Sample records for multiple moving targets

  1. Realism and Effectiveness of Robotic Moving Targets

    DTIC Science & Technology

    2017-04-01

    scenario or be manually controlled . The targets can communicate with other nearby targets, which means they can move independently, as a group , or...present a realistic three- dimensional human-sized target that can freely move with semi-autonomous control . The U.S. Army Research Institute for...Procedure: Performance and survey data were collected during multiple training exercises from Soldiers who engaged the RHTTs. Different groups

  2. Multiple targets detection method in detection of UWB through-wall radar

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Yang, Chuanfa; Zhao, Xingwen; Tian, Xianzhong

    2017-11-01

    In this paper, the problems and difficulties encountered in the detection of multiple moving targets by UWB radar are analyzed. The experimental environment and the penetrating radar system are established. An adaptive threshold method based on local area is proposed to effectively filter out clutter interference The objective of the moving target is analyzed, and the false target is further filtered out by extracting the target feature. Based on the correlation between the targets, the target matching algorithm is proposed to improve the detection accuracy. Finally, the effectiveness of the above method is verified by practical experiment.

  3. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units

    PubMed Central

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-01-01

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684

  4. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units.

    PubMed

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-02-12

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.

  5. Tracking and recognition of multiple human targets moving in a wireless pyroelectric infrared sensor network.

    PubMed

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-04-22

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  6. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    PubMed Central

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-01-01

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%. PMID:24759117

  7. GMTI Direction of Arrival Measurements from Multiple Phase Centers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Ground Moving Target Indicator (GMTI) radar attempts to detect and locate targets with unknown motion. Very slow-moving targets are difficult to locate in the presence of surrounding clutter. This necessitates multiple antenna phase centers (or equivalent) to offer independent Direction of Arrival (DOA) measurements. DOA accuracy and precision generally remains dependent on target Signal-to-Noise Ratio (SNR), Clutter-toNoise Ratio (CNR), scene topography, interfering signals, and a number of antenna parameters. This is true even for adaptive techniques like Space-Time-AdaptiveProcessing (STAP) algorithms.

  8. Hybrid foraging search: Searching for multiple instances of multiple types of target.

    PubMed

    Wolfe, Jeremy M; Aizenman, Avigael M; Boettcher, Sage E P; Cain, Matthew S

    2016-02-01

    This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hybrid foraging search: Searching for multiple instances of multiple types of target

    PubMed Central

    Wolfe, Jeremy M.; Aizenman, Avigael M.; Boettcher, Sage E.P.; Cain, Matthew S.

    2016-01-01

    This paper introduces the “hybrid foraging” paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8–64 targets objects in memory. They viewed displays of 60–105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25–33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. PMID:26731644

  10. Cooperative Robots to Observe Moving Targets: Review.

    PubMed

    Khan, Asif; Rinner, Bernhard; Cavallaro, Andrea

    2018-01-01

    The deployment of multiple robots for achieving a common goal helps to improve the performance, efficiency, and/or robustness in a variety of tasks. In particular, the observation of moving targets is an important multirobot application that still exhibits numerous open challenges, including the effective coordination of the robots. This paper reviews control techniques for cooperative mobile robots monitoring multiple targets. The simultaneous movement of robots and targets makes this problem particularly interesting, and our review systematically addresses this cooperative multirobot problem for the first time. We classify and critically discuss the control techniques: cooperative multirobot observation of multiple moving targets, cooperative search, acquisition, and track, cooperative tracking, and multirobot pursuit evasion. We also identify the five major elements that characterize this problem, namely, the coordination method, the environment, the target, the robot and its sensor(s). These elements are used to systematically analyze the control techniques. The majority of the studied work is based on simulation and laboratory studies, which may not accurately reflect real-world operational conditions. Importantly, while our systematic analysis is focused on multitarget observation, our proposed classification is useful also for related multirobot applications.

  11. Feature-aided multiple target tracking in the image plane

    NASA Astrophysics Data System (ADS)

    Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.

    2006-05-01

    Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.

  12. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  13. Multiple operating system rotation environment moving target defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Nathaniel; Thompson, Michael

    Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.

  14. Real-Time Adaptation of Decision Thresholds in Sensor Networks for Detection of Moving Targets (PREPRINT)

    DTIC Science & Technology

    2010-01-01

    target kinematics for multiple sensor detections is referred to as the track - before - detect strategy, and is commonly adopted in multi-sensor surveillance...of moving targets. Wettergren [4] presented an application of track - before - detect strategies to undersea distributed sensor networks. In de- signing...the deployment of a distributed passive sensor network that employs this track - before - detect procedure, it is impera- tive that the placement of

  15. Multiple-Object Tracking in Children: The "Catch the Spies" Task

    ERIC Educational Resources Information Center

    Trick, L.M.; Jaspers-Fayer, F.; Sethi, N.

    2005-01-01

    Multiple-object tracking involves simultaneously tracking positions of a number of target-items as they move among distractors. The standard version of the task poses special challenges for children, demanding extended concentration and the ability to distinguish targets from identical-looking distractors, and may thus underestimate children's…

  16. Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance.

    PubMed

    Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K

    2013-03-20

    Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.

  17. How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking

    PubMed Central

    Thomas, Laura E.; Seiffert, Adriane E.

    2011-01-01

    Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects. PMID:21991259

  18. Attentional enhancement during multiple-object tracking.

    PubMed

    Drew, Trafton; McCollough, Andrew W; Horowitz, Todd S; Vogel, Edward K

    2009-04-01

    What is the role of attention in multiple-object tracking? Does attention enhance target representations, suppress distractor representations, or both? It is difficult to ask this question in a purely behavioral paradigm without altering the very attentional allocation one is trying to measure. In the present study, we used event-related potentials to examine the early visual evoked responses to task-irrelevant probes without requiring an additional detection task. Subjects tracked two targets among four moving distractors and four stationary distractors. Brief probes were flashed on targets, moving distractors, stationary distractors, or empty space. We obtained a significant enhancement of the visually evoked P1 and N1 components (approximately 100-150 msec) for probes on targets, relative to distractors. Furthermore, good trackers showed larger differences between target and distractor probes than did poor trackers. These results provide evidence of early attentional enhancement of tracked target items and also provide a novel approach to measuring attentional allocation during tracking.

  19. Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation.

    PubMed

    Gao, Shan; Ye, Qixiang; Xing, Junliang; Kuijper, Arjan; Han, Zhenjun; Jiao, Jianbin; Ji, Xiangyang

    2017-12-01

    Tracking multiple persons is a challenging task when persons move in groups and occlude each other. Existing group-based methods have extensively investigated how to make group division more accurately in a tracking-by-detection framework; however, few of them quantify the group dynamics from the perspective of targets' spatial topology or consider the group in a dynamic view. Inspired by the sociological properties of pedestrians, we propose a novel socio-topology model with a topology-energy function to factor the group dynamics of moving persons and groups. In this model, minimizing the topology-energy-variance in a two-level energy form is expected to produce smooth topology transitions, stable group tracking, and accurate target association. To search for the strong minimum in energy variation, we design the discrete group-tracklet jump moves embedded in the gradient descent method, which ensures that the moves reduce the energy variation of group and trajectory alternately in the varying topology dimension. Experimental results on both RGB and RGB-D data sets show the superiority of our proposed model for multiple person tracking in crowd scenes.

  20. Self-motion impairs multiple-object tracking.

    PubMed

    Thomas, Laura E; Seiffert, Adriane E

    2010-10-01

    Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Visual Search for Motion-Form Conjunctions: Selective Attention to Movement Direction.

    PubMed

    Von Mühlenen, Adrian; Müller, Hermann J

    1999-07-01

    In 2 experiments requiring visual search for conjunctions of motion and form, the authors reinvestigated whether motion-based filtering (e.g., P. McLeod, J. Driver, Z. Dienes, & J. Crisp, 1991) is direction selective and whether cuing of the target direction promotes efficient search performance. In both experiments, the authors varied the number of movement directions in the display and the predictability of the target direction. Search was less efficient when items moved in multiple (2, 3, and 4) directions as compared with just 1 direction. Furthermore, precuing of the target direction facilitated the search, even with "wrap-around" displays, relatively more when items moved in multiple directions. The authors proposed 2 principles to explain that pattern of effects: (a) interference on direction computation between items moving in different directions (e.g., N. Qian & R. A. Andersen, 1994) and (b) selective direction tuning of motion detectors involving a receptive-field contraction (cf. J. Moran & R. Desimone, 1985; S. Treue & J. H. R. Maunsell, 1996).

  2. Tracking Multiple Video Targets with an Improved GM-PHD Tracker

    PubMed Central

    Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu

    2015-01-01

    Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art. PMID:26633422

  3. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.

    PubMed

    Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu

    2017-07-18

    Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.

  4. Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang

    2018-01-01

    Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.

  5. Attentional Signatures of Perception: Multiple Object Tracking Reveals the Automaticity of Contour Interpolation

    ERIC Educational Resources Information Center

    Keane, Brian P.; Mettler, Everett; Tsoi, Vicky; Kellman, Philip J.

    2011-01-01

    Multiple object tracking (MOT) is an attentional task wherein observers attempt to track multiple targets among moving distractors. Contour interpolation is a perceptual process that fills-in nonvisible edges on the basis of how surrounding edges (inducers) are spatiotemporally related. In five experiments, we explored the automaticity of…

  6. Lean and Efficient Software: Whole Program Optimization of Executables

    DTIC Science & Technology

    2016-12-31

    format string “ baked in”? (If multiple printf calls pass the same format string, they could share the same new function.) This leads to the...format string becomes baked into the target function.  Moving down: o Moving from the first row to the second makes any potential user control of the

  7. SU-G-BRA-17: Tracking Multiple Targets with Independent Motion in Real-Time Using a Multi-Leaf Collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; Keall, P; Poulsen, P

    Purpose: Multiple targets with large intrafraction independent motion are often involved in advanced prostate, lung, abdominal, and head and neck cancer radiotherapy. Current standard of care treats these with the originally planned fields, jeopardizing the treatment outcomes. A real-time multi-leaf collimator (MLC) tracking method has been developed to address this problem for the first time. This study evaluates the geometric uncertainty of the multi-target tracking method. Methods: Four treatment scenarios are simulated based on a prostate IMAT plan to treat a moving prostate target and static pelvic node target: 1) real-time multi-target MLC tracking; 2) real-time prostate-only MLC tracking; 3)more » correcting for prostate interfraction motion at setup only; and 4) no motion correction. The geometric uncertainty of the treatment is assessed by the sum of the erroneously underexposed target area and overexposed healthy tissue areas for each individual target. Two patient-measured prostate trajectories of average 2 and 5 mm motion magnitude are used for simulations. Results: Real-time multi-target tracking accumulates the least uncertainty overall. As expected, it covers the static nodes similarly well as no motion correction treatment and covers the moving prostate similarly well as the real-time prostate-only tracking. Multi-target tracking reduces >90% of uncertainty for the static nodal target compared to the real-time prostate-only tracking or interfraction motion correction. For prostate target, depending on the motion trajectory which affects the uncertainty due to leaf-fitting, multi-target tracking may or may not perform better than correcting for interfraction prostate motion by shifting patient at setup, but it reduces ∼50% of uncertainty compared to no motion correction. Conclusion: The developed real-time multi-target MLC tracking can adapt for the independently moving targets better than other available treatment adaptations. This will enable PTV margin reduction to minimize health tissue toxicity while remain tumor coverage when treating advanced disease with independently moving targets involved. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less

  8. Brain Activation during Spatial Updating and Attentive Tracking of Moving Targets

    ERIC Educational Resources Information Center

    Jahn, Georg; Wendt, Julia; Lotze, Martin; Papenmeier, Frank; Huff, Markus

    2012-01-01

    Keeping aware of the locations of objects while one is moving requires the updating of spatial representations. As long as the objects are visible, attentional tracking is sufficient, but knowing where objects out of view went in relation to one's own body involves an updating of spatial working memory. Here, multiple object tracking was employed…

  9. Asynchronous Visualization of Spatiotemporal Information for Multiple Moving Targets

    ERIC Educational Resources Information Center

    Wang, Huadong

    2013-01-01

    In the modern information age, the quantity and complexity of spatiotemporal data is increasing both rapidly and continuously. Sensor systems with multiple feeds that gather multidimensional spatiotemporal data will result in information clusters and overload, as well as a high cognitive load for users of these systems. To meet future…

  10. Normal aging delays and compromises early multifocal visual attention during object tracking.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2013-02-01

    Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (~100-300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100-125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125-150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175-210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.

  11. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  12. Constraints on Multiple Object Tracking in Williams Syndrome: How Atypical Development Can Inform Theories of Visual Processing

    ERIC Educational Resources Information Center

    Ferrara, Katrina; Hoffman, James E.; O'Hearn, Kirsten; Landau, Barbara

    2016-01-01

    The ability to track moving objects is a crucial skill for performance in everyday spatial tasks. The tracking mechanism depends on representation of moving items as coherent entities, which follow the spatiotemporal constraints of objects in the world. In the present experiment, participants tracked 1 to 4 targets in a display of 8 identical…

  13. Exhausting Attentional Tracking Resources with a Single Fast-Moving Object

    ERIC Educational Resources Information Center

    Holcombe, Alex O.; Chen, Wei-Ying

    2012-01-01

    Driving on a busy road, eluding a group of predators, or playing a team sport involves keeping track of multiple moving objects. In typical laboratory tasks, the number of visual targets that humans can track is about four. Three types of theories have been advanced to explain this limit. The fixed-limit theory posits a set number of attentional…

  14. An automated data exploitation system for airborne sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  15. Sensor modeling and demonstration of a multi-object spectrometer for performance-driven sensing

    NASA Astrophysics Data System (ADS)

    Kerekes, John P.; Presnar, Michael D.; Fourspring, Kenneth D.; Ninkov, Zoran; Pogorzala, David R.; Raisanen, Alan D.; Rice, Andrew C.; Vasquez, Juan R.; Patel, Jeffrey P.; MacIntyre, Robert T.; Brown, Scott D.

    2009-05-01

    A novel multi-object spectrometer (MOS) is being explored for use as an adaptive performance-driven sensor that tracks moving targets. Developed originally for astronomical applications, the instrument utilizes an array of micromirrors to reflect light to a panchromatic imaging array. When an object of interest is detected the individual micromirrors imaging the object are tilted to reflect the light to a spectrometer to collect a full spectrum. This paper will present example sensor performance from empirical data collected in laboratory experiments, as well as our approach in designing optical and radiometric models of the MOS channels and the micromirror array. Simulation of moving vehicles in a highfidelity, hyperspectral scene is used to generate a dynamic video input for the adaptive sensor. Performance-driven algorithms for feature-aided target tracking and modality selection exploit multiple electromagnetic observables to track moving vehicle targets.

  16. Grouping and trajectory storage in multiple object tracking: impairments due to common item motions.

    PubMed

    Suganuma, Mutsumi; Yokosawa, Kazuhiko

    2006-01-01

    In our natural viewing, we notice that objects change their locations across space and time. However, there has been relatively little consideration of the role of motion information in the construction and maintenance of object representations. We investigated this question in the context of the multiple object tracking (MOT) paradigm, wherein observers must keep track of target objects as they move randomly amid featurally identical distractors. In three experiments, we observed impairments in tracking ability when the motions of the target and distractor items shared particular properties. Specifically, we observed impairments when the target and distractor items were in a chasing relationship or moved in a uniform direction. Surprisingly, tracking ability was impaired by these manipulations even when observers failed to notice them. Our results suggest that differentiable trajectory information is an important factor in successful performance of MOT tasks. More generally, these results suggest that various types of common motion can serve as cues to form more global object representations even in the absence of other grouping cues.

  17. Hybrid value foraging: How the value of targets shapes human foraging behavior.

    PubMed

    Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla

    2018-04-01

    In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.

  18. A game theory approach to target tracking in sensor networks.

    PubMed

    Gu, Dongbing

    2011-02-01

    In this paper, we investigate a moving-target tracking problem with sensor networks. Each sensor node has a sensor to observe the target and a processor to estimate the target position. It also has wireless communication capability but with limited range and can only communicate with neighbors. The moving target is assumed to be an intelligent agent, which is "smart" enough to escape from the detection by maximizing the estimation error. This adversary behavior makes the target tracking problem more difficult. We formulate this target estimation problem as a zero-sum game in this paper and use a minimax filter to estimate the target position. The minimax filter is a robust filter that minimizes the estimation error by considering the worst case noise. Furthermore, we develop a distributed version of the minimax filter for multiple sensor nodes. The distributed computation is implemented via modeling the information received from neighbors as measurements in the minimax filter. The simulation results show that the target tracking algorithm proposed in this paper provides a satisfactory result.

  19. Moving target tracking through distributed clustering in directional sensor networks.

    PubMed

    Enayet, Asma; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif

    2014-12-18

    The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.

  20. Moving Target Tracking through Distributed Clustering in Directional Sensor Networks

    PubMed Central

    Enayet, Asma; Razzaque, Md. Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif

    2014-01-01

    The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works. PMID:25529205

  1. Tracking moving targets behind a scattering medium via speckle correlation.

    PubMed

    Guo, Chengfei; Liu, Jietao; Wu, Tengfei; Zhu, Lei; Shao, Xiaopeng

    2018-02-01

    Tracking moving targets behind a scattering medium is a challenge, and it has many important applications in various fields. Owing to the multiple scattering, instead of the object image, only a random speckle pattern can be received on the camera when light is passing through highly scattering layers. Significantly, an important feature of a speckle pattern has been found, and it showed the target information can be derived from the speckle correlation. In this work, inspired by the notions used in computer vision and deformation detection, by specific simulations and experiments, we demonstrate a simple object tracking method, in which by using the speckle correlation, the movement of a hidden object can be tracked in the lateral direction and axial direction. In addition, the rotation state of the moving target can also be recognized by utilizing the autocorrelation of a speckle. This work will be beneficial for biomedical applications in the fields of quantitative analysis of the working mechanisms of a micro-object and the acquisition of dynamical information of the micro-object motion.

  2. Detection of multiple airborne targets from multisensor data

    NASA Astrophysics Data System (ADS)

    Foltz, Mark A.; Srivastava, Anuj; Miller, Michael I.; Grenander, Ulf

    1995-08-01

    Previously we presented a jump-diffusion based random sampling algorithm for generating conditional mean estimates of scene representations for the tracking and recongition of maneuvering airborne targets. These representations include target positions and orientations along their trajectories and the target type associated with each trajectory. Taking a Bayesian approach, a posterior measure is defined on the parameter space by combining sensor models with a sophisticated prior based on nonlinear airplane dynamics. The jump-diffusion algorithm constructs a Markov process which visits the elements of the parameter space with frequencies proportional to the posterior probability. It consititutes both the infinitesimal, local search via a sample path continuous diffusion transform and the larger, global steps through discrete jump moves. The jump moves involve the addition and deletion of elements from the scene configuration or changes in the target type assoviated with each target trajectory. One such move results in target detection by the addition of a track seed to the inference set. This provides initial track data for the tracking/recognition algorithm to estimate linear graph structures representing tracks using the other jump moves and the diffusion process, as described in our earlier work. Target detection ideally involves a continuous research over a continuum of the observation space. In this work we conclude that for practical implemenations the search space must be discretized with lattice granularity comparable to sensor resolution, and discuss how fast Fourier transforms are utilized for efficient calcuation of sufficient statistics given our array models. Some results are also presented from our implementation on a networked system including a massively parallel machine architecture and a silicon graphics onyx workstation.

  3. General strategy for the protection of organs at risk in IMRT therapy of a moving body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abolfath, Ramin M.; Papiez, Lech

    2009-07-15

    We investigated protection strategies of organs at risk (OARs) in intensity modulated radiation therapy (IMRT). These strategies apply to delivery of IMRT to moving body anatomies that show relative displacement of OAR in close proximity to a tumor target. We formulated an efficient genetic algorithm which makes it possible to search for global minima in a complex landscape of multiple irradiation strategies delivering a given, predetermined intensity map to a target. The optimal strategy was investigated with respect to minimizing the dose delivered to the OAR. The optimization procedure developed relies on variability of all parameters available for control ofmore » radiation delivery in modern linear accelerators, including adaptation of leaf trajectories and simultaneous modification of beam dose rate during irradiation. We showed that the optimization algorithms lead to a significant reduction in the dose delivered to OAR in cases where organs at risk move relative to a treatment target.« less

  4. Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device.

    PubMed

    Gao, Yali; Lam, Albert W Y; Chan, Warren C W

    2013-04-24

    The impact of detecting multiple infectious diseases simultaneously at point-of-care with good sensitivity, specificity, and reproducibility would be enormous for containing the spread of diseases in both resource-limited and rich countries. Many barcoding technologies have been introduced for addressing this need as barcodes can be applied to detecting thousands of genetic and protein biomarkers simultaneously. However, the assay process is not automated and is tedious and requires skilled technicians. Barcoding technology is currently limited to use in resource-rich settings. Here we used magnetism and microfluidics technology to automate the multiple steps in a quantum dot barcode assay. The quantum dot-barcoded microbeads are sequentially (a) introduced into the chip, (b) magnetically moved to a stream containing target molecules, (c) moved back to the original stream containing secondary probes, (d) washed, and (e) finally aligned for detection. The assay requires 20 min, has a limit of detection of 1.2 nM, and can detect genetic targets for HIV, hepatitis B, and syphilis. This study provides a simple strategy to automate the entire barcode assay process and moves barcoding technologies one step closer to point-of-care applications.

  5. An Innovative Multi-Agent Search-and-Rescue Path Planning Approach

    DTIC Science & Technology

    2015-03-09

    search problems from search theory and artificial intelligence /distributed robotic control, and pursuit-evasion problem perspectives may be found in...Dissanayake, “Probabilistic search for a moving target in an indoor environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2006, pp...3393-3398. [7] H. Lau, and G. Dissanayake, “Optimal search for multiple targets in a built environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent

  6. A Class of CFAR Detectors Implemented in the SAR-GMTI Processor gmtipro2: Mathematical Formulation of the Algorithms

    DTIC Science & Technology

    2015-02-01

    Right of Canada as represented by the Minister of National Defence, 2015 c© Sa Majesté la Reine (en droit du Canada), telle que représentée par le...References [1] Chiu, S. (2010), Moving target parameter estimation for RADARSAT-2 Moving Object Detection EXperiment (MODEX), International Journal of...of multiple sinusoids in noise, In Proceedings. (ICASSP ’01). 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5

  7. Direction information in multiple object tracking is limited by a graded resource.

    PubMed

    Horowitz, Todd S; Cohen, Michael A

    2010-10-01

    Is multiple object tracking (MOT) limited by a fixed set of structures (slots), a limited but divisible resource, or both? Here, we answer this question by measuring the precision of the direction representation for tracked targets. The signature of a limited resource is a decrease in precision as the square root of the tracking load. The signature of fixed slots is a fixed precision. Hybrid models predict a rapid decrease to asymptotic precision. In two experiments, observers tracked moving disks and reported target motion direction by adjusting a probe arrow. We derived the precision of representation of correctly tracked targets using a mixture distribution analysis. Precision declined with target load according to the square-root law up to six targets. This finding is inconsistent with both pure and hybrid slot models. Instead, directional information in MOT appears to be limited by a continuously divisible resource.

  8. Treatment planning with intensity modulated particle therapy for multiple targets in stage IV non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian

    2018-01-01

    Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.

  9. Pop-out in visual search of moving targets in the archer fish.

    PubMed

    Ben-Tov, Mor; Donchin, Opher; Ben-Shahar, Ohad; Segev, Ronen

    2015-03-10

    Pop-out in visual search reflects the capacity of observers to rapidly detect visual targets independent of the number of distracting objects in the background. Although it may be beneficial to most animals, pop-out behaviour has been observed only in mammals, where neural correlates are found in primary visual cortex as contextually modulated neurons that encode aspects of saliency. Here we show that archer fish can also utilize this important search mechanism by exhibiting pop-out of moving targets. We explore neural correlates of this behaviour and report the presence of contextually modulated neurons in the optic tectum that may constitute the neural substrate for a saliency map. Furthermore, we find that both behaving fish and neural responses exhibit additive responses to multiple visual features. These findings suggest that similar neural computations underlie pop-out behaviour in mammals and fish, and that pop-out may be a universal search mechanism across all vertebrates.

  10. Intelligence-aided multitarget tracking for urban operations - a case study: counter terrorism

    NASA Astrophysics Data System (ADS)

    Sathyan, T.; Bharadwaj, K.; Sinha, A.; Kirubarajan, T.

    2006-05-01

    In this paper, we present a framework for tracking multiple mobile targets in an urban environment based on data from multiple sources of information, and for evaluating the threat these targets pose to assets of interest (AOI). The motivating scenario is one where we have to track many targets, each with different (unknown) destinations and/or intents. The tracking algorithm is aided by information about the urban environment (e.g., road maps, buildings, hideouts), and strategic and intelligence data. The tracking algorithm needs to be dynamic in that it has to handle a time-varying number of targets and the ever-changing urban environment depending on the locations of the moving objects and AOI. Our solution uses the variable structure interacting multiple model (VS-IMM) estimator, which has been shown to be effective in tracking targets based on road map information. Intelligence information is represented as target class information and incorporated through a combined likelihood calculation within the VS-IMM estimator. In addition, we develop a model to calculate the probability that a particular target can attack a given AOI. This model for the calculation of the probability of attack is based on the target kinematic and class information. Simulation results are presented to demonstrate the operation of the proposed framework on a representative scenario.

  11. Eye Movement in Response to Single and Multiple Targets

    DTIC Science & Technology

    1985-02-01

    pursuit control system. METHOD The SVFB technique was described in detail elsewhere (Zeevi et al., 1979). Displaying, to the subject, the point of gaze , in...34 The subject was presented with his point of gaze using the unconditioned SVFB signal (gain = 1, eccentric bias = 0). The SVFB signal was locked on the...superimposing the SVFB on the target, is gazing away from it and thus achieves eccentric fixation (Zeevi et al., 1979). As the subject moves from one

  12. Compressed Sensing in On-Grid MIMO Radar.

    PubMed

    Minner, Michael F

    2015-01-01

    The accurate detection of targets is a significant problem in multiple-input multiple-output (MIMO) radar. Recent advances of Compressive Sensing offer a means of efficiently accomplishing this task. The sparsity constraints needed to apply the techniques of Compressive Sensing to problems in radar systems have led to discretizations of the target scene in various domains, such as azimuth, time delay, and Doppler. Building upon recent work, we investigate the feasibility of on-grid Compressive Sensing-based MIMO radar via a threefold azimuth-delay-Doppler discretization for target detection and parameter estimation. We utilize a colocated random sensor array and transmit distinct linear chirps to a small scene with few, slowly moving targets. Relying upon standard far-field and narrowband assumptions, we analyze the efficacy of various recovery algorithms in determining the parameters of the scene through numerical simulations, with particular focus on the ℓ 1-squared Nonnegative Regularization method.

  13. Millimeter wave radar system on a rotating platform for combined search and track functionality with SAR imaging

    NASA Astrophysics Data System (ADS)

    Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter

    2014-10-01

    Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.

  14. Robust leader-follower formation tracking control of multiple underactuated surface vessels

    NASA Astrophysics Data System (ADS)

    Peng, Zhou-hua; Wang, Dan; Lan, Wei-yao; Sun, Gang

    2012-09-01

    This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined relative to the leader. A robust adaptive target tracking law is proposed by using neural network and backstepping techniques. The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces, nonlinear damping, unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning. Based on Lyapunov analysis, the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the control strategy.

  15. Robust autofocus algorithm for ISAR imaging of moving targets

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wu, Renbiao; Chen, Victor C.

    2000-08-01

    A robust autofocus approach, referred to as AUTOCLEAN (AUTOfocus via CLEAN), is proposed for the motion compensation in ISAR (inverse synthetic aperture radar) imaging of moving targets. It is a parametric algorithm based on a very flexible data model which takes into account arbitrary range migration and arbitrary phase errors across the synthetic aperture that may be induced by unwanted radial motion of the target as well as propagation or system instability. AUTOCLEAN can be classified as a multiple scatterer algorithm (MSA), but it differs considerably from other existing MSAs in several aspects: (1) dominant scatterers are selected automatically in the two-dimensional (2-D) image domain; (2) scatterers may not be well-isolated or very dominant; (3) phase and RCS (radar cross section) information from each selected scatterer are combined in an optimal way; (4) the troublesome phase unwrapping step is avoided. AUTOCLEAN is computationally efficient and involves only a sequence of FFTs (fast Fourier Transforms). Another good feature associated with AUTOCLEAN is that its performance can be progressively improved by assuming a larger number of dominant scatterers for the target. Hence it can be easily configured for real-time applications including, for example, ATR (automatic target recognition) of non-cooperative moving targets, and for some other applications where the image quality is of the major concern but not the computational time including, for example, for the development and maintenance of low observable aircrafts. Numerical and experimental results have shown that AUTOCLEAN is a very robust autofocus tool for ISAR imaging.

  16. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  17. Network medicine in disease analysis and therapeutics.

    PubMed

    Chen, B; Butte, A J

    2013-12-01

    Two parallel trends are occurring in drug discovery. The first is that we are moving away from a symptom-based disease classification system to a system based on molecules and molecular states. The second is that we are shifting from targeting a single molecule toward targeting multiple molecules, pathways, or networks. Network medicine is an approach to understanding disease and discovering therapeutics looking at many molecules and how they interrelate, and it may play a critical role in the adoption of both trends.

  18. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.

  19. Calibration of asynchronous smart phone cameras from moving objects

    NASA Astrophysics Data System (ADS)

    Hagen, Oksana; Istenič, Klemen; Bharti, Vibhav; Dhali, Maruf Ahmed; Barmaimon, Daniel; Houssineau, Jérémie; Clark, Daniel

    2015-04-01

    Calibrating multiple cameras is a fundamental prerequisite for many Computer Vision applications. Typically this involves using a pair of identical synchronized industrial or high-end consumer cameras. This paper considers an application on a pair of low-cost portable cameras with different parameters that are found in smart phones. This paper addresses the issues of acquisition, detection of moving objects, dynamic camera registration and tracking of arbitrary number of targets. The acquisition of data is performed using two standard smart phone cameras and later processed using detections of moving objects in the scene. The registration of cameras onto the same world reference frame is performed using a recently developed method for camera calibration using a disparity space parameterisation and the single-cluster PHD filter.

  20. NGAP: A (Brief) Update PaaS, IaaS, Onbording, and the Future

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brett; Pawloski, Andrew

    2016-01-01

    NASA ESDIS has charged the EED2 program with delivering a NASA-compliant, secure, cloud-based platform for application hosting. More than just a move to the cloud, this has forced us to examine all aspects of application hosting, from resource management to system administration, patching to monitoring, deployment to multiple environments. The result of this mandate is NGAP, the NASA General Application Platform. In this presentation, we will also discuss the various applications we are supporting and targeting, and their architectures including NGAPs move to support both PaaS and IaaS architectures.

  1. Detection and Tracking of Moving Targets Behind Cluttered Environments Using Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Dang, Vinh Quang

    Detection and tracking of moving targets (target's motion, vibration, etc.) in cluttered environments have been receiving much attention in numerous applications, such as disaster search-and-rescue, law enforcement, urban warfare, etc. One of the popular techniques is the use of stepped frequency continuous wave radar due to its low cost and complexity. However, the stepped frequency radar suffers from long data acquisition time. This dissertation focuses on detection and tracking of moving targets and vibration rates of stationary targets behind cluttered medium such as wall using stepped frequency radar enhanced by compressive sensing. The application of compressive sensing enables the reconstruction of the target space using fewer random frequencies, which decreases the acquisition time. Hardware-accelerated parallelization on GPU is investigated for the Orthogonal Matching Pursuit reconstruction algorithm. For simulation purpose, two hybrid methods have been developed to calculate the scattered fields from the targets through the wall approaching the antenna system, and to convert the incoming fields into voltage signals at terminals of the receive antenna. The first method is developed based on the plane wave spectrum approach for calculating the scattered fields of targets behind the wall. The method uses Fast Multiple Method (FMM) to calculate scattered fields on a particular source plane, decomposes them into plane wave components, and propagates the plane wave spectrum through the wall by integrating wall transmission coefficients before constructing the fields on a desired observation plane. The second method allows one to calculate the complex output voltage at terminals of a receiving antenna which fully takes into account the antenna effects. This method adopts the concept of complex antenna factor in Electromagnetic Compatibility (EMC) community for its calculation.

  2. Moving Target Techniques: Cyber Resilience throught Randomization, Diversity, and Dynamism

    DTIC Science & Technology

    2017-03-03

    Moving Target Techniques: Cyber Resilience through Randomization, Diversity, and Dynamism Hamed Okhravi and Howard Shrobe Overview: The static...nature of computer systems makes them vulnerable to cyber attacks. Consider a situation where an attacker wants to compromise a remote system running... cyber resilience that attempts to rebalance the cyber landscape is known as cyber moving target (MT) (or just moving target) techniques. Moving target

  3. Selected reaction monitoring mass spectrometry: a methodology overview.

    PubMed

    Ebhardt, H Alexander

    2014-01-01

    Moving past the discovery phase of proteomics, the term targeted proteomics combines multiple approaches investigating a certain set of proteins in more detail. One such targeted proteomics approach is the combination of liquid chromatography and selected or multiple reaction monitoring mass spectrometry (SRM, MRM). SRM-MS requires prior knowledge of the fragmentation pattern of peptides, as the presence of the analyte in a sample is determined by measuring the m/z values of predefined precursor and fragment ions. Using scheduled SRM-MS, many analytes can robustly be monitored allowing for high-throughput sample analysis of the same set of proteins over many conditions. In this chapter, fundaments of SRM-MS are explained as well as an optimized SRM pipeline from assay generation to data analyzed.

  4. Synthetic-Aperture Coherent Imaging From A Circular Path

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1995-01-01

    Imaging algorithms based on exact point-target responses. Developed for use in reconstructing image of target from data gathered by radar, sonar, or other transmitting/receiving coherent-signal sensory apparatus following circular observation path around target. Potential applications include: Wide-beam synthetic-aperture radar (SAR) from aboard spacecraft in circular orbit around target planet; SAR from aboard airplane flying circular course at constant elevation around central ground point, toward which spotlight radar beam pointed; Ultrasonic reflection tomography in medical setting, using one transducer moving in circle around patient or else multiple transducers at fixed positions on circle around patient; and Sonar imaging of sea floor to high resolution, without need for large sensory apparatus.

  5. Research on the Multiple Factors Influencing Human Identification Based on Pyroelectric Infrared Sensors

    PubMed Central

    Lou, Ping; Hu, Jianmin

    2018-01-01

    Analysis of the multiple factors affecting human identification ability based on pyroelectric infrared technology is a complex problem. First, we examine various sensed pyroelectric waveforms of the human body thermal infrared signal and reveal a mechanism for affecting human identification. Then, we find that the mechanism is decided by the distance, human target, pyroelectric infrared (PIR) sensor, the body type, human moving velocity, signal modulation mask, and Fresnel lens. The mapping relationship between the sensed waveform and multiple influencing factors is established, and a group of mathematical models are deduced which fuse the macro factors and micro factors. Finally, the experimental results show the macro-factors indirectly affect the recognition ability of human based on the pyroelectric technology. At the same time, the correctness and effectiveness of the mathematical models is also verified, which make it easier to obtain more pyroelectric infrared information about the human body for discriminating human targets. PMID:29462908

  6. Reallocating attention during multiple object tracking.

    PubMed

    Ericson, Justin M; Christensen, James C

    2012-07-01

    Wolfe, Place, and Horowitz (Psychonomic Bulletin & Review 14:344-349, 2007) found that participants were relatively unaffected by selecting and deselecting targets while performing a multiple object tracking task, such that maintaining tracking was possible for longer durations than the few seconds typically studied. Though this result was generally consistent with other findings on tracking duration (Franconeri, Jonathon, & Scimeca Psychological Science 21:920-925, 2010), it was inconsistent with research involving cuing paradigms, specifically precues (Pylyshyn & Annan Spatial Vision 19:485-504, 2006). In the present research, we broke down the addition and removal of targets into separate conditions and incorporated a simple performance model to evaluate the costs associated with the selection and deselection of moving targets. Across three experiments, we demonstrated evidence against a cost being associated with any shift in attention, but rather that varying the type of cue used for target deselection produces no additional cost to performance and that hysteresis effects are not induced by a reduction in tracking load.

  7. Heterogeneous CPU-GPU moving targets detection for UAV video

    NASA Astrophysics Data System (ADS)

    Li, Maowen; Tang, Linbo; Han, Yuqi; Yu, Chunlei; Zhang, Chao; Fu, Huiquan

    2017-07-01

    Moving targets detection is gaining popularity in civilian and military applications. On some monitoring platform of motion detection, some low-resolution stationary cameras are replaced by moving HD camera based on UAVs. The pixels of moving targets in the HD Video taken by UAV are always in a minority, and the background of the frame is usually moving because of the motion of UAVs. The high computational cost of the algorithm prevents running it at higher resolutions the pixels of frame. Hence, to solve the problem of moving targets detection based UAVs video, we propose a heterogeneous CPU-GPU moving target detection algorithm for UAV video. More specifically, we use background registration to eliminate the impact of the moving background and frame difference to detect small moving targets. In order to achieve the effect of real-time processing, we design the solution of heterogeneous CPU-GPU framework for our method. The experimental results show that our method can detect the main moving targets from the HD video taken by UAV, and the average process time is 52.16ms per frame which is fast enough to solve the problem.

  8. Assisting People with Developmental Disabilities to Improve Computer Pointing Efficiency through Multiple Mice and Automatic Pointing Assistive Programs

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2011-01-01

    This study combines multi-mice technology (people with disabilities can use standard mice, instead of specialized alternative computer input devices, to achieve complete mouse operation) with an assistive pointing function (i.e. cursor-capturing, which enables the user to move the cursor to the target center automatically), to assess whether two…

  9. Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features

    NASA Astrophysics Data System (ADS)

    Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique

    2011-12-01

    We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.

  10. Eye tracking a self-moved target with complex hand-target dynamics

    PubMed Central

    Landelle, Caroline; Montagnini, Anna; Madelain, Laurent

    2016-01-01

    Previous work has shown that the ability to track with the eye a moving target is substantially improved when the target is self-moved by the subject's hand compared with when being externally moved. Here, we explored a situation in which the mapping between hand movement and target motion was perturbed by simulating an elastic relationship between the hand and target. Our objective was to determine whether the predictive mechanisms driving eye-hand coordination could be updated to accommodate this complex hand-target dynamics. To fully appreciate the behavioral effects of this perturbation, we compared eye tracking performance when self-moving a target with a rigid mapping (simple) and a spring mapping as well as when the subject tracked target trajectories that he/she had previously generated when using the rigid or spring mapping. Concerning the rigid mapping, our results confirmed that smooth pursuit was more accurate when the target was self-moved than externally moved. In contrast, with the spring mapping, eye tracking had initially similar low spatial accuracy (though shorter temporal lag) in the self versus externally moved conditions. However, within ∼5 min of practice, smooth pursuit improved in the self-moved spring condition, up to a level similar to the self-moved rigid condition. Subsequently, when the mapping unexpectedly switched from spring to rigid, the eye initially followed the expected target trajectory and not the real one, thereby suggesting that subjects used an internal representation of the new hand-target dynamics. Overall, these results emphasize the stunning adaptability of smooth pursuit when self-maneuvering objects with complex dynamics. PMID:27466129

  11. Moving target parameter estimation of SAR after two looks cancellation

    NASA Astrophysics Data System (ADS)

    Gan, Rongbing; Wang, Jianguo; Gao, Xiang

    2005-11-01

    Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.

  12. Consensus pursuit of heterogeneous multi-agent systems under a directed acyclic graph

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Guan, Xin-Ping; Luo, Xiao-Yuan

    2011-04-01

    This paper is concerned with the cooperative target pursuit problem by multiple agents based on directed acyclic graph. The target appears at a random location and moves only when sensed by the agents, and agents will pursue the target once they detect its existence. Since the ability of each agent may be different, we consider the heterogeneous multi-agent systems. According to the topology of the multi-agent systems, a novel consensus-based control law is proposed, where the target and agents are modeled as a leader and followers, respectively. Based on Mason's rule and signal flow graph analysis, the convergence conditions are provided to show that the agents can catch the target in a finite time. Finally, simulation studies are provided to verify the effectiveness of the proposed approach.

  13. Detection of Moving Targets Using Soliton Resonance Effect

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor K.; Zak, Michail

    2013-01-01

    The objective of this research was to develop a fundamentally new method for detecting hidden moving targets within noisy and cluttered data-streams using a novel "soliton resonance" effect in nonlinear dynamical systems. The technique uses an inhomogeneous Korteweg de Vries (KdV) equation containing moving-target information. Solution of the KdV equation will describe a soliton propagating with the same kinematic characteristics as the target. The approach uses the time-dependent data stream obtained with a sensor in form of the "forcing function," which is incorporated in an inhomogeneous KdV equation. When a hidden moving target (which in many ways resembles a soliton) encounters the natural "probe" soliton solution of the KdV equation, a strong resonance phenomenon results that makes the location and motion of the target apparent. Soliton resonance method will amplify the moving target signal, suppressing the noise. The method will be a very effective tool for locating and identifying diverse, highly dynamic targets with ill-defined characteristics in a noisy environment. The soliton resonance method for the detection of moving targets was developed in one and two dimensions. Computer simulations proved that the method could be used for detection of singe point-like targets moving with constant velocities and accelerations in 1D and along straight lines or curved trajectories in 2D. The method also allows estimation of the kinematic characteristics of moving targets, and reconstruction of target trajectories in 2D. The method could be very effective for target detection in the presence of clutter and for the case of target obscurations.

  14. Delineating the Neural Signatures of Tracking Spatial Position and Working Memory during Attentive Tracking

    PubMed Central

    Drew, Trafton; Horowitz, Todd S.; Wolfe, Jeremy M.; Vogel, Edward K.

    2015-01-01

    In the attentive tracking task, observers track multiple objects as they move independently and unpredictably among visually identical distractors. Although a number of models of attentive tracking implicate visual working memory as the mechanism responsible for representing target locations, no study has ever directly compared the neural mechanisms of the two tasks. In the current set of experiments, we used electrophysiological recordings to delineate similarities and differences between the neural processing involved in working memory and attentive tracking. We found that the contralateral electrophysiological response to the two tasks was similarly sensitive to the number of items attended in both tasks but that there was also a unique contralateral negativity related to the process of monitoring target position during tracking. This signal was absent for periods of time during tracking tasks when objects briefly stopped moving. These results provide evidence that, during attentive tracking, the process of tracking target locations elicits an electrophysiological response that is distinct and dissociable from neural measures of the number of items being attended. PMID:21228175

  15. Dissociable Frontal Controls during Visible and Memory-guided Eye-Tracking of Moving Targets

    PubMed Central

    Ding, Jinhong; Powell, David; Jiang, Yang

    2009-01-01

    When tracking visible or occluded moving targets, several frontal regions including the frontal eye fields (FEF), dorsal-lateral prefrontal cortex (DLPFC), and Anterior Cingulate Cortex (ACC) are involved in smooth pursuit eye movements (SPEM). To investigate how these areas play different roles in predicting future locations of moving targets, twelve healthy college students participated in a smooth pursuit task of visual and occluded targets. Their eye movements and brain responses measured by event-related functional MRI were simultaneously recorded. Our results show that different visual cues resulted in time discrepancies between physical and estimated pursuit time only when the moving dot was occluded. Visible phase velocity gain was higher than that of occlusion phase. We found bilateral FEF association with eye-movement whether moving targets are visible or occluded. However, the DLPFC and ACC showed increased activity when tracking and predicting locations of occluded moving targets, and were suppressed during smooth pursuit of visible targets. When visual cues were increasingly available, less activation in the DLPFC and the ACC was observed. Additionally, there was a significant hemisphere effect in DLPFC, where right DLPFC showed significantly increased responses over left when pursuing occluded moving targets. Correlation results revealed that DLPFC, the right DLPFC in particular, communicates more with FEF during tracking of occluded moving targets (from memory). The ACC modulates FEF more during tracking of visible targets (likely related to visual attention). Our results suggest that DLPFC and ACC modulate FEF and cortical networks differentially during visible and memory-guided eye tracking of moving targets. PMID:19434603

  16. Heterogeneous Vision Data Fusion for Independently Moving Cameras

    DTIC Science & Technology

    2010-03-01

    target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY

  17. Multimodal control of sensors on multiple simulated unmanned vehicles.

    PubMed

    Baber, C; Morin, C; Parekh, M; Cahillane, M; Houghton, R J

    2011-09-01

    The use of multimodal (speech plus manual) control of the sensors on combinations of one, two, three or five simulated unmanned vehicles (UVs) is explored. Novice controllers of simulated UVs complete a series of target checking tasks. Two experiments compare speech and gamepad control for one, two, three or five UVs in a simulated environment. Increasing the number of UVs has an impact on subjective rating of workload (measured by NASA-Task Load Index), particularly when moving from one to three UVs. Objective measures of performance showed that the participants tended to issue fewer commands as the number of vehicles increased (when using the gamepad control), but, while performance with a single UV was superior to that of multiple UVs, there was little difference across two, three or five UVs. Participants with low spatial ability (measured by the Object Perspectives Test) showed an increase in time to respond to warnings when controlling five UVs. Combining speech with gamepad control of sensors on UVs leads to superior performance on a secondary (respond-to-warnings) task (implying a reduction in demand) and use of fewer commands on primary (move-sensors and classify-target) tasks (implying more efficient operation). STATEMENT OF RELEVANCE: Benefits of multimodal control for unmanned vehicles are demonstrated. When controlling sensors on multiple UVs, participants with low spatial orientation scores have problems. It is proposed that the findings of these studies have implications for selection of UV operators and suggests that future UV workstations could benefit from multimodal control.

  18. Command Wire Sensor Measurements

    DTIC Science & Technology

    2012-09-01

    coupled with the extreme harsh terrain has meant that few of these techniques have proved robust enough when moved from the laboratory to the field...to image stationary objects and does not accurately image moving targets. Moving targets can be seriously distorted and displaced from their true...battlefield and for imaging of fixed targets. Moving targets can be detected with a SAR if they have a Doppler frequency shift greater than the

  19. Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking

    PubMed Central

    Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka

    2017-01-01

    Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430

  20. Comparison of 3-D Multi-Lag Cross-Correlation and Speckle Brightness Aberration Correction Algorithms on Static and Moving Targets

    PubMed Central

    Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.

    2010-01-01

    Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503

  1. Comparison of 3-D multi-lag cross- correlation and speckle brightness aberration correction algorithms on static and moving targets.

    PubMed

    Ivancevich, Nikolas M; Dahl, Jeremy J; Smith, Stephen W

    2009-10-01

    Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.

  2. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array.

    PubMed

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J; Urbas, Augustine

    2016-10-10

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed "algorithmic spectrometry". We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.

  3. Projection of controlled repeatable real-time moving targets to test and evaluate motion imagery quality

    NASA Astrophysics Data System (ADS)

    Scopatz, Stephen D.; Mendez, Michael; Trent, Randall

    2015-05-01

    The projection of controlled moving targets is key to the quantitative testing of video capture and post processing for Motion Imagery. This presentation will discuss several implementations of target projectors with moving targets or apparent moving targets creating motion to be captured by the camera under test. The targets presented are broadband (UV-VIS-IR) and move in a predictable, repeatable and programmable way; several short videos will be included in the presentation. Among the technical approaches will be targets that move independently in the camera's field of view, as well targets that change size and shape. The development of a rotating IR and VIS 4 bar target projector with programmable rotational velocity and acceleration control for testing hyperspectral cameras is discussed. A related issue for motion imagery is evaluated by simulating a blinding flash which is an impulse of broadband photons in fewer than 2 milliseconds to assess the camera's reaction to a large, fast change in signal. A traditional approach of gimbal mounting the camera in combination with the moving target projector is discussed as an alternative to high priced flight simulators. Based on the use of the moving target projector several standard tests are proposed to provide a corresponding test to MTF (resolution), SNR and minimum detectable signal at velocity. Several unique metrics are suggested for Motion Imagery including Maximum Velocity Resolved (the measure of the greatest velocity that is accurately tracked by the camera system) and Missing Object Tolerance (measurement of tracking ability when target is obscured in the images). These metrics are applicable to UV-VIS-IR wavelengths and can be used to assist in camera and algorithm development as well as comparing various systems by presenting the exact scenes to the cameras in a repeatable way.

  4. Description and Performance Evaluation of the Moving Target Detector

    DTIC Science & Technology

    1977-03-08

    Precipitation spectrum at azimuth of 330 . 170 1701 A-8 SGP doppler spectra of angels (probably solitary soaring 172 seagulls ). A-9 SGP doppler...spectra of angels (probably multiple soaring 173 seagulls ). A-10 Airliner approaching radar at traffic pattern speed. 174 A-lI Airliner approaching radar...frequented by soaring seagulls . The three periodograms in Figure A-8 each show a single rather narrow peak. These are believed to be returns from solitary

  5. X3D-Earth: Full Globe Coverage Utilizing Multiple Dataset

    DTIC Science & Technology

    2010-09-01

    DtedNvtProcessor Class ..................................................128 Figure 63. Subversion Checkout in Netbeans ...to the Ant build.xml file within a NetBeans Project: <target name=“moveToHamming” depends=““> <scp todir=“user@hamming.uc.nps.edu:/work/user/DTED...This task was generated using the NetBeans IDE (can be downloaded at www.netbeans.org). The task was then executed within NetBeans . This type of

  6. Empirically Based Strategies for Preventing Juvenile Delinquency.

    PubMed

    Pardini, Dustin

    2016-04-01

    Juvenile crime is a serious public health problem that results in significant emotional and financial costs for victims and society. Using etiologic models as a guide, multiple interventions have been developed to target risk factors thought to perpetuate the emergence and persistence of delinquent behavior. Evidence suggests that the most effective interventions tend to have well-defined treatment protocols, focus on therapeutic approaches as opposed to external control techniques, and use multimodal cognitive-behavioral treatment strategies. Moving forward, there is a need to develop effective policies and procedures that promote the widespread adoption of evidence-based delinquency prevention practices across multiple settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Complex background suppression using global-local registration strategy for the detection of small-moving target on moving platform

    NASA Astrophysics Data System (ADS)

    Zou, Tianhao; Zuo, Zhengrong

    2018-02-01

    Target detection is a very important and basic problem of computer vision and image processing. The most often case we meet in real world is a detection task for a moving-small target on moving platform. The commonly used methods, such as Registration-based suppression, can hardly achieve a desired result. To crack this hard nut, we introduce a Global-local registration based suppression method. Differ from the traditional ones, the proposed Global-local Registration Strategy consider both the global consistency and the local diversity of the background, obtain a better performance than normal background suppression methods. In this paper, we first discussed the features about the small-moving target detection on unstable platform. Then we introduced a new strategy and conducted an experiment to confirm its noisy stability. In the end, we confirmed the background suppression method based on global-local registration strategy has a better perform in moving target detection on moving platform.

  8. Probing midrapidity source characteristics with charged particles and neutrons in the 35Cl+natTa reaction at 43 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Larochelle, Y.; St-Pierre, C.; Beaulieu, L.; Colonna, N.; Gingras, L.; Ball, G. C.; Bowman, D. R.; Colonna, M.; D'erasmo, G.; Fiore, E.; Fox, D.; Galindo-Uribarri, A.; Hagberg, E.; Horn, D.; Laforest, R.; Pantaleo, A.; Roy, R.; Tagliente, G.

    1999-02-01

    The characteristics of the midrapidity and target sources (apparent temperatures, velocities, and neutron multiplicities) extracted from the neutron energy spectra, have been measured for various quasiprojectile (QP) excitation energies, reconstructed from charged particles of well defined peripheral events in the 35Cl+natTa reaction at 43 MeV/nucleon. The reconstructed excitation energy of the QP is always smaller than the excitation energy calculated from its velocity, assuming pure dissipative binary collision. The latter observation combined with the neutron multiplicity at midrapidity and the apparent temperature suggests important preequilibrium and/or dynamical effects in the entrance channel. The midrapidity source moves at a velocity lower than the nucleon-nucleon center of mass velocity showing the importance of the attractive mean-field potential from the target even at 43 MeV/nucleon. The above picture is confirmed by comparison to Boltzman-Nordheim-Vlasov (BNV) simulations.

  9. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  10. SU-E-J-57: First Development of Adapting to Intrafraction Relative Motion Between Prostate and Pelvic Lymph Nodes Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; Colvill, E; O’Brien, R

    2015-06-15

    Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eyemore » view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent organs-at-risk. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less

  11. Schema generation in recurrent neural nets for intercepting a moving target.

    PubMed

    Fleischer, Andreas G

    2010-06-01

    The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target's anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.

  12. Orbital Monitoring of the AstraLux Large M-dwarf Multiplicity Sample

    NASA Astrophysics Data System (ADS)

    Janson, Markus; Bergfors, Carolina; Brandner, Wolfgang; Bonnefoy, Mickaël; Schlieder, Joshua; Köhler, Rainer; Hormuth, Felix; Henning, Thomas; Hippler, Stefan

    2014-10-01

    Orbital monitoring of M-type binaries is essential for constraining their fundamental properties. This is particularly useful in young systems, where the extended pre-main-sequence evolution can allow for precise isochronal dating. Here, we present the continued astrometric monitoring of the more than 200 binaries of the AstraLux Large Multiplicity Survey, building both on our previous work, archival data, and new astrometric data spanning the range of 2010-2012. The sample is very young overall—all included stars have known X-ray emission, and a significant fraction (18%) of them have recently also been identified as members of young moving groups in the solar neighborhood. We identify ~30 targets that both have indications of being young and for which an orbit either has been closed or appears possible to close in a reasonable time frame (a few years to a few decades). One of these cases, GJ 4326, is, however, identified as probably being substantially older than has been implied from its apparent moving group membership, based on astrometric and isochronal arguments. With further astrometric monitoring, these targets will provide a set of empirical isochrones, against which theoretical isochrones can be calibrated, and which can be used to evaluate the precise ages of nearby young moving groups. Based on observations collected at the European Southern Observatory, Chile, under observing programs 081.C-0314(A), 082.C-0053(A), and 084.C-0812(A), and on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institute for Astronomy and the Instituto de Astrofísica de Andalucía (CSIC).

  13. Multiple anatomy optimization of accumulated dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V.; Moore, Joseph A.

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dosemore » variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.« less

  14. Visual search for motion-form conjunctions: is form discriminated within the motion system?

    PubMed

    von Mühlenen, A; Müller, H J

    2001-06-01

    Motion-form conjunction search can be more efficient when the target is moving (a moving 45 degrees tilted line among moving vertical and stationary 45 degrees tilted lines) rather than stationary. This asymmetry may be due to aspects of form being discriminated within a motion system representing only moving items, whereas discrimination of stationary items relies on a static form system (J. Driver & P. McLeod, 1992). Alternatively, it may be due to search exploiting differential motion velocity and direction signals generated by the moving-target and distractor lines. To decide between these alternatives, 4 experiments systematically varied the motion-signal information conveyed by the moving target and distractors while keeping their form difference salient. Moving-target search was found to be facilitated only when differential motion-signal information was available. Thus, there is no need to assume that form is discriminated within the motion system.

  15. A novel infrared small moving target detection method based on tracking interest points under complicated background

    NASA Astrophysics Data System (ADS)

    Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Bai, Shengjian; Xu, Wanying

    2014-07-01

    Infrared moving target detection is an important part of infrared technology. We introduce a novel infrared small moving target detection method based on tracking interest points under complicated background. Firstly, Difference of Gaussians (DOG) filters are used to detect a group of interest points (including the moving targets). Secondly, a sort of small targets tracking method inspired by Human Visual System (HVS) is used to track these interest points for several frames, and then the correlations between interest points in the first frame and the last frame are obtained. Last, a new clustering method named as R-means is proposed to divide these interest points into two groups according to the correlations, one is target points and another is background points. In experimental results, the target-to-clutter ratio (TCR) and the receiver operating characteristics (ROC) curves are computed experimentally to compare the performances of the proposed method and other five sophisticated methods. From the results, the proposed method shows a better discrimination of targets and clutters and has a lower false alarm rate than the existing moving target detection methods.

  16. Robust human detection, tracking, and recognition in crowded urban areas

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    In this paper, we present algorithms we recently developed to support an automated security surveillance system for very crowded urban areas. In our approach for human detection, the color features are obtained by taking the difference of R, G, B spectrum and converting R, G, B to HSV (Hue, Saturation, Value) space. Morphological patch filtering and regional minimum and maximum segmentation on the extracted features are applied for target detection. The human tracking process approach includes: 1) Color and intensity feature matching track candidate selection; 2) Separate three parallel trackers for color, bright (above mean intensity), and dim (below mean intensity) detections, respectively; 3) Adaptive track gate size selection for reducing false tracking probability; and 4) Forward position prediction based on previous moving speed and direction for continuing tracking even when detections are missed from frame to frame. The Human target recognition is improved with a Super-Resolution Image Enhancement (SRIE) process. This process can improve target resolution by 3-5 times and can simultaneously process many targets that are tracked. Our approach can project tracks from one camera to another camera with a different perspective viewing angle to obtain additional biometric features from different perspective angles, and to continue tracking the same person from the 2nd camera even though the person moved out of the Field of View (FOV) of the 1st camera with `Tracking Relay'. Finally, the multiple cameras at different view poses have been geo-rectified to nadir view plane and geo-registered with Google- Earth (or other GIS) to obtain accurate positions (latitude, longitude, and altitude) of the tracked human for pin-point targeting and for a large area total human motion activity top-view. Preliminary tests of our algorithms indicate than high probability of detection can be achieved for both moving and stationary humans. Our algorithms can simultaneously track more than 100 human targets with averaged tracking period (time length) longer than the performance of the current state-of-the-art.

  17. Research on polarization imaging information parsing method

    NASA Astrophysics Data System (ADS)

    Yuan, Hongwu; Zhou, Pucheng; Wang, Xiaolong

    2016-11-01

    Polarization information parsing plays an important role in polarization imaging detection. This paper focus on the polarization information parsing method: Firstly, the general process of polarization information parsing is given, mainly including polarization image preprocessing, multiple polarization parameters calculation, polarization image fusion and polarization image tracking, etc.; And then the research achievements of the polarization information parsing method are presented, in terms of polarization image preprocessing, the polarization image registration method based on the maximum mutual information is designed. The experiment shows that this method can improve the precision of registration and be satisfied the need of polarization information parsing; In terms of multiple polarization parameters calculation, based on the omnidirectional polarization inversion model is built, a variety of polarization parameter images are obtained and the precision of inversion is to be improve obviously; In terms of polarization image fusion , using fuzzy integral and sparse representation, the multiple polarization parameters adaptive optimal fusion method is given, and the targets detection in complex scene is completed by using the clustering image segmentation algorithm based on fractal characters; In polarization image tracking, the average displacement polarization image characteristics of auxiliary particle filtering fusion tracking algorithm is put forward to achieve the smooth tracking of moving targets. Finally, the polarization information parsing method is applied to the polarization imaging detection of typical targets such as the camouflage target, the fog and latent fingerprints.

  18. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  19. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  20. Integrated model of multiple kernel learning and differential evolution for EUR/USD trading.

    PubMed

    Deng, Shangkun; Sakurai, Akito

    2014-01-01

    Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL) with differential evolution (DE) for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI), while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX) currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits.

  1. Space moving target detection using time domain feature

    NASA Astrophysics Data System (ADS)

    Wang, Min; Chen, Jin-yong; Gao, Feng; Zhao, Jin-yu

    2018-01-01

    The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects (target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10-5, which outperforms those of compared algorithms.

  2. Predictive saccade in the absence of smooth pursuit: interception of moving targets in the archer fish.

    PubMed

    Ben-Simon, Avi; Ben-Shahar, Ohad; Vasserman, Genadiy; Segev, Ronen

    2012-12-15

    Interception of fast-moving targets is a demanding task many animals solve. To handle it successfully, mammals employ both saccadic and smooth pursuit eye movements in order to confine the target to their area centralis. But how can non-mammalian vertebrates, which lack smooth pursuit, intercept moving targets? We studied this question by exploring eye movement strategies employed by archer fish, an animal that possesses an area centralis, lacks smooth pursuit eye movements, but can intercept moving targets by shooting jets of water at them. We tracked the gaze direction of fish during interception of moving targets and found that they employ saccadic eye movements based on prediction of target position when it is hit. The fish fixates on the target's initial position for ∼0.2 s from the onset of its motion, a time period used to predict whether a shot can be made before the projection of the target exits the area centralis. If the prediction indicates otherwise, the fish performs a saccade that overshoots the center of gaze beyond the present target projection on the retina, such that after the saccade the moving target remains inside the area centralis long enough to prepare and perform a shot. These results add to the growing body of knowledge on biological target tracking and may shed light on the mechanism underlying this behavior in other animals with no neural system for the generation of smooth pursuit eye movements.

  3. Make a Move: A Comprehensive Effect Evaluation of a Sexual Harassment Prevention Program in Dutch Residential Youth Care.

    PubMed

    van Lieshout, Sanne; Mevissen, Fraukje E F; van Breukelen, Gerard; Jonker, Marianne; Ruiter, Robert A C

    2016-06-27

    Sexual harassment-unwanted sexual comments, advances, or behaviors-and sexual violence are still prevalent worldwide, leading to a variety of physical, cognitive, and emotional problems among those being harassed. In particular, youth in care are at risk of becoming perpetrators (and victims) of sexual harassment. However, in general, there are very few interventions targeting this at-risk group, and no such programs exist in the Netherlands. To this end, a group intervention program-Make a Move-targeting determinants of sexual harassment was developed. This program was implemented and evaluated among boys (N = 177) in Dutch residential youth care (20 institutions). A pre-test, post-test, and 6-month follow-up design including an intervention and a waiting list control group with randomized assignment of institutions (cluster randomized trial) was used to measure the effects of the intervention on determinants of sexual harassment. Multilevel (mixed) regression analysis with Bonferroni correction for multiple testing (α = .005) showed no significant effects of Make a Move on determinants of sexual harassment (ps > .03, Cohen's ds < .44). Results are discussed in light of a three-way explanatory model focusing on intervention content, evaluation, and implementation as potential explanations for not finding any measurable intervention effects. © The Author(s) 2016.

  4. Feature Interactions Enable Decoding of Sensorimotor Transformations for Goal-Directed Movement

    PubMed Central

    Barany, Deborah A.; Della-Maggiore, Valeria; Viswanathan, Shivakumar; Cieslak, Matthew

    2014-01-01

    Neurophysiology and neuroimaging evidence shows that the brain represents multiple environmental and body-related features to compute transformations from sensory input to motor output. However, it is unclear how these features interact during goal-directed movement. To investigate this issue, we examined the representations of sensory and motor features of human hand movements within the left-hemisphere motor network. In a rapid event-related fMRI design, we measured cortical activity as participants performed right-handed movements at the wrist, with either of two postures and two amplitudes, to move a cursor to targets at different locations. Using a multivoxel analysis technique with rigorous generalization tests, we reliably distinguished representations of task-related features (primarily target location, movement direction, and posture) in multiple regions. In particular, we identified an interaction between target location and movement direction in the superior parietal lobule, which may underlie a transformation from the location of the target in space to a movement vector. In addition, we found an influence of posture on primary motor, premotor, and parietal regions. Together, these results reveal the complex interactions between different sensory and motor features that drive the computation of sensorimotor transformations. PMID:24828640

  5. Geo-Referenced Dynamic Pushbroom Stereo Mosaics for 3D and Moving Target Extraction - A New Geometric Approach

    DTIC Science & Technology

    2009-12-01

    facilitating reliable stereo matching, occlusion handling, accurate 3D reconstruction and robust moving target detection . We use the fact that all the...a moving platform, we will have to naturally and effectively handle obvious motion parallax and object occlusions in order to be able to detect ...facilitating reliable stereo matching, occlusion handling, accurate 3D reconstruction and robust moving target detection . Based on the above two

  6. Marine Targets Classification in PolInSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Jingsong; Ren, Lin

    2014-11-01

    In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then, A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.

  7. Marine Targets Classification in PolInSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Jingsong; Ren, Lin

    2014-11-01

    In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then , A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.

  8. Parallel updating and weighting of multiple spatial maps for visual stability during whole body motion

    PubMed Central

    Medendorp, W. P.

    2015-01-01

    It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289

  9. The Neural Correlates of Inhibiting Pursuit to Smoothly Moving Targets

    ERIC Educational Resources Information Center

    Burke, Melanie Rose; Barnes, Graham R.

    2011-01-01

    A previous study has shown that actively pursuing a moving target provides a predictive motor advantage when compared with passive observation of the moving target while keeping the eyes still [Burke, M. R., & Barnes, G. R. Anticipatory eye movements evoked after active following versus passive observation of a predictable motion stimulus. "Brain…

  10. The performance analysis of three-dimensional track-before-detect algorithm based on Fisher-Tippett-Gnedenko theorem

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan

    2016-09-01

    The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.

  11. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    PubMed

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-03-16

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  12. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array

    PubMed Central

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine

    2016-01-01

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme. PMID:27721506

  13. Research of maneuvering target prediction and tracking technology based on IMM algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Zheng; Mao, Yao; Deng, Chao; Liu, Qiong; Chen, Jing

    2016-09-01

    Maneuvering target prediction and tracking technology is widely used in both military and civilian applications, the study of those technologies is all along the hotspot and difficulty. In the Electro-Optical acquisition-tracking-pointing system (ATP), the primary traditional maneuvering targets are ballistic target, large aircraft and other big targets. Those targets have the features of fast velocity and a strong regular trajectory and Kalman Filtering and polynomial fitting have good effects when they are used to track those targets. In recent years, the small unmanned aerial vehicles developed rapidly for they are small, nimble and simple operation. The small unmanned aerial vehicles have strong maneuverability in the observation system of ATP although they are close-in, slow and small targets. Moreover, those vehicles are under the manual operation, therefore, the acceleration of them changes greatly and they move erratically. So the prediction and tracking precision is low when traditional algorithms are used to track the maneuvering fly of those targets, such as speeding up, turning, climbing and so on. The interacting multiple model algorithm (IMM) use multiple models to match target real movement trajectory, there are interactions between each model. The IMM algorithm can switch model based on a Markov chain to adapt to the change of target movement trajectory, so it is suitable to solve the prediction and tracking problems of the small unmanned aerial vehicles because of the better adaptability of irregular movement. This paper has set up model set of constant velocity model (CV), constant acceleration model (CA), constant turning model (CT) and current statistical model. And the results of simulating and analyzing the real movement trajectory data of the small unmanned aerial vehicles show that the prediction and tracking technology based on the interacting multiple model algorithm can get relatively lower tracking error and improve tracking precision comparing with traditional algorithms.

  14. Homography-based multiple-camera person-tracking

    NASA Astrophysics Data System (ADS)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.

  15. An Automatic Multi-Target Independent Analysis Framework for Non-Planar Infrared-Visible Registration.

    PubMed

    Sun, Xinglong; Xu, Tingfa; Zhang, Jizhou; Zhao, Zishu; Li, Yuankun

    2017-07-26

    In this paper, we propose a novel automatic multi-target registration framework for non-planar infrared-visible videos. Previous approaches usually analyzed multiple targets together and then estimated a global homography for the whole scene, however, these cannot achieve precise multi-target registration when the scenes are non-planar. Our framework is devoted to solving the problem using feature matching and multi-target tracking. The key idea is to analyze and register each target independently. We present a fast and robust feature matching strategy, where only the features on the corresponding foreground pairs are matched. Besides, new reservoirs based on the Gaussian criterion are created for all targets, and a multi-target tracking method is adopted to determine the relationships between the reservoirs and foreground blobs. With the matches in the corresponding reservoir, the homography of each target is computed according to its moving state. We tested our framework on both public near-planar and non-planar datasets. The results demonstrate that the proposed framework outperforms the state-of-the-art global registration method and the manual global registration matrix in all tested datasets.

  16. Research on measurement method of optical camouflage effect of moving object

    NASA Astrophysics Data System (ADS)

    Wang, Juntang; Xu, Weidong; Qu, Yang; Cui, Guangzhen

    2016-10-01

    Camouflage effectiveness measurement as an important part of the camouflage technology, which testing and measuring the camouflage effect of the target and the performance of the camouflage equipment according to the tactical and technical requirements. The camouflage effectiveness measurement of current optical band is mainly aimed at the static target which could not objectively reflect the dynamic camouflage effect of the moving target. This paper synthetical used technology of dynamic object detection and camouflage effect detection, the digital camouflage of the moving object as the research object, the adaptive background update algorithm of Surendra was improved, a method of optical camouflage effect detection using Lab-color space in the detection of moving-object was presented. The binary image of moving object is extracted by this measurement technology, in the sequence diagram, the characteristic parameters such as the degree of dispersion, eccentricity, complexity and moment invariants are constructed to construct the feature vector space. The Euclidean distance of moving target which through digital camouflage was calculated, the results show that the average Euclidean distance of 375 frames was 189.45, which indicated that the degree of dispersion, eccentricity, complexity and moment invariants of the digital camouflage graphics has a great difference with the moving target which not spray digital camouflage. The measurement results showed that the camouflage effect was good. Meanwhile with the performance evaluation module, the correlation coefficient of the dynamic target image range 0.1275 from 0.0035, and presented some ups and down. Under the dynamic condition, the adaptability of target and background was reflected. In view of the existing infrared camouflage technology, the next step, we want to carry out the camouflage effect measurement technology of the moving target based on infrared band.

  17. Control Program for an Optical-Calibration Robot

    NASA Technical Reports Server (NTRS)

    Johnston, Albert

    2005-01-01

    A computer program provides semiautomatic control of a moveable robot used to perform optical calibration of video-camera-based optoelectronic sensor systems that will be used to guide automated rendezvous maneuvers of spacecraft. The function of the robot is to move a target and hold it at specified positions. With the help of limit switches, the software first centers or finds the target. Then the target is moved to a starting position. Thereafter, with the help of an intuitive graphical user interface, an operator types in coordinates of specified positions, and the software responds by commanding the robot to move the target to the positions. The software has capabilities for correcting errors and for recording data from the guidance-sensor system being calibrated. The software can also command that the target be moved in a predetermined sequence of motions between specified positions and can be run in an advanced control mode in which, among other things, the target can be moved beyond the limits set by the limit switches.

  18. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  19. Perceptual integration of motion and form information: evidence of parallel-continuous processing.

    PubMed

    von Mühlenen, A; Müller, H J

    2000-04-01

    In three visual search experiments, the processes involved in the efficient detection of motion-form conjunction targets were investigated. Experiment 1 was designed to estimate the relative contributions of stationary and moving nontargets to the search rate. Search rates were primarily determined by the number of moving nontargets; stationary nontargets sharing the target form also exerted a significant effect, but this was only about half as strong as that of moving nontargets; stationary nontargets not sharing the target form had little influence. In Experiments 2 and 3, the effects of display factors influencing the visual (form) quality of moving items (movement speed and item size) were examined. Increasing the speed of the moving items (> 1.5 degrees/sec) facilitated target detection when the task required segregation of the moving from the stationary items. When no segregation was necessary, increasing the movement speed impaired performance: With large display items, motion speed had little effect on target detection, but with small items, search efficiency declined when items moved faster than 1.5 degrees/sec. This pattern indicates that moving nontargets exert a strong effect on the search rate (Experiment 1) because of the loss of visual quality for moving items above a certain movement speed. A parallel-continuous processing account of motion-form conjunction search is proposed, which combines aspects of Guided Search (Wolfe, 1994) and attentional engagement theory (Duncan & Humphreys, 1989).

  20. Combining Multiple Types of Intelligence to Generate Probability Maps of Moving Targets

    DTIC Science & Technology

    2013-09-01

    normalization coefficient k similar to Demspter-Shafer’s combination rule. d. Mass Mean This rule of combination is the most straightforward one... coefficient , we can state that without normalizing, the updated distribution is: fupdate t   qk k t M 1 qk n k t M        (3.3) 36...Lawrence, KS. Chen, Z. (2003). Bayesian filtering: From Kalman filters to particle filters and beyond. Technical report, McMaster University. Dempster

  1. Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR

    NASA Astrophysics Data System (ADS)

    Sroka, Adam; Chan, Susan; Warburton, Ryan; Gariepy, Genevieve; Henderson, Robert; Leach, Jonathan; Faccio, Daniele; Lee, Stephen T.

    2016-05-01

    The ability to detect motion and to track a moving object that is hidden around a corner or behind a wall provides a crucial advantage when physically going around the obstacle is impossible or dangerous. One recently demonstrated approach to achieving this goal makes use of non-line-of-sight picosecond pulse laser ranging. This approach has recently become interesting due to the availability of single-photon avalanche diode (SPAD) receivers with picosecond time resolution. We present a time-resolved non-sequential ray-tracing model and its application to indirect line-of-sight detection of moving targets. The model makes use of the Zemax optical design programme's capabilities in stray light analysis where it traces large numbers of rays through multiple random scattering events in a 3D non-sequential environment. Our model then reconstructs the generated multi-segment ray paths and adds temporal analysis. Validation of this model against experimental results is shown. We then exercise the model to explore the limits placed on system design by available laser sources and detectors. In particular we detail the requirements on the laser's pulse energy, duration and repetition rate, and on the receiver's temporal response and sensitivity. These are discussed in terms of the resulting implications for achievable range, resolution and measurement time while retaining eye-safety with this technique. Finally, the model is used to examine potential extensions to the experimental system that may allow for increased localisation of the position of the detected moving object, such as the inclusion of multiple detectors and/or multiple emitters.

  2. Linked Clinical Trials – The Development of New Clinical Learning Studies in Parkinson’s Disease Using Screening of Multiple Prospective New Treatments

    PubMed Central

    Brundin, Patrik; Barker, Roger A.; Conn, P. Jeffrey; Dawson, Ted M.; Kieburtz, Karl; Lees, Andrew J.; Schwarzschild, Michael A.; Tanner, Caroline M.; Isaacs, Tom; Duffen, Joy; Matthews, Helen; Wyse, Richard K.H.

    2015-01-01

    Finding new therapies for Parkinson’s disease (PD) is a slow process. We assembled an international committee of experts to examine drugs potentially suitable for repurposing to modify PD progression. This committee evaluated multiple drugs currently used, or being developed, in other therapeutic areas, as well as considering several natural, non-pharmaceutical compounds. The committee prioritized which of these putative treatments were most suited to move immediately into pilot clinical trials. Aspects considered included known modes of action, safety, blood-brain-barrier penetration, preclinical data in animal models of PD and the possibility to monitor target engagement in the brain. Of the 26 potential interventions, 10 were considered worth moving forward into small, parallel ‘learning’ clinical trials in PD patients. These trials could be funded in a multitude of ways through support from industry, research grants and directed philanthropic donations. The committee-based approach to select the candidate compounds might help rapidly identify new potential PD treatment strategies for use in clinical trials. PMID:24018336

  3. Effects of a Moving Distractor Object on Time-to-Contact Judgments

    ERIC Educational Resources Information Center

    Oberfeld, Daniel; Hecht, Heiko

    2008-01-01

    The effects of moving task-irrelevant objects on time-to-contact (TTC) judgments were examined in 5 experiments. Observers viewed a directly approaching target in the presence of a distractor object moving in parallel with the target. In Experiments 1 to 4, observers decided whether the target would have collided with them earlier or later than a…

  4. Radar Imaging for Moving Targets

    DTIC Science & Technology

    2009-06-01

    MOVING TARGETS by Teo Beng Koon William June 2009 Thesis Advisor: Brett H. Borden Second Reader: Donald L. Walters THIS PAGE...Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project...TITLE AND SUBTITLE Radar Imaging for Moving Targets 6. AUTHOR(S) Teo Beng Koon William 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S

  5. 'Compromise position' image alignment to accommodate independent motion of multiple clinical target volumes during radiotherapy: A high risk prostate cancer example.

    PubMed

    Rosewall, Tara; Yan, Jing; Alasti, Hamideh; Cerase, Carla; Bayley, Andrew

    2017-04-01

    Inclusion of multiple independently moving clinical target volumes (CTVs) in the irradiated volume causes an image guidance conundrum. The purpose of this research was to use high risk prostate cancer as a clinical example to evaluate a 'compromise' image alignment strategy. The daily pre-treatment orthogonal EPI for 14 consecutive patients were included in this analysis. Image matching was performed by aligning to the prostate only, the bony pelvis only and using the 'compromise' strategy. Residual CTV surrogate displacements were quantified for each of the alignment strategies. Analysis of the 388 daily fractions indicated surrogate displacements were well-correlated in all directions (r 2  = 0.95 (LR), 0.67 (AP) and 0.59 (SI). Differences between the surrogates displacements (95% range) were -0.4 to 1.8 mm (LR), -1.2 to 5.2 mm (SI) and -1.2 to 5.2 mm (AP). The distribution of the residual displacements was significantly smaller using the 'compromise' strategy, compared to the other strategies (p 0.005). The 'compromise' strategy ensured the CTV was encompassed by the PTV in all fractions, compared to 47 PTV violations when aligned to prostate only. This study demonstrated the feasibility of a compromise position image guidance strategy to accommodate simultaneous displacements of two independently moving CTVs. Application of this strategy was facilitated by correlation between the CTV displacements and resulted in no geometric excursions of the CTVs beyond standard sized PTVs. This simple image guidance strategy may also be applicable to other disease sites that concurrently irradiate multiple CTVs, such as head and neck, lung and cervix cancer. © 2016 The Royal Australian and New Zealand College of Radiologists.

  6. Smooth Pursuit Eye Movement Deficits in Patients With Whiplash and Neck Pain are Modulated by Target Predictability.

    PubMed

    Janssen, Malou; Ischebeck, Britta K; de Vries, Jurryt; Kleinrensink, Gert-Jan; Frens, Maarten A; van der Geest, Jos N

    2015-10-01

    This is a cross-sectional study. The purpose of this study is to support and extend previous observations on oculomotor disturbances in patients with neck pain and whiplash-associated disorders (WADs) by systematically investigating the effect of static neck torsion on smooth pursuit in response to both predictably and unpredictably moving targets using video-oculography. Previous studies showed that in patients with neck complaints, for instance due to WAD, extreme static neck torsion deteriorates smooth pursuit eye movements in response to predictably moving targets compared with healthy controls. Eye movements in response to a smoothly moving target were recorded with video-oculography in a heterogeneous group of 55 patients with neck pain (including 11 patients with WAD) and 20 healthy controls. Smooth pursuit performance was determined while the trunk was fixed in 7 static rotations relative to the head (from 45° to the left to 45° to right), using both predictably and unpredictably moving stimuli. Patients had reduced smooth pursuit gains and smooth pursuit gain decreased due to neck torsion. Healthy controls showed higher gains for predictably moving targets compared with unpredictably moving targets, whereas patients with neck pain had similar gains in response to both types of target movements. In 11 patients with WAD, increased neck torsion decreased smooth pursuit performance, but only for predictably moving targets. Smooth pursuit of patients with neck pain is affected. The previously reported WAD-specific decline in smooth pursuit due to increased neck torsion seems to be modulated by the predictability of the movement of the target. The observed oculomotor disturbances in patients with WAD are therefore unlikely to be induced by impaired neck proprioception alone. 3.

  7. Representational momentum and Michotte's (1946/1963) "launching effect" paradigm.

    PubMed

    Hubbard, T L; Blessum, J A; Ruppel, S E

    2001-01-01

    In A. Michotte's (1946/1963) launching effect, a moving launcher contacts a stationary target, and then the launcher becomes stationary and the target begins to move. In this experiment, observers viewed modifications of a launching effect display, and displacement in memory for the location of targets was measured. Forward displacement of targets in launching effect displays was decreased relative to that of targets (a) that were presented in isolation and either moved at a constant fast or slow velocity or decelerated or (b) that moved in a direction orthogonal to previous motion of the launcher. Possible explanations involving a deceleration of motion or landmark attraction effects were ruled out. Displacement patterns were consistent with naive impetus theory and the hypothesis that observers believed impetus from the launcher was imparted to the target and then dissipated.

  8. Sustained attention to objects' motion sharpens position representations: Attention to changing position and attention to motion are distinct.

    PubMed

    Howard, Christina J; Rollings, Victoria; Hardie, Amy

    2017-06-01

    In tasks where people monitor moving objects, such the multiple object tracking task (MOT), observers attempt to keep track of targets as they move amongst distracters. The literature is mixed as to whether observers make use of motion information to facilitate performance. We sought to address this by two means: first by superimposing arrows on objects which varied in their informativeness about motion direction and second by asking observers to attend to motion direction. Using a position monitoring task, we calculated mean error magnitudes as a measure of the precision with which target positions are represented. We also calculated perceptual lags versus extrapolated reports, which are the times at which positions of targets best match position reports. We find that the presence of motion information in the form of superimposed arrows made no difference to position report precision nor perceptual lag. However, when we explicitly instructed observers to attend to motion, we saw facilitatory effects on position reports and in some cases reports that best matched extrapolated rather than lagging positions for small set sizes. The results indicate that attention to changing positions does not automatically recruit attention to motion, showing a dissociation between sustained attention to changing positions and attention to motion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback.

    PubMed

    Lin, Kao-Han; Young, Sun-Yi; Hsu, Ming-Chuan; Chan, Hsu; Chen, Yung-Yaw; Lin, Win-Li

    2008-01-01

    In this study, we developed a focused ultrasound (FUS) thermal therapy system with ultrasound image guidance and thermocouple temperature measurement feedback. Hydraulic position devices and computer-controlled servo motors were used to move the FUS transducer to the desired location with the measurement of actual movement by linear scale. The entire system integrated automatic position devices, FUS transducer, power amplifier, ultrasound image system, and thermocouple temperature measurement into a graphical user interface. For the treatment procedure, a thermocouple was implanted into a targeted treatment region in a tissue-mimicking phantom under ultrasound image guidance, and then the acoustic interference pattern formed by image ultrasound beam and low-power FUS beam was employed as image guidance to move the FUS transducer to have its focal zone coincident with the thermocouple tip. The thermocouple temperature rise was used to determine the sonication duration for a suitable thermal lesion as a high power was turned on and ultrasound image was used to capture the thermal lesion formation. For a multiple lesion formation, the FUS transducer was moved under the acoustic interference guidance to a new location and then it sonicated with the same power level and duration. This system was evaluated and the results showed that it could perform two-dimensional motion control to do a two-dimensional thermal therapy with a small localization error 0.5 mm. Through the user interface, the FUS transducer could be moved to heat the target region with the guidance of ultrasound image and acoustic interference pattern. The preliminary phantom experimental results demonstrated that the system could achieve the desired treatment plan satisfactorily.

  10. Constraints in distortion-invariant target recognition system simulation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Razzaque, Md A.

    2000-11-01

    Automatic target recognition (ATR) is a mature but active research area. In an earlier paper, we proposed a novel ATR approach for recognition of targets varying in fine details, rotation, and translation using a Learning Vector Quantization (LVQ) Neural Network (NN). The proposed approach performed segmentation of multiple objects and the identification of the objects using LVQNN. In this current paper, we extend the previous approach for recognition of targets varying in rotation, translation, scale, and combination of all three distortions. We obtain the analytical results of the system level design to show that the approach performs well with some constraints. The first constraint determines the size of the input images and input filters. The second constraint shows the limits on amount of rotation, translation, and scale of input objects. We present the simulation verification of the constraints using DARPA's Moving and Stationary Target Recognition (MSTAR) images with different depression and pose angles. The simulation results using MSTAR images verify the analytical constraints of the system level design.

  11. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung.

    PubMed

    Oh, Phil; Borgström, Per; Witkiewicz, Halina; Li, Yan; Borgström, Bengt J; Chrastina, Adrian; Iwata, Koji; Zinn, Kurt R; Baldwin, Richard; Testa, Jacqueline E; Schnitzer, Jan E

    2007-03-01

    How effectively and quickly endothelial caveolae can transcytose in vivo is unknown, yet critical for understanding their function and potential clinical utility. Here we use quantitative proteomics to identify aminopeptidase P (APP) concentrated in caveolae of lung endothelium. Electron microscopy confirms this and shows that APP antibody targets nanoparticles to caveolae. Dynamic intravital fluorescence microscopy reveals that targeted caveolae operate effectively as pumps, moving antibody within seconds from blood across endothelium into lung tissue, even against a concentration gradient. This active transcytosis requires normal caveolin-1 expression. Whole body gamma-scintigraphic imaging shows rapid, specific delivery into lung well beyond that achieved by standard vascular targeting. This caveolar trafficking in vivo may underscore a key physiological mechanism for selective transvascular exchange and may provide an enhanced delivery system for imaging agents, drugs, gene-therapy vectors and nanomedicines. 'In vivo proteomic imaging' as described here integrates organellar proteomics with multiple imaging techniques to identify an accessible target space that includes the transvascular pumping space of the caveola.

  12. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments

    NASA Astrophysics Data System (ADS)

    Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.

    2017-08-01

    Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.

  13. Verification of target motion effects on SAR imagery using the Gotcha GMTI challenge dataset

    NASA Astrophysics Data System (ADS)

    Hack, Dan E.; Saville, Michael A.

    2010-04-01

    This paper investigates the relationship between a ground moving target's kinematic state and its SAR image. While effects such as cross-range offset, defocus, and smearing appear well understood, their derivations in the literature typically employ simplifications of the radar/target geometry and assume point scattering targets. This study adopts a geometrical model for understanding target motion effects in SAR imagery, termed the target migration path, and focuses on experimental verification of predicted motion effects using both simulated and empirical datasets based on the Gotcha GMTI challenge dataset. Specifically, moving target imagery is generated from three data sources: first, simulated phase history for a moving point target; second, simulated phase history for a moving vehicle derived from a simulated Mazda MPV X-band signature; and third, empirical phase history from the Gotcha GMTI challenge dataset. Both simulated target trajectories match the truth GPS target position history from the Gotcha GMTI challenge dataset, allowing direct comparison between all three imagery sets and the predicted target migration path. This paper concludes with a discussion of the parallels between the target migration path and the measurement model within a Kalman filtering framework, followed by conclusions.

  14. Integrated Model of Multiple Kernel Learning and Differential Evolution for EUR/USD Trading

    PubMed Central

    Deng, Shangkun; Sakurai, Akito

    2014-01-01

    Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL) with differential evolution (DE) for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI), while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX) currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits. PMID:25097891

  15. Characterizing the effects of droplines on target acquisition performance on a 3-D perspective display

    NASA Technical Reports Server (NTRS)

    Liao, Min-Ju; Johnson, Walter W.

    2004-01-01

    The present study investigated the effects of droplines on target acquisition performance on a 3-D perspective display in which participants were required to move a cursor into a target cube as quickly as possible. Participants' performance and coordination strategies were characterized using both Fitts' law and acquisition patterns of the 3 viewer-centered target display dimensions (azimuth, elevation, and range). Participants' movement trajectories were recorded and used to determine movement times for acquisitions of the entire target and of each of its display dimensions. The goodness of fit of the data to a modified Fitts function varied widely among participants, and the presence of droplines did not have observable impacts on the goodness of fit. However, droplines helped participants navigate via straighter paths and particularly benefited range dimension acquisition. A general preference for visually overlapping the target with the cursor prior to capturing the target was found. Potential applications of this research include the design of interactive 3-D perspective displays in which fast and accurate selection and manipulation of content residing at multiple ranges may be a challenge.

  16. Kinesthetic information facilitates saccades towards proprioceptive-tactile targets.

    PubMed

    Voudouris, Dimitris; Goettker, Alexander; Mueller, Stefanie; Fiehler, Katja

    2016-05-01

    Saccades to somatosensory targets have longer latencies and are less accurate and precise than saccades to visual targets. Here we examined how different somatosensory information influences the planning and control of saccadic eye movements. Participants fixated a central cross and initiated a saccade as fast as possible in response to a tactile stimulus that was presented to either the index or the middle fingertip of their unseen left hand. In a static condition, the hand remained at a target location for the entire block of trials and the stimulus was presented at a fixed time after an auditory tone. Therefore, the target location was derived only from proprioceptive and tactile information. In a moving condition, the hand was first actively moved to the same target location and the stimulus was then presented immediately. Thus, in the moving condition additional kinesthetic information about the target location was available. We found shorter saccade latencies in the moving compared to the static condition, but no differences in accuracy or precision of saccadic endpoints. In a second experiment, we introduced variable delays after the auditory tone (static condition) or after the end of the hand movement (moving condition) in order to reduce the predictability of the moment of the stimulation and to allow more time to process the kinesthetic information. Again, we found shorter latencies in the moving compared to the static condition but no improvement in saccade accuracy or precision. In a third experiment, we showed that the shorter saccade latencies in the moving condition cannot be explained by the temporal proximity between the relevant event (auditory tone or end of hand movement) and the moment of the stimulation. Our findings suggest that kinesthetic information facilitates planning, but not control, of saccadic eye movements to proprioceptive-tactile targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Architecture-Based Self-Adaptation for Moving Target Defense

    DTIC Science & Technology

    2014-08-01

    using stochastic multiplayer games to verify the the behavior of a variety of MTD scenarios, from uninformed to predictive-reactive. This work is... multiplayer games to verify the the behavior of a variety of MTD scenarios, from uninformed to predictive-reactive. This work is applied in the context...for Moving Target . . . . . . . . . . . . . . 28 5 Multiplayer Games for Moving Target Defense 31 5.1 Stochastic Game Analysis for Proactive Self

  18. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  19. Within-Hemifield Competition in Early Visual Areas Limits the Ability to Track Multiple Objects with Attention

    PubMed Central

    Alvarez, George A.; Cavanagh, Patrick

    2014-01-01

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651

  20. Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine

    PubMed Central

    Simeon, Vittorio; Todoerti, Katia; La Rocca, Francesco; Caivano, Antonella; Trino, Stefania; Lionetti, Marta; Agnelli, Luca; De Luca, Luciana; Laurenzana, Ilaria; Neri, Antonino; Musto, Pellegrino

    2015-01-01

    Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL). PMID:26263974

  1. Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine.

    PubMed

    Simeon, Vittorio; Todoerti, Katia; La Rocca, Francesco; Caivano, Antonella; Trino, Stefania; Lionetti, Marta; Agnelli, Luca; De Luca, Luciana; Laurenzana, Ilaria; Neri, Antonino; Musto, Pellegrino

    2015-07-30

    Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL).

  2. From flamingo dance to (desirable) drug discovery: a nature-inspired approach.

    PubMed

    Sánchez-Rodríguez, Aminael; Pérez-Castillo, Yunierkis; Schürer, Stephan C; Nicolotti, Orazio; Mangiatordi, Giuseppe Felice; Borges, Fernanda; Cordeiro, M Natalia D S; Tejera, Eduardo; Medina-Franco, José L; Cruz-Monteagudo, Maykel

    2017-10-01

    The therapeutic effects of drugs are well known to result from their interaction with multiple intracellular targets. Accordingly, the pharma industry is currently moving from a reductionist approach based on a 'one-target fixation' to a holistic multitarget approach. However, many drug discovery practices are still procedural abstractions resulting from the attempt to understand and address the action of biologically active compounds while preventing adverse effects. Here, we discuss how drug discovery can benefit from the principles of evolutionary biology and report two real-life case studies. We do so by focusing on the desirability principle, and its many features and applications, such as machine learning-based multicriteria virtual screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 2009 Combat Vehicles Conference (BRIEFING CHARTS)

    DTIC Science & Technology

    2009-10-14

    Strategy to Field 531 Systems Targeting Under Armor and FS3 Integration on A3 BFIST on the Move Our #1 Priority is to Support Units Engaged in O C i...Armored Knight Program • Targeting Under Armor /On the Move effort underway to • The M1200 Armored Knight provides increase survivability of...increased survivability Sustainment Survivability 32 10/13/2009 BFIST Program Overview • Targeting Under Armor /On the Move effort underway to

  4. Multisensor interoperability for persistent surveillance and FOB protection with multiple technologies during the TNT exercise at Camp Roberts, California

    NASA Astrophysics Data System (ADS)

    Murarka, Naveen; Chambers, Jon

    2012-06-01

    Multiple sensors, providing actionable intelligence to the war fighter, often have difficulty interoperating with each other. Northrop Grumman (NG) is dedicated to solving these problems and providing complete solutions for persistent surveillance. In August, 2011, NG was invited to participate in the Tactical Network Topology (TNT) Capabilities Based Experimentation at Camp Roberts, CA to demonstrate integrated system capabilities providing Forward Operating Base (FOB) protection. This experiment was an opportunity to leverage previous efforts from NG's Rotorcraft Avionics Innovation Laboratory (RAIL) to integrate five prime systems with widely different capabilities. The five systems included a Hostile Fire and Missile Warning Sensor System, SCORPION II Unattended Ground Sensor system, Smart Integrated Vehicle Area Network (SiVAN), STARLite Synthetic Aperture Radar (SAR)/Ground Moving Target Indications (GMTI) radar system, and a vehicle with Target Location Module (TLM) and Laser Designation Module (LDM). These systems were integrated with each other and a Tactical Operations Center (TOC) equipped with RaptorX and Falconview providing a Common Operational Picture (COP) via Cursor on Target (CoT) messages. This paper will discuss this exercise, and the lessons learned, by integrating these five prime systems for persistent surveillance and FOB protection.

  5. Insect Detection of Small Targets Moving in Visual Clutter

    PubMed Central

    Barnett, Paul D; O'Carroll, David C

    2006-01-01

    Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249

  6. Control of thermal therapies with moving power deposition field.

    PubMed

    Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B

    2006-03-07

    A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with moving deposition fields, such as external and interstitial ultrasound phased arrays, multiple radiofrequency needle applicators and microwave antennae.

  7. A comparison of directed search target detection versus in-scene target detection in Worldview-2 datasets

    NASA Astrophysics Data System (ADS)

    Grossman, S.

    2015-05-01

    Since the events of September 11, 2001, the intelligence focus has moved from large order-of-battle targets to small targets of opportunity. Additionally, the business community has discovered the use of remotely sensed data to anticipate demand and derive data on their competition. This requires the finer spectral and spatial fidelity now available to recognize those targets. This work hypothesizes that directed searches using calibrated data perform at least as well as inscene manually intensive target detection searches. It uses calibrated Worldview-2 multispectral images with NEF generated signatures and standard detection algorithms to compare bespoke directed search capabilities against ENVI™ in-scene search capabilities. Multiple execution runs are performed at increasing thresholds to generate detection rates. These rates are plotted and statistically analyzed. While individual head-to-head comparison results vary, 88% of the directed searches performed at least as well as in-scene searches with 50% clearly outperforming in-scene methods. The results strongly support the premise that directed searches perform at least as well as comparable in-scene searches.

  8. Quantitative analysis of catch-up saccades during sustained pursuit.

    PubMed

    de Brouwer, Sophie; Missal, Marcus; Barnes, Graham; Lefèvre, Philippe

    2002-04-01

    During visual tracking of a moving stimulus, primates orient their visual axis by combining two very different types of eye movements, smooth pursuit and saccades. The purpose of this paper was to investigate quantitatively the catch-up saccades occurring during sustained pursuit. We used a ramp-step-ramp paradigm to evoke catch-up saccades during sustained pursuit. In general, catch-up saccades followed the unexpected steps in position and velocity of the target. We observed catch-up saccades in the same direction as the smooth eye movement (forward saccades) as well as in the opposite direction (reverse saccades). We made a comparison of the main sequences of forward saccades, reverse saccades, and control saccades made to stationary targets. They were all three significantly different from each other and were fully compatible with the hypothesis that the smooth pursuit component is added to the saccadic component during catch-up saccades. A multiple linear regression analysis was performed on the saccadic component to find the parameters determining the amplitude of catch-up saccades. We found that both position error and retinal slip are taken into account in catch-up saccade programming to predict the future trajectory of the moving target. We also demonstrated that the saccadic system needs a minimum period of approximately 90 ms for taking into account changes in target trajectory. Finally, we reported a saturation (above 15 degrees /s) in the contribution of retinal slip to the amplitude of catch-up saccades.

  9. Coordinated Guidance Strategy for Multiple USVs During Maritime Interdiction Operations

    DTIC Science & Technology

    2017-09-01

    ADDRESS(ES) N /A 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the...P i P i P i i P i ia V N Vα θ= =  , (4) where N is the navigation gain. The problem of having a moving target, as opposed to a stationary...00 2 Pθ α− when 2N = , and approaches 0θ when N →∞ . It could also be noted that using the standard PPN, a significant portion of the angular

  10. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  11. Detection and tracking of a moving target using SAR images with the particle filter-based track-before-detect algorithm.

    PubMed

    Gao, Han; Li, Jingwen

    2014-06-19

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.

  12. Detection and Tracking of a Moving Target Using SAR Images with the Particle Filter-Based Track-Before-Detect Algorithm

    PubMed Central

    Gao, Han; Li, Jingwen

    2014-01-01

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640

  13. Circular SAR GMTI

    NASA Astrophysics Data System (ADS)

    Page, Douglas; Owirka, Gregory; Nichols, Howard; Scarborough, Steven

    2014-06-01

    We describe techniques for improving ground moving target indication (GMTI) performance in multi-channel synthetic aperture radar (SAR) systems. Our approach employs a combination of moving reference processing (MRP) to compensate for defocus of moving target SAR responses and space-time adaptive processing (STAP) to mitigate the effects of strong clutter interference. Using simulated moving target and clutter returns, we demonstrate focusing of the target return using MRP, and discuss the effect of MRP on the clutter response. We also describe formation of adaptive degrees of freedom (DOFs) for STAP filtering of MRP processed data. For the simulated moving target in clutter example, we demonstrate improvement in the signal to interference plus noise (SINR) loss compared to more standard algorithm configurations. In addition to MRP and STAP, the use of tracker feedback, false alarm mitigation, and parameter estimation techniques are also described. A change detection approach for reducing false alarms from clutter discretes is outlined, and processing of a measured data coherent processing interval (CPI) from a continuously orbiting platform is described. The results demonstrate detection and geolocation of a high-value target under track. The endoclutter target is not clearly visible in single-channel SAR chips centered on the GMTI track prediction. Detections are compared to truth data before and after geolocation using measured angle of arrival (AOA).

  14. Explaining efficient search for conjunctions of motion and form: evidence from negative color effects.

    PubMed

    Dent, Kevin

    2014-05-01

    Dent, Humphreys, and Braithwaite (2011) showed substantial costs to search when a moving target shared its color with a group of ignored static distractors. The present study further explored the conditions under which such costs to performance occur. Experiment 1 tested whether the negative color-sharing effect was specific to cases in which search showed a highly serial pattern. The results showed that the negative color-sharing effect persisted in the case of a target defined as a conjunction of movement and form, even when search was highly efficient. In Experiment 2, the ease with which participants could find an odd-colored target amongst a moving group was examined. Participants searched for a moving target amongst moving and stationary distractors. In Experiment 2A, participants performed a highly serial search through a group of similarly shaped moving letters. Performance was much slower when the target shared its color with a set of ignored static distractors. The exact same displays were used in Experiment 2B; however, participants now responded "present" for targets that shared the color of the static distractors. The same targets that had previously been difficult to find were now found efficiently. The results are interpreted in a flexible framework for attentional control. Targets that are linked with irrelevant distractors by color tend to be ignored. However, this cost can be overridden by top-down control settings.

  15. Multiple-input multiple-output causal strategies for gene selection.

    PubMed

    Bontempi, Gianluca; Haibe-Kains, Benjamin; Desmedt, Christine; Sotiriou, Christos; Quackenbush, John

    2011-11-25

    Traditional strategies for selecting variables in high dimensional classification problems aim to find sets of maximally relevant variables able to explain the target variations. If these techniques may be effective in generalization accuracy they often do not reveal direct causes. The latter is essentially related to the fact that high correlation (or relevance) does not imply causation. In this study, we show how to efficiently incorporate causal information into gene selection by moving from a single-input single-output to a multiple-input multiple-output setting. We show in synthetic case study that a better prioritization of causal variables can be obtained by considering a relevance score which incorporates a causal term. In addition we show, in a meta-analysis study of six publicly available breast cancer microarray datasets, that the improvement occurs also in terms of accuracy. The biological interpretation of the results confirms the potential of a causal approach to gene selection. Integrating causal information into gene selection algorithms is effective both in terms of prediction accuracy and biological interpretation.

  16. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlangga, Mokhammad Puput

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, inmore » case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.« less

  17. The Force of Appearance: Gamma Movement, Naive Impetus, and Representational Momentum

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.; Ruppel, Susan E.; Courtney, Jon R.

    2005-01-01

    If a moving stimulus (i.e., launcher) contacts a stationary target that subsequently begins to move, observers attribute motion of the target to the launcher (Michotte, 1946/1963). In experiments reported here, a stationary launcher adjacent to the target appeared or vanished and displacement in memory for the position of the target was measured.…

  18. Effect of Patient Set-up and Respiration motion on Defining Biological Targets for Image-Guided Targeted Radiotherapy

    NASA Astrophysics Data System (ADS)

    McCall, Keisha C.

    Identification and monitoring of sub-tumor targets will be a critical step for optimal design and evaluation of cancer therapies in general and biologically targeted radiotherapy (dose-painting) in particular. Quantitative PET imaging may be an important tool for these applications. Currently radiotherapy planning accounts for tumor motion by applying geometric margins. These margins create a motion envelope to encompass the most probable positions of the tumor, while also maintaining the appropriate tumor control and normal tissue complication probabilities. This motion envelope is effective for uniform dose prescriptions where the therapeutic dose is conformed to the external margins of the tumor. However, much research is needed to establish the equivalent margins for non-uniform fields, where multiple biological targets are present and each target is prescribed its own dose level. Additionally, the size of the biological targets and close proximity make it impractical to apply planning margins on the sub-tumor level. Also, the extent of high dose regions must be limited to avoid excessive dose to the surrounding tissue. As such, this research project is an investigation of the uncertainty within quantitative PET images of moving and displaced dose-painting targets, and an investigation of the residual errors that remain after motion management. This included characterization of the changes in PET voxel-values as objects are moved relative to the discrete sampling interval of PET imaging systems (SPECIFIC AIM 1). Additionally, the repeatability of PET distributions and the delineating dose-painting targets were measured (SPECIFIC AIM 2). The effect of imaging uncertainty on the dose distributions designed using these images (SPECIFIC AIM 3) has also been investigated. This project also included analysis of methods to minimize motion during PET imaging and reduce the dosimetric impact of motion/position-induced imaging uncertainty (SPECIFIC AIM 4).

  19. Synchronizing the tracking eye movements with the motion of a visual target: Basic neural processes.

    PubMed

    Goffart, Laurent; Bourrelly, Clara; Quinet, Julie

    2017-01-01

    In primates, the appearance of an object moving in the peripheral visual field elicits an interceptive saccade that brings the target image onto the foveae. This foveation is then maintained more or less efficiently by slow pursuit eye movements and subsequent catch-up saccades. Sometimes, the tracking is such that the gaze direction looks spatiotemporally locked onto the moving object. Such a spatial synchronism is quite spectacular when one considers that the target-related signals are transmitted to the motor neurons through multiple parallel channels connecting separate neural populations with different conduction speeds and delays. Because of the delays between the changes of retinal activity and the changes of extraocular muscle tension, the maintenance of the target image onto the fovea cannot be driven by the current retinal signals as they correspond to past positions of the target. Yet, the spatiotemporal coincidence observed during pursuit suggests that the oculomotor system is driven by a command estimating continuously the current location of the target, i.e., where it is here and now. This inference is also supported by experimental perturbation studies: when the trajectory of an interceptive saccade is experimentally perturbed, a correction saccade is produced in flight or after a short delay, and brings the gaze next to the location where unperturbed saccades would have landed at about the same time, in the absence of visual feedback. In this chapter, we explain how such correction can be supported by previous visual signals without assuming "predictive" signals encoding future target locations. We also describe the basic neural processes which gradually yield the synchronization of eye movements with the target motion. When the process fails, the gaze is driven by signals related to past locations of the target, not by estimates to its upcoming locations, and a catch-up is made to reinitiate the synchronization. © 2017 Elsevier B.V. All rights reserved.

  20. An analog retina model for detecting dim moving objects against a bright moving background

    NASA Technical Reports Server (NTRS)

    Searfus, R. M.; Colvin, M. E.; Eeckman, F. H.; Teeters, J. L.; Axelrod, T. S.

    1991-01-01

    We are interested in applications that require the ability to track a dim target against a bright, moving background. Since the target signal will be less than or comparable to the variations in the background signal intensity, sophisticated techniques must be employed to detect the target. We present an analog retina model that adapts to the motion of the background in order to enhance targets that have a velocity difference with respect to the background. Computer simulation results and our preliminary concept of an analog 'Z' focal plane implementation are also presented.

  1. On the radar cross section (RCS) prediction of vehicles moving on the ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabihi, Ahmad

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  2. Tracking a convoy of multiple targets using acoustic sensor data

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.

    2003-08-01

    In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.

  3. Execution of saccadic eye movements affects speed perception

    PubMed Central

    Goettker, Alexander; Braun, Doris I.; Schütz, Alexander C.; Gegenfurtner, Karl R.

    2018-01-01

    Due to the foveal organization of our visual system we have to constantly move our eyes to gain precise information about our environment. Doing so massively alters the retinal input. This is problematic for the perception of moving objects, because physical motion and retinal motion become decoupled and the brain has to discount the eye movements to recover the speed of moving objects. Two different types of eye movements, pursuit and saccades, are combined for tracking. We investigated how the way we track moving targets can affect the perceived target speed. We found that the execution of corrective saccades during pursuit initiation modifies how fast the target is perceived compared with pure pursuit. When participants executed a forward (catch-up) saccade they perceived the target to be moving faster. When they executed a backward saccade they perceived the target to be moving more slowly. Variations in pursuit velocity without corrective saccades did not affect perceptual judgments. We present a model for these effects, assuming that the eye velocity signal for small corrective saccades gets integrated with the retinal velocity signal during pursuit. In our model, the execution of corrective saccades modulates the integration of these two signals by giving less weight to the retinal information around the time of corrective saccades. PMID:29440494

  4. Detachable glass microelectrodes for recording action potentials in active moving organs.

    PubMed

    Barbic, Mladen; Moreno, Angel; Harris, Tim D; Kay, Matthew W

    2017-06-01

    Here, we describe new detachable floating glass micropipette electrode devices that provide targeted action potential recordings in active moving organs without requiring constant mechanical constraint or pharmacological inhibition of tissue motion. The technology is based on the concept of a glass micropipette electrode that is held firmly during cell targeting and intracellular insertion, after which a 100-µg glass microelectrode, a "microdevice," is gently released to remain within the moving organ. The microdevices provide long-term recordings of action potentials, even during millimeter-scale movement of tissue in which the device is embedded. We demonstrate two different glass micropipette electrode holding and detachment designs appropriate for the heart (sharp glass microdevices for cardiac myocytes in rats, guinea pigs, and humans) and the brain (patch glass microdevices for neurons in rats). We explain how microdevices enable measurements of multiple cells within a moving organ that are typically difficult with other technologies. Using sharp microdevices, action potential duration was monitored continuously for 15 min in unconstrained perfused hearts during global ischemia-reperfusion, providing beat-to-beat measurements of changes in action potential duration. Action potentials from neurons in the hippocampus of anesthetized rats were measured with patch microdevices, which provided stable base potentials during long-term recordings. Our results demonstrate that detachable microdevices are an elegant and robust tool to record electrical activity with high temporal resolution and cellular level localization without disturbing the physiological working conditions of the organ. NEW & NOTEWORTHY Cellular action potential measurements within tissue using glass micropipette electrodes usually require tissue immobilization, potentially influencing the physiological relevance of the measurement. Here, we addressed this limitation with novel 100-µg detachable glass microelectrodes that can be precisely positioned to provide long-term measurements of action potential duration during unconstrained tissue movement. Copyright © 2017 the American Physiological Society.

  5. Target-locking acquisition with real-time confocal (TARC) microscopy.

    PubMed

    Lu, Peter J; Sims, Peter A; Oki, Hidekazu; Macarthur, James B; Weitz, David A

    2007-07-09

    We present a real-time target-locking confocal microscope that follows an object moving along an arbitrary path, even as it simultaneously changes its shape, size and orientation. This Target-locking Acquisition with Realtime Confocal (TARC) microscopy system integrates fast image processing and rapid image acquisition using a Nipkow spinning-disk confocal microscope. The system acquires a 3D stack of images, performs a full structural analysis to locate a feature of interest, moves the sample in response, and then collects the next 3D image stack. In this way, data collection is dynamically adjusted to keep a moving object centered in the field of view. We demonstrate the system's capabilities by target-locking freely-diffusing clusters of attractive colloidal particles, and activelytransported quantum dots (QDs) endocytosed into live cells free to move in three dimensions, for several hours. During this time, both the colloidal clusters and live cells move distances several times the length of the imaging volume.

  6. Phase locked multiple rings in the radiation pressure ion acceleration process

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Hua, J. F.; Pai, C.-H.; Li, F.; Wu, Y. P.; Lu, W.; Zhang, C. J.; Xu, X. L.; Joshi, C.; Mori, W. B.

    2018-04-01

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. the interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. A theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.

  7. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE PAGES

    Wan, Y.; Hua, J. F.; Pai, C. -H.; ...

    2018-03-05

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  8. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y.; Hua, J. F.; Pai, C. -H.

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  9. Tracking moving identities: after attending the right location, the identity does not come for free.

    PubMed

    Pinto, Yaïr; Scholte, H Steven; Lamme, V A F

    2012-01-01

    Although tracking identical moving objects has been studied since the 1980's, only recently the study into tracking moving objects with distinct identities has started (referred to as Multiple Identity Tracking, MIT). So far, only behavioral studies into MIT have been undertaken. These studies have left a fundamental question regarding MIT unanswered, is MIT a one-stage or a two-stage process? According to the one-stage model, after a location has been attended, the identity is released without effort. However, according to the two-stage model, there are two effortful stages in MIT, attending to a location, and attending to the identity of the object at that location. In the current study we investigated this question by measuring brain activity in response to tracking familiar and unfamiliar targets. Familiarity is known to automate effortful processes, so if attention to identify the object is needed, this should become easier. However, if no such attention is needed, familiarity can only affect other processes (such as memory for the target set). Our results revealed that on unfamiliar trials neural activity was higher in both attentional networks, and visual identification networks. These results suggest that familiarity in MIT automates attentional identification processes, thus suggesting that attentional identification is needed in MIT. This then would imply that MIT is essentially a two-stage process, since after attending the location, the identity does not seem to come for free.

  10. Multiple hearth furnace for reducing iron oxide

    DOEpatents

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  11. Particle therapy of moving targets—the strategies for tumour motion monitoring and moving targets irradiation

    PubMed Central

    2016-01-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called “cyclinacs”, are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs. PMID:27376637

  12. Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation

    NASA Technical Reports Server (NTRS)

    Cunningham, H. A.; Welch, Robert B.

    1994-01-01

    Previous research on adaptation to visual-motor rearrangement suggests that the central nervous system represents accurately only 1 visual-motor mapping at a time. This idea was examined in 3 experiments where subjects tracked a moving target under repeated alternations between 2 initially interfering mappings (the 'normal' mapping characteristic of computer input devices and a 108' rotation of the normal mapping). Alternation between the 2 mappings led to significant reduction in error under the rotated mapping and significant reduction in the adaptation aftereffect ordinarily caused by switching between mappings. Color as a discriminative cue, interference versus decay in adaptation aftereffect, and intermanual transfer were also examined. The results reveal a capacity for multiple concurrent visual-motor mappings, possibly controlled by a parametric process near the motor output stage of processing.

  13. Position Affects Performance in Multiple-Object Tracking in Rugby Union Players

    PubMed Central

    Martín, Andrés; Sfer, Ana M.; D'Urso Villar, Marcela A.; Barraza, José F.

    2017-01-01

    We report an experiment that examines the performance of rugby union players and a control group composed of graduate student with no sport experience, in a multiple-object tracking task. It compares the ability of 86 high level rugby union players grouped as Backs and Forwards and the control group, to track a subset of randomly moving targets amongst the same number of distractors. Several difficulties were included in the experimental design in order to evaluate possible interactions between the relevant variables. Results show that the performance of the Backs is better than that of the other groups, but the occurrence of interactions precludes an isolated groups analysis. We interpret the results within the framework of visual attention and discuss both, the implications of our results and the practical consequences. PMID:28951725

  14. The Born approximation, multiple scattering, and the butterfly algorithm

    NASA Astrophysics Data System (ADS)

    Martinez, Alejandro F.

    Radar works by focusing a beam of light and seeing how long it takes to reflect. To see a large region the beam is pointed in different directions. The focus of the beam depends on the size of the antenna (called an aperture). Synthetic aperture radar (SAR) works by moving the antenna through some region of space. A fundamental assumption in SAR is that waves only bounce once. Several imaging algorithms have been designed using that assumption. The scattering process can be described by iterations of a badly behaving integral. Recently a method for efficiently evaluating these types of integrals has been developed. We will give a detailed implementation of this algorithm and apply it to study the multiple scattering effects in SAR using target estimates from single scattering algorithms.

  15. Saccadic interception of a moving visual target after a spatiotemporal perturbation.

    PubMed

    Fleuriet, Jérome; Goffart, Laurent

    2012-01-11

    Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.

  16. Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention.

    PubMed

    Störmer, Viola S; Alvarez, George A; Cavanagh, Patrick

    2014-08-27

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. Copyright © 2014 the authors 0270-6474/14/3311526-08$15.00/0.

  17. Dynamic Binding of Identity and Location Information: A Serial Model of Multiple Identity Tracking

    ERIC Educational Resources Information Center

    Oksama, Lauri; Hyona, Jukka

    2008-01-01

    Tracking of multiple moving objects is commonly assumed to be carried out by a fixed-capacity parallel mechanism. The present study proposes a serial model (MOMIT) to explain performance accuracy in the maintenance of multiple moving objects with distinct identities. A serial refresh mechanism is postulated, which makes recourse to continuous…

  18. Cooperatively surrounding control for multiple Euler-Lagrange systems subjected to uncertain dynamics and input constraints

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Ming; Lv, Yue-Yong; Li, Chuan-Jiang; Ma, Guang-Fu

    2016-12-01

    In this paper, we investigate cooperatively surrounding control (CSC) of multi-agent systems modeled by Euler-Lagrange (EL) equations under a directed graph. With the consideration of the uncertain dynamics in an EL system, a backstepping CSC algorithm combined with neural-networks is proposed first such that the agents can move cooperatively to surround the stationary target. Then, a command filtered backstepping CSC algorithm is further proposed to deal with the constraints on control input and the absence of neighbors’ velocity information. Numerical examples of eight satellites surrounding one space target illustrate the effectiveness of the theoretical results. Project supported by the National Basic Research Program of China (Grant No. 2012CB720000) and the National Natural Science Foundation of China (Grant Nos. 61304005 and 61403103).

  19. Camouflage, detection and identification of moving targets

    PubMed Central

    Hall, Joanna R.; Cuthill, Innes C.; Baddeley, Roland; Shohet, Adam J.; Scott-Samuel, Nicholas E.

    2013-01-01

    Nearly all research on camouflage has investigated its effectiveness for concealing stationary objects. However, animals have to move, and patterns that only work when the subject is static will heavily constrain behaviour. We investigated the effects of different camouflages on the three stages of predation—detection, identification and capture—in a computer-based task with humans. An initial experiment tested seven camouflage strategies on static stimuli. In line with previous literature, background-matching and disruptive patterns were found to be most successful. Experiment 2 showed that if stimuli move, an isolated moving object on a stationary background cannot avoid detection or capture regardless of the type of camouflage. Experiment 3 used an identification task and showed that while camouflage is unable to slow detection or capture, camouflaged targets are harder to identify than uncamouflaged targets when similar background objects are present. The specific details of the camouflage patterns have little impact on this effect. If one has to move, camouflage cannot impede detection; but if one is surrounded by similar targets (e.g. other animals in a herd, or moving background distractors), then camouflage can slow identification. Despite previous assumptions, motion does not entirely ‘break’ camouflage. PMID:23486439

  20. Camouflage, detection and identification of moving targets.

    PubMed

    Hall, Joanna R; Cuthill, Innes C; Baddeley, Roland; Shohet, Adam J; Scott-Samuel, Nicholas E

    2013-05-07

    Nearly all research on camouflage has investigated its effectiveness for concealing stationary objects. However, animals have to move, and patterns that only work when the subject is static will heavily constrain behaviour. We investigated the effects of different camouflages on the three stages of predation-detection, identification and capture-in a computer-based task with humans. An initial experiment tested seven camouflage strategies on static stimuli. In line with previous literature, background-matching and disruptive patterns were found to be most successful. Experiment 2 showed that if stimuli move, an isolated moving object on a stationary background cannot avoid detection or capture regardless of the type of camouflage. Experiment 3 used an identification task and showed that while camouflage is unable to slow detection or capture, camouflaged targets are harder to identify than uncamouflaged targets when similar background objects are present. The specific details of the camouflage patterns have little impact on this effect. If one has to move, camouflage cannot impede detection; but if one is surrounded by similar targets (e.g. other animals in a herd, or moving background distractors), then camouflage can slow identification. Despite previous assumptions, motion does not entirely 'break' camouflage.

  1. Ground moving target geo-location from monocular camera mounted on a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Guo, Li; Ang, Haisong; Zheng, Xiangming

    2011-08-01

    The usual approaches to unmanned air vehicle(UAV)-to-ground target geo-location impose some severe constraints to the system, such as stationary objects, accurate geo-reference terrain database, or ground plane assumption. Micro air vehicle(MAV) works with characteristics including low altitude flight, limited payload and onboard sensors' low accuracy. According to these characteristics, a method is developed to determine the location of ground moving target which imaged from the air using monocular camera equipped on MAV. This method eliminates the requirements for terrain database (elevation maps) and altimeters that can provide MAV's and target's altitude. Instead, the proposed method only requires MAV flight status provided by its inherent onboard navigation system which includes inertial measurement unit(IMU) and global position system(GPS). The key is to get accurate information on the altitude of the ground moving target. First, Optical flow method extracts background static feature points. Setting a local region around the target in the current image, The features which are on the same plane with the target in this region are extracted, and are retained as aided features. Then, inverse-velocity method calculates the location of these points by integrated with aircraft status. The altitude of object, which is calculated by using position information of these aided features, combining with aircraft status and image coordinates, geo-locate the target. Meanwhile, a framework with Bayesian estimator is employed to eliminate noise caused by camera, IMU and GPS. Firstly, an extended Kalman filter(EKF) provides a simultaneous localization and mapping solution for the estimation of aircraft states and aided features location which defines the moving target local environment. Secondly, an unscented transformation(UT) method determines the estimated mean and covariance of target location from aircraft states and aided features location, and then exports them for the moving target Kalman filter(KF). Experimental results show that our method can instantaneously geo-locate the moving target by operator's single click and can reach 15 meters accuracy for an MAV flying at 200 meters above the ground.

  2. Distractor Interference during Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Spering, Miriam; Gegenfurtner, Karl R.; Kerzel, Dirk

    2006-01-01

    When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show…

  3. Factors perceived as being related to accidental falls by persons with multiple sclerosis.

    PubMed

    Nilsagård, Ylva; Denison, Eva; Gunnarsson, Lars-Gunnar; Boström, Katrin

    2009-01-01

    This study explores and describes factors that persons with multiple sclerosis (MS) perceive as being related to accidental falls. A qualitative content analysis with primarily deductive approach was conducted using the International Classification of Functioning, Disability and Health. Twelve persons with MS, and identified as fallers, were interviewed. Factors perceived to cause accidental falls that had not previously been targeted in MS populations in relation to falls were identified as divided attention, reduced muscular endurance, fatigue and heat sensitivity. Previously reported risk factors such as changed gait pattern, limited walking ability, impaired proprioception, vision and spasticity were supported. Activities involving walking, recreation and leisure, maintaining and changing body position, lifting or carrying, taking care of the home, washing the body, moving around, preparing meals and housekeeping were limited and considered to be risk activities. Supportive persons and assistive device reduced falls, and unsuitable physical environments and climate conditions induced falls. Several preventative strategies were described as partially compensating for the impairments, limitations and restrictions. Investigating accidental falls using the perspective of the patient gave important information about variables not earlier targeted in MS research.

  4. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors

    NASA Astrophysics Data System (ADS)

    He, Xingyu; Tong, Ningning; Hu, Xiaowei

    2018-01-01

    Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.

  5. Intercepting a moving target: On-line or model-based control?

    PubMed

    Zhao, Huaiyong; Warren, William H

    2017-05-01

    When walking to intercept a moving target, people take an interception path that appears to anticipate the target's trajectory. According to the constant bearing strategy, the observer holds the bearing direction of the target constant based on current visual information, consistent with on-line control. Alternatively, the interception path might be based on an internal model of the target's motion, known as model-based control. To investigate these two accounts, participants walked to intercept a moving target in a virtual environment. We degraded the target's visibility by blurring the target to varying degrees in the midst of a trial, in order to influence its perceived speed and position. Reduced levels of visibility progressively impaired interception accuracy and precision; total occlusion impaired performance most and yielded nonadaptive heading adjustments. Thus, performance strongly depended on current visual information and deteriorated qualitatively when it was withdrawn. The results imply that locomotor interception is normally guided by current information rather than an internal model of target motion, consistent with on-line control.

  6. 77 FR 13656 - Call for Papers: National Symposium on Moving Target Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... of moving target. There will be an accompanying poster session open for researchers and companies... dates/time 18:00 EDT): Draft Papers due April 2, 2012 Notification April 20, 2012 Poster abstracts due...

  7. Echolocating bats use a nearly time-optimal strategy to intercept prey.

    PubMed

    Ghose, Kaushik; Horiuchi, Timothy K; Krishnaprasad, P S; Moss, Cynthia F

    2006-05-01

    Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some guided missiles. We suggest that the time-optimal strategy adopted by the bat is in response to the evolutionary pressures of having to capture erratic and fast moving insects.

  8. Current test results for the Athena radar responsive tag

    NASA Astrophysics Data System (ADS)

    Ormesher, Richard C.; Martinez, Ana; Plummer, Kenneth W.; Erlandson, David; Delaware, Sheri; Clark, David R.

    2006-05-01

    Sandia National Laboratories has teamed with General Atomics and Sierra Monolithics to develop the Athena tag for the Army's Radar Tag Engagement (RaTE) program. The radar-responsive Athena tag can be used for Blue Force tracking and Combat Identification (CID) as well as data collection, identification, and geolocation applications. The Athena tag is small (~4.5" x 2.4" x 4.2"), battery-powered, and has an integral antenna. Once remotely activated by a Synthetic Aperture Radar (SAR) or Moving Target Indicator (MTI) radar, the tag transponds modulated pulses to the radar at a low transmit power. The Athena tag can operate Ku-band and X-band airborne SAR and MTI radars. This paper presents results from current tag development testing activities. Topics covered include recent field tests results from the AN/APY-8 Lynx, F16/APG-66, and F15E/APG-63 V(1) radars and other Fire Control radars. Results show that the Athena tag successfully works with multiple radar platforms, in multiple radar modes, and for multiple applications. Radar-responsive tags such as Athena have numerous applications in military and government arenas. Military applications include battlefield situational awareness, combat identification, targeting, personnel recovery, and unattended ground sensors. Government applications exist in nonproliferation, counter-drug, search-and-rescue, and land-mapping activities.

  9. Dynamic-MLC leaf control utilizing on-flight intensity calculations: a robust method for real-time IMRT delivery over moving rigid targets.

    PubMed

    McMahon, Ryan; Papiez, Lech; Rangaraj, Dharanipathy

    2007-08-01

    An algorithm is presented that allows for the control of multileaf collimation (MLC) leaves based entirely on real-time calculations of the intensity delivered over the target. The algorithm is capable of efficiently correcting generalized delivery errors without requiring the interruption of delivery (self-correcting trajectories), where a generalized delivery error represents anything that causes a discrepancy between the delivered and intended intensity profiles. The intensity actually delivered over the target is continually compared to its intended value. For each pair of leaves, these comparisons are used to guide the control of the following leaf and keep this discrepancy below a user-specified value. To demonstrate the basic principles of the algorithm, results of corrected delivery are shown for a leading leaf positional error during dynamic-MLC (DMLC) IMRT delivery over a rigid moving target. It is then shown that, with slight modifications, the algorithm can be used to track moving targets in real time. The primary results of this article indicate that the algorithm is capable of accurately delivering DMLC IMRT over a rigid moving target whose motion is (1) completely unknown prior to delivery and (2) not faster than the maximum MLC leaf velocity over extended periods of time. These capabilities are demonstrated for clinically derived intensity profiles and actual tumor motion data, including situations when the target moves in some instances faster than the maximum admissible MLC leaf velocity. The results show that using the algorithm while calculating the delivered intensity every 50 ms will provide a good level of accuracy when delivering IMRT over a rigid moving target translating along the direction of MLC leaf travel. When the maximum velocities of the MLC leaves and target were 4 and 4.2 cm/s, respectively, the resulting error in the two intensity profiles used was 0.1 +/- 3.1% and -0.5 +/- 2.8% relative to the maximum of the intensity profiles. For the same target motion, the error was shown to increase rapidly as (1) the maximum MLC leaf velocity was reduced below 75% of the maximum target velocity and (2) the system response time was increased.

  10. Fingerprint Analysis: Moving Toward Multiattribute Determination via Individual Markers.

    PubMed

    Brunelle, Erica; Huynh, Crystal; Alin, Eden; Eldridge, Morgan; Le, Anh Minh; Halámková, Lenka; Halámek, Jan

    2018-01-02

    Forensic science will be forever revolutionized if law enforcement can identify personal attributes of a person of interest solely from a fingerprint. For the past 2 years, the goal of our group has been to establish a way to identify originator attributes, specifically biological sex, from a single analyte. To date, an enzymatic assay and two chemical assays have been developed for the analysis of multiple analytes. In this manuscript, two additional assays have been developed. This time, however, the assays utilize only one amino acid each. The enzymatic assay targets alanine and employs alanine transaminase (ALT), pyruvate oxidase (POx), and horseradish peroxidase (HRP). The other, a chemical assay, is known as the Sakaguchi test and targets arginine. It is important to note that alanine has a significantly higher concentration than arginine in the fingerprint content of both males and females. Both assays proved to be capable of accurately differentiating between male and female fingerprints, regardless of their respective average concentration. The ability to target a single analyte will transform forensic science as each originator attribute can be correlated to a different analyte. This would then lead to the possibility of identifying multiple attributes from a single fingerprint sample. Ultimately, this would allow for a profile of a person of interest to be established without the need for time-consuming lab processes.

  11. Adaptive bearing estimation and tracking of multiple targets in a realistic passive sonar scenario

    NASA Astrophysics Data System (ADS)

    Rajagopal, R.; Challa, Subhash; Faruqi, Farhan A.; Rao, P. R.

    1997-06-01

    In a realistic passive sonar environment, the received signal consists of multipath arrivals from closely separated moving targets. The signals are contaminated by spatially correlated noise. The differential MUSIC has been proposed to estimate the DOAs in such a scenario. This method estimates the 'noise subspace' in order to estimate the DOAs. However, the 'noise subspace' estimate has to be updated as and when new data become available. In order to save the computational costs, a new adaptive noise subspace estimation algorithm is proposed in this paper. The salient features of the proposed algorithm are: (1) Noise subspace estimation is done by QR decomposition of the difference matrix which is formed from the data covariance matrix. Thus, as compared to standard eigen-decomposition based methods which require O(N3) computations, the proposed method requires only O(N2) computations. (2) Noise subspace is updated by updating the QR decomposition. (3) The proposed algorithm works in a realistic sonar environment. In the second part of the paper, the estimated bearing values are used to track multiple targets. In order to achieve this, the nonlinear system/linear measurement extended Kalman filtering proposed is applied. Computer simulation results are also presented to support the theory.

  12. A moving target: financing Medicare for the future.

    PubMed

    Moon, M; Segal, M; Weiss, R

    Since 1997, there has been a steady downward trend in projected Medicare spending as a share of the gross domestic product (GDP), substantially improving the long-run outlook for Medicare. But even with improvements in outlook, the required share of GDP will rise by more than 70%, and the question remains as to who will pay for Medicare in the future. This report examines a limited set of tax options and a flat beneficiary premium to illustrate the size of contributions necessary to achieve several different goals, and to explore the difference that multiple years of projections can make on these requirements.

  13. Droplet electric separator microfluidic device for cell sorting

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Ji, Xing-Hu; Liu, Kan; He, Rong-Xiang; Zhao, Li-Bo; Guo, Zhi-Xiao; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong

    2010-05-01

    A simple and effective droplet electric separator microfluidic device was developed for cell sorting. The aqueous droplet without precharging operation was influenced to move a distance in the channel along the electric field direction by applying dc voltage on the electrodes beside the channel, which made the target droplet flowing to the collector. Single droplet can be isolated in a sorting rate of ˜100 Hz with microelectrodes under a required pulse. Single or multiple mammalian cell (HePG2) encapsulated in the surfactant free alginate droplet could be sorted out respectively. This method may be used for single cell operation or analysis.

  14. Robust Fusion of Color and Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models and Spatio-Temporal Consistency Constraints.

    PubMed

    Xiao, Jingjing; Stolkin, Rustam; Gao, Yuqing; Leonardis, Ales

    2017-09-06

    This paper presents a novel robust method for single target tracking in RGB-D images, and also contributes a substantial new benchmark dataset for evaluating RGB-D trackers. While a target object's color distribution is reasonably motion-invariant, this is not true for the target's depth distribution, which continually varies as the target moves relative to the camera. It is therefore nontrivial to design target models which can fully exploit (potentially very rich) depth information for target tracking. For this reason, much of the previous RGB-D literature relies on color information for tracking, while exploiting depth information only for occlusion reasoning. In contrast, we propose an adaptive range-invariant target depth model, and show how both depth and color information can be fully and adaptively fused during the search for the target in each new RGB-D image. We introduce a new, hierarchical, two-layered target model (comprising local and global models) which uses spatio-temporal consistency constraints to achieve stable and robust on-the-fly target relearning. In the global layer, multiple features, derived from both color and depth data, are adaptively fused to find a candidate target region. In ambiguous frames, where one or more features disagree, this global candidate region is further decomposed into smaller local candidate regions for matching to local-layer models of small target parts. We also note that conventional use of depth data, for occlusion reasoning, can easily trigger false occlusion detections when the target moves rapidly toward the camera. To overcome this problem, we show how combining target information with contextual information enables the target's depth constraint to be relaxed. Our adaptively relaxed depth constraints can robustly accommodate large and rapid target motion in the depth direction, while still enabling the use of depth data for highly accurate reasoning about occlusions. For evaluation, we introduce a new RGB-D benchmark dataset with per-frame annotated attributes and extensive bias analysis. Our tracker is evaluated using two different state-of-the-art methodologies, VOT and object tracking benchmark, and in both cases it significantly outperforms four other state-of-the-art RGB-D trackers from the literature.

  15. Found and Missed: Failing to Recognize a Search Target despite Moving It

    ERIC Educational Resources Information Center

    Solman, Grayden J. F.; Cheyne, J. Allan; Smilek, Daniel

    2012-01-01

    We present results from five search experiments using a novel "unpacking" paradigm in which participants use a mouse to sort through random heaps of distractors to locate the target. We report that during this task participants often fail to recognize the target despite moving it, and despite having looked at the item. Additionally, the missed…

  16. Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies.

    PubMed

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-06-01

    Accumulating evidence suggests that cancer can be envisioned as a "signaling disease", in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to "targeted" agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here, we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in haematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects.

  17. Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration

    DTIC Science & Technology

    2014-06-01

    Radon -Fourier transform has been introduced to realize long- term coherent integration of the moving targets with range migration [8, 9]. Radon ...2010) Long-time coherent integration for radar target detection base on Radon -Fourier transform, in Proceedings of the IEEE Radar Conference, pp...432–436. 9. Xu, J., Yu, J., Peng, Y. & Xia, X. (2011) Radon -Fourier transform for radar target detection, I: Generalized Doppler filter bank, IEEE

  18. Limits to Clutter Cancellation in Multi-Aperture GMTI Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

  19. New method for finding multiple meaningful trajectories

    NASA Astrophysics Data System (ADS)

    Bao, Zhonghao; Flachs, Gerald M.; Jordan, Jay B.

    1995-07-01

    Mathematical foundations and algorithms for efficiently finding multiple meaningful trajectories (FMMT) in a sequence of digital images are presented. A meaningful trajectory is motion created by a sentient being or by a device under the control of a sentient being. It is smooth and predictable over short time intervals. A meaningful trajectory can suddenly appear or disappear in sequence images. The development of the FMMT is based on these assumptions. A finite state machine in the FMMT is used to model the trajectories under the conditions of occlusions and false targets. Each possible trajectory is associated with an initial state of a finite state machine. When two frames of data are available, a linear predictor is used to predict the locations of all possible trajectories. All trajectories within a certain error bound are moved to a monitoring trajectory state. When trajectories attain three consecutive good predictions, they are moved to a valid trajectory state and considered to be locked into a tracking mode. If an object is occluded while in the valid trajectory state, the predicted position is used to continue to track; however, the confidence in the trajectory is lowered. If the trajectory confidence falls below a lower limit, the trajectory is terminated. Results are presented that illustrate the FMMT applied to track multiple munitions fired from a missile in a sequence of images. Accurate trajectories are determined even in poor images where the probabilities of miss and false alarm are very high.

  20. Trunk-arm coordination in reaching for moving targets in people with Parkinson's disease: comparison between virtual and physical reality.

    PubMed

    Ma, Hui-Ing; Hwang, Wen-Juh; Wang, Ching-Yi; Fang, Jing-Jing; Leong, Iat-Fai; Wang, Tsui-Ying

    2012-10-01

    We used a trunk-assisted prehension task to examine the effect of task (reaching for stationary vs. moving targets) and environmental constraints (virtual reality [VR] vs. physical reality) on the temporal control of trunk and arm motions in people with Parkinson's disease (PD). Twenty-four participants with PD and 24 age-matched controls reached for and grasped a ball that was either stationary or moving along a ramp 120% of arm length away. In a similar VR task, participants reached for a virtual ball that was either stationary or moving. Movement speed was measured as trunk and arm movement times (MTs); trunk-arm coordination was measured as onset interval and offset interval between trunk and arm motions, as well as a summarized index-desynchrony score. In both VR and physical reality, the PD group had longer trunk and arm MTs than the control group when reaching for stationary balls (p<.001). When reaching for moving balls in VR and physical reality, however, the PD group had lower trunk and arm MTs, onset intervals, and desynchrony scores (p<.001). For the PD group, VR induced shorter trunk MTs, shorter offset intervals, and lower desynchrony scores than did physical reality when reaching for moving balls (p<.001). These findings suggest that using real moving targets in trunk-assisted prehension tasks improves the speed and synchronization of trunk and arm motions in people with PD, and that using virtual moving targets may induce a movement termination strategy different from that used in physical reality. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Eye movements in interception with delayed visual feedback.

    PubMed

    Cámara, Clara; de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli

    2018-07-01

    The increased reliance on electronic devices such as smartphones in our everyday life exposes us to various delays between our actions and their consequences. Whereas it is known that people can adapt to such delays, the mechanisms underlying such adaptation remain unclear. To better understand these mechanisms, the current study explored the role of eye movements in interception with delayed visual feedback. In two experiments, eye movements were recorded as participants tried to intercept a moving target with their unseen finger while receiving delayed visual feedback about their own movement. In Experiment 1, the target randomly moved in one of two different directions at one of two different velocities. The delay between the participant's finger movement and movement of the cursor that provided feedback about the finger movements was gradually increased. Despite the delay, participants followed the target with their gaze. They were quite successful at hitting the target with the cursor. Thus, they moved their finger to a position that was ahead of where they were looking. Removing the feedback showed that participants had adapted to the delay. In Experiment 2, the target always moved in the same direction and at the same velocity, while the cursor's delay varied across trials. Participants still always directed their gaze at the target. They adjusted their movement to the delay on each trial, often succeeding to intercept the target with the cursor. Since their gaze was always directed at the target, and they could not know the delay until the cursor started moving, participants must have been using peripheral vision of the delayed cursor to guide it to the target. Thus, people deal with delays by directing their gaze at the target and using both experience from previous trials (Experiment 1) and peripheral visual information (Experiment 2) to guide their finger in a way that will make the cursor hit the target.

  2. Clustering analysis of moving target signatures

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto

    2010-04-01

    Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.

  3. An Efficient Moving Target Detection Algorithm Based on Sparsity-Aware Spectrum Estimation

    PubMed Central

    Shen, Mingwei; Wang, Jie; Wu, Di; Zhu, Daiyin

    2014-01-01

    In this paper, an efficient direct data domain space-time adaptive processing (STAP) algorithm for moving targets detection is proposed, which is achieved based on the distinct spectrum features of clutter and target signals in the angle-Doppler domain. To reduce the computational complexity, the high-resolution angle-Doppler spectrum is obtained by finding the sparsest coefficients in the angle domain using the reduced-dimension data within each Doppler bin. Moreover, we will then present a knowledge-aided block-size detection algorithm that can discriminate between the moving targets and the clutter based on the extracted spectrum features. The feasibility and effectiveness of the proposed method are validated through both numerical simulations and raw data processing results. PMID:25222035

  4. Tracker Toolkit

    NASA Technical Reports Server (NTRS)

    Lewis, Steven J.; Palacios, David M.

    2013-01-01

    This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).

  5. Chemotaxis can provide biological organisms with good solutions to the travelling salesman problem.

    PubMed

    Reynolds, A M

    2011-05-01

    The ability to find good solutions to the traveling salesman problem can benefit some biological organisms. Bacterial infection would, for instance, be eradicated most promptly if cells of the immune system minimized the total distance they traveled when moving between bacteria. Similarly, foragers would maximize their net energy gain if the distance that they traveled between multiple dispersed prey items was minimized. The traveling salesman problem is one of the most intensively studied problems in combinatorial optimization. There are no efficient algorithms for even solving the problem approximately (within a guaranteed constant factor from the optimum) because the problem is nondeterministic polynomial time complete. The best approximate algorithms can typically find solutions within 1%-2% of the optimal, but these are computationally intensive and can not be implemented by biological organisms. Biological organisms could, in principle, implement the less efficient greedy nearest-neighbor algorithm, i.e., always move to the nearest surviving target. Implementation of this strategy does, however, require quite sophisticated cognitive abilities and prior knowledge of the target locations. Here, with the aid of numerical simulations, it is shown that biological organisms can simply use chemotaxis to solve, or at worst provide good solutions (comparable to those found by the greedy algorithm) to, the traveling salesman problem when the targets are sources of a chemoattractant and are modest in number (n < 10). This applies to neutrophils and macrophages in microbial defense and to some predators.

  6. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.

    PubMed

    Carpinella, Ilaria; Cattaneo, Davide; Bertoni, Rita; Ferrarin, Maurizio

    2012-05-01

    In this pilot study, we compared two protocols for robot-based rehabilitation of upper limb in multiple sclerosis (MS): a protocol involving reaching tasks (RT) requiring arm transport only and a protocol requiring both objects' reaching and manipulation (RMT). Twenty-two MS subjects were assigned to RT or RMT group. Both protocols consisted of eight sessions. During RT training, subjects moved the handle of a planar robotic manipulandum toward circular targets displayed on a screen. RMT protocol required patients to reach and manipulate real objects, by moving the robotic arm equipped with a handle which left the hand free for distal tasks. In both trainings, the robot generated resistive and perturbing forces. Subjects were evaluated with clinical and instrumental tests. The results confirmed that MS patients maintained the ability to adapt to the robot-generated forces and that the rate of motor learning increased across sessions. Robot-therapy significantly reduced arm tremor and improved arm kinematics and functional ability. Compared to RT, RMT protocol induced a significantly larger improvement in movements involving grasp (improvement in Grasp ARAT sub-score: RMT 77.4%, RT 29.5%, p=0.035) but not precision grip. Future studies are needed to evaluate if longer trainings and the use of robotic handles would significantly improve also fine manipulation.

  7. An open source framework for tracking and state estimation ('Stone Soup')

    NASA Astrophysics Data System (ADS)

    Thomas, Paul A.; Barr, Jordi; Balaji, Bhashyam; White, Kruger

    2017-05-01

    The ability to detect and unambiguously follow all moving entities in a state-space is important in multiple domains both in defence (e.g. air surveillance, maritime situational awareness, ground moving target indication) and the civil sphere (e.g. astronomy, biology, epidemiology, dispersion modelling). However, tracking and state estimation researchers and practitioners have difficulties recreating state-of-the-art algorithms in order to benchmark their own work. Furthermore, system developers need to assess which algorithms meet operational requirements objectively and exhaustively rather than intuitively or driven by personal favourites. We have therefore commenced the development of a collaborative initiative to create an open source framework for production, demonstration and evaluation of Tracking and State Estimation algorithms. The initiative will develop a (MIT-licensed) software platform for researchers and practitioners to test, verify and benchmark a variety of multi-sensor and multi-object state estimation algorithms. The initiative is supported by four defence laboratories, who will contribute to the development effort for the framework. The tracking and state estimation community will derive significant benefits from this work, including: access to repositories of verified and validated tracking and state estimation algorithms, a framework for the evaluation of multiple algorithms, standardisation of interfaces and access to challenging data sets. Keywords: Tracking,

  8. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    PubMed

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  9. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    PubMed Central

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  10. Evaluating Moving Target Defense with PLADD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Stephen T.; Outkin, Alexander V.; Gearhart, Jared Lee

    This project evaluates the effectiveness of moving target defense (MTD) techniques using a new game we have designed, called PLADD, inspired by the game FlipIt [28]. PLADD extends FlipIt by incorporating what we believe are key MTD concepts. We have analyzed PLADD and proven the existence of a defender strategy that pushes a rational attacker out of the game, demonstrated how limited the strategies available to an attacker are in PLADD, and derived analytic expressions for the expected utility of the game’s players in multiple game variants. We have created an algorithm for finding a defender’s optimal PLADD strategy. Wemore » show that in the special case of achieving deterrence in PLADD, MTD is not always cost effective and that its optimal deployment may shift abruptly from not using MTD at all to using it as aggressively as possible. We believe our effort provides basic, fundamental insights into the use of MTD, but conclude that a truly practical analysis requires model selection and calibration based on real scenarios and empirical data. We propose several avenues for further inquiry, including (1) agents with adaptive capabilities more reflective of real world adversaries, (2) the presence of multiple, heterogeneous adversaries, (3) computational game theory-based approaches such as coevolution to allow scaling to the real world beyond the limitations of analytical analysis and classical game theory, (4) mapping the game to real-world scenarios, (5) taking player risk into account when designing a strategy (in addition to expected payoff), (6) improving our understanding of the dynamic nature of MTD-inspired games by using a martingale representation, defensive forecasting, and techniques from signal processing, and (7) using adversarial games to develop inherently resilient cyber systems.« less

  11. An examination of along-track interferometry for detecting ground moving targets

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.; Chapin, Elaine; Muellerschoen, Ron; Hensley, Scott

    2005-01-01

    Along-track interferometry (ATI) is an interferometric synthetic aperture radar technique primarily used to measure Earth-surface velocities. We present results from an airborne experiment demonstrating phenomenology specific to the context of observing discrete ground targets moving admidst a stationary clutter background.

  12. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Tomitani, Takehiro; Minohara, Shinichi; Noda, Koji; Kanai, Tatsuaki

    2007-03-01

    A project to construct a new treatment facility as an extension of the existing heavy-ion medical accelerator in chiba (HIMAC) facility has been initiated for further development of carbon-ion therapy. The greatest challenge of this project is to realize treatment of a moving target by scanning irradiation. For this purpose, we decided to combine the rescanning technique and the gated irradiation method. To determine how to avoid hot and/or cold spots by the relatively large number of rescannings within an acceptable irradiation time, we have studied the scanning strategy, scanning magnets and their control, and beam intensity dynamic control. We have designed a raster scanning system and carried out a simulation of irradiating moving targets. The result shows the possibility of practical realization of moving target irradiation with pencil beam scanning. We describe the present status of our design study of the raster scanning system for the HIMAC new treatment facility.

  13. Timescale Halo: Average-Speed Targets Elicit More Positive and Less Negative Attributions than Slow or Fast Targets

    PubMed Central

    Hernandez, Ivan; Preston, Jesse Lee; Hepler, Justin

    2014-01-01

    Research on the timescale bias has found that observers perceive more capacity for mind in targets moving at an average speed, relative to slow or fast moving targets. The present research revisited the timescale bias as a type of halo effect, where normal-speed people elicit positive evaluations and abnormal-speed (slow and fast) people elicit negative evaluations. In two studies, participants viewed videos of people walking at a slow, average, or fast speed. We find evidence for a timescale halo effect: people walking at an average-speed were attributed more positive mental traits, but fewer negative mental traits, relative to slow or fast moving people. These effects held across both cognitive and emotional dimensions of mind and were mediated by overall positive/negative ratings of the person. These results suggest that, rather than eliciting greater perceptions of general mind, the timescale bias may reflect a generalized positivity toward average speed people relative to slow or fast moving people. PMID:24421882

  14. Method and apparatus for staining immobilized nucleic acids

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.; Jacobson, Stephen C.

    2000-01-01

    A method for staining immobilized nucleic acids includes the steps of affixing DNA probes to a solid substrate, moving target DNA material into proximity with the DNA probes, whereby the target DNA hybridized with specific ones of the DNA probes, and moving a fluorescent dye into proximity with the hybridized target DNA, whereby the fluorescent dye binds to the hybridized DNA to enable subsequent detection of fluorescence.

  15. Improved control of multi-layer overlay in advanced 8nm logic nodes

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Sun; Park, Young-Sik; Kim, Yong-Chul; Kim, Byoung-Hoon; Lee, Ji-Hun; Kwak, Min-Keun; Choi, Sung-Won; Park, Joon-Soo; Yang, Hong-Cheon; Meixner, Philipp; Lee, Dong-jin; Kwon, Oh-Sung; Kim, Hyun-Su; Park, Jin-Tae; Lee, Sung-Min; Grouwstra, Cedric; van der Meijden, Vidar; El Kodadi, Mohamed; Kim, Chris; Guittet, Pierre-Yves; Nooitgedagt, Tjitte

    2018-03-01

    With the increase of litho-etch steps the industry requires metrology to deliver solutions to improve throughput of overlay measurements without impacting accuracy. ASML's YieldStar 350E is capable of utilizing targets, which can measure the overlay of multiple layers simultaneously. For the work discussed in this paper, an evaluation is performed on Logic product wafers using both single-layer and multi-layer (MLT) quad type targets (able to capture up to four litho-etch steps). Different target types were compared in terms of Move-and-Acquire (MA) time, residual and matching to SEM. Using the MLT targets, an MA time improvement of 56% was demonstrated on the singlelayer. The maximum delta between the overlay residual among the YieldStar targets after applying an high order model was shown to be 0.05 nm. In comparison to after-etch overlay, the correlation of the MLT target was determined with an R2 > 0.95 using a set-get wafer with induced 10 nm overlay range. On a normal production wafer, the correlation was R2 > 0.67, which is high on a wafer without induced overlay. The comparison of modeling parameters between SEM and MLT targets shows a good match (< 0.16nm) as well.

  16. Overcoming resistance to molecularly targeted anticancer therapies: rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies

    PubMed Central

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-01-01

    Accumulating evidence suggests that cancer can be envisioned as a “signaling disease”, in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to “targeted” agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in hematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects. PMID:17482503

  17. Moving target detection method based on improved Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Ma, J. Y.; Jie, F. R.; Hu, Y. J.

    2017-07-01

    Gaussian Mixture Model is often employed to build background model in background difference methods for moving target detection. This paper puts forward an adaptive moving target detection algorithm based on improved Gaussian Mixture Model. According to the graylevel convergence for each pixel, adaptively choose the number of Gaussian distribution to learn and update background model. Morphological reconstruction method is adopted to eliminate the shadow.. Experiment proved that the proposed method not only has good robustness and detection effect, but also has good adaptability. Even for the special cases when the grayscale changes greatly and so on, the proposed method can also make outstanding performance.

  18. A design of optical measurement laboratory for space-based illumination condition emulation

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Zhao, Fei; Yang, Xin

    2015-10-01

    Space Objects Identification(SOI) and related technology have aroused wide attention from spacefaring nations due to the increasingly severe space environment. Multiple ground-based assets have been employed to acquire statistical survey data, detect faint debris, acquire photometric and spectroscopic data. Great efforts have been made to characterize different space objects using the statistical data acquired by telescopes. Furthermore, detailed laboratory data are needed to optimize the characterization of orbital debris and satellites via material composition and potential rotation axes, which calls for a high-precision and flexible optical measurement system. A typical method of taking optical measurements of a space object(or model) is to move light source and sensors through every possible orientation around it and keep the target still. However, moving equipments to accurate orientations in the air is difficult, especially for those large precise instruments sensitive to vibrations. Here, a rotation structure of "3+1" axes, with a three-axis turntable manipulating attitudes of the target and the sensor revolving around a single axis, is utilized to emulate every possible illumination condition in space, which can also avoid the inconvenience of moving large aparatus. Firstly, the source-target-sensor orientation of a real satellite was analyzed with vectors and coordinate systems built to illustrate their spatial relationship. By bending the Reference Coordinate Frame to the Phase Angle plane, the sensor only need to revolve around a single axis while the other three degrees of freedom(DOF) are associated with the Euler's angles of the satellite. Then according to practical engineering requirements, an integrated rotation system of four-axis structure is brought forward. Schemetic diagrams of the three-axis turntable and other equipments show an overview of the future laboratory layout. Finally, proposals on evironment arrangements, light source precautions and sensor selections are provided. Comparing to current methods, this design shows better effects on device simplication, automatic control and high-precision measurement.

  19. An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS.

    PubMed

    Li, Zhongyu; Wu, Junjie; Huang, Yulin; Yang, Haiguang; Yang, Jianyu

    2017-01-23

    Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I) large and unknown range cell migration (RCM) (including range walk and high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.

  20. 3D range-gated super-resolution imaging based on stereo matching for moving platforms and targets

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Wang, Xinwei; Zhou, Yan

    2017-11-01

    3D range-gated superresolution imaging is a novel 3D reconstruction technique for target detection and recognition with good real-time performance. However, for moving targets or platforms such as airborne, shipborne, remote operated vehicle and autonomous vehicle, 3D reconstruction has a large error or failure. In order to overcome this drawback, we propose a method of stereo matching for 3D range-gated superresolution reconstruction algorithm. In experiment, the target is a doll of Mario with a height of 38cm at the location of 34m, and we obtain two successive frame images of the Mario. To confirm our method is effective, we transform the original images with translation, rotation, scale and perspective, respectively. The experimental result shows that our method has a good result of 3D reconstruction for moving targets or platforms.

  1. Laser ablation for the synthesis of carbon nanotubes

    DOEpatents

    Holloway, Brian C; Eklund, Peter C; Smith, Michael W; Jordan, Kevin C; Shinn, Michelle

    2012-11-27

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  2. Laser ablation for the synthesis of carbon nanotubes

    DOEpatents

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  3. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2010-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of side pumped, preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  4. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  5. Clutter attenuation using the Doppler effect in standoff electromagnetic quantum sensing

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas, Salvador

    2016-05-01

    In the context of traditional radar systems, the Doppler effect is crucial to detect and track moving targets in the presence of clutter. In the quantum radar context, however, most theoretical performance analyses to date have assumed static targets. In this paper we consider the Doppler effect at the single photon level. In particular, we describe how the Doppler effect produced by clutter and moving targets modifies the quantum distinguishability and the quantum radar error detection probability equations. Furthermore, we show that Doppler-based delayline cancelers can reduce the effects of clutter in the context of quantum radar, but only in the low-brightness regime. Thus, quantum radar may prove to be an important technology if the electronic battlefield requires stealthy tracking and detection of moving targets in the presence of clutter.

  6. Automation of (64)Cu production at Turku PET Centre.

    PubMed

    Elomaa, Viki-Veikko; Jurttila, Jori; Rajander, Johan; Solin, Olof

    2014-07-01

    At Turku PET Centre automation for handling solid targets for the production of (64)Cu has been built. The system consists of a module for moving the target from the irradiation position into a lead transport shield and a robotic-arm assisted setup for moving the target within radiochemistry laboratory. The main motivation for designing automation arises from radiation hygiene. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A novel procedure for detecting and focusing moving objects with SAR based on the Wigner-Ville distribution

    NASA Astrophysics Data System (ADS)

    Barbarossa, S.; Farina, A.

    A novel scheme for detecting moving targets with synthetic aperture radar (SAR) is presented. The proposed approach is based on the use of the Wigner-Ville distribution (WVD) for simultaneously detecting moving targets and estimating their motion kinematic parameters. The estimation plays a key role for focusing the target and correctly locating it with respect to the stationary background. The method has a number of advantages: (i) the detection is efficiently performed on the samples in the time-frequency domain, provided the WVD, without resorting to the use of a bank of filters, each one matched to possible values of the unknown target motion parameters; (ii) the estimation of the target motion parameters can be done on the same time-frequency domain by locating the line where the maximum energy of the WVD is concentrated. A validation of the approach is given by both analytical and simulation means. In addition, the estimation of the target kinematic parameters and the corresponding image focusing are also demonstrated.

  8. Decoupled tracking and thermal monitoring of non-stationary targets.

    PubMed

    Tan, Kok Kiong; Zhang, Yi; Huang, Sunan; Wong, Yoke San; Lee, Tong Heng

    2009-10-01

    Fault diagnosis and predictive maintenance address pertinent economic issues relating to production systems as an efficient technique can continuously monitor key health parameters and trigger alerts when critical changes in these variables are detected, before they lead to system failures and production shutdowns. In this paper, we present a decoupled tracking and thermal monitoring system which can be used on non-stationary targets of closed systems such as machine tools. There are three main contributions from the paper. First, a vision component is developed to track moving targets under a monitor. Image processing techniques are used to resolve the target location to be tracked. Thus, the system is decoupled and applicable to closed systems without the need for a physical integration. Second, an infrared temperature sensor with a built-in laser for locating the measurement spot is deployed for non-contact temperature measurement of the moving target. Third, a predictive motion control system holds the thermal sensor and follows the moving target efficiently to enable continuous temperature measurement and monitoring.

  9. Task relevance predicts gaze in videos of real moving scenes.

    PubMed

    Howard, Christina J; Gilchrist, Iain D; Troscianko, Tom; Behera, Ardhendu; Hogg, David C

    2011-09-01

    Low-level stimulus salience and task relevance together determine the human fixation priority assigned to scene locations (Fecteau and Munoz in Trends Cogn Sci 10(8):382-390, 2006). However, surprisingly little is known about the contribution of task relevance to eye movements during real-world visual search where stimuli are in constant motion and where the 'target' for the visual search is abstract and semantic in nature. Here, we investigate this issue when participants continuously search an array of four closed-circuit television (CCTV) screens for suspicious events. We recorded eye movements whilst participants watched real CCTV footage and moved a joystick to continuously indicate perceived suspiciousness. We find that when multiple areas of a display compete for attention, gaze is allocated according to relative levels of reported suspiciousness. Furthermore, this measure of task relevance accounted for twice the amount of variance in gaze likelihood as the amount of low-level visual changes over time in the video stimuli.

  10. Research on the algorithm of infrared target detection based on the frame difference and background subtraction method

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Hui, Mei; Liu, Xiaohua; Wu, Yijian

    2015-09-01

    As an important branch of infrared imaging technology, infrared target tracking and detection has a very important scientific value and a wide range of applications in both military and civilian areas. For the infrared image which is characterized by low SNR and serious disturbance of background noise, an innovative and effective target detection algorithm is proposed in this paper, according to the correlation of moving target frame-to-frame and the irrelevance of noise in sequential images based on OpenCV. Firstly, since the temporal differencing and background subtraction are very complementary, we use a combined detection method of frame difference and background subtraction which is based on adaptive background updating. Results indicate that it is simple and can extract the foreground moving target from the video sequence stably. For the background updating mechanism continuously updating each pixel, we can detect the infrared moving target more accurately. It paves the way for eventually realizing real-time infrared target detection and tracking, when transplanting the algorithms on OpenCV to the DSP platform. Afterwards, we use the optimal thresholding arithmetic to segment image. It transforms the gray images to black-white images in order to provide a better condition for the image sequences detection. Finally, according to the relevance of moving objects between different frames and mathematical morphology processing, we can eliminate noise, decrease the area, and smooth region boundaries. Experimental results proves that our algorithm precisely achieve the purpose of rapid detection of small infrared target.

  11. Independent motion detection with a rival penalized adaptive particle filter

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Hübner, Wolfgang; Arens, Michael

    2014-10-01

    Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic filter for real-time detection and tracking of independently moving objects. The proposed approach introduces a competition scheme between particles in order to ensure an improved multi-modality. Further, the filter design helps to generate a particle distribution which is homogenous even in the presence of multiple targets showing non-rigid motion patterns. The effectiveness of the method is shown on exemplary outdoor sequences.

  12. Research on target tracking in coal mine based on optical flow method

    NASA Astrophysics Data System (ADS)

    Xue, Hongye; Xiao, Qingwei

    2015-03-01

    To recognize, track and count the bolting machine in coal mine video images, a real-time target tracking method based on the Lucas-Kanade sparse optical flow is proposed in this paper. In the method, we judge whether the moving target deviate from its trajectory, predicate and correct the position of the moving target. The method solves the problem of failure to track the target or lose the target because of the weak light, uneven illumination and blocking. Using the VC++ platform and Opencv lib we complete the recognition and tracking. The validity of the method is verified by the result of the experiment.

  13. Saccadic eye movements as an index of perceptual decision-making.

    PubMed

    McSorley, Eugene; McCloy, Rachel

    2009-10-01

    One of the most common decisions we make is the one about where to move our eyes next. Here we examine the impact that processing the evidence supporting competing options has on saccade programming. Participants were asked to saccade to one of two possible visual targets indicated by a cloud of moving dots. We varied the evidence which supported saccade target choice by manipulating the proportion of dots moving towards one target or the other. The task was found to become easier as the evidence supporting target choice increased. This was reflected in an increase in percent correct and a decrease in saccade latency. The trajectory and landing position of saccades were found to deviate away from the non-selected target reflecting the choice of the target and the inhibition of the non-target. The extent of the deviation was found to increase with amount of sensory evidence supporting target choice. This shows that decision-making processes involved in saccade target choice have an impact on the spatial control of a saccade. This would seem to extend the notion of the processes involved in the control of saccade metrics beyond a competition between visual stimuli to one also reflecting a competition between options.

  14. Margin estimation and disturbances of irradiation field in layer-stacking carbon-ion beams for respiratory moving targets.

    PubMed

    Tajiri, Shinya; Tashiro, Mutsumi; Mizukami, Tomohiro; Tsukishima, Chihiro; Torikoshi, Masami; Kanai, Tatsuaki

    2017-11-01

    Carbon-ion therapy by layer-stacking irradiation for static targets has been practised in clinical treatments. In order to apply this technique to a moving target, disturbances of carbon-ion dose distributions due to respiratory motion have been studied based on the measurement using a respiratory motion phantom, and the margin estimation given by the square root of the summation Internal margin2+Setup margin2 has been assessed. We assessed the volume in which the variation in the ratio of the dose for a target moving due to respiration relative to the dose for a static target was within 5%. The margins were insufficient for use with layer-stacking irradiation of a moving target, and an additional margin was required. The lateral movement of a target converts to the range variation, as the thickness of the range compensator changes with the movement of the target. Although the additional margin changes according to the shape of the ridge filter, dose uniformity of 5% can be achieved for a spherical target 93 mm in diameter when the upward range variation is limited to 5 mm and the additional margin of 2.5 mm is applied in case of our ridge filter. Dose uniformity in a clinical target largely depends on the shape of the mini-peak as well as on the bolus shape. We have shown the relationship between range variation and dose uniformity. In actual therapy, the upper limit of target movement should be considered by assessing the bolus shape. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  15. Moving Hands, Moving Entities

    ERIC Educational Resources Information Center

    Setti, Annalisa; Borghi, Anna M.; Tessari, Alessia

    2009-01-01

    In this study we investigated with a priming paradigm whether uni and bimanual actions presented as primes differently affected language processing. Animals' (self-moving entities) and plants' (not self-moving entities) names were used as targets. As prime we used grasping hands, presented both as static images and videos. The results showed an…

  16. SU-G-JeP4-05: Effects of Irregular Respiratory Motion On the Positioning Accuracy of Moving Target with Free Breathing Cone-Beam Computerized Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Xiong, W; Gewanter, R

    Purpose: Average or maximum intensity projection (AIP or MIP) images derived from 4DCT images are often used as a reference image for target alignment when free breathing Cone-beam CT (FBCBCT) is used for positioning a moving target at treatment. This method can be highly accurate if the patient has stable respiratory motion. However, a patient’s breathing pattern often varies irregularly. The purpose of this study is to investigate the effect of irregular respiration on the positioning accuracy of a moving target with FBCBCT. Methods: Eight patients’ respiratory motion curves were selected to drive a Quasar phantom with embedded cubic andmore » spherical targets. A 4DCT of the moving phantom was acquired on a CT scanner (Philips Brilliance 16) equipped with a Varian RPM system. The phase binned 4DCT images and the corresponding MIP and AIP images were transferred into Eclipse for analysis. CBCTs of the phantom driven by the same breathing curves were acquired on a Varian TrueBeam and fused such that the zero positions of moving targets are the same on both CBCT and AIP images. The sphere and cube volumes and centrioid differences (alignment error) determined by MIP, AIP and FBCBCT images were compared. Results: Compared to the volume determined by FBCBCT, the volumes of cube and sphere in MIP images were 22.4%±8.8% and 34.2%±6.2% larger while the volumes in AIP images were 7.1%±6.2% and 2.7%±15.3% larger, respectively. The alignment errors for the cube and sphere with center-center matches between MIP and FBCBCT were 3.5±3.1mm and 3.2±2.3mm, and the alignment errors between AIP and FBCBCT were 2.1±2.6mm and 2.1±1.7mm, respectively. Conclusion: AIP images appear to be superior reference images than MIP images. However, irregular respiratory motions could compromise the positioning accuracy of a moving target if the target center-center match is used to align FBCBCT and AIP images.« less

  17. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  18. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  19. A novel spatial-temporal detection method of dim infrared moving small target

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Deng, Tao; Gao, Lei; Zhou, Heng; Luo, Song

    2014-09-01

    Moving small target detection under complex background in infrared image sequence is one of the major challenges of modern military in Early Warning Systems (EWS) and the use of Long-Range Strike (LRS). However, because of the low SNR and undulating background, the infrared moving small target detection is a difficult problem in a long time. To solve this problem, a novel spatial-temporal detection method based on bi-dimensional empirical mode decomposition (EMD) and time-domain difference is proposed in this paper. This method is downright self-data decomposition and do not rely on any transition kernel function, so it has a strong adaptive capacity. Firstly, we generalized the 1D EMD algorithm to the 2D case. In this process, the project has solved serial issues in 2D EMD, such as large amount of data operations, define and identify extrema in 2D case, and two-dimensional signal boundary corrosion. The EMD algorithm studied in this project can be well adapted to the automatic detection of small targets under low SNR and complex background. Secondly, considering the characteristics of moving target, we proposed an improved filtering method based on three-frame difference on basis of the original difference filtering in time-domain, which greatly improves the ability of anti-jamming algorithm. Finally, we proposed a new time-space fusion method based on a combined processing of 2D EMD and improved time-domain differential filtering. And, experimental results show that this method works well in infrared small moving target detection under low SNR and complex background.

  20. Splitting attention reduces temporal resolution from 7 Hz for tracking one object to <3 Hz when tracking three.

    PubMed

    Holcombe, Alex O; Chen, Wei-Ying

    2013-01-09

    Overall performance when tracking moving targets is known to be poorer for larger numbers of targets, but the specific effect on tracking's temporal resolution has never been investigated. We document a broad range of display parameters for which visual tracking is limited by temporal frequency (the interval between when a target is at each location and a distracter moves in and replaces it) rather than by object speed. We tested tracking of one, two, and three moving targets while the eyes remained fixed. Variation of the number of distracters and their speed revealed both speed limits and temporal frequency limits on tracking. The temporal frequency limit fell from 7 Hz with one target to 4 Hz with two targets and 2.6 Hz with three targets. The large size of this performance decrease implies that in the two-target condition participants would have done better by tracking only one of the two targets and ignoring the other. These effects are predicted by serial models involving a single tracking focus that must switch among the targets, sampling the position of only one target at a time. If parallel processing theories are to explain why dividing the tracking resource reduces temporal resolution so markedly, supplemental assumptions will be required.

  1. Fan filters, the 3-D Radon transform, and image sequence analysis.

    PubMed

    Marzetta, T L

    1994-01-01

    This paper develops a theory for the application of fan filters to moving objects. In contrast to previous treatments of the subject based on the 3-D Fourier transform, simplicity and insight are achieved by using the 3-D Radon transform. With this point of view, the Radon transform decomposes the image sequence into a set of plane waves that are parameterized by a two-component slowness vector. Fan filtering is equivalent to a multiplication in the Radon transform domain by a slowness response function, followed by an inverse Radon transform. The plane wave representation of a moving object involves only a restricted set of slownesses such that the inner product of the plane wave slowness vector and the moving object velocity vector is equal to one. All of the complexity in the application of fan filters to image sequences results from the velocity-slowness mapping not being one-to-one; therefore, the filter response cannot be independently specified at all velocities. A key contribution of this paper is to elucidate both the power and the limitations of fan filtering in this new application. A potential application of 3-D fan filters is in the detection of moving targets in clutter and noise. For example, an appropriately designed fan filter can reject perfectly all moving objects whose speed, irrespective of heading, is less than a specified cut-off speed, with only minor attenuation of significantly faster objects. A simple geometric construction determines the response of the filter for speeds greater than the cut-off speed.

  2. Greenhouse Gas Analysis by GC/MS

    NASA Astrophysics Data System (ADS)

    Bock, E. M.; Easton, Z. M.; Macek, P.

    2015-12-01

    Current methods to analyze greenhouse gases rely on designated complex, multiple-column, multiple-detector gas chromatographs. A novel method was developed in partnership with Shimadzu for simultaneous quantification of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in environmental gas samples. Gas bulbs were used to make custom standard mixtures by injecting small volumes of pure analyte into the nitrogen-filled bulb. Resulting calibration curves were validated using a certified gas standard. The use of GC/MS systems to perform this analysis has the potential to move the analysis of greenhouse gasses from expensive, custom GC systems to standard single-quadrupole GC/MS systems that are available in most laboratories, which wide variety of applications beyond greenhouse gas analysis. Additionally, use of mass spectrometry can provide confirmation of identity of target analytes, and will assist in the identification of unknown peaks should they be present in the chromatogram.

  3. Sensor fusion III: 3-D perception and recognition; Proceedings of the Meeting, Boston, MA, Nov. 5-8, 1990

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1991-01-01

    The volume on data fusion from multiple sources discusses fusing multiple views, temporal analysis and 3D motion interpretation, sensor fusion and eye-to-hand coordination, and integration in human shape perception. Attention is given to surface reconstruction, statistical methods in sensor fusion, fusing sensor data with environmental knowledge, computational models for sensor fusion, and evaluation and selection of sensor fusion techniques. Topics addressed include the structure of a scene from two and three projections, optical flow techniques for moving target detection, tactical sensor-based exploration in a robotic environment, and the fusion of human and machine skills for remote robotic operations. Also discussed are K-nearest-neighbor concepts for sensor fusion, surface reconstruction with discontinuities, a sensor-knowledge-command fusion paradigm for man-machine systems, coordinating sensing and local navigation, and terrain map matching using multisensing techniques for applications to autonomous vehicle navigation.

  4. Automated navigation of a glass micropipette on a high-density microelectrode array.

    PubMed

    Jing Lin; Obien, Marie Engelene J; Hierlemann, Andreas; Frey, Urs

    2015-08-01

    High-density microelectrode arrays (HDMEAs) provide the capability to monitor the extracellular electric potential of multiple neurons at subcellular resolution over extended periods of time. In contrast, patch clamp allows for intracellular, sub-threshold recordings from a single patched neuron for very limited time on the order of an hour. Therefore, it will be beneficial to combine HDMEA and patch clamp for simultaneous intra- and extracellular recording of neuronal activity. Previously, it has been shown that the HDMEA can be used to localize and steer a glass micropipette towards a target location without using an optical microscope [1]. Here, we present an automated system, implemented in LabVIEW, which automatically locates and moves the glass micropipette towards a user-defined target. The presented system constitutes a first step towards developing an automated system to navigate a pipette to patch a neuron in vitro.

  5. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment.

    PubMed

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-06

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target's radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.

  6. Metrology Camera System Using Two-Color Interferometry

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Liebe, Carl Christian; Peters, Robert; Lay, Oliver

    2007-01-01

    A metrology system that contains no moving parts simultaneously measures the bearings and ranges of multiple reflective targets in its vicinity, enabling determination of the three-dimensional (3D) positions of the targets with submillimeter accuracy. The system combines a direction-measuring metrology camera and an interferometric range-finding subsystem. Because the system is based partly on a prior instrument denoted the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor and because of its 3D capability, the system is denoted the MSTAR3D. Developed for use in measuring the shape (for the purpose of compensating for distortion) of large structures like radar antennas, it can also be used to measure positions of multiple targets in the course of conventional terrestrial surveying. A diagram of the system is shown in the figure. One of the targets is a reference target having a known, constant distance with respect to the system. The system comprises a laser for generating local and target beams at a carrier frequency; a frequency shifting unit to introduce a frequency shift offset between the target and local beams; a pair of high-speed modulators that apply modulation to the carrier frequency in the local and target beams to produce a series of modulation sidebands, the highspeed modulators having modulation frequencies of FL and FM; a target beam launcher that illuminates the targets with the target beam; optics and a multipixel photodetector; a local beam launcher that launches the local beam towards the multi-pixel photodetector; a mirror for projecting to the optics a portion of the target beam reflected from the targets, the optics being configured to focus the portion of the target beam at the multi-pixel photodetector; and a signal-processing unit connected to the photodetector. The portion of the target beam reflected from the targets produces spots on the multi-pixel photodetector corresponding to the targets, respectively, and the signal-processing unit centroids the spots to determine bearings of the targets, respectively. As the spots oscillate in intensity because they are mixed with the local laser beam that is flood illuminating the focal plane, the phase of oscillation of each spot is measured, the phase of sidebands in the oscillation of each spot being proportional to a distance to the corresponding target relative to the reference target A.

  7. Required transition from research to clinical application: Report on the 4D treatment planning workshops 2014 and 2015.

    PubMed

    Knopf, Antje-Christin; Stützer, Kristin; Richter, Christian; Rucinski, Antoni; da Silva, Joakim; Phillips, Justin; Engelsman, Martijn; Shimizu, Shinichi; Werner, Rene; Jakobi, Annika; Göksel, Orçun; Zhang, Ye; Oshea, Tuathan; Fast, Martin; Perrin, Rosalind; Bert, Christoph; Rinaldi, Ilaria; Korevaar, EriK; McClelland, Jamie

    2016-07-01

    Since 2009, a 4D treatment planning workshop has taken place annually, gathering researchers working on the treatment of moving targets, mainly with scanned ion beams. Topics discussed during the workshops range from problems of time resolved imaging, the challenges of motion modelling, the implementation of 4D capabilities for treatment planning, up to different aspects related to 4D dosimetry and treatment verification. This report gives an overview on topics discussed at the 4D workshops in 2014 and 2015. It summarizes recent findings, developments and challenges in the field and discusses the relevant literature of the recent years. The report is structured in three parts pointing out developments in the context of understanding moving geometries, of treating moving targets and of 4D quality assurance (QA) and 4D dosimetry. The community represented at the 4D workshops agrees that research in the context of treating moving targets with scanned ion beams faces a crucial phase of clinical translation. In the coming years it will be important to define standards for motion monitoring, to establish 4D treatment planning guidelines and to develop 4D QA tools. These basic requirements for the clinical application of scanned ion beams to moving targets could e.g. be determined by a dedicated ESTRO task group. Besides reviewing recent research results and pointing out urgent needs when treating moving targets with scanned ion beams, the report also gives an outlook on the upcoming 4D workshop organized at the University Medical Center Groningen (UMCG) in the Netherlands at the end of 2016. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Assessing the performance of a motion tracking system based on optical joint transform correlation

    NASA Astrophysics Data System (ADS)

    Elbouz, M.; Alfalou, A.; Brosseau, C.; Ben Haj Yahia, N.; Alam, M. S.

    2015-08-01

    We present an optimized system specially designed for the tracking and recognition of moving subjects in a confined environment (such as an elderly remaining at home). In the first step of our study, we use a VanderLugt correlator (VLC) with an adapted pre-processing treatment of the input plane and a postprocessing of the correlation plane via a nonlinear function allowing us to make a robust decision. The second step is based on an optical joint transform correlation (JTC)-based system (NZ-NL-correlation JTC) for achieving improved detection and tracking of moving persons in a confined space. The proposed system has been found to have significantly superior discrimination and robustness capabilities allowing to detect an unknown target in an input scene and to determine the target's trajectory when this target is in motion. This system offers robust tracking performance of a moving target in several scenarios, such as rotational variation of input faces. Test results obtained using various real life video sequences show that the proposed system is particularly suitable for real-time detection and tracking of moving objects.

  9. Effects of sport expertise on representational momentum during timing control.

    PubMed

    Nakamoto, Hiroki; Mori, Shiro; Ikudome, Sachi; Unenaka, Satoshi; Imanaka, Kuniyasu

    2015-04-01

    Sports involving fast visual perception require players to compensate for delays in neural processing of visual information. Memory for the final position of a moving object is distorted forward along its path of motion (i.e., "representational momentum," RM). This cognitive extrapolation of visual perception might compensate for the neural delay in interacting appropriately with a moving object. The present study examined whether experienced batters cognitively extrapolate the location of a fast-moving object and whether this extrapolation is associated with coincident timing control. Nine expert and nine novice baseball players performed a prediction motion task in which a target moved from one end of a straight 400-cm track at a constant velocity. In half of the trials, vision was suddenly occluded when the target reached the 200-cm point (occlusion condition). Participants had to press a button concurrently with the target arrival at the end of the track and verbally report their subjective assessment of the first target-occluded position. Experts showed larger RM magnitude (cognitive extrapolation) than did novices in the occlusion condition. RM magnitude and timing errors were strongly correlated in the fast velocity condition in both experts and novices, whereas in the slow velocity condition, a significant correlation appeared only in experts. This suggests that experts can cognitively extrapolate the location of a moving object according to their anticipation and, as a result, potentially circumvent neural processing delays. This process might be used to control response timing when interacting with moving objects.

  10. Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus

    PubMed Central

    Ma, Rui; Cui, He; Lee, Sang-Hun; Anastasio, Thomas J.

    2013-01-01

    Intercepting momentarily invisible moving objects requires internally generated estimations of target trajectory. We demonstrate here that the parabigeminal nucleus (PBN) encodes such estimations, combining sensory representations of target location, extrapolated positions of briefly obscured targets, and eye position information. Cui and Malpeli (Cui H, Malpeli JG. J Neurophysiol 89: 3128–3142, 2003) reported that PBN activity for continuously visible tracked targets is determined by retinotopic target position. Here we show that when cats tracked moving, blinking targets the relationship between activity and target position was similar for ON and OFF phases (400 ms for each phase). The dynamic range of activity evoked by virtual targets was 94% of that of real targets for the first 200 ms after target offset and 64% for the next 200 ms. Activity peaked at about the same best target position for both real and virtual targets. PBN encoding of target position takes into account changes in eye position resulting from saccades, even without visual feedback. Since PBN response fields are retinotopically organized, our results suggest that activity foci associated with real and virtual targets at a given target position lie in the same physical location in the PBN, i.e., a retinotopic as well as a rate encoding of virtual-target position. We also confirm that PBN activity is specific to the intended target of a saccade and is predictive of which target will be chosen if two are offered. A Bayesian predictor-corrector model is presented that conceptually explains the differences in the dynamic ranges of PBN neuronal activity evoked during tracking of real and virtual targets. PMID:23365185

  11. Universal influenza vaccines: Shifting to better vaccines.

    PubMed

    Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J

    2016-06-03

    Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  12. Pilots' Attention Distributions Between Chasing a Moving Target and a Stationary Target.

    PubMed

    Li, Wen-Chin; Yu, Chung-San; Braithwaite, Graham; Greaves, Matthew

    2016-12-01

    Attention plays a central role in cognitive processing; ineffective attention may induce accidents in flight operations. The objective of the current research was to examine military pilots' attention distributions between chasing a moving target and a stationary target. In the current research, 37 mission-ready F-16 pilots participated. Subjects' eye movements were collected by a portable head-mounted eye-tracker during tactical training in a flight simulator. The scenarios of chasing a moving target (air-to-air) and a stationary target (air-to-surface) consist of three operational phases: searching, aiming, and lock-on to the targets. The findings demonstrated significant differences in pilots' percentage of fixation during the searching phase between air-to-air (M = 37.57, SD = 5.72) and air-to-surface (M = 33.54, SD = 4.68). Fixation duration can indicate pilots' sustained attention to the trajectory of a dynamic target during air combat maneuvers. Aiming at the stationary target resulted in larger pupil size (M = 27,105, SD = 6565), reflecting higher cognitive loading than aiming at the dynamic target (M = 23,864, SD = 8762). Pilots' visual behavior is not only closely related to attention distribution, but also significantly associated with task characteristics. Military pilots demonstrated various visual scan patterns for searching and aiming at different types of targets based on the research settings of a flight simulator. The findings will facilitate system designers' understanding of military pilots' cognitive processes during tactical operations. They will assist human-centered interface design to improve pilots' situational awareness. The application of an eye-tracking device integrated with a flight simulator is a feasible and cost-effective intervention to improve the efficiency and safety of tactical training.Li W-C, Yu C-S, Braithwaite G, Greaves M. Pilots' attention distributions between chasing a moving target and a stationary target. Aerosp Med Hum Perform. 2016; 87(12):989-995.

  13. Detection and Imaging of Moving Targets with LiMIT SAR Data

    DTIC Science & Technology

    2017-03-03

    include space time adaptive processing (STAP) or displaced phase center antenna (DPCA) [4]–[7]. Page et al. combined constant acceleration target...motion focusing with space-time adaptive processing (STAP), and included the refocusing parameters in the STAP steering vector. Due to inhomogenous...wavelength λ and slow time t, of a moving target after matched filter and passband equalization processing can be expressed as: P (t) = exp ( −j 4π λ ||~rp

  14. Method and apparatus for relative navigation using reflected GPS signals

    NASA Technical Reports Server (NTRS)

    Cohen, Ian R. (Inventor); Boegner, Jr., Gregory J. (Inventor)

    2010-01-01

    A method and system to passively navigate an orbiting moving body towards an orbiting target using reflected GPS signals. A pair of antennas is employed to receive both direct signals from a plurality of GPS satellites and a second antenna to receive GPS signals reflected off an orbiting target. The direct and reflected signals are processed and compared to determine the relative distance and position of the orbiting moving body relative to the orbiting target.

  15. Bearings Only Air-to-Air Ranging

    DTIC Science & Technology

    1988-07-25

    directly in fiut of the observer whem first detected, more time will be needed for a good estimate. A sound uinp them is for the observer, having...altitude angle to provide an estimate of the z component. Moving targets commonly require some 60 seconds for good estimates of target location and...fixed target case, where a good strategy for the observer can be determined a priori, highly effective maneuvers for the observer in the case of a moving

  16. Locations of serial reach targets are coded in multiple reference frames.

    PubMed

    Thompson, Aidan A; Henriques, Denise Y P

    2010-12-01

    Previous work from our lab, and elsewhere, has demonstrated that remembered target locations are stored and updated in an eye-fixed reference frame. That is, reach errors systematically vary as a function of gaze direction relative to a remembered target location, not only when the target is viewed in the periphery (Bock, 1986, known as the retinal magnification effect), but also when the target has been foveated, and the eyes subsequently move after the target has disappeared but prior to reaching (e.g., Henriques, Klier, Smith, Lowy, & Crawford, 1998; Sorrento & Henriques, 2008; Thompson & Henriques, 2008). These gaze-dependent errors, following intervening eye movements, cannot be explained by representations whose frame is fixed to the head, body or even the world. However, it is unknown whether targets presented sequentially would all be coded relative to gaze (i.e., egocentrically/absolutely), or if they would be coded relative to the previous target (i.e., allocentrically/relatively). It might be expected that the reaching movements to two targets separated by 5° would differ by that distance. But, if gaze were to shift between the first and second reaches, would the movement amplitude between the targets differ? If the target locations are coded allocentrically (i.e., the location of the second target coded relative to the first) then the movement amplitude should be about 5°. But, if the second target is coded egocentrically (i.e., relative to current gaze direction), then the reaches to this target and the distances between the subsequent movements should vary systematically with gaze as described above. We found that requiring an intervening saccade to the opposite side of 2 briefly presented targets between reaches to them resulted in a pattern of reaching error that systematically varied as a function of the distance between current gaze and target, and led to a systematic change in the distance between the sequential reach endpoints as predicted by an egocentric frame anchored to the eye. However, the amount of change in this distance was smaller than predicted by a pure eye-fixed representation, suggesting that relative positions of the targets or allocentric coding was also used in sequential reach planning. The spatial coding and updating of sequential reach target locations seems to rely on a combined weighting of multiple reference frames, with one of them centered on the eye. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Action-perception dissociation in response to target acceleration.

    PubMed

    Dubrowski, Adam; Carnahan, Heather

    2002-05-01

    The purpose of this study was to investigate whether information about the acceleration characteristics of a moving target can be used for both action and perception. Also of interest was whether prior movement experience altered perceptual judgements. Participants manually intercepted targets moving with various acceleration, velocity and movement time characteristics. They also made perceptual judgements about the acceleration characteristics of these targets either with or without prior manual interception experience. Results showed that while aiming kinematics were sensitive to the acceleration characteristics of the target, participants were only able to perceptually discriminate the velocity characteristics of target motion, even after performing interceptive actions to the same targets. These results are discussed in terms of a two channel (action-perception) model of visuomotor control.

  18. Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms

    NASA Astrophysics Data System (ADS)

    Kwok, Kwan S.; Driessen, Brian J.; Phillips, Cynthia A.; Tovey, Craig A.

    1997-09-01

    This work considers the problem of maximum utilization of a set of mobile robots with limited sensor-range capabilities and limited travel distances. The robots are initially in random positions. A set of robots properly guards or covers a region if every point within the region is within the effective sensor range of at least one vehicle. We wish to move the vehicles into surveillance positions so as to guard or cover a region, while minimizing the maximum distance traveled by any vehicle. This problem can be formulated as an assignment problem, in which we must optimally decide which robot to assign to which slot of a desired matrix of grid points. The cost function is the maximum distance traveled by any robot. Assignment problems can be solved very efficiently. Solution times for one hundred robots took only seconds on a silicon graphics crimson workstation. The initial positions of all the robots can be sampled by a central base station and their newly assigned positions communicated back to the robots. Alternatively, the robots can establish their own coordinate system with the origin fixed at one of the robots and orientation determined by the compass bearing of another robot relative to this robot. This paper presents example solutions to the multiple-target-multiple-agent scenario using a matching algorithm. Two separate cases with one hundred agents in each were analyzed using this method. We have found these mobile robot problems to be a very interesting application of network optimization methods, and we expect this to be a fruitful area for future research.

  19. Distractor interference during smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R; Kerzel, Dirk

    2006-10-01

    When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show that at 140 ms after distractor onset, horizontal eye velocity is decreased by about 25%. Vertical eye velocity increases or decreases by 1 degrees /s in the direction opposite from the distractor. This deviation varies in size with distractor direction, velocity, and contrast. The effect was present during the initiation and steady-state tracking phase of pursuit but only when the observer had prior information about target motion. Neither vector averaging nor winner-take-all models could predict the response to a moving to-be-ignored distractor during steady-state tracking of a predefined target. The contributions of perceptual mislocalization and spatial attention to the vertical deviation in pursuit are discussed. Copyright 2006 APA.

  20. Locating and targeting moving tumors with radiation beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieterich, Sonja; Cleary, Kevin; D'Souza, Warren

    2008-12-15

    The current climate of rapid technological evolution is reflected in newer and better methods to modulate and direct radiation beams for cancer therapy. This Vision 20/20 paper focuses on part of this evolution, locating and targeting moving tumors. The two processes are somewhat independent and in principle different implementations of the locating and targeting processes can be interchanged. Advanced localization and targeting methods have an impact on treatment planning and also present new challenges for quality assurance (QA), that of verifying real-time delivery. Some methods to locate and target moving tumors with radiation beams are currently FDA approved for clinicalmore » use--and this availability and implementation will increase with time. Extensions of current capabilities will be the integration of higher order dimensionality, such as rotation and deformation in addition to translation, into the estimate of the patient pose and real-time reoptimization and adaption of delivery to the dynamically changing anatomy of cancer patients.« less

  1. A ground moving target emergency tracking method for catastrophe rescue

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Li, D.; Li, G.

    2014-11-01

    In recent years, great disasters happen now and then. Disaster management test the emergency operation ability of the government and society all over the world. Immediately after the occurrence of a great disaster (e.g., earthquake), a massive nationwide rescue and relief operation need to be kicked off instantly. In order to improve the organizations efficiency of the emergency rescue, the organizers need to take charge of the information of the rescuer teams, including the real time location, the equipment with the team, the technical skills of the rescuers, and so on. One of the key factors for the success of emergency operations is the real time location of the rescuers dynamically. Real time tracking methods are used to track the professional rescuer teams now. But volunteers' participation play more and more important roles in great disasters. However, real time tracking of the volunteers will cause many problems, e.g., privacy leakage, expensive data consumption, etc. These problems may reduce the enthusiasm of volunteers' participation for catastrophe rescue. In fact, the great disaster is just small probability event, it is not necessary to track the volunteers (even rescuer teams) every time every day. In order to solve this problem, a ground moving target emergency tracking method for catastrophe rescue is presented in this paper. In this method, the handheld devices using GPS technology to provide the location of the users, e.g., smart phone, is used as the positioning equipment; an emergency tracking information database including the ID of the ground moving target (including the rescuer teams and volunteers), the communication number of the handheld devices with the moving target, and the usually living region, etc., is built in advance by registration; when catastrophe happens, the ground moving targets that living close to the disaster area will be filtered by the usually living region; then the activation short message will be sent to the selected ground moving target through the communication number of the handheld devices. The handheld devices receive and identify the activation short message, and send the current location information to the server. Therefore, the emergency tracking mode is triggered. The real time location of the filtered target can be shown on the organizer's screen, and the organizer can assign the rescue tasks to the rescuer teams and volunteers based on their real time location. The ground moving target emergency tracking prototype system is implemented using Oracle 11g, Visual Studio 2010 C#, Android, SMS Modem, and Google Maps API.

  2. Children's Age-Related Speed--Accuracy Strategies in Intercepting Moving Targets in Two Dimensions

    ERIC Educational Resources Information Center

    Rothenberg-Cunningham, Alek; Newell, Karl M.

    2013-01-01

    Purpose: This study investigated the age-related speed--accuracy strategies of children, adolescents, and adults in performing a rapid striking task that allowed the self-selection of the interception position in a virtual, two-dimensional environment. Method: The moving target had curvilinear trajectories that were determined by combinations of…

  3. Research on moving target defense based on SDN

    NASA Astrophysics Data System (ADS)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    An address mutation strategy was proposed. This strategy provided an unpredictable change in address, replacing the real address of the packet forwarding process and path mutation, thus hiding the real address of the host and path. a mobile object defense technology based on Spatio-temporal Mutation on this basis is proposed, Using the software Defined Network centralized control architecture advantage combines sFlow traffic monitoring technology and Moving Target Defense. A mutated time period which can be changed in real time according to the network traffic is changed, and the destination address is changed while the controller abruptly changes the address while the data packet is transferred between the switches to construct a moving target, confusing the host within the network, thereby protecting the host and network.

  4. Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance of a Moving Target

    PubMed Central

    Tsukamoto, Kazuya; Ueda, Hirofumi; Tamura, Hitomi; Kawahara, Kenji; Oie, Yuji

    2009-01-01

    In this paper, we focus on the problem of tracking a moving target in a wireless sensor network (WSN), in which the capability of each sensor is relatively limited, to construct large-scale WSNs at a reasonable cost. We first propose two simple multi-point surveillance schemes for a moving target in a WSN and demonstrate that one of the schemes can achieve high tracking probability with low power consumption. In addition, we examine the relationship between tracking probability and sensor density through simulations, and then derive an approximate expression representing the relationship. As the results, we present guidelines for sensor density, tracking probability, and the number of monitoring sensors that satisfy a variety of application demands. PMID:22412326

  5. Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection

    PubMed Central

    Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom

    2016-01-01

    The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method. PMID:27598159

  6. Aurally aided visual search performance in a dynamic environment

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.

    2008-04-01

    Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.

  7. Handling target obscuration through Markov chain observations

    NASA Astrophysics Data System (ADS)

    Kouritzin, Michael A.; Wu, Biao

    2008-04-01

    Target Obscuration, including foliage or building obscuration of ground targets and landscape or horizon obscuration of airborne targets, plagues many real world filtering problems. In particular, ground moving target identification Doppler radar, mounted on a surveillance aircraft or unattended airborne vehicle, is used to detect motion consistent with targets of interest. However, these targets try to obscure themselves (at least partially) by, for example, traveling along the edge of a forest or around buildings. This has the effect of creating random blockages in the Doppler radar image that move dynamically and somewhat randomly through this image. Herein, we address tracking problems with target obscuration by building memory into the observations, eschewing the usual corrupted, distorted partial measurement assumptions of filtering in favor of dynamic Markov chain assumptions. In particular, we assume the observations are a Markov chain whose transition probabilities depend upon the signal. The state of the observation Markov chain attempts to depict the current obscuration and the Markov chain dynamics are used to handle the evolution of the partially obscured radar image. Modifications of the classical filtering equations that allow observation memory (in the form of a Markov chain) are given. We use particle filters to estimate the position of the moving targets. Moreover, positive proof-of-concept simulations are included.

  8. Ultrasonic propulsion of kidney stones: preliminary results of human feasibility study.

    PubMed

    Bailey, Michael; Cunitz, Bryan; Dunmire, Barbrina; Paun, Marla; Lee, Franklin; Ross, Susan; Lingeman, James; Coburn, Michael; Wessells, Hunter; Sorensen, Mathew; Harper, Jonathan

    2014-09-03

    One in 11 Americans has experienced kidney stones, with a 50% average recurrence rate within 5-10 years. Ultrasonic propulsion (UP) offers a potential method to expel small stones or residual fragments before they become a recurrent problem. Reported here are preliminary findings from the first investigational use of UP in humans. The device uses a Verasonics ultrasound engine and Philips HDI C5-2 probe to generate real-time B-mode imaging and targeted "push" pulses on demand. There are three arms of the study: de novo stones, post-lithotripsy fragments, and the preoperative setting. A pain questionnaire is completed prior to and following the study. Movement is classified based on extent. Patients are followed for 90 days. Ten subjects have been treated to date: three de novo , five post-lithotripsy, and two preoperative. None of the subjects reported pain associated with the treatment or a treatment related adverse event, beyond the normal discomfort of passing a stone. At least one stone was moved in all subjects. Three of five post-lithotripsy subjects passed a single or multiple stones within 1-2 weeks following treatment; one subject passed two (1-2 mm) fragments before leaving clinic. In the pre-operative studies we successfully moved 7 - 8 mm stones. In four subjects, UP revealed multiple stone fragments where the clinical image and initial ultrasound examination indicated a single large stone.

  9. Order of events matter: comparing discrete models for optimal control of species augmentation.

    PubMed

    Bodine, Erin N; Gross, Louis J; Lenhart, Suzanne

    2012-01-01

    We investigate optimal timing of augmentation of an endangered/threatened species population in a target region by moving individuals from a reserve or captive population. This is formulated as a discrete-time optimal control problem in which augmentation occurs once per time period over a fixed number of time periods. The population model assumes the Allee effect growth functions in both target and reserve populations and the control objective is to maximize the target and reserve population sizes over the time horizon while accounting for costs of augmentation. Two possible orders of events are considered for different life histories of the species relative to augmentation time: move individuals either before or after population growth occurs. The control variable is the proportion of the reserve population to be moved to the target population. We develop solutions and illustrate numerical results which indicate circumstances for which optimal augmentation strategies depend upon the order of events.

  10. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

    PubMed Central

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target’s radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component. PMID:27929433

  11. Massively parallel E-beam inspection: enabling next-generation patterned defect inspection for wafer and mask manufacturing

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik

    2015-03-01

    SEMATECH aims to identify and enable disruptive technologies to meet the ever-increasing demands of semiconductor high volume manufacturing (HVM). As such, a program was initiated in 2012 focused on high-speed e-beam defect inspection as a complement, and eventual successor, to bright field optical patterned defect inspection [1]. The primary goal is to enable a new technology to overcome the key gaps that are limiting modern day inspection in the fab; primarily, throughput and sensitivity to detect ultra-small critical defects. The program specifically targets revolutionary solutions based on massively parallel e-beam technologies, as opposed to incremental improvements to existing e-beam and optical inspection platforms. Wafer inspection is the primary target, but attention is also being paid to next generation mask inspection. During the first phase of the multi-year program multiple technologies were reviewed, a down-selection was made to the top candidates, and evaluations began on proof of concept systems. A champion technology has been selected and as of late 2014 the program has begun to move into the core technology maturation phase in order to enable eventual commercialization of an HVM system. Performance data from early proof of concept systems will be shown along with roadmaps to achieving HVM performance. SEMATECH's vision for moving from early-stage development to commercialization will be shown, including plans for development with industry leading technology providers.

  12. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  13. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  14. Improved MIMO radar GMTI via cyclic-shift transmission of orthogonal frequency division signals

    NASA Astrophysics Data System (ADS)

    Li, Fuyou; He, Feng; Dong, Zhen; Wu, Manqing

    2018-05-01

    Minimum detectable velocity (MDV) and maximum detectable velocity are both important in ground moving target indication (GMTI) systems. Smaller MDV can be achieved by longer baseline via multiple-input multiple-output (MIMO) radar. Maximum detectable velocity is decided by blind velocities associated with carrier frequencies, and blind velocities can be mitigated by orthogonal frequency division signals. However, the scattering echoes from different carrier frequencies are independent, which is not good for improving MDV performance. An improved cyclic-shift transmission is applied in MIMO GMTI system in this paper. MDV performance is improved due to the longer baseline, and maximum detectable velocity performance is improved due to the mitigation of blind velocities via multiple carrier frequencies. The signal model for this mode is established, the principle of mitigating blind velocities with orthogonal frequency division signals is presented; the performance of different MIMO GMTI waveforms is analysed; and the performance of different array configurations is analysed. Simulation results by space-time-frequency adaptive processing proves that our proposed method is a valid way to improve GMTI performance.

  15. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    PubMed

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.

  16. Modulatory effects of binocular disparity and aging upon the perception of speed.

    PubMed

    Norman, J Farley; Burton, Cory L; Best, Leah A

    2010-01-01

    Two experiments investigated modulatory effects of a surround upon the perceived speed of a moving central region. Both the surround's depth and velocity (relative to the center) were manipulated. The abilities of younger observers (mean age was 23.1 years) were evaluated in Experiment 1, while Experiment 2 was devoted to older participants (mean age was 71.3 years). The results of Experiment 1 revealed that changes in the perceived depth of a surround (in this case caused by changes in binocular disparity) significantly influence the perceived speed of a central target. In particular, the center's motion was perceived as fastest when the surround possessed uncrossed binocular disparity relative to the central target. This effect, that targets that are closer than their background are perceived to be faster, only occurred when the center and surround moved in the same directions (and did not occur when center and surround moved in opposite directions). The results of Experiment 2 showed that the perceived speeds of older adults are different: older observers generally perceive nearer targets as faster both when center and surround move in the same direction and when they move in opposite directions. In addition, the older observers' judgments of speed were less precise. These age-related changes in the perception of speed are broadly consistent with the results of recent neurophysiological investigations that find age-related changes in the functionality of cortical area MT.

  17. Assisting persons with multiple disabilities to move through simple occupational activities with automatic prompting.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Oliva, Doretta; Campodonico, Francesca; Groeneweg, Jop

    2008-01-01

    The present study assessed the possibility of assisting four persons with multiple disabilities to move through and perform simple occupational activities arranged within a room with the help of automatic prompting. The study involved two multiple probe designs across participants. The first multiple probe concerned the two participants with blindness or minimal vision and deafness, who received air blowing as a prompt. The second multiple probe concerned the two participants with blindness and typical hearing who received a voice calling as a prompt. Initially, all participants had baseline sessions. Then intervention started with the first participant of each dyad. When their performance was consolidated, new baseline and intervention occurred with the second participant of each dyad. Finally, all four participants were exposed to a second intervention phase, in which the number of activities per session doubled (i.e., from 8 to 16). Data showed that all four participants: (a) learned to move across and perform the activities available with the help of automatic prompting and (b) remained highly successful through the second intervention phase when the sessions were extended. Implications of the findings are discussed.

  18. Taking aim at novel vaccines market.

    PubMed

    Awasthi, Sita

    2009-10-01

    The World Vaccine Congress Washington 2009 was held in Chantilly, VA USA April 2O -23rd. The Vaccine congress attracted over 400 participants from across the world, including leading vaccine manufacturers, biotechs, governmental agencies, NGOs, research and academic institutes, venture capital and legal firms, contract service and equipment manufacturers. The speakers covered a wide range of topics, including the role of government and regulatory agencies, funding availability, research and development, manufacturing, packaging and post vaccine evaluations. Past vaccine development efforts have historically focused on infectious diseases. With advancements in the field of immunology, molecular biology and vaccinology, the vaccine field has begun moving in new directions. "Taking aim at novel vaccines market" session chaired by Dr. Una Ryan, Chief Executive Officer of Waltham Technologies, was focused on traditional approaches to novel targets (nosocomial infections), novel approaches to traditional targets (flu and rabies), novel approaches to novel targets (Type 1 diabetes, multiple sclerosis and smoking) and vaccines for developing markets (TB, malaria, rabies). The importance of collaborations among academic institutions, industries, and philanthropic foundations for developing markets was also emphasized.

  19. The Potential Role of Aerobic Exercise to Modulate Cardiotoxicity of Molecularly Targeted Cancer Therapeutics

    PubMed Central

    Lakoski, Susan; Mackey, John R.; Douglas, Pamela S.; Haykowsky, Mark J.; Jones, Lee W.

    2013-01-01

    Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies. PMID:23335619

  20. Automatic Focus Adjustment of a Microscope

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    AUTOFOCUS is a computer program for use in a control system that automatically adjusts the position of an instrument arm that carries a microscope equipped with an electronic camera. In the original intended application of AUTOFOCUS, the imaging microscope would be carried by an exploratory robotic vehicle on a remote planet, but AUTOFOCUS could also be adapted to similar applications on Earth. Initially control software other than AUTOFOCUS brings the microscope to a position above a target to be imaged. Then the instrument arm is moved to lower the microscope toward the target: nominally, the target is approached from a starting distance of 3 cm in 10 steps of 3 mm each. After each step, the image in the camera is subjected to a wavelet transform, which is used to evaluate the texture in the image at multiple scales to determine whether and by how much the microscope is approaching focus. A focus measure is derived from the transform and used to guide the arm to bring the microscope to the focal height. When the analysis reveals that the microscope is in focus, image data are recorded and transmitted.

  1. How facial attractiveness affects sustained attention.

    PubMed

    Li, Jie; Oksama, Lauri; Hyönä, Jukka

    2016-10-01

    The present study investigated whether and how facial attractiveness affects sustained attention. We adopted a multiple-identity tracking paradigm, using attractive and unattractive faces as stimuli. Participants were required to track moving target faces amid distractor faces and report the final location of each target. In Experiment 1, the attractive and unattractive faces differed in both the low-level properties (i.e., luminance, contrast, and color saturation) and high-level properties (i.e., physical beauty and age). The results showed that the attractiveness of both the target and distractor faces affected the tracking performance: The attractive target faces were tracked better than the unattractive target faces; when the targets and distractors were both unattractive male faces, the tracking performance was poorer than when they were of different attractiveness. In Experiment 2, the low-level properties of the facial images were equalized. The results showed that the attractive target faces were still tracked better than unattractive targets while the effects related to distractor attractiveness ceased to exist. Taken together, the results indicate that during attentional tracking the high-level properties related to the attractiveness of the target faces can be automatically processed, and then they can facilitate the sustained attention on the attractive targets, either with or without the supplement of low-level properties. On the other hand, only low-level properties of the distractor faces can be processed. When the distractors share similar low-level properties with the targets, they can be grouped together, so that it would be more difficult to sustain attention on the individual targets. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  2. Motion dazzle and camouflage as distinct anti-predator defenses.

    PubMed

    Stevens, Martin; Searle, W Tom L; Seymour, Jenny E; Marshall, Kate L A; Ruxton, Graeme D

    2011-11-25

    Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms. Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected. Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.

  3. Perceptual impressions of causality are affected by common fate.

    PubMed

    White, Peter A

    2017-03-24

    Many studies of perceptual impressions of causality have used a stimulus in which a moving object (the launcher) contacts a stationary object (the target) and the latter then moves off. Such stimuli give rise to an impression that the launcher makes the target move. In the present experiments, instead of a single target object, an array of four vertically aligned objects was used. The launcher contacted none of them, but stopped at a point between the two central objects. The four objects then moved with similar motion properties, exhibiting the Gestalt property of common fate. Strong impressions of causality were reported for this stimulus. It is argued that the array of four objects was perceived, by the likelihood principle, as a single object with some parts unseen, that the launcher was perceived as contacting one of the unseen parts of this object, and that the causal impression resulted from that. Supporting that argument, stimuli in which kinematic features were manipulated so as to weaken or eliminate common fate yielded weaker impressions of causality.

  4. Infrared moving small target detection based on saliency extraction and image sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomin; Ren, Kan; Gao, Jin; Li, Chaowei; Gu, Guohua; Wan, Minjie

    2016-10-01

    Moving small target detection in infrared image is a crucial technique of infrared search and tracking system. This paper present a novel small target detection technique based on frequency-domain saliency extraction and image sparse representation. First, we exploit the features of Fourier spectrum image and magnitude spectrum of Fourier transform to make a rough extract of saliency regions and use a threshold segmentation system to classify the regions which look salient from the background, which gives us a binary image as result. Second, a new patch-image model and over-complete dictionary were introduced to the detection system, then the infrared small target detection was converted into a problem solving and optimization process of patch-image information reconstruction based on sparse representation. More specifically, the test image and binary image can be decomposed into some image patches follow certain rules. We select the target potential area according to the binary patch-image which contains salient region information, then exploit the over-complete infrared small target dictionary to reconstruct the test image blocks which may contain targets. The coefficients of target image patch satisfy sparse features. Finally, for image sequence, Euclidean distance was used to reduce false alarm ratio and increase the detection accuracy of moving small targets in infrared images due to the target position correlation between frames.

  5. Target detection in insects: optical, neural and behavioral optimizations.

    PubMed

    Gonzalez-Bellido, Paloma T; Fabian, Samuel T; Nordström, Karin

    2016-12-01

    Motion vision provides important cues for many tasks. Flying insects, for example, may pursue small, fast moving targets for mating or feeding purposes, even when these are detected against self-generated optic flow. Since insects are small, with size-constrained eyes and brains, they have evolved to optimize their optical, neural and behavioral target visualization solutions. Indeed, even if evolutionarily distant insects display different pursuit strategies, target neuron physiology is strikingly similar. Furthermore, the coarse spatial resolution of the insect compound eye might actually be beneficial when it comes to detection of moving targets. In conclusion, tiny insects show higher than expected performance in target visualization tasks. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Exciting Directions in Glaucoma

    PubMed Central

    Rasmussen, Carol A; Kaufman, Paul L

    2014-01-01

    Glaucoma is a complex, life-long disease that requires an individualized, multifaceted approach to treatment. Most patients will be started on topical ocular hypotensive eyedrop therapy and over time, multiple classes of drugs will be needed to control their intraocular pressure (IOP). The search for drugs with novel mechanisms of action, to treat those who do not achieve adequate IOP control with, or become refractory to, current therapeutics, is ongoing, as is the search for more efficient, targeted drug delivery methods. Gene transfer and stem cell applications for glaucoma therapeutics are moving forward. Advances in imaging technologies improve our understanding of glaucoma pathophysiology and enable more refined patient evaluation and monitoring, improving patient outcomes. PMID:25433744

  7. The Movement of Teachers within Ontario School Boards

    ERIC Educational Resources Information Center

    Sibbald, Timothy

    2017-01-01

    This study examines teacher movement between secondary schools within the same school board using qualitative multiple case study. Interviews were conducted with each participant before moving, shortly after moving, and a period of time after moving schools. The coding of the interviews found evidence corroborating known themes of leadership,…

  8. Astrometric confirmation of young low-mass binaries and multiple systems in the Chamaeleon star-forming regions

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Schmidt, T. O. B.; Neuhäuser, R.; Bedalov, A.; Roell, T.; Seifahrt, A.; Mugrauer, M.

    2012-10-01

    Context. The star-forming regions in Chamaeleon (Cha) are one of the nearest (distance ~ 165 pc) and youngest (age ~ 2 Myr) conglomerates of recently formed stars and the ideal target for population studies of star formation. Aims: We investigate a total of 16 Cha targets that have been suggested, but not confirmed, to be binaries or multiple systems in previous literature. Methods: We used the adaptive optics instrument Naos-Conica (NACO) at the Very Large Telescope Unit Telescope (UT) 4 / YEPUN of the Paranal Observatory, at 2-5 different epochs, in order to obtain relative and absolute astrometric measurements, as well as differential photometry in the J, H, and K band. On the basis of known proper motions and these observations, we analyse the astrometric results in our proper motion diagram (PMD: angular separation / position angle versus time), to eliminate possible (non-moving) background stars, establish co-moving binaries and multiples, and search for curvature as indications for orbital motion. Results: All previously suggested close components are co-moving and no background stars are found. The angular separations range between 0.07 and 9 arcsec, corresponding to projected distances between the components of 6-845 AU. Thirteen stars are at least binaries and the remaining three (RX J0919.4-7738, RX J0952.7-7933, VW Cha) are confirmed high-order multiple systems with up to four components. In 13 cases, we found significant slopes in the PMDs, which are compatible with orbital motion whose periods (estimated from the observed gradients in the position angles) range from 60 to 550 years. However, in only four cases there are indications of a curved orbit, the ultimate proof of a gravitational bond. Conclusions: A statistical study based on the 2MASS catalogue confirms the high probability of all 16 stellar systems being gravitationally bound. Most of the secondary components are well above the mass limit of hydrogen burning stars (0.08 M⊙), and have masses twice as high as this value or more. Massive primary components appear to avoid the simultaneous formation of equal-mass secondary components, while extremely low-mass secondary components are hard to find for both high and low mass primaries owing to the much higher dynamic range and the faintness of the secondaries. Based on observations made with ESO telescopes at the Paranal Observatory under program IDs 076.C-0292(A), 078.C-0535(A), 080.C-0424(A), 082.C-0489(A), 084.C-0364(B), 086.C-0638(A) & 086.C-0600(B), the Hubble Space Telescope under program ID GO-8716 and data obtained from the ESO/ST-ECF Science Archive Facility from the Paranal Observatory under program IDs 075.C-0042(A), 076.C-0579(A), 278.C-5070(A) and from the Hubble Space Telescope under programme IDs SNAP-7387, GO-11164. Appendix A is available in electronic form at http://www.aanda.org

  9. Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking

    PubMed Central

    Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang

    2016-01-01

    Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875

  10. A Unique Role for Endothelial Cell Kinesin Light Chain 1, Variant 1 in Leukocyte Transendothelial Migration

    PubMed Central

    Cyrus, Bita F.; Muller, William A.

    2017-01-01

    A reservoir of parajunctional membrane in endothelial cells, the lateral border recycling compartment (LBRC), is critical for transendothelial migration (TEM). We have previously shown that targeted recycling of the LBRC to the site of TEM requires microtubules and a kinesin molecular motor. However, the identity of the kinesin and mechanism of cargo binding were not known. We show that microinjection of endothelial cells with a monoclonal antibody specific for kinesin-1 significantly blocked LBRC-targeted recycling and TEM. In complementary experiments, knocking down KIF5B, a ubiquitous kinesin-1 isoform, in endothelial cells significantly decreased targeted recycling of the LBRC and leukocyte TEM. Kinesin heavy chains move cargo along microtubules by one of many kinesin light chains (KLCs), which directly bind the cargo. Knocking down KLC 1 isoform variant 1 (KLC1C) significantly decreased LBRC-targeted recycling and TEM, whereas knocking down other isoforms of KLC1 had no effect. Re-expression of KLC1C resistant to the knockdown shRNA restored targeted recycling and TEM. Thus kinesin-1 and KLC1C are specifically required for targeted recycling and TEM. These data suggest that of the many potential combinations of the 45 kinesin family members and multiple associated light chains, KLC1C links the LBRC to kinesin-1 (KIF5B) during targeted recycling and TEM. Thus, KLC1C can potentially be used as a target for anti-inflammatory therapy. PMID:26994343

  11. Normalization of neuronal responses in cortical area MT across signal strengths and motion directions

    PubMed Central

    Xiao, Jianbo; Niu, Yu-Qiong; Wiesner, Steven

    2014-01-01

    Multiple visual stimuli are common in natural scenes, yet it remains unclear how multiple stimuli interact to influence neuronal responses. We investigated this question by manipulating relative signal strengths of two stimuli moving simultaneously within the receptive fields (RFs) of neurons in the extrastriate middle temporal (MT) cortex. Visual stimuli were overlapping random-dot patterns moving in two directions separated by 90°. We first varied the motion coherence of each random-dot pattern and characterized, across the direction tuning curve, the relationship between neuronal responses elicited by bidirectional stimuli and by the constituent motion components. The tuning curve for bidirectional stimuli showed response normalization and can be accounted for by a weighted sum of the responses to the motion components. Allowing nonlinear, multiplicative interaction between the two component responses significantly improved the data fit for some neurons, and the interaction mainly had a suppressive effect on the neuronal response. The weighting of the component responses was not fixed but dependent on relative signal strengths. When two stimulus components moved at different coherence levels, the response weight for the higher-coherence component was significantly greater than that for the lower-coherence component. We also varied relative luminance levels of two coherently moving stimuli and found that MT response weight for the higher-luminance component was also greater. These results suggest that competition between multiple stimuli within a neuron's RF depends on relative signal strengths of the stimuli and that multiplicative nonlinearity may play an important role in shaping the response tuning for multiple stimuli. PMID:24899674

  12. Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search.

    PubMed

    Liu, Meiqin; Zhang, Duo; Zhang, Senlin; Zhang, Qunfei

    2017-12-04

    Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme.

  13. Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search

    PubMed Central

    Zhang, Senlin; Zhang, Qunfei

    2017-01-01

    Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme. PMID:29207541

  14. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images

    PubMed Central

    Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600

  15. Interference Effects of Radiation Emitted from Nuclear Excitons

    NASA Astrophysics Data System (ADS)

    Potzel, W.; van Bürck, U.; Schindelmann, P.; Hagn, H.; Smirnov, G. V.; Popov, S. L.; Gerdau, E.; Shvyd'Ko, Yu. V.; Jäschke, J.; Rüter, H. D.; Chumakov, A. I.; Rüffer, R.

    2003-12-01

    Interference effects in nuclear forward scattering of synchrotron radiation (NFSSR) from two spatially separated stainless-steel foils A and B mounted downstream behind each other have been investigated. Target A can be sinusoidally vibrated by high-frequency (MHz) ultrasound (US), target B is moved at a constant Doppler velocity which is large compared to the natural width of the nuclear transition. Due to this large Doppler shift radiative coupling between both targets is disrupted and the nuclear excitons in A and B develop independently in space and time after the SR pulse. As a consequence, the emission from the whole system (A&B) is dominated by the interference of the emissions from A and B. The application of US to target A is a powerful method to change the relative phasing of the emissions and thus to investigate interference effects originating from the two nuclear excitons in detail. Four distinct cases were studied: (a) If target A is kept stationary and only B is moved at large constant velocity v, the interference pattern exhibits a Quantum Beat (QB) whose period is determined by v. (b) If, in addition, target A is sinusoidally vibrated in a piston-like motion by US and the initial US phase Φ0 is locked to the SR pulse, the QB is frequency modulated by the US. The variation of the QB frequency increases with the US modulation index m. (c) In the case that Φ0 is not synchronized to the SR pulse (phase averaging over Φ0) drastic changes of the amplitude and phase reversals of the QB pattern occur in the time regions around odd multiples of half of the US period. (d) If Φ0 is not synchronized to the SR pulse and the US motion is no longer pistonlike, the NFSSR intensity has to be averaged over both Φ0 and m (amplitude) of the US motion. Surprisingly the QB interference pattern does not vanish completely but a short QB signal remains at times of the full US period even at high values of m. All NFSSR patterns investigated are interpreted and quantitatively described by the dynamical theory.

  16. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  17. Student-Centered Coaching: The Moves

    ERIC Educational Resources Information Center

    Sweeney, Diane; Harris, Leanna S.

    2017-01-01

    Student-centered coaching is a highly-effective, evidence-based coaching model that shifts the focus from "fixing" teachers to collaborating with them to design instruction that targets student outcomes. But what does this look like in practice? "Student-Centered Coaching: The Moves" shows you the day-to-day coaching moves that…

  18. Aerial hawking and landing: approach behaviour in Natterer's bats, Myotis nattereri (Kuhl 1818).

    PubMed

    Melcón, Mariana L; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2007-12-01

    We compared the flight and echolocation behaviour of a vespertilionid bat (Myotis nattereri) approaching a large stationary or a small moving target. Bats were trained to either land on a landing grid or to catch a moving tethered mealworm. When closing in on these two targets, the bats emitted groups of sounds with increasing number of signals and decreasing pulse interval and duration. When pursuing the mealworm, the approach phase always ended with a terminal group consisting of buzz I and buzz II. When landing, the bats emitted either a terminal group consisting of buzz I alone, with one or two extra pulses, or a group consisting of buzz I and buzz II. In all situations, buzz I ended on average between 47-63 ms prior to contact with the target of interest, which is approximately the reaction time of bats. Therefore, the information collected in buzz II does not guide the bats to the target. The relevant part of the approach phase to reach the target ends with buzz I. The basic sound pattern of this part is rather similar and independent of whether the bats approach the large stationary or the small moving target.

  19. Space moving target detection and tracking method in complex background

    NASA Astrophysics Data System (ADS)

    Lv, Ping-Yue; Sun, Sheng-Li; Lin, Chang-Qing; Liu, Gao-Rui

    2018-06-01

    The background of the space-borne detectors in real space-based environment is extremely complex and the signal-to-clutter ratio is very low (SCR ≈ 1), which increases the difficulty for detecting space moving targets. In order to solve this problem, an algorithm combining background suppression processing based on two-dimensional least mean square filter (TDLMS) and target enhancement based on neighborhood gray-scale difference (GSD) is proposed in this paper. The latter can filter out most of the residual background clutter processed by the former such as cloud edge. Through this procedure, both global and local SCR have obtained substantial improvement, indicating that the target has been greatly enhanced. After removing the detector's inherent clutter region through connected domain processing, the image only contains the target point and the isolated noise, in which the isolated noise could be filtered out effectively through multi-frame association. The proposed algorithm in this paper has been compared with some state-of-the-art algorithms for moving target detection and tracking tasks. The experimental results show that the performance of this algorithm is the best in terms of SCR gain, background suppression factor (BSF) and detection results.

  20. Target size matters: target errors contribute to the generalization of implicit visuomotor learning.

    PubMed

    Reichenthal, Maayan; Avraham, Guy; Karniel, Amir; Shmuelof, Lior

    2016-08-01

    The process of sensorimotor adaptation is considered to be driven by errors. While sensory prediction errors, defined as the difference between the planned and the actual movement of the cursor, drive implicit learning processes, target errors (e.g., the distance of the cursor from the target) are thought to drive explicit learning mechanisms. This distinction was mainly studied in the context of arm reaching tasks where the position and the size of the target were constant. We hypothesize that in a dynamic reaching environment, where subjects have to hit moving targets and the targets' dynamic characteristics affect task success, implicit processes will benefit from target errors as well. We examine the effect of target errors on learning of an unnoticed perturbation during unconstrained reaching movements. Subjects played a Pong game, in which they had to hit a moving ball by moving a paddle controlled by their hand. During the game, the movement of the paddle was gradually rotated with respect to the hand, reaching a final rotation of 25°. Subjects were assigned to one of two groups: The high-target error group played the Pong with a small ball, and the low-target error group played with a big ball. Before and after the Pong game, subjects performed open-loop reaching movements toward static targets with no visual feedback. While both groups adapted to the rotation, the postrotation reaching movements were directionally biased only in the small-ball group. This result provides evidence that implicit adaptation is sensitive to target errors. Copyright © 2016 the American Physiological Society.

  1. A Production System Model of Capturing Reactive Moving Targets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jagacinski, R. J.; Plamondon, B. D.; Miller, R. A.

    1984-01-01

    Subjects manipulated a control stick to position a cursor over a moving target that reacted with a computer-generated escape strategy. The cursor movements were described at two levels of abstraction. At the upper level, a production system described transitions among four modes of activity; rapid acquisition, close following, a predictive mode, and herding. Within each mode, differential equations described trajectory-generating mechanisms. A simulation of this two-level model captures the targets in a manner resembling the episodic time histories of human subjects.

  2. Dynamic mask for producing uniform or graded-thickness thin films

    DOEpatents

    Folta, James A [Livermore, CA

    2006-06-13

    A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes. The motion of the mask can be linear or rotational, and the mask can be moved to make single or multiple passes in front of the substrate per layer, and can pass completely or partially across the substrate.

  3. Low Mass Members in Nearby Young Moving Groups Revealed

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua; Simon, Michal; Rice, Emily; Lepine, Sebastien

    2010-08-01

    We are now ready to expand our program that identifies highly probable low-mass members of the nearby young moving groups (NYMGs) to stars of mass ~ 0.1 Msun. This is important 1) To provide high priority targets for exoplanet searches by direct imaging, 2) To complete the census of the membership in the NYMGs, and 3) To provide a well-characterized sample of nearby young stars for detailed study of their physical properties and multiplicity (the median distances of the (beta) Pic and AB Dor groups are ~ 35 pc with ages ~ 12 and 50 Myr respectively). Our proven technique starts with a proper motion selection algorithm, proceeds to vet the sample for indicators of youth, and requires as its last step the measurement of candidate member radial velocities (RVs). So far, we have obtained all RV measurements with the high resolution IR spectrometer at the NASA-IRTF and have reached the limits of its applicability. To identify probable new members in the south, and also those of the lowest mass, we need the sensitivity of PHOENIX at Gemini-S and NIRSPEC at Keck-II.

  4. Long-term Blood Pressure Measurement in Freely Moving Mice Using Telemetry.

    PubMed

    Alam, Mohammad Afaque; Parks, Cory; Mancarella, Salvatore

    2016-05-17

    During the development of new vasoactive agents, arterial blood pressure monitoring is crucial for evaluating the efficacy of the new proposed drugs. Indeed, research focusing on the discovery of new potential therapeutic targets using genetically altered mice requires a reliable, long-term assessment of the systemic arterial pressure variation. Currently, the gold standard for obtaining long-term measurements of blood pressure in ambulatory mice uses implantable radio-transmitters, which require artery cannulation. This technique eliminates the need for tethering, restraining, or anesthetizing the animals which introduce stress and artifacts during data sampling. However, arterial blood pressure monitoring in mice via catheterization can be rather challenging due to the small size of the arteries. Here we present a step-by-step guide to illustrate the crucial key passages for a successful subcutaneous implantation of radio-transmitters and carotid artery cannulation in mice. We also include examples of long-term blood pressure activity taken from freely moving mice after a period of post-surgery recovery. Following this procedure will allow reliable direct blood pressure recordings from multiple animals simultaneously.

  5. Characterization of Hypervelocity Metal Fragments for Explosive Initiation

    NASA Astrophysics Data System (ADS)

    Yeager, John; Bowden, Patrick; Guildenbecher, Daniel; Olles, Joseph

    2017-06-01

    The off-normal detonation behavior of two plastic-bonded explosive (PBX) formulations was studied using explosively-driven aluminum fragments moving at hypersonic velocity. Witness plate materials, including copper and polycarbonate, were used to characterize the distribution of particles, finding that the aluminum did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Digital holography experiments were conducted to measure three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 microns and traveled between 2 and 3.5 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. Lower density PBX 9407 (RDX-based) was initiable at up to 4.5 inches, while higher density PBX 9501 (HMX-based) was only initiable at up to 0.25 inches. This type of data is critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.

  6. Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson's disease: effects of moving targets.

    PubMed

    Wang, Ching-Yi; Hwang, Wen-Juh; Fang, Jing-Jing; Sheu, Ching-Fan; Leong, Iat-Fai; Ma, Hui-Ing

    2011-08-01

    To compare the performance of reaching for stationary and moving targets in virtual reality (VR) and physical reality in persons with Parkinson's disease (PD). A repeated-measures design in which all participants reached in physical reality and VR under 5 conditions: 1 stationary ball condition and 4 conditions with the ball moving at different speeds. University research laboratory. Persons with idiopathic PD (n=29) and age-matched controls (n=25). Not applicable. Success rates and kinematics of arm movement (movement time, amplitude of peak velocity, and percentage of movement time for acceleration phase). In both VR and physical reality, the PD group had longer movement time (P<.001) and lower peak velocity (P<.001) than the controls when reaching for stationary balls. When moving targets were provided, the PD group improved more than the controls did in movement time (P<.001) and peak velocity (P<.001), and reached a performance level similar to that of the controls. Except for the fastest moving ball condition (0.5-s target viewing time), which elicited worse performance in VR than in physical reality, most cueing conditions in VR elicited performance generally similar to those in physical reality. Although slower than the controls when reaching for stationary balls, persons with PD increased movement speed in response to fast moving balls in both VR and physical reality. This suggests that with an appropriate choice of cueing speed, VR is a promising tool for providing visual motion stimuli to improve movement speed in persons with PD. More research on the long-term effect of this type of VR training program is needed. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Advances in Doppler recognition for ground moving target indication

    NASA Astrophysics Data System (ADS)

    Kealey, Paul G.; Jahangir, Mohammed

    2006-05-01

    Ground Moving Target Indication (GMTI) radar provides a day/night, all-weather, wide-area surveillance capability to detect moving vehicles and personnel. Current GMTI radar sensors are limited to only detecting and tracking targets. The exploitation of GMTI data would be greatly enhanced by a capability to recognize accurately the detections as significant classes of target. Doppler classification exploits the differential internal motion of targets, e.g. due to the tracks, limbs and rotors. Recently, the QinetiQ Bayesian Doppler classifier has been extended to include a helicopter class in addition to wheeled, tracked and personnel classes. This paper presents the performance for these four classes using a traditional low-resolution GMTI surveillance waveform with an experimental radar system. We have determined the utility of an "unknown output decision" for enhancing the accuracy of the declared target classes. A confidence method has been derived, using a threshold of the difference in certainties, to assign uncertain classifications into an "unknown class". The trade-off between fraction of targets declared and accuracy of the classifier has been measured. To determine the operating envelope of a Doppler classification algorithm requires a detailed understanding of the Signal-to-Noise Ratio (SNR) performance of the algorithm. In this study the SNR dependence of the QinetiQ classifier has been determined.

  8. Respiration-rate estimation of a moving target using impulse-based ultra wideband radars.

    PubMed

    Sharafi, Azadeh; Baboli, Mehran; Eshghi, Mohammad; Ahmadian, Alireza

    2012-03-01

    Recently, Ultra-wide band signals have become attractive for their particular advantage of having high spatial resolution and good penetration ability which makes them suitable in medical applications. One of these applications is wireless detection of heart rate and respiration rate. Two hypothesis of static environment and fixed patient are considered in the method presented in previous literatures which are not valid for long term monitoring of ambulant patients. In this article, a new method to detect the respiration rate of a moving target is presented. The first algorithm is applied to the simulated and experimental data for detecting respiration rate of a fixed target. Then, the second algorithm is developed to detect respiration rate of a moving target. The proposed algorithm uses correlation for body movement cancellation, and then detects the respiration rate based on energy in frequency domain. The results of algorithm prove an accuracy of 98.4 and 97% in simulated and experimental data, respectively.

  9. A direct imaging search for close stellar and sub-stellar companions to young nearby stars

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Mugrauer, M.; Neuhäuser, R.; Schmidt, T. O. B.; Contreras-Quijada, A.; Schmidt, J. G.

    2015-01-01

    A total of 28 young nearby stars (ages {≤ 60} Myr) have been observed in the K_s-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed. Based on observations made with ESO telescopes at Paranal Observatory under programme IDs 083.C-0150(B), 084.C-0364(A), 084.C-0364(B), 084.C-0364(C), 086.C-0600(A) and 086.C-0600(B).

  10. Carbon-ion scanning lung treatment planning with respiratory-gated phase-controlled rescanning: simulation study using 4-dimensional CT data.

    PubMed

    Takahashi, Wataru; Mori, Shinichiro; Nakajima, Mio; Yamamoto, Naoyoshi; Inaniwa, Taku; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji; Nakagawa, Keiichi; Kamada, Tadashi

    2014-11-11

    To moving lung tumors, we applied a respiratory-gated strategy to carbon-ion pencil beam scanning with multiple phase-controlled rescanning (PCR). In this simulation study, we quantitatively evaluated dose distributions based on 4-dimensional CT (4DCT) treatment planning. Volumetric 4DCTs were acquired for 14 patients with lung tumors. Gross tumor volume, clinical target volume (CTV) and organs at risk (OARs) were delineated. Field-specific target volumes (FTVs) were calculated, and 48Gy(RBE) in a single fraction was prescribed to the FTVs delivered from four beam angles. The dose assessment metrics were quantified by changing the number of PCR and the results for the ungated and gated scenarios were then compared. For the ungated strategy, the mean dose delivered to 95% of the volume of the CTV (CTV-D95) was in average 45.3 ± 0.9 Gy(RBE) even with a single rescanning (1 × PCR). Using 4 × PCR or more achieved adequate target coverage (CTV-D95 = 46.6 ± 0.3 Gy(RBE) for ungated 4 × PCR) and excellent dose homogeneity (homogeneity index =1.0 ± 0.2% for ungated 4 × PCR). Applying respiratory gating, percentage of lung receiving at least 20 Gy(RBE) (lung-V20) and heart maximal dose, averaged over all patients, significantly decreased by 12% (p < 0.05) and 13% (p < 0.05), respectively. Four or more PCR during PBS-CIRT improved dose conformation to moving lung tumors without gating. The use of a respiratory-gated strategy in combination with PCR reduced excessive doses to OARs.

  11. Feasibility of Multiplane-Transmit Beamforming for Real-Time Volumetric Cardiac Imaging: A Simulation Study.

    PubMed

    Chen, Yinran; Tong, Ling; Ortega, Alejandra; Luo, Jianwen; D'hooge, Jan

    2017-04-01

    Today's 3-D cardiac ultrasound imaging systems suffer from relatively low spatial and temporal resolution, limiting their applicability in daily clinical practice. To address this problem, 3-D diverging wave imaging with spatial coherent compounding (DWC) as well as 3-D multiline-transmit (MLT) imaging have recently been proposed. Currently, the former improves the temporal resolution significantly at the expense of image quality and the risk of introducing motion artifacts, whereas the latter only provides a moderate gain in volume rate but mostly preserves quality. In this paper, a new technique for real-time volumetric cardiac imaging is proposed by combining the strengths of both approaches. Hereto, multiple planar (i.e., 2-D) diverging waves are simultaneously transmitted in order to scan the 3-D volume, i.e., multiplane transmit (MPT) beamforming. The performance of a 3MPT imaging system was contrasted to that of a 3-D DWC system and that of a 3-D MLT system by computer simulations during both static and moving conditions of the target structures while operating at similar volume rate. It was demonstrated that for stationary targets, the 3MPT imaging system was competitive with both the 3-D DWC and 3-D MLT systems in terms of spatial resolution and sidelobe levels (i.e., image quality). However, for moving targets, the image quality quickly deteriorated for the 3-D DWC systems while it remained stable for the 3MPT system while operating at twice the volume rate of the 3-D-MLT system. The proposed MPT beamforming approach was thus demonstrated to be feasible and competitive to state-of-the-art methodologies.

  12. A principal components analysis of dynamic spatial memory biases.

    PubMed

    Motes, Michael A; Hubbard, Timothy L; Courtney, Jon R; Rypma, Bart

    2008-09-01

    Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed targets that moved horizontally from left to right before disappearing or viewed briefly shown stationary targets. After a target disappeared, observers indicated the vanishing position of the target. Principal components analysis revealed that biases along the horizontal axis of motion loaded on separate components from biases along the vertical axis orthogonal to motion. The findings support the hypothesis that implied momentum and implied gravity biases have unique influences on spatial memory. (c) 2008 APA, all rights reserved.

  13. Detecting Moving Targets by Use of Soliton Resonances

    NASA Technical Reports Server (NTRS)

    Zak, Michael; Kulikov, Igor

    2003-01-01

    A proposed method of detecting moving targets in scenes that include cluttered or noisy backgrounds is based on a soliton-resonance mathematical model. The model is derived from asymptotic solutions of the cubic Schroedinger equation for a one-dimensional system excited by a position-and-time-dependent externally applied potential. The cubic Schroedinger equation has general significance for time-dependent dispersive waves. It has been used to approximate several phenomena in classical as well as quantum physics, including modulated beams in nonlinear optics, and superfluids (in particular, Bose-Einstein condensates). In the proposed method, one would take advantage of resonant interactions between (1) a soliton excited by the position-and-time-dependent potential associated with a moving target and (2) eigen-solitons, which represent dispersive waves and are solutions of the cubic Schroedinger equation for a time-independent potential.

  14. Online compensation for target motion with scanned particle beams: simulation environment.

    PubMed

    Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard

    2004-07-21

    Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.

  15. Optic probe for multiple angle image capture and optional stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2016-11-29

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  16. Sit less and move more: perspectives of adults with multiple sclerosis.

    PubMed

    Aminian, Saeideh; Ezeugwu, Victor E; Motl, Robert W; Manns, Patricia J

    2017-12-20

    Multiple sclerosis is a chronic neurological disease with the highest prevalence in Canada. Replacing sedentary behavior with light activities may be a feasible approach to manage multiple sclerosis symptoms. This study explored the perspectives of adults with multiple sclerosis about sedentary behavior, physical activity and ways to change behavior. Fifteen adults with multiple sclerosis (age 43 ± 13 years; mean ± standard deviation), recruited through the multiple sclerosis Clinic at the University of Alberta, Edmonton, Canada, participated in semi-structured interviews. Interview audios were transcribed verbatim and coded. NVivo software was used to facilitate the inductive process of thematic analysis. Balancing competing priorities between sitting and moving was the primary theme. Participants were aware of the benefits of physical activity to their overall health, and in the management of fatigue and muscle stiffness. Due to fatigue, they often chose sitting to get their energy back. Further, some barriers included perceived fear of losing balance or embarrassment while walking. Activity monitoring, accountability, educational and individualized programs were suggested strategies to motivate more movement. Adults with multiple sclerosis were open to the idea of replacing sitting with light activities. Motivational and educational programs are required to help them to change sedentary behavior to moving more. IMPLICATIONS FOR REHABILITATION One of the most challenging and common difficulties of multiple sclerosis is walking impairment that worsens because of multiple sclerosis progression, and is a common goal in the rehabilitation of people with multiple sclerosis. The deterioration in walking abilities is related to lower levels of physical activity and more sedentary behavior, such that adults with multiple sclerosis spend 8 to 10.5 h per day sitting. Replacing prolonged sedentary behavior with light physical activities, and incorporating education, encouragement, and self-monitoring strategies are feasible approaches to manage the symptoms of multiple sclerosis.

  17. Temporal Characteristics of Radiologists' and Novices' Lesion Detection in Viewing Medical Images Presented Rapidly and Sequentially.

    PubMed

    Nakashima, Ryoichi; Komori, Yuya; Maeda, Eriko; Yoshikawa, Takeharu; Yokosawa, Kazuhiko

    2016-01-01

    Although viewing multiple stacks of medical images presented on a display is a relatively new but useful medical task, little is known about this task. Particularly, it is unclear how radiologists search for lesions in this type of image reading. When viewing cluttered and dynamic displays, continuous motion itself does not capture attention. Thus, it is effective for the target detection that observers' attention is captured by the onset signal of a suddenly appearing target among the continuously moving distractors (i.e., a passive viewing strategy). This can be applied to stack viewing tasks, because lesions often show up as transient signals in medical images which are sequentially presented simulating a dynamic and smoothly transforming image progression of organs. However, it is unclear whether observers can detect a target when the target appears at the beginning of a sequential presentation where the global apparent motion onset signal (i.e., signal of the initiation of the apparent motion by sequential presentation) occurs. We investigated the ability of radiologists to detect lesions during such tasks by comparing the performances of radiologists and novices. Results show that overall performance of radiologists is better than novices. Furthermore, the temporal locations of lesions in CT image sequences, i.e., when a lesion appears in an image sequence, does not affect the performance of radiologists, whereas it does affect the performance of novices. Results indicate that novices have greater difficulty in detecting a lesion appearing early than late in the image sequence. We suggest that radiologists have other mechanisms to detect lesions in medical images with little attention which novices do not have. This ability is critically important when viewing rapid sequential presentations of multiple CT images, such as stack viewing tasks.

  18. Temporal Characteristics of Radiologists' and Novices' Lesion Detection in Viewing Medical Images Presented Rapidly and Sequentially

    PubMed Central

    Nakashima, Ryoichi; Komori, Yuya; Maeda, Eriko; Yoshikawa, Takeharu; Yokosawa, Kazuhiko

    2016-01-01

    Although viewing multiple stacks of medical images presented on a display is a relatively new but useful medical task, little is known about this task. Particularly, it is unclear how radiologists search for lesions in this type of image reading. When viewing cluttered and dynamic displays, continuous motion itself does not capture attention. Thus, it is effective for the target detection that observers' attention is captured by the onset signal of a suddenly appearing target among the continuously moving distractors (i.e., a passive viewing strategy). This can be applied to stack viewing tasks, because lesions often show up as transient signals in medical images which are sequentially presented simulating a dynamic and smoothly transforming image progression of organs. However, it is unclear whether observers can detect a target when the target appears at the beginning of a sequential presentation where the global apparent motion onset signal (i.e., signal of the initiation of the apparent motion by sequential presentation) occurs. We investigated the ability of radiologists to detect lesions during such tasks by comparing the performances of radiologists and novices. Results show that overall performance of radiologists is better than novices. Furthermore, the temporal locations of lesions in CT image sequences, i.e., when a lesion appears in an image sequence, does not affect the performance of radiologists, whereas it does affect the performance of novices. Results indicate that novices have greater difficulty in detecting a lesion appearing early than late in the image sequence. We suggest that radiologists have other mechanisms to detect lesions in medical images with little attention which novices do not have. This ability is critically important when viewing rapid sequential presentations of multiple CT images, such as stack viewing tasks. PMID:27774080

  19. LROC Stereo Observations

    NASA Astrophysics Data System (ADS)

    Beyer, Ross A.; Archinal, B.; Li, R.; Mattson, S.; Moratto, Z.; McEwen, A.; Oberst, J.; Robinson, M.

    2009-09-01

    The Lunar Reconnaissance Orbiter Camera (LROC) will obtain two types of multiple overlapping coverage to derive terrain models of the lunar surface. LROC has two Narrow Angle Cameras (NACs), working jointly to provide a wider (in the cross-track direction) field of view, as well as a Wide Angle Camera (WAC). LRO's orbit precesses, and the same target can be viewed at different solar azimuth and incidence angles providing the opportunity to acquire `photometric stereo' in addition to traditional `geometric stereo' data. Geometric stereo refers to images acquired by LROC with two observations at different times. They must have different emission angles to provide a stereo convergence angle such that the resultant images have enough parallax for a reasonable stereo solution. The lighting at the target must not be radically different. If shadows move substantially between observations, it is very difficult to correlate the images. The majority of NAC geometric stereo will be acquired with one nadir and one off-pointed image (20 degree roll). Alternatively, pairs can be obtained with two spacecraft rolls (one to the left and one to the right) providing a stereo convergence angle up to 40 degrees. Overlapping WAC images from adjacent orbits can be used to generate topography of near-global coverage at kilometer-scale effective spatial resolution. Photometric stereo refers to multiple-look observations of the same target under different lighting conditions. LROC will acquire at least three (ideally five) observations of a target. These observations should have near identical emission angles, but with varying solar azimuth and incidence angles. These types of images can be processed via various methods to derive single pixel resolution topography and surface albedo. The LROC team will produce some topographic models, but stereo data collection is focused on acquiring the highest quality data so that such models can be generated later.

  20. Familiar trajectories facilitate the interpretation of physical forces when intercepting a moving target.

    PubMed

    Mijatović, Antonija; La Scaleia, Barbara; Mercuri, Nicola; Lacquaniti, Francesco; Zago, Myrka

    2014-12-01

    Familiarity with the visual environment affects our expectations about the objects in a scene, aiding in recognition and interaction. Here we tested whether the familiarity with the specific trajectory followed by a moving target facilitates the interpretation of the effects of underlying physical forces. Participants intercepted a target sliding down either an inclined plane or a tautochrone. Gravity accelerated the target by the same amount in both cases, but the inclined plane represented a familiar trajectory whereas the tautochrone was unfamiliar to the participants. In separate sessions, the gravity field was consistent with either natural gravity or artificial reversed gravity. Target motion was occluded from view over the last segment. We found that the responses in the session with unnatural forces were systematically delayed relative to those with natural forces, but only for the inclined plane. The time shift is consistent with a bias for natural gravity, in so far as it reflects an a priori expectation that a target not affected by natural forces will arrive later than one accelerated downwards by gravity. Instead, we did not find any significant time shift with unnatural forces in the case of the tautochrone. We argue that interception of a moving target relies on the integration of the high-level cue of trajectory familiarity with low-level cues related to target kinematics.

  1. An analysis of shoot and scoot tactics

    DTIC Science & Technology

    2017-03-01

    firing multiple shots in the same location is preferable to moving immediately after firing one shot . Moving frequently reduces risk to artillery, but...preferable to moving immediately after firing one shot . Moving frequently reduces risk to artillery, but limits the artillery’s ability to inflict damage... study here. Thanks to his mistake (it might not be), I have completed a very tough matrix of 71 credits (56 grad level credits) in only one year. I

  2. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.

    PubMed

    Kimmig, H; Ohlendorf, S; Speck, O; Sprenger, A; Rutschmann, R M; Haller, S; Greenlee, M W

    2008-01-01

    Smooth pursuit eye movements (SP) are driven by moving objects. The pursuit system processes the visual input signals and transforms this information into an oculomotor output signal. Despite the object's movement on the retina and the eyes' movement in the head, we are able to locate the object in space implying coordinate transformations from retinal to head and space coordinates. To test for the visual and oculomotor components of SP and the possible transformation sites, we investigated three experimental conditions: (I) fixation of a stationary target with a second target moving across the retina (visual), (II) pursuit of the moving target with the second target moving in phase (oculomotor), (III) pursuit of the moving target with the second target remaining stationary (visuo-oculomotor). Precise eye movement data were simultaneously measured with the fMRI data. Visual components of activation during SP were located in the motion-sensitive, temporo-parieto-occipital region MT+ and the right posterior parietal cortex (PPC). Motor components comprised more widespread activation in these regions and additional activations in the frontal and supplementary eye fields (FEF, SEF), the cingulate gyrus and precuneus. The combined visuo-oculomotor stimulus revealed additional activation in the putamen. Possible transformation sites were found in MT+ and PPC. The MT+ activation evoked by the motion of a single visual dot was very localized, while the activation of the same single dot motion driving the eye was rather extended across MT+. The eye movement information appeared to be dispersed across the visual map of MT+. This could be interpreted as a transfer of the one-dimensional eye movement information into the two-dimensional visual map. Potentially, the dispersed information could be used to remap MT+ to space coordinates rather than retinal coordinates and to provide the basis for a motor output control. A similar interpretation holds for our results in the PPC region.

  3. Application of Hybrid Along-Track Interferometry/Displaced Phase Center Antenna Method for Moving Human Target Detection in Forest Environments

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced

  4. Hybrid Co-Evolutionary Motion Planning via Visibility-Based Repair

    NASA Technical Reports Server (NTRS)

    Dozier, Gerry; McCullough, Shaun; Brown, Edward, Jr.; Homaifar, Abdollah; Bikdash, Mar-wan

    1997-01-01

    This paper introduces a hybrid co-evolutionary system for global motion planning within unstructured environments. This system combines the concept of co-evolutionary search along with a concept that we refer to as the visibility-based repair to form a hybrid which quickly transforms infeasible motions into feasible ones. Also, this system makes use of a novel representation scheme for the obstacles within an environment. Our hybrid evolutionary system differs from other evolutionary motion planners in that (1) more emphasis is placed on repairing infeasible motions to develop feasible motions rather than using simulated evolution exclusively as a means of discovering feasible motions, (2) a continuous map of the environment is used rather than a discretized map, and (3) it develops global motion plans for multiple mobile destinations by co-evolving populations of sub-global motion plans. In this paper, we demonstrate the effectiveness of this system by using it to solve two challenging motion planning problems where multiple targets try to move away from a point robot.

  5. Moving Beyond Maximum Tolerated Dose for Targeted Oncology Drugs: Use of Clinical Utility Index to Optimize Venetoclax Dosage in Multiple Myeloma Patients.

    PubMed

    Freise, K J; Jones, A K; Verdugo, M E; Menon, R M; Maciag, P C; Salem, A H

    2017-12-01

    Exposure-response analyses of venetoclax in combination with bortezomib and dexamethasone in previously treated patients with multiple myeloma (MM) were performed on a phase Ib venetoclax dose-ranging study. Logistic regression models were utilized to determine relationships, identify subpopulations with different responses, and optimize the venetoclax dosage that balanced both efficacy and safety. Bortezomib refractory status and number of prior treatments were identified to impact the efficacy response to venetoclax treatment. Higher venetoclax exposures were estimated to increase the probability of achieving a very good partial response (VGPR) or better through venetoclax doses of 1,200 mg. However, the probability of neutropenia (grade ≥3) was estimated to increase at doses >800 mg. Using a clinical utility index, a venetoclax dosage of 800 mg daily was selected to optimally balance the VGPR or better rates and neutropenia rates in MM patients administered 1-3 prior lines of therapy and nonrefractory to bortezomib. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  6. A Balanced Mixture of Antagonistic Pressures Promotes the Evolution of Parallel Movement

    NASA Astrophysics Data System (ADS)

    Demšar, Jure; Štrumbelj, Erik; Lebar Bajec, Iztok

    2016-12-01

    A common hypothesis about the origins of collective behaviour suggests that animals might live and move in groups to increase their chances of surviving predator attacks. This hypothesis is supported by several studies that use computational models to simulate natural evolution. These studies, however, either tune an ad-hoc model to ‘reproduce’ collective behaviour, or concentrate on a single type of predation pressure, or infer the emergence of collective behaviour from an increase in prey density. In nature, prey are often targeted by multiple predator species simultaneously and this might have played a pivotal role in the evolution of collective behaviour. We expand on previous research by using an evolutionary rule-based system to simulate the evolution of prey behaviour when prey are subject to multiple simultaneous predation pressures. We analyse the evolved behaviour via prey density, polarization, and angular momentum. Our results suggest that a mixture of antagonistic external pressures that simultaneously steer prey towards grouping and dispersing might be required for prey individuals to evolve dynamic parallel movement.

  7. Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.

    PubMed

    Tombu, Michael; Seiffert, Adriane E

    2011-04-01

    People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.

  8. 4D Optimization of Scanned Ion Beam Tracking Therapy for Moving Tumors

    PubMed Central

    Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph

    2014-01-01

    Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking. PMID:24889215

  9. 4D optimization of scanned ion beam tracking therapy for moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph

    2014-07-01

    Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.

  10. Saccadic foveation of a moving visual target in the rhesus monkey.

    PubMed

    Fleuriet, Jérome; Hugues, Sandrine; Perrinet, Laurent; Goffart, Laurent

    2011-02-01

    When generating a saccade toward a moving target, the target displacement that occurs during the period spanning from its detection to the saccade end must be taken into account to accurately foveate the target and to initiate its pursuit. Previous studies have shown that these saccades are characterized by a lower peak velocity and a prolonged deceleration phase. In some cases, a second peak eye velocity appears during the deceleration phase, presumably reflecting the late influence of a mechanism that compensates for the target displacement occurring before saccade end. The goal of this work was to further determine in the head restrained monkey the dynamics of this putative compensatory mechanism. A step-ramp paradigm, where the target motion was orthogonal to a target step occurring along the primary axes, was used to estimate from the generated saccades: a component induced by the target step and another one induced by the target motion. Resulting oblique saccades were compared with saccades to a static target with matched horizontal and vertical amplitudes. This study permitted to estimate the time taken for visual motion-related signals to update the programming and execution of saccades. The amplitude of the motion-related component was slightly hypometric with an undershoot that increased with target speed. Moreover, it matched with the eccentricity that the target had 40-60 ms before saccade end. The lack of significant difference in the delay between the onsets of the horizontal and vertical components between saccades directed toward a static target and those aimed at a moving target questions the late influence of the compensatory mechanism. The results are discussed within the framework of the "dual drive" and "remapping" hypotheses.

  11. Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor.

    PubMed

    Huang, Lvwen; Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing

    2017-08-23

    Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields.

  12. Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor

    PubMed Central

    Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing

    2017-01-01

    Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields. PMID:28832520

  13. Multisensor fusion for 3D target tracking using track-before-detect particle filter

    NASA Astrophysics Data System (ADS)

    Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.

    2015-05-01

    This work presents a novel fusion mechanism for estimating the three-dimensional trajectory of a moving target using images collected by multiple imaging sensors. The proposed projective particle filter avoids the explicit target detection prior to fusion. In projective particle filter, particles that represent the posterior density (of target state in a high-dimensional space) are projected onto the lower-dimensional observation space. Measurements are generated directly in the observation space (image plane) and a marginal (sensor) likelihood is computed. The particles states and their weights are updated using the joint likelihood computed from all the sensors. The 3D state estimate of target (system track) is then generated from the states of the particles. This approach is similar to track-before-detect particle filters that are known to perform well in tracking dim and stealthy targets in image collections. Our approach extends the track-before-detect approach to 3D tracking using the projective particle filter. The performance of this measurement-level fusion method is compared with that of a track-level fusion algorithm using the projective particle filter. In the track-level fusion algorithm, the 2D sensor tracks are generated separately and transmitted to a fusion center, where they are treated as measurements to the state estimator. The 2D sensor tracks are then fused to reconstruct the system track. A realistic synthetic scenario with a boosting target was generated, and used to study the performance of the fusion mechanisms.

  14. Moving Data, Moving Students: Involving Students in Learning about Internet Data Traffic

    ERIC Educational Resources Information Center

    Reinicke, Bryan A.; Yaylacicegi, Ulku

    2010-01-01

    Undergraduate students often have difficulty understanding the way in which data moves across a TCP/IP network, such as the Internet. From the initial data request, to larger files being packetized and transmitted via multiple routes, the students can become lost in the details. These are important concepts for both introductory Management…

  15. Contextual effects on smooth-pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2007-02-01

    Segregating a moving object from its visual context is particularly relevant for the control of smooth-pursuit eye movements. We examined the interaction between a moving object and a stationary or moving visual context to determine the role of the context motion signal in driving pursuit. Eye movements were recorded from human observers to a medium-contrast Gaussian dot that moved horizontally at constant velocity. A peripheral context consisted of two vertically oriented sinusoidal gratings, one above and one below the stimulus trajectory, that were either stationary or drifted into the same or opposite direction as that of the target at different velocities. We found that a stationary context impaired pursuit acceleration and velocity and prolonged pursuit latency. A drifting context enhanced pursuit performance, irrespective of its motion direction. This effect was modulated by context contrast and orientation. When a context was briefly perturbed to move faster or slower eye velocity changed accordingly, but only when the context was drifting along with the target. Perturbing a context into the direction orthogonal to target motion evoked a deviation of the eye opposite to the perturbation direction. We therefore provide evidence for the use of absolute and relative motion cues, or motion assimilation and motion contrast, for the control of smooth-pursuit eye movements.

  16. Seismic signature analysis for discrimination of people from animals

    NASA Astrophysics Data System (ADS)

    Damarla, Thyagaraju; Mehmood, Asif; Sabatier, James M.

    2013-05-01

    Cadence analysis has been the main focus for discriminating between the seismic signatures of people and animals. However, cadence analysis fails when multiple targets are generating the signatures. We analyze the mechanism of human walking and the signature generated by a human walker, and compare it with the signature generated by a quadruped. We develop Fourier-based analysis to differentiate the human signatures from the animal signatures. We extract a set of basis vectors to represent the human and animal signatures using non-negative matrix factorization, and use them to separate and classify both the targets. Grazing animals such as deer, cows, etc., often produce sporadic signals as they move around from patch to patch of grass and one must characterize them so as to differentiate their signatures from signatures generated by a horse steadily walking along a path. These differences in the signatures are used in developing a robust algorithm to distinguish the signatures of animals from humans. The algorithm is tested on real data collected in a remote area.

  17. Representing target motion: the role of the right hemisphere in the forward displacement bias.

    PubMed

    McGeorge, Peter; Beschin, Nicoletta; Della Sala, Sergio

    2006-11-01

    Patients with left spatial neglect, patients with right hemisphere damage but no neglect, and a control group were asked to judge the final position of a series of moving targets. Both patient groups showed attentional deficits. All 3 groups demonstrated a forward displacement bias, overestimating the final target position along the object trajectory. However, in both patient groups the size of this forward displacement bias decreased as the distance the target traveled before vanishing increased. For horizontally moving targets, at the maximum distance only the control group showed significant forward displacement. For all 3 groups, the direction in which the target traveled had no influence, but the size of the forward displacement increased as target speed increased. Several attentional explanations of these results are considered, including the differential allocation of spatial attention between central and peripheral locations, differences between exogenous and endogenous attention, and deficits in sustained attention.

  18. Surrogate endpoints in clinical trials of chronic kidney disease progression: moving from single to multiple risk marker response scores.

    PubMed

    Schievink, Bauke; Mol, Peter G M; Lambers Heerspink, Hiddo J

    2015-11-01

    There is increased interest in developing surrogate endpoints for clinical trials of chronic kidney disease progression, as the established clinically meaningful endpoint end-stage renal disease requires large and lengthy trials to assess drug efficacy. We describe recent developments in the search for novel surrogate endpoints. Declines in estimated glomerular filtration rate (eGFR) of 30% or 40% and albuminuria have been proposed as surrogates for end-stage renal disease. However, changes in eGFR or albuminuria may not be valid under all circumstances as drugs always have effects on multiple renal risk markers. Changes in each of these other 'off-target' risk markers can alter renal risk (either beneficially or adversely), and can thereby confound the relationship between surrogates that are based on single risk markers and renal outcome. Risk algorithms that integrate the short-term drug effects on multiple risk markers to predict drug effects on hard renal outcomes may therefore be more accurate. The validity of these risk algorithms is currently investigated. Given that drugs affect multiple renal risk markers, risk scores that integrate these effects are a promising alternative to using eGFR decline or albuminuria. Proper validation is required before these risk scores can be implemented.

  19. Visual attention is required for multiple object tracking.

    PubMed

    Tran, Annie; Hoffman, James E

    2016-12-01

    In the multiple object tracking task, participants attempt to keep track of a moving set of target objects embedded in an identical set of moving distractors. Depending on several display parameters, observers are usually only able to accurately track 3 to 4 objects. Various proposals attribute this limit to a fixed number of discrete indexes (Pylyshyn, 1989), limits in visual attention (Cavanagh & Alvarez, 2005), or "architectural limits" in visual cortical areas (Franconeri, 2013). The present set of experiments examined the specific role of visual attention in tracking using a dual-task methodology in which participants tracked objects while identifying letter probes appearing on the tracked objects and distractors. As predicted by the visual attention model, probe identification was faster and/or more accurate when probes appeared on tracked objects. This was the case even when probes were more than twice as likely to appear on distractors suggesting that some minimum amount of attention is required to maintain accurate tracking performance. When the need to protect tracking accuracy was relaxed, participants were able to allocate more attention to distractors when probes were likely to appear there but only at the expense of large reductions in tracking accuracy. A final experiment showed that people attend to tracked objects even when letters appearing on them are task-irrelevant, suggesting that allocation of attention to tracked objects is an obligatory process. These results support the claim that visual attention is required for tracking objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Does the Brain Extrapolate the Position of a Transient Moving Target?

    PubMed

    Quinet, Julie; Goffart, Laurent

    2015-08-26

    When an object moves in the visual field, its motion evokes a streak of activity on the retina and the incoming retinal signals lead to robust oculomotor commands because corrections are observed if the trajectory of the interceptive saccade is perturbed by a microstimulation in the superior colliculus. The present study complements a previous perturbation study by investigating, in the head-restrained monkey, the generation of saccades toward a transient moving target (100-200 ms). We tested whether the saccades land on the average of antecedent target positions or beyond the location where the target disappeared. Using target motions with different speed profiles, we also examined the sensitivity of the process that converts time-varying retinal signals into saccadic oculomotor commands. The results show that, for identical overall target displacements on the visual display, saccades toward a faster target land beyond the endpoint of saccades toward a target moving slower. The rate of change in speed matters in the visuomotor transformation. Indeed, in response to identical overall target displacements and durations, the saccades have smaller amplitude when they are made in response to an accelerating target than to a decelerating one. Moreover, the motion-related signals have different weights depending upon their timing relative to the target onset: early signals are more influential in the specification of saccade amplitude than later signals. We discuss the "predictive" properties of the visuo-saccadic system and the nature of this location where the saccades land, after providing some critical comments to the "hic-et-nunc" hypothesis (Fleuriet and Goffart, 2012). Complementing the work of Fleuriet and Goffart (2012), this study is a contribution to the more general scientific research aimed at understanding how ongoing action is dynamically and adaptively adjusted to the current spatiotemporal aspects of its goal. Using the saccadic eye movement as a probe, we provide results that are critical for investigating and understanding the neural basis of motion extrapolation and prediction. Copyright © 2015 the authors 0270-6474/15/3511780-11$15.00/0.

  1. The increasing application of multiplex nucleic acid detection tests to the diagnosis of syndromic infections.

    PubMed

    Gray, J; Coupland, L J

    2014-01-01

    On 14 January 2013, the US Food and Drug Administration (FDA) announced permission for a multiplex nucleic acid test, the xTAG® Gastrointestinal Pathogen Panel (GPP) (Luminex Corporation, USA), which simultaneously detects 11 common viral, bacterial and parasitic causes of infectious gastroenteritis, to be marketed in the USA. This announcement reflects the current move towards the development and commercialization of detection technologies based on nucleic acid amplification techniques for diagnosis of syndromic infections. We discuss the limitations and advantages of nucleic acid amplification techniques and the recent advances in Conformité Européene - in-vitro diagnostic (CE-IVD)-approved multiplex real-time PCR kits for the simultaneous detection of multiple targets within the clinical diagnostics market.

  2. The new approach for infrared target tracking based on the particle filter algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Hang; Han, Hong-xia

    2011-08-01

    Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring, precision, and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection, the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure, but in order to capture the change of the state space, it need a certain amount of particles to ensure samples is enough, and this number will increase in accompany with dimension and increase exponentially, this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining", we expand the classic Mean Shift tracking framework .Based on the previous perspective, we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis, Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism, used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation, and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value .Last because of the gray and fusion target motion information, this approach also inhibit interference from the background, ultimately improve the stability and the real-time of the target track.

  3. A Novel Method of Localization for Moving Objects with an Alternating Magnetic Field

    PubMed Central

    Gao, Xiang; Yan, Shenggang; Li, Bin

    2017-01-01

    Magnetic detection technology has wide applications in the fields of geological exploration, biomedical treatment, wreck removal and localization of unexploded ordinance. A large number of methods have been developed to locate targets with static magnetic fields, however, the relation between the problem of localization of moving objectives with alternating magnetic fields and the localization with a static magnetic field is rarely studied. A novel method of target localization based on coherent demodulation was proposed in this paper. The problem of localization of moving objects with an alternating magnetic field was transformed into the localization with a static magnetic field. The Levenberg-Marquardt (L-M) algorithm was applied to calculate the position of the target with magnetic field data measured by a single three-component magnetic sensor. Theoretical simulation and experimental results demonstrate the effectiveness of the proposed method. PMID:28430153

  4. Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement

    PubMed Central

    Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe

    2014-01-01

    This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378

  5. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells

    PubMed Central

    Chauveau, Anne; Aucher, Anne; Eissmann, Philipp; Vivier, Eric; Davis, Daniel M.

    2010-01-01

    Membrane nanotubes are membranous tethers that physically link cell bodies over long distances. Here, we present evidence that nanotubes allow human natural killer (NK) cells to interact functionally with target cells over long distances. Nanotubes were formed when NK cells contacted target cells and moved apart. The frequency of nanotube formation was dependent on the number of receptor/ligand interactions and increased on NK cell activation. Most importantly, NK cell nanotubes contained a submicron scale junction where proteins accumulated, including DAP10, the signaling adaptor that associates with the activating receptor NKG2D, and MHC class I chain-related protein A (MICA), a cognate ligand for NKG2D, as occurs at close intercellular synapses between NK cells and target cells. Quantitative live-cell fluorescence imaging suggested that MICA accumulated at small nanotube synapses in sufficient numbers to trigger cell activation. In addition, tyrosine-phosphorylated proteins and Vav-1 accumulated at such junctions. Functionally, nanotubes could aid the lysis of distant target cells either directly or by moving target cells along the nanotube path into close contact for lysis via a conventional immune synapse. Target cells moving along the nanotube path were commonly polarized such that their uropods faced the direction of movement. This is the opposite polarization than for normal cell migration, implying that nanotubes can specifically drive target cell movement. Finally, target cells that remained connected to an NK cell by a nanotube were frequently lysed, whereas removing the nanotube using a micromanipulator reduced lysis of these target cells. PMID:20212116

  6. Detection of unknown targets from aerial camera and extraction of simple object fingerprints for the purpose of target reacquisition

    NASA Astrophysics Data System (ADS)

    Mundhenk, T. Nathan; Ni, Kang-Yu; Chen, Yang; Kim, Kyungnam; Owechko, Yuri

    2012-01-01

    An aerial multiple camera tracking paradigm needs to not only spot unknown targets and track them, but also needs to know how to handle target reacquisition as well as target handoff to other cameras in the operating theater. Here we discuss such a system which is designed to spot unknown targets, track them, segment the useful features and then create a signature fingerprint for the object so that it can be reacquired or handed off to another camera. The tracking system spots unknown objects by subtracting background motion from observed motion allowing it to find targets in motion, even if the camera platform itself is moving. The area of motion is then matched to segmented regions returned by the EDISON mean shift segmentation tool. Whole segments which have common motion and which are contiguous to each other are grouped into a master object. Once master objects are formed, we have a tight bound on which to extract features for the purpose of forming a fingerprint. This is done using color and simple entropy features. These can be placed into a myriad of different fingerprints. To keep data transmission and storage size low for camera handoff of targets, we try several different simple techniques. These include Histogram, Spatiogram and Single Gaussian Model. These are tested by simulating a very large number of target losses in six videos over an interval of 1000 frames each from the DARPA VIVID video set. Since the fingerprints are very simple, they are not expected to be valid for long periods of time. As such, we test the shelf life of fingerprints. This is how long a fingerprint is good for when stored away between target appearances. Shelf life gives us a second metric of goodness and tells us if a fingerprint method has better accuracy over longer periods. In videos which contain multiple vehicle occlusions and vehicles of highly similar appearance we obtain a reacquisition rate for automobiles of over 80% using the simple single Gaussian model compared with the null hypothesis of <20%. Additionally, the performance for fingerprints stays well above the null hypothesis for as much as 800 frames. Thus, a simple and highly compact single Gaussian model is useful for target reacquisition. Since the model is agnostic to view point and object size, it is expected to perform as well on a test of target handoff. Since some of the performance degradation is due to problems with the initial target acquisition and tracking, the simple Gaussian model may perform even better with an improved initial acquisition technique. Also, since the model makes no assumption about the object to be tracked, it should be possible to use it to fingerprint a multitude of objects, not just cars. Further accuracy may be obtained by creating manifolds of objects from multiple samples.

  7. Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating

    NASA Astrophysics Data System (ADS)

    Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G.

    2012-12-01

    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

  8. Dorsal premotor cortex is involved in switching motor plans

    PubMed Central

    Pastor-Bernier, Alexandre; Tremblay, Elsa; Cisek, Paul

    2012-01-01

    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on-line. These findings were reproduced by a computational model suggesting that switches between action plans can be explained by the same competition process responsible for initial decisions. PMID:22493577

  9. Kinesin-microtubule interactions during gliding assays under magnetic force

    NASA Astrophysics Data System (ADS)

    Fallesen, Todd L.

    Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force-velocity relationship for multiple motors follows the same trend as for one motor, supporting the hypothesis that multiple motors share the load.

  10. Internally-generated error signals in monkey frontal eye field during an inferred motion task

    PubMed Central

    Ferrera, Vincent P.; Barborica, Andrei

    2010-01-01

    An internal model for predictive saccades in frontal cortex was investigated by recording neurons in monkey frontal eye field during an inferred motion task. Monkeys were trained to make saccades to the extrapolated position of a small moving target that was rendered temporarily invisible and whose trajectory was altered. On roughly two-thirds of the trials, monkeys made multiple saccades while the target was invisible. Primary saccades were correlated with extrapolated target position. Secondary saccades significantly reduced residual errors resulting from imperfect accuracy of the first saccade. These observations suggest that the second saccade was corrective. As there was no visual feedback, corrective saccades could only be driven by an internally generated error signal. Neuronal activity in the frontal eye field was directionally tuned prior to both primary and secondary saccades. Separate subpopulations of cells encoded either saccade direction or direction error prior to the second saccade. These results suggest that FEF neurons encode the error after the first saccade, as well as the direction of the second saccade. Hence, FEF appears to contribute to detecting and correcting movement errors based on internally generated signals. PMID:20810882

  11. Modeling Resources Allocation in Attacker-Defender Games with "Warm Up" CSF.

    PubMed

    Guan, Peiqiu; Zhuang, Jun

    2016-04-01

    Like many other engineering investments, the attacker's and defender's investments may have limited impact without initial capital to "warm up" the systems. This article studies such "warm up" effects on both the attack and defense equilibrium strategies in a sequential-move game model by developing a class of novel and more realistic contest success functions. We first solve a single-target attacker-defender game analytically and provide numerical solutions to a multiple-target case. We compare the results of the models with and without consideration of the investment "warm up" effects, and find that the defender would suffer higher expected damage, and either underestimate the attacker effort or waste defense investment if the defender falsely believes that no investment "warm up" effects exist. We illustrate the model results with real data, and compare the results of the models with and without consideration of the correlation between the "warm up" threshold and the investment effectiveness. Interestingly, we find that the defender is suggested to give up defending all the targets when the attack or the defense "warm up" thresholds are sufficiently high. This article provides new insights and suggestions on policy implications for homeland security resource allocation. © 2015 Society for Risk Analysis.

  12. Modeling eye-head gaze shifts in multiple contexts without motor planning

    PubMed Central

    Haji-Abolhassani, Iman; Guitton, Daniel

    2016-01-01

    During gaze shifts, the eyes and head collaborate to rapidly capture a target (saccade) and fixate it. Accordingly, models of gaze shift control should embed both saccadic and fixation modes and a mechanism for switching between them. We demonstrate a model in which the eye and head platforms are driven by a shared gaze error signal. To limit the number of free parameters, we implement a model reduction approach in which steady-state cerebellar effects at each of their projection sites are lumped with the parameter of that site. The model topology is consistent with anatomy and neurophysiology, and can replicate eye-head responses observed in multiple experimental contexts: 1) observed gaze characteristics across species and subjects can emerge from this structure with minor parametric changes; 2) gaze can move to a goal while in the fixation mode; 3) ocular compensation for head perturbations during saccades could rely on vestibular-only cells in the vestibular nuclei with postulated projections to burst neurons; 4) two nonlinearities suffice, i.e., the experimentally-determined mapping of tectoreticular cells onto brain stem targets and the increased recruitment of the head for larger target eccentricities; 5) the effects of initial conditions on eye/head trajectories are due to neural circuit dynamics, not planning; and 6) “compensatory” ocular slow phases exist even after semicircular canal plugging, because of interconnections linking eye-head circuits. Our model structure also simulates classical vestibulo-ocular reflex and pursuit nystagmus, and provides novel neural circuit and behavioral predictions, notably that both eye-head coordination and segmental limb coordination are possible without trajectory planning. PMID:27440248

  13. Safety and Effectiveness of a Longer Focal Beam and Burst Duration in Ultrasonic Propulsion for Repositioning Urinary Stones and Fragments.

    PubMed

    Janssen, Karmon M; Brand, Timothy C; Cunitz, Bryan W; Wang, Yak-Nam; Simon, Julianna C; Starr, Frank; Liggitt, H Denny; Thiel, Jeff; Sorensen, Mathew D; Harper, Jonathan D; Bailey, Michael R; Dunmire, Barbrina

    2017-08-01

    In the first-in-human trial of ultrasonic propulsion, subjects passed collections of residual stone fragments repositioned with a C5-2 probe. Here, effectiveness and safety in moving multiple fragments are compared between the C5-2 and a custom (SC-50) probe that produces a longer focal beam and burst duration. Effectiveness was quantified by the number of stones expelled from a calyx phantom consisting of a 30-mm deep, water-filled well in a block of tissue mimicking material. Each probe was positioned below the phantom to move stones against gravity. Single propulsion bursts of 50 ms or 3 s duration were applied to three separate targets: 10 fragments of 2 different sizes (1-2 and 2-3 mm) and a single 4 × 7 mm human stone. Safety studies consisted of porcine kidneys exposed to an extreme dose of 10-minute burst duration, including a 7-day survival study and acute studies with surgically implanted stones. Although successful in the clinical trial, the shorter focal beam and maximum 50 ms burst duration of the C5-2 probe moved stones, but did not expel any stones from the phantom's 30-mm deep calyx. The results were similar with the SC-50 probe under the same 50 ms burst duration. Longer (3 s) bursts available with the SC-50 probe expelled all stones at both 4.5 and 9.5 cm "skin-to-stone" depths with lower probe heating compared to the C5-2. No abnormal behavior, urine chemistry, serum chemistry, or histological findings were observed within the kidney or surrounding tissues for the 10 min burst duration used in the animal studies. A longer focal beam and burst duration improved expulsion of a stone and multiple stone fragments from a phantom over a broad range of clinically relevant penetration depths and did not cause kidney injury in animal studies.

  14. Fast adaptation of the internal model of gravity for manual interceptions: evidence for event-dependent learning.

    PubMed

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2005-02-01

    We studied how subjects learn to deal with two conflicting sensory environments as a function of the probability of each environment and the temporal distance between repeated events. Subjects were asked to intercept a visual target moving downward on a screen with randomized laws of motion. We compared five protocols that differed in the probability of constant speed (0g) targets and accelerated (1g) targets. Probability ranged from 9 to 100%, and the time interval between consecutive repetitions of the same target ranged from about 1 to 20 min. We found that subjects systematically timed their responses consistent with the assumption of gravity effects, for both 1 and 0g trials. With training, subjects rapidly adapted to 0g targets by shifting the time of motor activation. Surprisingly, the adaptation rate was independent of both the probability of 0g targets and their temporal distance. Very few 0g trials sporadically interspersed as catch trials during immersive practice with 1g trials were sufficient for learning and consolidation in long-term memory, as verified by retesting after 24 h. We argue that the memory store for adapted states of the internal gravity model is triggered by individual events and can be sustained for prolonged periods of time separating sporadic repetitions. This form of event-related learning could depend on multiple-stage memory, with exponential rise and decay in the initial stages followed by a sample-and-hold module.

  15. Design of a Holonic Control Architecture for Distributed Sensor Management

    DTIC Science & Technology

    2009-09-01

    Tracking tasks require only intermit - tent access to the sensors to maintain a given track quality. The higher the specified quality, the more often...resolution of the sensor (i.e., sensor mode), which can be adjusted to compensate for fast moving targets tracked over long ranges, or slower moving...but provides higher data update rates that are beneficial when tracking fast agile targets (i.e., a fighter). Table A.2 illustrates the dependence of

  16. Moving Object Detection on a Vehicle Mounted Back-Up Camera

    PubMed Central

    Kim, Dong-Sun; Kwon, Jinsan

    2015-01-01

    In the detection of moving objects from vision sources one usually assumes that the scene has been captured by stationary cameras. In case of backing up a vehicle, however, the camera mounted on the vehicle moves according to the vehicle’s movement, resulting in ego-motions on the background. This results in mixed motion in the scene, and makes it difficult to distinguish between the target objects and background motions. Without further treatments on the mixed motion, traditional fixed-viewpoint object detection methods will lead to many false-positive detection results. In this paper, we suggest a procedure to be used with the traditional moving object detection methods relaxing the stationary cameras restriction, by introducing additional steps before and after the detection. We also decribe the implementation as a FPGA platform along with the algorithm. The target application of this suggestion is use with a road vehicle’s rear-view camera systems. PMID:26712761

  17. Acoustic field in unsteady moving media

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Maestrello, L.; Ting, L.

    1995-01-01

    In the interaction of an acoustic field with a moving airframe the authors encounter a canonical initial value problem for an acoustic field induced by an unsteady source distribution, q(t,x) with q equivalent to 0 for t less than or equal to 0, in a medium moving with a uniform unsteady velocity U(t)i in the coordinate system x fixed on the airframe. Signals issued from a source point S in the domain of dependence D of an observation point P at time t will arrive at point P more than once corresponding to different retarded times, Tau in the interval (0, t). The number of arrivals is called the multiplicity of the point S. The multiplicity equals 1 if the velocity U remains subsonic and can be greater when U becomes supersonic. For an unsteady uniform flow U(t)i, rules are formulated for defining the smallest number of I subdomains V(sub i) of D with the union of V(sub i) equal to D. Each subdomain has multiplicity 1 and a formula for the corresponding retarded time. The number of subdomains V(sub i) with nonempty intersection is the multiplicity m of the intersection. The multiplicity is at most I. Examples demonstrating these rules are presented for media at accelerating and/or decelerating supersonic speed.

  18. Inhibitory guidance in visual search: the case of movement-form conjunctions.

    PubMed

    Dent, Kevin; Allen, Harriet A; Braithwaite, Jason J; Humphreys, Glyn W

    2012-02-01

    We used a probe-dot procedure to examine the roles of excitatory attentional guidance and distractor suppression in search for movement-form conjunctions. Participants in Experiment 1 completed a conjunction (moving X amongst moving Os and static Xs) and two single-feature (moving X amongst moving Os, and static X amongst static Os) conditions. "Active" participants searched for the target, whereas "passive" participants viewed the displays without responding. Subsequently, both groups located (left or right) a probe dot appearing in either an occupied or an unoccupied location. In the conjunction condition, the active group located probes presented on static distractors more slowly than probes presented on moving distractors, reversing the direction of the difference found within the passive group. This disadvantage for probes on static items was much stronger in conjunction than in single-feature search. The same pattern of results was replicated in Experiment 2, which used a go/no-go procedure. Experiment 3 extended the go/no-go procedure to the case of search for a static target and revealed increased probe localisation times as a consequence of active search, primarily for probes on moving distractor items. The results demonstrated attentional guidance by inhibition of distractors in conjunction search.

  19. 48 CFR 216.403-1 - Fixed-price incentive (firm target) contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (firm target) contracts. 216.403-1 Section 216.403-1 Federal Acquisition Regulations System DEFENSE... CONTRACTS Incentive Contracts 216.403-1 Fixed-price incentive (firm target) contracts. (b) Application. (1... target) contracts, especially for acquisitions moving from development to production. (2) The contracting...

  20. Multiple Intelligences for Differentiated Learning

    ERIC Educational Resources Information Center

    Williams, R. Bruce

    2007-01-01

    There is an intricate literacy to Gardner's multiple intelligences theory that unlocks key entry points for differentiated learning. Using a well-articulated framework, rich with graphic representations, Williams provides a comprehensive discussion of multiple intelligences. He moves the teacher and students from curiosity, to confidence, to…

  1. Moving target detection for frequency agility radar by sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Quan, Yinghui; Li, YaChao; Wu, Yaojun; Ran, Lei; Xing, Mengdao; Liu, Mengqi

    2016-09-01

    Frequency agility radar, with randomly varied carrier frequency from pulse to pulse, exhibits superior performance compared to the conventional fixed carrier frequency pulse-Doppler radar against the electromagnetic interference. A novel moving target detection (MTD) method is proposed for the estimation of the target's velocity of frequency agility radar based on pulses within a coherent processing interval by using sparse reconstruction. Hardware implementation of orthogonal matching pursuit algorithm is executed on Xilinx Virtex-7 Field Programmable Gata Array (FPGA) to perform sparse optimization. Finally, a series of experiments are performed to evaluate the performance of proposed MTD method for frequency agility radar systems.

  2. Moving target detection for frequency agility radar by sparse reconstruction.

    PubMed

    Quan, Yinghui; Li, YaChao; Wu, Yaojun; Ran, Lei; Xing, Mengdao; Liu, Mengqi

    2016-09-01

    Frequency agility radar, with randomly varied carrier frequency from pulse to pulse, exhibits superior performance compared to the conventional fixed carrier frequency pulse-Doppler radar against the electromagnetic interference. A novel moving target detection (MTD) method is proposed for the estimation of the target's velocity of frequency agility radar based on pulses within a coherent processing interval by using sparse reconstruction. Hardware implementation of orthogonal matching pursuit algorithm is executed on Xilinx Virtex-7 Field Programmable Gata Array (FPGA) to perform sparse optimization. Finally, a series of experiments are performed to evaluate the performance of proposed MTD method for frequency agility radar systems.

  3. Therapeutic Decisions In Multiple Sclerosis: Moving Beyond Efficacy

    PubMed Central

    Brück, Wolfgang; Ralf, Gold; Lund, Brett T.; Celia, Oreja-Guevara; Prat, Alexandre; Spencer, Collin M.; Steinman, Lawrence; Mar, Tintoré; Vollmer, Timothy; Weber, Martin S.; Weiner, Leslie P.; Ziemssen, Tjalf; Zamvil, Scott S.

    2014-01-01

    Importance Several innovative disease-modifying treatments (DMTs) for relapsing remitting multiple sclerosis (RRMS) have been licensed recently, or are in late-stage development. The molecular targets of several of these DMTs are well defined. All affect at least one of four properties: (1) immune cell trafficking, (2) cell depletion, (3) immune cell function, or (4) cell replication. In contrast to β-interferons and glatiramer acetate, the first generation DMTs, several newer therapies are imbued with safety issues. In addition to efficacy, understanding the relationship between the mechanism of action (MOA) of the DMTs and their safety profile is essential for decision-making in patient care. Objective In this article, we relate safety issues of newer DMTs to their pharmacological characteristics, including molecular targets, MOA, chemical structure, and metabolism. Some newer DMTs also represent repurposing or modifications of previous treatments used in other diseases. Here, we describe how identification and understanding of adverse events (AEs) observed with these established drugs within the same class, provide clues regarding safety and toxicities of newer MS therapeutics. Conclusions and relevance While understanding mechanisms underlying DMT toxicities is incomplete, it is important to further develop this knowledge to minimize risk to patients, and to ensure future therapies have the most advantageous risk-benefit profiles. Recognizing the individual classes of DMTs described here may be beneficial when considering use of such agents sequentially and possibly in combination. PMID:23921521

  4. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  5. Laser Range and Bearing Finder with No Moving Parts

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2007-01-01

    A proposed laser-based instrument would quickly measure the approximate distance and approximate direction to the closest target within its field of view. The instrument would not contain any moving parts and its mode of operation would not entail scanning over of its field of view. Typically, the instrument would be used to locate a target at a distance on the order of meters to kilometers. The instrument would be best suited for use in an uncluttered setting in which the target is the only or, at worst, the closest object in the vicinity; for example, it could be used aboard an aircraft to detect and track another aircraft flying nearby. The proposed instrument would include a conventional time-of-flight or echo-phase-shift laser range finder, but unlike most other range finders, this one would not generate a narrow cylindrical laser beam; instead, it would generate a conical laser beam spanning the field of view. The instrument would also include a quadrant detector, optics to focus the light returning from the target onto the quadrant detector, and circuitry to synchronize the acquisition of the quadrant-detector output with the arrival of laser light returning from the nearest target. A quadrant detector constantly gathers information from the entire field of view, without scanning; its output is a direct measure of the position of the target-return light spot on the focal plane and is thus a measure of the direction to the target. The instrument should be able to operate at a repetition rate high enough to enable it to track a rapidly moving target. Of course, a target that is not sufficiently reflective could not be located by this instrument. Preferably, retroreflectors should be attached to the target to make it sufficiently reflective.

  6. Moving target feature phenomenology data collection at China Lake

    NASA Astrophysics Data System (ADS)

    Gross, David C.; Hill, Jeff; Schmitz, James L.

    2002-08-01

    This paper describes the DARPA Moving Target Feature Phenomenology (MTFP) data collection conducted at the China Lake Naval Weapons Center's Junction Ranch in July 2001. The collection featured both X-band and Ku-band radars positioned on top of Junction Ranch's Parrot Peak. The test included seven targets used in eleven configurations with vehicle motion consisting of circular, straight-line, and 90-degree turning motion. Data was collected at 10-degree and 17-degree depression angles. Key parameters in the collection were polarization, vehicle speed, and road roughness. The collection also included a canonical target positioned at Junction Ranch's tilt-deck turntable. The canonical target included rotating wheels (military truck tire and civilian pick-up truck tire) and a flat plate with variable positioned corner reflectors. The canonical target was also used to simulate a rotating antenna and a vibrating plate. The target vehicles were instrumented with ARDS pods for differential GPS and roll, pitch and yaw measurements. Target motion was also documented using a video camera slaved to the X-band radar antenna and by a video camera operated near the target site.

  7. Present and future contraception: does discovery of targets lead to new contraceptives?

    PubMed

    Jensen, Jeffrey T

    2015-01-01

    Although many highly effective methods of reversible contraception are available, high rates of unintended pregnancy and abortion provide evidence that current methods do not meet the needs of all couples. In recent years, a number of highly specific targets have been identified in key pathways that regulate the development of male and female gametes. Support for development of novel approaches has moved from industry to governmental and foundation funders. Continued public funding will be needed to move promising leads into clinical trials.

  8. Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy.

    PubMed

    Morel, Paul; Wu, Xiaodong; Blin, Guillaume; Vialette, Stéphane; Flynn, Ryan; Hyer, Daniel; Wang, Dongxu

    2015-01-01

    This study describes a real-time spot weight adaptation method in spot-scanning proton therapy for moving target or moving patient, so that the resultant dose distribution closely matches the planned dose distribution. The method proposed in this study adapts the weight (MU) of the delivering pencil beam to that of the target spot; it will actually hit during patient/target motion. The target spot that a certain delivering pencil beam may hit relies on patient monitoring and/or motion modeling using four-dimensional (4D) CT. After the adapted delivery, the required total weight [Monitor Unit (MU)] for this target spot is then subtracted from the planned value. With continuous patient motion and continuous spot scanning, the planned doses to all target spots will eventually be all fulfilled. In a proof-of-principle test, a lung case was presented with realistic temporal and motion parameters; the resultant dose distribution using spot weight adaptation was compared to that without using this method. The impact of the real-time patient/target position tracking or prediction was also investigated. For moderate motion (i.e., mean amplitude 0.5 cm), D95% to the planning target volume (PTV) was only 81.5% of the prescription (RX) dose; with spot weight adaptation PTV D95% achieves 97.7% RX. For large motion amplitude (i.e., 1.5 cm), without spot weight adaptation PTV D95% is only 42.9% of RX; with spot weight adaptation, PTV D95% achieves 97.7% RX. Larger errors in patient/target position tracking or prediction led to worse final target coverage; an error of 3 mm or smaller in patient/target position tracking is preferred. The proposed spot weight adaptation method was able to deliver the planned dose distribution and maintain target coverage when patient motion was involved. The successful implementation of this method would rely on accurate monitoring or prediction of patient/target motion.

  9. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion

    NASA Technical Reports Server (NTRS)

    Zivotofsky, A. Z.; Rottach, K. G.; Averbuch-Heller, L.; Kori, A. A.; Thomas, C. W.; Dell'Osso, L. F.; Leigh, R. J.

    1996-01-01

    1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the "memory period" (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the "spatial error" than with the "retinal error"; this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal error was greater than under any other experimental condition. 6. In most trials, the initial saccade to the remembered target was followed by additional saccades while the subject was still in darkness. These secondary saccades, which were executed in the absence of visual feedback, brought the eye closer to the target location. During paradigms involving horizontal background movement, these corrections were more prominent horizontally than vertically. 7. Further measurements were made in two subjects to determine whether inaccuracy of memory-guided saccades, in the horizontal plane, was due to mislocalization at the time that the target flashed, misrepresentation of the trajectory of the pursuit eye movement during the memory period, or both. 8. The magnitude of the saccadic error, both with and without corrections made in darkness, was mislocalized by approximately 30% of the displacement of the background at the time that the target flashed. The magnitude of the saccadic error also was influenced by net movement of the background during the memory period, corresponding to approximately 25% of net background movement for the initial saccade and approximately 13% for the final eye position achieved in darkness. 9. We formulated simple linear models to test specific hypotheses about which combinations of signals best describe the observed saccadic amplitudes. We tested the possibilities that the brain made an accurate memory of target location and a reliable representation of the eye movement during the memory period, or that one or both of these was corrupted by the illusory visual stimulus. Our data were best accounted for by a model in which both the working memory of target location and the internal representation of the horizontal eye movements were corrupted by the illusory visual stimulus. We conclude that extraretinal signals played only a minor role, in comparison with visual estimates of the direction of gaze, in planning eye movements to remembered targ.

  10. Frames of reference in action plan recall: influence of hand and handedness.

    PubMed

    Seegelke, Christian; Hughes, Charmayne M L; Wunsch, Kathrin; van der Wel, Robrecht; Weigelt, Matthias

    2015-10-01

    Evidence suggests that people are more likely to recall features of previous plans and use them for subsequent movements, rather than generating action plans from scratch for each movement. The information used for plan recall during object manipulation tasks is stored in extrinsic (object-centered) rather than intrinsic (body-centered) coordinates. The present study examined whether action plan recall processes are influenced by manual asymmetries. Right-handed (Experiment 1) and left-handed (Experiment 2) participants grasped a plunger from a home position using either the dominant or the non-dominant hand and placed it at one of the three target positions located at varying heights (home-to-target moves). Subsequently, they stepped sideways down from a podium (step-down podium), onto a podium (step-up podium), or without any podium present (no podium), before returning the plunger to the home platform using the same hand (target-back-to-home moves). The data show that, regardless of hand and handedness, participants grasped the plunger at similar heights during the home-to-target and target-back-to-home moves, even if they had to adopt quite different arm postures to do so. Thus, these findings indicate that the information used for plan recall processes in sequential object manipulation tasks is stored in extrinsic coordinates and in an effector-independent manner.

  11. Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound.

    PubMed

    de Senneville, Baudouin Denis; Mougenot, Charles; Moonen, Chrit T W

    2007-02-01

    Focused ultrasound (US) is a unique and noninvasive technique for local deposition of thermal energy deep inside the body. MRI guidance offers the additional benefits of excellent target visualization and continuous temperature mapping. However, treating a moving target poses severe problems because 1) motion-related thermometry artifacts must be corrected, 2) the US focal point must be relocated according to the target displacement. In this paper a complete MRI-compatible, high-intensity focused US (HIFU) system is described together with adaptive methods that allow continuous MR thermometry and therapeutic US with real-time tracking of a moving target, online motion correction of the thermometry maps, and regional temperature control based on the proportional, integral, and derivative method. The hardware is based on a 256-element phased-array transducer with rapid electronic displacement of the focal point. The exact location of the target during US firing is anticipated using automatic analysis of periodic motions. The methods were tested with moving phantoms undergoing either rigid body or elastic periodical motions. The results show accurate tracking of the focal point. Focal and regional temperature control is demonstrated with a performance similar to that obtained with stationary phantoms. Copyright (c) 2007 Wiley-Liss, Inc.

  12. Can representational trajectory reveal the nature of an internal model of gravity?

    PubMed

    De Sá Teixeira, Nuno; Hecht, Heiko

    2014-05-01

    The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.

  13. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.

    PubMed

    Trejo, Leonard J; Rosipal, Roman; Matthews, Bryan

    2006-06-01

    We have developed and tested two electroencephalogram (EEG)-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KPLS classifier to map power spectra of 62-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject's average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: 1) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal electrooculograms (EOG) signals, 2) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from 12 electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle artifact is controlled via adaptive normalization of the SSVEP. Training of the classifier requires about 3 min. We have tested our system in real-time operation in three human subjects. Across subjects and sessions, control accuracy ranged from 80% to 100% correct with lags of 1-5 s for movement initiation and turning. We have also developed a realistic demonstration of our system for control of a moving map display (http://ti.arc.nasa.gov/).

  14. Optimal chemotaxis in intermittent migration of animal cells

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Salbreux, G.

    2015-04-01

    Animal cells can sense chemical gradients without moving and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing persistent migration during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration.

  15. Reconstitution of Contractile FtsZ Rings in Liposomes

    PubMed Central

    Osawa, Masaki; Anderson, David E.; Erickson, Harold P.

    2009-01-01

    FtsZ is a tubulin homolog and the major cytoskeletal protein in bacterial cell division. It assembles into the Z ring, which contains FtsZ and a dozen other division proteins, and constricts to divide the cell. We have constructed a membrane-targeted FtsZ (FtsZ-mts) by splicing an amphipathic helix to its C terminus. When mixed with lipid vesicles, FtsZ-mts was incorporated into the interior of some tubular vesicles. There it formed multiple Z rings that could move laterally in both directions along the length of the liposome and coalesce into brighter Z rings. Brighter Z rings produced visible constrictions in the liposome, suggesting that FtsZ itself can assemble the Z ring and generate a force. No other proteins were needed for assembly and force generation. PMID:18420899

  16. Tabletop computed lighting for practical digital photography.

    PubMed

    Mohan, Ankit; Bailey, Reynold; Waite, Jonathan; Tumblin, Jack; Grimm, Cindy; Bodenheimer, Bobby

    2007-01-01

    We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects such as museum artifacts. We place the object and a computer-steered moving-head spotlight inside a simple foam-core enclosure and use a camera to record photos as the light scans the box interior. Optimization, guided by interactive user sketching, selects a small set of these photos whose weighted sum best matches the user-defined target sketch. Unlike previous image-based relighting efforts, our method requires only a single area light source, yet it can achieve high-resolution light positioning to avoid multiple sharp shadows. A reduced version uses only a handheld light and may be suitable for battery-powered field photography equipment that fits into a backpack.

  17. Connective tissue growth factor (CTGF) from basics to clinics.

    PubMed

    Ramazani, Yasaman; Knops, Noël; Elmonem, Mohamed A; Nguyen, Tri Q; Arcolino, Fanny Oliveira; van den Heuvel, Lambert; Levtchenko, Elena; Kuypers, Dirk; Goldschmeding, Roel

    2018-03-21

    Connective tissue growth factor, also known as CCN2, is a cysteine-rich matricellular protein involved in the control of biological processes, such as cell proliferation, differentiation, adhesion and angiogenesis, as well as multiple pathologies, such as tumor development and tissue fibrosis. Here, we describe the molecular and biological characteristics of CTGF, its regulation and various functions in the spectrum of development and regeneration to fibrosis. We further outline the preclinical and clinical studies concerning compounds targeting CTGF in various pathologies with the focus on heart, lung, liver, kidney and solid organ transplantation. Finally, we address the advances and pitfalls of translational fibrosis research and provide suggestions to move towards a better management of fibrosis. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  18. Moving template analysis of crack growth. 1: Procedure development

    NASA Astrophysics Data System (ADS)

    Padovan, Joe; Guo, Y. H.

    1994-06-01

    Based on a moving template procedure, this two part series will develop a method to follow the crack tip physics in a self-adaptive manner which provides a uniformly accurate prediction of crack growth. For multiple crack environments, this is achieved by attaching a moving template to each crack tip. The templates are each individually oriented to follow the associated growth orientation and rate. In this part, the essentials of the procedure are derived for application to fatigue crack environments. Overall the scheme derived possesses several hierarchical levels, i.e. the global model, the interpolatively tied moving template, and a multilevel element death option to simulate the crack wake. To speed up computation, the hierarchical polytree scheme is used to reorganize the global stiffness inversion process. In addition to developing the various features of the scheme, the accuracy of predictions for various crack lengths is also benchmarked. Part 2 extends the scheme to multiple crack problems. Extensive benchmarking is also presented to verify the scheme.

  19. Analysis of Network Address Shuffling as a Moving Target Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Crouse, Michael B.; Fulp, Errin W.

    2014-06-10

    Address shuffling is a type of moving target defense that prevents an attacker from reliably contacting a system by periodically remapping network addresses. Although limited testing has demonstrated it to be effective, little research has been conducted to examine the theoretical limits of address shuffling. As a result, it is difficult to understand how effective shuffling is and under what circumstances it is a viable moving target defense. This paper introduces probabilistic models that can provide insight into the performance of address shuffling. These models quantify the probability of attacker success in terms of network size, quantity of addresses scanned,more » quantity of vulnerable systems, and the frequency of shuffling. Theoretical analysis will show that shuffling is an acceptable defense if there is a small population of vulnerable systems within a large network address space, however shuffling has a cost for legitimate users. These results will also be shown empirically using simulation and actual traffic traces.« less

  20. Coaching Ourselves to Perform Multiplicity and Advocacy: A Response to Stephens and Mills

    ERIC Educational Resources Information Center

    Cahnmann-Taylor, Melisa

    2014-01-01

    Cahnmann-Taylor draws on Boalian Theatre of the Oppressed to offer a practice for literacy teachers and coaches that can open up multiple perspectives and multiple levels of intentions and motivations for a teacher's decision making. She challenges coaches and teachers to engage in artistic examinations of multiplicity to move toward performing…

  1. Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish

    PubMed Central

    Bianco, Isaac H.; Kampff, Adam R.; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  2. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  3. Motion tracing system for ultrasound guided HIFU

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Jiang, Tingyi; Corner, George; Huang, Zhihong

    2017-03-01

    One main limitation in HIFU treatment is the abdominal movement in liver and kidney caused by respiration. The study has set up a tracking model which mainly compromises of a target carrying box and a motion driving balloon. A real-time B-mode ultrasound guidance method suitable for tracking of the abdominal organ motion in 2D was established and tested. For the setup, the phantoms mimicking moving organs are carefully prepared with agar surrounding round-shaped egg-white as the target of focused ultrasound ablation. Physiological phantoms and animal tissues are driven moving reciprocally along the main axial direction of the ultrasound image probe with slightly motion perpendicular to the axial direction. The moving speed and range could be adjusted by controlling the inflation and deflation speed and amount of the balloon driven by a medical ventilator. A 6-DOF robotic arm was used to position the focused ultrasound transducer. The overall system was trying to estimate to simulate the actual movement caused by human respiration. HIFU ablation experiments using phantoms and animal organs were conducted to test the tracking effect. Ultrasound strain elastography was used to post estimate the efficiency of the tracking algorithms and system. In moving state, the axial size of the lesion (perpendicular to the movement direction) are averagely 4mm, which is one third larger than the lesion got when the target was not moving. This presents the possibility of developing a low-cost real-time method of tracking organ motion during HIFU treatment in liver or kidney.

  4. A robust approach towards unknown transformation, regional adjacency graphs, multigraph matching, segmentation video frames from unnamed aerial vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Gohatre, Umakant Bhaskar; Patil, Venkat P.

    2018-04-01

    In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.

  5. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    NASA Astrophysics Data System (ADS)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  6. Backscattering from targets residing in caustics resulting from ocean boundary interactions

    NASA Astrophysics Data System (ADS)

    Dzikowicz, Benjamin R.; Marston, Philip L.

    2005-04-01

    Detection of targets by backscatter in shallow water can be enhanced by interactions with ocean boundaries. A laboratory experiment is performed where a spherical target passes through an Airy caustic formed by a curved surface. When the target resides in the insonified region of the caustic there are two sets of multi-path rays: two pairs reflecting once off the surface (either to or from the target), and three reflecting twice off the surface (to and from the target). When a target moves across the caustic the singly reflected rays merge, as do the doubly reflected. With a longer tone burst the rays in each set overlap and the backscatter is greatly enhanced as the target moves into the insonified region. For a point target the singly reflected backscatter scales as an Airy function [B. R. Dzikowicz and P. L. Marston, J. Acoust. Soc. Am. 116, 2751-2757 (2004)], and the doubly reflected as the square of an Airy function. For a finite target the doubly reflected backscatter unfolds into a hyperbolic umbilic function. The arguments of the Airy and Hyperbolic Umbilic functions are calculated using the relative echo times of transient pulses. [Work supported by ONR.

  7. Effects of video compression on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Cha, Jae; Preece, Bradley

    2008-04-01

    The bandwidth requirements of modern target acquisition systems continue to increase with larger sensor formats and multi-spectral capabilities. To obviate this problem, still and moving imagery can be compressed, often resulting in greater than 100 fold decrease in required bandwidth. Compression, however, is generally not error-free and the generated artifacts can adversely affect task performance. The U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate recently performed an assessment of various compression techniques on static imagery for tank identification. In this paper, we expand this initial assessment by studying and quantifying the effect of various video compression algorithms and their impact on tank identification performance. We perform a series of controlled human perception tests using three dynamic simulated scenarios: target moving/sensor static, target static/sensor static, sensor tracking the target. Results of this study will quantify the effect of video compression on target identification and provide a framework to evaluate video compression on future sensor systems.

  8. An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets.

    PubMed

    Bradley, Stuart

    2015-11-20

    Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an "actuator" interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator "firings") to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a "cost function" is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs.

  9. Self-organizing team formation for target observation

    NASA Astrophysics Data System (ADS)

    Bowyer, Richard S.; Bogner, Robert E.

    2001-08-01

    Target observation is a problem where the application of multiple sensors can improve the probability of detection and observation of the target. Team formation is one method by which seemingly unsophisticated heterogeneous sensors may be organized to achieve a coordinated observation system. The sensors, which we shall refer to as agents, are situated in an area of interest with the goal of observing a moving target. We apply a team approach to this problem, which combines the strengths of individual agents into a cohesive entity - the team. In autonomous systems, the mechanisms that underlie the formation of a team are of interest. Teams may be formed by various mechanisms, which include an externally imposed grouping of agents, or an internally, self-organized (SO) grouping of agents. Internally motivated mechanisms are particularly challenging, but offer the benefit of being unsupervised, an important quality for groups of autonomous cooperating machines. This is the focus of our research. By studying natural systems such as colonies of ants, we obtain insight into these mechanisms of self organization. We propose that the team is an expression of a distributed agent-self, and that a particular realization of the agent-self exists, whilst the environmental conditions are conducive to that existence. We describe an algorithms for agent team formation that is inspired by the self-organizing behavior of ants, and describe simulation results for team formation amongst a lattice of networked sensors.

  10. Multi-static MIMO along track interferometry (ATI)

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2016-05-01

    Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.

  11. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks.

    PubMed

    Zhang, Qingguo; Fok, Mable P

    2017-01-09

    Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate's target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate's target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage-distance rate and the number of moved mobile sensors, when compare with other approaches.

  12. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks

    PubMed Central

    Zhang, Qingguo; Fok, Mable P.

    2017-01-01

    Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches. PMID:28075365

  13. Reconnaissance of Young M Dwarfs: Locating the Elusive Majority of Nearby Moving Groups

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan; Liu, Michael; Riaz, Basmah; Gizis, John; Shkolnik, Evgenya

    2013-08-01

    With ages between ~8-120 Myr and distances lsim;80 pc, young moving group members make excellent targets for detailed studies of pre-main sequence evolution and exoplanet imaging surveys. We propose a multi-semester spectroscopic program to confirm our sample of ~1300 X-ray-selected active M dwarfs, about one-third of which are expected to be members of young moving groups. Our program consists of three parts: a reconnaissance phase of low-resolution spectroscopy to vet unlikely association members, radial velocity observations to confirm group membership, and deep adaptive optics imaging to study the architecture and demographics of giant planets around low-mass stars. We will also exploit our rich sample to study the evolution of chromospheric and coronal activity in low-mass stars with unprecedented precision. Altogether, this program will roughly double the population of M dwarfs in young moving groups, providing new targets for a broad range of star and planet formation studies in the near-future.

  14. Random walk of passive tracers among randomly moving obstacles.

    PubMed

    Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco

    2016-04-14

    This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.

  15. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.

    PubMed

    Bastian, A J; Martin, T A; Keating, J G; Thach, W T

    1996-07-01

    1. We studied seven subjects with cerebellar lesions and seven control subjects as they made reaching movements in the sagittal plane to a target directly in front of them. Reaches were made under three different conditions: 1) "slow-accurate," 2) "fast-accurate," and 3) "fast as possible." All subjects were videotaped moving in a sagittal plane with markers on the index finger, wrist, elbow, and shoulder. Marker positions were digitized and then used to calculate joint angles. For each of the shoulder, elbow and wrist joints, inverse dynamics equations based on a three-segment limb model were used to estimate the net torque (sum of components) and each of the component torques. The component torques consisted of the torque due to gravity, the dynamic interaction torques induced passively by the movement of the adjacent joint, and the torque produced by the muscles and passive tissue elements (sometimes called "residual" torque). 2. A kinematic analysis of the movement trajectory and the change in joint angles showed that the reaches of subjects with cerebellar lesions were abnormal compared with reaches of control subjects. In both the slow-accurate and fast-accurate conditions the cerebellar subjects made abnormally curved wrist paths; the curvature was greater in the slow-accurate condition. During the slow-accurate condition, cerebellar subjects showed target undershoot and tended to move one joint at a time (decomposition). During the fast-accurate reaches, the cerebellar subjects showed target overshoot. Additionally, in the fast-accurate condition, cerebellar subjects moved the joints at abnormal rates relative to one another, but the movements were less decomposed. Only three subjects were tested in the fast as possible condition; this condition was analyzed only to determine maximal reaching speeds of subjects with cerebellar lesions. Cerebellar subjects moved more slowly than controls in all three conditions. 3. A kinetic analysis of torques generated at each joint during the slow-accurate reaches and the fast-accurate reaches revealed that subjects with cerebellar lesions produced very different torque profiles compared with control subjects. In the slow-accurate condition, the cerebellar subjects produced abnormal elbow muscle torques that prevented the normal elbow extension early in the reach. In the fast-accurate condition, the cerebellar subjects produced inappropriate levels of shoulder muscle torque and also produced elbow muscle torques that did not very appropriately with the dynamic interaction torques that occurred at the elbow. Lack of appropriate muscle torque resulted in excessive contributions of the dynamic interaction torque during the fast-accurate reaches. 4. The inability to produce muscle torques that predict, accommodate, and compensate for the dynamic interaction torques appears to be an important cause of the classic kinematic deficits shown by cerebellar subjects during attempted reaching. These kinematic deficits include incoordination of the shoulder and the elbow joints, a curved trajectory, and overshoot. In the fast-accurate condition, cerebellar subjects often made inappropriate muscle torques relative to the dynamic interaction torques. Because of this, interaction torques often determined the pattern of incoordination of the elbow and shoulder that produced the curved trajectory and target overshoot. In the slow-accurate condition, we reason that the cerebellar subjects may use a decomposition strategy so as to simplify the movement and not have to control both joints simultaneously. From these results, we suggest that a major role of the cerebellum is in generating muscle torques at a joint that will predict the interaction torques being generated by other moving joints and compensate for them as they occur.

  16. Research and Development in Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A report in the form of lecture slides summarizes the optical-communications program of NASA s Jet Propulsion Laboratory (JPL) and describes the JPL Optical Communications Telescope Laboratory (OCTL) and its role in the program. The purpose of the program is to develop equipment and techniques for laser communication between (1) ground stations and (2) spacecraft (both near Earth and in deep space) and aircraft. The OCTL is an astronomical- style telescope facility that includes a 1-m-diameter, 75.8-m-focal length telescope in an elevation/azimuth mount, plus optical and electronic subsystems for tracking spacecraft and aircraft, receiving laser signals from such moving targets, and transmitting high-power laser signals to such targets. Near-term research at the OCTL is expected to focus on mitigating the effects of atmospheric scintillation on uplinks and on beacon-assisted tracking of ground stations by stations in deep space. Near-term experiments are expected to be performed with retroreflector-equipped aircraft and Earth-orbiting spacecraft techniques to test mathematical models of propagation of laser beams, multiple-beam strategies to mitigate uplink scintillation, and pointing and tracking accuracy of the telescope.

  17. KSC-04pd1684

    NASA Image and Video Library

    2004-07-16

    KENNEDY SPACE CENTER, FLA. - An artist’s conception of the autonomous Demonstration for Autonomous Rendezvous (DART) spacecraft as it approaches the Multiple Paths, Beyond-Line-of-Site Communications (MUBLCOM) satellite. NASA is testing the DART as a docking system for next generation vehicles to guide spacecraft carrying cargo or equipment to the International Space Station, or retrieving or servicing satellites in orbit. Before the new system can be implemented on piloted spacecraft, it has to be tested in space. The computer-guided DART is equipped with an Advanced Video Guidance Sensor and a Global Positioning System that can receive signals from other spacecraft to allow DART to move within 330 feet of the target. DART is scheduled to launch from Vandenberg Air Force Base in California no earlier than Oct. 18. It will be released from a Pegasus XL launch vehicle carried aloft by an Orbital Sciences Corporation aircraft. The fourth stage of the Pegasus rocket will remain attached as an integral part of the spacecraft, allowing it to maneuver in space. Once in orbit, DART will race toward the target, the MUBLCOM satellite, for a rendezvous.

  18. KSC-04pd1686

    NASA Image and Video Library

    2004-07-16

    KENNEDY SPACE CENTER, FLA. - An artist’s conception of the autonomous Demonstration for Autonomous Rendezvous (DART) spacecraft as it approaches the Multiple Paths, Beyond-Line-of-Site Communications (MUBLCOM) satellite. NASA is testing the DART as a docking system for next generation vehicles to guide spacecraft carrying cargo or equipment to the International Space Station, or retrieving or servicing satellites in orbit. Before the new system can be implemented on piloted spacecraft, it has to be tested in space. The computer-guided DART is equipped with an Advanced Video Guidance Sensor and a Global Positioning System that can receive signals from other spacecraft to allow DART to move within 330 feet of the target. DART is scheduled to launch from Vandenberg Air Force Base in California no earlier than Oct. 18. It will be released from a Pegasus XL launch vehicle carried aloft by an Orbital Sciences Corporation aircraft. The fourth stage of the Pegasus rocket will remain attached as an integral part of the spacecraft, allowing it to maneuver in space. Once in orbit, DART will race toward the target, the MUBLCOM satellite, for a rendezvous.

  19. KSC-04pd1685

    NASA Image and Video Library

    2004-07-16

    KENNEDY SPACE CENTER, FLA. - An artist’s conception of the autonomous Demonstration for Autonomous Rendezvous (DART) spacecraft as it approaches the Multiple Paths, Beyond-Line-of-Site Communications (MUBLCOM) satellite. NASA is testing the DART as a docking system for next generation vehicles to guide spacecraft carrying cargo or equipment to the International Space Station, or retrieving or servicing satellites in orbit. Before the new system can be implemented on piloted spacecraft, it has to be tested in space. The computer-guided DART is equipped with an Advanced Video Guidance Sensor and a Global Positioning System that can receive signals from other spacecraft to allow DART to move within 330 feet of the target. DART is scheduled to launch from Vandenberg Air Force Base in California no earlier than Oct. 18. It will be released from a Pegasus XL launch vehicle carried aloft by an Orbital Sciences Corporation aircraft. The fourth stage of the Pegasus rocket will remain attached as an integral part of the spacecraft, allowing it to maneuver in space. Once in orbit, DART will race toward the target, the MUBLCOM satellite, for a rendezvous.

  20. The reductionist paradox: are the laws of chemistry and physics sufficient for the discovery of new drugs?

    PubMed

    Maggiora, Gerald M

    2011-08-01

    Reductionism is alive and well in drug-discovery research. In that tradition, we continually improve experimental and computational methods for studying smaller and smaller aspects of biological systems. Although significant improvements continue to be made, are our efforts too narrowly focused? Suppose all error could be removed from these methods, would we then understand biological systems sufficiently well to design effective drugs? Currently, almost all drug research focuses on single targets. Should the process be expanded to include multiple targets? Recent efforts in this direction have lead to the emerging field of polypharmacology. This appears to be a move in the right direction, but how much polypharmacology is enough? As the complexity of the processes underlying polypharmacology increase will we be able to understand them and their inter-relationships? Is "new" mathematics unfamiliar in much of physics and chemistry research needed to accomplish this task? A number of these questions will be addressed in this paper, which focuses on issues and questions not answers to the drug-discovery conundrum.

  1. Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks.

    PubMed

    Ebina, Teppei; Masamizu, Yoshito; Tanaka, Yasuhiro R; Watakabe, Akiya; Hirakawa, Reiko; Hirayama, Yuka; Hira, Riichiro; Terada, Shin-Ichiro; Koketsu, Daisuke; Hikosaka, Kazuo; Mizukami, Hiroaki; Nambu, Atsushi; Sasaki, Erika; Yamamori, Tetsuo; Matsuzaki, Masanori

    2018-05-14

    Two-photon imaging in behaving animals has revealed neuronal activities related to behavioral and cognitive function at single-cell resolution. However, marmosets have posed a challenge due to limited success in training on motor tasks. Here we report the development of protocols to train head-fixed common marmosets to perform upper-limb movement tasks and simultaneously perform two-photon imaging. After 2-5 months of training sessions, head-fixed marmosets can control a manipulandum to move a cursor to a target on a screen. We conduct two-photon calcium imaging of layer 2/3 neurons in the motor cortex during this motor task performance, and detect task-relevant activity from multiple neurons at cellular and subcellular resolutions. In a two-target reaching task, some neurons show direction-selective activity over the training days. In a short-term force-field adaptation task, some neurons change their activity when the force field is on. Two-photon calcium imaging in behaving marmosets may become a fundamental technique for determining the spatial organization of the cortical dynamics underlying action and cognition.

  2. Multiscale modeling methods in biomechanics.

    PubMed

    Bhattacharya, Pinaki; Viceconti, Marco

    2017-05-01

    More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. WIREs Syst Biol Med 2017, 9:e1375. doi: 10.1002/wsbm.1375 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  3. Real-time object detection, tracking and occlusion reasoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divakaran, Ajay; Yu, Qian; Tamrakar, Amir

    A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.

  4. Biological corridors and connectivity [Chapter 21

    Treesearch

    Samuel A. Cushman; Brad McRae; Frank Adriaensen; Paul Beier; Mark Shirley; Kathy Zeller

    2013-01-01

    The ability of individual animals to move across complex landscapes is critical for maintaining regional populations in the short term (Fahrig 2003; Cushman 2006), and for species to shift their geographic range in response to climate change (Heller & Zavaleta 2009). As organisms move through spatially complex landscapes, they respond to multiple...

  5. Building Bridges: Transitions from Elementary to Secondary School

    ERIC Educational Resources Information Center

    Tilleczek, Kate

    2008-01-01

    Most young people leave elementary school and move into some form of secondary school during early adolescence. At precisely the time that young people are navigating multiple developmental challenges (social, intellectual, academic, physical), they are expected to move between these intuitions of public education. The transition is commonly…

  6. Searching Dynamic Agents with a Team of Mobile Robots

    PubMed Central

    Juliá, Miguel; Gil, Arturo; Reinoso, Oscar

    2012-01-01

    This paper presents a new algorithm that allows a team of robots to cooperatively search for a set of moving targets. An estimation of the areas of the environment that are more likely to hold a target agent is obtained using a grid-based Bayesian filter. The robot sensor readings and the maximum speed of the moving targets are used in order to update the grid. This representation is used in a search algorithm that commands the robots to those areas that are more likely to present target agents. This algorithm splits the environment in a tree of connected regions using dynamic programming. This tree is used in order to decide the destination for each robot in a coordinated manner. The algorithm has been successfully tested in known and unknown environments showing the validity of the approach. PMID:23012519

  7. Searching dynamic agents with a team of mobile robots.

    PubMed

    Juliá, Miguel; Gil, Arturo; Reinoso, Oscar

    2012-01-01

    This paper presents a new algorithm that allows a team of robots to cooperatively search for a set of moving targets. An estimation of the areas of the environment that are more likely to hold a target agent is obtained using a grid-based Bayesian filter. The robot sensor readings and the maximum speed of the moving targets are used in order to update the grid. This representation is used in a search algorithm that commands the robots to those areas that are more likely to present target agents. This algorithm splits the environment in a tree of connected regions using dynamic programming. This tree is used in order to decide the destination for each robot in a coordinated manner. The algorithm has been successfully tested in known and unknown environments showing the validity of the approach.

  8. Barriers and dispersal surfaces in minimum-time interception. [for optimizing aircraft flight paths

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Ardema, M. D.

    1984-01-01

    A method is proposed for mapping the barrier, dispersal, and control-level surfaces for a class of minimum-time interception and pursuit-evasion problems. Minimum-time interception of a target moving in a horizontal plane is formulated in a coordinate system whose origin is at the interceptor's terminal position and whose x-axis is along the terminal line of sight. This approach makes it possible to discuss the nature of the interceptor's extremals, using its extremal trajectory maps (ETMs), independently of target motion. The game surfaces are constructed by drawing sections of the isochrones, or constant minimum-time loci, from the interceptor and target ETMs. In this way, feedback solutions for the optimal controls are obtained. An example involving the interception of a target moving in a straight line at constant speed is presented.

  9. Modeling peripheral vision for moving target search and detection.

    PubMed

    Yang, Ji Hyun; Huston, Jesse; Day, Michael; Balogh, Imre

    2012-06-01

    Most target search and detection models focus on foveal vision. In reality, peripheral vision plays a significant role, especially in detecting moving objects. There were 23 subjects who participated in experiments simulating target detection tasks in urban and rural environments while their gaze parameters were tracked. Button responses associated with foveal object and peripheral object (PO) detection and recognition were recorded. In an urban scenario, pedestrians appearing in the periphery holding guns were threats and pedestrians with empty hands were non-threats. In a rural scenario, non-U.S. unmanned aerial vehicles (UAVs) were considered threats and U.S. UAVs non-threats. On average, subjects missed detecting 2.48 POs among 50 POs in the urban scenario and 5.39 POs in the rural scenario. Both saccade reaction time and button reaction time can be predicted by peripheral angle and entrance speed of POs. Fast moving objects were detected faster than slower objects and POs appearing at wider angles took longer to detect than those closer to the gaze center. A second-order mixed-effect model was applied to provide each subject's prediction model for peripheral target detection performance as a function of eccentricity angle and speed. About half the subjects used active search patterns while the other half used passive search patterns. An interactive 3-D visualization tool was developed to provide a representation of macro-scale head and gaze movement in the search and target detection task. An experimentally validated stochastic model of peripheral vision in realistic target detection scenarios was developed.

  10. Reaching a Moveable Visual Target: Dissociations in Brain Tumour Patients

    ERIC Educational Resources Information Center

    Buiatti, Tania; Skrap, Miran; Shallice, Tim

    2013-01-01

    Damage to the posterior parietal cortex (PPC) can lead to Optic Ataxia (OA), in which patients misreach to peripheral targets. Recent research suggested that the PPC might be involved not only in simple reaching tasks toward peripheral targets, but also in changing the hand movement trajectory in real time if the target moves. The present study…

  11. Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.

    2013-01-01

    This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.

  12. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.

    PubMed

    Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun

    2018-05-08

    Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  13. Acoustic facilitation of object movement detection during self-motion

    PubMed Central

    Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.

    2011-01-01

    In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050

  14. Molecular Targeted Therapies Using Botanicals for Prostate Cancer Chemoprevention.

    PubMed

    Kumar, Nagi; Chornokur, Ganna

    2012-12-31

    In spite of the large number of botanicals demonstrating promise as potential cancer chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving botanical agents to recommendation for clinical use include adopting a systematic, molecular-target based approach and utilizing the same ethical and rigorous methods that are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in suitable cohorts, duration of intervention based on time to progression of pre-neoplastic disease to cancer and using a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must inform the design of clinical trials. Botanicals have been shown to influence multiple biochemical and molecular cascades that inhibit mutagenesis, proliferation, induce apoptosis, suppress the formation and growth of human cancers, thus modulating several hallmarks of carcinogenesis. These agents appear promising in their potential to make a dramatic impact in cancer prevention and treatment, with a significantly superior safety profile than most agents evaluated to date. The goal of this paper is to provide models of translational research based on the current evidence of promising botanicals with a specific focus on targeted therapies for PCa chemoprevention.

  15. Molecular Targeted Therapies Using Botanicals for Prostate Cancer Chemoprevention

    PubMed Central

    Kumar, Nagi; Chornokur, Ganna

    2014-01-01

    In spite of the large number of botanicals demonstrating promise as potential cancer chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving botanical agents to recommendation for clinical use include adopting a systematic, molecular-target based approach and utilizing the same ethical and rigorous methods that are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in suitable cohorts, duration of intervention based on time to progression of pre-neoplastic disease to cancer and using a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must inform the design of clinical trials. Botanicals have been shown to influence multiple biochemical and molecular cascades that inhibit mutagenesis, proliferation, induce apoptosis, suppress the formation and growth of human cancers, thus modulating several hallmarks of carcinogenesis. These agents appear promising in their potential to make a dramatic impact in cancer prevention and treatment, with a significantly superior safety profile than most agents evaluated to date. The goal of this paper is to provide models of translational research based on the current evidence of promising botanicals with a specific focus on targeted therapies for PCa chemoprevention. PMID:24527269

  16. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  17. I saw where you have been--The topography of human demonstration affects dogs' search patterns and perseverative errors.

    PubMed

    Péter, András; Topál, József; Miklósi, Ádám; Pongrácz, Péter

    2016-04-01

    Performance in object search tasks is not only influenced by the subjects' object permanence ability. For example, ostensive cues of the human manipulating the target markedly affect dogs' choices. However, the interference between the target's location and the spatial cues of the human hiding the object is still unknown. In a five-location visible displacement task, the experimental groups differed in the hiding route of the experimenter. In the 'direct' condition he moved straight towards the actual location, hid the object and returned to the dog. In the 'indirect' conditions, he additionally walked behind each screen before returning. The two 'indirect' conditions differed from each other in that the human either visited the previously baited locations before (proactive interference) or after (retroactive interference) hiding the object. In the 'indirect' groups, dogs' performance was significantly lower than in the 'direct' group, demonstrating that for dogs, in an ostensive context, spatial cues of the hider are as important as the observed location of the target. Based on their incorrect choices, dogs were most attracted to the previously baited locations that the human visited after hiding the object in the actual trial. This underlines the importance of retroactive interference in multiple choice tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Moving to the National Curriculum.

    ERIC Educational Resources Information Center

    O'Shaughnessy, Martin

    1994-01-01

    Reflects the experience of teachers who attended a course on managing change. They used their new knowledge to introduce change in their own teaching or their own departments. Successful change implementation requires agreement on the change target(s), starting with a small, manageable target, and monitoring of the resulting change. (one…

  19. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  20. Bias estimation for moving optical sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2014-06-01

    Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  1. Quasi-steady state reduction of molecular motor-based models of directed intermittent search.

    PubMed

    Newby, Jay M; Bressloff, Paul C

    2010-10-01

    We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets.

  2. Motion coherence and conjunction search: implications for guided search theory.

    PubMed

    Driver, J; McLeod, P; Dienes, Z

    1992-01-01

    Feature integration theory has recently been revised with two proposals that visual conjunction search can be parallel under some circumstances--either because items with nontarget features are inhibited, or because items with target features are excited. We examined whether excitatory or inhibitory guidance controlled conjunction search for an X oscillating in one direction among Os oscillating in that direction and Xs oscillating in another. Search was affected by whether items oscillated in phase with each other, and it was exceptionally difficult when items with target motion moved out of phase with each other and items with nontarget motion moved out of phase. The results suggest that conjunction search can be guided both by excitation of target features and by inhibition of nontarget features.

  3. Dynamic time-correlated single-photon counting laser ranging

    NASA Astrophysics Data System (ADS)

    Peng, Huan; Wang, Yu-rong; Meng, Wen-dong; Yan, Pei-qin; Li, Zhao-hui; Li, Chen; Pan, Hai-feng; Wu, Guang

    2018-03-01

    We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.

  4. Development of a four-axis moving phantom for patient-specific QA of surrogate signal-based tracking IMRT.

    PubMed

    Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Akimoto, Mami; Miyabe, Yuki; Yokota, Kenji; Kaneko, Shuji; Nakamura, Akira; Itasaka, Satoshi; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2016-12-01

    The purposes of this study were two-fold: first, to develop a four-axis moving phantom for patient-specific quality assurance (QA) in surrogate signal-based dynamic tumor-tracking intensity-modulated radiotherapy (DTT-IMRT), and second, to evaluate the accuracy of the moving phantom and perform patient-specific dosimetric QA of the surrogate signal-based DTT-IMRT. The four-axis moving phantom comprised three orthogonal linear actuators for target motion and a fourth one for surrogate motion. The positional accuracy was verified using four laser displacement gauges under static conditions (±40 mm displacements along each axis) and moving conditions [eight regular sinusoidal and fourth-power-of-sinusoidal patterns with peak-to-peak motion ranges (H) of 10-80 mm and a breathing period (T) of 4 s, and three irregular respiratory patterns with H of 1.4-2.5 mm in the left-right, 7.7-11.6 mm in the superior-inferior, and 3.1-4.2 mm in the anterior-posterior directions for the target motion, and 4.8-14.5 mm in the anterior-posterior direction for the surrogate motion, and T of 3.9-4.9 s]. Furthermore, perpendicularity, defined as the vector angle between any two axes, was measured using an optical measurement system. The reproducibility of the uncertainties in DTT-IMRT was then evaluated. Respiratory motions from 20 patients acquired in advance were reproduced and compared three-dimensionally with the originals. Furthermore, patient-specific dosimetric QAs of DTT-IMRT were performed for ten pancreatic cancer patients. The doses delivered to Gafchromic films under tracking and moving conditions were compared with those delivered under static conditions without dose normalization. Positional errors of the moving phantom under static and moving conditions were within 0.05 mm. The perpendicularity of the moving phantom was within 0.2° of 90°. The differences in prediction errors between the original and reproduced respiratory motions were -0.1 ± 0.1 mm for the lateral direction, -0.1 ± 0.2 mm for the superior-inferior direction, and -0.1 ± 0.1 mm for the anterior-posterior direction. The dosimetric accuracy showed significant improvements, of 92.9% ± 4.0% with tracking versus 69.8% ± 7.4% without tracking, in the passing rates of γ with the criterion of 3%/1 mm (p < 0.001). Although the dosimetric accuracy of IMRT without tracking showed a significant negative correlation with the 3D motion range of the target (r = - 0.59, p < 0.05), there was no significant correlation for DTT-IMRT (r = 0.03, p = 0.464). The developed four-axis moving phantom had sufficient accuracy to reproduce patient respiratory motions, allowing patient-specific QA of the surrogate signal-based DTT-IMRT under realistic conditions. Although IMRT without tracking decreased the dosimetric accuracy as the target motion increased, the DTT-IMRT achieved high dosimetric accuracy.

  5. Moving Toward Trustworthy Systems: R&D Essentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, Frederick T; Vishik, Claire

    2010-01-01

    Under the game-change metaphor, strate- gies developed to address hard problems will potentially lead to breakthroughs in many different interrelated cybersecuri- ty areas. For software assurance, a game change should focus on improving resil- iency and hardening new technologies that implement moving-target defenses aInd tailored trustworthy spaces.

  6. A new approach to increase the two-dimensional detection probability of CSI algorithm for WAS-GMTI mode

    NASA Astrophysics Data System (ADS)

    Yan, H.; Zheng, M. J.; Zhu, D. Y.; Wang, H. T.; Chang, W. S.

    2015-07-01

    When using clutter suppression interferometry (CSI) algorithm to perform signal processing in a three-channel wide-area surveillance radar system, the primary concern is to effectively suppress the ground clutter. However, a portion of moving target's energy is also lost in the process of channel cancellation, which is often neglected in conventional applications. In this paper, we firstly investigate the two-dimensional (radial velocity dimension and squint angle dimension) residual amplitude of moving targets after channel cancellation with CSI algorithm. Then, a new approach is proposed to increase the two-dimensional detection probability of moving targets by reserving the maximum value of the three channel cancellation results in non-uniformly spaced channel system. Besides, theoretical expression of the false alarm probability with the proposed approach is derived in the paper. Compared with the conventional approaches in uniformly spaced channel system, simulation results validate the effectiveness of the proposed approach. To our knowledge, it is the first time that the two-dimensional detection probability of CSI algorithm is studied.

  7. Study of moving object detecting and tracking algorithm for video surveillance system

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Rongfu

    2010-10-01

    This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.

  8. Perceived causality, force, and resistance in the absence of launching.

    PubMed

    Hubbard, Timothy L; Ruppel, Susan E

    2017-04-01

    In the launching effect, a moving object (the launcher) contacts a stationary object (the target), and upon contact, the launcher stops and the target begins moving in the same direction and at the same or slower velocity as previous launcher motion (Michotte, 1946/1963). In the study reported here, participants viewed a modified launching effect display in which the launcher stopped before or at the moment of contact and the target remained stationary. Participants rated perceived causality, perceived force, and perceived resistance of the launcher on the target or the target on the launcher. For launchers and for targets, increases in the size of the spatial gap between the final location of the launcher and the location of the target decreased ratings of perceived causality and ratings of perceived force and increased ratings of perceived resistance. Perceived causality, perceived force, and perceived resistance exhibited gradients or fields extending from the launcher and from the target and were not dependent upon contact of the launcher and target. Causal asymmetries and force asymmetries reported in previous studies did not occur, and this suggests that such asymmetries might be limited to typical launching effect stimuli. Deviations from Newton's laws of motion are noted, and the existence of separate radii of action extending from the launcher and from the target is suggested.

  9. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task.

    PubMed

    Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary

    2013-01-16

    Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time.

  10. Ships and Maritime Targets Observation Campaigns Using Available C- and X-Band SAR Satellite

    NASA Astrophysics Data System (ADS)

    Velotto, Domenico; Bentes, Carlos; Lehner, Susanne

    2015-04-01

    Obviously, radar resolution and swath width are two very important factors when it comes to synthetic aperture radar (SAR) maritime targets detections. The dilemma of using single polarization SAR imagery with higher resolution and coverage or quad- (or dual- polarimetric) imagery with its richness of information, is still unsolved when it comes to this application.In the framework of ESA project MARISS and EU project DOLPHIN, in situ campaigns aimed at solving this dilemma have been carried out. Single and multi- polarimetric SAR data acquired by TerraSAR-X, RADARSAT-2 and COSMO-SkyMed have been acquired with close time gaps and partial coverage overlap. In this way several moving and non-moving maritime targets have been imaged with different polarization, geometry and working frequency. Available ground truth reports provided by Automatic Identification System (AIS) data, nautical chart and wind farm location are used to validate the different types of maritime targets.

  11. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task

    PubMed Central

    Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary

    2013-01-01

    Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time. PMID:23325347

  12. Efficient moving target analysis for inverse synthetic aperture radar images via joint speeded-up robust features and regular moment

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Su, Fulin

    2018-01-01

    We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.

  13. Dual gated PET/CT imaging of small targets of the heart: method description and testing with a dynamic heart phantom.

    PubMed

    Kokki, Tommi; Sipilä, Hannu T; Teräs, Mika; Noponen, Tommi; Durand-Schaefer, Nicolas; Klén, Riku; Knuuti, Juhani

    2010-01-01

    In PET imaging respiratory and cardiac contraction motions interfere the imaging of heart. The aim was to develop and evaluate dual gating method for improving the detection of small targets of the heart. The method utilizes two independent triggers which are sent periodically into list mode data based on respiratory and ECG cycles. An algorithm for generating dual gated segments from list mode data was developed. The test measurements showed that rotational and axial movements of point source can be separated spatially to different segments with well-defined borders. The effect of dual gating on detection of small moving targets was tested with a moving heart phantom. Dual gated images showed 51% elimination (3.6 mm out of 7.0 mm) of contraction motion of hot spot (diameter 3 mm) and 70% elimination (14 mm out of 20 mm) of respiratory motion. Averaged activity value of hot spot increases by 89% when comparing to non-gated images. Patient study of suspected cardiac sarcoidosis shows sharper spatial myocardial uptake profile and improved detection of small myocardial structures such as papillary muscles. The dual gating method improves detection of small moving targets in a phantom and it is feasible in clinical situations.

  14. Photonic Doppler velocimetry lens array probe incorporating stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2015-09-01

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  15. The effects of family, school, and classroom ecologies on changes in children's social competence and emotional and behavioral problems in first grade.

    PubMed

    Hoglund, Wendy L; Leadbeater, Bonnie J

    2004-07-01

    This study tested the independent and interactive influences of classroom (concentrations of peer prosocial behaviors and victimization), family (household moves, mothers' education), and school (proportion of students receiving income assistance) ecologies on changes in children's social competence (e.g., interpersonal skills, leadership abilities), emotional problems (e.g., anxious, withdrawn behaviors), and behavioral problems (e.g., disruptiveness, aggressiveness) in first grade. Higher classroom concentrations of prosocial behaviors and victimization predicted increases in social competence, and greater school disadvantage predicted decreases. Multiple household moves and greater school disadvantage predicted increases in behavioral problems. Multiple household moves and low levels of mothers' education predicted increases in emotional problems for children in classrooms with few prosocial behaviors. Greater school disadvantage predicted increases in emotional problems for children in classrooms with low prosocial behaviors and high victimization. Policy implications of these findings are considered. Copyright 2004 APA, all rights reserved

  16. Chess players' eye movements reveal rapid recognition of complex visual patterns: Evidence from a chess-related visual search task.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2017-03-01

    To explore the perceptual component of chess expertise, we monitored the eye movements of expert and novice chess players during a chess-related visual search task that tested anecdotal reports that a key differentiator of chess skill is the ability to visualize the complex moves of the knight piece. Specifically, chess players viewed an array of four minimized chessboards, and they rapidly searched for the target board that allowed a knight piece to reach a target square in three moves. On each trial, there was only one target board (i.e., the "Yes" board), and for the remaining "lure" boards, the knight's path was blocked on either the first move (the "Easy No" board) or the second move (i.e., "the Difficult No" board). As evidence that chess experts can rapidly differentiate complex chess-related visual patterns, the experts (but not the novices) showed longer first-fixation durations on the "Yes" board relative to the "Difficult No" board. Moreover, as hypothesized, the task strongly differentiated chess skill: Reaction times were more than four times faster for the experts relative to novices, and reaction times were correlated with within-group measures of expertise (i.e., official chess ratings, number of hours of practice). These results indicate that a key component of chess expertise is the ability to rapidly recognize complex visual patterns.

  17. Synthetic aperture radar image formation for the moving-target and near-field bistatic cases

    NASA Astrophysics Data System (ADS)

    Ding, Yu

    This dissertation addresses topics in two areas of synthetic aperture radar (SAR) image formation: time-frequency based SAR imaging of moving targets and a fast backprojection (BP) algorithm for near-field bistatic SAR imaging. SAR imaging of a moving target is a challenging task due to unknown motion of the target. We approach this problem in a theoretical way, by analyzing the Wigner-Ville distribution (WVD) based SAR imaging technique. We derive approximate closed-form expressions for the point-target response of the SAR imaging system, which quantify the image resolution, and show how the blurring in conventional SAR imaging can be eliminated, while the target shift still remains. Our analyses lead to accurate prediction of the target position in the reconstructed images. The derived expressions also enable us to further study additional aspects of WVD-based SAR imaging. Bistatic SAR imaging is more involved than the monostatic SAR case, because of the separation of the transmitter and the receiver, and possibly the changing bistatic geometry. For near-field bistatic SAR imaging, we develop a novel fast BP algorithm, motivated by a newly proposed fast BP algorithm in computer tomography. First we show that the BP algorithm is the spatial-domain counterpart of the benchmark o -- k algorithm in bistatic SAR imaging, yet it avoids the frequency-domain interpolation in the o -- k algorithm, which may cause artifacts in the reconstructed image. We then derive the band-limited property for BP methods in both monostatic and bistatic SAR imaging, which is the basis for developing the fast BP algorithm. We compare our algorithm with other frequency-domain based algorithms, and show that it achieves better reconstructed image quality, while having the same computational complexity as that of the frequency-domain based algorithms.

  18. Management of three-dimensional intrafraction motion through real-time DMLC tracking.

    PubMed

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-05-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.

  19. Target- and Effect-Directed Actions towards Temporal Goals: Similar Mechanisms?

    ERIC Educational Resources Information Center

    Walter, Andrea M.; Rieger, Martina

    2012-01-01

    The goal of an action can consist of generating a change in the environment (to produce an effect) or changing one's own situation in the environment (to move to a physical target). To investigate whether the mechanisms of effect-directed and target-directed action control are similar, participants performed continuous reversal movements. They…

  20. Application of particle swarm optimization in path planning of mobile robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Cai, Feng; Wang, Ying

    2017-08-01

    In order to realize the optimal path planning of mobile robot in unknown environment, a particle swarm optimization algorithm based on path length as fitness function is proposed. The location of the global optimal particle is determined by the minimum fitness value, and the robot moves along the points of the optimal particles to the target position. The process of moving to the target point is done with MATLAB R2014a. Compared with the standard particle swarm optimization algorithm, the simulation results show that this method can effectively avoid all obstacles and get the optimal path.

  1. Multiplicity distributions of shower particles and target fragments in 84 Kr 36-emulsion interactions at 1 GeV per nucleon

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Soma, A. K.; Pathak, Ramji; Singh, V.

    2014-03-01

    This article focuses on multiplicity distributions of shower particles and target fragments for interaction of 84 Kr 36 with NIKFI BR-2 nuclear emulsion target at kinetic energy of 1 GeV per nucleon. Experimental multiplicity distributions of shower particles, grey particles, black particles and heavily ionization particles are well described by multi-component Erlang distribution of multi-source thermal model. We have observed a linear correlation in multiplicities for the above mentioned particles or fragments. Further experimental studies have shown a saturation phenomenon in shower particle multiplicity with the increase of target fragment multiplicity.

  2. Application of the System Identification Technique to Goal-Directed Saccades.

    DTIC Science & Technology

    1985-07-01

    Saccadic eye movements are among the fastest voluntary muscle movements the human body is capable of producing and are characterized by a rapid shift of gaze ...moving the target the same distance the eyeball moves. Collewijn and Van der Mark (9), in their study of the slow phase of optokinetic nystagmus , used

  3. Dealing with delays does not transfer across sensorimotor tasks.

    PubMed

    de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli

    2014-10-09

    It is known that people can learn to deal with delays between their actions and the consequences of such actions. We wondered whether they do so by adjusting their anticipations about the sensory consequences of their actions or whether they simply learn to move in certain ways when performing specific tasks. To find out, we examined details of how people learn to intercept a moving target with a cursor that follows the hand with a delay and examined the transfer of learning between this task and various other tasks that require temporal precision. Subjects readily learned to intercept the moving target with the delayed cursor. The compensation for the delay generalized across modifications of the task, so subjects did not simply learn to move in a certain way in specific circumstances. The compensation did not generalize to completely different timing tasks, so subjects did not generally expect the consequences of their motor commands to be delayed. We conclude that people specifically learn to control the delayed visual consequences of their actions to perform certain tasks. © 2014 ARVO.

  4. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.

    PubMed

    Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-05-01

    Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.

  5. A new moving strategy for the sequential Monte Carlo approach in optimizing the hydrological model parameters

    NASA Astrophysics Data System (ADS)

    Zhu, Gaofeng; Li, Xin; Ma, Jinzhu; Wang, Yunquan; Liu, Shaomin; Huang, Chunlin; Zhang, Kun; Hu, Xiaoli

    2018-04-01

    Sequential Monte Carlo (SMC) samplers have become increasing popular for estimating the posterior parameter distribution with the non-linear dependency structures and multiple modes often present in hydrological models. However, the explorative capabilities and efficiency of the sampler depends strongly on the efficiency in the move step of SMC sampler. In this paper we presented a new SMC sampler entitled the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which is well suited to handle unknown static parameters of hydrologic model. The PEM-SMC sampler is inspired by the works of Liang and Wong (2001) and operates by incorporating the strengths of the genetic algorithm, differential evolution algorithm and Metropolis-Hasting algorithm into the framework of SMC. We also prove that the sampler admits the target distribution to be a stationary distribution. Two case studies including a multi-dimensional bimodal normal distribution and a conceptual rainfall-runoff hydrologic model by only considering parameter uncertainty and simultaneously considering parameter and input uncertainty show that PEM-SMC sampler is generally superior to other popular SMC algorithms in handling the high dimensional problems. The study also indicated that it may be important to account for model structural uncertainty by using multiplier different hydrological models in the SMC framework in future study.

  6. Path planning and Ground Control Station simulator for UAV

    NASA Astrophysics Data System (ADS)

    Ajami, A.; Balmat, J.; Gauthier, J.-P.; Maillot, T.

    In this paper we present a Universal and Interoperable Ground Control Station (UIGCS) simulator for fixed and rotary wing Unmanned Aerial Vehicles (UAVs), and all types of payloads. One of the major constraints is to operate and manage multiple legacy and future UAVs, taking into account the compliance with NATO Combined/Joint Services Operational Environment (STANAG 4586). Another purpose of the station is to assign the UAV a certain degree of autonomy, via autonomous planification/replanification strategies. The paper is organized as follows. In Section 2, we describe the non-linear models of the fixed and rotary wing UAVs that we use in the simulator. In Section 3, we describe the simulator architecture, which is based upon interacting modules programmed independently. This simulator is linked with an open source flight simulator, to simulate the video flow and the moving target in 3D. To conclude this part, we tackle briefly the problem of the Matlab/Simulink software connection (used to model the UAV's dynamic) with the simulation of the virtual environment. Section 5 deals with the control module of a flight path of the UAV. The control system is divided into four distinct hierarchical layers: flight path, navigation controller, autopilot and flight control surfaces controller. In the Section 6, we focus on the trajectory planification/replanification question for fixed wing UAV. Indeed, one of the goals of this work is to increase the autonomy of the UAV. We propose two types of algorithms, based upon 1) the methods of the tangent and 2) an original Lyapunov-type method. These algorithms allow either to join a fixed pattern or to track a moving target. Finally, Section 7 presents simulation results obtained on our simulator, concerning a rather complicated scenario of mission.

  7. Unpacking the concept of land degradation neutrality and addressing its operation through the Rio Conventions.

    PubMed

    Akhtar-Schuster, Mariam; Stringer, Lindsay C; Erlewein, Alexander; Metternicht, Graciela; Minelli, Sara; Safriel, Uriel; Sommer, Stefan

    2017-06-15

    The world's commitment towards land degradation neutrality (LDN) became enshrined in various international agreements and decisions throughout the year 2015. The challenge now becomes one of addressing its operation, in order to achieve these new policy goals and targets by the year 2030. Advancing LDN demands attention to what the concept seeks to achieve, as well as unravelling the perspectives of the key multi-lateral environmental agreements through which progress can be made. The three Rio Conventions (the UN Convention to Combat Desertification (UNCCD), the UN Framework Convention on Climate Change (UNFCCC) and the Convention on Biological Diversity (CBD)) all play key roles in shaping the international LDN governance and implementation context. Their different but related foci create a number of challenges and opportunities for advancing LDN. In this paper we critically analyze the literature to elucidate potential challenges and opportunities in moving LDN towards implementation, considering the mandates and objectives of all three Rio Conventions. We first unpack the concept of LDN's aspirations. We highlight the importance of the definitions and terminology used, and the relationships between those definitions, terms and the actors using them, as well as their implications in framing the range of policy actions and synergies that could benefit progress towards multiple Sustainable Development Goals. We then examine the LDN pilot project spearheaded by the UNCCD to identify key lessons for LDN implementation. Synthesizing these lessons, we present a portfolio of blended interventions that seeks to address the aspirations of the UNCCD, UNFCCC and CBD in the LDN space, identifying synergistic options for national actions to move towards LDN. Overall, our analysis provides insights in advancing LDN from its current position as a policy target, towards synergetic action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  9. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  10. Supervisory Control of Remote Manipulation with Compensation for Moving Target.

    DTIC Science & Technology

    1980-07-21

    Continue on reveree aide if neceeary and Identify by block number) ’The aim of this project is to evaluate automatic compensation for moving tar- gets ...slave control. Operating manipulators in this way is a tiring job and the operator gets exhausted after j a short time of work. The use of the computer...THE MANIPULATION OF MOVING OBJECTS Undersea tasks done by human divers are getting more and more costly and hazardous as they have to be done at

  11. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    NASA Astrophysics Data System (ADS)

    Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.

    2014-11-01

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.

  12. Effects of Body Armor Fit on Marksmanship Performance

    DTIC Science & Technology

    2016-09-01

    center target also used in the single target task. TPs fired one shot per target, following the order of target engagement. They repeated firing in...quickly TPs moved from one target to the next. TPs were allowed as much time for their first shot as needed and therefore, shot accuracy for the...FIT ON MARKSMANSHIP PERFORMANCE by Hyeg Joo Choi* K. Blake Mitchell Todd Garlie Jay McNamara Edward Hennessy and Jeremy Carson *Author

  13. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Emission of charged particles from the surface of a moving target acted on by cw CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. I.; Petrov, A. L.; Shadrin, A. N.

    1990-06-01

    An experimental investigation was made of the emission of charged particles due to the irradiation of moving steel and graphite targets with cw CO2 laser radiation. The characteristics of the emission current signals were determined for different laser irradiation regimes. The maximum emission current density from the surface of a melt pool ( ~ 1.1 × 10 - 2 A/cm2) and the average temperature of the liquid metal (~ 2040 K) were measured for an incident radiation power density of 550 W and for horizontal and vertical target velocities of respectively ~ 1.5 mm/s and ~ 0.17 mm/s. The authors propose to utilize this phenomenon for monitoring the laser processing of materials.

  14. Testing a simplified method for measuring velocity integration in saccades using a manipulation of target contrast.

    PubMed

    Etchells, Peter J; Benton, Christopher P; Ludwig, Casimir J H; Gilchrist, Iain D

    2011-01-01

    A growing number of studies in vision research employ analyses of how perturbations in visual stimuli influence behavior on single trials. Recently, we have developed a method along such lines to assess the time course over which object velocity information is extracted on a trial-by-trial basis in order to produce an accurate intercepting saccade to a moving target. Here, we present a simplified version of this methodology, and use it to investigate how changes in stimulus contrast affect the temporal velocity integration window used when generating saccades to moving targets. Observers generated saccades to one of two moving targets which were presented at high (80%) or low (7.5%) contrast. In 50% of trials, target velocity stepped up or down after a variable interval after the saccadic go signal. The extent to which the saccade endpoint can be accounted for as a weighted combination of the pre- or post-step velocities allows for identification of the temporal velocity integration window. Our results show that the temporal integration window takes longer to peak in the low when compared to high contrast condition. By enabling the assessment of how information such as changes in velocity can be used in the programming of a saccadic eye movement on single trials, this study describes and tests a novel methodology with which to look at the internal processing mechanisms that transform sensory visual inputs into oculomotor outputs.

  15. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    NASA Astrophysics Data System (ADS)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  16. Selective attention in an insect visual neuron.

    PubMed

    Wiederman, Steven D; O'Carroll, David C

    2013-01-21

    Animals need attention to focus on one target amid alternative distracters. Dragonflies, for example, capture flies in swarms comprising prey and conspecifics, a feat that requires neurons to select one moving target from competing alternatives. Diverse evidence, from functional imaging and physiology to psychophysics, highlights the importance of such "competitive selection" in attention for vertebrates. Analogous mechanisms have been proposed in artificial intelligence and even in invertebrates, yet direct neural correlates of attention are scarce from all animal groups. Here, we demonstrate responses from an identified dragonfly visual neuron that perfectly match a model for competitive selection within limits of neuronal variability (r(2) = 0.83). Responses to individual targets moving at different locations within the receptive field differ in both magnitude and time course. However, responses to two simultaneous targets exclusively track those for one target alone rather than any combination of the pair. Irrespective of target size, contrast, or separation, this neuron selects one target from the pair and perfectly preserves the response, regardless of whether the "winner" is the stronger stimulus if presented alone. This neuron is amenable to electrophysiological recordings, providing neuroscientists with a new model system for studying selective attention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Evidence against a speed limit in multiple-object tracking.

    PubMed

    Franconeri, S L; Lin, J Y; Pylyshyn, Z W; Fisher, B; Enns, J T

    2008-08-01

    Everyday tasks often require us to keep track of multiple objects in dynamic scenes. Past studies show that tracking becomes more difficult as objects move faster. In the present study, we show that this trade-off may not be due to increased speed itself but may, instead, be due to the increased crowding that usually accompanies increases in speed. Here, we isolate changes in speed from variations in crowding, by projecting a tracking display either onto a small area at the center of a hemispheric projection dome or onto the entire dome. Use of the larger display increased retinal image size and object speed by a factor of 4 but did not increase interobject crowding. Results showed that tracking accuracy was equally good in the large-display condition, even when the objects traveled far into the visual periphery. Accuracy was also not reduced when we tested object speeds that limited performance in the small-display condition. These results, along with a reinterpretation of past studies, suggest that we might be able to track multiple moving objects as fast as we can a single moving object, once the effect of object crowding is eliminated.

  18. Object acquisition and tracking for space-based surveillance

    NASA Astrophysics Data System (ADS)

    1991-11-01

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase 1) and N00014-89-C-0015 (Phase 2). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processing into time dependent, object dependent, and data dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.

  19. Crawling and walking infants encounter objects differently in a multi-target environment.

    PubMed

    Dosso, Jill A; Boudreau, J Paul

    2014-10-01

    From birth, infants move their bodies in order to obtain information and stimulation from their environment. Exploratory movements are important for the development of an infant's understanding of the world and are well established as being key to cognitive advances. Newly acquired motor skills increase the potential actions available to the infant. However, the way that infants employ potential actions in environments with multiple potential targets is undescribed. The current work investigated the target object selections of infants across a range of self-produced locomotor experience (11- to 14-month-old crawlers and walkers). Infants repeatedly accessed objects among pairs of objects differing in both distance and preference status, some requiring locomotion. Overall, their object actions were found to be sensitive to object preference status; however, the role of object distance in shaping object encounters was moderated by movement status. Crawlers' actions appeared opportunistic and were biased towards nearby objects while walkers' actions appeared intentional and were independent of object position. Moreover, walkers' movements favoured preferred objects more strongly for children with higher levels of self-produced locomotion experience. The multi-target experimental situation used in this work parallels conditions faced by foraging organisms, and infants' behaviours were discussed with respect to optimal foraging theory. There is a complex interplay between infants' agency, locomotor experience, and environment in shaping their motor actions. Infants' movements, in turn, determine the information and experiences offered to infants by their micro-environment.

  20. Object acquisition and tracking for space-based surveillance. Final report, Dec 88-May 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-27

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase I) and N00014-89-C-0015 (Phase II). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processingmore » into time dependent, object-dependent, and data-dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.« less

  1. Effects of background motion on eye-movement information.

    PubMed

    Nakamura, S

    1997-02-01

    The effect of background stimulus on eye-movement information was investigated by analyzing the underestimation of the target velocity during pursuit eye movement (Aubert-Fleishl paradox). In the experiment, a striped pattern with various brightness contrasts and spatial frequencies was used as a background stimulus, which was moved at various velocities. Analysis showed that the perceived velocity of the pursuit target, which indicated the magnitudes of eye-movement information, decreased when the background stripes moved in the same direction as eye movement at higher velocities and increased when the background moved in the opposite direction. The results suggest that the eye-movement information varied as a linear function of the velocity of the motion of the background retinal image (optic flow). In addition, the effectiveness of optic flow on eye-movement information was determined by the attributes of the background stimulus such as the brightness contrast or the spatial frequency of the striped pattern.

  2. Multiple spatially localized dynamical states in friction-excited oscillator chains

    NASA Astrophysics Data System (ADS)

    Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.

    2018-03-01

    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.

  3. On applications of chimera grid schemes to store separation

    NASA Technical Reports Server (NTRS)

    Cougherty, F. C.; Benek, J. A.; Steger, J. L.

    1985-01-01

    A finite difference scheme which uses multiple overset meshes to simulate the aerodynamics of aircraft/store interaction and store separation is described. In this chimera, or multiple mesh, scheme, a complex configuration is mapped using a major grid about the main component of the configuration, and minor overset meshes are used to map each additional component such as a store. As a first step in modeling the aerodynamics of store separation, two dimensional inviscid flow calculations were carried out in which one of the minor meshes is allowed to move with respect to the major grid. Solutions of calibrated two dimensional problems indicate that allowing one mesh to move with respect to another does not adversely affect the time accuracy of an unsteady solution. Steady, inviscid three dimensional computations demonstrate the capability to simulate complex configurations, including closely packed multiple bodies.

  4. Robots, systems, and methods for hazard evaluation and visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximatemore » the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.« less

  5. Nicotinic Receptor Gene CHRNA4 Interacts with Processing Load in Attention

    PubMed Central

    Espeseth, Thomas; Sneve, Markus Handal; Rootwelt, Helge; Laeng, Bruno

    2010-01-01

    Background Pharmacological studies suggest that cholinergic neurotransmission mediates increases in attentional effort in response to high processing load during attention demanding tasks [1]. Methodology/Principal Findings In the present study we tested whether individual variation in CHRNA4, a gene coding for a subcomponent in α4β2 nicotinic receptors in the human brain, interacted with processing load in multiple-object tracking (MOT) and visual search (VS). We hypothesized that the impact of genotype would increase with greater processing load in the MOT task. Similarly, we predicted that genotype would influence performance under high but not low load in the VS task. Two hundred and two healthy persons (age range = 39–77, Mean = 57.5, SD = 9.4) performed the MOT task in which twelve identical circular objects moved about the display in an independent and unpredictable manner. Two to six objects were designated as targets and the remaining objects were distracters. The same observers also performed a visual search for a target letter (i.e. X or Z) presented together with five non-targets while ignoring centrally presented distracters (i.e. X, Z, or L). Targets differed from non-targets by a unique feature in the low load condition, whereas they shared features in the high load condition. CHRNA4 genotype interacted with processing load in both tasks. Homozygotes for the T allele (N = 62) had better tracking capacity in the MOT task and identified targets faster in the high load trials of the VS task. Conclusion The results support the hypothesis that the cholinergic system modulates attentional effort, and that common genetic variation can be used to study the molecular biology of cognition. PMID:21203548

  6. Dynamic sequence analysis of a decision making task of multielement target tracking and its usage as a learning method

    NASA Astrophysics Data System (ADS)

    Kang, Ziho

    This dissertation is divided into four parts: 1) Development of effective methods for comparing visual scanning paths (or scanpaths) for a dynamic task of multiple moving targets, 2) application of the methods to compare the scanpaths of experts and novices for a conflict detection task of multiple aircraft on radar screen, 3) a post-hoc analysis of other eye movement characteristics of experts and novices, and 4) finding out whether the scanpaths of experts can be used to teach the novices. In order to compare experts' and novices' scanpaths, two methods are developed. The first proposed method is the matrix comparisons using the Mantel test. The second proposed method is the maximum transition-based agglomerative hierarchical clustering (MTAHC) where comparisons of multi-level visual groupings are held out. The matrix comparison method was useful for a small number of targets during the preliminary experiment, but turned out to be inapplicable to a realistic case when tens of aircraft were presented on screen; however, MTAHC was effective with large number of aircraft on screen. The experiments with experts and novices on the aircraft conflict detection task showed that their scanpaths are different. The MTAHC result was able to explicitly show how experts visually grouped multiple aircraft based on similar altitudes while novices tended to group them based on convergence. Also, the MTAHC results showed that novices paid much attention to the converging aircraft groups even if they are safely separated by altitude; therefore, less attention was given to the actual conflicting pairs resulting in low correct conflict detection rates. Since the analysis showed the scanpath differences, experts' scanpaths were shown to novices in order to find out its effectiveness. The scanpath treatment group showed indications that they changed their visual movements from trajectory-based to altitude-based movements. Between the treatment and the non-treatment group, there were no significant differences in terms of number of correct detections; however, the treatment group made significantly fewer false alarms.

  7. Forward-backward multiplicity correlations of target fragments in nucleus-emulsion collisions at a few hundred MeV/u

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Li, Rong; Li, Jun-Sheng; Li, Hui-Ling

    2015-01-01

    The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV 4He, 290 A MeV 12C, 400 A MeV 12C, 400 A MeV 20Ne and 500 A MeV 56Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets.

  8. Multiple-block grid adaption for an airplane geometry

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid Samareh; Smith, Robert E.

    1988-01-01

    Grid-adaption methods are developed with the capability of moving grid points in accordance with several variables for a three-dimensional multiple-block grid system. These methods are algebraic, and they are implemented for the computation of high-speed flow over an airplane configuration.

  9. Track-Before-Detect Algorithm for Faint Moving Objects based on Random Sampling and Consensus

    NASA Astrophysics Data System (ADS)

    Dao, P.; Rast, R.; Schlaegel, W.; Schmidt, V.; Dentamaro, A.

    2014-09-01

    There are many algorithms developed for tracking and detecting faint moving objects in congested backgrounds. One obvious application is detection of targets in images where each pixel corresponds to the received power in a particular location. In our application, a visible imager operated in stare mode observes geostationary objects as fixed, stars as moving and non-geostationary objects as drifting in the field of view. We would like to achieve high sensitivity detection of the drifters. The ability to improve SNR with track-before-detect (TBD) processing, where target information is collected and collated before the detection decision is made, allows respectable performance against dim moving objects. Generally, a TBD algorithm consists of a pre-processing stage that highlights potential targets and a temporal filtering stage. However, the algorithms that have been successfully demonstrated, e.g. Viterbi-based and Bayesian-based, demand formidable processing power and memory. We propose an algorithm that exploits the quasi constant velocity of objects, the predictability of the stellar clutter and the intrinsically low false alarm rate of detecting signature candidates in 3-D, based on an iterative method called "RANdom SAmple Consensus” and one that can run real-time on a typical PC. The technique is tailored for searching objects with small telescopes in stare mode. Our RANSAC-MT (Moving Target) algorithm estimates parameters of a mathematical model (e.g., linear motion) from a set of observed data which contains a significant number of outliers while identifying inliers. In the pre-processing phase, candidate blobs were selected based on morphology and an intensity threshold that would normally generate unacceptable level of false alarms. The RANSAC sampling rejects candidates that conform to the predictable motion of the stars. Data collected with a 17 inch telescope by AFRL/RH and a COTS lens/EM-CCD sensor by the AFRL/RD Satellite Assessment Center is used to assess the performance of the algorithm. In the second application, a visible imager operated in sidereal mode observes geostationary objects as moving, stars as fixed except for field rotation, and non-geostationary objects as drifting. RANSAC-MT is used to detect the drifter. In this set of data, the drifting space object was detected at a distance of 13800 km. The AFRL/RH set of data, collected in the stare mode, contained the signature of two geostationary satellites. The signature of a moving object was simulated and added to the sequence of frames to determine the sensitivity in magnitude. The performance compares well with the more intensive TBD algorithms reported in the literature.

  10. 77 FR 67707 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Granting Approval of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... and expenses) that correlate positively to three times (300%) the daily return of a target benchmark, meaning a Leveraged Bull Fund will attempt to move in the same direction as the target benchmark. The... inverse (opposite) of three times the return of a target benchmark, meaning that the Leveraged Bear Funds...

  11. Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Derr; Milos Manic

    Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhancedmore » by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.« less

  12. Digital-Electronic/Optical Apparatus Would Recognize Targets

    NASA Technical Reports Server (NTRS)

    Scholl, Marija S.

    1994-01-01

    Proposed automatic target-recognition apparatus consists mostly of digital-electronic/optical cross-correlator that processes infrared images of targets. Infrared images of unknown targets correlated quickly with images of known targets. Apparatus incorporates some features of correlator described in "Prototype Optical Correlator for Robotic Vision System" (NPO-18451), and some of correlator described in "Compact Optical Correlator" (NPO-18473). Useful in robotic system; to recognize and track infrared-emitting, moving objects as variously shaped hot workpieces on conveyor belt.

  13. Nanostructure sensor of presence and concentration of a target molecule

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system (i) to determine when a selected target molecule is present or absent in a fluid, (2) to estimate concentration of the target molecule in the fluid and (3) estimate possible presence of a second (different) target molecule in the fluid, by analyzing differences in resonant frequencies of vibration of a thin beam suspended in the fluid, after the fluid has moved across the beam.

  14. Hitting a Moving Target: IT Strategy in a Real-Time World

    ERIC Educational Resources Information Center

    Voloudakis, John

    2005-01-01

    Information technology has become a pervasive part of doing business in nearly all organizations during the last decade. It has also dramatically shifted roles, moving from automating back-office processes to becoming a strategic enabler of new offerings and new ways of doing business. Whereas this shift has resulted in many benefits -- from a…

  15. Optical Correction Of Space-Based Telescopes Using A Deformable Mirror System

    DTIC Science & Technology

    2016-12-01

    FPA). A fast 5 steering mirror is used to move the FOV within the FOR so that the spacecraft does not need to physically move to a new target as...technology review and development roadmap,” Astro2010: The Astronomy and Astrophysics Decadal Survey, 2009, vol. 2010, p. 23. [8] D. Baiocchi, “Design and

  16. A new method of small target detection based on neural network

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Hu, Yongli; Lu, Xinxin

    2018-02-01

    The detection and tracking of moving dim target in infrared image have been an research hotspot for many years. The target in each frame of images only occupies several pixels without any shape and structure information. Moreover, infrared small target is often submerged in complicated background with low signal-to-clutter ratio, making the detection very difficult. Different backgrounds exhibit different statistical properties, making it becomes extremely complex to detect the target. If the threshold segmentation is not reasonable, there may be more noise points in the final detection, which is unfavorable for the detection of the trajectory of the target. Single-frame target detection may not be able to obtain the desired target and cause high false alarm rate. We believe the combination of suspicious target detection spatially in each frame and temporal association for target tracking will increase reliability of tracking dim target. The detection of dim target is mainly divided into two parts, In the first part, we adopt bilateral filtering method in background suppression, after the threshold segmentation, the suspicious target in each frame are extracted, then we use LSTM(long short term memory) neural network to predict coordinates of target of the next frame. It is a brand-new method base on the movement characteristic of the target in sequence images which could respond to the changes in the relationship between past and future values of the values. Simulation results demonstrate proposed algorithm can effectively predict the trajectory of the moving small target and work efficiently and robustly with low false alarm.

  17. Experimental tests of a superposition hypothesis to explain the relationship between the vestibuloocular reflex and smooth pursuit during horizontal combined eye-head tracking in humans

    NASA Technical Reports Server (NTRS)

    Huebner, W. P.; Leigh, R. J.; Seidman, S. H.; Thomas, C. W.; Billian, C.; DiScenna, A. O.; Dell'Osso, L. F.

    1992-01-01

    1. We used a modeling approach to test the hypothesis that, in humans, the smooth pursuit (SP) system provides the primary signal for cancelling the vestibuloocular reflex (VOR) during combined eye-head tracking (CEHT) of a target moving smoothly in the horizontal plane. Separate models for SP and the VOR were developed. The optimal values of parameters of the two models were calculated using measured responses of four subjects to trials of SP and the visually enhanced VOR. After optimal parameter values were specified, each model generated waveforms that accurately reflected the subjects' responses to SP and vestibular stimuli. The models were then combined into a CEHT model wherein the final eye movement command signal was generated as the linear summation of the signals from the SP and VOR pathways. 2. The SP-VOR superposition hypothesis was tested using two types of CEHT stimuli, both of which involved passive rotation of subjects in a vestibular chair. The first stimulus consisted of a "chair brake" or sudden stop of the subject's head during CEHT; the visual target continued to move. The second stimulus consisted of a sudden change from the visually enhanced VOR to CEHT ("delayed target onset" paradigm); as the vestibular chair rotated past the angular position of the stationary visual stimulus, the latter started to move in synchrony with the chair. Data collected during experiments that employed these stimuli were compared quantitatively with predictions made by the CEHT model. 3. During CEHT, when the chair was suddenly and unexpectedly stopped, the eye promptly began to move in the orbit to track the moving target. Initially, gaze velocity did not completely match target velocity, however; this finally occurred approximately 100 ms after the brake onset. The model did predict the prompt onset of eye-in-orbit motion after the brake, but it did not predict that gaze velocity would initially be only approximately 70% of target velocity. One possible explanation for this discrepancy is that VOR gain can be dynamically modulated and, during sustained CEHT, it may assume a lower value. Consequently, during CEHT, a smaller-amplitude SP signal would be needed to cancel the lower-gain VOR. This reduction of the SP signal could account for the attenuated tracking response observed immediately after the brake. We found evidence for the dynamic modulation of VOR gain by noting differences in responses to the onset and offset of head rotation in trials of the visually enhanced VOR.(ABSTRACT TRUNCATED AT 400 WORDS).

  18. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).

    PubMed

    Gregori Grgič, Regina; Calore, Enrico; de'Sperati, Claudio

    2016-01-01

    Whereas overt visuospatial attention is customarily measured with eye tracking, covert attention is assessed by various methods. Here we exploited Steady-State Visual Evoked Potentials (SSVEPs) - the oscillatory responses of the visual cortex to incoming flickering stimuli - to record the movements of covert visuospatial attention in a way operatively similar to eye tracking (attention tracking), which allowed us to compare motion observation and motion extrapolation with and without eye movements. Observers fixated a central dot and covertly tracked a target oscillating horizontally and sinusoidally. In the background, the left and the right halves of the screen flickered at two different frequencies, generating two SSVEPs in occipital regions whose size varied reciprocally as observers attended to the moving target. The two signals were combined into a single quantity that was modulated at the target frequency in a quasi-sinusoidal way, often clearly visible in single trials. The modulation continued almost unchanged when the target was switched off and observers mentally extrapolated its motion in imagery, and also when observers pointed their finger at the moving target during covert tracking, or imagined doing so. The amplitude of modulation during covert tracking was ∼25-30% of that measured when observers followed the target with their eyes. We used 4 electrodes in parieto-occipital areas, but similar results were achieved with a single electrode in Oz. In a second experiment we tested ramp and step motion. During overt tracking, SSVEPs were remarkably accurate, showing both saccadic-like and smooth pursuit-like modulations of cortical responsiveness, although during covert tracking the modulation deteriorated. Covert tracking was better with sinusoidal motion than ramp motion, and better with moving targets than stationary ones. The clear modulation of cortical responsiveness recorded during both overt and covert tracking, identical for motion observation and motion extrapolation, suggests to include covert attention movements in enactive theories of mental imagery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Gauge Conditions for Moving Black Holes Without Excision

    NASA Technical Reports Server (NTRS)

    van Meter, James; Baker, John G.; Koppitz, Michael; Dae-IL, Choi

    2006-01-01

    Recent demonstrations of unexcised, puncture black holes traversing freely across computational grids represent a significant advance in numerical relativity. Stable an$ accurate simulations of multiple orbits, and their radiated waves, result. This capability is critically undergirded by a careful choice of gauge. Here we present analytic considerations which suggest certain gauge choices, and numerically demonstrate their efficacy in evolving a single moving puncture.

  20. Let Me Go: The Influences of Crawling Experience and Temperament on the Development of Anger Expression

    ERIC Educational Resources Information Center

    Pemberton Roben, Caroline K.; Bass, Anneliese J.; Moore, Ginger A.; Murray-Kolb, Laura; Tan, Patricia Z.; Gilmore, Rick O.; Buss, Kristin A.; Cole, Pamela M.; Teti, Laureen O.

    2012-01-01

    Infants' emerging ability to move independently by crawling is associated with changes in multiple domains, including an increase in expressions of anger in situations that block infants' goals, but it is unknown whether increased anger is specifically because of experience with being able to move autonomously or simply related to age. To examine…

  1. Creating Reconfigurable Materials Using ``Colonies'' of Oscillating Polymer Gels

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Dayal, Pratyush; Kuksenok, Olga; Balazs, Anna

    2013-03-01

    Species ranging from single-cell organisms to social insects can undergo auto-chemotaxis, where the entities move towards a chemo-attractant that they themselves emit. This mode of signaling allows the organisms to form large-scale structures. Using computational modeling, we show that millimeter-sized polymer gels can display similar auto-chemotaxis. In particular, we demonstrate that gels undergoing the self-oscillating Belousov-Zhabotinsky (BZ) reaction not only respond to a chemical signal from the surrounding solution, but also emit this signal and thus, multiple gel pieces can spontaneously self-aggregate. We focus on the collective behavior of ``colonies'' of BZ gels and show that communication between the individual pieces critically depends on all the neighboring gels. We isolate the conditions at which the BZ gels can undergo a type of self-recombining: if a larger gel is cut into distinct pieces that are moved relatively far apart, then their auto-chemotactic behavior drives them to move and autonomously recombine into a structure resembling the original, uncut sample. These findings reveal that the BZ gels can be used as autonomously moving building blocks to construct multiple structures and thus, provide a new route for creating dynamically reconfigurable materials.

  2. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    NASA Astrophysics Data System (ADS)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  3. Development of Autonomous Boat-Type Robot for Automated Velocity Measurement in Straight Natural River

    NASA Astrophysics Data System (ADS)

    Sanjou, Michio; Nagasaka, Tsuyoshi

    2017-11-01

    The present study describes an automated system to measure the river flow velocity. A combination of the camera-tracking system and the Proportional/Integral/Derivative (PID) control could enable the boat-type robot to remain in position against the mainstream; this results in reasonable evaluation of the mean velocity by a duty ratio which corresponds to rotation speed of the screw propeller. A laser range finder module was installed to measure the local water depth. Reliable laboratory experiments with the prototype boat robot and electromagnetic velocimetry were conducted to obtain a calibration curve that connects the duty ratio and mean current velocity. The remaining accuracy in the target point was also examined quantitatively. The fluctuation in the spanwise direction is within half of the robot length. It was therefore found that the robot remains well within the target region. We used two-dimensional navigation tests to guarantee that the prototype moved smoothly to the target points and successfully measured the streamwise velocity profiles across the mainstream. Moreover, the present robot was found to move successfully not only in the laboratory flume but also in a small natural river. The robot could move smoothly from the starting point near the operator's site toward the target point where the velocity is measured, and it could evaluate the cross-sectional discharge.

  4. Ion energies in high power impulse magnetron sputtering with and without localized ionization zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Tanaka, Koichi

    2015-03-23

    High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.

  5. Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheriyadat, Anil M.

    Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less

  6. Residential mobility and the association between physical environment disadvantage and general and mental health.

    PubMed

    Tunstall, H; Pearce, J R; Shortt, N K; Mitchell, R J

    2015-12-01

    Selective migration may influence the association between physical environments and health. This analysis assessed whether residential mobility concentrates people with poor health in neighbourhoods of the UK with disadvantaged physical environments. Data were from the British Household Panel Survey. Moves were over 1 year between adjacent survey waves, pooled over 10 pairs of waves, 1996-2006. Health outcomes were self-reported poor general health and mental health problems. Neighbourhood physical environment was defined using the Multiple Environmental Deprivation Index (MEDIx) for wards. Logistic regression analysis compared risk of poor health in MEDIx categories before and after moves. Analyses were stratified by age groups 18-29, 30-44, 45-59 and 60+ years and adjusted for age, sex, marital status, household type, housing tenure, education and social class. The pooled data contained 122 570 observations. 8.5% moved between survey waves but just 3.0% changed their MEDIx category. In all age groups odds ratios for poor general and mental health were not significantly increased in the most environmentally deprived neighbourhoods following moves. Over a 1-year time period residential moves between environments with different levels of multiple physical deprivation were rare and did not significantly raise rates of poor health in the most deprived areas. © The Author 2014. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. A multicentre 'end to end' dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy.

    PubMed

    Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah

    2017-12-01

    External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Current advancements in the diagnosis and treatment of chronic pelvic pain.

    PubMed

    Morrissey, Darlene; Ginzburg, Natasha; Whitmore, Kristene

    2014-07-01

    The diagnosis and treatment of chronic pelvic pain (CPP) have moved away from targeting a specific organ to multifactorial and multidisciplinary individualized approach to treatment strategies. The purpose of this article is to review the current advancements in diagnosis and treatment of CPP. Recognition that response to current treatment approach to CPP syndrome is variable; organizations such as the European Association of Urology, American Urologic Association, International Continence Society, International Association for the Study of Pain, and others have integrated the most current evidence and management strategies from multiple specialties (urology, gynecology, pain medicine, gastroenterology, colorectal surgery, neurology, physiotherapy, and psychology). The 1 World Congress on Pelvic Pain met in 2013 to further collaborate on diagnosis and management of CPP. A multimodal clinical phenotype system has also been implemented to help understand cause and guide therapy. New classification systems allow for overlap of mechanisms between conditions and a multidisciplinary treatment approach.

  9. Improvement of Automated Identification of the Heart Wall in Echocardiography by Suppressing Clutter Component

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2013-07-01

    For the facilitation of analysis and elimination of the operator dependence in estimating the myocardial function in echocardiography, we have previously developed a method for automated identification of the heart wall. However, there are misclassified regions because the magnitude-squared coherence (MSC) function of echo signals, which is one of the features in the previous method, is sensitively affected by the clutter components such as multiple reflection and off-axis echo from external tissue or the nearby myocardium. The objective of the present study is to improve the performance of automated identification of the heart wall. For this purpose, we proposed a method to suppress the effect of the clutter components on the MSC of echo signals by applying an adaptive moving target indicator (MTI) filter to echo signals. In vivo experimental results showed that the misclassified regions were significantly reduced using our proposed method in the longitudinal axis view of the heart.

  10. Structural reconstruction of the catalytic center of LiPDF through multiple scattering calculation with MXAN

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyun; Chu, Wangsheng; Ma, Sixuan; Gong, Weimin; Benfatto, Maurizio; Hu, Tiandou; Xie, Yaning; Wu, ZiYu

    2006-11-01

    Peptide deformylase (PDF, EC 3.5.1.27) is essential for the normal growth of eubacterium but not for mammalians. Recently, PDF has been studied as a target for new antibiotics. In this paper, X-ray absorption spectroscopy was employed to determine the local structure around the zinc ion of PDF from Leptospira Interrogans in dry powder, because it is very difficult to obtain the crystallized sample of LiPDF. We performed X-ray absorption near edge structure (XANES) calculation and reconstructed successfully the local geometry of the active center, and the results from calculations show that a water molecule (Wat1) has moved towards the zinc ion and lies in the distance range to coordinate with the zinc ion weakly. In addition, the sensitivity of theoretical spectra to the different ligand bodies was evaluated in terms of goodness-of-fit.

  11. KSC-04pd1639

    NASA Image and Video Library

    2004-07-27

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is on a work stand waiting for processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.

  12. Complex Pathologic Roles of RIPK1 and RIPK3: Moving Beyond Necroptosis

    PubMed Central

    Wegner, Kelby W.; Saleh, Danish; Degterev, Alexei

    2017-01-01

    A process of regulated necrosis, termed necroptosis, has been recognized as a major contributor to cell death and inflammation occurring under a wide range of pathologic settings. The core event in necroptosis is the formation of the detergent-insoluble “necrosome” complex of homologous Ser/Thr kinases Receptor Interacting Kinase 1 (RIPK1) and Receptor Interacting Kinase 3 (RIPK3), which promotes phosphorylation of a key pro-death effector Mixed Lineage Kinase Domain-like (MLKL) by RIPK3. Core necroptosis mediators are under multiple controls, which have been a subject of intense investigation. Additional, non-necroptotic functions of these factors, primarily in controlling apoptosis and inflammatory responses, have also begun to emerge. This review will provide an overview of the current understanding of the human disease relevance of this pathway, and potential therapeutic strategies, targeting necroptosis mediators in various pathologies. PMID:28126382

  13. KSC-04pd1638

    NASA Image and Video Library

    2004-07-27

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is placed on a work stand for processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.

  14. Pitfalls in lung cancer molecular pathology: how to limit them in routine practice?

    PubMed

    Ilie, M; Hofman, P

    2012-01-01

    New treatment options in advanced non-small cell lung carcinoma (NSCLC) targeting activating epidermal growth factor receptor (EGFR) gene mutations and other genetic alterations demonstrated the clinical significance of the molecular features of specific subsets of tumors. Therefore, the development of personalized medicine has stimulated the routine integration into pathology departments of somatic mutation testing. However, clinical mutation testing must be optimized and standardized with regard to histological profile, type of samples, pre-analytical steps, methodology and result reporting. Routine molecular testing in NSCLC is currently moving beyond EGFR mutational analysis. Recent progress of targeted therapies will require molecular testing for a wide panel of mutations for a personalized molecular diagnosis. As a consequence, efficient testing of multiple molecular abnormalities is an urgent requirement in thoracic oncology. Moreover, increasingly limited tumor sample becomes a major challenge for molecular pathology. Continuous efforts should be made for safe, effective and specific molecular analyses. This must be based on close collaboration between the departments involved in the management of lung cancer. In this review we explored the practical issues and pitfalls surrounding the routine implementation of molecular testing in NSCLC in a pathology laboratory.

  15. An UGS radar with micro-Doppler capabilities for wide area persistent surveillance

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave; Silvious, Jerry; Clark, John

    2010-04-01

    Detecting humans and distinguishing them from natural fauna is an important issue in security applications to reduce false alarm rates. In particular, it is important to detect and classify people who are walking in remote locations and transmit back detections over extended periods at a low cost and with minimal maintenance. The ability to discriminate men versus animals and vehicles at long range would give a distinct sensor advantage. The reduction in false positive detections due to animals would increase the usefulness of detections, while dismount identification could reduce friendly-fire. We developed and demonstrate a compact radar technology that is scalable to a variety of ultra-lightweight and low-power platforms for wide area persistent surveillance as an unattended, unmanned, and man-portable ground sensor. The radar uses micro-Doppler processing to characterize the tracks of moving targets and to then eliminate unimportant detections due to animals or civilian activity. This paper presents the system and data on humans, vehicles, and animals at multiple angles and directions of motion, demonstrates the signal processing approach that makes the targets visually recognizable, and verifies that the UGS radar has enough micro-Doppler capability to distinguish between humans, vehicles, and animals.

  16. Contrast, contours and the confusion effect in dazzle camouflage.

    PubMed

    Hogan, Benedict G; Scott-Samuel, Nicholas E; Cuthill, Innes C

    2016-07-01

    'Motion dazzle camouflage' is the name for the putative effects of highly conspicuous, often repetitive or complex, patterns on parameters important in prey capture, such as the perception of speed, direction and identity. Research into motion dazzle camouflage is increasing our understanding of the interactions between visual tracking, the confusion effect and defensive coloration. However, there is a paucity of research into the effects of contrast on motion dazzle camouflage: is maximal contrast a prerequisite for effectiveness? If not, this has important implications for our recognition of the phenotype and understanding of the function and mechanisms of potential motion dazzle camouflage patterns. Here we tested human participants' ability to track one moving target among many identical distractors with surface patterns designed to test the influence of these factors. In line with previous evidence, we found that targets with stripes parallel to the object direction of motion were hardest to track. However, reduction in contrast did not significantly influence this result. This finding may bring into question the utility of current definitions of motion dazzle camouflage, and means that some animal patterns, such as aposematic or mimetic stripes, may have previously unrecognized multiple functions.

  17. ATR evaluation through the synthesis of multiple performance measures

    NASA Astrophysics Data System (ADS)

    Bassham, Christopher B.; Klimack, William K.; Bauer, Kenneth W., Jr.

    2002-07-01

    This research demonstrates the application of decision analysis (DA) techniques to decisions made within Automatic Target Recognition (ATR) technology development. This work is accomplished to improve the means by which ATR technologies are evaluated. The first step in this research was to create a flexible decision analysis framework that could be applied to several decisions across different ATR programs evaluated by the Comprehensive ATR Scientific Evaluation (COMPASE) Center of the Air Force Research Laboratory (AFRL). For the purposes of this research, a single COMPASE Center representative provided the value, utility, and preference functions for the DA framework. The DA framework employs performance measures collected during ATR classification system (CS) testing to calculate value and utility scores. The authors gathered data from the Moving and Stationary Target Acquisition and Recognition (MSTAR) program to demonstrate how the decision framework could be used to evaluate three different ATR CSs. A decision-maker may use the resultant scores to gain insight into any of the decisions that occur throughout the lifecycle of ATR technologies. Additionally, a means of evaluating ATR CS self-assessment ability is presented. This represents a new criterion that emerged from this study, and no present evaluation metric is known.

  18. Evaluation of Head Orientation and Neck Muscle EMG Signals as Command Inputs to a Human-Computer Interface for Individuals with High Tetraplegia

    PubMed Central

    Williams, Matthew R.; Kirsch, Robert F.

    2013-01-01

    We investigated the performance of three user interfaces for restoration of cursor control in individuals with tetraplegia: head orientation, EMG from face and neck muscles, and a standard computer mouse (for comparison). Subjects engaged in a 2D, center-out, Fitts’ Law style task and performance was evaluated using several measures. Overall, head orientation commanded motion resembled mouse commanded cursor motion (smooth, accurate movements to all targets), although with somewhat lower performance. EMG commanded movements exhibited a higher average speed, but other performance measures were lower, particularly for diagonal targets. Compared to head orientation, EMG as a cursor command source was less accurate, was more affected by target direction and was more prone to overshoot the target. In particular, EMG commands for diagonal targets were more sequential, moving first in one direction and then the other rather than moving simultaneous in the two directions. While the relative performance of each user interface differs, each has specific advantages depending on the application. PMID:18990652

  19. The research on the mean shift algorithm for target tracking

    NASA Astrophysics Data System (ADS)

    CAO, Honghong

    2017-06-01

    The traditional mean shift algorithm for target tracking is effective and high real-time, but there still are some shortcomings. The traditional mean shift algorithm is easy to fall into local optimum in the tracking process, the effectiveness of the method is weak when the object is moving fast. And the size of the tracking window never changes, the method will fail when the size of the moving object changes, as a result, we come up with a new method. We use particle swarm optimization algorithm to optimize the mean shift algorithm for target tracking, Meanwhile, SIFT (scale-invariant feature transform) and affine transformation make the size of tracking window adaptive. At last, we evaluate the method by comparing experiments. Experimental result indicates that the proposed method can effectively track the object and the size of the tracking window changes.

  20. Incorporating multiple secondary targets into learning trials for individuals with autism spectrum disorder.

    PubMed

    Nottingham, Casey L; Vladescu, Jason C; Kodak, Tiffany; Kisamore, April N

    2017-07-01

    The current study examined the outcome of presenting multiple secondary targets in learning trials for individuals with autism spectrum disorder. We compared conditions in which (a) a secondary target was presented in the antecedent and consequence of trials, (b) two secondary targets were presented in the consequence of trials, (c) one secondary target was presented in the consequence of each trial, and (d) no additional targets were presented trials. The participants acquired the majority of secondary targets. Presenting one or multiple secondary targets per trial, regardless of the location of these secondary targets, increased the efficiency of instruction in comparison to a condition with no secondary target. © 2017 Society for the Experimental Analysis of Behavior.

Top