Safe motion planning for mobile agents: A model of reactive planning for multiple mobile agents
Fujimura, Kikuo.
1990-01-01
The problem of motion planning for multiple mobile agents is studied. Each planning agent independently plans its own action based on its map which contains a limited information about the environment. In an environment where more than one mobile agent interacts, the motions of the robots are uncertain and dynamic. A model for reactive agents is described and simulation results are presented to show their behavior patterns. 18 refs., 2 figs.
Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas
2013-01-01
The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.
NASA Astrophysics Data System (ADS)
Silva, Antonio
2005-03-01
It is well-known that the mathematical theory of Brownian motion was first developed in the Ph. D. thesis of Louis Bachelier for the French stock market before Einstein [1]. In Ref. [2] we studied the so-called Heston model, where the stock-price dynamics is governed by multiplicative Brownian motion with stochastic diffusion coefficient. We solved the corresponding Fokker-Planck equation exactly and found an analytic formula for the time-dependent probability distribution of stock price changes (returns). The formula interpolates between the exponential (tent-shaped) distribution for short time lags and the Gaussian (parabolic) distribution for long time lags. The theoretical formula agrees very well with the actual stock-market data ranging from the Dow-Jones index [2] to individual companies [3], such as Microsoft, Intel, etc. [] [1] Louis Bachelier, ``Th'eorie de la sp'eculation,'' Annales Scientifiques de l''Ecole Normale Sup'erieure, III-17:21-86 (1900).[] [2] A. A. Dragulescu and V. M. Yakovenko, ``Probability distribution of returns in the Heston model with stochastic volatility,'' Quantitative Finance 2, 443--453 (2002); Erratum 3, C15 (2003). [cond-mat/0203046] [] [3] A. C. Silva, R. E. Prange, and V. M. Yakovenko, ``Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact,'' Physica A 344, 227--235 (2004). [cond-mat/0401225
A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy
McClelland, Jamie R.; Blackall, Jane M.; Tarte, Segolene; Chandler, Adam C.; Hughes, Simon; Ahmad, Shahreen; Landau, David B.; Hawkes, David J.
2006-09-15
Respiratory motion causes errors when planning and delivering radiotherapy treatment to lung cancer patients. To reduce these errors, methods of acquiring and using four-dimensional computed tomography (4DCT) datasets have been developed. We have developed a novel method of constructing computational motion models from 4DCT. The motion models attempt to describe an average respiratory cycle, which reduces the effects of variation between different cycles. They require substantially less memory than a 4DCT dataset, are continuous in space and time, and facilitate automatic target propagation and combining of doses over the respiratory cycle. The motion models are constructed from CT data acquired in cine mode while the patient is free breathing (free breathing CT - FBCT). A ''slab'' of data is acquired at each couch position, with 3-4 contiguous slabs being acquired per patient. For each slab a sequence of 20 or 30 volumes was acquired over 20 seconds. A respiratory signal is simultaneously recorded in order to calculate the position in the respiratory cycle for each FBCT. Additionally, a high quality reference CT volume is acquired at breath hold. The reference volume is nonrigidly registered to each of the FBCT volumes. A motion model is then constructed for each slab by temporally fitting the nonrigid registration results. The value of each of the registration parameters is related to the position in the respiratory cycle by fitting an approximating B spline to the registration results. As an approximating function is used, and the data is acquired over several respiratory cycles, the function should model an average respiratory cycle. This can then be used to calculate the value of each degree of freedom at any desired position in the respiratory cycle. The resulting nonrigid transformation will deform the reference volume to predict the contents of the slab at the desired position in the respiratory cycle. The slab model predictions are then concatenated to
A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy.
McClelland, Jamie R; Blackall, Jane M; Tarte, Ségolène; Chandler, Adam C; Hughes, Simon; Ahmad, Shahreen; Landau, David B; Hawkes, David J
2006-09-01
Respiratory motion causes errors when planning and delivering radiotherapy treatment to lung cancer patients. To reduce these errors, methods of acquiring and using four-dimensional computed tomography (4DCT) datasets have been developed. We have developed a novel method of constructing computational motion models from 4DCT. The motion models attempt to describe an average respiratory cycle, which reduces the effects of variation between different cycles. They require substantially less memory than a 4DCT dataset, are continuous in space and time, and facilitate automatic target propagation and combining of doses over the respiratory cycle. The motion models are constructed from CT data acquired in cine mode while the patient is free breathing (free breathing CT - FBCT). A "slab" of data is acquired at each couch position, with 3-4 contiguous slabs being acquired per patient. For each slab a sequence of 20 or 30 volumes was acquired over 20 seconds. A respiratory signal is simultaneously recorded in order to calculate the position in the respiratory cycle for each FBCT. Additionally, a high quality reference CT volume is acquired at breath hold. The reference volume is nonrigidly registered to each of the FBCT volumes. A motion model is then constructed for each slab by temporally fitting the nonrigid registration results. The value of each of the registration parameters is related to the position in the respiratory cycle by fitting an approximating B spline to the registration results. As an approximating function is used, and the data is acquired over several respiratory cycles, the function should model an average respiratory cycle. This can then be used to calculate the value of each degree of freedom at any desired position in the respiratory cycle. The resulting nonrigid transformation will deform the reference volume to predict the contents of the slab at the desired position in the respiratory cycle. The slab model predictions are then concatenated to
Motion of multiple helical vortices
NASA Astrophysics Data System (ADS)
Velasco Fuentes, Oscar
2015-11-01
In 1912 Joukowsky deduced that in an unbounded ideal fluid a set of helical vortices--when these are equal, coaxial and symmetrically arranged--would translate and rotate steadily while the vortices preserve their form and relative position. Each vortex is an infinite tube whose cross-section is circular (with radius a) and whose centerline is a helix of pitch L and radius R. The motion is thus determined by three non-dimensional parameters only: the number of vortices N, the vortex radius α = a / R and the vortex pitch τ = L / 2 πR . Here, we express the linear and angular velocities of the vortices as the sum of the mutually induced velocities found by Okulov (2004) and the self-induced velocities found by Velasco Fuentes (2015). We verified that our results are accurate over the whole range of values of the vortices' pitch and radius by numerically computing the vortex motion with two smoothed versions of the Biot-Savart law. It was found that the translation velocity U grows with the number of vortices (N) but decreases as the vortices' radius and pitch (a and τ, respectively) increase; in contrast, the rotation velocity Ω grows with N and a but has a local minimum around τ = 1 for fixed values of N and a.
Motion and force control for multiple cooperative manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth
1989-01-01
The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
Controlling the motion of multiple objects on a Chladni plate
NASA Astrophysics Data System (ADS)
Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville
2016-09-01
The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts.
Controlling the motion of multiple objects on a Chladni plate
Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville
2016-01-01
The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts. PMID:27611347
Human motion analysis and modeling
NASA Astrophysics Data System (ADS)
Prussing, Keith; Cathcart, J. Michael; Kocher, Brian
2011-06-01
Georgia Tech has investigated methods for the detection and tracking of personnel in a variety of acquisition environments. This research effort focused on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. As a fundamental part of this research effort, Georgia Tech collected motion capture data on an individual for a variety of walking speeds, carrying loads, and load distributions. These data formed the basis for deriving fundamental properties of the individual's motion and supported the development of a physiologically-based human motion model. Subsequently this model aided the derivation and analysis of motion-based observables, particularly changes in the motion of various body components resulting from load variations. This paper will describe the data acquisition process, development of the human motion model, and use of the model in the observable analysis. Video sequences illustrating the motion data and modeling results will also be presented.
Motion and force control of multiple robotic manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth
1992-01-01
This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
Hybrid Motion Planning with Multiple Destinations
NASA Technical Reports Server (NTRS)
Clouse, Jeffery
1998-01-01
In our initial proposal, we laid plans for developing a hybrid motion planning system that combines the concepts of visibility-based motion planning, artificial potential field based motion planning, evolutionary constrained optimization, and reinforcement learning. Our goal was, and still is, to produce a hybrid motion planning system that outperforms the best traditional motion planning systems on problems with dynamic environments. The proposed hybrid system will be in two parts the first is a global motion planning system and the second is a local motion planning system. The global system will take global information about the environment, such as the placement of the obstacles and goals, and produce feasible paths through those obstacles. We envision a system that combines the evolutionary-based optimization and visibility-based motion planning to achieve this end.
Conflicting motion information impairs multiple object tracking.
St Clair, Rebecca; Huff, Markus; Seiffert, Adriane E
2010-04-28
People can keep track of target objects as they move among identical distractors using only spatiotemporal information. We investigated whether or not participants use motion information during the moment-to-moment tracking of objects by adding motion to the texture of moving objects. The texture either remained static or moved relative to the object's direction of motion, either in the same direction, the opposite direction, or orthogonal to each object's trajectory. Results showed that, compared to the static texture condition, tracking performance was worse when the texture moved in the opposite direction of the object and better when the texture moved in the same direction as the object. Our results support the conclusion that motion information is used during the moment-to-moment tracking of objects. Motion information may either affect a representation of position or be used to periodically predict the future location of targets.
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
Autoadaptive motion modelling for MR-based respiratory motion estimation.
Baumgartner, Christian F; Kolbitsch, Christoph; McClelland, Jamie R; Rueckert, Daniel; King, Andrew P
2017-01-01
Respiratory motion poses significant challenges in image-guided interventions. In emerging treatments such as MR-guided HIFU or MR-guided radiotherapy, it may cause significant misalignments between interventional road maps obtained pre-procedure and the anatomy during the treatment, and may affect intra-procedural imaging such as MR-thermometry. Patient specific respiratory motion models provide a solution to this problem. They establish a correspondence between the patient motion and simpler surrogate data which can be acquired easily during the treatment. Patient motion can then be estimated during the treatment by acquiring only the simpler surrogate data. In the majority of classical motion modelling approaches once the correspondence between the surrogate data and the patient motion is established it cannot be changed unless the model is recalibrated. However, breathing patterns are known to significantly change in the time frame of MR-guided interventions. Thus, the classical motion modelling approach may yield inaccurate motion estimations when the relation between the motion and the surrogate data changes over the duration of the treatment and frequent recalibration may not be feasible. We propose a novel methodology for motion modelling which has the ability to automatically adapt to new breathing patterns. This is achieved by choosing the surrogate data in such a way that it can be used to estimate the current motion in 3D as well as to update the motion model. In particular, in this work, we use 2D MR slices from different slice positions to build as well as to apply the motion model. We implemented such an autoadaptive motion model by extending our previous work on manifold alignment. We demonstrate a proof-of-principle of the proposed technique on cardiac gated data of the thorax and evaluate its adaptive behaviour on realistic synthetic data containing two breathing types generated from 6 volunteers, and real data from 4 volunteers. On synthetic data
Optimal displacement in apparent motion and quadrature models of motion sensing
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
A grating appears to move if it is displaced by some amount between two brief presentations, or between multiple successive presentations. A number of recent experiments have examined the influence of displacement size upon either the sensitivity to motion, or upon the induced motion aftereffect. Several recent motion models are based upon quadrature filters that respond in opposite quadrants in the spatiotemporal frequency plane. Predictions of the quadrature model are derived for both two-frame and multiframe displays. Quadrature models generally predict an optimal displacement of 1/4 cycle for two-frame displays, but in the multiframe case the prediction depends entirely on the frame rate.
Self-Motion Impairs Multiple-Object Tracking
ERIC Educational Resources Information Center
Thomas, Laura E.; Seiffert, Adriane E.
2010-01-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement…
Study of correlations in molecular motion by multiple quantum NMR
Tang, J.H.
1981-11-01
Nuclear magnetic resonance is a very useful tool for characterizing molecular configurations through the measurement of transition frequencies and dipolar couplings. The measurement of spectral lineshapes, spin-lattice relaxation times, and transverse relaxation times also provide us with valuable information about correlations in molecular motion. The new technique of multiple quantum nuclear magnetic resonance has numerous advantages over the conventional single quantum NMR techniques in obtaining information about static and dynamic interactions of coupled spin systems. In the first two chapters, the theoretical background of spin Hamiltonians and the density matrix formalism of multiple quantum NMR is discussed. The creation and detection of multiple quantum coherence by multiple pulse sequence are discussed. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are presented. A specific example of an oriented methyl group relaxed by paramagnetic impurities is studied in detail. The study of possible correlated motion between two coupled methyl groups by multiple quantum NMR is presented. For a six spin system it is shown that the four-quantum spectrum is sensitive to two-body correlations, and serves a ready test of correlated motion. The study of the spin-lattice dynamics of orienting or tunneling methyl groups (CH/sub 3/ and CD/sub 3/) at low temperatures is presented. The anisotropic spin-lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules, is investigated, and the NMR spectrometers and other experimental details are discussed.
Multiple-time-scale motion in molecularly linked nanoparticle arrays.
George, Christopher; Szleifer, Igal; Ratner, Mark
2013-01-22
We explore the transport of electrons between electrodes that encase a two-dimensional array of metallic quantum dots linked by molecular bridges (such as α,ω alkaline dithiols). Because the molecules can move at finite temperatures, the entire transport structure comprising the quantum dots and the molecules is in dynamical motion while the charge is being transported. There are then several physical processes (physical excursions of molecules and quantum dots, electronic migration, ordinary vibrations), all of which influence electronic transport. Each can occur on a different time scale. It is therefore not appropriate to use standard approaches to this sort of electron transfer problem. Instead, we present a treatment in which three different theoretical approaches-kinetic Monte Carlo, classical molecular dynamics, and quantum transport-are all employed. In certain limits, some of the dynamical effects are unimportant. But in general, the transport seems to follow a sort of dynamic bond percolation picture, an approach originally introduced as formal models and later applied to polymer electrolytes. Different rate-determining steps occur in different limits. This approach offers a powerful scheme for dealing with multiple time scale transport problems, as will exist in many situations with several pathways through molecular arrays or even individual molecules that are dynamically disordered.
Animal models in motion sickness research
NASA Technical Reports Server (NTRS)
Daunton, Nancy G.
1990-01-01
Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.
Motion sickness: a negative reinforcement model.
Bowins, Brad
2010-01-15
Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.
Motion models in attitude estimation
NASA Technical Reports Server (NTRS)
Chu, D.; Wheeler, Z.; Sedlak, J.
1994-01-01
Attitude estimator use observations from different times to reduce the effects of noise. If the vehicle is rotating, the attitude at one time needs to be propagated to that at another time. If the vehicle measures its angular velocity, attitude propagating entails integrating a rotational kinematics equation only. If a measured angular velocity is not available, torques can be computed and an additional rotational dynamics equation integrated to give the angular velocity. Initial conditions for either of these integrations come from the estimation process. Sometimes additional quantities, such as gyro and torque parameters, are also solved for. Although the partial derivatives of attitude with respect to initial attitude and gyro parameters are well known, the corresponding partial derivatives with respect to initial angular velocity and torque parameters are less familiar. They can be derived and computed numerically in a way that is analogous to that used for the initial attitude and gyro parameters. Previous papers have demonstrated the feasibility of using dynamics models for attitude estimation but have not provided details of how each angular velocity and torque parameters can be estimated. This tutorial paper provides some of that detail, notably how to compute the state transition matrix when closed form expressions are not available. It also attempts to put dynamics estimation in perspective by showing the progression from constant to gyro-propagated to dynamics-propagated attitude motion models. Readers not already familiar with attitude estimation will find this paper an introduction to the subject, and attitude specialists may appreciate the collection of heretofore scattered results brought together in a single place.
Modeling repetitive motions using structured light.
Xu, Yi; Aliaga, Daniel G
2010-01-01
Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.
Ground Motion Modeling in the Eastern Caucasus
NASA Astrophysics Data System (ADS)
Pitarka, Arben; Gok, Rengin; Yetirmishli, Gurban; Ismayilova, Saida; Mellors, Robert
2016-08-01
In this study, we analyzed the performance of a preliminary three-dimensional (3D) velocity model of the Eastern Caucasus covering most of the Azerbaijan. The model was developed in support to long-period ground motion simulations and seismic hazard assessment from regional earthquakes in Azerbaijan. The model's performance was investigated by simulating ground motion from the damaging Mw 5.9, 2012 Zaqatala earthquake, which was well recorded throughout the region by broadband seismic instruments. In our simulations, we use a parallelized finite-difference method of fourth-order accuracy. The comparison between the simulated and recorded ground motion velocity in the modeled period range of 3-20 s shows that in general, the 3D velocity model performs well. Areas in which the model needs improvements are located mainly in the central part of the Kura basin and in the Caspian Sea coastal areas. Comparisons of simulated ground motion using our 3D velocity model and corresponding 1D regional velocity model were used to locate areas with strong 3D wave propagation effects. In areas with complex underground structure, the 1D model fails to produce the observed ground motion amplitude and duration, and spatial extend of ground motion amplification caused by wave propagation effects.
Volumetric display containing multiple two-dimensional color motion pictures
NASA Astrophysics Data System (ADS)
Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.
2014-06-01
We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.
Motion coordination and performance analysis of multiple vehicle systems
NASA Astrophysics Data System (ADS)
Sharma, Vikrant
In this dissertation, issues related to multiple vehicle systems are studied. First, the issue of vehicular congestion is addressed and its effect on the performance of some systems studied. Motion coordination algorithms for some systems of interest are also developed. The issue of vehicular congestion is addressed by characterizing the effect of increasing the number of vehicles, in a bounded region, on the speed of the vehicles. A multiple vehicle routing problem is considered where vehicles are required to stay velocity-dependent distance away from each other to avoid physical collisions. Optimal solutions to the minimum time routing are characterized and are found to increase with the square root of the number of vehicles in the environment, for different distributions of the sources and destinations of the vehicles. The second issue addressed is that of the effect of vehicular congestion on the delay associated with data delivery in wireless networks where vehicles are used to transport data to increase the wireless capacity of the network. Tight bounds on the associated delay are derived. The next problem addressed is that of covering an arbitrary path-connected two dimensional region, using multiple unmanned aerial vehicles, in minimum time. A constant-factor optimal algorithm is presented for any given initial positions of the vehicles inside the environment. The last problem addressed is that of the deployment of an environment monitoring network of mobile sensors to improve the network lifetime and sensing quality. A distributed algorithm is presented that improves the system's performance starting from an initial deployment.
Modeling the polar motion of Titan
NASA Astrophysics Data System (ADS)
Coyette, Alexis; Van Hoolst, Tim; Baland, Rose-Marie; Tokano, Tetsuya
2016-02-01
The angular momentum of the atmosphere and of the hydrocarbon lakes of Titan have a large equatorial component that can excite polar motion, a variable orientation of the rotation axis of Titan with respect to its surface. We here use the angular momentum obtained from a General Circulation Model of the atmosphere of Titan and from an Ocean Circulation Model for Titan's polar lakes to model the polar motion of Titan as a function of the interior structure. Besides the gravitational torque exerted by Saturn on Titan's aspherical mass distribution, the rotational model also includes torques arising due to the presence of an ocean under a thin ice shell as well as the influence of the elasticity of the different layers. The Chandler wobble period of a solid and rigid Titan without its atmosphere is about 279 years. The period of the Chandler wobble is mainly influenced by the atmosphere of Titan (-166 years) and the presence of an internal global ocean (+135 to 295 years depending on the internal model) and to a lesser extent by the elastic deformations (+3.7 years). The forced polar motion of a solid and rigid Titan is elliptical with an amplitude of about 50 m and a main period equal to the orbital period of Saturn. It is mainly forced by the atmosphere of Titan while the lakes of Titan are at the origin of a displacement of the mean polar motion, or polar offset. The subsurface ocean can largely increase the polar motion amplitude due to resonant amplification with a wobble free mode of Titan. The amplitudes as well as the main periods of the polar motion depend on whether and which forcing period is close to the period of a free mode. For a thick ice shell, the polar motion mainly has an annual period and an amplitude of about 1 km. For thinner ice shells, the polar motion amplitude can reach several tens of km and shorter periods become dominant. We demonstrate that for thick ice shells, the ice shell rigidity weakly influences the amplitude of the polar motion
Effective Motion Tracking Using Known and Learned Actuation Models
2008-06-06
Tactic-Based Motion Model (TBMM), Play-Based Motion Model (PBMM) and Communication-Based Motion Model ( CBMM ). TBMM is the basic object motion model when...plays. CBMM is an extension of PBMM when robots communicate their actions on the object. • We incorporate a single robot and a team actuation models
Huff, Markus; Papenmeier, Frank
2013-01-14
In multiple-object tracking, participants can track several moving objects among identical distractors. It has recently been shown that the human visual system uses motion information in order to keep track of targets (St. Clair et al., Journal of Vision, 10(4), 1-13). Texture on the surface of an object that moved in the opposite direction to the object itself impaired tracking performance. In this study, we examined the temporal interval at which texture motion and object motion is integrated in dynamic scenes. In two multiple-object tracking experiments, we manipulated the texture motion on the objects: The texture either moved in the same direction as the objects, in the opposite direction, or alternated between the same and opposite direction at varying intervals. In Experiment 1, we show that the integration of object motion and texture motion can take place at intervals as short as 100 ms. In Experiment 2, we show that there is a linear relationship between the proportion of opposite texture motion and tracking performance. We suggest that texture motion might cause shifts in perceived object locations, thus influencing tracking performance.
Iwamoto, Masami; Nakahira, Yuko
2015-11-01
Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics.
NASA Astrophysics Data System (ADS)
Monasson, R.; Rosay, S.
2014-03-01
The dynamics of a neural model for hippocampal place cells storing spatial maps is studied. In the absence of external input, depending on the number of cells and on the values of control parameters (number of environments stored, level of neural noise, average level of activity, connectivity of place cells), a "clump" of spatially localized activity can diffuse or remains pinned due to crosstalk between the environments. In the single-environment case, the macroscopic coefficient of diffusion of the clump and its effective mobility are calculated analytically from first principles and corroborated by numerical simulations. In the multienvironment case the heights and the widths of the pinning barriers are analytically characterized with the replica method; diffusion within one map is then in competition with transitions between different maps. Possible mechanisms enhancing mobility are proposed and tested.
Learning about Locomotion Patterns: Effective Use of Multiple Pictures and Motion-Indicating Arrows
ERIC Educational Resources Information Center
Imhof, Birgit; Scheiter, Katharina; Edelmann, Jorg; Gerjets, Peter
2013-01-01
This study investigated how enriching visualizations with arrows indicating the motion of objects may help in conveying dynamic information: Multiple static-simultaneous visualizations with motion-indicating arrows were compared with either multiple visualizations without arrows or a single visualization with arrows. Seventy-one students were…
Locust Collective Motion and Its Modeling
Ariel, Gil; Ayali, Amir
2015-01-01
Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels. PMID:26656851
Mathematical modelling of submarine landslide motion
NASA Astrophysics Data System (ADS)
Burminskij, A.
2012-04-01
Mathematical modelling of submarine landslide motion The paper presents a mathematical model to calculate dynamic parameters of a submarine landslide. The problem of estimation possible submarine landslides dynamic parameters and run-out distances as well as their effect on submarine structures becomes more and more actual because they can have significant impacts on infrastructure such as the rupture of submarine cables and pipelines, damage to offshore drilling platforms, cause a tsunami. In this paper a landslide is considered as a viscoplastic flow and is described by continuum mechanics equations, averaged over the flow depth. The model takes into account friction at the bottom and at the landslide-water boundary, as well as the involvement of bottom material in motion. A software was created and series of test calculations were performed. Calculations permitted to estimate the contribution of various model coefficients and initial conditions. Motion down inclined bottom was studied both for constant and variable slope angle. Examples of typical distributions of the flow velocity, thickness and density along the landslide body at different stages of motion are given.
Multiple Indicators, Multiple Causes Measurement Error Models
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.
2014-01-01
Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535
Multiple indicators, multiple causes measurement error models
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...
2014-06-25
Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less
Multiple indicators, multiple causes measurement error models
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.
2014-06-25
Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methods for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.
Stochastic models for cell motion and taxis.
Ionides, Edward L; Fang, Kathy S; Isseroff, R Rivkah; Oster, George F
2004-01-01
Certain biological experiments investigating cell motion result in time lapse video microscopy data which may be modeled using stochastic differential equations. These models suggest statistics for quantifying experimental results and testing relevant hypotheses, and carry implications for the qualitative behavior of cells and for underlying biophysical mechanisms. Directional cell motion in response to a stimulus, termed taxis, has previously been modeled at a phenomenological level using the Keller-Segel diffusion equation. The Keller-Segel model cannot distinguish certain modes of taxis, and this motivates the introduction of a richer class of models which is nevertheless still amenable to statistical analysis. A state space model formulation is used to link models proposed for cell velocity to observed data. Sequential Monte Carlo methods enable parameter estimation via maximum likelihood for a range of applicable models. One particular experimental situation, involving the effect of an electric field on cell behavior, is considered in detail. In this case, an Ornstein- Uhlenbeck model for cell velocity is found to compare favorably with a nonlinear diffusion model.
Mathematical modelling of animate and intentional motion.
Rittscher, Jens; Blake, Andrew; Hoogs, Anthony; Stein, Gees
2003-01-01
Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article. PMID:12689374
Modelling fast forms of visual neural plasticity using a modified second-order motion energy model.
Pavan, Andrea; Contillo, Adriano; Mather, George
2014-12-01
The Adelson-Bergen motion energy sensor is well established as the leading model of low-level visual motion sensing in human vision. However, the standard model cannot predict adaptation effects in motion perception. A previous paper Pavan et al.(Journal of Vision 10:1-17, 2013) presented an extension to the model which uses a first-order RC gain-control circuit (leaky integrator) to implement adaptation effects which can span many seconds, and showed that the extended model's output is consistent with psychophysical data on the classic motion after-effect. Recent psychophysical research has reported adaptation over much shorter time periods, spanning just a few hundred milliseconds. The present paper further extends the sensor model to implement rapid adaptation, by adding a second-order RC circuit which causes the sensor to require a finite amount of time to react to a sudden change in stimulation. The output of the new sensor accounts accurately for psychophysical data on rapid forms of facilitation (rapid visual motion priming, rVMP) and suppression (rapid motion after-effect, rMAE). Changes in natural scene content occur over multiple time scales, and multi-stage leaky integrators of the kind proposed here offer a computational scheme for modelling adaptation over multiple time scales.
The Effects of Towfish Motion on Sidescan Sonar Images: Extension to a Multiple-Beam Device
1994-02-01
Towfish Motion on Sidescan Sonar Images: Extension to a Multiple -Beam Device Acceso NTIS CRA&I S.D. Anstee u; ,-, o* , J.* ttiicatorn By "By...THE EFFECTS OF TOWFISH MOTION ON SIDESCAN SONAR IMAGES: EXTENSION TO A MULTIPLE -BEAM DEVICE S, S.D. ANSTEE 6 2 9 Nm MRL-TN-660 FEBRUARY 1994 Al DTIC...previously used to estimate the geometrical effects oftowjish motion on single-beam sidescan sonar images is modified to simulate a multiple -beam
Modelling motions within the organ of Corti
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Baumgart, Johannes; Elliott, Stephen
2015-12-01
Most cochlear models used to describe the basilar membrane vibration along the cochlea are concerned with macromechanics, and often assume that the organ of Corti moves as a single unit, ignoring the individual motion of different components. New experimental technologies provide the opportunity to measure the dynamic behaviour of different components within the organ of Corti, but only for certain types of excitation. It is thus still difficult to directly measure every aspect of cochlear dynamics, particularly for acoustic excitation of the fully active cochlea. The present work studies the dynamic response of a model of the cross-section of the cochlea, at the microscopic level, using the finite element method. The elastic components are modelled with plate elements and the perilymph and endolymph are modelled with inviscid fluid elements. The individual motion of each component within the organ of Corti is calculated with dynamic pressure loading on the basilar membrane and the motions of the experimentally accessible parts are compared with measurements. The reticular lamina moves as a stiff plate, without much bending, and is pivoting around a point close to the region of the inner hair cells, as observed experimentally. The basilar membrane shows a slightly asymmetric mode shape, with maximum displacement occurring between the second-row and the third-row of the outer hair cells. The dynamics responses is also calculated, and compared with experiments, when driven by the outer hair cells. The receptance of the basilar membrane motion and of the deflection of the hair bundles of the outer hair cells is thus obtained, when driven either acoustically or electrically. In this way, the fully active linear response of the basilar membrane to acoustic excitation can be predicted by using a linear superposition of the calculated receptances and a defined gain function for the outer hair cell feedback.
Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J
2015-06-15
Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumor motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to
Swiler, Laura Painton; Urbina, Angel
2010-07-01
This paper compares three approaches for model selection: classical least squares methods, information theoretic criteria, and Bayesian approaches. Least squares methods are not model selection methods although one can select the model that yields the smallest sum-of-squared error function. Information theoretic approaches balance overfitting with model accuracy by incorporating terms that penalize more parameters with a log-likelihood term to reflect goodness of fit. Bayesian model selection involves calculating the posterior probability that each model is correct, given experimental data and prior probabilities that each model is correct. As part of this calculation, one often calibrates the parameters of each model and this is included in the Bayesian calculations. Our approach is demonstrated on a structural dynamics example with models for energy dissipation and peak force across a bolted joint. The three approaches are compared and the influence of the log-likelihood term in all approaches is discussed.
NASA Astrophysics Data System (ADS)
Nagasaka, Yosuke; Nozu, Atsushi
2017-02-01
The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This
NASA Astrophysics Data System (ADS)
Bora, Sanjay; Scherbaum, Frank; Kuehn, Nicolas; Stafford, Peter; Edwards, Benjamin
2016-04-01
The current practice of deriving empirical ground motion prediction equations (GMPEs) involves using ground motions recorded at multiple sites. However, in applications like site-specific (e.g., critical facility) hazard ground motions obtained from the GMPEs are need to be adjusted/corrected to a particular site/site-condition under investigation. This study presents a complete framework for developing a response spectral GMPE, within which the issue of adjustment of ground motions is addressed in a manner consistent with the linear system framework. The present approach is a two-step process in which the first step consists of deriving two separate empirical models, one for Fourier amplitude spectra (FAS) and the other for a random vibration theory (RVT) optimized duration (Drvto) of ground motion. In the second step the two models are combined within the RVT framework to obtain full response spectral amplitudes. Additionally, the framework also involves a stochastic model based extrapolation of individual Fourier spectra to extend the useable frequency limit of the empirically derived FAS model. The stochastic model parameters were determined by inverting the Fourier spectral data using an approach similar to the one as described in Edwards and Faeh (2013). Comparison of median predicted response spectra from present approach with those from other regional GMPEs indicates that the present approach can also be used as a stand-alone model. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, the Middle East and the Mediterranean region.
Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion
Johnson, Stephanie; van de Meent, Jan-Willem; Phillips, Rob; Wiggins, Chris H.; Lindén, Martin
2014-01-01
The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions. PMID:25120267
Joint PET-MR respiratory motion models for clinical PET motion correction
NASA Astrophysics Data System (ADS)
Manber, Richard; Thielemans, Kris; Hutton, Brian F.; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David
2016-09-01
Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.
One hybrid model combining singular spectrum analysis and LS + ARMA for polar motion prediction
NASA Astrophysics Data System (ADS)
Shen, Yi; Guo, Jinyun; Liu, Xin; Wei, Xiaobei; Li, Wudong
2017-01-01
Accurate real-time polar motion parameters play an important role in satellite navigation and positioning and spacecraft tracking. To meet the needs for real-time and high-accuracy polar motion prediction, a hybrid model that integrated singular spectrum analysis (SSA), least-squares (LS) extrapolation and an autoregressive moving average (ARMA) model was proposed. SSA was applied to separate the trend, the annual and the Chandler components from a given polar motion time series. LS extrapolation models were constructed for the separated trend, annual and Chandler components. An ARMA model was established for a synthetic sequence that contained the remaining SSA component and the residual series of LS fitting. In applying this hybrid model, multiple sets of polar motion predictions with lead times of 360 days were made based on an IERS 08 C04 series. The results showed that the proposed method could effectively predict the polar motion parameters.
A statistical shape and motion model for the prediction of respiratory lung motion
NASA Astrophysics Data System (ADS)
Ehrhardt, Jan; Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz
2010-03-01
We propose a method to compute a 4D statistical model of respiratory lung motion which consists of a 3D shape atlas, a 4D mean motion model and a 4D motion variability model. Symmetric diffeomorphic image registration is used to estimate subject-specific motion models, to generate an average shape and intensity atlas of the lung as anatomical reference frame and to establish inter-subject correspondence. The Log-Euclidean framework allows to perform statistics on diffeomorphic transformations via vectorial statistics on their logarithms. We apply this framework to compute the mean motion and motion variations by performing a Principal Component Analysis (PCA) on diffeomorphisms. Furthermore, we present methods to adapt the generated statistical 4D motion model to a patient-specific lung geometry and the individual organ motion. The prediction performance is evaluated with respect to motion field differences and with respect to landmark- based target registration errors. The quantitative analysis results in a mean target registration error of 3,2 +/- 1,8 mm. The results show that the new method is able to provide valuable knowledge in many fields of application.
Characterization of myocardial motion patterns by unsupervised multiple kernel learning.
Sanchez-Martinez, Sergio; Duchateau, Nicolas; Erdei, Tamas; Fraser, Alan G; Bijnens, Bart H; Piella, Gemma
2017-01-01
We propose an independent objective method to characterize different patterns of functional responses to stress in the heart failure with preserved ejection fraction (HFPEF) syndrome by combining multiple temporally-aligned myocardial velocity traces at rest and during exercise, together with temporal information on the occurrence of cardiac events (valves openings/closures and atrial activation). The method builds upon multiple kernel learning, a machine learning technique that allows the combination of data of different nature and the reduction of their dimensionality towards a meaningful representation (output space). The learning process is kept unsupervised, to study the variability of the input traces without being conditioned by data labels. To enhance the physiological interpretation of the output space, the variability that it encodes is analyzed in the space of input signals after reconstructing the velocity traces via multiscale kernel regression. The methodology was applied to 2D sequences from a stress echocardiography protocol from 55 subjects (22 healthy, 19 HFPEF and 14 breathless subjects). The results confirm that characterization of the myocardial functional response to stress in the HFPEF syndrome may be improved by the joint analysis of multiple relevant features.
Models of subjective response to in-flight motion data
NASA Technical Reports Server (NTRS)
Rudrapatna, A. N.; Jacobson, I. D.
1973-01-01
Mathematical relationships between subjective comfort and environmental variables in an air transportation system are investigated. As a first step in model building, only the motion variables are incorporated and sensitivities are obtained using stepwise multiple regression analysis. The data for these models have been collected from commercial passenger flights. Two models are considered. In the first, subjective comfort is assumed to depend on rms values of the six-degrees-of-freedom accelerations. The second assumes a Rustenburg type human response function in obtaining frequency weighted rms accelerations, which are used in a linear model. The form of the human response function is examined and the results yield a human response weighting function for different degrees of freedom.
An Inexpensive Mechanical Model for Projectile Motion
ERIC Educational Resources Information Center
Kagan, David
2011-01-01
As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…
Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.
Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max
2013-04-01
In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.
Atomic Models for Motional Stark Effects Diagnostics
Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K
2007-07-26
We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.
Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction
Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.
2015-01-01
This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047
Monitoring gait in multiple sclerosis with novel wearable motion sensors
McGinnis, Ryan S.; Seagers, Kirsten; Motl, Robert W.; Sheth, Nirav; Wright, John A.; Ghaffari, Roozbeh; Sosnoff, Jacob J.
2017-01-01
Background Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices. Methods A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA. Results Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6–2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01). Conclusion BioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking
Coriolis effects and motion sickness modelling.
Bles, W
1998-11-15
Coriolis effects are notorious in relation to disorientation and motion sickness in aircrew. A review is provided of experimental data on these Coriolis effects, including the modulatory effects of adding visual or somatosensory rotatory motion information. A vector analysis of the consequences of head movements during somatosensory, visual and/or vestibular rotatory motion stimulation revealed that the more the sensed angular velocity vector after the head movements is aligned with the gravitoinertial force vector, the less nauseating effects are experienced. It is demonstrated that this is a special case of the subjective vertical conflict theory on motion sickness that assumes that motion sickness may be provoked if a discrepancy is detected between the subjective vertical and the sensed vertical as determined on the basis of incoming sensory information.
Modeling of ship maneuvering motion using neural networks
NASA Astrophysics Data System (ADS)
Luo, Weilin; Zhang, Zhicheng
2016-12-01
In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method.
A Multi-rhythmic Oscillator Model that Can Integrate Motion Stabilization with Motion Exploration
NASA Astrophysics Data System (ADS)
Owaki, Dai; Sakai, Yoshiyuki; Ishida, Satoshi; Tero, Atsushi; Ishiguro, Akio
Central pattern generators (CPGs) have been increasingly attracting roboticists in the hope that they enable robots to realize truly supple and agile locomotion under real world constraints. Thus far, various CPG models have been proposed, particularly in terms of motion stabilization against external perturbations, i.e., limit cycle behavior. On the other hand, biological CPGs have another crucial aspect that cannot be neglected, i.e., motion exploration. Here, note that motion stabilization and motion exploration should be performed in different time-scales. Now the following questions arise: how can different time-scales be embedded into a single CPG effectively?; and what is a good mathematical tool for describing the coexistence of different time-scales? To overcome these problems, this paper introduces a novel oscillator model in which the two functions of motion stabilization and motion exploration can be seamlessly integrated by exploiting the concept of multi-rhythmicity, without relying on any hierarchical structure, which in turn enables that learning is an integral part of the motor control system. We applied this model to the learning of hopping motion as a practical example. Simulation results indicate that the robot can successfully perform online learning without the need for a separation between learning and performance phases.
Inter-fraction variations in respiratory motion models.
McClelland, J R; Hughes, S; Modat, M; Qureshi, A; Ahmad, S; Landau, D B; Ourselin, S; Hawkes, D J
2011-01-07
Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.
Image-guided tumor motion modeling and tracking
NASA Astrophysics Data System (ADS)
Zhang, J.; Wu, Y.; Liu, W.; Christensen, J.; Tai, A.; Li, A. X.
2009-02-01
Radiation therapy (RT) is an important procedure in the treatment of cancer in the thorax and abdomen. However, its efficacy can be severely limited by breathing induced tumor motion. Tumor motion causes uncertainty in the tumor's location and consequently limits the radiation dosage (for fear of damaging normal tissue). This paper describes a novel signal model for tumor motion tracking/prediction that can potentially improve RT results. Using CT and breathing sensor data, it provides a more accurate characterization of the breathing and tumor motion than previous work and is non-invasive. The efficacy of our model is demonstrated on patient data.
Kim, June-Seo; Mawass, Mohamad-Assaad; Bisig, André; Krüger, Benjamin; Reeve, Robert M; Schulz, Tomek; Büttner, Felix; Yoon, Jungbum; You, Chun-Yeol; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Swagten, Henk J M; Koopmans, Bert; Eisebitt, Stefan; Kläui, Mathias
2014-03-24
Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest that synchronous permanent displacement of multiple magnetic walls can be achieved by using transverse domain walls with identical chirality combined with regular pinning sites and an asymmetric pulse. By performing scanning transmission X-ray microscopy, we are able to experimentally demonstrate in-plane magnetized domain wall motion due to out-of-plane magnetic field pulses.
Reliability of Autonomic Responses and Malaise Across Multiple Motion Sickness Stimulation Tests
NASA Technical Reports Server (NTRS)
Stout, Cynthia S.; Toscano, William B.; Cowings, Patricia S.
1993-01-01
There is general agreement that a high degree of variability exists between subjects in their autonomic nervous system responses to motion sickness stimulation. Additionally, a paucity of data exists that examines the variability within an individual across repeated motion sickness tests. Investigators have also examined the relationship of autonomic responses to motion sickness development. These investigations have used analyses at discrete points in time to describe this relationship. This approach fails to address the time course of autonomic responses and malaise development throughout the motion sickness test. Our objectives were to examine the reliability of autonomic responses and malaise using the final minute of the motion sickness test across five testing occasions, to examine the reliability of the change in autonomic responses and the change in malaise across five testing occasions, and to examine the relationship between changes in autonomic responses and changes in malaise level across the entire motion sickness test. Our results indicate that, based on the final minute of testing, the autonomic responses of heart rate, blood volume pulse, and respiration rate are moderately stable across multiple tests. Changes in heart rate, blood volume pulse, respiration rate, and malaise throughout the test duration were less stable across the tests. We attribute this instability to variations in individual susceptibility and the error associated with estimating a measure of autonomic gain.
Multiple Kernel Learning for Vehicle Detection in Wide Area Motion Imagery
2012-07-01
Multiple Kernel Learning for Vehicle Detection in Wide Area Motion Imagery Pengpeng Liang1 Gregory Teodoro1 Haibin Ling1 Erik Blasch2 Genshe Chen3 Li...temple.edu, erik.blasch@gmail.com, genshe.chen@ieee.org Abstract—Vehicle detection in wide area motion imagery (WAMI) is an important problem in computer...the small number of pixels on target objects, and the low frame rate of the WAMI data, vehicle detection is much more challenging than the task in
Building Mathematical Models of Simple Harmonic and Damped Motion.
ERIC Educational Resources Information Center
Edwards, Thomas
1995-01-01
By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)
A test of alternative Caribbean plate relative motion models
NASA Technical Reports Server (NTRS)
Stein, Seth; Demets, Charles; Gordon, Richard G.; Brodholt, John; Argus, Don
1988-01-01
The new NUVEL-1 data set for global relative plate motions is used here to discriminate between the two prevailing models for Caribbean plate motion. One model, by Jordan (1975), assumes that North America-Caribbean motion is reflected by the spreading rate inferred from magnetic anomalies at the Cayman Spreading Center and the azimuths of nearby transforms. The other model, by Sykes et al. (1982), uses rates and azimuths inferred from the geometry of the Lesser Antilles Wadati-Benioff zone. Overall, it is found that the data fit the Jordan geometry better, that the data used in global plate motion models are more suitable than rates and azimuths inferred from the geometry of the Wadati-Benioff zone for determining relative motions, and that incorporation of all relevant plate boundaries is essential.
A Stick Motion Compensation System with a Dynamic Model
NASA Astrophysics Data System (ADS)
Suzuki, Yasuhiko; Matsubara, Atsushi; Kakino, Yoshiaki; Tsutsui, Kazuhiko
This paper deals with a stick motion compensation system. Stick motion is trajectory error that happens just after a quadrant change in circular motion on NC machine tools. Recently cylindrical machining with an end mill is often executed instead of boring machining with a bore tool. That is why the accuracy with end mill machining is becoming important. Stick motion extremely damages the accuracy and the quality of the circular parts or free form surfaces on workpieces. In the conventional compensation system, tuning parameters for each combination of radius and feed rate is needed. This research proposes a new stick motion compensation system. The new system has a dynamic model that simulates the friction. The simulated friction consists of two components. One is spring resistance in proportion to a reverse distance from a quadrant change. The other is viscous damping friction in proportion to velocity. The system can compensate stick motions suitably for wide range conditions of radii and feed rate.
(Non-)geodesic motion in chameleon Brans Dicke model
NASA Astrophysics Data System (ADS)
Saaidi, K.
2013-06-01
Based on Das and Banerjee (Phys. Rev D 78:043512, 2008), we assume there is a non-minimal coupling between scalar field and matter in the Brans-Dicke model. We analyzes the motion of different matter such as, massless scalar field, photon, massless perfect fluid (dust), massive perfect fluid and point particle matter in this study. We show that the motion of massless scalar field and photon can satisfy null geodesic motion only in high frequency limit. Also we find that the motion of the dust and massive perfect fluid is geodesic for L m =- P and it is non-geodesic for L m = ρ. Finally, we study the motion of point particle and show that the motion of this kind of matter is like massive perfect fluid.
A simple model for strong ground motions and response spectra
Safak, Erdal; Mueller, Charles; Boatwright, John
1988-01-01
A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.
Local discretization method for overdamped Brownian motion on a potential with multiple deep wells
NASA Astrophysics Data System (ADS)
Nguyen, P. T. T.; Challis, K. J.; Jack, M. W.
2016-11-01
We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.
Multiple Model Methods for Cost Function Based Multiple Hypothesis Trackers
2006-03-01
MHT’s Gaussian mixture with Multiple Model Adaptive Estimators (MMAEs) or Interacting Multiple Model (IMM) estimators, and replacing the elemental...Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.3.1 Dynamics Design Models . . . . . . . . . . . . . . . 2-3 2.3.2 Propagation ...Track Life of Various Merging and Pruning Algorithms . . 2-30 3.1. Constant Velocity Truth Model Driven by White Gaussian Noise . . 3-3 3.2. Constant
Multiple-camera/motion stereoscopy for range estimation in helicopter flight
NASA Technical Reports Server (NTRS)
Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.
1993-01-01
Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.
Unsteady aerodynamic simulation of multiple bodies in relative motion: A prototype method
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1989-01-01
A prototype method for time-accurate simulation of multiple aerodynamic bodies in relative motion is presented. The method is general and features unsteady chimera domain decomposition techniques and an implicit approximately factored finite-difference procedure to solve the time-dependent thin-layer Navier-Stokes equations. The method is applied to a set of two- and three- dimensional test problems to establish spatial and temporal accuracy, quantify computational efficiency, and begin to test overall code robustness.
Unsteady aerodynamic modeling for arbitrary motions
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Ashley, H.; Breakwell, J. V.
1977-01-01
A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.
Ground motion data for International Collider models
Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab
2007-11-01
The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.
An Architectural Model of Visual Motion Understanding
1989-08-01
responsible for at least some long-range apparent motion phenomena (Watson and Ahumada , 19851. The logical conclusion to this line of argument would be to...x direction. This idea is the basis of the work by Heeger mentioned in the previous section. Watson and Ahumada [1985] propose computing the sum of...oscillates at a frequency related to local velocity. Watson and Ahumada provide a detailed description of how the filters are constructed and how
Meschini, Giorgia; Seregni, Matteo; Pella, Andrea; Ciocca, Mario; Fossati, Piero; Valvo, Francesca; Riboldi, Marco; Baroni, Guido
2017-02-01
At the Italian National Centre for Oncologic Hadrontherapy (CNAO) patients with upper-abdominal tumours are being treated with carbon ion therapy, adopting the respiratory gating technique in combination with layered rescanning and abdominal compression to mitigate organ motion. Since online imaging of the irradiated volume is not feasible, this study proposes a modelling approach for the estimation of residual motion of the target within the gating window. The model extracts a priori respiratory motion information from the planning 4DCT using deformable image registration (DIR), then combines such information with the external surrogate signal recorded during dose delivery. This provides estimation of a CT volume corresponding to any given respiratory phase measured during treatment. The method was applied for the retrospective estimation of tumour residual motion during irradiation, considering 16 patients treated at CNAO with the respiratory gating protocol. The estimated tumour displacement, calculated with respect to the reference end-exhale position, was always limited (average displacement is 0.32±0.65mm over all patients) and below the maximum motion defined in the treatment plan. This supports the hypothesis of target position reproducibility, which is the crucial assumption in the gating approach. We also demonstrated the use of the model as a simulation tool to establish a patient-specific relationship between residual motion and the width of the gating window. In conclusion, the implemented method yields an estimation of the repeatability of the internal anatomy configuration during gated treatments, which can be used for further studies concerning the dosimetric impact of the estimated residual organ motion.
On a PCA-based lung motion model
Li, Ruijiang; Lewis, John H; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B
2014-01-01
Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772–81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921–9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within
On a PCA-based lung motion model
NASA Astrophysics Data System (ADS)
Li, Ruijiang; Lewis, John H.; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A.; Jiang, Steve B.
2011-09-01
Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1
A true polar wander model for Neoproterozoic plate motions
Ripperdan, R.L. )
1992-01-01
Recent paleogeographic reconstructions for the interval 750--500 Ma (Neoproterozoic to Late Cambrian) require rapid rates of plate motion and/or rotation around an equatorial Euler pole to accommodate reconstructions for the Early Paleozoic. Motions of this magnitude appear to be very uncommon during the Phanerozoic. A model for plate motions based on the hypothesis that discrete intervals of rapid true polar wander (RTPW) occurred during the Neoproterozoic can account for the paleogeographic changes with minimum amounts of plate motion. The model uses the paleogeographic reconstructions of Hoffman (1991). The following constraints were applied during derivation of the model: (1) relative motions between major continental units were restricted to be combinations of great circle or small circle translations with Euler poles of rotation = spin axis; (2) maximum rates of relative translational plate motion were 0.2 m/yr. Based on these constraints, two separate sets of synthetic plate motion trajectories were determined. The sequence of events in both can be summarized as: (1) A rapid true polar wander event of ca 90[degree] rafting a supercontinent to the spin axis; (2) breakup of the polar supercontinent into two fragments, one with the Congo, West Africa, Amazonia, and Baltica cratons, the other with the Laurentia, East Gondwana, and Kalahari cratons; (3) great circle motion of the blocks towards the equator; (4) small circle motion leading to amalgamation of Gondwana and separation of Laurentia and Baltica. In alternative 1, rifting initiates between East Antarctica and Laurentia and one episode of RTPW is required. Alternative 2 requires two episodes of RTPW; and that rifting occurred first along the eastern margin and later along the western margin of Laurentia. Synthetic plate motion trajectories are compared to existing paleomagnetic and geological data, and implications of the model for paleoclimatic changes during the Neoproterozoic are discussed.
Models of Multiple System Atrophy
Fellner, Lisa; Wenning, Gregor K.; Stefanova, Nadia
2016-01-01
Multiple system atrophy (MSA) is a predominantly sporadic, adult-onset, fatal neurodegenerative disease of unknown etiology. MSA is characterized by autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal signs in any combination. MSA belongs to a group of neurodegenerative disorders termed α-synucleinopathies, which also include Parkinson’s disease and dementia with Lewy bodies. Their common pathological feature is the occurrence of abnormal α-synuclein positive inclusions in neurons or glial cells. In MSA, the main cell type presenting aggregates composed of α-synuclein are oligodendroglial cells. This pathological hallmark, also called glial cytoplasmic inclusions (GCIs), is associated with progressive and profound neuronal loss in various regions of the brain. The development of animal models of MSA is justified by the limited understanding of the mechanisms of neurodegeneration and GCIs formation, which is paralleled by a lack of therapeutic strategies. Two main types of rodent models have been generated to replicate different features of MSA neuropathology. On one hand, neurotoxin-based models have been produced to reproduce neuronal loss in substantia nigra pars compacta and striatum. On the other hand, transgenic mouse models with overexpression of α-synuclein in oligodendroglia have been used to reproduce GCIs-related pathology. This chapter gives an overview of the atypical Parkinson’s syndrome MSA and summarizes the currently available MSA animal models and their relevance for pre-clinical testing of disease-modifying therapies. PMID:24338664
Estimating joint kinematics from skin motion observation: modelling and validation.
Wolf, Alon; Senesh, Merav
2011-11-01
Modelling of soft tissue motion is required in many areas, such as computer animation, surgical simulation, 3D motion analysis and gait analysis. In this paper, we will focus on the use of modelling of skin deformation during 3D motion analysis. The most frequently used method in 3D human motion analysis involves placing markers on the skin of the analysed segment which is composed of the rigid bone and the surrounding soft tissues. Skin and soft tissue deformations introduce a significant artefact which strongly influences the resulting bone position, orientation and joint kinematics. For this study, we used a statistical solid dynamics approach which is a combination of several previously reported tools: the point cluster technique (PCT) and a Kalman filter which was added to the PCT. The methods were tested and evaluated on controlled human-arm motions, using an optical motion capture system (Vicon(TM)). The addition of a Kalman filter to the PCT for rigid body motion estimation results in a smoother signal that better represents the joint motion. Calculations indicate less signal distortion than when using a digital low-pass filter. Furthermore, adding a Kalman filter to the PCT substantially reduces the dispersion of the maximal and minimal instantaneous frequencies. For controlled human movements, the result indicated that adding a Kalman filter to the PCT produced a more accurate signal. However, it could not be concluded that the proposed Kalman filter is better than a low-pass filter for estimation of the motion. We suggest that implementation of a Kalman filter with a better biomechanical motion model will be more likely to improve the results.
Detecting abandoned objects using interacting multiple models
NASA Astrophysics Data System (ADS)
Becker, Stefan; Münch, David; Kieritz, Hilke; Hübner, Wolfgang; Arens, Michael
2015-10-01
In recent years, the wide use of video surveillance systems has caused an enormous increase in the amount of data that has to be stored, monitored, and processed. As a consequence, it is crucial to support human operators with automated surveillance applications. Towards this end an intelligent video analysis module for real-time alerting in case of abandoned objects in public spaces is proposed. The overall processing pipeline consists of two major parts. First, person motion is modeled using an Interacting Multiple Model (IMM) filter. The IMM filter estimates the state of a person according to a finite-state, discrete-time Markov chain. Second, the location of persons that stay at a fixed position defines a region of interest, in which a nonparametric background model with dynamic per-pixel state variables identifies abandoned objects. In case of a detected abandoned object, an alarm event is triggered. The effectiveness of the proposed system is evaluated on the PETS 2006 dataset and the i-Lids dataset, both reflecting prototypical surveillance scenarios.
ERIC Educational Resources Information Center
Brand, Judith, Ed.
2002-01-01
This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…
ERIC Educational Resources Information Center
Gerhart, James B.; Nussbaum, Rudi H.
This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…
An Approach to Automatic Motion Synthesis Harmonized with Music for Multiple Objects
NASA Astrophysics Data System (ADS)
Wang, Qi; Nakatani, Mie; Nishida, Shogo
This paper proposed a research approach to automatic choreography synthesis based on SMF(Standard Midi File) for multiple animated figures. Based on the K.Hevner’s theory, 8 types of emotion in each beat can be extracted from music structure elements, such as tempo, key, rythm, melody, harmony, pitch, which can be computed from SMF. The time of one beat is limited to transmit the emotion to human. By the analysis of emotion, a music can be integrated to several time intervals, every which includes several continuous beats. The top value of synthetic emotion vector represents the emotion type of the interval. Based on the experiment result of C.Matsumoto, 14 motion factors can be mapped from the emotion of interval. According to the 14 motion factors, the macro-motions at the terminals of every interval, and the micromotions between every interval can be generated by mapping rules. We made a prototype system and did a subjective evaluation experiment. The result is fairly good at the congruity between generated motions and given emotion music. A successful research to solve these issues should lead to aid the designation of 3DCG animation.
Kang, Yue; Wang, Bo; Dai, Shuge; Liu, Guanlin; Pu, Yanping; Hu, Chenguo
2015-09-16
A folded elastic strip-based triboelectric nanogenerator (FS-TENG) made from two folded double-layer elastic strips of Al/PET and PTFE/PET can achieve multiple functions by low frequency mechanical motion. A single FS-TENG with strip width of 3 cm and length of 27 cm can generate a maximum output current, open-circuit voltage, and peak power of 55 μA, 840 V, and 7.33 mW at deformation frequency of 4 Hz with amplitude of 2.5 cm, respectively. This FS-TENG can work as a weight sensor due to its good elasticity. An integrated generator assembled by four FS-TENGs (IFS-TENG) can harvest the energy of human motion like flapping hands and walking steps. In addition, the IFS-TENG combined with electromagnetically induced electricity can achieve a completely self-driven doorbell with flashing lights. Moreover, a box-like generator integrated by four IFS-TENGs inside can work in horizontal or random motion modes and can be improved to harvest energy in all directions. This work promotes the research of completely self-driven systems and energy harvesting of human motion for applications in our daily life.
NASA Astrophysics Data System (ADS)
Gomonay, O.; Kläui, M.; Sinova, J.
2016-10-01
Future applications of antiferromagnets (AFs) in many spintronics devices rely on the precise manipulation of domain walls. The conventional approach using static magnetic fields is inefficient due to the low susceptibility of AFs. Recently proposed electrical manipulation with spin-orbit torques is restricted to metals with a specific crystal structure. Here, we propose an alternative, broadly applicable approach: using asymmetric magnetic field pulses to induce controlled ratchet motion of AF domain walls. The efficiency of this approach is based on three peculiarities of AF dynamics. First, a time-dependent magnetic field couples with an AF order parameter stronger than a static magnetic field, which leads to higher mobility of the domain walls. Second, the rate of change of the magnetic field couples with the spatial variation of the AF order parameter inside the domain, and this enables a synchronous motion of multiple domain walls with the same structure. Third, tailored asymmetric field pulses in combination with static friction can prevent backward motion of domain walls and thus lead to the desired controlled ratchet effect. The proposed use of an external field, rather than internal spin-orbit torques, avoids any restrictions on size, conductivity, and crystal structure of the AF material. We believe that our approach paves a way for the development of AF-based devices based on the controlled motion of AF domain walls.
Modeling of earthquake ground motion in the frequency domain
NASA Astrophysics Data System (ADS)
Thrainsson, Hjortur
In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation
New Models of Mechanisms for the Motion Transformation
NASA Astrophysics Data System (ADS)
Petrović, Tomislav; Ivanov, Ivan
In this paper two new mechanisms for the motion transformations are presented: screw mechanism for the transformation of one-way circular into two-way linear motion with impulse control and worm-planetary gear train with extremely height gear ratio. Both mechanisms represent new models of construction solutions for which patent protection has been achieved. These mechanisms are based on the application of the differential gearbox with two degrees of freedom. They are characterized by series of kinematic impacts at motion transformation and the possibility of temporary or permanent changes in the structure by subtracting the redundant degree of freedom. Thus the desired characteristic of the motion transformation is achieved. For each mechanism separately the principles of motion and transformation are described and the basic equations that describe the interdependence of geometric and kinematic and kinetic parameters of the system dynamics are given. The basic principles of controlling new mechanisms for motion transformation have been pointed to and the basic constructional performances which may find practical application have been given. The physical models of new systems of motion transformation have been designed and their operation has been presented. Performed experimental researches confirmed the theoretical results and very favorable kinematic characteristics of the mechanisms.
Spherical shell model description of rotational motion
NASA Astrophysics Data System (ADS)
Zuker, A. P.; Retamosa, J.; Poves, A.; Caurier, E.
1995-10-01
Exact diagonalizations with a realistic interaction show that configurations with four neutrons in a major shell and four protons in another-or the same-major shell, behave systematically as backbending rotors. The dominance of the q.q component of the interaction is related to an approximate ``quasi-SU3'' symmetry. It is suggested that the onset of rotational motion in the rare earth nuclei is due to the promotion of the eight particle blocks to the major shells above the ones currently filling. Assuming a ``pseudo-SU3'' coupling for the particles in the lower orbits, it is possible to account remarkably well for the observed B(E2) rates at the beginning of the region.
Motion in Brane World Models: The Bazanski Approach
Kahil, M.E.
2007-11-20
Recently, path equations have been obtained for charged and spinning objects in brane world models, using a modified Bazanski Lagrangian. In this study, path deviation equations of extended objects are derived. The significance of moving extended objects in brane world models is examined. Motion in non-symmetric brane world models is also considered.
The Long Decay Model of One-Dimensional Projectile Motion
ERIC Educational Resources Information Center
Lattery, Mark Joseph
2008-01-01
This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…
Sparse Modeling of Human Actions from Motion Imagery
2011-09-02
classification [23, 24], hyperspectral imag- ing [5, 6], among numerous other applications. It has also been applied recently for motion imagery analysis... CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 26 19a. NAME OF RESPONSIBLE PERSON a. REPORT...Actions from Motion Imagery Alexey Castrodad and Guillermo Sapiro ∗ September 2, 2011 Abstract An efficient sparse modeling pipeline for the classification
A model describing vestibular detection of body sway motion.
NASA Technical Reports Server (NTRS)
Nashner, L. M.
1971-01-01
An experimental technique was developed which facilitated the formulation of a quantitative model describing vestibular detection of body sway motion in a postural response mode. All cues, except vestibular ones, which gave a subject an indication that he was beginning to sway, were eliminated using a specially designed two-degree-of-freedom platform; body sway was then induced and resulting compensatory responses at the ankle joints measured. Hybrid simulation compared the experimental results with models of the semicircular canals and utricular otolith receptors. Dynamic characteristics of the resulting canal model compared closely with characteristics of models which describe eye movement and subjective responses to body rotational motions. The average threshold level, in the postural response mode, however, was considerably lower. Analysis indicated that the otoliths probably play no role in the initial detection of body sway motion.
Local harmonic motion monitoring of focused ultrasound surgery--a simulation model.
Heikkilä, Janne; Curiel, Laura; Hynynen, Kullervo
2010-01-01
In this paper, a computational model for localized harmonic motion (LHM) imaging-based monitoring of high-intensity focused ultrasound surgery (FUS) is presented. The LHM technique is based on a focused, time-varying ultrasound radiation force excitation, which induces local oscillatory motions at the focal region. These vibrations are tracked, using pulse-echo imaging, and then, used to estimate the mechanical properties of the sonication region. LHM is feasible for FUS monitoring because changes in the material properties during the coagulation process affect the measured displacements. The presented model includes separate models to simulate acoustic sonication fields, sonication-induced temperature elevation and mechanical motion, and pulse-echo imaging of the induced motions. These 3-D simulation models are based on Rayleigh-Sommerfield integral, finite element, and spatial impulse response methods. Simulated-tissue temperature elevation and mechanical motion were compared with previously published in vivo measurements. Finally, the simulation model was used to simulate coagulation and LHM monitoring, as would occur with multiple, neighbouring sonication locations covering a large tumor.
O'Gorman, Lawrence; Yang, Guang
2016-04-15
Spatiotemporal activity maps have been used to visualize where activity occurs over time, and are often displayed as pseudo-color heat maps. Our multi-dimensional activity map includes the following motion features: density, direction, bi-direction, velocity, and dwell. The primary contribution of this paper is to describe a set of mappings that will transform activity maps captured from cameras of different perspectives to ones from a single orthographic perspective. The purpose of this is to be able to view and compare multiple activity maps from different cameras views over a wide area with consistently comparable data. A second contribution is that most mappings are based upon statistically learned camera perspectives, to minimize manual camera calibration. We demonstrate mapping results with multiple video datasets and describe applications for visualization and wide-area spatial probability estimation.
Shahriari, Mohammadali; Biglarbegian, Mohammad
2016-12-09
This paper presents a new conflict resolution methodology for multiple mobile robots while ensuring their motion-liveness, especially for cluttered and dynamic environments. Our method constructs a mathematical formulation in a form of an optimization problem by minimizing the overall travel times of the robots subject to resolving all the conflicts in their motion. This optimization problem can be easily solved through coordinating only the robots' speeds. To overcome the computational cost in executing the algorithm for very cluttered environments, we develop an innovative method through clustering the environment into independent subproblems that can be solved using parallel programming techniques. We demonstrate the scalability of our approach through performing extensive simulations. Simulation results showed that our proposed method is capable of resolving the conflicts of 100 robots in less than 1.23 s in a cluttered environment that has 4357 intersections in the paths of the robots. We also developed an experimental testbed and demonstrated that our approach can be implemented in real time. We finally compared our approach with other existing methods in the literature both quantitatively and qualitatively. This comparison shows while our approach is mathematically sound, it is more computationally efficient, scalable for very large number of robots, and guarantees the live and smooth motion of robots.
Elements of an improved model of debris‐flow motion
Iverson, Richard M.
2009-01-01
A new depth‐averaged model of debris‐flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore‐fluid pressure. Non‐hydrostatic pore‐fluid pressure is produced by dilatancy, a state‐dependent property that links the depth‐averaged shear rate and volumetric strain rate of the granular phase. Pore‐pressure changes caused by shearing allow the model to exhibit rate‐dependent flow resistance, despite the fact that the basal shear traction involves only rate‐independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore‐pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states.
Coupled grain boundary motion in aluminium: the effect of structural multiplicity
Cheng, Kuiyu; Zhang, Liang; Lu, Cheng; Tieu, Kiet
2016-01-01
The shear-induced coupled grain boundary motion plays an important role in the deformation of nanocrystalline (NC) materials. It has been known that the atomic structure of the grain boundary (GB) is not necessarily unique for a given set of misorientation and inclination of the boundary plane. However, the effect of the structural multiplicity of the GB on its coupled motion has not been reported. In the present study we investigated the structural multiplicity of the symmetric tilt Σ5(310) boundary in aluminium and its influence on the GB behaviour at a temperature range of 300 K–600 K using molecular dynamic simulations. Two starting atomic configurations were adopted in the simulations which resulted in three different GB structures at different temperatures. Under the applied shear deformation each GB structure exhibited its unique GB behaviour. A dual GB behaviour, namely the transformation of one GB behaviour to another during deformation, was observed for the second starting configuration at a temperature of 500 K. The atomistic mechanisms responsible for these behaviour were analysed in detail. The result of this study implicates a strong relationship between GB structures and their behaviour, and provides a further information of the grain boundary mediated plasticity in nanocrystalline materials. PMID:27140343
Turbulent motion of mass flows. Mathematical modeling
NASA Astrophysics Data System (ADS)
Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana
2016-04-01
New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362
Multiple Indicator Stationary Time Series Models.
ERIC Educational Resources Information Center
Sivo, Stephen A.
2001-01-01
Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…
Current plate motions. [continental groupings and global modelling
NASA Technical Reports Server (NTRS)
Demets, C.; Gordon, R. G.; Argus, D. F.; Stein, S.
1990-01-01
A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used. Tectonic implications of the patterns that emerged from the results are discussed. It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; e.g., between the Indian and Australian plates and between the North American and South American plates. Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates.
Designing the optimal convolution kernel for modeling the motion blur
NASA Astrophysics Data System (ADS)
Jelinek, Jan
2011-06-01
Motion blur acts on an image like a two dimensional low pass filter, whose spatial frequency characteristic depends both on the trajectory of the relative motion between the scene and the camera and on the velocity vector variation along it. When motion during exposure is permitted, the conventional, static notions of both the image exposure and the scene-toimage mapping become unsuitable and must be revised to accommodate the image formation dynamics. This paper develops an exact image formation model for arbitrary object-camera relative motion with arbitrary velocity profiles. Moreover, for any motion the camera may operate in either continuous or flutter shutter exposure mode. Its result is a convolution kernel, which is optimally designed for both the given motion and sensor array geometry, and hence permits the most accurate computational undoing of the blurring effects for the given camera required in forensic and high security applications. The theory has been implemented and a few examples are shown in the paper.
Physiological model of motion analysis for machine vision
NASA Astrophysics Data System (ADS)
Young, Richard A.; Lesperance, Ronald M.
1993-09-01
We studied the spatio-temporal shape of `receptive fields' of simple cells in the monkey visual cortex. Receptive fields are maps of the regions in space and time that affect a cell's electrical responses. Fields with no change in shape over time responded to all directions of motion; fields with changing shape over time responded to only some directions of motion. A Gaussian Derivative (GD) model fit these fields well, in a transformed variable space that aligned the centers and principal axes of the field and model in space-time. The model accounts for fields that vary in orientation, location, spatial scale, motion properties, and number of lobes. The model requires only ten parameters (the minimum possible) to describe fields in two dimensions of space and one of time. A difference-of-offset-Gaussians (DOOG) provides a plausible physiological means to form GD model fields. Because of its simplicity, the GD model improves the efficiency of machine vision systems for analyzing motion. An implementation produced robust local estimates of the direction and speed of moving objects in real scenes.
MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems
NASA Astrophysics Data System (ADS)
Kopecky, Ken; Winer, Eliot
2014-06-01
Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.
Modeling Multiple Causes of Carcinogenesis
Jones, T D
1999-01-24
An array of epidemiological results and databases on test animal indicate that risk of cancer and atherosclerosis can be up- or down-regulated by diet through a range of 200%. Other factors contribute incrementally and include the natural terrestrial environment and various human activities that jointly produce complex exposures to endotoxin-producing microorganisms, ionizing radiations, and chemicals. Ordinary personal habits and simple physical irritants have been demonstrated to affect the immune response and risk of disease. There tends to be poor statistical correlation of long-term risk with single agent exposures incurred throughout working careers. However, Agency recommendations for control of hazardous exposures to humans has been substance-specific instead of contextually realistic even though there is consistent evidence for common mechanisms of toxicological and carcinogenic action. That behavior seems to be best explained by molecular stresses from cellular oxygen metabolism and phagocytosis of antigenic invasion as well as breakdown of normal metabolic compounds associated with homeostatic- and injury-related renewal of cells. There is continually mounting evidence that marrow stroma, comprised largely of monocyte-macrophages and fibroblasts, is important to phagocytic and cytokinetic response, but the complex action of the immune process is difficult to infer from first-principle logic or biomarkers of toxic injury. The many diverse database studies all seem to implicate two important processes, i.e., the univalent reduction of molecular oxygen and breakdown of aginuine, an amino acid, by hydrolysis or digestion of protein which is attendant to normal antigen-antibody action. This behavior indicates that protection guidelines and risk coefficients should be context dependent to include reference considerations of the composite action of parameters that mediate oxygen metabolism. A logic of this type permits the realistic common-scale modeling of
Domain-wall motion in random potential and hysteresis modeling
Pasquale, M.; Basso, V.; Bertotti, G.; Jiles, D.C.; Bi, Y.
1998-06-01
Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles{endash}Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present. {copyright} {ital 1998 American Institute of Physics.}
Multi-modal gesture recognition using integrated model of motion, audio and video
NASA Astrophysics Data System (ADS)
Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko
2015-07-01
Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.
Multiple Imputation Strategies for Multiple Group Structural Equation Models
ERIC Educational Resources Information Center
Enders, Craig K.; Gottschall, Amanda C.
2011-01-01
Although structural equation modeling software packages use maximum likelihood estimation by default, there are situations where one might prefer to use multiple imputation to handle missing data rather than maximum likelihood estimation (e.g., when incorporating auxiliary variables). The selection of variables is one of the nuances associated…
Oceanic Excitations On Polar Motion: A Cross Comparison Among Models
NASA Astrophysics Data System (ADS)
Zhou, Y.; Chen, J.; Liao, X.; Wilson, C. R.
2004-12-01
Recent studies based on various oceanic general circulation models (OGCMs) demonstrated that the oceans are a major contributor to polar motion excitations. In this paper, we analyze and compare observed non-atmospheric polar motion excitations with oceanic angular momentum (OAM) variations determined from four OGCMs, which include the parallel ocean climate model (POCM), a barotropic ocean model (BOM), the Estimating the Circulation and Climate of the Ocean (ECCO) non-data-assimilating model (ECCO-NDA), and the ECCO data-assimilating model (ECCO-DA). The data to be analyzed span a 5-year¡_s overlapped period from 1993 to 1997. At annual time scale, these four OAM estimates do not agree well with each other, while POCM shows relatively larger discrepancies than other three models. At intraseasonal time scales, ECCO-DA yields the best agreement with observations, and reduces the variance of non-atmospheric excitations by about 60%, 10-20% more than those explained by other three models. However, at the very short periods of 4-20 days, the BOM estimates could explain about half of the observed variance, twice as much as that by ECCO-NDA, and also shows considerably better correlation with observations. Due to different modeling schemes and methods, significant discrepancies could arise with respect to the quantity of modeling large-scale oceanic mass redistribution and current variation. A clear understanding of global oceanic contributions to polar motion excitation still remains a challenge.
Dynamical modelling of coordinated multiple robot systems
NASA Technical Reports Server (NTRS)
Hayati, Samad
1987-01-01
The state of the art in the modeling of the dynamics of coordinated multiple robot manipulators is summarized and various problems related to this subject are discussed. It is recognized that dynamics modeling is a component used in the design of controllers for multiple cooperating robots. As such, the discussion addresses some problems related to the control of multiple robots. The techniques used to date in the modeling of closed kinematic chains are summarized. Various efforts made to date for the control of coordinated multiple manipulators is summarized.
Simulation Studies of the NLC with Improved Ground Motion Models
Seryi, Andrei
2000-08-31
The performance of various systems of the Next Linear Collider (NLC) have been studied in terms of ground motion using recently developed models. In particular, the performance of the beam delivery system is discussed. Plans to evaluate the operation of the main linac beam-based alignment and feedback systems are also outlined.
Kinematic Model of River Ice Motion During Dynamic Breakup
1993-09-01
Texas: Gulf Publish- nal of Computational Physics, 101: 130-139. ing Co. Shen, H.T. and Y.C. Chen (1992) Lagrangian discrete Calkins , DJ. (1978...OTIC9 ~jjELECTE0 lV 919 3 AD-A273 141 * Kinematic Model of River Ice Motion During Dynamic Breakup Michael G . Ferrick, Patricia B. Weyrick and David...Bottom) Looking across the river during brash ice motion at about 1 m /s. (Photos by M . Ferrick.) For conversion of SI metric units to U.S./British
Oceanic excitations on polar motion: a cross comparison among models
NASA Astrophysics Data System (ADS)
Zhou, Y. H.; Chen, J. L.; Liao, X. H.; Wilson, C. R.
2005-08-01
Recent studies based on various ocean general circulation models (OGCMs) demonstrate that the oceans are a major contributor to polar motion excitations. In this paper, we analyse and compare observed non-atmospheric polar motion excitations with oceanic angular momentum (OAM) variations determined from four OGCMs, which include the parallel ocean climate model (POCM), a barotropic ocean model (BOM), the Estimating the Circulation and Climate of the Ocean (ECCO) non-data-assimilating model (ECCO-NDA) and the ECCO data-assimilating model (ECCO-DA). The data to be analysed span a 5-yr overlapped period from 1993 to 1997. At annual timescale, considerable discrepancies exist between POCM and the other three models, which result mainly from differences in annual components of the forcing wind fields. At semi-annual timescale, however, POCM shows better phase agreement with observed non-atmospheric polar motion excitation than the other three ocean models. At intraseasonal timescales, ECCO-DA yields better agreement with observations, and reduces the variance of non-atmospheric excitations by ~60 per cent, 10-20 per cent more than those explained by the other three models. However, at the very short periods of 4-20 days, the BOM estimates could explain about half of the observed variance, twice as much as that by ECCO-NDA, and also shows considerably better correlation with observations. Due to different modelling schemes and methods, significant discrepancies could arise with respect to the quality of modelling large-scale oceanic mass redistribution and current variation. A complete understanding of global oceanic contributions to polar motion excitation still remains a challenge.
Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy
NASA Astrophysics Data System (ADS)
Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido
2015-02-01
The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.
Collective motion of cells: from experiments to models.
Méhes, Előd; Vicsek, Tamás
2014-09-01
Swarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper. In addition to presenting the most appealing results from the quickly growing related literature we also deliver a critical discussion of the emerging picture and summarize our present understanding of collective motion at the cellular level. Collective motion of cells plays an essential role in a number of experimental and real-life situations. In most cases the coordinated motion is a helpful aspect of the given phenomenon and results in making a related process more efficient (e.g., embryogenesis or wound healing), while in the case of tumor cell invasion it appears to speed up the progression of the disease. In these mechanisms cells both have to be motile and adhere to one another, the adherence feature being the most specific to this sort of collective behavior. One of the central aims of this review is to present the related experimental observations and treat them in light of a few basic computational models so as to make an interpretation of the phenomena at a quantitative level as well.
Champneys, A. R.; Friswell, M. I.
2016-01-01
Sudden onset of violent chattering or whirling rotor–stator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronization condition previously reported for a single disc system. The synchronization formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the damping is sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further, secondary bifurcations can also occur within each family, altering the nature of the response and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice. PMID:27616927
Shaw, A D; Champneys, A R; Friswell, M I
2016-08-01
Sudden onset of violent chattering or whirling rotor-stator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronization condition previously reported for a single disc system. The synchronization formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the damping is sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further, secondary bifurcations can also occur within each family, altering the nature of the response and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice.
NASA Astrophysics Data System (ADS)
Shaw, A. D.; Champneys, A. R.; Friswell, M. I.
2016-08-01
Sudden onset of violent chattering or whirling rotor-stator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronization condition previously reported for a single disc system. The synchronization formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the damping is sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further, secondary bifurcations can also occur within each family, altering the nature of the response and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice.
A personalized biomechanical model for respiratory motion prediction.
Fuerst, B; Mansi, T; Zhang, Jianwen; Khurd, P; Declerck, J; Boettger, T; Navab, Nassir; Bayouth, J; Comaniciu, Dorin; Kamen, A
2012-01-01
Time-resolved imaging of the thorax or abdominal area is affected by respiratory motion. Nowadays, one-dimensional respiratory surrogates are used to estimate the current state of the lung during its cycle, but with rather poor results. This paper presents a framework to predict the 3D lung motion based on a patient-specific finite element model of respiratory mechanics estimated from two CT images at end of inspiration (EI) and end of expiration (EE). We first segment the lung, thorax and sub-diaphragm organs automatically using a machine-learning algorithm. Then, a biomechanical model of the lung, thorax and sub-diaphragm is employed to compute the 3D respiratory motion. Our model is driven by thoracic pressures, estimated automatically from the EE and EI images using a trust-region approach. Finally, lung motion is predicted by modulating the thoracic pressures. The effectiveness of our approach is evaluated by predicting lung deformation during exhale on five DIR-Lab datasets. Several personalization strategies are tested, showing that an average error of 3.88 +/- 1.54 mm in predicted landmark positions can be achieved. Since our approach is generative, it may constitute a 3D surrogate information for more accurate medical image reconstruction and patient respiratory analysis.
Moving vehicles segmentation based on Gaussian motion model
NASA Astrophysics Data System (ADS)
Zhang, Wei; Fang, Xiang Z.; Lin, Wei Y.
2005-07-01
Moving objects segmentation is a challenge in computer vision. This paper focuses on the segmentation of moving vehicles in dynamic scene. We analyses the psychology of human vision and present a framework for segmenting moving vehicles in the highway. The proposed framework consists of two parts. Firstly, we propose an adaptive background update method in which the background is updated according to the change of illumination conditions and thus can adapt to the change of illumination sensitively. Secondly, we construct a Gaussian motion model to segment moving vehicles, in which the motion vectors of the moving pixels are modeled as a Gaussian model and an on-line EM algorithm is used to update the model. The Gaussian distribution of the adaptive model is elevated to determine which moving vectors result from moving vehicles and which from other moving objects such as waving trees. Finally, the pixels with motion vector result from the moving vehicles are segmented. Experimental results of several typical scenes show that the proposed model can detect the moving vehicles correctly and is immune from influence of the moving objects caused by the waving trees and the vibration of camera.
Two vortex-blob regularization models for vortex sheet motion
NASA Astrophysics Data System (ADS)
Sohn, Sung-Ik
2014-04-01
Evolving vortex sheets generally form singularities in finite time. The vortex blob model is an approach to regularize the vortex sheet motion and evolve past singularity formation. In this paper, we thoroughly compare two such regularizations: the Krasny-type model and the Beale-Majda model. It is found from a linear stability analysis that both models have exponentially decaying growth rates for high wavenumbers, but the Beale-Majda model has a faster decaying rate than the Krasny model. The Beale-Majda model thus gives a stronger regularization to the solution. We apply the blob models to the two example problems: a periodic vortex sheet and an elliptically loaded wing. The numerical results show that the solutions of the two models are similar in large and small scales, but are fairly different in intermediate scales. The sheet of the Beale-Majda model has more spiral turns than the Krasny-type model for the same value of the regularization parameter δ. We give numerical evidences that the solutions of the two models agree for an increasing amount of spiral turns and tend to converge to the same limit as δ is decreased. The inner spiral turns of the blob models behave differently with the outer turns and satisfy a self-similar form. We also examine irregular motions of the sheet at late times and find that the irregular motions shrink as δ is decreased. This fact suggests a convergence of the blob solution to the weak solution of infinite regular spiral turns.
Manifold learning for object tracking with multiple nonlinear models.
Nascimento, Jacinto C; Silva, Jorge G; Marques, Jorge S; Lemos, Joao M
2014-04-01
This paper presents a novel manifold learning algorithm for high-dimensional data sets. The scope of the application focuses on the problem of motion tracking in video sequences. The framework presented is twofold. First, it is assumed that the samples are time ordered, providing valuable information that is not presented in the current methodologies. Second, the manifold topology comprises multiple charts, which contrasts to the most current methods that assume one single chart, being overly restrictive. The proposed algorithm, Gaussian process multiple local models (GP-MLM), can deal with arbitrary manifold topology by decomposing the manifold into multiple local models that are probabilistic combined using Gaussian process regression. In addition, the paper presents a multiple filter architecture where standard filtering techniques are integrated within the GP-MLM. The proposed approach exhibits comparable performance of state-of-the-art trackers, namely multiple model data association and deep belief networks, and compares favorably with Gaussian process latent variable models. Extensive experiments are presented using real video data, including a publicly available database of lip sequences and left ventricle ultrasound images, in which the GP-MLM achieves state of the art results.
Developments in Ground-Motion Modeling in Eastern North America
NASA Astrophysics Data System (ADS)
Atkinson, G. M.; Boore, D. M.
2012-12-01
Recent well-recorded earthquakes in Eastern North America (ENA) have led us to re-evaluate concepts that have been "standard fare" in the development of ground-motion prediction equations (GMPEs) for ENA for decades, including all published GMPEs that are used in current practice (e.g. Atkinson and Boore, 2011, 2006, 1995; Pezeshk et al., 2011; Campbell, 2003; Toro et al., 1997, etc.). Assumptions common to all ENA GMPEs that may not be true include the following. (1) Typical ENA stress drops, in the context of a Brune model representation of the source spectrum, are in the range of 150-300 bars, with the exception of occasional high-stress events like the 1988 Saguenay earthquake. (2) Attenuation of ground motions can be modeled with a frequency-independent geometric spreading function, either bilinear or trilinear in shape (e.g. Street and Turcotte, 1975; Herrmann and Kijko, 1983; Atkinson and Mereu, 1992; Atkinson, 2004; Boatwright and Seekins, 2011), and an associated frequency-dependent anelastic attenuation term related to the regional Quality factor. The use of a bilinear or trilinear form models the transition from geometric spreading of body waves at close distances to slower surface-wave-type spreading at regional distances. We use ground-motion recordings from recent ENA events to re-examine these basic tenets of GMPE development, in light of constraints on the problem provided at low frequencies by seismic moment, and at high frequencies by stresses inferred from Empirical Greens Function (EGF) analysis. We find strong evidence, in both ground-motion data and from the constraints, that geometric attenuation may be frequency dependent. Moreover, EGF stress drops may be very high (>500 bars) - but they do not lead to particularly large high-frequency ground motions, at least at distances for which we have observations. More complex models of ENA source and attenuation processes appear to be required in order to reconcile our growing ground-motion database
Computational model for amoeboid motion: Coupling membrane and cytosol dynamics.
Moure, Adrian; Gomez, Hector
2016-10-01
A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deformations, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here, we propose a cell motility model that represents pseudopod dynamics, as well as its interaction with membrane signaling molecules. The model accounts for internal and external forces, such as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts. By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of amoeboid motion. The model results are in quantitative agreement with experiments and show how cells may take advantage of the geometry of their microenvironment to migrate more efficiently.
Computational model for amoeboid motion: Coupling membrane and cytosol dynamics
NASA Astrophysics Data System (ADS)
Moure, Adrian; Gomez, Hector
2016-10-01
A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deformations, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here, we propose a cell motility model that represents pseudopod dynamics, as well as its interaction with membrane signaling molecules. The model accounts for internal and external forces, such as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts. By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of amoeboid motion. The model results are in quantitative agreement with experiments and show how cells may take advantage of the geometry of their microenvironment to migrate more efficiently.
Innovative modeling of Tuned Liquid Column Damper motion
NASA Astrophysics Data System (ADS)
Di Matteo, A.; Lo Iacono, F.; Navarra, G.; Pirrotta, A.
2015-06-01
In this paper a new model for the liquid motion within a Tuned Liquid Column Damper (TLCD) device is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it is shown that existing model does not always lead to accurate prediction of the liquid motion. A better model is then needed for accurate simulation of the behavior of TLCD systems. As regards, it has been demonstrated how correctly including the first linear liquid sloshing mode, through the equivalent mechanical analogy well established in literature, produces numerical results that highly match the corresponding experimental ones. Since the apparent effect of sloshing is the deviation of the natural frequency from the theoretical one, the authors propose a fractional differential equation of motion. The latter choice is supported by the fact that the introduction a fractional derivative of order α alters simultaneously both the resonant frequency and the degree of damping of the system. It will be shown, through an extensive experimental analysis, how the proposed model accurately describes liquid surface displacements.
A New Absolute Plate Motion Model for Africa
NASA Astrophysics Data System (ADS)
Maher, S. M.; Wessel, P.; Müller, D.; Harada, Y.
2013-12-01
The India-Eurasia collision, a change in relative plate motion between Australia and Antarctica, and the coeval ages of the Hawaiian Emperor Bend (HEB) and Louisville Bend of ~Chron 22-21 all provide convincing evidence of a global tectonic plate reorganization at ~50 Ma. Yet if it were a truly global event, then there should be a contemporaneous change in Africa absolute plate motion (APM) reflected by physical evidence somewhere on the Africa plate. This evidence might be visible in the Reunion-Mascarene bend, which exhibits many HEB-like features such as a large angular change close to ~50 Ma. Recently, the Reunion hotpot trail has been interpreted as a continental feature with incidental hotspot volcanism. Here we propose the alternative hypothesis that the northern portion of the chain between Saya de Malha and the Seychelles (Mascarene Plateau) formed as the Reunion hotspot was situated on the Carlsberg Ridge, contemporaneously forming the Chagos-Laccadive Ridge on the India plate. We have created a 4-stage model that explores how a simple APM model fitting the Mascarene Plateau can also satisfy the age progressions and geometry of other hotspot trails on the Africa plate. This type of model could explain the apparent bifurcation of the Tristan hotspot chain, the age reversals seen along the Walvis Ridge and the diffuse nature of the St. Helena chain. To test this hypothesis we have made a new African APM model that goes back to ~80 Ma using a modified version of the Hybrid Polygonal Finite Rotation Method. This method uses seamount chains and their associated hotspots as geometric constraints for the model, and seamount age dates to determine its motion through time. The positions of the hotspots can be moved to get the best fit for the model and to explore the possibility that the ~50 Ma bend in the Reunion-Mascarene chain reflects Africa plate motion. We will examine how well this model can predict the key features reflecting Africa plate motion and
Quantum Brownian motion model for the stock market
NASA Astrophysics Data System (ADS)
Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong
2016-06-01
It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.
Meshless Modeling of Deformable Shapes and their Motion
Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.
2010-01-01
We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614
1987-06-01
A common example of this problem occurs when motion picture films are shown on a conventional NTSC television system. The motion picture industry...second, or 30 frames per second. In order to show a motion picture film on an NTSC television system, temporal interpolation is necessary. The technique...Application to Restoration and Interpolation of Motion Pictures ", Dennis Michael Martinez Technical Report No. 530 June 1987 DTIO aELECTE SEp 2 3N DWM I
Enhanced performance for the interacting multiple model estimator with integrated multiple filters
NASA Astrophysics Data System (ADS)
Sabordo, Madeleine G.; Aboutanios, Elias
2015-05-01
In this paper, we propose a new approach to target visibility for the Interacting Multiple Model (IMM) algorithm. We introduce the IMM Integrated Multiple Filters (IMF) to selectively engage a suitable filter appropriate for gated clutter density at each time step and investigate five model sets that model the dynamic motion of a manoeuvring target. The model sets are incorporated into the IMM-IMF tracker to estimate the behaviour of the target. We employ the Dynamic Error Spectrum (DES) to assess the effectiveness of the tracker with target visibility concept incorporated and to compare the performance of the model sets in enhancing tracking performance. Results show that the new version of target visibility significantly improves the performance of the tracker. Simulation results also demonstrate that the 2CV-CA-2CT model set proves to be the most robust at the cost of computational resource. The CV-CA model is the fastest tracker. However, it is the least robust in terms of performance. These results assist decision makers and researchers in choosing appropriate models for IMMtrackers. Augmenting the capability of the tracker improves the ability of the platform to identify possible threats and consequently, enhance situational awareness.
Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi
2015-01-01
We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.
Elements of an improved model of debris-flow motion
Iverson, R.M.
2009-01-01
A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.
Multiplicity Control in Structural Equation Modeling
ERIC Educational Resources Information Center
Cribbie, Robert A.
2007-01-01
Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…
Polar Motion Constraints on Models of the Fortnightly Tide
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)
2002-01-01
Estimates of the near-fortnightly Mf ocean tide from Topex/Poseidon satellite altimetry and from numerical solutions to the shallow water equations agree reasonably well, at least in their basin-scale features. For example, both show that the Pacific Ocean tide lags the Atlantic tide by roughly 30 degrees. There are hints of finer scale agreements in the elevation fields, but noise levels are high. In contrast, estimates of Mf currents are only weakly constrained by the TP data, because high-wavenumber Rossby waves (with intense currents) are associated with relatively small perturbations in surface elevation. As a result, a wide range of Mf current fields are consistent with both the TP data and the hydrodynamic equations within a priori plausible misfit bounds. We find that a useful constraint on the Mf currents is provided by independent estimates of the Earth's polar motion. At the Mf period polar motion shows a weak signal (both prograde and retrograde) which must be almost entirely caused by the ocean tide. We have estimated this signal from the SPACE2000 time series, after applying a broad-band correction for atmospheric angular momentum. Although the polar motion estimates have relatively large uncertainties, they are sufficiently precise to fix optimum data weights in a global ocean inverse model of Mf. These weights control the tradeoff between fitting a prior hydrodynamic model of Mf and fitting the relatively noisy T/P measurements of Mf. The predicted polar motion from the final inverse model agrees remarkably well with the Mf polar motion observations. The preferred model is also consistent with noise levels suggested by island gauges, and it is marginally consistent with differences observed by subsetting the altimetry (to the small extent that this is possible). In turn, this new model of the Mf ocean tide allows the ocean component to be removed from Mf estimates of length of day, thus yielding estimates of complex Love numbers less contaminated by
One-degree-of-freedom motion induced by modeled vortex shedding
NASA Technical Reports Server (NTRS)
Yates, L. A.; Unal, A.; Szady, M.; Chapman, G. T.
1989-01-01
The motion of an elastically supported cylinder forced by a nonlinear, quasi-static, aerodynamic model with the unusual feature of a motion-dependent forcing frequency was studied. Numerical solutions for the motion and the Lyapunov exponents are presented for three forcing amplitudes and two frequencies (1.0 and 1.1 times the Strouhal frequency). Initially, positive Lyapunov exponents occur and the motion can appear chaotic. After thousands of characteristic times, the motion changes to a motion (verified analytically) that is periodic and damped. This periodic, damped motion was not observed experimentally, thus raising questions concerning the modeling.
Preclinical animal models of multiple myeloma
Lwin, Seint T; Edwards, Claire M; Silbermann, Rebecca
2016-01-01
Multiple myeloma is an incurable plasma-cell malignancy characterized by osteolytic bone disease and immunosuppression. Murine models of multiple myeloma and myeloma bone disease are critical tools for an improved understanding of the pathogenesis of the disease and the development of novel therapeutic strategies. This review will cover commonly used immunocompetent and xenograft models of myeloma, describing the advantages and disadvantages of each model system. In addition, this review provides detailed protocols for establishing systemic and local models of myeloma using both murine and human myeloma cell lines. PMID:26909147
Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van
2013-10-01
Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV{sub max}) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV{sub max} up to 25% and reduce the diameter of the 50% SUV{sub max} volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions.
Fractional-order variational optical flow model for motion estimation.
Chen, Dali; Sheng, Hu; Chen, YangQuan; Xue, Dingyü
2013-05-13
A new class of fractional-order variational optical flow models, which generalizes the differential of optical flow from integer order to fractional order, is proposed for motion estimation in this paper. The corresponding Euler-Lagrange equations are derived by solving a typical fractional variational problem, and the numerical implementation based on the Grünwald-Letnikov fractional derivative definition is proposed to solve these complicated fractional partial differential equations. Theoretical analysis reveals that the proposed fractional-order variational optical flow model is the generalization of the typical Horn and Schunck (first-order) variational optical flow model and the second-order variational optical flow model, which provides a new idea for us to study the optical flow model and has an important theoretical implication in optical flow model research. The experiments demonstrate the validity of the generalization of differential order.
Modelling atmospheric turbulence for a motion-based simulator
NASA Technical Reports Server (NTRS)
Jacobson, I. D.; Joshi, D.
1975-01-01
The background information in establishing several proposed atmospheric turbulence models for use on motion based aircraft simulators was documented. A specific model was proposed which, in addition to varying turbulence intensity (rms velocity), varies the atmospheric turbulence scale length to achieve compatibility with real atmospheric turbulence. With a suitable combination of scale length and intensity distribution, the model will simulate various atmospheric conditions characterized by altitude, stability, and terrain. The model is mechanized to be included in a flight simulator experiment in order to determine to what extent the pilots are sensitive to changes in atmospheric conditions and the realism of the model. The following topics were covered: literature survey, presently used techniques, proposed model, and simulation details.
Near-wall aerodynamics of idealized model foot motion
NASA Astrophysics Data System (ADS)
Kubota, Yoshi; Hall, Joseph; Higuchi, Hiroshi; Sheth, Ritesh; Glauser, Mark; Khalifa, Ezzat
2006-11-01
The air quality is affected by amounts and types of contaminant particles suspended in the air. The particulate matter reaches the respiratory system in an indoor environment by fist becoming detached, resupended and then entrained in the human micro-environment. The resuspension phenomena from the floor occur through either a ballistic mechanism, where kinetic energy is transferred to dust particles through direct contact, or an aerodynamic mechanism, where dust particles are resuspended by the flow generated by the body. In this study we focus on the aerodynamic resuspension of particles caused by walking. The foot motion is idealized and is either towards or away from a floor. A circular disk and an elongated plate having the equivalent area to that of a human foot are used. The foot motion is driven vertically by a linear servo motor that controls the velocity, acceleration, stroke and deceleration. The model velocity is based on the real foot motion. In addition to flow visualization, flowfield measurements were conducted with PIV. In the downstroke, results show a vortex impacting the wall creating the strong wall jet. In upstroke, the vortex generated behind the idealized foot exhibits the large magnitude of velocity. Experiment is continuing with a model more closely to simulating shoe geometry as well as incorporating the real foot kinetics. The results will be compared with the numerical simulation and analytical results.
Motion of the heliospheric termination shock - A gas dynamic model
NASA Technical Reports Server (NTRS)
Barnes, Aaron
1993-01-01
A simple quantitative model is presented for the heliospheric termination shock's anticipated movement in response to upstream solar wind condition variations, under the assumption that the termination shock is initially a strong gasdynamic shock that is at rest relative to the sun, and that there is a discontinuous increase or decrease in the dynamical pressure upstream of the shock. The model suggests that the termination shock is constantly in motion, and that the mean position of the shock lies near the mean equilibrium position which corresponds to the balance between the mean solar wind dynamical pressure and the mean interstellar pressure.
Fractional Levy stable motion for modeling speckle image
NASA Astrophysics Data System (ADS)
Li, Xutao; Jin, Lianwen; Peng, Fuyuan; Zhu, Aiping
2008-03-01
Recently, stable processes have turned out to be good models for many impulsive signals and noises. The speckle noise in underwater, SAR and the cosmic background images has been proved to have heavy tails distributions and Long Rang Dependent (LRD) structures. In this paper, the Fractional Levy Stable Motion (FLSM) is introduced to model such speckle phenomenon. The synthesis approaches employing Random Midpoint Displacement (RMD) and FFT technology are presented to generate such speckle image respectively. Then, we introduce Wavelet Analysis (WA) method to estimate the LRD exponent H and propose two new technologies in estimation H parameter by Fractional Low Order Moment (FLOM) and Fractional Spectrum (FS) respectively.
Motion correction for q-space imaging by multiple interleaved b0 images
NASA Astrophysics Data System (ADS)
Muto, Miyu; Du, Weiwei; Fukuzawa, Masayuki; Sakai, Koji; Tazoe, Jun; Ikeno, Hiroyasu; Yamada, Kei
2016-03-01
Subject motion in a large number of diffusion weighted images (DWIs) for q-space analysis was detected and corrected by using a simple protocol to add multiple interleaved b0 images between each DWI set and at the very end of data acquisition. The realignment matrix was determined from each b0 image with respect to the first b0 image and the matrix was used to realign not only the b0 image itself but also its subsequent DWI set. Degree of improvement in q-space analysis was estimated by calculating total residual sum of squares (RSS) in bi-exponential curve fitting process and also on the fractional anisotropy (FA) of zero displacement (ZDP). The large RSS regions were considerably diminished by realignment at the edges between cerebral gyri and sulci and at the ventricle boundaries in the original images. The large RSS regions around basal ganglia and near the ventricles were kept even by realignment but considerably suppressed with the averaged b0 image for decay-curve estimation. The volume average of RSS was reduced by the maximum of 77% in four volunteers' results with both the realignment and the averaged b0 images. The FA-ZDP images revealed the improvement by realignment such as the contrast of corpus callosum and suppression of abnormal FA at cerebral sulcus. The number of additional b0 images accounted for 3% of the total number of DWIs, which suggests its feasibility for future clinical application.
Diffusion in different models of active Brownian motion
NASA Astrophysics Data System (ADS)
Lindner, B.; Nicola, E. M.
2008-04-01
Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.
Modeling the Nonlinear Motion of the Rat Central Airways.
Ibrahim, G; Rona, A; Hainsworth, S V
2016-01-01
Advances in volumetric medical imaging techniques allowed the subject-specific modeling of the bronchial flow through the first few generations of the central airways using computational fluid dynamics (CFD). However, a reliable CFD prediction of the bronchial flow requires modeling of the inhomogeneous deformation of the central airways during breathing. This paper addresses this issue by introducing two models of the central airways motion. The first model utilizes a node-to-node mapping between the discretized geometries of the central airways generated from a number of successive computed tomography (CT) images acquired dynamically (without breath hold) over the breathing cycle of two Sprague-Dawley rats. The second model uses a node-to-node mapping between only two discretized airway geometries generated from the CT images acquired at end-exhale and at end-inhale along with the ventilator measurement of the lung volume change. The advantage of this second model is that it uses just one pair of CT images, which more readily complies with the radiation dosage restrictions for humans. Three-dimensional computer aided design geometries of the central airways generated from the dynamic-CT images were used as benchmarks to validate the output from the two models at sampled time-points over the breathing cycle. The central airway geometries deformed by the first model showed good agreement to the benchmark geometries within a tolerance of 4%. The central airway geometry deformed by the second model better approximated the benchmark geometries than previous approaches that used a linear or harmonic motion model.
Age Dependent Absolute Plate and Plume Motion Modeling
NASA Astrophysics Data System (ADS)
Heaton, D. E.; Koppers, A. A. P.
2015-12-01
Current absolute plate motion (APM) models from 80 - 0 Ma are constrained by the location of mantle plume related hotspot seamounts, in particular those of the Hawaiian-Emperor and Louisville seamount trails. Originally the 'fixed' hotspot hypothesis was developed to explain past plate motion based on linear age progressive intra-plate volcanism. However, now that 'moving' hotspots are accepted, it is becoming clear that APM models need to be corrected for individual plume motion vectors. For older seamount trails that were active between roughly 50 and 80 Ma the APM models that use 'fixed' hotspots overestimate the measured age progression in those trails, while APM models corrected for 'moving' hotspots underestimate those age progressions. These mismatches are due to both a lack of reliable ages in the older portions of both the Hawaii and Louisville seamount trails and insufficient APM modeling constraints from other seamount trails in the Pacific Basin. Seamounts are difficult to sample and analyze because many are hydrothermally altered and have low potassium concentrations. New 40Ar/39Ar Age results from International Ocean Drilling Project (IODP) Expedition 330 Sites U1372 (n=18), U1375 (n=3), U1376 (n=15) and U1377 (n=7) aid in constraining the oldest end of the Louisville Seamount trail. A significant observation in this study is that the age range recovered in the drill cores match the range of ages that were acquired on dredging cruises at the same seamounts (e.g. Koppers et al., 2011). This is important for determining the inception age of a seamount. The sections recovered from IODP EXP 330 are in-situ volcanoclastic breccia and lava flows. Comparing the seismic interpretations of Louisville guyots (Contreras-Reyes et al., 2010), Holes U1372, U1373 and U1374 penetrated the extrusive and volcanoclastic sections of the seamount. The ages obtained are consistent over stratigraphic intervals >100-450 m thick, providing evidence that these seamounts
Nadiri, Ata Allah; Sedghi, Zahra; Khatibi, Rahman; Gharekhani, Maryam
2017-03-22
Driven by contamination risks, mapping Vulnerability Indices (VI) of multiple aquifers (both unconfined and confined) is investigated by integrating the basic DRASTIC framework with multiple models overarched by Artificial Neural Networks (ANN). The DRASTIC framework is a proactive tool to assess VI values using the data from the hydrosphere, lithosphere and anthroposphere. However, a research case arises for the application of multiple models on the ground of poor determination coefficients between the VI values and non-point anthropogenic contaminants. The paper formulates SCFL models, which are derived from the multiple model philosophy of Supervised Committee (SC) machines and Fuzzy Logic (FL) and hence SCFL as their integration. The Fuzzy Logic-based (FL) models include: Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Larsen Fuzzy Logic (LFL) models. The basic DRASTIC framework uses prescribed rating and weighting values based on expert judgment but the four FL-based models (SFL, MFL, LFL and SCFL) derive their values as per internal strategy within these models. The paper reports that FL and multiple models improve considerably on the correlation between the modeled vulnerability indices and observed nitrate-N values and as such it provides evidence that the SCFL multiple models can be an alternative to the basic framework even for multiple aquifers. The study area with multiple aquifers is in Varzeqan plain, East Azerbaijan, northwest Iran.
A Pelvic Phantom for Modeling Internal Organ Motions
Kovacs, Peter; Sebestyen, Zsolt; Farkas, Robert; Bellyei, Szabolcs; Szigeti, Andras; Liposits, Gabor; Hideghety, Katalin; Derczy, Katalin; Mangel, Laszlo
2011-10-01
A pelvic phantom was developed for use in testing image-guided radiation therapy (IGRT) and adaptive applications in radiation therapy (ART) with simulating the anterior-posterior internal organ motions during prostate radiotherapy. Measurements could be done with an ionization chamber (IC) in the simulated prostate. The rectum was simulated by air-equivalent material (AEM). The volume superior to the IC placement was considered as the bladder. The extension of AEM volume could be varied. The vertical position of the IC placement could be shifted by {+-}1 cm to simulate the prostate motion parallel to the changes in bladder volume. The reality of the simulation was inspected. Three-millimeter-slice-increment computed tomography (CT) scans were taken for irradiation planning. The structure set was adapted to the phantom from a treated patient. Planning target volume was delineated according to the RTOG 0126 study. IMRT and 3D conformal radiation therapy (3D-CRT) plans were made. Prostate motion and rectum volume changes were simulated in the phantom. IC displacement was corrected by phantom shifting. The delivered dose was measured with IC in 7 cases using intensity-modulated radiation therapy (IMRT) and 3D-CRT fractions, and single square-shaped beams: anteroposterior (AP), posteroanterior (PA), and lateral (LAT). Variations from the calculated doses were slightly below 1% at IMRT and around 1% at 3D-CRT; below 4.5% at square AP beam; up to 9% at square PA beam; and around 0.5% at square LAT beam. Other authors have already shown that by using planning systems and ultrasonic and cone beam CT guidance, correction of organ motions in a real patient during prostate cancer IGRT does not have a significant dosimetric effect. The inspection of our phantom-as described here-ended with similar results. Our team suggested that our model is sufficiently realistic and can be used for IGRT and ART testing.
Niu, Yu-Qiong; Lisberger, Stephen G
2011-08-01
We have investigated how visual motion signals are integrated for smooth pursuit eye movements by measuring the initiation of pursuit in monkeys for pairs of moving stimuli of the same or differing luminance. The initiation of pursuit for pairs of stimuli of the same luminance could be accounted for as a vector average of the responses to the two stimuli singly. When stimuli comprised two superimposed patches of moving dot textures, the brighter stimulus suppressed the inputs from the dimmer stimulus, so that the initiation of pursuit became winner-take-all when the luminance ratio of the two stimuli was 8 or greater. The dominance of the brighter stimulus could be not attributed to either the latency difference or the ratio of the eye accelerations for the bright and dim stimuli presented singly. When stimuli comprised either spot targets or two patches of dots moving across separate locations in the visual field, the brighter stimulus had a much weaker suppressive influence; the initiation of pursuit could be accounted for by nearly equal vector averaging of the responses to the two stimuli singly. The suppressive effects of the brighter stimulus also appeared in human perceptual judgments, but again only for superimposed stimuli. We conclude that one locus of the interaction of two moving visual stimuli is shared by perception and action and resides in local inhibitory connections in the visual cortex. A second locus resides deeper in sensory-motor processing and may be more closely related to action selection than to stimulus selection.
Estimation of affine motion from projection data using a mass conservation model.
Negahdar, Mohammadreza; Amini, Amir A
2011-01-01
An approximate model for the effect of respiration is that the cross section of the thoracic area under interrogation experience time-varying magnification and displacement along two perpendicular axes - we propose to model this motion as parametric affine motion. A theoretical framework for determination of parameters of affine motion modeling the global respiratory motion based on the sinogram data in the projection domain is described. It is assumed that the spatial image considered is a density image where conservation of mass holds.
Model and parametric uncertainty in source-based kinematic models of earthquake ground motion
Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur
2011-01-01
Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.
2010-01-01
various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly...Uy and Uz are called roll , pitch and yaw, respectively. In the model reference frame the x-axis is the ship heading direction (from the stern to the...unsteady ship motions ( roll , pitch and heave) are compared and cross-examined. Reported here are selected cases, which are the extreme scenarios of the
NASA Technical Reports Server (NTRS)
Lin, Ray-Quing; Kuang, Weijia
2011-01-01
In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.
Computer coordination of limb motion for locomotion of a multiple-armed robot for space assembly
NASA Technical Reports Server (NTRS)
Klein, C. A.; Patterson, M. R.
1982-01-01
Consideration is given to a possible robotic system for the construction of large space structures, which may be described as a multiple general purpose arm manipulator vehicle that can walk over the structure under construction to a given site for further work. A description is presented of the locomotion of such a vehicle, modeling its arms in terms of a currently available industrial manipulator. It is noted that for whatever maximum speed of operation is chosen, rapid changes in robot velocity create situations in which already-selected handholds are no longer practical. A step is added to the 'free gait' walking algorithm in order to solve this problem.
Validating a Dynamic Earthquake Model to Produce Realistic Ground Motion
NASA Astrophysics Data System (ADS)
Andrews, D. J.; Ma, S.
2015-12-01
A dynamic earthquake model is validated by finding good agreement with an empirical ground motion prediction equation. The model replaces detailed deterministic processes on the fault with a stochastic emergent law. Initial stress on a fault plane is heterogeneous with a power-law spectrum that is self-similar. Rupture stops naturally. Rupture extent and moment are determined primarily by the specified lowest Fourier mode of initial stress. Higher modes are random with a self-similar spectrum that is tied to the amplitude of the lowest mode. Ten random realizations are calculated with a velocity structure for a hard rock site. The calculated mean response spectrum for M7 at a distance of 10 km agrees the with the GMPE of Boore et al (2013) within 0.25 of one standard deviation at periods from 0.3 seconds to 10 seconds. The agreement could be improved by using a more refined relation of the spatial stress spectrum to the amplitude of the lowest mode. The standard deviation of the calculated ground motion is somewhat smaller than the GMPE, but it depends on other rupture parameters and needs more investigation.
Multiplicative earthquake likelihood models incorporating strain rates
NASA Astrophysics Data System (ADS)
Rhoades, D. A.; Christophersen, A.; Gerstenberger, M. C.
2017-01-01