchment area (2SFCA) method is an important advance in the field of healthcare accessibility modelling, which enables the simultaneous assessment of spatial accessibility via multiple transport modes. This study further develops the multi-modal 2SFCA method by introducing online map APIs to improve the estimation of travel time by public transit or by car respectively. As the results show, the distribution of healthcare accessibility by multi-modal 2SFCA shows significant spatial disparity. Moreover, by dividing the multi-modal accessibility into car-mode and transit-mode accessibility, this study discovers that the transit-mode subgroup is disadvantaged in the competition for healthcare services with the car-mode subgroup. The disparity in transit-mode accessibility is the main reason of the uneven pattern of healthcare accessibility in Shenzhen. The findings suggest improving the public transit conditions for accessing healthcare services to reduce the disparity of healthcare accessibility. More healthcare services should be allocated in the eastern and western Shenzhen, especially sub-districts in Dapeng District and western Bao'an District. As these findings cannot be drawn by the traditional single-modal 2SFCA method, the advantage of the multi-modal 2SFCA method is significant to both healthcare studies and healthcare system planning.

  14. Dichotic and dichoptic digit perception in normal adults.

    PubMed

    Lawfield, Angela; McFarland, Dennis J; Cacace, Anthony T

    2011-06-01

    Verbally based dichotic-listening experiments and reproduction-mediated response-selection strategies have been used for over four decades to study perceptual/cognitive aspects of auditory information processing and make inferences about hemispheric asymmetries and language lateralization in the brain. Test procedures using dichotic digits have also been used to assess for disorders of auditory processing. However, with this application, limitations exist and paradigms need to be developed to improve specificity of the diagnosis. Use of matched tasks in multiple sensory modalities is a logical approach to address this issue. Herein, we use dichotic listening and dichoptic viewing of visually presented digits for making this comparison. To evaluate methodological issues involved in using matched tasks of dichotic listening and dichoptic viewing in normal adults. A multivariate assessment of the effects of modality (auditory vs. visual), digit-span length (1-3 pairs), response selection (recognition vs. reproduction), and ear/visual hemifield of presentation (left vs. right) on dichotic and dichoptic digit perception. Thirty adults (12 males, 18 females) ranging in age from 18 to 30 yr with normal hearing sensitivity and normal or corrected-to-normal visual acuity. A computerized, custom-designed program was used for all data collection and analysis. A four-way repeated measures analysis of variance (ANOVA) evaluated the effects of modality, digit-span length, response selection, and ear/visual field of presentation. The ANOVA revealed that performances on dichotic listening and dichoptic viewing tasks were dependent on complex interactions between modality, digit-span length, response selection, and ear/visual hemifield of presentation. Correlation analysis suggested a common effect on overall accuracy of performance but isolated only an auditory factor for a laterality index. The variables used in this experiment affected performances in the auditory modality to a greater extent than in the visual modality. The right-ear advantage observed in the dichotic-digits task was most evident when reproduction mediated response selection was used in conjunction with three-digit pairs. This effect implies that factors such as "speech related output mechanisms" and digit-span length (working memory) contribute to laterality effects in dichotic listening performance with traditional paradigms. Thus, the use of multiple-digit pairs to avoid ceiling effects and the application of verbal reproduction as a means of response selection may accentuate the role of nonperceptual factors in performance. Ideally, tests of perceptual abilities should be relatively free of such effects. American Academy of Audiology.

  15. Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities.

    PubMed

    Massa, Sam; Vikani, Niravkumar; Betti, Cecilia; Ballet, Steven; Vanderhaegen, Saskia; Steyaert, Jan; Descamps, Benedicte; Vanhove, Christian; Bunschoten, Anton; van Leeuwen, Fijs W B; Hernot, Sophie; Caveliers, Vicky; Lahoutte, Tony; Muyldermans, Serge; Xavier, Catarina; Devoogdt, Nick

    2016-09-01

    A generic site-specific conjugation method that generates a homogeneous product is of utmost importance in tracer development for molecular imaging and therapy. We explored the protein-ligation capacity of the enzyme Sortase A to label camelid single-domain antibody-fragments, also known as nanobodies. The versatility of the approach was demonstrated by conjugating independently three different imaging probes: the chelating agents CHX-A"-DTPA and NOTA for single-photon emission computed tomography (SPECT) with indium-111 and positron emission tomography (PET) with gallium-68, respectively, and the fluorescent dye Cy5 for fluorescence reflectance imaging (FRI). After a straightforward purification process, homogeneous single-conjugated tracer populations were obtained in high yield (30-50%). The enzymatic conjugation did not affect the affinity of the tracers, nor the radiolabeling efficiency or spectral characteristics. In vivo, the tracers enabled the visualization of human epidermal growth factor receptor 2 (HER2) expressing BT474M1-tumors with high contrast and specificity as soon as 1 h post injection in all three imaging modalities. These data demonstrate Sortase A-mediated conjugation as a valuable strategy for the development of site-specifically labeled camelid single-domain antibody-fragments for use in multiple molecular imaging modalities. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Luo, Yuan; Ahmad, Faraz S.; Shah, Sanjiv J.

    2017-01-01

    Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome that may benefit from improved subtyping in order to better characterize its pathophysiology and to develop novel targeted therapies. The United States Precision Medicine Initiative comes amid the rapid growth in quantity and modality of clinical data for HFpEF patients ranging from deep phenotypic to trans-omic data. Tensor factorization, a form of machine learning, allows for the integration of multiple data modalities to derive clinically relevant HFpEF subtypes that may have significant differences in underlying pathophysiology and differential response to therapies. Tensor factorization also allows for better interpretability by supporting dimensionality reduction and identifying latent groups of data for meaningful summarization of both features and disease outcomes. In this narrative review, we analyze the modest literature on the application of tensor factorization to related biomedical fields including genotyping and phenotyping. Based on the cited work including work of our own, we suggest multiple tensor factorization formulations capable of integrating the deep phenotypic and trans-omic modalities of data for HFpEF, or accounting for interactions between genetic variants at different -omic hierarchies. We encourage extensive experimental studies to tackle challenges in applying tensor factorization for precision medicine in HFpEF, including effectively incorporating existing medical knowledge, properly accounting for uncertainty, and efficiently enforcing sparsity for better interpretability. PMID:28116551

  17. Development and Application of Multifunctional Lanthanide-Doped Nanoparticles in Medical Imaging

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco J., III

    Medical imaging has become one of the most important tools of modern medicine soon after it was developed. Presently, several imaging modalities are available to clinicians for the detection of skeletal fractures and functional abnormalities of organs and tissues; and also an excellent tool during surgical procedures. Unfortunately, each imaging technique possesses its own strengths and inherent limitations which can be mitigated via the use of multiple imaging modalities and imaging probes. Through the use of multiple imaging modalities, it is possible to gather complementary information for a more reliable diagnosis. Each imaging technique requires its own imaging probes, providing selectivity and improved contrast. However, conventional contrast agents are incapable of providing what the new generation of multifunctional nanomaterials offer. In addition to improved selectivity and contrast, multifunctional materials possess therapeutic capabilities such as photo-thermal therapy and controlled drug delivery. Lanthanide-based nanomaterials are viable candidates for multimodal imaging agents due to possessing multifunctional capabilities, optical and chemical stability, and an intense tunable emission. This doctoral dissertation will delve into the development of lanthanide-based nanoparticles by proposing a novel multifunctional contrast agent for Near Infrared Fluorescence Imaging and Magnetic Resonance Imaging. Furthermore, the study of surface modification effects on upconversion emission and nanoparticle-cell interactions was performed. Results presented will confirm the potential application of multifunctional lanthanide-based nanomaterials as multimodal imaging probes.

  18. Partial Verbal Redundancy in Multimedia Presentations for Writing Strategy Instruction

    ERIC Educational Resources Information Center

    Roscoe, Rod D.; Jacovina, Matthew E.; Harry, Danielle; Russell, Devin G.; McNamara, Danielle S.

    2015-01-01

    Multimedia instructional materials require learners to select, organize, and integrate information across multiple modalities. To facilitate these comprehension processes, a variety of multimedia design principles have been proposed. This study further explores the redundancy principle by manipulating the degree of partial redundancy between…

  19. Extracorporeal shock wave therapy for injection site panniculitis in multiple sclerosis patients.

    PubMed

    Stieger, Marco; Schmid, Jean-Paul; Yawalkar, Nikhil; Hunziker, Thomas

    2015-01-01

    Painful cutaneous injection site reactions may hamper treatment with interferon β (IFN-β) and glatiramer acetate (GA) in multiple sclerosis (MS) patients. To maintain therapy adherence, efficient therapeutic modalities for these subcutaneous inflammatory lesions are urgently needed. We tested the application of local extracorporeal shock wave therapy (ESWT). We applied 5 sessions of ESWT to 8 patients suffering from MS who had developed painful panniculitis at the injection sites of either IFN-β or GA. Clinical outcomes, i.e. pain reduction and regression of induration, were assessed 3 and 6 months after completion of the ESWT using a visual analogue score. All patients showed both significant pain reduction and reduction of the skin induration in the treated lesions, while in untreated control lesions there was no improvement. ESWT proved to be a non-invasive, safe and efficient physical treatment modality for injection-induced painful cutaneous side effects of disease-modifying drugs in MS. © 2014 S. Karger AG, Basel.

  20. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices

    DOE PAGES

    Wang, Danqing; Yang, Ankun; Wang, Weijia; ...

    2017-07-10

    Single band-edge states can trap light and function as high-quality optical feedback for microscale lasers and nanolasers. However, access to more than a single band-edge mode for nanolasing has not been possible because of limited cavity designs. Here, we describe how plasmonic superlattices-finite-arrays of nanoparticles (patches) grouped into microscale arrays-can support multiple band-edge modes capable of multi-modal nanolasing at programmed emission wavelengths and with large mode spacings. Different lasing modes show distinct input-output light behaviour and decay dynamics that can be tailored by nanoparticle size. By modelling the superlattice nanolasers with a four-level gain system and a time-domain approach, wemore » reveal that the accumulation of population inversion at plasmonic hot spots can be spatially modulated by the diffractive coupling order of the patches. Furthermore, we show that symmetry-broken superlattices can sustain switchable nanolasing between a single mode and multiple modes.« less

  1. A postgraduation follow-up of social work students trained in "SBIRT": Rates of usage and perceptions of effectiveness.

    PubMed

    Senreich, Evan; Ogden, Lydia P; Greenberg, Joy Pastan

    2017-01-01

    Screening, brief intervention, and referral to treatment (SBIRT) is an evidence-based modality that can help social workers work with substance-using clients as part of an integrated health care approach. This study reports the findings of a post-graduation one-year follow-up survey of 193 master's and bachelor's social work students trained in SBIRT in practice courses at a Northeast urban college. Forty-three percent of the trainees who were practicing social work after graduation were using SBIRT. A content analysis of participants' comments found that the vast majority found SBIRT to be a valuable practice modality, with barriers to utilization of SBIRT identified.

  2. Vector matter waves in two-component Bose-Einstein condensates with spatially modulated nonlinearities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Liu; He, Jun-Rong; Xue, Li; Belić, Milivoj R.

    2018-02-01

    We demonstrate three-dimensional (3D) vector solitary waves in the coupled (3 + 1)-D nonlinear Gross-Pitaevskii equations with variable nonlinearity coefficients. The analysis is carried out in spherical coordinates, providing novel localized solutions that depend on three modal numbers, l, m, and n. Using the similarity transformation (ST) method in 3D, vector solitary waves are built with the help of a combination of harmonic and trapping potentials, including multipole solutions and necklace rings. In general, the solutions found are stable for low values of the modal numbers; for values larger than 2, the solutions are found to be unstable. Variable nonlinearity allows the utilization of soliton management methods.

  3. A low-power multi-modal body sensor network with application to epileptic seizure monitoring.

    PubMed

    Altini, Marco; Del Din, Silvia; Patel, Shyamal; Schachter, Steven; Penders, Julien; Bonato, Paolo

    2011-01-01

    Monitoring patients' physiological signals during their daily activities in the home environment is one of the challenge of the health care. New ultra-low-power wireless technologies could help to achieve this goal. In this paper we present a low-power, multi-modal, wearable sensor platform for the simultaneous recording of activity and physiological data. First we provide a description of the wearable sensor platform, and its characteristics with respect to power consumption. Second we present the preliminary results of the comparison between our sensors and a reference system, on healthy subjects, to test the reliability of the detected physiological (electrocardiogram and respiration) and electromyography signals.

  4. Basic and supplementary sensory feedback in handwriting

    PubMed Central

    Danna, Jérémy; Velay, Jean-Luc

    2015-01-01

    The mastering of handwriting is so essential in our society that it is important to try to find new methods for facilitating its learning and rehabilitation. The ability to control the graphic movements clearly impacts on the quality of the writing. This control allows both the programming of letter formation before movement execution and the online adjustments during execution, thanks to diverse sensory feedback (FB). New technologies improve existing techniques or enable new methods to supply the writer with real-time computer-assisted FB. The possibilities are numerous and various. Therefore, two main questions arise: (1) What aspect of the movement is concerned and (2) How can we best inform the writer to help them correct their handwriting? In a first step, we report studies on FB naturally used by the writer. The purpose is to determine which information is carried by each sensory modality, how it is used in handwriting control and how this control changes with practice and learning. In a second step, we report studies on supplementary FB provided to the writer to help them to better control and learn how to write. We suggest that, depending on their contents, certain sensory modalities will be more appropriate than others to assist handwriting motor control. We emphasize particularly the relevance of auditory modality as online supplementary FB on handwriting movements. Using real-time supplementary FB to assist in the handwriting process is probably destined for a brilliant future with the growing availability and rapid development of tablets. PMID:25750633

  5. Applications of data compression techniques in modal analysis for on-orbit system identification

    NASA Technical Reports Server (NTRS)

    Carlin, Robert A.; Saggio, Frank; Garcia, Ephrahim

    1992-01-01

    Data compression techniques have been investigated for use with modal analysis applications. A redundancy-reduction algorithm was used to compress frequency response functions (FRFs) in order to reduce the amount of disk space necessary to store the data and/or save time in processing it. Tests were performed for both single- and multiple-degree-of-freedom (SDOF and MDOF, respectively) systems, with varying amounts of noise. Analysis was done on both the compressed and uncompressed FRFs using an SDOF Nyquist curve fit as well as the Eigensystem Realization Algorithm. Significant savings were realized with minimal errors incurred by the compression process.

  6. Modal testing with Asher's method using a Fourier analyzer and curve fitting

    NASA Technical Reports Server (NTRS)

    Gold, R. R.; Hallauer, W. L., Jr.

    1979-01-01

    An unusual application of the method proposed by Asher (1958) for structural dynamic and modal testing is discussed. Asher's method has the capability, using the admittance matrix and multiple-shaker sinusoidal excitation, of separating structural modes having indefinitely close natural frequencies. The present application uses Asher's method in conjunction with a modern Fourier analyzer system but eliminates the necessity of exciting the test structure simultaneously with several shakers. Evaluation of this approach with numerically simulated data demonstrated its effectiveness; the parameters of two modes having almost identical natural frequencies were accurately identified. Laboratory evaluation of this approach was inconclusive because of poor experimental input data.

  7. A comparison between three electronic media and in-person learning for continuing education in physical rehabilitation.

    PubMed

    Lemaire, Edward; Greene, G

    2003-01-01

    We produced continuing education material in physical rehabilitation using a variety of electronic media. We compared four methods of delivering the learning modules: in person with a computer projector, desktop videoconferencing, Web pages and CD-ROM. Health-care workers at eight community hospitals and two nursing homes were asked to participate in the project. A total of 394 questionnaires were received for all modalities: 73 for in-person sessions, 50 for desktop conferencing, 227 for Web pages and 44 for CD-ROM. This represents a 100% response rate from the in-person, desktop conferencing and CD-ROM groups; the response rate for the Web group is unknown, since the questionnaires were completed online. Almost all participants found the modules to be helpful in their work. The CD-ROM group gave significantly higher ratings than the Web page group, although all four learning modalities received high ratings. A combination of all four modalities would be required to provide the best possible learning opportunity.

  8. Accelerated partial breast irradiation: Past, present, and future

    PubMed Central

    Tann, Anne W; Hatch, Sandra S; Joyner, Melissa M; Wiederhold, Lee R; Swanson, Todd A

    2016-01-01

    Accelerated partial breast irradiation (APBI) focuses higher doses of radiation during a shorter interval to the lumpectomy cavity, in the setting of breast conserving therapy for early stage breast cancer. The utilization of APBI has increased in the past decade because of the shorter treatment schedule and a growing body of outcome data showing positive cosmetic outcomes and high local control rates in selected patients undergoing breast conserving therapy. Technological advances in various APBI modalities, including intracavitary and interstitial brachytherapy, intraoperative radiation therapy, and external beam radiation therapy, have made APBI more accessible in the community. Results of early APBI trials served as the basis for the current consensus guidelines, and multiple prospective randomized clinical trials are currently ongoing. The pending long term results of these trials will help us identify optimal candidates that can benefit from ABPI. Here we provide an overview of the clinical and cosmetic outcomes of various APBI techniques and review the current guidelines for selecting suitable breast cancer patients. We also discuss the impact of APBI on the economics of cancer care and patient reported quality of life. PMID:27777879

  9. Visualizing Distributions from Multi-Return Lidar Data to Understand Forest Structure

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Kramer, Marc; Luo, Alison; Dungan, Jennifer; Pang, Alex

    2004-01-01

    Spatially distributed probability density functions (pdfs) are becoming relevant to the Earth scientists and ecologists because of stochastic models and new sensors that provide numerous realizations or data points per unit area. One source of these data is from multi-return airborne lidar, a type of laser that records multiple returns for each pulse of light sent towards the ground. Data from multi-return lidar is a vital tool in helping us understand the structure of forest canopies over large extents. This paper presents several new visualization tools that allow scientists to rapidly explore, interpret and discover characteristic distributions within the entire spatial field. The major contribution from-this work is a paradigm shift which allows ecologists to think of and analyze their data in terms of the distribution. This provides a way to reveal information on the modality and shape of the distribution previously not possible. The tools allow the scientists to depart from traditional parametric statistical analyses and to associate multimodal distribution characteristics to forest structures. Examples are given using data from High Island, southeast Alaska.

  10. 'Known unknowns - examining the burden of neurocognitive impairment in the end-stage renal failure population'.

    PubMed

    Wilson, Scott; Dhar, Arup; Tregaskis, Peter; Lambert, Gavin; Barton, David; Walker, Rowan

    2018-01-18

    The burden of neurocognitive impairment (NCI) in patients receiving maintenance dialysis represents a spectrum of deficits across multiple cognitive domains which are associated with hospitalisation, reduced quality-of-life, mortality and forced decision-making around dialysis withdrawal. Point prevalence data suggests that dialysis patients manifest NCI at rates 3-5 fold higher than the general population with executive function the most commonly affected cognitive domain. The unique physiology of the renal failure state and maintenance dialysis appears to drive an excess of vascular dementia subtype compared to the general population where classical Alzheimer's disease predominates. Despite the absence of evidence based cost-effective therapies for NCI, detecting it in this population creates opportunity to proactively personalise care through education, supported decision making and targeted communication strategies to cover specific areas of deficit and help define goals of care. This review discusses NCI in the dialysis setting, including developments in the definition of neurocognitive impairment, dialysis-specific epidemiology across modalities, screening strategies and opportunities for dialysis providers in this space. This article is protected by copyright. All rights reserved.

  11. Multi-test cervical cancer diagnosis with missing data estimation

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Huang, Xiaolei; Kim, Edward; Long, L. Rodney; Antani, Sameer

    2015-03-01

    Cervical cancer is a leading most common type of cancer for women worldwide. Existing screening programs for cervical cancer suffer from low sensitivity. Using images of the cervix (cervigrams) as an aid in detecting pre-cancerous changes to the cervix has good potential to improve sensitivity and help reduce the number of cervical cancer cases. In this paper, we present a method that utilizes multi-modality information extracted from multiple tests of a patient's visit to classify the patient visit to be either low-risk or high-risk. Our algorithm integrates image features and text features to make a diagnosis. We also present two strategies to estimate the missing values in text features: Image Classifier Supervised Mean Imputation (ICSMI) and Image Classifier Supervised Linear Interpolation (ICSLI). We evaluate our method on a large medical dataset and compare it with several alternative approaches. The results show that the proposed method with ICSLI strategy achieves the best result of 83.03% specificity and 76.36% sensitivity. When higher specificity is desired, our method can achieve 90% specificity with 62.12% sensitivity.

  12. Teaching Medical Students to Help Patients Quit Smoking: Outcomes of a 10-School Randomized Controlled Trial.

    PubMed

    Ockene, Judith K; Hayes, Rashelle B; Churchill, Linda C; Crawford, Sybil L; Jolicoeur, Denise G; Murray, David M; Shoben, Abigail B; David, Sean P; Ferguson, Kristi J; Huggett, Kathryn N; Adams, Michael; Okuliar, Catherine A; Gross, Robin L; Bass, Pat F; Greenberg, Ruth B; Leone, Frank T; Okuyemi, Kola S; Rudy, David W; Waugh, Jonathan B; Geller, Alan C

    2016-02-01

    Early in medical education, physicians must develop competencies needed for tobacco dependence treatment. To assess the effect of a multi-modal tobacco dependence treatment curriculum on medical students' counseling skills. A group-randomized controlled trial (2010-2014) included ten U.S. medical schools that were randomized to receive either multi-modal tobacco treatment education (MME) or traditional tobacco treatment education (TE). Students from the classes of 2012 and 2014 at ten medical schools participated. Students from the class of 2012 (N = 1345) completed objective structured clinical examinations (OSCEs), and 50 % (N = 660) were randomly selected for pre-intervention evaluation. A total of 72.9 % of eligible students (N = 1096) from the class of 2014 completed an OSCE and 69.7 % (N = 1047) completed pre and post surveys. The MME included a Web-based course, a role-play classroom demonstration, and a clerkship booster session. Clerkship preceptors in MME schools participated in an academic detailing module and were encouraged to be role models for third-year students. The primary outcome was student tobacco treatment skills using the 5As measured by an objective structured clinical examination (OSCE) scored on a 33-item behavior checklist. Secondary outcomes were student self-reported skills for performing 5As and pharmacotherapy counseling. Although the difference was not statistically significant, MME students completed more tobacco counseling behaviors on the OSCE checklist (mean 8.7 [SE 0.6] vs. mean 8.0 [SE 0.6], p = 0.52) than TE students. Several of the individual Assist and Arrange items were significantly more likely to have been completed by MME students, including suggesting behavioral strategies (11.8 % vs. 4.5 %, p < 0.001) and providing information regarding quitline (21.0 % vs. 3.8 %, p < 0.001). MME students reported higher self-efficacy for Assist, Arrange, and Pharmacotherapy counseling items (ps ≤0.05). Inclusion of only ten schools limits generalizability. Subsequent interventions should incorporate lessons learned from this first randomized controlled trial of a multi-modal longitudinal tobacco treatment curriculum in multiple U.S. medical schools. NIH Trial Registry Number: NCT01905618.

  13. vECTlab—A fully integrated multi-modality Monte Carlo simulation framework for the radiological imaging sciences

    NASA Astrophysics Data System (ADS)

    Peter, Jörg; Semmler, Wolfhard

    2007-10-01

    Alongside and in part motivated by recent advances in molecular diagnostics, the development of dual-modality instruments for patient and dedicated small animal imaging has gained attention by diverse research groups. The desire for such systems is high not only to link molecular or functional information with the anatomical structures, but also for detecting multiple molecular events simultaneously at shorter total acquisition times. While PET and SPECT have been integrated successfully with X-ray CT, the advance of optical imaging approaches (OT) and the integration thereof into existing modalities carry a high application potential, particularly for imaging small animals. A multi-modality Monte Carlo (MC) simulation approach at present has been developed that is able to trace high-energy (keV) as well as optical (eV) photons concurrently within identical phantom representation models. We show that the involved two approaches for ray-tracing keV and eV photons can be integrated into a unique simulation framework which enables both photon classes to be propagated through various geometry models representing both phantoms and scanners. The main advantage of such integrated framework for our specific application is the investigation of novel tomographic multi-modality instrumentation intended for in vivo small animal imaging through time-resolved MC simulation upon identical phantom geometries. Design examples are provided for recently proposed SPECT-OT and PET-OT imaging systems.

  14. An Integrated Multimedia Learning Model vs. the Traditional Face-to-Face Learning Model: An Examination of College Economics Classes

    ERIC Educational Resources Information Center

    Son, Barbara; Simonian, Mark

    2016-01-01

    Multimedia learning tools can assist and help motivate students by supplementing traditional teaching modalities with learner-centered learning through application and practice. The overall effectiveness of multimedia learning has been documented (Son & Simonian, 2013; Son & Goldstone, 2012; Zhang, 2005). How are effective multimedia…

  15. 75 FR 68316 - Agency Information Collection Activities: Proposed Collection; Comment Request-Special Nutrition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ...: General descriptive data on the Child Nutrition (CN) program characteristics to help FNS respond to questions about the nutrition programs in schools; Data related to program administration for designing and... subject to this notice include: Conducting a multi-modal (e.g. paper, Web, and telephone) survey of...

  16. Talking with Our Hands

    ERIC Educational Resources Information Center

    Thomas, Jonathan N.

    2018-01-01

    Gesture is a powerful and frequent means of mathematical communication. It is a rich modality through which we may reach out to students and they may reach out to teachers, and this is particularly true for instances in which spoken language is not necessarily a commonality among classroom participants. Indeed, our movements help us share more…

  17. Global Blended Learning Practices for Teaching and Learning, Leadership and Professional Development

    ERIC Educational Resources Information Center

    Hilliard, Ann Toler

    2015-01-01

    Blended learning is a combination of online and face-to-face activities for classroom instruction or other training modalities to help develop new knowledge and skills that can be transferred to the workplace environment. The use of blended learning is expanding globally (Vaughn, 2007). Blended learning is evident in professional development…

  18. Helping gay fathers come out to their children.

    PubMed

    Dunne, E J

    1987-01-01

    This paper describes the treatment of seven gay fathers who were concerned about revealing their sexual identity to their children. A time-limited group was established for the purpose of developing strategies to help them past this juncture in their development as gay men. Role playing of specific situations was the modality chiefly employed. Discussions of the effects of internalized homophobia were also held. At the conclusion of the group (eight sessions) all participants rated the experience as "highly useful." Follow-up data are presented at 6 months.

  19. Team OSCE: A Teaching Modality for Promotion of Multidisciplinary Work in Mental Health Settings.

    PubMed

    Sharma, Manoj Kumar; Chandra, Prabha S; Chaturvedi, Santosh K

    2015-01-01

    The objective structured clinical examination has been in use both as an assessment and a teaching modality within the mental health profession. It focuses on individual skill enhancement, the inter-professional understanding of role obligation is helpful in promoting competence as a team as well as role of other team members. The Team OSCE (TOSCE) is an effective way in promoting inter-professional learning. The present work assesses the trainee experience with TOSCE and its utility in clinical care. Twenty-two mental health trainees (17 male and 5 female from psychiatry, clinical psychology and psychiatric social work) got exposure to weekly OSCAF training as well as 2-3 Team OSCAFS on various aspects of clinical work as a part of their clinical training for 3 months. Rating from the trainees were taken on TOSCE feedback checklist. TOSCE was helpful in promoting the understanding role of other team members; shared decision-making, problem-solving, handling unexpected events, giving feedback and closure. The TOSCE may be introduced as a way to work on clinical performance, shared decision-making and inter-professional understanding.

  20. Academic Literacies: The Word Is Not Enough

    ERIC Educational Resources Information Center

    Richards, Kendall; Pilcher, Nick

    2018-01-01

    For Academic Literacies, the world is textually mediated; written texts and what informs them reveal elements such as subject-discipline practices. Furthermore, multi-modalities, for example, visual representation, inform written text, and multiple methods of inquiry, including interviews, shed light on written text production. In this article we…

  1. UGV Interoperability Profile (IOP) - Overarching Profile JAUS Profiling Rules, Version 0

    DTIC Science & Technology

    2011-12-21

    negative values indicate pivot counter clockwise. - Multi- axle steering vehicles are not supported. Acceleration Limit A SetAcceleration limit...obtained from a Global Positioning Sensor (GPS), but may also be a combination of multiple sensor modalities that lead to a global pose referenced

  2. Uncertainty law in ambient modal identification-Part I: Theory

    NASA Astrophysics Data System (ADS)

    Au, Siu-Kui

    2014-10-01

    Ambient vibration test has gained increasing popularity in practice as it provides an economical means for modal identification without artificial loading. Since the signal-to-noise ratio cannot be directly controlled, the uncertainty associated with the identified modal parameters is a primary concern. From a scientific point of view, it is of interest to know on what factors the uncertainty depends and what the relationship is. For planning or specification purposes, it is desirable to have an assessment of the test configuration required to achieve a specified accuracy in the modal parameters. For example, what is the minimum data duration to achieve a 30% coefficient of variation (c.o.v.) in the damping ratio? To address these questions, this work investigates the leading order behavior of the ‘posterior uncertainties’ (i.e., given data) of the modal parameters in a Bayesian identification framework. In the context of well-separated modes, small damping and sufficient data, it is shown rigorously that, among other results, the posterior c.o.v. of the natural frequency and damping ratio are asymptotically equal to ( and 1/(2, respectively; where ζ is the damping ratio; Nc is the data length as a multiple of the natural period; Bf and Bζ are data length factors that depend only on the bandwidth utilized for identification, for which explicit expressions have been derived. As the Bayesian approach allows full use of information contained in the data, the results are fundamental characteristics of the ambient modal identification problem. This paper develops the main theory. The companion paper investigates the implication of the results and verification with field test data.

  3. Dual-modality single particle orientation and rotational tracking of intracellular transport of nanocargos.

    PubMed

    Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning

    2012-01-17

    The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.

  4. Modality exclusivity norms for 400 nouns: the relationship between perceptual experience and surface word form.

    PubMed

    Lynott, Dermot; Connell, Louise

    2013-06-01

    We present modality exclusivity norms for 400 randomly selected noun concepts, for which participants provided perceptual strength ratings across five sensory modalities (i.e., hearing, taste, touch, smell, and vision). A comparison with previous norms showed that noun concepts are more multimodal than adjective concepts, as nouns tend to subsume multiple adjectival property concepts (e.g., perceptual experience of the concept baby involves auditory, haptic, olfactory, and visual properties, and hence leads to multimodal perceptual strength). To show the value of these norms, we then used them to test a prediction of the sound symbolism hypothesis: Analysis revealed a systematic relationship between strength of perceptual experience in the referent concept and surface word form, such that distinctive perceptual experience tends to attract distinctive lexical labels. In other words, modality-specific norms of perceptual strength are useful for exploring not just the nature of grounded concepts, but also the nature of form-meaning relationships. These norms will be of benefit to those interested in the representational nature of concepts, the roles of perceptual information in word processing and in grounded cognition more generally, and the relationship between form and meaning in language development and evolution.

  5. Interactive natural language acquisition in a multi-modal recurrent neural architecture

    NASA Astrophysics Data System (ADS)

    Heinrich, Stefan; Wermter, Stefan

    2018-01-01

    For the complex human brain that enables us to communicate in natural language, we gathered good understandings of principles underlying language acquisition and processing, knowledge about sociocultural conditions, and insights into activity patterns in the brain. However, we were not yet able to understand the behavioural and mechanistic characteristics for natural language and how mechanisms in the brain allow to acquire and process language. In bridging the insights from behavioural psychology and neuroscience, the goal of this paper is to contribute a computational understanding of appropriate characteristics that favour language acquisition. Accordingly, we provide concepts and refinements in cognitive modelling regarding principles and mechanisms in the brain and propose a neurocognitively plausible model for embodied language acquisition from real-world interaction of a humanoid robot with its environment. In particular, the architecture consists of a continuous time recurrent neural network, where parts have different leakage characteristics and thus operate on multiple timescales for every modality and the association of the higher level nodes of all modalities into cell assemblies. The model is capable of learning language production grounded in both, temporal dynamic somatosensation and vision, and features hierarchical concept abstraction, concept decomposition, multi-modal integration, and self-organisation of latent representations.

  6. Assessment of Galileo modal test results for mathematical model verification

    NASA Technical Reports Server (NTRS)

    Trubert, M.

    1984-01-01

    The modal test program for the Galileo Spacecraft was completed at the Jet Propulsion Laboratory in the summer of 1983. The multiple sine dwell method was used for the baseline test. The Galileo Spacecraft is a rather complex 2433 kg structure made of a central core on which seven major appendages representing 30 percent of the total mass are attached, resulting in a high modal density structure. The test revealed a strong nonlinearity in several major modes. This nonlinearity discovered in the course of the test necessitated running additional tests at the unusually high response levels of up to about 21 g. The high levels of response were required to obtain a model verification valid at the level of loads for which the spacecraft was designed. Because of the high modal density and the nonlinearity, correlation between the dynamic mathematical model and the test results becomes a difficult task. Significant changes in the pre-test analytical model are necessary to establish confidence in the upgraded analytical model used for the final load verification. This verification, using a test verified model, is required by NASA to fly the Galileo Spacecraft on the Shuttle/Centaur launch vehicle in 1986.

  7. Topology synthesis of planar ground structures for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Danzi, Francesco; Gibert, James; Cestino, Enrico; Frulla, Giacomo

    2017-04-01

    In this manuscript, we investigate the use topology optimization to design planar resonators with modal fre- quencies that occur at 1 : n ratios for kinetic energy scavenging of ambient vibrations that exhibit at least two frequency components. Furthermore, we are interested in excitations with a fundamental component containing large amounts of energy and secondary component with smaller energy content. This phenomenon is often seen in rotary machines; their frequency spectrum exhibits peaks on multiple harmonics, where the energy is primarily contained in the rotation frequency of the device. Several theoretical resonators are known to exhibit modal frequencies that at integer multiples 1:2 or 1:3. However, designing manufacturable resonators for other geometries is still a daunting task. With this goal in mind, we utilize topology optimization to determine the layout of the resonator. We formulate the problem in its non-dimensional form, eliminating the constraint on the allowable frequency. The frequency can be obtained a posteriori by means of linear scaling. Conversely, to previous research, which use the clamped beam as initial guess, we synthesize the final shape starting from a ground structure (or structural universe) and remove of the unnecessary beams from the initial guess by means of a graph-based filtering scheme. The algorithm determines the simplest structure that gives the desired frequency's ratio. Within the optimization, the structural design is accomplished by a linear FE analysis. The optimization reveals several trends, the most notable being that having members connected orthogonally as in the L-shaped resonator is not the preferred topology of this devices. In order to fully explore the angle of orientation of connected members on the modal characteristics of the device; we derive a reduced-order model that allows a bifurcation analysis on the effect of member orientation on modal frequency. Furthermore, the reduced order approximation is used solve the coupled electro-mechanical equation of a vibration based energy harvester (VEH). Finally, we present the performance of the VEH under various base excitations. These results show an infinite number of topologies that can have integer ratio modal frequencies, and in some cases harvest more power than a nominal L shaped harvester, operating in the linear regime.

  8. Non‐parametric combination and related permutation tests for neuroimaging

    PubMed Central

    Webster, Matthew A.; Brooks, Jonathan C.; Tracey, Irene; Smith, Stephen M.; Nichols, Thomas E.

    2016-01-01

    Abstract In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume‐based representations of the brain, including non‐imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non‐parametric combination (NPC) methodology, such that instead of a two‐phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one‐way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486‐1511, 2016. © 2016 Wiley Periodicals, Inc. PMID:26848101

  9. Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster

    PubMed Central

    Yagi, Ryosuke; Mabuchi, Yuta; Mizunami, Makoto; Tanaka, Nobuaki K.

    2016-01-01

    Detailed structural analyses of the mushroom body which plays critical roles in olfactory learning and memory revealed that it is directly connected with multiple primary sensory centers in Drosophila. Connectivity patterns between the mushroom body and primary sensory centers suggest that each mushroom body lobe processes information on different combinations of multiple sensory modalities. This finding provides a novel focus of research by Drosophila genetics for perception of the external world by integrating multisensory signals. PMID:27404960

  10. Training of polyp staging systems using mixed imaging modalities.

    PubMed

    Wimmer, Georg; Gadermayr, Michael; Kwitt, Roland; Häfner, Michael; Tamaki, Toru; Yoshida, Shigeto; Tanaka, Shinji; Merhof, Dorit; Uhl, Andreas

    2018-05-04

    In medical image data sets, the number of images is usually quite small. The small number of training samples does not allow to properly train classifiers which leads to massive overfitting to the training data. In this work, we investigate whether increasing the number of training samples by merging datasets from different imaging modalities can be effectively applied to improve predictive performance. Further, we investigate if the extracted features from the employed image representations differ between different imaging modalities and if domain adaption helps to overcome these differences. We employ twelve feature extraction methods to differentiate between non-neoplastic and neoplastic lesions. Experiments are performed using four different classifier training strategies, each with a different combination of training data. The specifically designed setup for these experiments enables a fair comparison between the four training strategies. Combining high definition with high magnification training data and chromoscopic with non-chromoscopic training data partly improved the results. The usage of domain adaptation has only a small effect on the results compared to just using non-adapted training data. Merging datasets from different imaging modalities turned out to be partially beneficial for the case of combining high definition endoscopic data with high magnification endoscopic data and for combining chromoscopic with non-chromoscopic data. NBI and chromoendoscopy on the other hand are mostly too different with respect to the extracted features to combine images of these two modalities for classifier training. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Physical agents used in the management of chronic pain by physical therapists.

    PubMed

    Allen, Roger J

    2006-05-01

    Evidence supporting the use of specific physical agents in the management of chronic pain conditions is not definitive; it is largely incomplete and sometimes contradictory. However, the use of agents in chronic pain management programs is common. Within the broad use of physical agents, they are rarely the sole modality of treatment. A 1995 American Physical Therapy Association position statement asserts that "Without documentation which justifies the necessity of the exclusive use of physical agents/modalities, the use of physical agents/modalities, in the absence of other skilled therapeutic or educational intervention, should not be considered physical therapy". Physical agents may serve as useful adjunctive modalities of pain relief or to enhance the effectiveness of other elements in therapy geared toward resolution of movement impairments and restoration of physical function. Given that a conclusive aggregate of findings is unlikely to exist for all permutations of patient conditions, combined with interacting therapeutic modalities, an evidence-based approach to pain management is not always possible or beneficial to the patient. In the face of inconclusive evidence, a theory-based approach may help determine if the therapeutic effect ofa given physical agent has the possibility of being a useful clinical tool in the context of treating a particular patient's mechanism of pain generation. Until controlled efficacy findings are definitive, careful individual patient response monitoring of thoughtful theoretical application of adjunctive physical agents may be a prudent approach to the management of chronic pain.

  12. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    PubMed

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  13. Conflict when making decisions about dialysis modality.

    PubMed

    Chen, Nien-Hsin; Lin, Yu-Ping; Liang, Shu-Yuan; Tung, Heng-Hsin; Tsay, Shiow-Luan; Wang, Tsae-Jyy

    2018-01-01

    To explore decisional conflict and its influencing factors on choosing dialysis modality in patients with end-stage renal diseases. The influencing factors investigated include demographics, predialysis education, dialysis knowledge, decision self-efficacy and social support. Making dialysis modality decisions can be challenging for patients with end-stage renal diseases; there are pros and cons to both haemodialysis and peritoneal dialysis. Patients are often uncertain as to which one will be the best alternative for them. This decisional conflict increases the likelihood of making a decision that is not based on the patient's values or preferences and may result in undesirable postdecisional consequences. Addressing factors predisposing patients to decisional conflict helps to facilitate informed decision-making and then to improve healthcare quality. A predictive correlational cross-sectional study design was used. Seventy patients were recruited from the outpatient dialysis clinics of two general hospitals in Taiwan. Data were collected with study questionnaires, including questions on demographics, dialysis modality and predialysis education, the Dialysis Knowledge Scale, the Decision Self-Efficacy scale, the Social Support Scale, and the Decisional Conflict Scale. The mean score on the Decisional Conflict Scale was 29.26 (SD = 22.18). Decision self-efficacy, dialysis modality, predialysis education, professional support and dialysis knowledge together explained 76.4% of the variance in decisional conflict. Individuals who had lower decision self-efficacy, did not receive predialysis education on both haemodialysis and peritoneal dialysis, had lower dialysis knowledge and perceived lower professional support reported higher decisional conflict on choosing dialysis modality. When providing decisional support to predialysis stage patients, practitioners need to increase patients' decision self-efficacy, provide both haemodialysis and peritoneal dialysis predialysis education, increase dialysis knowledge and provide professional support. © 2017 John Wiley & Sons Ltd.

  14. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.

    PubMed

    Yang, Xin; Liu, Chaoyue; Wang, Zhiwei; Yang, Jun; Min, Hung Le; Wang, Liang; Cheng, Kwang-Ting Tim

    2017-12-01

    Multi-parameter magnetic resonance imaging (mp-MRI) is increasingly popular for prostate cancer (PCa) detection and diagnosis. However, interpreting mp-MRI data which typically contains multiple unregistered 3D sequences, e.g. apparent diffusion coefficient (ADC) and T2-weighted (T2w) images, is time-consuming and demands special expertise, limiting its usage for large-scale PCa screening. Therefore, solutions to computer-aided detection of PCa in mp-MRI images are highly desirable. Most recent advances in automated methods for PCa detection employ a handcrafted feature based two-stage classification flow, i.e. voxel-level classification followed by a region-level classification. This work presents an automated PCa detection system which can concurrently identify the presence of PCa in an image and localize lesions based on deep convolutional neural network (CNN) features and a single-stage SVM classifier. Specifically, the developed co-trained CNNs consist of two parallel convolutional networks for ADC and T2w images respectively. Each network is trained using images of a single modality in a weakly-supervised manner by providing a set of prostate images with image-level labels indicating only the presence of PCa without priors of lesions' locations. Discriminative visual patterns of lesions can be learned effectively from clutters of prostate and surrounding tissues. A cancer response map with each pixel indicating the likelihood to be cancerous is explicitly generated at the last convolutional layer of the network for each modality. A new back-propagated error E is defined to enforce both optimized classification results and consistent cancer response maps for different modalities, which help capture highly representative PCa-relevant features during the CNN feature learning process. The CNN features of each modality are concatenated and fed into a SVM classifier. For images which are classified to contain cancers, non-maximum suppression and adaptive thresholding are applied to the corresponding cancer response maps for PCa foci localization. Evaluation based on 160 patient data with 12-core systematic TRUS-guided prostate biopsy as the reference standard demonstrates that our system achieves a sensitivity of 0.46, 0.92 and 0.97 at 0.1, 1 and 10 false positives per normal/benign patient which is significantly superior to two state-of-the-art CNN-based methods (Oquab et al., 2015; Zhou et al., 2015) and 6-core systematic prostate biopsies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ultrasound for the Anesthesiologists: Present and Future

    PubMed Central

    Terkawi, Abdullah S.; Karakitsos, Dimitrios; Elbarbary, Mahmoud; Blaivas, Michael; Durieux, Marcel E.

    2013-01-01

    Ultrasound is a safe, portable, relatively inexpensive, and easily accessible imaging modality, making it a useful diagnostic and monitoring tool in medicine. Anesthesiologists encounter a variety of emergent situations and may benefit from the application of such a rapid and accurate diagnostic tool in their routine practice. This paper reviews current and potential applications of ultrasound in anesthesiology in order to encourage anesthesiologists to learn and use this useful tool as an adjunct to physical examination. Ultrasound-guided peripheral nerve blockade and vascular access represent the most popular ultrasound applications in anesthesiology. Ultrasound has recently started to substitute for CT scans and fluoroscopy in many pain treatment procedures. Although the application of airway ultrasound is still limited, it has a promising future. Lung ultrasound is a well-established field in point-of-care medicine, and it could have a great impact if utilized in our ORs, as it may help in rapid and accurate diagnosis in many emergent situations. Optic nerve sheath diameter (ONSD) measurement and transcranial color coded duplex (TCCD) are relatively new neuroimaging modalities, which assess intracranial pressure and cerebral blood flow. Gastric ultrasound can be used for assessment of gastric content and diagnosis of full stomach. Focused transthoracic (TTE) and transesophageal (TEE) echocardiography facilitate the assessment of left and right ventricular function, cardiac valve abnormalities, and volume status as well as guiding cardiac resuscitation. Thus, there are multiple potential areas where ultrasound can play a significant role in guiding otherwise blind and invasive interventions, diagnosing critical conditions, and assessing for possible anatomic variations that may lead to plan modification. We suggest that ultrasound training should be part of any anesthesiology training program curriculum. PMID:24348179

  16. Brain-CODE: A Secure Neuroinformatics Platform for Management, Federation, Sharing and Analysis of Multi-Dimensional Neuroscience Data.

    PubMed

    Vaccarino, Anthony L; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M; Stuss, Donald T; Theriault, Elizabeth; Evans, Kenneth R

    2018-01-01

    Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute's "Brain-CODE" is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care.

  17. Brain-CODE: A Secure Neuroinformatics Platform for Management, Federation, Sharing and Analysis of Multi-Dimensional Neuroscience Data

    PubMed Central

    Vaccarino, Anthony L.; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R.; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G.; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F. Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M.; Stuss, Donald T.; Theriault, Elizabeth; Evans, Kenneth R.

    2018-01-01

    Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute’s “Brain-CODE” is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care. PMID:29875648

  18. Hybrid optical acoustic seafloor mapping

    NASA Astrophysics Data System (ADS)

    Inglis, Gabrielle

    The oceanographic research and industrial communities have a persistent demand for detailed three dimensional sea floor maps which convey both shape and texture. Such data products are used for archeology, geology, ship inspection, biology, and habitat classification. There are a variety of sensing modalities and processing techniques available to produce these maps and each have their own potential benefits and related challenges. Multibeam sonar and stereo vision are such two sensors with complementary strengths making them ideally suited for data fusion. Data fusion approaches however, have seen only limited application to underwater mapping and there are no established methods for creating hybrid, 3D reconstructions from two underwater sensing modalities. This thesis develops a processing pipeline to synthesize hybrid maps from multi-modal survey data. It is helpful to think of this processing pipeline as having two distinct phases: Navigation Refinement and Map Construction. This thesis extends existing work in underwater navigation refinement by incorporating methods which increase measurement consistency between both multibeam and camera. The result is a self consistent 3D point cloud comprised of camera and multibeam measurements. In map construction phase, a subset of the multi-modal point cloud retaining the best characteristics of each sensor is selected to be part of the final map. To quantify the desired traits of a map several characteristics of a useful map are distilled into specific criteria. The different ways that hybrid maps can address these criteria provides justification for producing them as an alternative to current methodologies. The processing pipeline implements multi-modal data fusion and outlier rejection with emphasis on different aspects of map fidelity. The resulting point cloud is evaluated in terms of how well it addresses the map criteria. The final hybrid maps retain the strengths of both sensors and show significant improvement over the single modality maps and naively assembled multi-modal maps.

  19. Patients' perceptions of information and education for renal replacement therapy: an independent survey by the European Kidney Patients' Federation on information and support on renal replacement therapy.

    PubMed

    Van Biesen, Wim; van der Veer, Sabine N; Murphey, Mark; Loblova, Olga; Davies, Simon

    2014-01-01

    Selection of an appropriate renal replacement modality is of utmost importance for patients with end stage renal disease. Previous studies showed provision of information to and free modality choice by patients to be suboptimal. Therefore, the European Kidney Patients' Federation (CEAPIR) explored European patients' perceptions regarding information, education and involvement on the modality selection process. CEAPIR developed a survey, which was disseminated by the national kidney patient organisations in Europe. In total, 3867 patients from 36 countries completed the survey. Respondents were either on in-centre haemodialysis (53%) or had a functioning graft (38%) at the time of survey. The majority (78%) evaluated the general information about kidney disease and treatment as helpful, but 39% did not recall being told about alternative treatment options than their current one. Respondents were more often satisfied with information provided on in-centre haemodialysis (90%) and transplantation (87%) than with information provided on peritoneal dialysis (79%) or home haemodialysis (61%), and were more satisfied with information from health care professionals vs other sources such as social media. Most (75%) felt they had been involved in treatment selection, 29% perceived they had no free choice. Involvement in modality selection was associated with enhanced satisfaction with treatment (OR 3.13; 95% CI 2.72-3.60). Many respondents (64%) could not remember receiving education on how to manage their kidney disease in daily life. Perceptions on information seem to differ between countries. Kidney patients reported to be overall satisfied with the information they received on their disease and treatment, although information seemed mostly to have been focused on one modality. Patients involved in modality selection were more satisfied with their treatment. However, in the perception of the patients, the freedom to choose an alternative modality showed room for improvement.

  20. Multiple Modes in Corporate Learning: Propelling Business IQ with Formal, Informal and Social Learning

    ERIC Educational Resources Information Center

    Ambrose, John; Ogilvie, Julie

    2010-01-01

    Recognizing that the shifting corporate environment is placing ever greater stresses on learning organizations, this paper reports how companies are increasingly offering employees a wide choice of learning options beyond conventional classroom training, including online, social learning, and other modalities in "blended" programs. Identifying a…

  1. Digital Storytelling: Reinventing Literature Circles

    ERIC Educational Resources Information Center

    Tobin, Maryann Tatum

    2012-01-01

    New literacies in reading research demand the study of comprehension skills using multiple modalities through a more complex, multi-platform view of reading. Taking into account the robust roll of technology in our daily lives, this article presents an update to the traditional literature circle lesson to include digital storytelling and…

  2. Opening Mathematics Texts: Resisting the Seduction

    ERIC Educational Resources Information Center

    Wagner, David

    2012-01-01

    This analysis of the writing in a grade 7 mathematics textbook distinguishes between closed texts and open texts, which acknowledge multiple possibilities. I use tools that have recently been applied in mathematics contexts, focussing on grammatical features that include personal pronouns, modality, and types of imperatives, as well as on…

  3. Peer Communication through Blogging

    ERIC Educational Resources Information Center

    Wall, Steven D.; Anderson, Janice

    2015-01-01

    With the emergence of mobile technologies, students' access to computing devices is omnipresent, as is their ability to collaborate through multiple modalities. This 21st-century affordance has generated a shift in the way preservice teachers are prepared to use, understand. and interact with social media (e.g., blogs) during their academic years.…

  4. Adaptive Dialogue Systems for Assistive Living Environments

    ERIC Educational Resources Information Center

    Papangelis, Alexandros

    2013-01-01

    Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…

  5. Examining Predictors of Group Leader Self-Efficacy for Preservice School Counselors

    ERIC Educational Resources Information Center

    Springer, Sarah I.

    2016-01-01

    Group counseling is an important treatment modality used to support clients in a variety of therapeutic settings. This article highlights the results of an exploratory study that examined site supervisory factors that predicted group leader self-efficacy for preservice school counselors. Results of multiple regression analyses suggest meaningful…

  6. Performing New Geographies of Literacy Teaching and Learning

    ERIC Educational Resources Information Center

    Vasudevan, Lalitha

    2009-01-01

    In this article, the author explores the ways in which new teaching and learning geographies were crafted by adolescents and adults through the engagement and performance of multimodal literacy practices. They did so by communicating and representing knowledge through the manipulation of multiple expressive modalities, including pens for writing…

  7. Think, Jane, Think. See Jane Think. Go, Jane... Metacognition and Learning in the Library

    ERIC Educational Resources Information Center

    Jaeger, Paige

    2007-01-01

    Buzzwords are as prolific in educational circles as bunny rabbits are in spring. Over the last 10 years everyone has heard the buzz of multiculturism, multiple intelligences, learning modalities, essential questions, cultural literacy, media literacy, differentiated instruction, learning by design, curriculum alignment, curriculum mapping,…

  8. Creating Inclusive Schools for All Students

    ERIC Educational Resources Information Center

    Causton-Theoharis, Julie; Theoharis, George

    2009-01-01

    Inclusion in general education and attention to belonging are the first steps toward greater achievement for all students. This must be followed by improving the core teaching and curriculum to enhance learning of all students through differentiation, and teaching to multiple modalities and learning preferences. For these changes to occur,…

  9. Simulation of crash tests for high impact levels of a new bridge safety barrier

    NASA Astrophysics Data System (ADS)

    Drozda, Jiří; Rotter, Tomáš

    2017-09-01

    The purpose is to show the opportunity of a non-linear dynamic impact simulation and to explain the possibility of using finite element method (FEM) for developing new designs of safety barriers. The main challenge is to determine the means to create and validate the finite element (FE) model. The results of accurate impact simulations can help to reduce necessary costs for developing of a new safety barrier. The introductory part deals with the creation of the FE model, which includes the newly-designed safety barrier and focuses on the application of an experimental modal analysis (EMA). The FE model has been created in ANSYS Workbench and is formed from shell and solid elements. The experimental modal analysis, which was performed on a real pattern, was employed for measuring the modal frequencies and shapes. After performing the EMA, the FE mesh was calibrated after comparing the measured modal frequencies with the calculated ones. The last part describes the process of the numerical non-linear dynamic impact simulation in LS-DYNA. This simulation was validated after comparing the measured ASI index with the calculated ones. The aim of the study is to improve professional public knowledge about dynamic non-linear impact simulations. This should ideally lead to safer, more accurate and profitable designs.

  10. Linguistic analysis of face-to-face interviews with patients with an explicit request for euthanasia, their closest relatives, and their attending physicians: the use of modal verbs in Dutch.

    PubMed

    Dieltjens, Sylvain M; Heynderickx, Priscilla C; Dees, Marianne K; Vissers, Kris C

    2014-04-01

    The literature, field research, and daily practice stress the need for adequate communication in palliative care. Although language is of the utmost importance in communication, linguistic analysis of end-of-life discussions is scarce. Our aim is 2-fold: We want to determine what the use of 4 significant Dutch modal verbs expressing volition, obligation, possibility, and permission reveals about the concept of unbearable suffering and about physicians' communicative style. We quantitatively (TextStat) and qualitatively (bottom-up approach) analyzed the use of the modal verbs in 15 interviews, with patients requesting euthanasia or physician-assisted suicide, their physicians, and their closest relatives. An essential element of unbearable suffering is the patient's incapacity to perform certain tasks. Further, the physician's preference for particular modal verbs reveals whether his attitude toward patients is more or less patronizing and more or less appreciative. Linguistic analysis can help medical professionals to better understand their communicative skills, styles, and approach to patients in end-of-life situations. We have shown how linguistic analysis can contribute to a better understanding of physician-patient interaction. Moreover, we have illustrated the usefulness of interdisciplinary research in the medical domain. © 2013 World Institute of Pain.

  11. Design of magnetic and fluorescent nanoparticles for in vivo MR and NIRF cancer imaging

    NASA Astrophysics Data System (ADS)

    Key, Jaehong

    One big challenge for cancer treatment is that it has many errors in detection of cancers in the early stages before metastasis occurs. Using a current imaging modality, the detection of small tumors having potential metastasis is still very difficult. Thus, the development of multi-component nanoparticles (NPs) for dual modality cancer imaging is invaluable. The multi-component NPs can be an alternative to overcome the limitations from an imaging modality. For example, the multi-component NPs can visualize small tumors in both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF) imaging, which can help find the location of the tumors deep inside the body using MRI and subsequently guide surgeons to delineate the margin of tumors using highly sensitive NIRF imaging during a surgical operation. In this dissertation, we demonstrated the potential of the MRI and NIRF dual-modality NPs for skin and bladder cancer imaging. The multi-component NPs consisted of glycol chitosan, superparamagnetic iron oxide, NIRF dye, and cancer targeting peptides. We characterized the NPs and evaluated them with tumor bearing mice as well as various cancer cells. The findings of this research will contribute to the development of cancer diagnostic imaging and it can also be extensively applied to drug delivery system and fluorescence-guided surgical removal of cancer.

  12. Modal kinematics for multisection continuum arms.

    PubMed

    Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G

    2015-05-13

    This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.

  13. Ingenol Mebutate Treatment in a Patient with Gorlin Syndrome.

    PubMed

    Stieger, Marco; Hunger, Robert E

    2016-01-01

    Gorlin syndrome, also known as the basal cell nevus syndrome (OMIM #109400), is a rare autosomal-dominant genetic disease. The disease, which shows mutation of the patched receptor gene (PTCH1) of the sonic hedgehog pathway, is characterized by developing multiple basal cell carcinomas (BCCs) in adolescent patients. Other clinical features include mandibular keratocysts, palmar and plantar pits, skeletal abnormalities and malformations central nervous system and genital tract. Gorlin-Goltz patients need multidisciplinary medical care and follow-up as well as genetic counseling if the patients want to have children. The treatment of multiple BCCs includes conventional surgery, micrographic Mohs surgery, cryotherapy, laser ablation, photodynamic therapy, imiquimod 5% cream, 5-fluorouracil cream as well as the sonic hedgehog pathway inhibitor vismodegib. We report the case of a 30-year-old woman seen in our dermatological department since 2003. All the above-mentioned modalities had been employed for her numerous BCCs. The patient grew wary of the surgical procedures because of the countless scars. We successfully treated multiple BCCs with ingenol mebutate without post-inflammatory scarring. At 8-month follow-up, the patient shows no recurrence of the treated lesions. Ingenol mebutate can be used to treat (superficial) BCCs in patients with Gorlin-Goltz syndrome as an additional modality. Close clinical follow-up is recommended. © 2016 S. Karger AG, Basel.

  14. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  15. Sensor Fusion Techniques for Phased-Array Eddy Current and Phased-Array Ultrasound Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrowood, Lloyd F.

    Sensor (or Data) fusion is the process of integrating multiple data sources to produce more consistent, accurate and comprehensive information than is provided by a single data source. Sensor fusion may also be used to combine multiple signals from a single modality to improve the performance of a particular inspection technique. Industrial nondestructive testing may utilize multiple sensors to acquire inspection data depending upon the object under inspection and the anticipated types of defects that can be identified. Sensor fusion can be performed at various levels of signal abstraction with each having its strengths and weaknesses. A multimodal data fusionmore » strategy first proposed by Heideklang and Shokouhi that combines spatially scattered detection locations to improve detection performance of surface-breaking and near-surface cracks in ferromagnetic metals is shown using a surface inspection example and is then extended for volumetric inspections. Utilizing data acquired from an Olympus Omniscan MX2 from both phased array eddy current and ultrasound probes on test phantoms, single and multilevel fusion techniques are employed to integrate signals from the two modalities. Preliminary results demonstrate how confidence in defect identification and interpretation benefit from sensor fusion techniques. Lastly, techniques for integrating data into radiographic and volumetric imagery from computed tomography are described and results are presented.« less

  16. The functional cancer map: a systems-level synopsis of genetic deregulation in cancer.

    PubMed

    Krupp, Markus; Maass, Thorsten; Marquardt, Jens U; Staib, Frank; Bauer, Tobias; König, Rainer; Biesterfeld, Stefan; Galle, Peter R; Tresch, Achim; Teufel, Andreas

    2011-06-30

    Cancer cells are characterized by massive dysegulation of physiological cell functions with considerable disruption of transcriptional regulation. Genome-wide transcriptome profiling can be utilized for early detection and molecular classification of cancers. Accurate discrimination of functionally different tumor types may help to guide selection of targeted therapy in translational research. Concise grouping of tumor types in cancer maps according to their molecular profile may further be helpful for the development of new therapeutic modalities or open new avenues for already established therapies. Complete available human tumor data of the Stanford Microarray Database was downloaded and filtered for relevance, adequacy and reliability. A total of 649 tumor samples from more than 1400 experiments and 58 different tissues were analyzed. Next, a method to score deregulation of KEGG pathway maps in different tumor entities was established, which was then used to convert hundreds of gene expression profiles into corresponding tumor-specific pathway activity profiles. Based on the latter, we defined a measure for functional similarity between tumor entities, which yielded to phylogeny of tumors. We provide a comprehensive, easy-to-interpret functional cancer map that characterizes tumor types with respect to their biological and functional behavior. Consistently, multiple pathways commonly associated with tumor progression were revealed as common features in the majority of the tumors. However, several pathways previously not linked to carcinogenesis were identified in multiple cancers suggesting an essential role of these pathways in cancer biology. Among these pathways were 'ECM-receptor interaction', 'Complement and Coagulation cascades', and 'PPAR signaling pathway'. The functional cancer map provides a systematic view on molecular similarities across different cancers by comparing tumors on the level of pathway activity. This work resulted in identification of novel superimposed functional pathways potentially linked to cancer biology. Therefore, our work may serve as a starting point for rationalizing combination of tumor therapeutics as well as for expanding the application of well-established targeted tumor therapies.

  17. Development of Immunopathogenesis Strategies to Treat Behçet's Disease

    PubMed Central

    Köse, Osman

    2012-01-01

    Behçet disease is a chronic relapsing vasculitis with unclear etiology and immunopathogenesis. Antigenic stimuli, antigen presenting cells, T cells, monocyte, and neutrophil and endothelial cells are major parts of the pathology of the disease. Understanding of the new pathogenic mechanisms based on molecular structure of the disease helps us in improving the novel therapeutic modalities. These drugs target specific and nonspecific inhibition of the immun system. These therapies include biologic agents, new topical and systemic immunosuppressants, tolerizing agents, and immunoablation. Novel treatment will be promising to treat the especially recalcitrant cases to conventional therapy. In this paper, new aspect of the immunopathogenesis of Behçet's diseases and novel treatment modalities will be discussed. PMID:22550612

  18. Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Ni, Yanchun; Lu, Xilin; Lu, Wensheng

    2017-03-01

    The field non-destructive vibration test plays an important role in the area of structural health monitoring. It assists in monitoring the health status and reducing the risk caused by the poor performance of structures. As the most economic field test among the various vibration tests, the ambient vibration test is the most popular and is widely used to assess the physical condition of a structure under operational service. Based on the ambient vibration data, modal identification can help provide significant previous study for model updating and damage detection during the service life of a structure. It has been proved that modal identification works well in the investigation of the dynamic performance of different kinds of structures. In this paper, the objective structure is a high-rise multi-function office building. The whole building is composed of seven three-story structural units. Each unit comprises one complete floor and two L shaped floors to form large spaces along the vertical direction. There are 56 viscous dampers installed in the building to improve the energy dissipation capacity. Due to the special feature of the structure, field vibration tests and further modal identification were performed to investigate its dynamic performance. Twenty-nine setups were designed to cover all the degrees of freedom of interest. About two years later, another field test was carried out to measure the building for 48 h to investigate the performance variance and the distribution of the modal parameters. A Fast Bayesian FFT method was employed to perform the modal identification. This Bayesian method not only provides the most probable values of the modal parameters but also assesses the associated posterior uncertainty analytically, which is especially relevant in field vibration tests arising due to measurement noise, sensor alignment error, modelling error, etc. A shaking table test was also implemented including cases with and without dampers, which assists in investigating the effect of dampers. The modal parameters obtained from different tests were investigated separately and then compared with each other.

  19. Integrative and complementary therapies for patients with advanced cancer.

    PubMed

    Marchand, Lucille

    2014-07-01

    In integrative medicine, well-being is emphasized, and in palliative care, quality of life (QOL) is a similar concept or goal. Both can occur despite advanced cancer. Integrative medicine serves to combine the best of alternative, complementary and conventional therapies to optimize well-being and QOL, whether or not a person is at the end of their life. When integrative medicine is combined with palliative care modalities, the toolbox to provide symptom control and well-being or QOL is increased or broadened. Palliative care and integrative medicine are best provided early in the trajectory of illness such as cancer, and increase in amount as the illness progresses toward end of life. In cancer care, symptoms of the cancer, as well as symptoms produced by cancer therapies, are addressed with conventional and integrative therapies. Goals of care change as the disease progresses, and a patient's unique situation creates a different balance of integrative and conventional therapies. Integrative therapies such as music, aromatherapy, and massage might appeal to more patients than more specific, less common integrative therapies that might be more expensive, or seem more unusual such as Ayurvedic medicine and energy modalities. Each person may be drawn to different integrative modalities depending on factors such as cultural traditions, beliefs, lifestyle, internet information, advice from family and friends, books, etc. This review focuses on how integrative and complementary modalities can be included in comprehensive palliative care for patients with advanced malignancies. Nutrition and movement, often neglected in conventional treatment strategies, will also be included in the larger context of integrative and palliative modalities. Both conventional and integrative modalities in palliative care help patients live with empowerment, hope, and well-being no matter how long their lives last. A comprehensive review of all integrative and complementary therapies is impossible given the enormous diversity in this area. This review will concentrate on modalities such as nutrition, movement, music, aromatherapy, massage, select supplements, and acupuncture that have been researched in cancer survivors. Many of these modalities are quite effective for a number of symptoms in palliative care and have been studied in non-cancer populations. Resources for further study will also be included.

  20. The effect of modality and narration style on recall of online health information: results from a Web-based experiment.

    PubMed

    Bol, Nadine; van Weert, Julia C M; de Haes, Hanneke C J M; Loos, Eugene F; Smets, Ellen M A

    2015-04-24

    Older adults are increasingly using the Internet for health information; however, they are often not able to correctly recall Web-based information (eHealth information). Recall of information is crucial for optimal health outcomes, such as adequate disease management and adherence to medical regimes. Combining effective message strategies may help to improve recall of eHealth information among older adults. Presenting information in an audiovisual format using conversational narration style is expected to optimize recall of information compared to other combinations of modality and narration style. The aim of this paper is to investigate the effect of modality and narration style on recall of health information, and whether there are differences between younger and older adults. We conducted a Web-based experiment using a 2 (modality: written vs audiovisual information) by 2 (narration style: formal vs conversational style) between-subjects design (N=440). Age was assessed in the questionnaire and included as a factor: younger (<65 years) versus older (≥65 years) age. Participants were randomly assigned to one of four experimental webpages where information about lung cancer treatment was presented. A Web-based questionnaire assessed recall of eHealth information. Audiovisual modality (vs written modality) was found to increase recall of information in both younger and older adults (P=.04). Although conversational narration style (vs formal narration style) did not increase recall of information (P=.17), a synergistic effect between modality and narration style was revealed: combining audiovisual information with conversational style outperformed combining written information with formal style (P=.01), as well as written information with conversational style (P=.045). This finding suggests that conversational style especially increases recall of information when presented audiovisually. This combination of modality and narration style improved recall of information among both younger and older adults. We conclude that combining audiovisual information with conversational style is the best way to present eHealth information to younger and older adults. Even though older adults did not proportionally recall more when audiovisual information was combined with conversational style than younger adults, this study reveals interesting implications for improving eHealth information that is effective for both younger and older adults.

  1. Methyl-aminolevulinate photodynamic therapy for the treatment of actinic cheilitis: a retrospective evaluation of 29 patients.

    PubMed

    Fai, D; Romano, I; Cassano, N; Vena, G A

    2012-02-01

    Multiple treatment modalities have been proposed for actinic cheilitis (AC), and topical photodynamic therapy (PDT) has recently been included among these modalities. We report our experience with PDT using methyl-aminolevulinate (MAL) in AC. We performed a retrospective analysis of 29 patients who had undergone MAL-PDT for treatment of AC: 4 patients received one single session and 25 patients two consecutive weekly sessions. At 3 months, 21 patients (72%) obtained a complete clinical response, which was sustained over a follow-up period of 6-36 months (mean, 20 months) in 20 patients. Cosmetic outcome was generally rated as good or very good. Transient local adverse events related to the procedure were common and mild to moderate in the majority of cases. Our preliminary experience suggests that MAL-PDT may be considered a valid modality for the treatment of AC, although long-term follow-up studies in large patient series are required to obtain precise data about clinical and histological recurrences.

  2. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  3. Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem

    NASA Astrophysics Data System (ADS)

    Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu

    2018-06-01

    Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.

  4. An overview of clinical and experimental treatment modalities for port wine stains.

    PubMed

    Chen, Jennifer K; Ghasri, Pedram; Aguilar, Guillermo; van Drooge, Anne Margreet; Wolkerstorfer, Albert; Kelly, Kristen M; Heger, Michal

    2012-08-01

    Port wine stains (PWS) are the most common vascular malformation of the skin, occurring in 0.3% to 0.5% of the population. Noninvasive laser irradiation with flashlamp-pumped pulsed dye lasers (selective photothermolysis) currently comprises the gold standard treatment of PWS; however, the majority of PWS fail to clear completely after selective photothermolysis. In this review, the clinically used PWS treatment modalities (pulsed dye lasers, alexandrite lasers, neodymium:yttrium-aluminum-garnet lasers, and intense pulsed light) and techniques (combination approaches, multiple passes, and epidermal cooling) are discussed. Retrospective analysis of clinical studies published between 1990 and 2011 was performed to determine therapeutic efficacies for each clinically used modality/technique. In addition, factors that have resulted in the high degree of therapeutic recalcitrance are identified, and emerging experimental treatment strategies are addressed, including the use of photodynamic therapy, immunomodulators, angiogenesis inhibitors, hypobaric pressure, and site-specific pharmaco-laser therapy. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  5. Designing Tutorial Modalities and Strategies for Digital Games: Lessons from Education

    ERIC Educational Resources Information Center

    White, Matthew M.

    2012-01-01

    Contemporary digital games do little to help novice and disadvantaged players wanting to learn to play. The novice-expert divide is a significant barrierfor entry for disadvantaged groups who want to play digital games; this is especially true for women (Jenson, Fisher, & De Castell, 2011). In response to this problem, three new tutorial…

  6. How Technology Transforms Journalism Business through Citizen-Reporters in Nigeria

    ERIC Educational Resources Information Center

    Aborisade, Olubunmi P.

    2010-01-01

    The use of technology and media modalities in digital technologies in today's media has created a new form of journalism. While some call it citizen-reporting, some dub it we media, or participatory news reporting. The new press evolves with the engagement of ordinary citizens in news gathering and distribution. Apart from helping to enhance the…

  7. Impact of Metacognitive Practices and Assorted Assessment Modalities towards Creating Self-Regulated Learners

    ERIC Educational Resources Information Center

    Nair N., Sreevrinda

    2014-01-01

    Worldwide efforts are increasing to infuse thinking skills into the curriculum, which are part of cognitive behavior, and to include them in the instructional strategies, which will make the learner producer of knowledge and help to create a sense of responsibility among them. Metacognitive learning activities immerse students in challenging tasks…

  8. Impact of a School Consulting Programme Aimed at Helping Teachers Integrate Students with Behavioural Difficulties into Secondary School: Actors' Points of View

    ERIC Educational Resources Information Center

    Massé, Line; Couture, Caroline; Levesque, Vanessa; Bégin, Jean-Yves

    2013-01-01

    A collaborative school consulting programme model, using functional assessment and applied behavioural techniques, was offered to secondary school teachers in two modalities: individual consultation and small-group consultation. The objective was to facilitate the integration of students with behavioural difficulties into mainstream secondary…

  9. Haptics in Education: Exploring an Untapped Sensory Modality

    ERIC Educational Resources Information Center

    Minogue, James; Jones, M. Gail

    2006-01-01

    As human beings, we can interact with our environment through the sense of touch, which helps us to build an understanding of objects and events. The implications of touch for cognition are recognized by many educators who advocate the use of "hands-on" instruction. But is it possible to know something more completely by touching it? Does touch…

  10. Escherichia coli O157:H7 and rectoanal junction cell interactome

    USDA-ARS?s Scientific Manuscript database

    Introduction. Cattle are the primary E. coli O157 (O157) reservoir and principal source of human infection. The anatomical site of O157 persistence is the bovine recto-anal (RAJ) junction; hence, an in-depth understanding of O157-RAJ interactions will help develop novel modalities to limit O157 in c...

  11. Efficacy of Treatment of Trochanteric Bursitis: A Systematic Review

    PubMed Central

    Lustenberger, David P; Ng, Vincent Y; Best, Thomas M; Ellis, Thomas J

    2013-01-01

    Objective Trochanteric bursitis (TB) is a self-limiting disorder in the majority of patients and typically responds to conservative measures. However, multiple courses of nonoperative treatment or surgical intervention may be necessary in refractory cases. The purpose of this systematic review was to evaluate the efficacy of the treatment of TB. Data Sources A literature search in the PubMed, MEDLINE, CINAHL, and ISI Web of Knowledge databases was performed for all English language studies up to April 2010. Terms combined in a Boolean search were greater trochanteric pain syndrome, trochanteric bursitis, trochanteric, bursitis, surgery, therapy, drug therapy, physical therapy, rehabilitation, injection, Z-plasty, Z-lengthening, aspiration, bursectomy, bursoscopy, osteotomy, and tendon repair. Study Selection All studies directly involving the treatment of TB were reviewed by 2 authors and selected for further analysis. Expert opinion and review articles were excluded, as well as case series with fewer than 5 patients. Twenty-four articles were identified. According to the system described by Wright et al, 2 studies, each with multiple arms, qualified as level I evidence, 1 as level II, 1 as level III, and the rest as level IV. More than 950 cases were included. Data Extraction The authors extracted data regarding the type of intervention, level of evidence, mean age of patients, patient gender, number of hips in the study, symptom duration before the study, mean number of injections before the study, prior hip surgeries, patient satisfaction, length of follow-up, baseline scores, and follow-up scores for the visual analog scale (VAS) and Harris Hip Scores (HHS). Data Synthesis Symptom resolution and the ability to return to activity ranged from 49% to 100% with corticosteroid injection as the primary treatment modality with and without multimodal conservative therapy. Two comparative studies (levels II and III) found low-energy shock-wave therapy (SWT) to be superior to other nonoperative modalities. Multiple surgical options for persistent TB have been reported, including bursectomy (n = 2), longitudinal release of the iliotibial band (n = 2), proximal or distal Z-plasty (n = 4), osteotomy (n = 1), and repair of gluteus medius tears (n = 4). Conclusions Efficacy among surgical techniques varied depending on the clinical outcome measure, but all were superior to corticosteroid therapy and physical therapy according to the VAS and HHS in both comparison studies and between studies. This systematic review found that traditional nonoperative treatment helped most patients, SWT was a good alternative, and surgery was effective in refractory cases. PMID:21814140

  12. A convergent functional architecture of the insula emerges across imaging modalities.

    PubMed

    Kelly, Clare; Toro, Roberto; Di Martino, Adriana; Cox, Christine L; Bellec, Pierre; Castellanos, F Xavier; Milham, Michael P

    2012-07-16

    Empirical evidence increasingly supports the hypothesis that patterns of intrinsic functional connectivity (iFC) are sculpted by a history of evoked coactivation within distinct neuronal networks. This, together with evidence of strong correspondence among the networks defined by iFC and those delineated using a variety of other neuroimaging techniques, suggests a fundamental brain architecture detectable across multiple functional and structural imaging modalities. Here, we leverage this insight to examine the functional organization of the human insula. We parcellated the insula on the basis of three distinct neuroimaging modalities - task-evoked coactivation, intrinsic (i.e., task-independent) functional connectivity, and gray matter structural covariance. Clustering of these three different covariance-based measures revealed a convergent elemental organization of the insula that likely reflects a fundamental brain architecture governing both brain structure and function at multiple spatial scales. While not constrained to be hierarchical, our parcellation revealed a pseudo-hierarchical, multiscale organization that was consistent with previous clustering and meta-analytic studies of the insula. Finally, meta-analytic examination of the cognitive and behavioral domains associated with each of the insular clusters obtained elucidated the broad functional dissociations likely underlying the topography observed. To facilitate future investigations of insula function across healthy and pathological states, the insular parcels have been made freely available for download via http://fcon_1000.projects.nitrc.org, along with the analytic scripts used to perform the parcellations. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Joint analysis of multiple high-dimensional data types using sparse matrix approximations of rank-1 with applications to ovarian and liver cancer.

    PubMed

    Okimoto, Gordon; Zeinalzadeh, Ashkan; Wenska, Tom; Loomis, Michael; Nation, James B; Fabre, Tiphaine; Tiirikainen, Maarit; Hernandez, Brenda; Chan, Owen; Wong, Linda; Kwee, Sandi

    2016-01-01

    Technological advances enable the cost-effective acquisition of Multi-Modal Data Sets (MMDS) composed of measurements for multiple, high-dimensional data types obtained from a common set of bio-samples. The joint analysis of the data matrices associated with the different data types of a MMDS should provide a more focused view of the biology underlying complex diseases such as cancer that would not be apparent from the analysis of a single data type alone. As multi-modal data rapidly accumulate in research laboratories and public databases such as The Cancer Genome Atlas (TCGA), the translation of such data into clinically actionable knowledge has been slowed by the lack of computational tools capable of analyzing MMDSs. Here, we describe the Joint Analysis of Many Matrices by ITeration (JAMMIT) algorithm that jointly analyzes the data matrices of a MMDS using sparse matrix approximations of rank-1. The JAMMIT algorithm jointly approximates an arbitrary number of data matrices by rank-1 outer-products composed of "sparse" left-singular vectors (eigen-arrays) that are unique to each matrix and a right-singular vector (eigen-signal) that is common to all the matrices. The non-zero coefficients of the eigen-arrays identify small subsets of variables for each data type (i.e., signatures) that in aggregate, or individually, best explain a dominant eigen-signal defined on the columns of the data matrices. The approximation is specified by a single "sparsity" parameter that is selected based on false discovery rate estimated by permutation testing. Multiple signals of interest in a given MDDS are sequentially detected and modeled by iterating JAMMIT on "residual" data matrices that result from a given sparse approximation. We show that JAMMIT outperforms other joint analysis algorithms in the detection of multiple signatures embedded in simulated MDDS. On real multimodal data for ovarian and liver cancer we show that JAMMIT identified multi-modal signatures that were clinically informative and enriched for cancer-related biology. Sparse matrix approximations of rank-1 provide a simple yet effective means of jointly reducing multiple, big data types to a small subset of variables that characterize important clinical and/or biological attributes of the bio-samples from which the data were acquired.

  14. Outcome of mechanical cardiac support in children using more than one modality as a bridge to heart transplantation.

    PubMed

    De Rita, Fabrizio; Hasan, Asif; Haynes, Simon; Peng, Edward; Gandolfo, Fabrizio; Ferguson, Lee; Kirk, Richard; Smith, Jon; Griselli, Massimo

    2015-12-01

    Mechanical cardiac support (MCS) can successfully be applied as a bridging strategy for heart transplantation (OHTx) in children with life-threatening heart failure. Emergent use of MCS is often required before establishing the likelihood of OHTx. This can require bridge-to-bridge strategies to increase survival on the waiting list. We compared the outcome of children with heart failure who underwent single MCS with those who required multiple MCS as a bridge to OHTx. A retrospective study of patients aged less than 16 years was conducted. From March 1998 to October 2005, we used either a veno-arterial extracorporeal membrane oxygenator (VA-ECMO), or the Medos® para-corporeal ventricular assist device (VAD). From November 2005 onwards, the Berlin Heart EXCOR® (BHE) device was implanted in the majority of cases. Several combinations of bridge-to-bridge strategies have been used: VA-ECMO and then conversion to BHE; BHE and then conversion to VA-ECMO; left VAD and then upgraded to biventricular support (BIVAD); conversion from pulsatile to continuous-flow pumps. A total of 92 patients received MCS with the intent to bridge to OHTx, including 21 (23%) supported with more than one modality. The mean age and weight at support was similar in both groups, but multimodality MCS was used more often in infancy (P = 0.008) and in children less than 10 kg in weight (P = 0.02). The mean duration of support was longer in the multiple MCS group: 40 ± 48 vs 84 ± 43 days (P = 0.0003). Usage of multimodality MCS in dilated cardiomyopathy (19%) and in other diagnoses (29%) was comparable. Incidence of major morbidity (haematological sequelae, cerebrovascular events and sepsis) was similar in both groups. Survival to OHTx/explantation of the device (recovery) and survival to discharge did not differ between single MCS and multiple MCS groups (78 vs 81% and 72 vs 76%, respectively). Bridge to OHTx with multiple MCS does not seem to influence the outcome in our population. Infancy and body weight less than 10 kg do not tend to produce higher mortality in the multiple MCS group. However, children receiving more than one modality are supported for longer durations. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Class modality, student characteristics, and performance in a community college introductory STEM course

    NASA Astrophysics Data System (ADS)

    Fogle, Thomas Ty

    Research on introductory STEM course performance has indicated that student characteristics (age, ethnicity and gender) and Grade Point Average (G.P.A.) can be predictive of student performance, and by implication, a correlation among these factors can help determine course design interventions to help certain types of students perform well in introductory STEM courses. The basis of this study was a community college Visual Basic programming course taught in both online and hybrid format. Beginning students in this course represented a diverse population residing in a large, mid-western, city and surrounding communities. Many of these students were defined as "at-Risk" or "non-traditional, which generally means any combination of socio-economic, cultural, family and employment factors that indicate a student is non-traditional. Research has shown these students struggle academically in technologically dense STEM courses, and may require student services and support to achieve their individual performance goals. The overall number in the study range was 392 distance students and 287 blended course students. The main question of this research was to determine to what extent student characteristics in a community college context, and previous success, as measured in overall G.P.A., were related to course performance in an introductory Visual Basic programming (STEM) course; and, whether or not a combination of these factors and course modality was predictive of success. The study employed a quantitative, quasi-experimental design to assess whether students' course performance was linked to course modality, student characteristics and overall G.P.A. The results indicated that the only predictor of student performance was overall G.P.A. Despite the research analyzed in Chapter 2, there was no statistically significant relationship to modality, age, ethnicity, or gender to performance in the course. Cognitive load is significant in a computer programming course and it was theorized that would be expanded in an online context. However, the results of the analysis showed that course modality did not affect the chances of students performing well. Internal validity constraints may have contributed to the results, as the course is highly controlled and modularized in both online and hybrid format, and taught by few instructors, all of whom are available for face to face problem solving for both online and hybrid students.

  16. "Helpful People in Touch" Consumer Led Self Help Programs for People with Multiple Disorders, Mental Illness, Drug Addiction, and Alcoholism (MIDAA).

    ERIC Educational Resources Information Center

    Sciacca, Kathleen

    This paper describes the consumer program, "Helpful People in Touch," a self-help treatment program for people with the multiple disorders of mental illness, drug addiction, and/or alcoholism. First, the terms, "Mentally Ill Chemical Abusers and Addicted" (MICAA) and "Chemical Abusing Mentally Ill" (CAMI) are defined…

  17. Primary prevention of cannabis use: a systematic review of randomized controlled trials.

    PubMed

    Norberg, Melissa M; Kezelman, Sarah; Lim-Howe, Nicholas

    2013-01-01

    A systematic review of primary prevention was conducted for cannabis use outcomes in youth and young adults. The aim of the review was to develop a comprehensive understanding of prevention programming by assessing universal, targeted, uni-modal, and multi-modal approaches as well as individual program characteristics. Twenty-eight articles, representing 25 unique studies, identified from eight electronic databases (EMBASE, MEDLINE, CINAHL, ERIC, PsycINFO, DRUG, EBM Reviews, and Project CORK), were eligible for inclusion. Results indicated that primary prevention programs can be effective in reducing cannabis use in youth populations, with statistically significant effect sizes ranging from trivial (0.07) to extremely large (5.26), with the majority of significant effect sizes being trivial to small. Given that the preponderance of significant effect sizes were trivial to small and that percentages of statistically significant and non-statistically significant findings were often equivalent across program type and individual components, the effectiveness of primary prevention for cannabis use should be interpreted with caution. Universal multi-modal programs appeared to outperform other program types (i.e, universal uni-modal, targeted multi-modal, targeted unimodal). Specifically, universal multi-modal programs that targeted early adolescents (10-13 year olds), utilised non-teacher or multiple facilitators, were short in duration (10 sessions or less), and implemented boosters sessions were associated with large median effect sizes. While there were studies in these areas that contradicted these results, the results highlight the importance of assessing the interdependent relationship of program components and program types. Finally, results indicated that the overall quality of included studies was poor, with an average quality rating of 4.64 out of 9. Thus, further quality research and reporting and the development of new innovative programs are required.

  18. Primary Prevention of Cannabis Use: A Systematic Review of Randomized Controlled Trials

    PubMed Central

    Norberg, Melissa M.; Kezelman, Sarah; Lim-Howe, Nicholas

    2013-01-01

    A systematic review of primary prevention was conducted for cannabis use outcomes in youth and young adults. The aim of the review was to develop a comprehensive understanding of prevention programming by assessing universal, targeted, uni-modal, and multi-modal approaches as well as individual program characteristics. Twenty-eight articles, representing 25 unique studies, identified from eight electronic databases (EMBASE, MEDLINE, CINAHL, ERIC, PsycINFO, DRUG, EBM Reviews, and Project CORK), were eligible for inclusion. Results indicated that primary prevention programs can be effective in reducing cannabis use in youth populations, with statistically significant effect sizes ranging from trivial (0.07) to extremely large (5.26), with the majority of significant effect sizes being trivial to small. Given that the preponderance of significant effect sizes were trivial to small and that percentages of statistically significant and non-statistically significant findings were often equivalent across program type and individual components, the effectiveness of primary prevention for cannabis use should be interpreted with caution. Universal multi-modal programs appeared to outperform other program types (i.e, universal uni-modal, targeted multi-modal, targeted unimodal). Specifically, universal multi-modal programs that targeted early adolescents (10–13 year olds), utilised non-teacher or multiple facilitators, were short in duration (10 sessions or less), and implemented boosters sessions were associated with large median effect sizes. While there were studies in these areas that contradicted these results, the results highlight the importance of assessing the interdependent relationship of program components and program types. Finally, results indicated that the overall quality of included studies was poor, with an average quality rating of 4.64 out of 9. Thus, further quality research and reporting and the development of new innovative programs are required. PMID:23326396

  19. Inconsistent emotion recognition deficits across stimulus modalities in Huntington׳s disease.

    PubMed

    Rees, Elin M; Farmer, Ruth; Cole, James H; Henley, Susie M D; Sprengelmeyer, Reiner; Frost, Chris; Scahill, Rachael I; Hobbs, Nicola Z; Tabrizi, Sarah J

    2014-11-01

    Recognition of negative emotions is impaired in Huntington׳s Disease (HD). It is unclear whether these emotion-specific problems are driven by dissociable cognitive deficits, emotion complexity, test cue difficulty, or visuoperceptual impairments. This study set out to further characterise emotion recognition in HD by comparing patterns of deficits across stimulus modalities; notably including for the first time in HD, the more ecologically and clinically relevant modality of film clips portraying dynamic facial expressions. Fifteen early HD and 17 control participants were tested on emotion recognition from static facial photographs, non-verbal vocal expressions and one second dynamic film clips, all depicting different emotions. Statistically significant evidence of impairment of anger, disgust and fear recognition was seen in HD participants compared with healthy controls across multiple stimulus modalities. The extent of the impairment, as measured by the difference in the number of errors made between HD participants and controls, differed according to the combination of emotion and modality (p=0.013, interaction test). The largest between-group difference was seen in the recognition of anger from film clips. Consistent with previous reports, anger, disgust and fear were the most poorly recognised emotions by the HD group. This impairment did not appear to be due to task demands or expression complexity as the pattern of between-group differences did not correspond to the pattern of errors made by either group; implicating emotion-specific cognitive processing pathology. There was however evidence that the extent of emotion recognition deficits significantly differed between stimulus modalities. The implications in terms of designing future tests of emotion recognition and care giving are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Cost-effectiveness of multiple screening modalities on breast cancer in Chinese women from Shanghai].

    PubMed

    Wu, F; Mo, M; Qin, X X; Fang, H; Zhao, G M; Liu, G Y; Chen, Y Y; Cao, Z G; Yan, Y J; Lyu, L L; Xu, W H; Shao, Z M

    2017-12-10

    Objective: To determine the most cost-effective modality for breast cancer screening in women living in Shanghai. Methods: A Markov model for breast cancer was redeveloped based on true effect which was derived from a project for detection of women at high risk of breast cancer and an organized breast cancer screening program conducted simultaneously in Minhang district, Shanghai, during 2008 to 2012. Parameters of the model were derived from literatures. General principles related to cost-effectiveness analysis were used to compare the costs and effects of 12 different screening modalities in a simulated cohort involving 100 000 women aged 45 years. Incremental cost-effectiveness ratio (ICER) was used to determine the most cost-effective modality. Sensitivity analysis was conducted to evaluate how these factors affected the estimated cost-effectiveness. Results: The modality of biennial CBE followed by ultrasonic and mammography among those with positive CBE was observed as the most cost-effective one. The costs appeared as 182 526 Yuan RMB per life year gained and 144 386 Yuan RMB per quality adjusted life-year (QALY) saved, which were within the threshold of 2-3 times of local per capita Gross Domestic Product. Results from sensitivity analysis showed that, due to higher incidence rate of breast cancer in Shanghai, the cost per QALY would be 64 836 Yuan RMB lower in Shanghai than the average level in China. Conclusion: Our research findings showed that the biennial CBE program followed by ultrasonic and mammography for those with positive CBE results might serve as the optimal breast cancer screening modality for Chinese women living in Shanghai, and thus be widely promoted in this population elsewhere.

  1. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records.

    PubMed

    Peissig, Peggy L; Rasmussen, Luke V; Berg, Richard L; Linneman, James G; McCarty, Catherine A; Waudby, Carol; Chen, Lin; Denny, Joshua C; Wilke, Russell A; Pathak, Jyotishman; Carrell, David; Kho, Abel N; Starren, Justin B

    2012-01-01

    There is increasing interest in using electronic health records (EHRs) to identify subjects for genomic association studies, due in part to the availability of large amounts of clinical data and the expected cost efficiencies of subject identification. We describe the construction and validation of an EHR-based algorithm to identify subjects with age-related cataracts. We used a multi-modal strategy consisting of structured database querying, natural language processing on free-text documents, and optical character recognition on scanned clinical images to identify cataract subjects and related cataract attributes. Extensive validation on 3657 subjects compared the multi-modal results to manual chart review. The algorithm was also implemented at participating electronic MEdical Records and GEnomics (eMERGE) institutions. An EHR-based cataract phenotyping algorithm was successfully developed and validated, resulting in positive predictive values (PPVs) >95%. The multi-modal approach increased the identification of cataract subject attributes by a factor of three compared to single-mode approaches while maintaining high PPV. Components of the cataract algorithm were successfully deployed at three other institutions with similar accuracy. A multi-modal strategy incorporating optical character recognition and natural language processing may increase the number of cases identified while maintaining similar PPVs. Such algorithms, however, require that the needed information be embedded within clinical documents. We have demonstrated that algorithms to identify and characterize cataracts can be developed utilizing data collected via the EHR. These algorithms provide a high level of accuracy even when implemented across multiple EHRs and institutional boundaries.

  2. Reduced multimodal integration of memory features following continuous theta burst stimulation of angular gyrus.

    PubMed

    Yazar, Yasemin; Bergström, Zara M; Simons, Jon S

    Lesions of the angular gyrus (AnG) region of human parietal cortex do not cause amnesia, but appear to be associated with reduction in the ability to consciously experience the reliving of previous events. We used continuous theta burst stimulation to test the hypothesis that the cognitive mechanism implicated in this memory deficit might be the integration of retrieved sensory event features into a coherent multimodal memory representation. Healthy volunteers received stimulation to AnG or a vertex control site after studying stimuli that each comprised a visual object embedded in a scene, with the name of the object presented auditorily. Participants were then asked to make memory judgments about the studied stimuli that involved recollection of single event features (visual or auditory), or required integration of event features within the same modality, or across modalities. Participants' ability to retrieve context features from across multiple modalities was significantly reduced after AnG stimulation compared to stimulation of the vertex. This effect was observed only for the integration of cross-modal context features but not for integration of features within the same modality, and could not be accounted for by task difficulty as performance was matched across integration conditions following vertex stimulation. These results support the hypothesis that AnG is necessary for the multimodal integration of distributed cortical episodic features into a unified conscious representation that enables the experience of remembering. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers.

    PubMed

    Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A; Cao, Jiguo; Nie, Yunlong

    2017-01-01

    Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers' performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning.

  4. Rapid impact testing for quantitative assessment of large populations of bridges

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Prader, John; DeVitis, John; Deal, Adrienne; Zhang, Jian; Moon, Franklin; Aktan, A. Emin

    2011-04-01

    Although the widely acknowledged shortcomings of visual inspection have fueled significant advances in the areas of non-destructive evaluation and structural health monitoring (SHM) over the last several decades, the actual practice of bridge assessment has remained largely unchanged. The authors believe the lack of adoption, especially of SHM technologies, is related to the 'single structure' scenarios that drive most research. To overcome this, the authors have developed a concept for a rapid single-input, multiple-output (SIMO) impact testing device that will be capable of capturing modal parameters and estimating flexibility/deflection basins of common highway bridges during routine inspections. The device is composed of a trailer-mounted impact source (capable of delivering a 50 kip impact) and retractable sensor arms, and will be controlled by an automated data acquisition, processing and modal parameter estimation software. The research presented in this paper covers (a) the theoretical basis for SISO, SIMO and MIMO impact testing to estimate flexibility, (b) proof of concept numerical studies using a finite element model, and (c) a pilot implementation on an operating highway bridge. Results indicate that the proposed approach can estimate modal flexibility within a few percent of static flexibility; however, the estimated modal flexibility matrix is only reliable for the substructures associated with the various SIMO tests. To overcome this shortcoming, a modal 'stitching' approach for substructure integration to estimate the full Eigen vector matrix is developed, and preliminary results of these methods are also presented.

  5. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers

    PubMed Central

    Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A.; Cao, Jiguo; Nie, Yunlong

    2017-01-01

    Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers’ performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning. PMID:29255435

  6. The use of intraoperative near-infrared indocyanine green videoangiography in the microscopic resection of hemangioblastomas.

    PubMed

    Tamura, Yoji; Hirota, Yuki; Miyata, Shiro; Yamada, Yoshitaka; Tucker, Adam; Kuroiwa, Toshihiko

    2012-08-01

    The authors assessed the usefulness of intraoperative near-infrared indocyanine green videoangiography (ICG-VA) in the microscopic resection of hemangioblastomas. From January 2009 to February 2012, nine consecutive patients (seven men, two women) who underwent surgery for hemangioblastomas using intraoperative ICG-VA were included in this study. Surgery was performed on four cystic cerebellar lesions with mural nodules, two solid tumors (one in the cerebellar hemisphere and one in the medulla oblongata), one spinal tumor and multiple tumors in two patients with von Hippel-Lindau disease. Of the nine patients, three were treated for recurrent tumor. The ICG-induced fluorescence images of hemangioblastomas with variable presentation were evaluated. All tumors could be completely removed en bloc. Blood flow in the tumor and tumor-related vessels at the brain surface were clearly detected by ICG-VA in all cases, except one recurrent tumor where postoperative adhesive scar tissue obstructed ICG-induced fluorescence resulting in poor delineation of the blood flow patterns and tumor margins. ICG-VA was also helpful for detecting the multiple small mural nodules within the cyst or the tumors buried under thin gliotic neural tissue despite reduced fluorescence. Intraoperative ICG-VA is a safe and easy modality for confirming the vascular flow patterns in hemangioblastomas. In addition, ICG-VA provided useful information for intracystic small lesions or lesions concealed under thin brain tissue in order to accomplish total resection of these tumors.

  7. Further Understanding of Complex Information Processing in Verbal Adolescents and Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Williams, Diane L.; Minshew, Nancy J.; Goldstein, Gerald

    2015-01-01

    More than 20?years ago, Minshew and colleagues proposed the Complex Information Processing model of autism in which the impairment is characterized as a generalized deficit involving multiple modalities and cognitive domains that depend on distributed cortical systems responsible for higher order abilities. Subsequent behavioral work revealed a…

  8. Becoming Visible: Shifting Teacher Practice to Actively Engage New Immigrant Students in Urban Classrooms

    ERIC Educational Resources Information Center

    Schultz, Katherine; Coleman-King, Chonika

    2012-01-01

    This article documents what happened when a teacher in an urban school shifted classroom practice through changing participation structures to incorporate digital technology and multiple modalities into a fifth grade literacy curriculum. This shift in teacher practice provided opportunities for immigrant students to become more visible in the…

  9. Social Media at Academia's Periphery: Studying Multilingual Developmental Writers' Facebook Composing Strategies

    ERIC Educational Resources Information Center

    DePew, Kevin Eric

    2011-01-01

    This article focuses on the writing strategies second-language students use to compose on social media sites. These alternative and unconventional sites for learning provide language learners opportunities to acquire language by using multiple modalities to respond to various rhetorical situations. In comparison to these sites, academic writing…

  10. Topology of Awareness: Therapeutic Implications of Logical Modalities of Multiple Levels of Awareness.

    ERIC Educational Resources Information Center

    Levine, Shellie

    2000-01-01

    Describes a theory of a topology of awareness, in which higher levels organize reality through dialectical logic, whereas lower levels construct reality based on Aristotelian logic, binary oppositions, and experiencing entities as discreet and independent. Argues that metaphor, poetry, and narrative are linguistic tools that enable clients to…

  11. Sensors Umbra Package v 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oppel, Fred J.; Hart, Brian E.; Whitford, Gregg Douglas

    2016-08-25

    This package contains modules that model sensors in Umbra. There is a mix of modalities for both accumulating and tracking energy sensors: seismic, magnetic, and radiation. Some modules fuss information from multiple sensor types. Sensor devices (e.g., seismic sensors), detect objects such as people and vehicles that have sensor properties attached (e.g., seismic properties).

  12. GIRLSS: A Study of the Effectiveness of a Multi-Modal Intervention to Reduce Relational Aggression

    ERIC Educational Resources Information Center

    Splett, Joni Williams

    2012-01-01

    Relational aggression has quickly become a serious issue in schools. In response, school professionals have sought and developed interventions despite a dearth of empirical examination and support. The current study bolsters this area by examining the initial efficacy of GIRLSS, an intervention developed over multiple iterations incorporating the…

  13. Multimodal Interaction in Ambient Intelligence Environments Using Speech, Localization and Robotics

    ERIC Educational Resources Information Center

    Galatas, Georgios

    2013-01-01

    An Ambient Intelligence Environment is meant to sense and respond to the presence of people, using its embedded technology. In order to effectively sense the activities and intentions of its inhabitants, such an environment needs to utilize information captured from multiple sensors and modalities. By doing so, the interaction becomes more natural…

  14. Using Multi-Media Projects to Foster Teacher Candidates' Multiple Literacy Skills

    ERIC Educational Resources Information Center

    Lawrence, Salika A.

    2010-01-01

    This article describes the strategies used to incorporate multi-modal technology literacy experiences into a graduate level course for literacy specialists. The candidates created a multi-media project in response to literature. Their projects revealed that the teacher candidates used a variety of sources to create the project but the Internet was…

  15. A Comparison of Video-Based and Interaction-Based Affect Detectors in Physics Playground

    ERIC Educational Resources Information Center

    Kai, Shiming; Paquette, Luc; Baker, Ryan S.; Bosch, Nigel; D'Mello, Sidney; Ocumpaugh, Jaclyn; Shute, Valerie; Ventura, Matthew

    2015-01-01

    Increased attention to the relationships between affect and learning has led to the development of machine-learned models that are able to identify students' affective states in computerized learning environments. Data for these affect detectors have been collected from multiple modalities including physical sensors, dialogue logs, and logs of…

  16. Supporting interruption management and multimodal interface design: three meta-analyses of task performance as a function of interrupting task modality.

    PubMed

    Lu, Sara A; Wickens, Christopher D; Prinet, Julie C; Hutchins, Shaun D; Sarter, Nadine; Sebok, Angelia

    2013-08-01

    The aim of this study was to integrate empirical data showing the effects of interrupting task modality on the performance of an ongoing visual-manual task and the interrupting task itself. The goal is to support interruption management and the design of multimodal interfaces. Multimodal interfaces have been proposed as a promising means to support interruption management.To ensure the effectiveness of this approach, their design needs to be based on an analysis of empirical data concerning the effectiveness of individual and redundant channels of information presentation. Three meta-analyses were conducted to contrast performance on an ongoing visual task and interrupting tasks as a function of interrupting task modality (auditory vs. tactile, auditory vs. visual, and single modality vs. redundant auditory-visual). In total, 68 studies were included and six moderator variables were considered. The main findings from the meta-analyses are that response times are faster for tactile interrupting tasks in case of low-urgency messages.Accuracy is higher with tactile interrupting tasks for low-complexity signals but higher with auditory interrupting tasks for high-complexity signals. Redundant auditory-visual combinations are preferable for communication tasks during high workload and with a small visual angle of separation. The three meta-analyses contribute to the knowledge base in multimodal information processing and design. They highlight the importance of moderator variables in predicting the effects of interruption task modality on ongoing and interrupting task performance. The findings from this research will help inform the design of multimodal interfaces in data-rich, event-driven domains.

  17. Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares.

    PubMed

    Wang, Pingyue; Chen, Kewei; Yao, Li; Hu, Bin; Wu, Xia; Zhang, Jiacai; Ye, Qing; Guo, Xiaojuan

    2016-08-10

    In recent years, increasing attention has been given to the identification of the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Brain neuroimaging techniques have been widely used to support the classification or prediction of MCI. The present study combined magnetic resonance imaging (MRI), 18F-fluorodeoxyglucose PET (FDG-PET), and 18F-florbetapir PET (florbetapir-PET) to discriminate MCI converters (MCI-c, individuals with MCI who convert to AD) from MCI non-converters (MCI-nc, individuals with MCI who have not converted to AD in the follow-up period) based on the partial least squares (PLS) method. Two types of PLS models (informed PLS and agnostic PLS) were built based on 64 MCI-c and 65 MCI-nc from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results showed that the three-modality informed PLS model achieved better classification accuracy of 81.40%, sensitivity of 79.69%, and specificity of 83.08% compared with the single-modality model, and the three-modality agnostic PLS model also achieved better classification compared with the two-modality model. Moreover, combining the three modalities with clinical test score (ADAS-cog), the agnostic PLS model (independent data: florbetapir-PET; dependent data: FDG-PET and MRI) achieved optimal accuracy of 86.05%, sensitivity of 81.25%, and specificity of 90.77%. In addition, the comparison of PLS, support vector machine (SVM), and random forest (RF) showed greater diagnostic power of PLS. These results suggested that our multimodal PLS model has the potential to discriminate MCI-c from the MCI-nc and may therefore be helpful in the early diagnosis of AD.

  18. Nonpharmacologic Pain Management and Muscle Strengthening following Total Knee Arthroplasty.

    PubMed

    Chughtai, Morad; Elmallah, Randa D K; Mistry, Jaydev B; Bhave, Anil; Cherian, Jeffrey Jai; McGinn, Tanner L; Harwin, Steven F; Mont, Michael A

    2016-04-01

    Despite technological advances in total knee arthroplasty (TKA), management of postoperative muscle weakness and pain continue to pose challenges for both patients and health care providers. Nonpharmacologic therapies, such as neuromodulation in the form of neuromuscular electrical stimulation (NMES) and transcutaneous electrical nerve stimulation (TENS), and other modalities, such as cryotherapy and prehabilitation, have been highlighted as possible adjuncts to standard-of-care pharmacologic management to treat postoperative pain and muscle weakness. The aim of this review was to discuss existing evidence for neuromodulation in the treatment of pain and muscular weakness following TKA, and to shed light on other noninvasive and potential future modalities. Our review of the literature demonstrated that NMES, prehabilitation, and some specialized exercises are beneficial for postoperative muscle weakness, and TENS, cooling therapies, and compression may help to alleviate post-TKA pain. However, there are no clear guidelines for the use of these modalities. Further studies should be aimed at developing guidelines or delineating indications for neuromodulation and other nonpharmacologic therapies in the management of post-TKA pain and muscle weakness. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Cerenkov imaging - a new modality for molecular imaging

    PubMed Central

    Thorek, Daniel LJ; Robertson, Robbie; Bacchus, Wassifa A; Hahn, Jaeseung; Rothberg, Julie; Beattie, Bradley J; Grimm, Jan

    2012-01-01

    Cerenkov luminescence imaging (CLI) is an emerging hybrid modality that utilizes the light emission from many commonly used medical isotopes. Cerenkov radiation (CR) is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium. First described in detail nearly 100 years ago, CR has only recently applied for biomedical imaging purposes. The modality is of considerable interest as it enables the use of widespread luminescence imaging equipment to visualize clinical diagnostic (all PET radioisotopes) and many therapeutic radionuclides. The amount of light detected in CLI applications is significantly lower than other that in other optical imaging techniques such as bioluminescence and fluorescence. However, significant advantages include the use of approved radiotracers and lack of an incident light source, resulting in high signal to background ratios. As well, multiple subjects may be imaged concurrently (up to 5 in common bioluminescent equipment), conferring both cost and time benefits. This review summarizes the field of Cerenkov luminescence imaging to date. Applications of CLI discussed include intraoperative radionuclide-guided surgery, monitoring of therapeutic efficacy, tomographic optical imaging capabilities, and the ability to perform multiplexed imaging using fluorophores excited by the Cerenkov radiation. While technical challenges still exist, Cerenkov imaging has materialized as an important molecular imaging modality. PMID:23133811

  20. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy

    PubMed Central

    Casini, Arturo; MacDonald, James T.; Jonghe, Joachim De; Christodoulou, Georgia; Freemont, Paul S.; Baldwin, Geoff S.; Ellis, Tom

    2014-01-01

    Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications. PMID:24153110

  1. Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients.

    PubMed

    Ueda-Arakawa, Naoko; Ooto, Sotaro; Tsujikawa, Akitaka; Yamashiro, Kenji; Oishi, Akio; Yoshimura, Nagahisa

    2013-03-01

    To identify reticular pseudodrusen (RPD) in age-related macular degeneration using multiple imaging modalities, including the blue channel image of fundus photography, infrared reflectance (IR), fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT), and to compare the sensitivities and specificities of these modalities for detecting RPD. This study included 220 eyes from 114 patients with newly diagnosed age-related macular degeneration. Patients underwent fundus photography, IR, fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and SD-OCT in both eyes. Eyes were diagnosed with RPD if they showed reticular patterns on at least two of the seven imaging modalities. Thirty-seven eyes were diagnosed with RPD. However, SD-OCT and IR had the highest sensitivity (94.6%), and at the same time, SD-OCT had a high specificity (98.4%). The blue channel of color fundus photography, confocal blue reflectance, and indocyanine green angiography had a specificity of 100% but had lower sensitivity than that of SD-OCT and IR. For detecting RPD, IR and SD-OCT had the highest sensitivity. Although SD-OCT had the highest sensitivity and specificity, RPD detection should be confirmed using more than one modality for increased accuracy.

  2. Identification of multi-modal plasma responses to applied magnetic perturbations using the plasma reluctance

    DOE PAGES

    Logan, Nikolas C.; Paz-Soldan, Carlos; Park, Jong-Kyu; ...

    2016-05-03

    Using the plasma reluctance, the Ideal Perturbed Equilibrium Code is able to efficiently identify the structure of multi-modal magnetic plasma response measurements and the corresponding impact on plasma performance in the DIII-D tokamak. Recent experiments demonstrated that multiple kink modes of comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n = 2. This multi-modal response is in good agreement with ideal magnetohydrodynamic models, but detailed decompositions presented here show that the mode structures are not fully described by either the least stable modes or the resonant plasma response. This paper identifies the measured response fieldsmore » as the first eigenmodes of the plasma reluctance, enabling clear diagnosis of the plasma modes and their impact on performance from external sensors. The reluctance shows, for example, how very stable modes compose a significant portion of the multi-modal plasma response field and that these stable modes drive significant resonant current. Finally, this work is an overview of the first experimental applications using the reluctance to interpret the measured response and relate it to multifaceted physics, aimed towards providing the foundation of understanding needed to optimize nonaxisymmetric fields for independent control of stability and transport.« less

  3. Nanomaterials for In Vivo Imaging.

    PubMed

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.

  4. The effects of presentation pace and modality on learning a multimedia science lesson

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Hung

    Working memory is a system that consists of multiple components. The visuospatial sketchpad is the main entrance for visual and spatial information, whereas acoustic and verbal information is processed in the phonological loop. The central executive works as a coordinator of information from these two subsystems. Numerous studies have shown that working memory has a very limited capacity. Based on these characteristics of working memory, theories such as cognitive load theory and the cognitive theory of multimedia learning provide multimedia design principles. One of these principles is that when verbal information accompanying pictures is presented in audio mode instead of visually, learning can be more effective than if both text and pictures are presented visually. This is called the modality effect. However, some studies have found that the modality effect does not occur in some situations. In most experiments examining the modality effect, the multimedia is presented as system-paced. If learners are able to repeat listening as many times as they need, the superiority of spoken text over visual text seems lessened. One aim of this study was to examine the modality effect in a learner-controlled condition. This study also used the one-word-at-a-time technique to investigate whether the modality effect would still occur if both reading and listening rates were equal. There were 182 college students recruited for this study. Participants were randomly assigned to seven groups: a self-paced listening group, a self-paced reading group, a self text-block reading group, a general-paced listening group, a general-paced reading group, a fast-paced listening group, and a fast-paced reading group. The experimental material was a cardiovascular multimedia module. A three-by-two between-subjects design was used to test the main effect. Results showed that modality effect was still present but not between the self-paced listening group and the self text-block reading group. A post-study survey showed participants' different responses to the two modalities and their preferences as well. Results and research limitations are discussed and applications and future directions are also addressed.

  5. Multiple Kernel Learning with Random Effects for Predicting Longitudinal Outcomes and Data Integration

    PubMed Central

    Chen, Tianle; Zeng, Donglin

    2015-01-01

    Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419

  6. Modal Characterization of a Piezoelectric Shaker Table

    DTIC Science & Technology

    2015-06-01

    actuated shaker tables are often used for high frequency fatigue testing. Since natural frequencies can appear in the operating range of these...course of this thesis effort. I would also like to thank Dr. Tommy George and all of the helpful people in the Turbine Engine Fatigue Facility at the...4 Figure 2. Perovskite Crystal Structure of PZT Ceramics ................................................... 5 Figure 3

  7. Multimodality imaging of the orbit

    PubMed Central

    Hande, Pradipta C; Talwar, Inder

    2012-01-01

    The role of imaging is well established in the evaluation of orbital diseases. Ultrasonography, Computed tomography and Magnetic resonance imaging are complementary modalities, which allow direct visualization of regional anatomy, accurate localization and help to characterize lesions to make a reliable radiological diagnosis. The purpose of this pictorial essay is to highlight the imaging features of commonly encountered pathologies which involve the orbit. PMID:23599570

  8. Pulmonary nodule characterization, including computer analysis and quantitative features.

    PubMed

    Bartholmai, Brian J; Koo, Chi Wan; Johnson, Geoffrey B; White, Darin B; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Moynagh, Michael R; Lindell, Rebecca M; Hartman, Thomas E

    2015-03-01

    Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive "signs" can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.

  9. Individual, family, and group therapy for adolescents.

    PubMed

    McCann, Christina M; le Roux, Pieter

    2006-02-01

    The three main psychotherapeutic treatment modalities include individual,family, and group therapies. Many theoretic orientations guide psychotherapists as they try to help adolescents with mental health problems. PCPs play a critical role in initial assessment of mental health symptoms, in addition to coordinating treatment needs. There is a need for increased education regarding mental health treatment for health care providers to help them connect adolescents and their families to appropriate mental health care providers. Integrative approaches that involve more than one treatment modality are often needed to provide the best treatment for adolescents. Better collaborative care not only improves physician understanding of mental health treatment but also improves the mental health provider's understanding of the medical system [30]. This emerging con-text of increased mutual collaborative care builds a better system that serves the adolescent.Web-based resources related to psychotherapy for adolescents American Academy of Child and Adolescent Psychiatry http://www.AACAP.org American Association for Marriage & Family Therapy http://www.AAMFT.org American Psychological Association http://www.APA.org American Psychiatric Association http://www.psych.org National Mental Health Association http://www.NMHA.org National Alliance for the Mentally Ill http://www.NAMI.org

  10. Integrating modal-based NDE techniques and bridge management systems using quality management

    NASA Astrophysics Data System (ADS)

    Sikorsky, Charles S.

    1997-05-01

    The intent of bridge management systems is to help engineers and managers determine when and where to spend bridge funds such that commerce and the motoring public needs are satisfied. A major shortcoming which states are experiencing is the NBIS data available is insufficient to perform certain functions required by new bridge management systems, such as modeling bridge deterioration and predicting costs. This paper will investigate how modal based nondestructive damage evaluation techniques can be integrated into bridge management using quality management principles. First, quality from the manufacturing perspective will be summarized. Next, the implementation of quality management in design and construction will be reinterpreted for bridge management. Based on this, a theory of approach will be formulated to improve the productivity of a highway transportation system.

  11. Fusion Imaging for Procedural Guidance.

    PubMed

    Wiley, Brandon M; Eleid, Mackram F; Thaden, Jeremy J

    2018-05-01

    The field of percutaneous structural heart interventions has grown tremendously in recent years. This growth has fueled the development of new imaging protocols and technologies in parallel to help facilitate these minimally-invasive procedures. Fusion imaging is an exciting new technology that combines the strength of 2 imaging modalities and has the potential to improve procedural planning and the safety of many commonly performed transcatheter procedures. In this review we discuss the basic concepts of fusion imaging along with the relative strengths and weaknesses of static vs dynamic fusion imaging modalities. This review will focus primarily on echocardiographic-fluoroscopic fusion imaging and its application in commonly performed transcatheter structural heart procedures. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Medical auditing of whole-breast screening ultrasonography

    PubMed Central

    2017-01-01

    Since breast ultrasonography (US) has been used as an adjunctive screening modality in women with dense breasts, the need has arisen to evaluate and monitor its possible harm and benefits in comparison with other screening modalities such as mammography. Recently, the fifth edition of the Breast Imaging Reporting and Data System published by the American College of Radiology has suggested auditing methods for screening breast US. However, the method proposed therein is slightly different from how diagnostic performance was calculated in previous studies on screening breast US. In this article, the background and core aspects of medical audits of breast cancer screening will be reviewed to provide an introduction to the medical auditing of screening breast US, with the goal of helping radiologists to understand and identify potential ways to improve outcomes. PMID:28322034

  13. Medical auditing of whole-breast screening ultrasonography.

    PubMed

    Kim, Min Jung

    2017-07-01

    Since breast ultrasonography (US) has been used as an adjunctive screening modality in women with dense breasts, the need has arisen to evaluate and monitor its possible harm and benefits in comparison with other screening modalities such as mammography. Recently, the fifth edition of the Breast Imaging Reporting and Data System published by the American College of Radiology has suggested auditing methods for screening breast US. However, the method proposed therein is slightly different from how diagnostic performance was calculated in previous studies on screening breast US. In this article, the background and core aspects of medical audits of breast cancer screening will be reviewed to provide an introduction to the medical auditing of screening breast US, with the goal of helping radiologists to understand and identify potential ways to improve outcomes.

  14. Venous malformations of the head and neck: a diagnostic approach and a proposed management approach based on clinical, radiological, and histopathology findings.

    PubMed

    Aboelatta, Yasser Abdallah; Nagy, Eman; Shaker, Mohamed; Massoud, Karim Samir

    2014-07-01

    There is no easy road map for venous malformations (VMs) of the head and neck according to which treatment modality can be chosen. The purpose of this study was to identify different types of VMs of the head and neck based on clinical, histopathology, MRI, and venography findings that help in specification of different treatment modalities. Sixty-nine patients with VMs of the head and neck were included in this study. Our results proposed a diagnostic approach for VMs of the head and neck. MRI, venography, and clinical examination had important impact in decision-making, whereas histopathology had no impact. A management approach has been suggested for each type and its subtypes. Copyright © 2013 Wiley Periodicals, Inc.

  15. Medical image registration: basic science and clinical implications.

    PubMed

    Imran, Muhammad Babar; Meo, Sultan Ayoub; Yousuf, Mohammad; Othman, Saleh; Shahid, Abubakar

    2010-01-01

    Image Registration is a process of aligning two or more images so that corresponding feature can be related objectively. Integration of corresponding and complementary information from various images has become an important area of computation in medical imaging. Merging different images of the same patient taken by different modalities or acquired at different times is quite useful in interpreting lower resolution functional images, such as those provided by nuclear medicine, in determining spatial relationships of structures seen in different modalities. This will help in planning surgery and longitudinal follow up. The aim of this article was to introduce image registration to all those who are working in field of medical sciences in general and medical doctors in particular; and indicate how and where this specialty is moving to provide better health care services.

  16. Mirrored pyramidal wells for simultaneous multiple vantage point microscopy.

    PubMed

    Seale, K T; Reiserer, R S; Markov, D A; Ges, I A; Wright, C; Janetopoulos, C; Wikswo, J P

    2008-10-01

    We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling.

  17. Design of a 50/50 splitting ratio non-polarizing beam splitter based on the modal method with fused-silica transmission gratings

    NASA Astrophysics Data System (ADS)

    Zhao, Huajun; Yuan, Dairong; Ming, Hai

    2011-04-01

    The optical design of a beam splitter that has a 50/50 splitting ratio regardless of the polarization is presented. The non-polarizing beam splitter (NPBS) is based on the fused-silica rectangular transmission gratings with high intensity tolerance. The modal method has been used to estimate the effective index of the modes excited in the grating region for TE and TM polarizations. If a phase difference equals an odd multiples of π/2 for the first two modes (i.e. modes 0 and 1), the incident light will be diffracted into the 0 and -1 orders with about 50% and 50% diffraction efficiency for TM and TE polarizations, respectively.

  18. Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware.

    PubMed

    Levin, David; Aladl, Usaf; Germano, Guido; Slomka, Piotr

    2005-09-01

    We exploit consumer graphics hardware to perform real-time processing and visualization of high-resolution, 4D cardiac data. We have implemented real-time, realistic volume rendering, interactive 4D motion segmentation of cardiac data, visualization of multi-modality cardiac data and 3D display of multiple series cardiac MRI. We show that an ATI Radeon 9700 Pro can render a 512x512x128 cardiac Computed Tomography (CT) study at 0.9 to 60 frames per second (fps) depending on rendering parameters and that 4D motion based segmentation can be performed in real-time. We conclude that real-time rendering and processing of cardiac data can be implemented on consumer graphics cards.

  19. Should helical tomotherapy replace brachytherapy for cervical cancer? Case report.

    PubMed

    Hsieh, Chen-Hsi; Wei, Ming-Chow; Hsu, Yao-Peng; Chong, Ngot-Swan; Chen, Yu-Jen; Hsiao, Sheng-Mou; Hsieh, Yen-Ping; Wang, Li-Ying; Shueng, Pei-Wei

    2010-11-23

    Stereotactic body radiation therapy (SBRT) administered via a helical tomotherapy (HT) system is an effective modality for treating lung cancer and metastatic liver tumors. Whether SBRT delivered via HT is a feasible alternative to brachytherapy in treatment of locally advanced cervical cancer in patients with unusual anatomic configurations of the uterus has never been studied. A 46-year-old woman presented with an 8-month history of abnormal vaginal bleeding. Biopsy revealed squamous cell carcinoma of the cervix. Magnetic resonance imaging (MRI) showed a cervical tumor with direct invasion of the right parametrium, bilateral hydronephrosis, and multiple uterine myomas. International Federation of Gynecology and Obstetrics (FIGO) stage IIIB cervical cancer was diagnosed. Concurrent chemoradiation therapy (CCRT) followed by SBRT delivered via HT was administered instead of brachytherapy because of the presence of multiple uterine myomas with bleeding tendency. Total abdominal hysterectomy was performed after 6 weeks of treatment because of the presence of multiple uterine myomas. Neither pelvic MRI nor results of histopathologic examination at X-month follow-up showed evidence of tumor recurrence. Only grade 1 nausea and vomiting during treatment were noted. Lower gastrointestinal bleeding was noted at 14-month follow-up. No fistula formation and no evidence of haematological, gastrointestinal or genitourinary toxicities were noted on the most recent follow-up. CCRT followed by SBRT appears to be an effective and safe modality for treatment of cervical cancer. Larger-scale studies are warranted.

  20. The relationship between walking, manual dexterity, cognition and activity/participation in persons with multiple sclerosis.

    PubMed

    Kierkegaard, Marie; Einarsson, Ulrika; Gottberg, Kristina; von Koch, Lena; Holmqvist, Lotta Widén

    2012-05-01

    Multiple sclerosis has a vast impact on health, but the relationship between walking, manual dexterity, cognition and activity/participation is unclear. The specific aims were to explore the discriminative ability of measures of walking, manual dexterity and cognition, and to identify cut-off values in these measures, for prediction of independence in personal and instrumental activities of daily living (ADL) and activity/participation in social and lifestyle activities. Data from 164 persons with multiple sclerosis were collected during home visits with the following measures: the 2 × 5 m walk test, the Nine-hole Peg Test, the Symbol Digit Modalities Test, the Katz Personal and Instrumental ADL Indexes, and the Frenchay Activities Index (measuring frequency in social and lifestyle activities). The 2 × 5 m walk test and the Nine-hole Peg Test had high and better discriminative and predictive ability than the Symbol Digit Modalities Test. Cut-off values were identified. The accuracy of predictions was increased above all by combining the 2 × 5 m walk test and the Nine-hole Peg Test. The proposed cut-off values in the 2 × 5 m walk test and the Nine-hole Peg Test may be used as indicators of functioning and to identify persons risking activity limitations and participation restrictions. However, further studies are needed to confirm the usefulness in clinical practice.

Top