Kindred, John H; Ketelhut, Nathaniel B; Rudroff, Thorsten
2015-02-01
Difficulties in ambulation are one of the main problems reported by patients with multiple sclerosis. A previous study by our research group showed increased recruitment of muscle groups during walking, but the influence of skeletal muscle properties, such as muscle fiber activity, has not been fully elucidated. The purpose of this investigation was to use the novel method of calculating glucose uptake heterogeneity in the leg muscles of patients with multiple sclerosis and compare these results to healthy controls. Eight patients with multiple sclerosis (4 men) and 8 healthy controls (4 men) performed 15 min of treadmill walking at a comfortable self-selected speed following muscle strength tests. Participants were injected with ≈ 8 mCi of [(18)F]-fluorodeoxyglucose during walking after which positron emission tomography/computed tomography imaging was performed. No differences in muscle strength were detected between multiple sclerosis and control groups (P>0.27). Within the multiple sclerosis, group differences in muscle volume existed between the stronger and weaker legs in the vastus lateralis, semitendinosus, and semimembranosus (P<0.03). Glucose uptake heterogeneity between the groups was not different for any muscle group or individual muscle of the legs (P>0.16, P≥0.05). Patients with multiple sclerosis and healthy controls showed similar muscle fiber activity during walking. Interpretations of these results, with respect to our previous study, suggest that walking difficulties in patients with multiple sclerosis may be more associated with altered central nervous system motor patterns rather than alterations in skeletal muscle properties. Published by Elsevier Ltd.
Cardiac function in muscular dystrophy associates with abdominal muscle pathology.
Gardner, Brandon B; Swaggart, Kayleigh A; Kim, Gene; Watson, Sydeaka; McNally, Elizabeth M
The muscular dystrophies target muscle groups differentially. In mouse models of muscular dystrophy, notably the mdx model of Duchenne Muscular Dystrophy, the diaphragm muscle shows marked fibrosis and at an earlier age than other muscle groups, more reflective of the histopathology seen in human muscular dystrophy. Using a mouse model of limb girdle muscular dystrophy, the Sgcg mouse, we compared muscle pathology across different muscle groups and heart. A cohort of nearly 200 Sgcg mice were studied using multiple measures of pathology including echocardiography, Evans blue dye uptake and hydroxyproline content in multiple muscle groups. Spearman rank correlations were determined among echocardiographic and pathological parameters. The abdominal muscles were found to have more fibrosis than other muscle groups, including the diaphragm muscle. The abdominal muscles also had more Evans blue dye uptake than other muscle groups. The amount of diaphragm fibrosis was found to correlate positively with fibrosis in the left ventricle, and abdominal muscle fibrosis correlated with impaired left ventricular function. Fibrosis in the abdominal muscles negatively correlated with fibrosis in the diaphragm and right ventricles. Together these data reflect the recruitment of abdominal muscles as respiratory muscles in muscular dystrophy, a finding consistent with data from human patients.
Ghafari, Somayeh; Ahmadi, Fazlolah; Nabavi, Masoud; Anoshirvan, Kazemnejad; Memarian, Robabe; Rafatbakhsh, Mohamad
2009-08-01
To identify the effects of applying Progressive Muscle Relaxation Technique on Quality of Life of patients with multiple Sclerosis. In view of the growing caring options in Multiple Sclerosis, improvement of quality of life has become increasingly relevant as a caring intervention. Complementary therapies are widely used by multiple sclerosis patients and Progressive Muscle Relaxation Technique is a form of complementary therapies. Quasi-experimental study. Multiple Sclerosis patients (n = 66) were selected with no probability sampling then assigned to experimental and control groups (33 patients in each group). Means of data collection included: Individual Information Questionnaire, SF-8 Health Survey, Self-reported checklist. PMRT performed for 63 sessions by experimental group during two months but no intervention was done for control group. Statistical analysis was done by SPSS software. Student t-test showed that there was no significant difference between two groups in mean scores of health-related quality of life before the study but this test showed a significant difference between two groups, one and two months after intervention (p < 0.05). anova test with repeated measurements showed that there is a significant difference in mean score of whole and dimensions of health-related quality of life between two groups in three times (p < 0.05). Although this study provides modest support for the effectiveness of Progressive Muscle Relaxation Technique on quality of life of multiple sclerosis patients, further research is required to determine better methods to promote quality of life of patients suffer multiple sclerosis and other chronic disease. Progressive Muscle Relaxation Technique is practically feasible and is associated with increase of life quality of multiple sclerosis patients; so that health professionals need to update their knowledge about complementary therapies.
Gritsenko, Valeriya; Hardesty, Russell L; Boots, Mathew T; Yakovenko, Sergiy
2016-01-01
Neural control of movement can only be realized though the interaction between the mechanical properties of the limb and the environment. Thus, a fundamental question is whether anatomy has evolved to simplify neural control by shaping these interactions in a beneficial way. This inductive data-driven study analyzed the patterns of muscle actions across multiple joints using the musculoskeletal model of the human upper limb. This model was used to calculate muscle lengths across the full range of motion of the arm and examined the correlations between these values between all pairs of muscles. Musculoskeletal coupling was quantified using hierarchical clustering analysis. Muscle lengths between multiple pairs of muscles across multiple postures were highly correlated. These correlations broadly formed two proximal and distal groups, where proximal muscles of the arm were correlated with each other and distal muscles of the arm and hand were correlated with each other, but not between groups. Using hierarchical clustering, between 11 and 14 reliable muscle groups were identified. This shows that musculoskeletal anatomy does indeed shape the mechanical interactions by grouping muscles into functional clusters that generally match the functional repertoire of the human arm. Together, these results support the idea that the structure of the musculoskeletal system is tuned to solve movement complexity problem by reducing the dimensionality of available solutions.
Fransson, Dan; Vigh-Larsen, Jeppe Foged; Fatouros, Ioannis G.; Krustrup, Peter; Mohr, Magni
2018-01-01
Abstract We examined the degree of post-game fatigue and the recovery pattern in various leg and upper-body muscle groups after a simulated soccer game. Well-trained competitive male soccer players (n = 12) participated in the study. The players completed the Copenhagen Soccer Test, a 2 x 45 min simulated soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement (p ≤ 0.05) at 0 h post-match with knee flexors (14 ± 3%) and hip abductors (6 ± 1%) demonstrating the largest and smallest impairment. However, 24 h into recovery all individual muscles had recovered. When pooled in specific muscle groups, the trunk muscles and knee joint muscles presented the largest decline 0 h post-match, 11 ± 2% for both, with the performance decrement still persistent (4 ± 1%, p ≤ 0.05) for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin) and 24 h into recovery (creatine kinase), respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02). In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing the greatest performance decrement. Fatigue and recovery patterns vary markedly between muscle groups and players, yet trunk muscles display the slowest recovery. PMID:29599862
Fransson, Dan; Vigh-Larsen, Jeppe Foged; Fatouros, Ioannis G; Krustrup, Peter; Mohr, Magni
2018-03-01
We examined the degree of post-game fatigue and the recovery pattern in various leg and upper-body muscle groups after a simulated soccer game. Well-trained competitive male soccer players (n = 12) participated in the study. The players completed the Copenhagen Soccer Test, a 2 x 45 min simulated soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement ( p ≤ 0.05) at 0 h post-match with knee flexors (14 ± 3%) and hip abductors (6 ± 1%) demonstrating the largest and smallest impairment. However, 24 h into recovery all individual muscles had recovered. When pooled in specific muscle groups, the trunk muscles and knee joint muscles presented the largest decline 0 h post-match, 11 ± 2% for both, with the performance decrement still persistent (4 ± 1%, p ≤ 0.05) for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin) and 24 h into recovery (creatine kinase), respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02). In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing the greatest performance decrement. Fatigue and recovery patterns vary markedly between muscle groups and players, yet trunk muscles display the slowest recovery.
Masaki, Mitsuhiro; Aoyama, Tomoki; Murakami, Takashi; Yanase, Ko; Ji, Xiang; Tateuchi, Hiroshige; Ichihashi, Noriaki
2017-11-01
Muscle stiffness of the lumbar back muscles in low back pain (LBP) patients has not been clearly elucidated because quantitative assessment of the stiffness of individual muscles was conventionally difficult. This study aimed to examine the association of LBP with muscle stiffness assessed using ultrasonic shear wave elastography (SWE) and muscle mass of the lumbar back muscle, and spinal alignment in young and middle-aged medical workers. The study comprised 23 asymptomatic medical workers [control (CTR) group] and 9 medical workers with LBP (LBP group). Muscle stiffness and mass of the lumbar back muscles (lumbar erector spinae, multifidus, and quadratus lumborum) in the prone position were measured using ultrasonic SWE. Sagittal spinal alignment in the standing and prone positions was measured using a Spinal Mouse. The association with LBP was investigated by multiple logistic regression analysis with a forward selection method. The analysis was conducted using the shear elastic modulus and muscle thickness of the lumbar back muscles, and spinal alignment, age, body height, body weight, and sex as independent variables. Multiple logistic regression analysis showed that muscle stiffness of the lumbar multifidus muscle and body height were significant and independent determinants of LBP, but that muscle mass and spinal alignment were not. Muscle stiffness of the lumbar multifidus muscle in the LBP group was significantly higher than that in the CTR group. The results of this study suggest that LBP is associated with muscle stiffness of the lumbar multifidus muscle in young and middle-aged medical workers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gosselink, R; Kovacs, L; Ketelaer, P; Carton, H; Decramer, M
2000-06-01
To evaluate the contribution of respiratory muscle weakness (part 1) and respiratory muscle training (part 2) to pulmonary function, cough efficacy, and functional status in patients with advanced multiple sclerosis (MS). Survey (part 1) and randomized controlled trial (part 2). Rehabilitation center for MS. Twenty-eight bedridden or wheelchair-bound MS patients (part 1); 18 patients were randomly assigned to a training group (n = 9) or a control group (n = 9) (part 2). The training group (part 2) performed three series of 15 contractions against an expiratory resistance (60% maximum expiratory pressure [PEmax]) two times a day, whereas the control group performed breathing exercises to enhance maximal inspirations. Forced vital capacity (FVC), inspiratory, and expiratory muscle strength (PImax and PEmax), neck flexion force (NFF), cough efficacy by means of the Pulmonary Index (PI), and functional status by means of the Extended Disability Status Scale (EDSS). Part 1 revealed a significantly reduced FVC (43% +/- 26% predicted), PEmax (18% +/- 8% predicted), and PImax (27% +/- 11% predicted), whereas NFF was only mildly reduced (93% +/- 26% predicted). The PI (median score, 10) and EDSS (median score, 8.5) were severely reduced. PEmax was significantly correlated to FVC, EDSS, and PI (r = .77, -.79, and -.47, respectively). In stepwise multiple regression analysis. PEmax was the only factor contributing to the explained variance in FVC (R2 = .60), whereas body weight (R2 = .41) was the only factor for the PI. In part 2, changes in PImax and PEmax tended to be higher in the training group (p = .06 and p = .07, respectively). The PI was significantly improved after 3 months of training compared with the control group (p < .05). After 6 months, the PI remained significantly better in the training group. Expiratory muscle strength was significantly reduced and related to FVC, cough efficacy, and functional status. Expiratory muscle training tended to enhance inspiratory and expiratory muscle strength. In addition, subjectively and objectively rated cough efficacy improved significantly and lasted for 3 months after training cessation.
Ickmans, Kelly; Simoens, Fauve; Nijs, Jo; Kos, Daphne; Cras, Patrick; Willekens, Barbara; Meeus, Mira
2014-07-01
Delayed recovery of muscle function following exercise has been demonstrated in the lower limbs of patients with multiple sclerosis (MS). However, studies examining this in the upper limbs are currently lacking. This study compared physical activity level (PAL) and recovery of upper limb muscle function following exercise between MS patients and healthy inactive controls. Furthermore, the relationship between PAL and muscle recovery was examined. PAL of 19 MS patients and 32 controls was measured using an accelerometer for 7 consecutive days. Afterwards, recovery of muscle function was assessed by performing a fatiguing upper limb exercise test with subsequent recovery measures. Muscle recovery of the upper limb muscles was similar in both groups. Average activity counts were significantly lower in MS patients than in the control group. MS patients spent significantly more time being sedentary and less time on activities of moderate intensity compared with the control group. No significant correlation between PAL and recovery of muscle function was found in MS patients. Recovery of upper limb muscle function following exercise is normal in MS patients. MS patients are less physically active than healthy inactive controls. PAL and recovery of upper limb muscle function appear unrelated in MS patients. Copyright © 2014 Elsevier B.V. All rights reserved.
McClurg, D; Ashe, R G; Lowe-Strong, A S
2008-01-01
Lower urinary tract dysfunction affects up to 75% of the multiple sclerosis population. Results from our recent Pilot Study (McClurg et al., 2006) indicated that a combined programme of pelvic floor muscle training, electromyography biofeedback and neuromuscular electrical stimulation modalities may alleviate some of the distressing symptoms within this population. This clinical trial aimed to evaluate further the efficacy of these interventions and to establish the benefit of neuromuscular electrical stimulation above and beyond that of EMG biofeedback and pelvic floor muscle training. 74 multiple sclerosis patients who presented with lower urinary tract dysfunction were randomly allocated to one of two groups - Group 1 received Pelvic Floor Muscle Training, Electromyography Biofeedback and Placebo Neuromuscular Electrical Stimulation (n=37), and Group 2 which received Pelvic Floor Muscle Training, Electromyography Biofeedback, and Active Neuromuscular Electrical Stimulation (n=37). Treatment was for nine weeks with outcome measures recorded at weeks 0, 9, 16 and 24. The Primary Outcome Measure was the number of leakage episodes. Within group analysis was by Paired Samples t-test. Group differences were analysed using Repeated Measures Analysis of Variance and Post-hoc tests were used to determine the significance of differences between Groups at each time point. The mean number of incontinence episodes were reduced in Group 2 by 85% (p=0.001) whereas in Group 1 a lesser reduction of 47% (p=0.001) was observed. However, there was a statistically superior benefit in Group 2 when compared to Group 1 (p=0.0028). This superior benefit was evident in all other outcome measures. The addition of Active Neuromuscular Electrical Stimulation to a programme of Pelvic Floor Muscle Training and Electromyography Biofeedback should be considered as a first-line option in alleviating some of the symptoms of lower urinary tract dysfunction associated with multiple sclerosis. (c) 2007 Wiley-Liss, Inc.
The effects of pilates on balance, mobility and strength in patients with multiple sclerosis.
Guclu-Gunduz, Arzu; Citaker, Seyit; Irkec, Ceyla; Nazliel, Bijen; Batur-Caglayan, Hale Zeynep
2014-01-01
Although there are evidences as to Pilates developing dynamic balance, muscle strength and flexibility in healthy people, evidences related to its effects on Multiple Sclerosis patients are insufficient. The aims of this study were to investigate the effects of Pilates on balance, mobility, and strength in ambulatory patients with Multiple Sclerosis. Twenty six patients were divided into two groups as experimental (n = 18) and control (n = 8) groups for an 8-week treatment program. The experimental group underwent Pilates and the control group did abdominal breathing and active extremity exercises at home. Balance and mobility were measured with Berg Balance Scale and Timed up and go test, upper and lower muscle strength with hand-held dynamometer. Confidence in balance skills while performing daily activities was evaluated with Activities Specific Balance Confidence Scale. Improvements were observed in balance, mobility, and upper and lower extremity muscle strength in the Pilates group (p < 0.05). No significant differences in any outcome measures were observed in the control group (p > 0.05). Due to its structure which is made up of balance and strengthening exercises, Pilates training may develop balance, mobility and muscle strength of MS patients. For this reason, we think that, Pilates exercises which are appropriate for the disability level of the patient may be suggested.
The value of multiple tests of respiratory muscle strength
Steier, Joerg; Kaul, Sunny; Seymour, John; Jolley, Caroline; Rafferty, Gerrard; Man, William; Luo, Yuan M; Roughton, Michael; Polkey, Michael I; Moxham, John
2007-01-01
Background Respiratory muscle weakness is an important clinical problem. Tests of varying complexity and invasiveness are available to assess respiratory muscle strength. The relative precision of different tests in the detection of weakness is less clear, as is the value of multiple tests. Methods The respiratory muscle function tests of clinical referrals who had multiple tests assessed in our laboratories over a 6‐year period were analysed. Thresholds for weakness for each test were determined from published and in‐house laboratory data. The patients were divided into three groups: those who had all relevant measurements of global inspiratory muscle strength (group A, n = 182), those with full assessment of diaphragm strength (group B, n = 264) and those for whom expiratory muscle strength was fully evaluated (group C, n = 60). The diagnostic outcome of each inspiratory, diaphragm and expiratory muscle test, both singly and in combination, was studied and the impact of using more than one test to detect weakness was calculated. Results The clinical referrals were primarily for the evaluation of neuromuscular diseases and dyspnoea of unknown cause. A low maximal inspiratory mouth pressure (Pimax) was recorded in 40.1% of referrals in group A, while a low sniff nasal pressure (Sniff Pnasal) was recorded in 41.8% and a low sniff oesophageal pressure (Sniff Poes) in 37.9%. When assessing inspiratory strength with the combination of all three tests, 29.6% of patients had weakness. Using the two non‐invasive tests (Pimax and Sniff Pnasal) in combination, a similar result was obtained (low in 32.4%). Combining Sniff Pdi (low in 68.2%) and Twitch Pdi (low in 67.4%) reduced the diagnoses of patients with diaphragm weakness to 55.3% in group B. 38.3% of the patients in group C had expiratory muscle weakness as measured by maximum expiratory pressure (Pemax) compared with 36.7% when weakness was diagnosed by cough gastric pressure (Pgas), and 28.3% when assessed by Twitch T10. Combining all three expiratory muscle tests reduced the number of patients diagnosed as having expiratory muscle weakness to 16.7%. Conclusion The use of single tests such as Pimax, Pemax and other available individual tests of inspiratory, diaphragm and expiratory muscle strength tends to overdiagnose weakness. Combinations of tests increase diagnostic precision and, in the population studied, they reduced the diagnosis of inspiratory, specific diaphragm and expiratory muscle weakness by 19–56%. Measuring both Pimax and Sniff Pnasal resulted in a relative reduction of 19.2% of patients falsely diagnosed with inspiratory muscle weakness. The addition of Twitch Pdi to Sniff Pdi increased diagnostic precision by a smaller amount (18.9%). Having multiple tests of respiratory muscle function available both increases diagnostic precision and makes assessment possible in a range of clinical circumstances. PMID:17557772
Horvath, Jeffrey J; Austin, Stephanie L; Case, Laura E; Greene, Karla B; Jones, Harrison N; Soher, Brian J; Kishnani, Priya S; Bashir, Mustafa R
2015-05-01
Previous examination of whole-body muscle involvement in Pompe disease has been limited to physical examination and/or qualitative magnetic resonance imaging (MRI). In this study we assess the feasibility of quantitative proton-density fat-fraction (PDFF) whole-body MRI in late-onset Pompe disease (LOPD) and compare the results with manual muscle testing. Seven LOPD patients and 11 disease-free controls underwent whole-body PDFF MRI. Quantitative MR muscle group assessments were compared with physical testing of muscle groups. The 95% upper limits of confidence intervals for muscle groups were 4.9-12.6% in controls and 6.8-76.4% in LOPD patients. LOPD patients showed severe and consistent tongue and axial muscle group involvement, with less marked involvement of peripheral musculature. MRI was more sensitive than physical examination for detection of abnormality in multiple muscle groups. This integrated, quantitative approach to muscle assessment provides more detailed data than physical examination and may have clinical utility for monitoring disease progression and treatment response. © 2014 Wiley Periodicals, Inc.
Wang, Yao; Shao, Wei-bo; Gao, Li; Lu, Jie; Gu, Hao; Sun, Li-hua; Tan, Yan; Zhang, Ying-dong
2014-01-01
There have been limited comparative data regarding the investigations on pulmonary and respiratory muscle function in the patients with different parkinsonism disorders such as Parkinson's disease (PD) and multiple system atrophy (MSA) versus normal elderly. The present study is aiming to characterize the performance of pulmonary function and respiratory muscle strength in PD and MSA, and to investigate the association with severity of motor symptoms and disease duration. Pulmonary function and respiratory muscle strength tests were performed in 30 patients with PD, 27 with MSA as well as in 20 age-, sex-, height-, weight-matched normal elderly controls. All the patients underwent United Parkinson's disease rating scale (UPDRS) or united multiple system atrophy rating scale (UMSARS) separately as diagnosed. Vital capacity, forced expiratory volume in 1 second and forced vital capacity decreased, residual volume and ratio of residual volume to total lung capacity increased in both PD and MSA groups compared to controls (p<0.05). Diffusing capacity was decreased in the MSA group, compared with PD and normal elderly control groups (p<0.05). Respiratory muscle strength was lower in both PD and MSA groups than in controls (p<0.05). The values representing spirometry function and respiratory muscle strength were found to have a negative linear correlation with mean score of UPDRS-III in PD and mean score of UMSARS-I in MSA. Respiratory muscle strength showed a negative linear correlation with the mean score of UMSARS-II and disease duration in MSA patients. These findings suggest that respiratory dysfunction is involved in PD and MSA. Respiratory muscle strength is remarkably reduced, and some of the parameters correlate with disease duration and illness severity. The compromised respiratory function in neurodegenerative disorders should be the focus of further researches.
Lienbacher, Karoline; Ono, Seiji; Fleuriet, Jérome; Mustari, Michael; Horn, Anja K. E.
2018-01-01
Purpose To further chemically characterize palisade endings in extraocular muscles in rhesus monkeys. Methods Extraocular muscles of three rhesus monkeys were studied for expression of the calcium-binding protein calretinin (CR) in palisade endings and multiple endings. The complete innervation was visualized with antibodies against the synaptosomal-associated protein of 25 kDa and combined with immunofluorescence for CR. Six rhesus monkeys received tracer injections of choleratoxin subunit B or wheat germ agglutinin into either the belly or distal myotendinous junction of the medial or inferior rectus muscle to allow retrograde tracing in the C-group of the oculomotor nucleus. Double-immunofluorescence methods were used to study the CR content in retrogradely labeled neurons in the C-group. Results A subgroup of palisade and multiple endings was found to express CR, only in the medial and inferior rectus muscle. In contrast, the en plaque endings lacked CR. Accordingly, within the tracer-labeled neurons of the C-group, a subgroup expressed CR. Conclusions The study indicates that two different neuron populations targeting nontwitch muscle fibers are present within the C-group for inferior rectus and medial rectus, respectively, one expressing CR, one lacking CR. It is possible that the CR-negative neurons represent the basic population for all extraocular muscles, whereas the CR-positive neurons giving rise to CR-positive palisade endings represent a specialized, perhaps more excitable type of nerve ending in the medial and inferior rectus muscles, being more active in vergence. The malfunction of this CR-positive population of neurons that target nontwitch muscle fibers could play a significant role in strabismus.
Zhang, Mingcheng; Li, Fangfei; Diao, Xinping; Kong, Baohua; Xia, Xiufang
2017-11-01
This study investigated the effects of multiple freeze-thaw (F-T) cycles on water mobility, microstructure damage and protein structure changes in porcine longissimus muscle. The transverse relaxation time T 2 increased significantly when muscles were subjected to multiple F-T cycles (P<0.05), which means that immobile water shifted to free water and the free water mobility increased. Multiple F-T cycles caused sarcomere shortening, Z line fractures, and I band weakening and also led to microstructural destruction of muscle tissue. The decreased free amino group content and increased dityrosine in myofibrillar protein (MP) revealed that multiple F-T cycles caused protein cross-linking and oxidation. In addition, the results of size exclusion chromatography, circular dichroism spectra, UV absorption spectra, and intrinsic fluorescence spectroscopy indirectly proved that multiple F-T cycles could cause protein aggregation and degradation, α-helix structure disruption, hydrophobic domain exposure, and conformational changes of MP. Overall, repeated F-T cycles changed the protein structure and water distribution within meat. Copyright © 2017 Elsevier Ltd. All rights reserved.
Single-unit muscle sympathetic nervous activity and its relation to cardiac noradrenaline spillover
Lambert, Elisabeth A; Schlaich, Markus P; Dawood, Tye; Sari, Carolina; Chopra, Reena; Barton, David A; Kaye, David M; Elam, Mikael; Esler, Murray D; Lambert, Gavin W
2011-01-01
Abstract Recent work using single-unit sympathetic nerve recording techniques has demonstrated aberrations in the firing pattern of sympathetic nerves in a variety of patient groups. We sought to examine whether nerve firing pattern is associated with increased noradrenaline release. Using single-unit muscle sympathetic nerve recording techniques coupled with direct cardiac catheterisation and noradrenaline isotope dilution methodology we examined the relationship between single-unit firing patterns and cardiac and whole body noradrenaline spillover to plasma. Participants comprised patients with hypertension (n = 6), depression (n = 7) and panic disorder (n = 9) who were drawn from our ongoing studies. The patient groups examined did not differ in their single-unit muscle sympathetic nerve firing characteristics nor in the rate of spillover of noradrenaline to plasma from the heart. The median incidence of multiple spikes per beat was 9%. Patients were stratified according to the firing pattern: low level of incidence (less than 9% incidence of multiple spikes per beat) and high level of incidence (greater than 9% incidence of multiple spikes per beat). High incidence of multiple spikes within a cardiac cycle was associated with higher firing rates (P < 0.0001) and increased probability of firing (P < 0.0001). Whole body noradrenaline spillover to plasma and (multi-unit) muscle sympathetic nerve activity in subjects with low incidence of multiple spikes was not different to that of those with high incidence of multiple spikes. In those with high incidence of multiple spikes there occurred a parallel activation of the sympathetic outflow to the heart, with cardiac noradrenaline spillover to plasma being two times that of subjects with low nerve firing rates (11.0 ± 1.5 vs. 22.0 ± 4.5 ng min−1, P < 0.05). This study indicates that multiple within-burst firing and increased single-unit firing rates of the sympathetic outflow to the skeletal muscle vasculature is associated with high cardiac noradrenaline spillover. PMID:21486790
Costantino, Cosimo; Pedrini, Martina Francesca; Licari, Oriana
2016-01-01
Purpose of this study is to evaluate differences in leg muscles strength and motor performance between neuromuscular taping (NT) and sham tape groups. Relapsing-remitting (RR) multiple sclerosis (MS) patients were recruited and randomly assigned to NT or sham tape groups. All patients underwent the treatment 5 times at 5-d intervals. They were submitted to a 6-minute walk test and isokinetic test (peak torque) at the beginning (T0), at the end (T1) and 2 months after the end of the treatment (T2). Forty MS patients (38 F; 2 M; mean age 45.5 ± 6.5 years) were assigned to NT group (n = 20) and to sham tape group (n = 20). Delta Peak Torque T1-T0 and T2-T0 between two groups were statistically significant in quadriceps (p = 0.007; 0.000) and hamstrings (p = 0.011; 0.007). The difference between the two groups according to 6-minute walk test was not statistically significant but in NT group it was noticed an increasing trend about the distance run. In this single-blind randomized controlled trial, NT seemed to increase strength in leg muscles, compared to a sham device, in RR MS patients. Further studies are needed to consider this therapy as a complement to classic physical therapy. Neuromuscular taping (NT) in multiple sclerosis: NT is well tolerated by multiple sclerosis patients and should be a complement to classic physical therapy. This technique normalizes muscular function, strengthens weakened muscles and assists the postural alignment.
Gaspard, L; Tombal, B; Opsomer, R-J; Castille, Y; Van Pesch, V; Detrembleur, C
2014-09-01
This randomized controlled trial compare the efficacy of pelvic floor muscle training vs. transcutaneous posterior tibial nerve stimulation. Inclusion criteria were EDSS score<7 and presence of lower urinary tract symptoms. Exclusion criteria were multiple sclerosis relapse during the study, active urinary tract infection and pregnancy. The primary outcome was quality of life (SF-Qualiveen questionnaire). Secondary outcomes included overactive bladder (USP questionnaire) score and frequency of urgency episodes (3-day bladder diary). Sample size was calculated after 18 patients were included. Data analysis was blinded. Each patient received 9 sessions of 30 minutes weekly. Patients were randomized in pelvic floor muscles exercises with biofeedback group (muscle endurance and relaxation) or transcutaneous posterior tibial nerve stimulation group (rectangular alternative biphasic current with low frequency). A total of 31 patients were included. No difference appeared between groups for quality of life, overactive bladder and frequency of urgency episodes (respectively P=0.197, P=0.532 et P=0.788). These parameters were significantly improved in pelvic floor muscle training group (n=16) (respectively P=0.004, P=0.002 et P=0.006) and in transcutaneous posterior tibial nerve stimulation group (n=15) (respectively P=0.001, P=0.001 et P=0.031). Pelvic floor muscle training and transcutaneous posterior tibial nerve stimulation improved in the same way symptoms related to urgency in MS patients with mild disability. 2. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
A novel method of identifying motor primitives using wavelet decomposition*
Popov, Anton; Olesh, Erienne V.; Yakovenko, Sergiy; Gritsenko, Valeriya
2018-01-01
This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of muscles. Hierarchical clustering and identification of the repeating wavelet modules across subjects and across movements, was used to identify consistent muscle synergies. Results indicate that the most frequently repeated wavelet modules comprised combinations of two muscles that are not traditional agonists and span different joints. We have also found that these wavelet modules were flexibly combined across different movement directions in a pattern resembling directional tuning. This method is extendable to multiple frequency domains and signal modalities.
Muscle mania: the quest for the perfect body.
Hameed, Maira; Sahu, Ajay; Johnson, Maria B
2016-12-01
We describe the case of a young man with repeated hospital presentations for a variety of symptoms related to excessive bodybuilding and associated behaviours. He presented to our department (radiology) with right arm pain and loss of function. Ultrasound showed complete triceps rupture, rare in young patients and multiple cystic areas within the muscles of the arm. MRI revealed these to be multiple proteinaceous lesions within the muscle bellies and the possibility of self-innoculation was raised by the reporting radiologist. The patient subsequently admitted to injecting coconut oil to improve muscle contour lost secondary to injury. A review of his hospital presentations was then made and revealed further concerning practices performed by the patient to enhance his muscular appearance. 2016 BMJ Publishing Group Ltd.
Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco
2010-08-01
The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.
Kitagawa, Moeko; Haji, Seiji; Amagai, Teruyoshi
2017-01-01
In recent years, the number of cancer patients has increased. Cancer patients are prone to sarcopenia as a result of the decrease in muscle mass and muscle weakness which occurs in cancer cachexia. Attention has been given on the effects of fatty acid administration on cancer patients. We conducted a retrospective chart-review study of consecutive patients with unresectable advanced GI cancer (stage IV) (n=46) receiving chemotherapy treatment in an outpatient or in-hospital setting between December 2012 and September 2015 at our Institution. The collected data were characteristics, psoas muscle area as measured by computed tomography (CT), and biochemical blood test and serum fatty acid profiles. Three methods of analysis were evaluated: (i) Comparison of biomarkers between two groups: psoas muscle index change rate (ΔPMI) decrease group vs. ΔPMI increase group. (ii) Correlation between ΔPMI and biomarkers. (iii) Multiple regression of ΔPMI and biomarkers Results: In the ΔPMI decrease group, n-6/n-3 ratio and AA/EPA ratio in the decrease group were significantly higher than those in the increase group. Among all parameters, serum EPA was positively and significantly related to ΔPMI (CC=0.443, p=0.039). In contrast, serum CRP, AA/EPA ratio and n-6/n-3 ratio were negatively related to ΔPMI (CC=-0.566, CC=-0.501, CC=-0.476, p=0.006, p=0.018, p=0.025, respectively). On multiple regression analysis, serum CRP value was strongly related to ΔPMI (r 2 =0.421, β=-0.670, p=0.001). Higher n-6/n-3 and AA/EPA ratios were associated with a decrease in psoas muscle area, that lead to diagnosis of sarcopenia. Higher CRP was also associated with a decrease in psoas muscle area, suggesting that this might be an indicator of cachexic skeletal muscle depletion in cachexic patients with advanced gastro-intestinal cancers. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Is there any sense in the Palisade endings of eye muscles?
Lienbacher, Karoline; Mustari, Michael; Hess, Bernhard; Büttner-Ennever, Jean; Horn, Anja K.E.
2015-01-01
Palisade endings (PEs), which are unique to the eye muscles, are associated with multiply innervated muscle fibers. They lie at the myotendinous junctions and form a cap around the muscle fiber tip. They are found in all animals investigated so far, but their function is not known. Recently, we demonstrated that cell bodies of PEs and tendon organs lie around the periphery of the oculomotor nucleus in the C- and S-groups. A morphological analysis of these peripheral neurons revealed the existence of different populations within the C-group. We propose that a small group of round or spindle-shaped cells gives rise to PEs, and another group of multipolar neurons provide the multiple motor endings. If PEs have a sensory function, then their cell body location close to motor neurons would be in an ideal location to control tension in extraocular muscles; in the case of the C-group, its proximity to the preganglionic neurons of the Edinger–Westphal nucleus would permit its participation in the near response. Despite their unusual properties, PEs may have a sensory function. PMID:21950969
Is there any sense in the Palisade endings of eye muscles?
Lienbacher, Karoline; Mustari, Michael; Hess, Bernhard; Büttner-Ennever, Jean; Horn, Anja K E
2011-09-01
Palisade endings (PEs), which are unique to the eye muscles, are associated with multiply innervated muscle fibers. They lie at the myotendinous junctions and form a cap around the muscle fiber tip. They are found in all animals investigated so far, but their function is not known. Recently, we demonstrated that cell bodies of PEs and tendon organs lie around the periphery of the oculomotor nucleus in the C- and S-groups. A morphological analysis of these peripheral neurons revealed the existence of different populations within the C-group. We propose that a small group of round or spindle-shaped cells gives rise to PEs, and another group of multipolar neurons provide the multiple motor endings. If PEs have a sensory function, then their cell body location close to motor neurons would be in an ideal location to control tension in extraocular muscles; in the case of the C-group, its proximity to the preganglionic neurons of the Edinger-Westphal nucleus would permit its participation in the near response. Despite their unusual properties, PEs may have a sensory function. © 2011 New York Academy of Sciences.
Evaluation of high-density, multi-contact nerve cuffs for activation of grasp muscles in monkeys
NASA Astrophysics Data System (ADS)
Brill, N. A.; Naufel, S. N.; Polasek, K.; Ethier, C.; Cheesborough, J.; Agnew, S.; Miller, L. E.; Tyler, D. J.
2018-06-01
Objective. The objective of this work was to evaluate whether nerve cuffs can selectively activate hand muscles for functional electrical stimulation (FES). FES typically involves identifying and implanting electrodes in many individual muscles, but nerve cuffs only require implantation at a single site around the nerve. This method is surgically more attractive. Nerve cuffs may also more effectively stimulate intrinsic hand muscles, which are difficult to implant and stimulate without spillover to adjacent muscles. Approach. To evaluate its ability to selectively activate muscles, we implanted and tested the flat interface nerve electrode (FINE), which is designed to selectively stimulate peripheral nerves that innervate multiple muscles (Tyler and Durand 2002 IEEE Trans. Neural Syst. Rehabil. Eng. 10 294-303). We implanted FINEs on the nerves and bipolar intramuscular wires for recording compound muscle action potentials (CMAPs) from up to 20 muscles in each arm of six monkeys. We then collected recruitment curves while the animals were anesthetized. Main result. A single FINE implanted on an upper extremity nerve in the monkey can selectively activate muscles or small groups of muscles to produce multiple, independent hand functions. Significance. FINE cuffs can serve as a viable supplement to intramuscular electrodes in FES systems, where they can better activate intrinsic and extrinsic muscles with lower currents and less extensive surgery.
Ray, Andrew D; Udhoji, Supriya; Mashtare, Terry L; Fisher, Nadine M
2013-10-01
To determine the effects of a short-duration, combined (inspiratory and expiratory), progressive resistance respiratory muscle training (RMT) protocol on respiratory muscle strength, fatigue, health-related quality of life, and functional performance in individuals with mild-to-moderate multiple sclerosis (MS). Quasi-experimental before-after trial. University rehabilitation research laboratory. Volunteers with MS (N=21) were divided into 2 groups: RMT (n=11; 9 women, 2 men; mean age ± SD, 50.9 ± 5.7y, mean Expanded Disability Status Scale score ± SD, 3.2 ± 1.9) and a control group that did not train (n=10; 7 women, 3 men; mean age ± SD, 56.2 ± 8.8y, mean Expanded Disability Status Scale score ± SD, 4.4 ± 2.1). Expanded Disability Status Scale scores ranged from 1 to ≤6.5. No patients withdrew from the study. Training was a 5-week combined progressive resistance RMT program, 3d/wk, 30 minutes per session. The primary outcome measures were maximal inspiratory pressure and expiratory pressure and the Modified Fatigue Impact Scale. All subjects completed secondary measures of pulmonary function, the six-minute walk test, the timed stair climb, the Multiple Sclerosis Self-Efficacy Scale, the Medical Outcomes Study 36-Item Short-Form Health Survey, and the Physical Activity Disability Scale. Maximal inspiratory pressure and expiratory pressure (mean ± SD) increased 35% ± 22% (P<.001) and 26% ± 17% (P<.001), respectively, whereas no changes were noted in the control group (12% ± 23% and -4% ± 17%, respectively). RMT improved fatigue (Modified Fatigue Impact Scale, P<.029), with no change or worsening in the control group. No changes were noted in the six-minute walk test, stair climb, Multiple Sclerosis Self-Efficacy Scale, or Physical Activity Disability Scale in the RMT group. The control group had decreases in emotional well-being and general health (Medical Outcomes Study 36-Item Short-Form Health Survey). A short-duration, combined RMT program improved inspiratory and expiratory muscle strength and reduced fatigue in patients with mild to moderate MS. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Lúcio, A C; D'Ancona, C A L; Lopes, M H B M; Perissinotto, M C; Damasceno, B P
2014-11-01
Sexual dysfunction (SD) affects up to 80% of multiple sclerosis (MS) patients and pelvic floor muscles (PFMs) play an important role in the sexual function of these patients. The objective of this paper is to evaluate the impact of a rehabilitation program to treat lower urinary tract symptoms on SD of women with MS. Thirty MS women were randomly allocated to one of three groups: pelvic floor muscle training (PFMT) with electromyographic (EMG) biofeedback and sham neuromuscular electrostimulation (NMES) (Group I), PFMT with EMG biofeedback and intravaginal NMES (Group II), and PFMT with EMG biofeedback and transcutaneous tibial nerve stimulation (TTNS) (Group III). Assessments, before and after the treatment, included: PFM function, PFM tone, flexibility of the vaginal opening and ability to relax the PFMs, and the Female Sexual Function Index (FSFI) questionnaire. After treatment, all groups showed improvements in all domains of the PERFECT scheme. PFM tone and flexibility of the vaginal opening was lower after the intervention only for Group II. All groups improved in arousal, lubrication, satisfaction and total score domains of the FSFI questionnaire. This study indicates that PFMT alone or in combination with intravaginal NMES or TTNS contributes to the improvement of SD. © The Author(s), 2014.
Scaling of muscle architecture and fiber types in the rat hindlimb.
Eng, Carolyn M; Smallwood, Laura H; Rainiero, Maria Pia; Lahey, Michele; Ward, Samuel R; Lieber, Richard L
2008-07-01
The functional capacity of a muscle is determined by its architecture and metabolic properties. Although extensive analyses of muscle architecture and fiber type have been completed in a large number of muscles in numerous species, there have been few studies that have looked at the interrelationship of these functional parameters among muscles of a single species. Nor have the architectural properties of individual muscles been compared across species to understand scaling. This study examined muscle architecture and fiber type in the rat (Rattus norvegicus) hindlimb to examine each muscle's functional specialization. Discriminant analysis demonstrated that architectural properties are a greater predictor of muscle function (as defined by primary joint action and anti-gravity or non anti-gravity role) than fiber type. Architectural properties were not strictly aligned with fiber type, but when muscles were grouped according to anti-gravity versus non-anti-gravity function there was evidence of functional specialization. Specifically, anti-gravity muscles had a larger percentage of slow fiber type and increased muscle physiological cross-sectional area. Incongruities between a muscle's architecture and fiber type may reflect the variability of functional requirements on single muscles, especially those that cross multiple joints. Additionally, discriminant analysis and scaling of architectural variables in the hindlimb across several mammalian species was used to explore whether any functional patterns could be elucidated within single muscles or across muscle groups. Several muscles deviated from previously described muscle architecture scaling rules and there was large variability within functional groups in how muscles should be scaled with body size. This implies that functional demands placed on muscles across species should be examined on the single muscle level.
Kitagawa, Moeko; Haji, Seiji; Amagai, Teruyoshi
2017-10-01
In recent years, the number of patients with cancer has increased. These patients are prone to sarcopenia as a result of the decrease in muscle mass and muscle weakness that occur in cancer cachexia. Amino Index Cancer Screening is carried out to evaluate cancer cachexia risk by examining amino acid concentration and analyzing amino acid balance. We conducted a retrospective chart review of consecutive patients with unresectable advanced gastrointestinal cancer (stage IV) receiving chemotherapy treatment (December 2012-September 2015) in an outpatient or in-hospital setting at our institution (N = 46). Data included characteristics, psoas muscle area per computed tomography, and biochemical blood test and serum amino acid profiles. Method 1: Comparison of biomarkers between 2 groups: psoas muscle index change rate (ΔPMI) decrease vs increase. Method 2.1: Correlation between ΔPMI and biomarkers. Method 2.2: Multiple regression of ΔPMI and biomarkers. EAA/TAA ratio (essential amino acids/total amino acids) in the decrease group was significantly higher than that in the increase group. Among all parameters, serum C-reactive protein (CRP), leucine, and isoleucine were negatively related to ΔPMI (correlation coefficients = -0.604, -0.540, -0.518; P = .004, .011, .016, respectively). On multiple regression analysis, serum CRP value was strongly related to ΔPMI ( r 2 = 0.452, β = -0.672, P = .001). Higher serum EAA/TAA ratio and CRP were associated with depletion in psoas muscle area, which led to a diagnosis of sarcopenia, in patients with advanced gastrointestinal cancers. These parameters at baseline could be predictors of cancer cachexia.
The hip adductor muscle group in caviomorph rodents: anatomy and homology.
García-Esponda, César M; Candela, Adriana M
2015-06-01
Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents. Copyright © 2015 Elsevier GmbH. All rights reserved.
Yokota, Yuki; Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Nakayama, Yasuaki; Kawagoe, Mirei; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Bito, Tsubasa; Yoshimi, Soyoka; Aoyama, Tomoki
2018-05-01
[Purpose] This study aimed to clarify the effects of Capacitive and Resistive electric transfer (CRet) on changes in muscle flexibility and lumbopelvic alignment after fatiguing exercise. [Subjects and Methods] Twenty-two healthy males were assigned into either the CRet (n=11) or control (n=11) group. Fatiguing exercise and CRet intervention were applied at the quadriceps muscle of the participants' dominant legs. The Ely test, pelvic tilt, lumbar lordosis, and superficial temperature were measured before and after exercise and for 30 minutes after intervention. Statistical analysis was performed using one-way analysis of variance, with Tukey's post-hoc multiple comparison test to clarify within-group changes and Student's t-test to clarify between-group differences. [Results] The Ely test and pelvic tilt were significantly different in both groups after exercise, but there was no difference in the CRet group after intervention. Superficial temperature significantly increased in the CRet group for 30 minutes after intervention, in contrast to after the exercise and intervention in the control group. There was no significant between-group difference at any timepoint, except in superficial temperature. [Conclusion] CRet could effectively improve muscle flexibility and lumbopelvic alignment after fatiguing exercise.
Yokota, Yuki; Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Nakayama, Yasuaki; Kawagoe, Mirei; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Bito, Tsubasa; Yoshimi, Soyoka; Aoyama, Tomoki
2018-01-01
[Purpose] This study aimed to clarify the effects of Capacitive and Resistive electric transfer (CRet) on changes in muscle flexibility and lumbopelvic alignment after fatiguing exercise. [Subjects and Methods] Twenty-two healthy males were assigned into either the CRet (n=11) or control (n=11) group. Fatiguing exercise and CRet intervention were applied at the quadriceps muscle of the participants’ dominant legs. The Ely test, pelvic tilt, lumbar lordosis, and superficial temperature were measured before and after exercise and for 30 minutes after intervention. Statistical analysis was performed using one-way analysis of variance, with Tukey’s post-hoc multiple comparison test to clarify within-group changes and Student’s t-test to clarify between-group differences. [Results] The Ely test and pelvic tilt were significantly different in both groups after exercise, but there was no difference in the CRet group after intervention. Superficial temperature significantly increased in the CRet group for 30 minutes after intervention, in contrast to after the exercise and intervention in the control group. There was no significant between-group difference at any timepoint, except in superficial temperature. [Conclusion] CRet could effectively improve muscle flexibility and lumbopelvic alignment after fatiguing exercise. PMID:29765189
Lúcio, Adélia; Dʼancona, Carlos Arturo Levi; Perissinotto, Maria Carolina; McLean, Linda; Damasceno, Benito Pereira; de Moraes Lopes, Maria Helena Baena
2016-01-01
The aim of this study was to evaluate the effect of intravaginal neuromuscular electrical stimulation (NMES) and transcutaneous tibial nerve stimulation (TTNS) on lower urinary tract symptoms (LUTS) and health-related quality of life in women undergoing pelvic floor muscle (PFM) training (PFMT) with multiple sclerosis (MS) and to compare the efficacy of these 2 approaches. Randomized controlled trial. Thirty women with MS and LUTS were randomly allocated to 1 of 3 groups and received treatment for 12 weeks. Ten women in group 1 received PFMT with electromyographic (EMG) biofeedback and sham NMES. Ten women in group 2 underwent PFMT with EMG biofeedback and intravaginal NMES, and 10 subjects in group 3 received PFMT with EMG biofeedback and TTNS. Multiple assessments, performed before and after treatment, included a 24-hour pad test, 3-day bladder diary, assessment of PFM function (strength and muscle tone), urodynamic studies, and validated questionnaires including Overactive Bladder Questionnaire (OAB-V8), International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF), and Qualiveen instrument. All groups showed reductions in pad weight, frequency of urgency and urge urinary incontinence episodes, improvement in all domains of the PFM assessment, and lower scores on the OAB-V8 and ICIQ-SF questionnaires following treatment. Subjects in group 2 achieved significantly greater improvement in PFM tone, flexibility, ability to relax PFMs, and OAB-V8 scores when compared to subjects in groups 1 and 3. Results suggest that PFMT alone or in combination with intravaginal NMES or TTNS is effective in the treatment of LUTS in patients with MS. The combination of PFMT and NMES offers some advantage in the reduction of PFM tone and symptoms of overactive bladder.
Crawford, Scott K.; Haas, Caroline; Wang, Qian; Zhang, Xiaoli; Zhao, Yi; Best, Thomas M.
2014-01-01
Background This study compared immediate versus delayed massage-like compressive loading on skeletal muscle viscoelastic properties following eccentric exercise. Methods Eighteen rabbits were surgically instrumented with peroneal nerve cuffs for stimulation of the tibialis anterior muscle. Rabbits were randomly assigned to a massage loading protocol applied immediately post exercise (n=6), commencing 48 hours post exercise (n=6), or exercised no-massage control (n=6). Viscoelastic properties were evaluated in vivo by performing a stress-relaxation test pre- and post-exercise and daily pre- and post-massage for four consecutive days of massage loading. A quasi-linear viscoelastic approach modeled the instantaneous elastic response (AG0), fast ( g1p) and slow ( g2p) relaxation coefficients, and the corresponding relaxation time constants τ1 and τ2. Findings Exercise increased AG0 in all groups (P<0.05). After adjusting for the three multiple comparisons, recovery of AG0 was not significant in the immediate (P=0.021) or delayed (P=0.048) groups compared to the control group following four days of massage. However, within-day (pre- to post-massage) analysis revealed a decrease in AG0 in both massage groups. Following exercise, g1p increased and g2p and τ1 decreased for all groups (P<0.05). Exercise had no effect on τ2 (P>0.05). After four days of massage, there was no significant recovery of the relaxation parameters for either massage loading group compared to the control group. Interpretation Our findings suggest that massage loading following eccentric exercise has a greater effect on reducing muscle stiffness, estimated by AG0, within-day rather than affecting recovery over multiple days. Massage loading also has little effect on the relaxation response. PMID:24861827
Ramari, Cintia; Moraes, Andréa G; Tauil, Carlos B; von Glehn, Felipe; Motl, Robert; de David, Ana C
2018-02-01
Physiological factors such as muscle weakness and balance could explain declines in walking distance by multiple sclerosis (MS) patients. The purpose of this study was to characterize levels and examine associations among decline in walking distance, balance and muscular strength in women with mild MS. Participants included 28 women with mild relapsing-remitting MS and 21 women without MS. We executed the 6-min walk test (6MWT) to verify declines in walking distance. Isokinetic knee flexion (KF) and extension (KE) muscle strength was measured using a dynamometer. Balance was quantified using a force platform, with eyes open and closed, on a rigid and foam surface. The MS patients presented declines in walking, lower KF muscle strength, and worse balance than controls. KF strength and balance correlated with walking in the MS group. The KF strength explained differences between groups in walking. The KF strength and balance presented as predictors of walking slowing down in the 6MWT, in mild MS. Women with mild MS have strength impairment of knee flexor muscles and balance control impairment that may explain walking related motor fatigability during prolonged walking. Copyright © 2018 Elsevier B.V. All rights reserved.
Rhee, Hannah S; Steel, Catherine M; Derksen, Frederik J; Robinson, N Edward; Hoh, Joseph F Y
2009-08-01
We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers.
Muscle Functional Morphology in Paleobiology: The Past, Present, and Future of "Paleomyology".
Perry, Jonathan M G; Prufrock, Kristen A
2018-03-01
Our knowledge of muscle anatomy and physiology in vertebrates has increased dramatically over the last two-hundred years. Today, much is understood about how muscles contract and about the functional meaning of muscular variation at multiple scales. Progress in muscle anatomy has profited from the availability of broad comparative samples, advances in microscopy have permitted comparisons at increasingly finer scales, and progress in muscle physiology has profited from many carefully designed and executed experiments. Several avenues of future work are promising. In particular, muscle ontogeny (growth and development) is poorly understood for many vertebrate groups. We consider which types of advances in muscle functional morphology are of use to paleobiologists. These are only a modest subset for muscle anatomy and a very small subset for muscle physiology. The relationship between muscle and bone - spatially and mechanically-is critical to any future advances in "paleomyology". Anat Rec, 301:538-555, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Do palisade endings in extraocular muscles arise from neurons in the motor nuclei?
Lienbacher, Karoline; Mustari, Michael; Ying, Howard S; Büttner-Ennever, Jean A; Horn, Anja K E
2011-04-01
The purpose of this study was to localize the cell bodies of palisade endings that are associated with the myotendinous junctions of the extraocular muscles. Rhesus monkeys received tract-tracer injections (tetramethylrhodamine dextran [TMR-DA] or choleratoxin subunit B [CTB]) into the oculomotor and trochlear nuclei, which contain the motoneurons of extraocular muscles. All extraocular muscles were processed for the combined immunocytochemical detection of the tracer and SNAP-25 or synaptophysin for the visualization of the complete muscle innervation. In all muscles--except the lateral rectus--en plaque and en grappe motor endings, but also palisade endings, were anterogradely labeled. In addition a few tracer-labeled tendon organs were found. One group of tracer-negative nerve fibers was identified as thin tyrosine hydroxylase-positive sympathetic fibers, and a second less numerous group of tracer-negative fibers may originate from the trigeminal ganglia. No cellular or terminal tracer labeling was present within the mesencephalic trigeminal nucleus or the trigeminal ganglia. These results confirm those of earlier studies and furthermore suggest that the somata of palisade endings are located close to the extraocular motor nuclei--in this case, probably within the C and S groups around the periphery of the oculomotor nucleus. The multiple en grappe endings have also been shown to arise from these cells groups, but it is not possible to distinguish different populations in these experiments.
Sperier, Aubrey D.; Hopkins, Colleen F.; Griffiths, Bridgette D.; Principe, Molly F.; Schnall, Barri L.; Bell, Johanna C.; Koppenhaver, Shane L.
2016-01-01
ABSTRACT Background Body armor is credited with increased survival rates in soldiers but the additional axial load may negatively impact the biomechanics of the spine resulting in low back pain. Multiple studies have found that lumbar stabilization programs are superior to generalized programs for patients with chronic low back pain. It is not known if such programs produce objective changes in trunk muscle function with wear of body armor. Hypothesis/Purpose An eight-week core stability exercise program would result in a larger improvement in physical endurance and abdominal muscle thickness than a control intervention. The purpose of this study was to assess the effectiveness of an eight-week core stability exercise program on physical endurance and abdominal muscle thickness with and without wear of body armor. Study Design Randomized controlled trial Methods Participants (N = 33) were randomized into either the core strengthening exercise group or the control group. Testing included ultrasound imaging of abdominal muscle thickness in hook-lying and standing with and without body armor and timed measures of endurance. Results There were statistically significant group by time interactions for transversus abdominis muscle contraction thickness during standing, both with (p = 0.018) and without body armor (p = 0.038). The main effect for hold-time during the horizontal side-support (p = 0.016) indicated improvement over time regardless of group. There was a significant group by time interaction (p = 0.014) for horizontal side-support hold-time when compliance with the exercise protocol was set at 85%, indicating more improvement in the core stabilization group than in the control group. Conclusion Performing an eight-week core stabilization exercise program significantly improves transversus abdominis muscle activation in standing and standing with body armor. When compliant with the exercises, such a program may increase trunk strength and muscle endurance. Levels of Evidence Therapy, Level 2b PMID:27525175
Raabe, Margaret E.; Chaudhari, Ajit M.W.
2016-01-01
The ability of a biomechanical simulation to produce results that can translate to real-life situations is largely dependent on the physiological accuracy of the musculoskeletal model. There are a limited number of freely-available, full-body models that exist in OpenSim, and those that do exist are very limited in terms of trunk musculature and degrees of freedom in the spine. Properly modeling the motion and musculature of the trunk is necessary to most accurately estimate lower extremity and spinal loading. The objective of this study was to develop and validate a more physiologically accurate OpenSim full-body model. By building upon three previously developed OpenSim models, the Full-Body Lumbar Spine (FBLS) model, comprised of 21 segments, 30 degrees-of-freedom, and 324 musculotendon actuators, was developed. The five lumbar vertebrae were modeled as individual bodies, and coupled constraints were implemented to describe the net motion of the spine. The eight major muscle groups of the lumbar spine were modeled (rectus abdominis, external and internal obliques, erector spinae, multifidus, quadratus lumborum, psoas major, and latissimus dorsi), and many of these muscle groups were modeled as multiple fascicles allowing the large muscles to act in multiple directions. The resulting FBLS model's trunk muscle geometry, maximal isometric joint moments, and simulated muscle activations compare well to experimental data. The FBLS model will be made freely available (https://simtk.org/home/fullbodylumbar) for others to perform additional analyses and develop simulations investigating full-body dynamics and contributions of the trunk muscles to dynamic tasks. PMID:26947033
Varella, Larissa Ramalho Dantas; Torres, Vanessa Braga; Angelo, Priscylla Helouyse Melo; Eugênia de Oliveira, Maria Clara; Matias de Barros, Alef Cavalcanti; Viana, Elizabel de Souza Ramalho; Micussi, Maria Thereza de Albuquerque Barbosa Cabral
2016-01-01
[Purpose] The aim of the present study was to assess the influence of parity, type of delivery, and physical activity level on pelvic floor muscles in postmenopausal women. [Subjects and Methods] This was an observational analytic cross-sectional study with a sample of 100 postmenopausal women, aged between 45 and 65 years, divided into three groups according to menopausal stage: hysterectomized and early and late postmenopause. Patients were assessed for sociodemographic and gyneco-obstetric factors and subjected to a muscle strength test and perineometry. Descriptive statistics, ANOVA, Kruskal-Wallis and multiple regression were applied. [Results] The results showed homogeneity in sociodemographic and anthropometric characteristics. There was no difference in pelvic floor muscle function among the three groups. Type of delivery, parity and physical activity level showed no influence on muscle function. [Conclusion] The findings demonstrate that parity, type of delivery, and physical activity level had no influence on pelvic floor muscle pressure in postmenopausal women. One hypothesis to explain these results is the fact that the decline in muscle function in postmenopausal women is related to the female aging process. PMID:27134366
Influence of spasticity on mobility and balance in persons with multiple sclerosis.
Sosnoff, Jacob J; Gappmaier, Eduard; Frame, Amy; Motl, Robert W
2011-09-01
Spasticity is a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes that presumably affects mobility and balance. This investigation examined the hypothesis that persons with multiple sclerosis (MS) who have spasticity of the lower legs would have more impairment of mobility and balance compared to those without spasticity. Participants were 34 ambulatory persons with a definite diagnosis of MS. The expanded disability status scale (EDSS) was used to characterize disability in the study sample. All participants underwent measurements of spasticity in the gastroc-soleus muscles of both legs (modified Ashworth scale), walking speed (timed 25-foot walk), mobility (Timed Up and Go), walking endurance (6-minute walk test), self-reported impact of MS on walking ability (Multiple Sclerosis Walking Scale-12), and balance (Berg Balance Test and Activities-specific Balance Confidence Scale). Fifteen participants had spasticity of the gastroc-soleus muscles based on modified Ashworth scale scores. The spasticity group had lower median EDSS scores indicating greater disability (P=0.03). Mobility and balance were significantly more impaired in the group with spasticity compared to the group without spasticity: timed 25-foot walk (P = 0.02, d = -0.74), Timed Up and Go (P = 0.01, d = -0.84), 6-minute walk test (P < 0.01, d = 1.03), Multiple Sclerosis Walking Scale-12 (P = 0.04, d = -0.76), Berg Balance Test (P = 0.02, d = -0.84) and Activities-specific Balance Confidence Scale (P = 0.04, d = -0.59). Spasticity in the gastroc-soleus muscles appears to have negative effect on mobility and balance in persons with MS. The relationship between spasticity and disability in persons with MS requires further exploration.
Four Weeks of Nordic Hamstring Exercise Reduce Muscle Injury Risk Factors in Young Adults.
Ribeiro-Alvares, João Breno; Marques, Vanessa B; Vaz, Marco A; Baroni, Bruno M
2018-05-01
Ribeiro-Alvares, JB, Marques, VB, Vaz, MA, and Baroni, BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res 32(5): 1254-1262, 2018-The Nordic hamstring exercise (NHE) is a field-based exercise designed for knee-flexor eccentric strengthening, aimed at prevention of muscle strains. However, possible effects of NHE programs on other hamstring injury risk factors remain unclear. The purpose of this study was to investigate the effects of a NHE training program on multiple hamstring injury risk factors. Twenty physically active young adults were allocated into 2 equal-sized groups: control group (CG) and training group (TG). The TG was engaged in a 4-week NHE program, twice a week, 3 sets of 6-10 repetitions; while CG received no exercise intervention. The knee flexor and extensor strength were assessed through isokinetic dynamometry, the biceps femoris long head muscle architecture through ultrasound images, and the hamstring flexibility through sit-and-reach test. The results showed that CG subjects had no significant change in any outcome. TG presented higher percent changes than CG for hamstring isometric peak torque (9%; effect size [ES] = 0.27), eccentric peak torque (13%; ES = 0.60), eccentric work (18%; ES = 0.86), and functional hamstring-to-quadriceps torque ratio (13%; ES = 0.80). The NHE program led also to increased fascicle length (22%; ES = 2.77) and reduced pennation angle (-17%; ES = 1.27) in biceps femoris long head of the TG, without significant changes on muscle thickness. In conclusion, a short-term NHE training program (4 weeks; 8 training sessions) counteracts multiple hamstring injury risk factors in physically active young adults.
Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior
Bellayr, Ian; Holden, Kyle; Mu, Xiaodong; Pan, Haiying; Li, Yong
2013-01-01
Skeletal muscle is a large and complex system that is crucial for structural support, movement and function. When injured, the repair of skeletal muscle undergoes three phases: inflammation and degeneration, regeneration and fibrosis formation in severe injuries. During fibrosis formation, muscle healing is impaired because of the accumulation of excess collagen. A group of zinc-dependent endopeptidases that have been found to aid in the repair of skeletal muscle are matrix metalloproteinases (MMPs). MMPs are able to assist in tissue remodeling through the regulation of extracellular matrix (ECM) components, as well as contributing to cell migration, proliferation, differentiation and angiogenesis. In the present study, the effect of GM6001, a broad-spectrum MMP inhibitor, on muscle-derived stem cells (MDSCs) is investigated. We find that MMP inhibition negatively impacts skeletal muscle healing by impairing MDSCs in migratory and multiple differentiation abilities. These results indicate that MMP signaling plays an essential role in the wound healing of muscle tissue because their inhibition is detrimental to stem cells residing in skeletal muscle. PMID:23329998
Chen, Wei-Han; Wu, Huey-June; Lo, Shin-Liang; Chen, Hui; Yang, Wen-Wen; Huang, Chen-Fu; Liu, Chiang
2018-05-28
Chen, WH, Wu, HJ, Lo, SL, Chen, H, Yang, WW, Huang, CF, and Liu, C. Eight-week battle rope training improves multiple physical fitness dimensions and shooting accuracy in collegiate basketball players. J Strength Cond Res XX(X): 000-000, 2018-Basketball players must possess optimally developed physical fitness in multiple dimensions and shooting accuracy. This study investigated whether (battle rope [BR]) training enhances multiple physical fitness dimensions, including aerobic capacity (AC), upper-body anaerobic power (AnP), upper-body and lower-body power, agility, and core muscle endurance, and shooting accuracy in basketball players and compared its effects with those of regular training (shuttle run [SR]). Thirty male collegiate basketball players were randomly assigned to the BR or SR groups (n = 15 per group). Both groups received 8-week interval training for 3 sessions per week; the protocol consisted of the same number of sets, exercise time, and rest interval time. The BR group exhibited significant improvements in AC (Progressive Aerobic Cardiovascular Endurance Run laps: 17.6%), upper-body AnP (mean power: 7.3%), upper-body power (basketball chest pass speed: 4.8%), lower-body power (jump height: 2.6%), core muscle endurance (flexion: 37.0%, extension: 22.8%, and right side bridge: 23.0%), and shooting accuracy (free throw: 14.0% and dynamic shooting: 36.2%). However, the SR group exhibited improvements in only AC (12.0%) and upper-body power (3.8%) (p < 0.05). The BR group demonstrated larger pre-post improvements in upper-body AnP (fatigue index) and dynamic shooting accuracy than the SR group did (p < 0.05). The BR group showed higher post-training performance in upper-body AnP (mean power and fatigue index) than the SR group did (p < 0.05). Thus, BR training effectively improves multiple physical fitness dimensions and shooting accuracy in collegiate basketball players.
The foot core system: a new paradigm for understanding intrinsic foot muscle function.
McKeon, Patrick O; Hertel, Jay; Bramble, Dennis; Davis, Irene
2015-03-01
The foot is a complex structure with many articulations and multiple degrees of freedom that play an important role in static posture and dynamic activities. The evolutionary development of the arch of the foot was coincident with the greater demands placed on the foot as humans began to run. The movement and stability of the arch is controlled by intrinsic and extrinsic muscles. However, the intrinsic muscles are largely ignored by clinicians and researchers. As such, these muscles are seldom addressed in rehabilitation programmes. Interventions for foot-related problems are more often directed at externally supporting the foot rather than training these muscles to function as they are designed. In this paper, we propose a novel paradigm for understanding the function of the foot. We begin with an overview of the evolution of the human foot with a focus on the development of the arch. This is followed by a description of the foot intrinsic muscles and their relationship to the extrinsic muscles. We draw the parallels between the small muscles of the trunk region that make up the lumbopelvic core and the intrinsic foot muscles, introducing the concept of the foot core. We then integrate the concept of the foot core into the assessment and treatment of the foot. Finally, we call for an increased awareness of the importance of the foot core stability to normal foot and lower extremity function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Association between healthy diet and exercise and greater muscle mass in older adults.
Kim, Jinhee; Lee, Yunhwan; Kye, Seunghee; Chung, Yoon-Sok; Kim, Kwang-Min
2015-05-01
To examine the association between healthy diet and exercise, individually and combined, and low muscle mass in older Korean adults. Population-based cross-sectional study from the Fourth and Fifth Korea National Health and Nutrition Examination Surveys from 2008 to 2011. Community. Nationally representative sample aged 65 and older (1,486 men, 1,799 women) in the Republic of Korea. A food frequency questionnaire was used to determine frequency of food group consumption (meat, fish, eggs, legumes; vegetables; fruits). Participation in exercise (aerobic and resistance) was based on self-report. Combined healthy lifestyle factors were calculated as the number of recommendations met regarding consumption of food groups and exercise performed. Appendicular skeletal muscle mass (ASM) was measured using dual-energy X-ray absorptiometry, and low muscle mass was defined using the variable of ASM adjusted for weight. Logistic regression analysis was performed to examine the association between healthy lifestyle factors and low muscle mass, adjusting for sociodemographic characteristics and health-related variables. In women, after controlling for covariates, vegetable consumption (odds ratio (OR)=0.52, 95% confidence interval (CI)=0.30-0.89) and aerobic exercise (OR=0.62, 95% CI=0.39-1.00) were inversely associated with low muscle mass. Also, the odds of low muscle mass was lower in women with three or more healthy lifestyle factors versus none (OR=0.45, 95% CI=0.23-0.87). In men, there were no associations between food group consumption and exercise and low muscle mass. Older women who exercise and consume a healthy diet have lower odds of low muscle mass. Engaging in multiple healthy behaviors may be important in preventing low muscle mass in late life. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.
Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish
Gerry, Shannon P.; Ellerby, David J.
2014-01-01
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858
Bulguroglu, I; Guclu-Gunduz, A; Yazici, G; Ozkul, C; Irkec, C; Nazliel, B; Batur-Caglayan, H Z
2017-01-01
Pilates is an exercise method which increases strength and endurance of core muscles and improves flexibility, dynamic postural control and balance. To analyze and compare the effects of Mat and Reformer Pilates methods in Patients with Multiple Sclerosis (MS). Thirty-eight patients with MS were included in the study. Participants were randomly divided into 3 groups as Mat Pilates, Reformer Pilates and control groups. The subjects in the Pilates groups did Mat or Reformer Pilates for 8 weeks, 2 days a week. The control group did breathing and relaxation exercises at home. Balance, functional mobility, core stability, fatigue severity and quality of life were evaluated. Balance, functional mobility, core stability, fatigue severity and quality of life improved after Pilates in Mat and Reformer Pilates groups (p < 0.05). On the other hand, we could not find any changing in the control group (p > 0.05). When the gain obtained in the Pilates groups is compared, it has been observed that progress has been more in trunk flexor muscle strength in the Reformer Pilates group (p < 0.05) and that the gain has been similar in the other parameters (p > 0.05). As a result, patients with MS have seen similar benefits in Reformer Pilates and Mat Pilates methods.
Freundl, Brigitta; Binder, Heinrich; Minassian, Karen
2018-01-01
Epidural electrical stimulation of the lumbar spinal cord is currently regaining momentum as a neuromodulation intervention in spinal cord injury (SCI) to modify dysregulated sensorimotor functions and augment residual motor capacity. There is ample evidence that it engages spinal circuits through the electrical stimulation of large-to-medium diameter afferent fibers within lumbar and upper sacral posterior roots. Recent pilot studies suggested that the surface electrode-based method of transcutaneous spinal cord stimulation (SCS) may produce similar neuromodulatory effects as caused by epidural SCS. Neurophysiological and computer modeling studies proposed that this noninvasive technique stimulates posterior-root fibers as well, likely activating similar input structures to the spinal cord as epidural stimulation. Here, we add a yet missing piece of evidence substantiating this assumption. We conducted in-depth analyses and direct comparisons of the electromyographic (EMG) characteristics of short-latency responses in multiple leg muscles to both stimulation techniques derived from ten individuals with SCI each. Post-activation depression of responses evoked by paired pulses applied either epidurally or transcutaneously confirmed the reflex nature of the responses. The muscle responses to both techniques had the same latencies, EMG peak-to-peak amplitudes, and waveforms, except for smaller responses with shorter onset latencies in the triceps surae muscle group and shorter offsets of the responses in the biceps femoris muscle during epidural stimulation. Responses obtained in three subjects tested with both methods at different time points had near-identical waveforms per muscle group as well as same onset latencies. The present results strongly corroborate the activation of common neural input structures to the lumbar spinal cord—predominantly primary afferent fibers within multiple posterior roots—by both techniques and add to unraveling the basic mechanisms underlying electrical SCS. PMID:29381748
Raabe, Margaret E; Chaudhari, Ajit M W
2016-05-03
The ability of a biomechanical simulation to produce results that can translate to real-life situations is largely dependent on the physiological accuracy of the musculoskeletal model. There are a limited number of freely-available, full-body models that exist in OpenSim, and those that do exist are very limited in terms of trunk musculature and degrees of freedom in the spine. Properly modeling the motion and musculature of the trunk is necessary to most accurately estimate lower extremity and spinal loading. The objective of this study was to develop and validate a more physiologically accurate OpenSim full-body model. By building upon three previously developed OpenSim models, the full-body lumbar spine (FBLS) model, comprised of 21 segments, 30 degrees-of-freedom, and 324 musculotendon actuators, was developed. The five lumbar vertebrae were modeled as individual bodies, and coupled constraints were implemented to describe the net motion of the spine. The eight major muscle groups of the lumbar spine were modeled (rectus abdominis, external and internal obliques, erector spinae, multifidus, quadratus lumborum, psoas major, and latissimus dorsi), and many of these muscle groups were modeled as multiple fascicles allowing the large muscles to act in multiple directions. The resulting FBLS model׳s trunk muscle geometry, maximal isometric joint moments, and simulated muscle activations compare well to experimental data. The FBLS model will be made freely available (https://simtk.org/home/fullbodylumbar) for others to perform additional analyses and develop simulations investigating full-body dynamics and contributions of the trunk muscles to dynamic tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Do Palisade Endings in Extraocular Muscles Arise from Neurons in the Motor Nuclei?
Lienbacher, Karoline; Mustari, Michael; Ying, Howard S.; Büttner-Ennever, Jean A.
2011-01-01
Purpose. The purpose of this study was to localize the cell bodies of palisade endings that are associated with the myotendinous junctions of the extraocular muscles. Methods. Rhesus monkeys received tract-tracer injections (tetramethylrhodamine dextran [TMR-DA] or choleratoxin subunit B [CTB]) into the oculomotor and trochlear nuclei, which contain the motoneurons of extraocular muscles. All extraocular muscles were processed for the combined immunocytochemical detection of the tracer and SNAP-25 or synaptophysin for the visualization of the complete muscle innervation. Results. In all muscles—except the lateral rectus—en plaque and en grappe motor endings, but also palisade endings, were anterogradely labeled. In addition a few tracer-labeled tendon organs were found. One group of tracer-negative nerve fibers was identified as thin tyrosine hydroxylase-positive sympathetic fibers, and a second less numerous group of tracer-negative fibers may originate from the trigeminal ganglia. No cellular or terminal tracer labeling was present within the mesencephalic trigeminal nucleus or the trigeminal ganglia. Conclusions. These results confirm those of earlier studies and furthermore suggest that the somata of palisade endings are located close to the extraocular motor nuclei—in this case, probably within the C and S groups around the periphery of the oculomotor nucleus. The multiple en grappe endings have also been shown to arise from these cells groups, but it is not possible to distinguish different populations in these experiments. PMID:21228383
Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław
2015-03-29
The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman's r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821).
Muscle Torque and its Relation to Technique, Tactics, Sports Level and Age Group in Judo Contestants
Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław
2015-01-01
The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman’s r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821). PMID:25964820
Lake Malawi cichlid evolution along a benthic/limnetic axis.
Hulsey, C D; Roberts, R J; Loh, Y-H E; Rupp, M F; Streelman, J T
2013-07-01
Divergence along a benthic to limnetic habitat axis is ubiquitous in aquatic systems. However, this type of habitat divergence has largely been examined in low diversity, high latitude lake systems. In this study, we examined the importance of benthic and limnetic divergence within the incredibly species-rich radiation of Lake Malawi cichlid fishes. Using novel phylogenetic reconstructions, we provided a series of hypotheses regarding the evolutionary relationships among 24 benthic and limnetic species that suggests divergence along this axis has occurred multiple times within Lake Malawi cichlids. Because pectoral fin morphology is often associated with divergence along this habitat axis in other fish groups, we investigated divergence in pectoral fin muscles in these benthic and limnetic cichlid species. We showed that the eight pectoral fin muscles and fin area generally tended to evolve in a tightly correlated manner in the Lake Malawi cichlids. Additionally, we found that larger pectoral fin muscles are strongly associated with the independent evolution of the benthic feeding habit across this group of fish. Evolutionary specialization along a benthic/limnetic axis has occurred multiple times within this tropical lake radiation and has produced repeated convergent matching between exploitation of water column habitats and locomotory morphology.
Postural synergies associated with a stepping task.
Mercer, V S; Sahrmann, S A
1999-12-01
Synergistic relationships among multiple muscle components are thought to exist to simplify control of posture and movement. The purpose of this study was to examine the extent to which children, young adults, and older adults exhibit consistent sequences of postural muscle activation when lifting the right foot onto a step from a standing position. Twenty subjects without known impairments of the neuromuscular system (10 male, 10 female) in each of 3 age groups--children (8-12 years), young adults (25-35 years), and older adults (65-73 years)--participated. A pressure switch taped to the subject's right foot was used to determine movement onset and offset. Latencies of muscle activation were determined using surface electromyography. A preferred postural synergy was defined as the sequence of postural muscle activation observed during the majority of trials for each subject. Mean movement times did not differ among age groups. Although the left tibialis anterior (TA) muscle was the first of the postural muscles activated in 93% of the trials, subjects displayed considerable variability in the subsequent order of postural muscle activation. Across subjects, a total of 14 different preferred postural synergies were observed. Age groups did not differ in the number of different synergies. Early TA activation may reflect biomechanical constraints of the stepping task, producing forward displacement of the center of mass over the changing base of support. The fact that subjects of all ages were quite variable in the specific sequences of muscles activated subsequent to the TA suggests that, for this type of task, therapists should not focus their interventions on facilitating execution of particular synergy patterns.
The effect of challenge and threat states on performance: An examination of potential mechanisms
Moore, Lee J; Vine, Samuel J; Wilson, Mark R; Freeman, Paul
2012-01-01
Challenge and threat states predict future performance; however, no research has examined their immediate effect on motor task performance. The present study examined the effect of challenge and threat states on golf putting performance and several possible mechanisms. One hundred twenty-seven participants were assigned to a challenge or threat group and performed six putts during which emotions, gaze, putting kinematics, muscle activity, and performance were recorded. Challenge and threat states were successively manipulated via task instructions. The challenge group performed more accurately, reported more favorable emotions, and displayed more effective gaze, putting kinematics, and muscle activity than the threat group. Multiple putting kinematic variables mediated the relationship between group and performance, suggesting that challenge and threat states impact performance at a predominately kinematic level. PMID:22913339
Multiple and solitary skeletal muscle metastases on 18F-FDG PET/CT imaging.
Nocuń, Anna; Chrapko, Beata
2015-11-01
The aim of this study was to investigate the features and patterns of skeletal muscle metastases (SMM) detected with F-fluorodeoxyglucose (F-FDG) PET/computed tomography (PET/CT). Our database was analyzed for patients with pathologically proven malignancy, who underwent F-FDG PET/CT in our institution. The patients with SMM were included in the study group on the basis of the final diagnosis confirmed by follow-up or histopathology. Images were acquired using a PET/CT system Biograph mCT S(64)-4R. CT was performed without contrast enhancement. The selected group included 31 patients (1.7% of the database, which consisted of 1805 patients). A total of 233 lesions were found. The prevalence of SMM evaluated in specific primary malignancies was the highest in melanoma (6.9%), followed by carcinoma of unknown primary (4.4%), colorectal cancer (4.1%) and lung cancer (2.8%). Three patterns of skeletal muscle metastatic involvement were observed: multiple SMM accompanied by other metastases (64.5%), solitary lesion associated with other metastases (29%) and isolated intramuscular lesions (two cases, 6.5%). Isolated SMM represented recurrence of the malignant disease. In patients with extraskeletal metastases, solitary or multiple SMM did not affect tumor staging. Solitary SMM are less common than multiple on F-FDG PET/CT imaging. SMM are usually associated with other metastases and do not affect tumor staging. The cases of isolated SMM are very rare. Nevertheless, in patients with a diagnosis of malignant disease, a solitary, F-FDG avid intramuscular focus should be suspected to represent metastasis.
Cornwall, Jon; Deries, Marianne; Duxson, Marilyn
2010-12-01
Although the morphology of human lumbar transversospinal (TSP) muscles has been studied, little is known about the structure of these muscles in the mouse (Mus musculus). Such information is relevant given mice are often used as a "normal" phenotype for studies modeling human development. This study describes the gross morphology, muscle fiber arrangement, and innervation pattern of the mouse lumbar TSP muscles. A unique feature of the study is the use of a transgenic mouse line bearing a muscle-specific nuclear marker that allows clear delineation of muscle fiber and connective tissue boundaries. The lumbar TSP muscles of five mice were examined bilaterally; at each spinal level muscles attached to the caudal edge of the spinous process and passed caudally as a single complex unit. Fibers progressively terminated over the four vertebral segments caudad, with multiple points of muscle fiber attachment on each vertebra. Motor endplates, defined with acetylcholinesterase histochemistry, were consistently located half way along each muscle fiber, regardless of length, with all muscle fibers arranged in-parallel rather than in-series. These results provide information relevant to interpretation of developmental and functional studies involving this muscle group in the mouse and show mouse lumbar TSP muscles are different in form to descriptions of equivalent muscles in humans and horses.
Uphill and Downhill Walking in Multiple Sclerosis
Samaei, Afshin; Hajihasani, Abdolhamid; Fatemi, Elham; Motaharinezhad, Fatemeh
2016-01-01
Background: Various exercise protocols have been recommended for patients with multiple sclerosis (MS). We investigated the effects of uphill and downhill walking exercise on mobility, functional activities, and muscle strength in MS patients. Methods: Thirty-four MS patients were randomly allocated to either the downhill or uphill treadmill walking group for 12 sessions (3 times/wk) of 30 minutes' walking on a 10% negative slope (n = 17) or a 10% positive slope (n = 17), respectively. Measurements were taken before and after the intervention and after 4-week follow-up and included fatigue by Modified Fatigue Impact Scale; mobility by Modified Rivermead Mobility Index; disability by Guy's Neurological Disability Scale; functional activities by 2-Minute Walk Test, Timed 25-Foot Walk test, and Timed Up and Go test; balance indices by Biodex Balance System; and quadriceps and hamstring isometric muscles by torque of left and right knee joints. Analysis of variance with repeated measures was used to investigate the intervention effects on the measurements. Results: After the intervention, significant improvement was found in the downhill group versus the uphill group in terms of fatigue, mobility, and disability indices; functional activities; balance indices; and quadriceps isometric torque (P < .05). The results were stable at 4-week follow-up. Conclusions: Downhill walking on a treadmill may improve muscle performance, functional activity, and balance control in MS patients. These findings support the idea of using eccentric exercise training in MS rehabilitation protocols. PMID:26917996
Pickett, T; Lewis, R; Cash, T; Pope, H
2005-01-01
Objectives: To investigate body image and psychosocial adjustment among competitive bodybuilders, non-competitive weight trainers, and athletically active men. Methods: Participants were 40 men in each of the three groups who were assessed on body composition and multiple facets of body image evaluation, investment and anxiety, eating attitudes, and social self esteem. Results: Relative to the other two groups, competitive bodybuilders had greater body mass due to fat-free body mass. Although groups did not differ in their situational body image discomfort, competitive bodybuilders and weight trainers had a more positive global appearance evaluation and were more psychologically invested in their physical appearance. Compared with active controls, men in both weightlifting groups were more satisfied with their upper torso and muscle tone. Competitive bodybuilders reported more mid torso satisfaction than the other two groups. Competitive bodybuilders also wished to be significantly heavier than controls did and reported higher social self esteem but greater eating disturbance. Conclusions: The findings suggest that competitive bodybuilders as a group are not more "muscle dysmorphic" than either non-competitive weight trainers or physically active men who do not train with weights. PMID:15793091
Buckley, Stephanie; Knapp, Kelly; Lackie, Amy; Lewry, Colin; Horvey, Karla; Benko, Chad; Trinh, Jason; Butcher, Scotty
2015-11-01
High-intensity interval training (HIIT) is a time-efficient method of improving aerobic and anaerobic power and capacity. In most individuals, however, HIIT using modalities such as cycling, running, and rowing does not typically result in increased muscle strength, power, or endurance. The purpose of this study is to compare the physiological outcomes of traditional HIIT using rowing (Row-HIIT) with a novel multimodal HIIT (MM-HIIT) circuit incorporating multiple modalities, including strength exercises, within an interval. Twenty-eight recreationally active women (age 24.7 ± 5.4 years) completed 6 weeks of either Row-HIIT or MM-HIIT and were tested on multiple fitness parameters. MM-HIIT and Row-HIIT resulted in similar improvements (p < 0.05 for post hoc pre- vs. post-training increases for each group) in maximal aerobic power (7% vs. 5%), anaerobic threshold (13% vs. 12%), respiratory compensation threshold (7% vs. 5%), anaerobic power (15% vs. 12%), and anaerobic capacity (18% vs. 14%). The MM-HIIT group had significant (p < 0.01 for all) increases in squat (39%), press (27%), and deadlift (18%) strength, broad jump distance (6%), and squat endurance (280%), whereas the Row-HIIT group had no increase in any muscle performance variable (p values 0.33-0.90). Post-training, 1-repetition maximum (1RM) squat (64.2 ± 13.6 vs. 45.8 ± 16.2 kg, p = 0.02), 1RM press (33.2 ± 3.8 vs. 26.0 ± 9.6 kg, p = 0.01), and squat endurance (23.9 ± 12.3 vs. 10.2 ± 5.6 reps, p < 0.01) were greater in the MM-HIIT group than in the Row-HIIT group. MM-HIIT resulted in similar aerobic and anaerobic adaptations but greater muscle performance increases than Row-HIIT in recreationally active women.
NASA Technical Reports Server (NTRS)
Highstead, R. Grant; Tipton, Kevin D.; Creson, Daniel L.; Wolfe, Robert R.; Ferrando, Arny A.
2005-01-01
Metabolic investigations often utilize arteriovenous sampling and muscle biopsy. These investigations represent some risk to the subject. We examined 369 studies performed in the General Clinical Research Center between January 1994 and May 2003 for events related to femoral catheterization and muscle biopsies. Incidents were further examined by age (younger: 18-59 yr, n=133; and older: 60-76 yr, n=28). There were no clinically defined major complications associated with either procedure. The incidence of femoral catheter repositioning or reinsertion was higher in the older group (25.5 vs. 9.7%). There was no difference in the incidence of premature removal of catheters, ecchymosis or hematoma, or the persistence of pain after discharge. The occurrence of all incidents did not increase with multiple catheterizations. Muscle biopsy was associated with infrequent ecchymosis or hematoma in both groups (1.1 and 3.6% in younger and older groups, respectively). Both procedures entail a small likelihood of a vagallike response (3.3% overall), resulting in nausea, dizziness, and rarely a loss of consciousness. These results indicate that, in skilled hands and a defined clinical setting, the incidents associated with femoral catheterization and muscle biopsy in healthy volunteers are reasonable and largely controllable.
Locomotive syndrome is associated not only with physical capacity but also degree of depression.
Ikemoto, Tatsunori; Inoue, Masayuki; Nakata, Masatoshi; Miyagawa, Hirofumi; Shimo, Kazuhiro; Wakabayashi, Toshiko; Arai, Young-Chang P; Ushida, Takahiro
2016-05-01
Reports of locomotive syndrome (LS) have recently been increasing. Although physical performance measures for LS have been well investigated to date, studies including psychiatric assessment are still scarce. Hence, the aim of this study was to investigate both physical and mental parameters in relation to presence and severity of LS using a 25-question geriatric locomotive function scale (GLFS-25) questionnaire. 150 elderly people aged over 60 years who were members of our physical-fitness center and displayed well-being were enrolled in this study. Firstly, using the previously determined GLFS-25 cutoff value (=16 points), subjects were divided into two groups accordingly: an LS and non-LS group in order to compare each parameter (age, grip strength, timed-up-and-go test (TUG), one-leg standing with eye open, back muscle and leg muscle strength, degree of depression and cognitive impairment) between the groups using the Mann-Whitney U-test followed by multiple logistic regression analysis. Secondly, a multiple linear regression was conducted to determine which variables showed the strongest correlation with severity of LS. We confirmed 110 people for non-LS (73%) and 40 people for LS using the GLFS-25 cutoff value. Comparative analysis between LS and non-LS revealed significant differences in parameters in age, grip strength, TUG, one-leg standing, back muscle strength and degree of depression (p < 0.006, after Bonferroni correction). Multiple logistic regression revealed that functional decline in grip strength, TUG and one-leg standing and degree of depression were significantly associated with LS. On the other hand, we observed that the significant contributors towards the GLFS-25 score were TUG and degree of depression in multiple linear regression analysis. The results indicate that LS is associated with not only the capacity of physical performance but also the degree of depression although most participants fell under the criteria of LS. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Morphological variations of papillary muscles in the mitral valve complex in human cadaveric hearts.
Gunnal, Sandhya Arvind; Wabale, Rajendra Namdeo; Farooqui, Mujeebuddin Samsamuddin
2013-01-01
Papillary muscle rupture and dysfunction can lead to complications of prolapsed mitral valve and mitral regurgitation. Multiple operative procedures of the papillary muscles, such as resection, repositioning and realignment, are carried out to restore normal physiological function. Therefore, it is important to know both the variations and the normal anatomy of papillary muscles. This study was carried out on 116 human cadaveric hearts. The left ventricles were opened along the left border in order to view the papillary muscles. The number, shape, position and pattern of the papillary muscles were observed. In this series, the papillary muscles were mostly found in groups instead of in twos, as is described in standard textbooks. Four different shapes of papillary muscles were identified - conical, broad-apexed, pyramidal and fan-shaped. We also discovered various patterns of papillary muscles. No two mitral valve complexes have the same architectural arrangement. Each case seems to be unique. Therefore, it is important for scientists worldwide to study the variations in the mitral valve complex in order to ascertain the reason behind each specific architectural arrangement. This will enable cardiothoracic surgeons to tailor the surgical procedures according to the individual papillary muscle pattern.
Laracca, Ettore; Stewart, Caroline; Postans, Neil; Roberts, Andrew
2014-03-01
Children with cerebral palsy often undergo multiple orthopaedic surgical procedures in a single episode. Evidence of the effectiveness of individual components within the overall package is sparse. The introduction of musculoskeletal modelling in Oswestry has led to a more conservative management approach being taken with hamstring muscles for children walking in a degree of crouch. Muscles which were shown to be of at least normal length at initial contact were not surgically lengthened, as would have been the case previously. A retrospective review of 30 such patients was therefore possible, comparing 15 patients treated before the policy change who had their hamstrings lengthened with 15 treated after who did not. All patients had pre and post operative gait assessments and significant changes were observed for each group separately and for the two groups when compared. The comparison revealed that preserving the hamstrings does tend to reduce, and therefore normalize, the dynamic muscle length. Examination of the two patient groups separately, however, reveals a more complex picture with more global gait improvements seen when the hamstrings were lengthened. No absolute recommendation can be made to inform the clinical management of all children with normal to long hamstring muscles during gait. The final decision of whether to include a hamstring lengthening will need to take into account the characteristics of the individual child. Copyright © 2013 Elsevier B.V. All rights reserved.
Terry, Rebecca L; Wells, Dominic J
2016-12-01
The muscular dystrophies are a diverse group of degenerative diseases for which many mouse models are available. These models are frequently used to assess potential therapeutic interventions and histological evaluation of multiple muscles is an important part of this assessment. Histological evaluation is especially useful when combined with tests of muscle function. This unit describes a protocol for necropsy, processing, cryosectioning, and histopathological evaluation of murine skeletal muscles, which is applicable to both models of muscular dystrophy and other neuromuscular conditions. Key histopathological features of dystrophic muscle are discussed using the mdx mouse (a model of Duchenne muscular dystrophy) as an example. Optimal handling during dissection, processing and sectioning is vital to avoid artifacts that can confound or prevent future analyses. Muscles carefully processed using this protocol are suitable for further evaluation using immunohistochemistry, immunofluorescence, special histochemical stains, and immuoblotting. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
An investigation of abdominal muscle recruitment for sustained phonation in 25 healthy singers.
Macdonald, Ian; Rubin, John S; Blake, Ed; Hirani, Shashi; Epstein, Ruth
2012-11-01
The purpose of this study was to investigate the baseline muscle thickness and recruitment patterns of the transversus abdominis muscle (TAM) and the internal oblique muscle (IOM) during semisupine phonation in a group of healthy performers. This was a 2 × 3×2 within-group, repeated-measure study in which 25 professional vocalists--12 male and 13 female performed a series of sustained pitches in differing vocal qualities. Measurements were taken with ultrasound (Sonosite Micromaxx Ultrasound System) of the baseline thickness and % recruitment during voicing, of two deep abdominal muscles--TAM and the IOM. Correlations between TAM and IOM absolute change scores, TAM and IOM percentage change scores, and changes in muscle thickness (absolute and percentage) and age were examined using Spearman's correlations. Gender differences in the four types of change scores within each combination of pitch and quality were conducted with one-way analysis of variances. Differences in muscle thickness change 1) absolute scores and 2) percentage change in TAM and IOM, by pitch and quality (and their interactions) were analyzed using linear mixed models, using restricted maximum likelihood estimations, employing a Toeplitz variance-covariance matrix structure in SPSS (IBM, 2011). Post hoc analyses for independent variable group differences used Sidak's correction for multiple comparisons. Alpha level was set to 0.05. In terms of absolute contractions (changes in the actual millimeter thickness of the muscle), the IOM was greater than the TAM. However in terms of percentage changes in muscles during phonation, the TAM was always greater than the IOM. The TAM as a percentage change was recruited preferentially and significantly in most vocal qualities tested. Although there were differences in muscle mass and recruitment patterns between genders, and males had thicker muscle mass at rest, differences due to muscle mass were not conclusive. Overall this study supports the argument that the peri-abdominal muscles do indeed play a role in supporting the "performing" or athletic voice in healthy subjects, and will hopefully act as a database for further research in individuals with healthy and injured voices. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Manca, Andrea; Cabboi, Maria Paola; Ortu, Enzo; Ginatempo, Francesca; Dragone, Daniele; Zarbo, Ignazio Roberto; de Natale, Edoardo Rosario; Mureddu, Giovanni; Bua, Guido; Deriu, Franca
2016-06-01
The contralateral strength training (CST) effect is a transfer of muscle performance to the untrained limb following training of the contralateral side. The aim of this study was to explore, in individuals with multiple sclerosis (MS) presenting marked lower limb strength asymmetry, the effectiveness of CST on management of muscle weakness of the more-affected limb following training of the less-affected limb. A single-subject research design was used. Eight individuals with MS underwent 16 to 18 high-intensity training sessions of the less-affected ankle dorsiflexor muscles. The primary outcome measure of this single-system case series was maximal strength expressed as peak moment and maximal work. Secondary outcome measures were: Six-Minute-Walk Test, Timed "Up & Go" Test, 10-Meter Timed Walk Test, and Multiple Sclerosis Quality of Life-54 questionnaire. After the 6-week intervention, the contralateral more affected (untrained) limb showed a 22% to 24% increase in maximal strength. From pretest-posttest measurements, participants also performed significantly better on the clinical and functional secondary outcome measures. At the 12-week follow-up, the strength levels of the weaker untrained limb remained significantly superior to baseline levels in the majority (5 out of 8) of the outcome parameters. Considering the design used, the absence of a control group, and the sample size, these findings should be cautiously generalized and will need confirmation in a properly planned randomized controlled trial. The present proof-of-concept study shows, for the first time, the occurrence of the CST effect on muscle performance of ankle dorsiflexor muscles in people with MS. These preliminary findings reveal new potential implications for CST as a promising rehabilitation approach to those conditions where unilateral muscle weakness does not allow or makes difficult performing conventional strength training of the weaker limb. © 2016 American Physical Therapy Association.
Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship.
Carvalho, Cristiane; Sunnerhagen, Katharina S; Willén, Carin
2013-05-01
To evaluate the relation between muscle strength in the lower extremities and walking performance (speed and distance) in subjects in the later stage poststroke and to compare this with normative data. A cross-sectional observational study. University hospital department. Subjects poststroke (n=41; 31 men, 10 women) with a mean age of 59±5.8 years and a time from stroke onset of 52±36 months were evaluated. An urban sample (n=144) of 40- to 79-year-olds (69 men, 75 women) formed the healthy reference group. Not applicable. Muscle strength in the lower extremities was measured with an isokinetic dynamometer and combined into a strength index. Values for the 30-meter walk test for self-selected and maximum speed and the 6-minute walk test were measured. A nonlinear regression model was used. The average strength index was 730±309 in the subjects after stroke compared with 1112±362 in the healthy group. A nonlinear relation between walking performance and muscle strength was evident. The model explained 37% of the variance in self-selected speed in the stroke group and 20% in the healthy group, and 63% and 38%, respectively, in the maximum walking speed. For the 6-minute walk test, the model explained 44% of the variance in the stroke group. Subjects in the later stage poststroke were weaker than the healthy reference group, and their weakness was associated with walking performance. At the same strength index, subjects walked at lower speeds and shorter distances after stroke, indicating that there are multiple impairments that affect walking ability. Treatments focused on increasing muscle strength thus continue to hold promise. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Gavin, Timothy P; Stallings, Howard W; Zwetsloot, Kevin A; Westerkamp, Lenna M; Ryan, Nicholas A; Moore, Rebecca A; Pofahl, Walter E; Hickner, Robert C
2005-01-01
Obesity is associated with lower skeletal muscle capillarization and lower insulin sensitivity. Vascular endothelial growth factor (VEGF) is important for the maintenance of the skeletal muscle capillaries. To investigate whether VEGF and VEGF receptor [kinase insert domain-containing receptor (KDR) and Flt-1] expression are lower with obesity, vastus lateralis muscle biopsies were obtained from eight obese and eight lean young sedentary men before and 2 h after a 1-h submaximal aerobic exercise bout for the measurement of VEGF, KDR, Flt-1, and skeletal muscle fiber and capillary characteristics. There were no differences in VEGF or VEGF receptor mRNA at rest between lean and obese muscle. Exercise increased VEGF (10-fold), KDR (3-fold), and Flt-1 (5-fold) mRNA independent of group. There were no differences in VEGF, KDR, or Flt-1 protein between groups. Compared with lean skeletal muscle, the number of capillary contacts per fiber was the same, but lower capillary density (CD), greater muscle cross sectional area, and lower capillary-to-fiber area ratio were observed in both type I and II fibers in obese muscle. Multiple linear regression revealed that 49% of the variance in insulin sensitivity (homeostasis model assessment) could be explained by percentage of body fat (35%) and maximal oxygen uptake per kilogram of fat-free mass (14%). Linear regression revealed significant relationships between maximal oxygen uptake and both CD and capillary-to-fiber perimeter exchange. Although differences may exist in CD and capillary-to-fiber area ratio between lean and obese skeletal muscle, the present results provide evidence that VEGF and VEGF receptor expression are not different between lean and obese muscle.
McCabe, Marita P; Busija, Lucy; Fuller-Tyszkiewicz, Matthew; Ricciardelli, Lina; Mellor, David; Mussap, Alexander
2015-01-01
This study determined how sociocultural messages to change one's body are perceived by adolescents from different cultural groups. In total, 4904 adolescents, including Australian, Chilean, Chinese, Indo-Fijian, Indigenous Fijian, Greek, Malaysian, Chinese Malaysian, Tongans in New Zealand, and Tongans in Tonga, were surveyed about messages from family, peers, and the media to lose weight, gain weight, and increase muscles. Groups were best differentiated by family pressure to gain weight. Girls were more likely to receive the messages from multiple sociocultural sources whereas boys were more likely to receive the messages from the family. Some participants in a cultural group indicated higher, and others lower, levels of these sociocultural messages. These findings highlight the differences in sociocultural messages across cultural groups, but also that adolescents receive contrasting messages within a cultural group. These results demonstrate the difficulty in representing a particular message as being characteristic of each cultural group. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adaptive strength gains in dystrophic muscle exposed to repeated bouts of eccentric contraction
Call, Jarrod A.; Eckhoff, Michael D.; Baltgalvis, Kristen A.; Warren, Gordon L.
2011-01-01
The objective of this study was to determine the functional recovery and adaptation of dystrophic muscle to multiple bouts of contraction-induced injury. Because lengthening (i.e., eccentric) contractions are extremely injurious for dystrophic muscle, it was considered that repeated bouts of such contractions would exacerbate the disease phenotype in mdx mice. Anterior crural muscles (tibialis anterior and extensor digitorum longus) and posterior crural muscles (gastrocnemius, soleus, and plantaris) from mdx mice performed one or five repeated bouts of 100 electrically stimulated eccentric contractions in vivo, and each bout was separated by 10–18 days. Functional recovery from one bout was achieved 7 days after injury, which was in contrast to a group of wild-type mice, which still showed a 25% decrement in electrically stimulated isometric torque at that time point. Across bouts there was no difference in the immediate loss of strength after repeated bouts of eccentric contractions for mdx mice (−70%, P = 0.68). However, after recovery from each bout, dystrophic muscle had greater torque-generating capacity such that isometric torque was increased ∼38% for both anterior and posterior crural muscles at bout 5 compared with bout 1 (P < 0.001). Moreover, isolated extensor digitorum longus muscles excised from in vivo-tested hindlimbs 14–18 days after bout 5 had greater specific force than contralateral control muscles (12.2 vs. 10.4 N/cm2, P = 0.005) and a 20% greater maximal relaxation rate (P = 0.049). Additional adaptations due to the multiple bouts of eccentric contractions included rapid recovery and/or sparing of contractile proteins, enhanced parvalbumin expression, and a decrease in fiber size variability. In conclusion, eccentric contractions are injurious to dystrophic skeletal muscle; however, the muscle recovers function rapidly and adapts to repeated bouts of eccentric contractions by improving strength. PMID:21960659
Malm, Christer; Nyberg, Pernilla; Engström, Marianne; Sjödin, Bertil; Lenkei, Rodica; Ekblom, Björn; Lundberg, Ingrid
2000-01-01
A role of the immune system in muscular adaptation to physical exercise has been suggested but data from controlled human studies are scarce. The present study investigated immunological events in human blood and skeletal muscle by immunohistochemistry and flow cytometry after eccentric cycling exercise and multiple biopsies. Immunohistochemical detection of neutrophil- (CD11b, CD15), macrophage- (CD163), satellite cell- (CD56) and IL-1β-specific antigens increased similarly in human skeletal muscle after eccentric cycling exercise together with multiple muscle biopsies, or multiple biopsies only. Changes in immunological variables in blood and muscle were related, and monocytes and natural killer (NK) cells appeared to have governing functions over immunological events in human skeletal muscle. Delayed onset muscle soreness, serum creatine kinase activity and C-reactive protein concentration were not related to leukocyte infiltration in human skeletal muscle. Eccentric cycling and/or muscle biopsies did not result in T cell infiltration in human skeletal muscle. Modes of stress other than eccentric cycling should therefore be evaluated as a myositis model in human. Based on results from the present study, and in the light of previously published data, it appears plausible that muscular adaptation to physical exercise occurs without preceding muscle inflammation. Nevertheless, leukocytes seem important for repair, regeneration and adaptation of human skeletal muscle. PMID:11080266
Lúcio, Adélia Correia; Campos, Renata Martins; Perissinotto, Maria Carolina; Miyaoka, Ricardo; Damasceno, Benito Pereira; D'ancona, Carlos Arturo Levi
2010-11-01
Evaluate the role of pelvic floor muscle training (PFMT) on the treatment of lower urinary tract dysfunction (LUTD) in multiple sclerosis (MS) patients. In this randomized controlled trial, twenty seven female patients with a diagnosis of MS and LUTD complaints were randomized, in two groups: Treatment group (GI) (N = 13) and Sham group (GII) (N = 14). Evaluation included urodynamic study, 24-hr Pad testing, three day voiding diary and pelvic floor evaluation according to PERFECT scheme. Intervention was performed twice a week for 12 weeks in both groups. GI intervention consisted of PFMT with assistance of a vaginal perineometer. GII received a sham treatment consisted on the introduction of a perineometer inside the vagina with no contraction required. At the end of the treatment GI was complaining less about storage and voiding symptoms than GII. Furthermore, differences found between groups were: reduction of pad weight (P = 0.00) (Mean: 87,51 grams initial and 6,03 grams final in GI. 69,46 grams initial and 75,88 grams final in GII), number of pads (P = 0.01) (Mean: 3,61 initial and 2,15 final in GI. 3,42 initial and 3,28 final in GII) and nocturia events (P < 0.00) (Mean: 2,38 initial and 0,46 final in GI. 2,55 initial and 2,47 final in GII) and improvements of muscle power (P = 0.00), endurance (P < 0.00), resistance (P < 0.00) and fast contractions (P < 0.00), domains of PERFECT scheme. PFMT is an effective approach to treat LUTD in female with MS. © 2010 Wiley-Liss, Inc.
Kendall, Katherine A; Leonard, Rebecca J
2011-01-01
Up to one-third of patients presenting with adductor spasmodic dysphonia will have an associated vocal tremor. These patients may not respond fully to treatment using thyroarytenoid (TA) muscle botulinum toxin (Botox) injection. Treatment failures are attributed to the involvement of multiple muscle groups in the tremor. This study evaluates the results of combined interarytenoid (IA) and TA muscle Botox injection in a group of 27 patients with adductor spasmodic dysphonia and vocal tremor and in four patients with severe vocal tremor alone. Patient-satisfaction data were reviewed retrospectively. Pre- and postinjection acoustic data were collected prospectively. Acoustic measures of fundamental frequency and cycle-by-cycle variability in frequency (jitter) and intensity (shimmer) were obtained from 15 patients' sustained vowel productions. Measures were collected after TA muscle injection, alone, and after combined TA and IA (TA+IA) muscle injections. In addition, two experienced voice clinicians blindly assessed tremor severity from recordings made for each patient in the two conditions. Patients were also queried regarding their satisfaction with the results of the injections and whether they desired to continue receiving TA+IA treatment. Significant improvement in all acoustic measures except for % jitter was observed after the TA+IA muscle injections. Listeners identified voice samples after TA+IA muscle injections as demonstrating less tremor in 73% of the paired comparisons. Sixty-seven percent of the patients with spasmodic dysphonia and vocal tremor wished to continue to receive IA muscle injections. Only one patient with severe vocal tremor wished to continue with injections. The addition of an IA muscle Botox injection to the treatment of patients with a combination adductor spasmodic dysphonia and vocal tremor may improve voice outcomes. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
[Displacement of the posterior part of the eyeball in myopia].
Akizawa, Yasuko; Masahiro, Ida
2006-12-01
The principal aim of this study was to investigate displacement of the posterior part of the eyeball within the muscle cone in myopic eyes, particularly in moderately myopic subjects as well as in high myopes. Secondly, the correlation of the amount of displacement and the outer axial length of the globe was studied. The direction of displacement was also examined to clarify whether the eyeball tends to shift toward a certain direction. Seven patients with moderate myopia (moderate myopia group), fifteen patients with high myopia without esotropia (high myopia group), five patients with high myopia and esotropia (myopic esotropia group), and twenty-two controls (control group) were examined. Using magnetic resonance imaging, the outer axial length and the displacement of the posterior portion of the eyeball in the muscle cone were measured. In order to eliminate interindividual differences in the facial configuration, the coronal scanning was done perpendicularly to the orbital axis. The displacement was measured in a plane 4 mm anterior to the globe-optic nerve junction. The displacement was represented by the distance and direction of the globe center from the center of the muscle cone. In the moderate myopia group, there was no displacement of the posterior part of the eyeball in the muscle cone. It was the same as in the control group. But among the three groups, the displacement (mean standard deviation) was significantly greater in the myopic esotropia group (1.53 +/- 0.49 mm) and the high myopia group (0.94 +/- 0.52 mm) than in the control group (0.11 +/- 0.18 mm) (one way ANOVA and multiple comparison). The outer axial length and the distance of the displacement in all cases was significantly correlated (r = 0.87, p = 0.01). Moreover, the posterior part of the eyeball of the myopic esotropia group and the high myopia group was displaced superiorly and temporally. The posterior part of the eyeball of myopic eyes was displaced superotemporally in the muscle cone regardless of the presence of esotropia, and the amount of displacement was significantly correlated with the outer axial length. The more the eyeball expanded, the farther it was displaced. In the end, it was thought that the most elongated high myopic eyes would dislocate out of the muscle cone.
Power independent EMG based gesture recognition for robotics.
Li, Ling; Looney, David; Park, Cheolsoo; Rehman, Naveed U; Mandic, Danilo P
2011-01-01
A novel method for detecting muscle contraction is presented. This method is further developed for identifying four different gestures to facilitate a hand gesture controlled robot system. It is achieved based on surface Electromyograph (EMG) measurements of groups of arm muscles. The cross-information is preserved through a simultaneous processing of EMG channels using a recent multivariate extension of Empirical Mode Decomposition (EMD). Next, phase synchrony measures are employed to make the system robust to different power levels due to electrode placements and impedances. The multiple pairwise muscle synchronies are used as features of a discrete gesture space comprising four gestures (flexion, extension, pronation, supination). Simulations on real-time robot control illustrate the enhanced accuracy and robustness of the proposed methodology.
Harimoto, N; Yoshizumi, T; Izumi, T; Motomura, T; Harada, N; Itoh, S; Ikegami, T; Uchiyama, H; Soejima, Y; Nishie, A; Kamishima, T; Kusaba, R; Shirabe, K; Maehara, Y
2017-11-01
Sarcopenia is an independent predictor of death after living-donor liver transplantation (LDLT). However, the ability of the Asian Working Group for Sarcopenia criteria for sarcopenia (defined as reduced skeletal muscle mass plus low muscle strength) to predict surgical outcomes in patients who have undergone LDLT has not been determined. This study prospectively enrolled 366 patients who underwent LDLT at Kyushu University Hospital. Skeletal muscle area (determined by computed tomography), hand-grip strength, and gait speed were measured in 102 patients before LDLT. We investigated the relationship between sarcopenia and surgical outcomes after LDLT performed in three time periods. The number of patients with lower skeletal muscle area has increased to 52.9% in recent years. The incidence of sarcopenia according to the Asian Working Group for Sarcopenia criteria was 23.5% (24/102). Patients with sarcopenia (defined by skeletal muscle area and functional parameters) had significantly lower skeletal muscle area and weaker hand-grip strength than did those without sarcopenia. Compared with non-sarcopenic patients, patients with sarcopenia also had significantly worse liver function, greater estimated blood loss, greater incidence of postoperative complications of Clavien-Dindo grade IV or greater (including amount of ascites on postoperative day 14, total bilirubin on postoperative day 14, and postoperative sepsis), and longer postoperative hospital stay. Multiple logistic regression analysis revealed sarcopenia as a significant predictor of 6-month mortality. The combination of skeletal muscle mass and function can predict surgical outcomes in LDLT patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration.
Allbright, Kassandra O; Bliley, Jacqueline M; Havis, Emmanuelle; Kim, Deok-Yeol; Dibernardo, Gabriella A; Grybowski, Damian; Waldner, Matthias; James, Isaac B; Sivak, Wesley N; Rubin, J Peter; Marra, Kacey G
2018-02-06
Peripheral nerve damage is associated with high long-term morbidity. Because of beneficial secretome, immunomodulatory effects, and ease of clinical translation, transplantation with adipose-derived stem cells (ASC) represents a promising therapeutic modality. Effect of ASC delivery in poloxamer hydrogel was assessed in a rat sciatic nerve model of critical-sized (1.5 cm) peripheral nerve injury. Nerve/muscle unit regeneration was assessed via immunostaining explanted nerve, quantitative polymerase chain reaction (qPCR), and histological analysis of reinnervating gastrocnemius muscle. On the basis of viability data, 10% poloxamer hydrogel was selected for in vivo study. Six weeks after transection and repair, the group treated with poloxamer delivered ASCs demonstrated longest axonal regrowth. The qPCR results indicated that the inclusion of ASCs appeared to result in expression of factors that aid in reinnervating muscle tissue. Delivery of ASCs in poloxamer addresses multiple facets of the complexity of nerve/muscle unit regeneration, representing a promising avenue for further study. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.
Congenital hypertrophy of multiple intrinsic muscles of the foot.
Shiraishi, Tomohiro; Park, Susam; Niu, Atushi; Hasegawa, Hiromi
2014-12-01
Congenital hypertrophy of a single intrinsic muscle of the foot is rare, and as far as we know, only six cases have been reported. We describe a case of congenital anomaly that showed hypertrophy of multiple intrinsic muscles of the foot; the affected muscles were all the intrinsic muscles of the foot except the extensor digitorum brevis or extensor hallucis. Other tissues such as adipose tissue, nervous tissue, or osseous tissue showed no abnormalities. To reduce the volume of the foot we removed parts of the enlarged muscles.
Mittal, Ravinder K; Kassab, Ghassan; Puckett, James L; Liu, Jianmin
2003-08-01
Patients with diffuse esophageal spasm (DES) and nutcracker esophagus/high amplitude esophageal contraction (HAEC) have a thicker esophageal muscularis propria than do healthy subjects. The goals of this study were to determine the esophageal muscle cross-sectional area (MCSA), a measure of muscle mass, in patients with achalasia of the esophagus; and to compare it with that in patients with DES, patients with HAEC, and normal subjects. Using a high-frequency ultrasound probe catheter, concurrent manometry and ultrasound images of the esophagus were recorded in four subject groups: normal volunteers, patients with HAEC, patients with DES, and patients with achalasia of the esophagus. Recordings were obtained from the lower esophageal sphincter (LES) and multiple sites in the esophagus 2, 4, 6, 8, and 10 cm above the LES. The LES and esophageal muscle thickness as well as esophageal MCSA were greater in all three patient groups than in the normal subject group. Muscle thickness and MCSA were observed to be greatest in patients with achalasia, which were greater than in patients with DES, which were greater than in those with HAEC, which in turn were greater than in normal subjects. We propose that an increase in the MCSA is an important feature of patients with primary motility disorders of the esophagus. The degree of increase in muscle mass may be an important determinant of the type and the severity of esophageal motor dysfunction.
Avrutin, Egor; Moisey, Lesley L; Zhang, Roselyn; Khattab, Jenna; Todd, Emma; Premji, Tahira; Kozar, Rosemary; Heyland, Daren K; Mourtzakis, Marina
2017-12-06
Computed tomography (CT) scans performed during routine hospital care offer the opportunity to quantify skeletal muscle and predict mortality and morbidity in intensive care unit (ICU) patients. Existing methods of muscle cross-sectional area (CSA) quantification require specialized software, training, and time commitment that may not be feasible in a clinical setting. In this article, we explore a new screening method to identify patients with low muscle mass. We analyzed 145 scans of elderly ICU patients (≥65 years old) using a combination of measures obtained with a digital ruler, commonly found on hospital radiological software. The psoas and paraspinal muscle groups at the level of the third lumbar vertebra (L3) were evaluated by using 2 linear measures each and compared with an established method of CT image analysis of total muscle CSA in the L3 region. There was a strong association between linear measures of psoas and paraspinal muscle groups and total L3 muscle CSA (R 2 = 0.745, P < 0.001). Linear measures, age, and sex were included as covariates in a multiple logistic regression to predict those with low muscle mass; receiver operating characteristic (ROC) area under the curve (AUC) of the combined psoas and paraspinal linear index model was 0.920. Intraclass correlation coefficients (ICCs) were used to evaluate intrarater and interrater reliability, resulting in scores of 0.979 (95% CI: 0.940-0.992) and 0.937 (95% CI: 0.828-0.978), respectively. A digital ruler can reliably predict L3 muscle CSA, and these linear measures may be used to identify critically ill patients with low muscularity who are at risk for worse clinical outcomes. © 2017 American Society for Parenteral and Enteral Nutrition.
The status of pelvic floor muscle training for women
Marques, Andrea; Stothers, Lynn; Macnab, Andrew
2010-01-01
There is no consensus on the amount of exercise necessary to improve pelvic floor muscle (PFM) function. We reviewed the pathophysiology of PFM dysfunction and the evolution of PFM training regimens since Kegel introduced the concept of pelvic floor awareness and the benefits of strength. This paper also describes the similarities and differences between PFM and other muscular groups, reviews the physiology of muscle contraction and principles of muscle fitness and exercise benefits and presents the range of protocols designed to strengthen the PFM and improve function. We also discuss the potential application of new technology and methodologies. The design of PFM training logically requires multiple factors to be considered in each patient. Research that defines measures to objectively quantify the degree of dysfunction and the efficacy of training would be beneficial. The application of new technologies may help this process. PMID:21191506
Longitudinal fibre splitting in muscular dystrophy: a serial cinematographic study
Isaacs, Edward R.; Bradley, Walter G.; Henderson, Gerald
1973-01-01
A technique of block surface-staining and serial cinematography was modified to review serial sections of normal and dystrophic muscle from the Bar Harbor 129 Re strain of mice as a preliminary study of fibre splitting in dystrophic muscle. Using this technique, muscle fibres were reconstructed for up to 1·5 mm of their length without difficulty. Split fibres were identified only when the actual separation of fibres was observed. Splitting was seen to be a significant cause of the variations in fibre diameter and was at times responsible for the formation of groups of small atrophic fibres which resembled those seen in denervation atrophy. Complex multiple splitting and recombination of daughter and parent fibres was also observed and reconstructed to scale. These results may have considerable significance for the interpretation of physiological data on both human and murine dystrophic muscle. Images PMID:4753877
Flexible multielectrodes can resolve multiple muscles in an insect appendage.
Spence, Andrew J; Neeves, Keith B; Murphy, Devon; Sponberg, Simon; Land, Bruce R; Hoy, Ronald R; Isaacson, Michael S
2007-01-15
Research into the neuromechanical basis of behavior, either in biomechanics, neuroethology, or neuroscience, is frequently limited by methods of data collection. Two of the most pressing needs are for methods with which to (1) record from multiple neurons or muscles simultaneously and (2) perform this recording in intact, behaving animals. In this paper we present the fabrication and testing of flexible multielectrode arrays (fMEAs) that move us significantly towards these goals. The fMEAs were used to record the activity of several distinct units in the coxa of the cockroach Blaberus discoidalis. The devices fabricated here address the first goal in two ways: (1) their flexibility allows them to be inserted into an animal and guided through internal tissues in order to access distinct groups of neurons and muscles and (2) their recording site geometry has been tuned to suit the anatomy under study, yielding multichannel spike waveforms that are easily separable under conditions of spike overlap. The flexible nature of the devices simultaneously addresses the second goal, in that it is less likely to interfere with the natural movement of the animal.
Zak, Marek; Swine, Christian; Grodzicki, Tomasz
2009-01-28
Consistently swelling proportion of the frail elderly within a modern society challenges the overstrained public health sector to provide both adequate medical care and comprehensive assistance in their multiple functional deficits of daily living. Easy-to-apply and task-specific ways of addressing this issue are being sought out, with a view to proposing systemic solutions for nationwide application. The present randomised, double-blind, placebo-controlled, 7-week clinical trial aimed to determine whether specifically structured, intensive exercise regimens, combined with nutritional supplementation, might improve and help sustain individual muscle strength and mobility, and possibly enhance individual functional capabilities in an on-going quest for active prevention of care-dependency. Ninety-one frail elderly (F 71 M 20; mean age 79 years) were recruited from both nursing home residents and community dwellers and randomly split into four groups: Group I - progressive resistance exercises (PRE) + functionally-oriented exercises (FOE) + nutritional supplementation (NS), Group II - PRE + FOE + placebo, Group III--standard exercises (SE) + FOE + NS, Group IV - SE + FOE + placebo. Each group pursued a 45 min. exercise session 5 times weekly. The subjects' strength with regard to four muscle groups, i.e. hip and knee extensors and flexons, was assessed at 80% (1 RM) weekly, whereas their balance and mobility at baseline and at the end of the study. The study was completed by 80 subjects. Despite its relatively short duration significant differences in muscle strength were noted both in Group I and Group II (p = 0.01; p = 0.04; respectively), although this did not translate directly into perceptible improvement in individual mobility. Notable improvements in individual mobility were reported in Group III and Group IV (p = 0.002), although without positive impact on individual muscle strength. Comprehensively structured, high-intensity regimen made up of diverse exercise types, i.e. functionally-oriented, progressive resistance and standard ones, preferably if combined with nutritional supplementation in adequate volume, demonstrates clear potential for appreciably improving overall functional status in the frail elderly in terms of individual walking capacity and muscle strength. Central Register of Clinical Trials, Poland--CEBK180/2000.
Sun, He; Xu, Meng-Tao; Wang, Xiao-Qi; Wang, Meng-Hu; Wang, Bao-Heng; Wang, Feng-Zhe; Pan, Shi-Nong
2018-05-05
Magnetic resonance (MR) imaging provides a unique, noninvasive diagnostic platform to quantify the physiological and biochemical variables of skeletal muscle at rest. This study was to investigate the difference in thigh skeletal muscles between snowboarding halfpipe athletes and healthy volunteers via multiparametric MR imaging. A comparative study was conducted between 12 healthy volunteers and 14 snowboarding halfpipe athletes. MR scanning targeted the left leg at the level of the proximal thigh on a 3.0T MR system. The measured parameters compared between the two groups included T1, T2, T2* relaxation times, fat fraction (FF), and cross-sectional area (CSA) of the quadriceps femoris and the hamstring muscles. Statistical analysis was carried out using independent sample t-test. Interrater reliability was also assessed with intraclass correlation coefficients (ICCs). It was statistically equivalent between two groups in age, body mass index, thigh circumference, calf circumference, systolic blood pressure, and resting heart rate (all P > 0.05). However, the T1 and T2 values of the hamstring muscles in the athlete group were found to be significantly shorter than those in control group (T1: 1063.3 ± 24.1 ms vs. 1112.0 ± 38.2 ms in biceps femoris, 1050.4 ± 31.2 ms vs. 1095.0 ± 39.5 ms in semitendinosus, 1053.1 ± 31.7 ms vs. 1118.4 ± 40.0 ms in semimembranosus, respectively; T2: 33.4 ± 0.7 ms vs. 36.1 ± 1.9 ms in biceps femoris, 34.6 ± 2.0 ms vs. 37.0 ± 1.9 ms in semitendinosus, 36.9 ± 1.5 ms vs. 38.9 ± 2.4 ms in semimembranosus, respectively; all P < 0.05) although T2* relaxation time was detected with no significant difference. The FF of the hamstring muscles was obviously less than the control group (5.5 ± 1.9% vs. 10.7 ± 4.7%, P < 0.001). In addition, the quadriceps' CSA in the athlete group was substantially larger than the control group (8039.0 ± 1072.3 vs. 6258.2 ± 852.0 mm 2 , P < 0.001). Interrater reliability was excellent (ICC: 0.758-0.994). Multiple MR imaging parameters indicated significant differences between snowboarding halfpipe athletes and healthy volunteers in the thigh skeletal muscles.
Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles
Srivastava, Kyle H.; Elemans, Coen P.H.
2015-01-01
The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859
Enoka, R M; Rankin, L L; Stuart, D G; Volz, K A
1989-01-01
1. An experimental protocol designed to assess fatigability in motor units (Burke, Levine, Tsairis & Zajac, 1973) has been applied to the whole muscles of anaesthetized adult rats, and the association between the electromyogram (EMG) and force was monitored over the course of the test. 2. Both test muscles (soleus and extensor digitorum longus) exhibited a wide range of fatigability, which was defined as the decline in isometric peak force at 6 min, such that the data could be separated into five levels of fatigability. Fatigue indices for each test muscle were distributed across three levels. 3. The EMG was quantified with four measures of amplitude, four of duration, and one interaction term (area). Correlation analyses indicated that the EMG was adequately represented by one measure of amplitude (absolute amplitude), one of duration (peak-to-peak duration) and area. The best single measure was area. 4. The EMG-force associations for soleus varied markedly among its three fatigability groups. In contrast, over the course of the test, all three extensor digitorum longus groups displayed qualitatively similar EMG-force associations. 5. Multiple regression analyses indicated that the EMG parameters were able to predict peak force better for extensor digitorum longus than for soleus. Furthermore, for both test muscle, the prediction was best for the most fatigable group. 6. The associations between EMG and force exhibited three patterns for the two test muscles and three levels of fatigability. These differences suggested variation in the mechanisms, related to both fibre-type composition and susceptibility to fatigue, that dictate the performance elicited by this particular stimulus regimen. The mechanisms seem to include both intracellular and transmission processes. Images Fig. 1 PMID:2778729
Saito, Kosuke; Tamaki, Tetsuro; Hirata, Maki; Hashimoto, Hiroyuki; Nakazato, Kenei; Nakajima, Nobuyuki; Kazuno, Akihito; Sakai, Akihiro; Iida, Masahiro; Okami, Kenji
2015-01-01
Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST). Culture medium was transplanted as a control (NT). In the mouse experiment, facial-nerve-palsy (FNP) scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold) scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.
Kim, Kyoung Min; Jang, Hak Chul; Lim, Soo
2016-01-01
Aging processes are inevitably accompanied by structural and functional changes in vital organs. Skeletal muscle, which accounts for 40% of total body weight, deteriorates quantitatively and qualitatively with aging. Skeletal muscle is known to play diverse crucial physical and metabolic roles in humans. Sarcopenia is a condition characterized by significant loss of muscle mass and strength. It is related to subsequent frailty and instability in the elderly population. Because muscle tissue is involved in multiple functions, sarcopenia is closely related to various adverse health outcomes. Along with increasing recognition of the clinical importance of sarcopenia, several international study groups have recently released their consensus on the definition and diagnosis of sarcopenia. In practical terms, various skeletal muscle mass indices have been suggested for assessing sarcopenia: appendicular skeletal muscle mass adjusted for height squared, weight, or body mass index. A different prevalence and different clinical implications of sarcopenia are highlighted by each definition. The discordances among these indices have emerged as an issue in defining sarcopenia, and a unifying definition for sarcopenia has not yet been attained. This review aims to compare these three operational definitions and to introduce an optimal skeletal muscle mass index that reflects the clinical implications of sarcopenia from a metabolic perspective. PMID:27334763
Quantitative Ultrasound Assessment of Duchenne Muscular Dystrophy Using Edge Detection Analysis.
Koppaka, Sisir; Shklyar, Irina; Rutkove, Seward B; Darras, Basil T; Anthony, Brian W; Zaidman, Craig M; Wu, Jim S
2016-09-01
The purpose of this study was to investigate the ability of quantitative ultrasound (US) using edge detection analysis to assess patients with Duchenne muscular dystrophy (DMD). After Institutional Review Board approval, US examinations with fixed technical parameters were performed unilaterally in 6 muscles (biceps, deltoid, wrist flexors, quadriceps, medial gastrocnemius, and tibialis anterior) in 19 boys with DMD and 21 age-matched control participants. The muscles of interest were outlined by a tracing tool, and the upper third of the muscle was used for analysis. Edge detection values for each muscle were quantified by the Canny edge detection algorithm and then normalized to the number of edge pixels in the muscle region. The edge detection values were extracted at multiple sensitivity thresholds (0.01-0.99) to determine the optimal threshold for distinguishing DMD from normal. Area under the receiver operating curve values were generated for each muscle and averaged across the 6 muscles. The average age in the DMD group was 8.8 years (range, 3.0-14.3 years), and the average age in the control group was 8.7 years (range, 3.4-13.5 years). For edge detection, a Canny threshold of 0.05 provided the best discrimination between DMD and normal (area under the curve, 0.96; 95% confidence interval, 0.84-1.00). According to a Mann-Whitney test, edge detection values were significantly different between DMD and controls (P < .0001). Quantitative US imaging using edge detection can distinguish patients with DMD from healthy controls at low Canny thresholds, at which discrimination of small structures is best. Edge detection by itself or in combination with other tests can potentially serve as a useful biomarker of disease progression and effectiveness of therapy in muscle disorders.
Consequences of Late-Stage Non-Small-Cell Lung Cancer Cachexia on Muscle Metabolic Processes.
Murton, Andrew J; Maddocks, Matthew; Stephens, Francis B; Marimuthu, Kanagaraj; England, Ruth; Wilcock, Andrew
2017-01-01
The loss of muscle is common in patients with advanced non-small-cell lung cancer (NSCLC) and contributes to the high morbidity and mortality of this group. The exact mechanisms behind the muscle loss are unclear. To investigate this, 4 patients with stage IV NSCLC who met the clinical definitions for sarcopenia and cachexia were recruited, along with 4 age-matched healthy volunteers. After an overnight fast, biopsy specimens were obtained from the vastus lateralis, and the key components associated with inflammation and the control of muscle protein, carbohydrate, and fat metabolism were assessed. Compared with the healthy volunteers, significant increases in mRNA levels for interleukin-6 and NF-κB signaling and lower intramyocellular lipid content in slow-twitch fibers were observed in NSCLC patients. Although a significant decrease in phosphorylation of the mechanistic target of rapamycin (mTOR) signaling protein 4E-BP1 (Ser 65 ) was observed, along with a trend toward reduced p70 S6K (Thr 389 ) phosphorylation (P = .06), no difference was found between groups for the mRNA levels of MAFbx (muscle atrophy F box) and MuRF1 (muscle ring finger protein 1), chymotrypsin-like activity of the proteasome, or protein levels of multiple proteasome subunits. Moreover, despite decreases in intramyocellular lipid content, no robust changes in mRNA levels for key proteins involved in insulin signaling, glycolysis, oxidative metabolism, or fat metabolism were observed. These findings suggest that examining the contribution of suppressed mTOR signaling in the loss of muscle mass in late-stage NSCLC patients is warranted and reinforces our need to understand the potential contribution of impaired fat metabolism and muscle protein synthesis in the etiology of cancer cachexia. Copyright © 2016 Elsevier Inc. All rights reserved.
Muscle Tension Dysphagia: Symptomology and Theoretical Framework.
Kang, Christina H; Hentz, Joseph G; Lott, David G
2016-11-01
To identify symptoms, common diagnostic findings, pattern of treatments and referrals offered, and their efficacy in a group of patients with idiopathic functional dysphagia in an otolaryngology setting with multiple providers. Case series with chart review. Tertiary academic center. Following Mayo Clinic Institutional Review Board approval, a retrospective chart review was conducted of patients with dysphagia who had a videofluoroscopic swallow study between January 1, 2013, and April 30, 2015. Each patient's dysphagia symptomology, videofluoroscopic swallow study, flexible laryngoscopy, and medical chart were reviewed to identify the treatment paradigms that were utilized. Sixty-seven adult patients met the inclusion criteria. Abnormal laryngeal muscle tension was present in 97% of patients. Eighty-two percent of patients also demonstrated signs of laryngeal hyperresponsiveness. Nonspecific laryngeal inflammation was evident in 52% of patients. Twenty-seven patients were referred to speech-language pathology for evaluation. Thirteen patients completed a course of voice therapy directed toward unloading muscle tension. All 13 patients self-reported resolution of dysphagia symptoms. The study results suggest that laryngeal muscle tension may be a factor in the underlying etiology in patients with idiopathic functional dysphagia. We propose the diagnostic term muscle tension dysphagia to describe a subset of patients with functional dysphagia. Further prospective studies are needed to better evaluate potential gastroesophageal confounders in this group of patients and to identify an effective paradigm for treatment. In our limited series, speech-language pathology intervention directed toward unloading muscle tension appears effective. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Keser, Ilke; Kirdi, Nuray; Meric, Aydin; Kurne, Asli Tuncer; Karabudak, Rana
2013-01-01
This study compared trunk exercises based on the Bobath concept with routine neurorehabilitation approaches in multiple sclerosis (MS). Bobath and routine neurorehabilitation exercises groups were evaluated. MS cases were divided into two groups. Both groups joined a 3 d/wk rehabilitation program for 8 wk. The experimental group performed trunk exercises based on the Bobath concept, and the control group performed routine neurorehabilitation exercises. Additionally, both groups performed balance and coordination exercises. All patients were evaluated with the Trunk Impairment Scale (TIS), Berg Balance Scale (BBS), International Cooperative Ataxia Rating Scale (ICARS), and Multiple Sclerosis Functional Composite (MSFC) before and after the physiotherapy program. In group analysis, TIS, BBS, ICARS, and MSFC scores and strength of abdominal muscles were significantly different after treatment in both groups (p < 0.05). When the groups were compared, no significant differences were found in any parameters (p > 0.05). Although trunk exercises based on the Bobath concept are rarely applied in MS rehabilitation, the results of this study show that they are as effective as routine neurorehabilitation exercises. Therefore, trunk exercises based on the Bobath concept can be beneficial in MS rehabilitation programs.
Risérus, Ulf; Sprecher, Dennis; Johnson, Tony; Olson, Eric; Hirschberg, Sandra; Liu, Aixue; Fang, Zeke; Hegde, Priti; Richards, Duncan; Sarov-Blat, Leli; Strum, Jay C; Basu, Samar; Cheeseman, Jane; Fielding, Barbara A; Humphreys, Sandy M; Danoff, Theodore; Moore, Niall R; Murgatroyd, Peter; O'Rahilly, Stephen; Sutton, Pauline; Willson, Tim; Hassall, David; Frayn, Keith N; Karpe, Fredrik
2008-02-01
Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. The PPARdelta agonist (10 mg o.d. GW501516), a comparator PPARalpha agonist (20 mug o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO(2) directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. The PPARdelta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.
Pittiruti, M; Siegel, J H; Sganga, G; Coleman, B; Wiles, C E; Placko, R
1989-03-01
The major determinants of urea production were investigated in 26 patients with multiple trauma (300 studies). The body clearances (CLRs) of ten amino acids (AAs) were estimated as a ratio of muscle-released AAs plus total parenteral nutrition-infused AAs to their extracellular pool. While clinically septic trauma (ST) patients without multiple-organ failure syndrome (MOFS) had a higher level of urea nitrogen production (25.6 +/- 13.4 g of N per day) compared with nonseptic trauma (NST) patients (14 +/- 7.5 g of N per day) and with ST patients with MOFS (4.28 +/- 1.5 g of N per day), in all groups urea N production was found to be a function of muscle protein degradation (catabolism), total parenteral nutrition-administered AAs, and the ratio between leucine CLR and tyrosine CLR (L/T) (r2 = .82, P less than .0001). Since tyrosine is cleared almost exclusively by the liver, the L/T ratio may be regarded as an index of hepatic function. The significant differences between urea N production in ST and NST patients lay in an increased positive dependence on muscle catabolism and increased negative correlation with L/T in the ST group. At any L/T ratio, urea N production was increased in ST patients over NST patients, but in ST patients with MOFS, it fell to or below levels of NST patients. These data show that the ST process is associated with enhancement of ureagenesis, due to increased hepatic CLR of both exogenous and endogenous AAs. In sepsis with MOFS, a marked inhibition of urea synthesis occurs, partially explained by a decreased hepatic CLR of non-branched-chain AAs.
Levanon, Yafa; Gefen, Amit; Lerman, Yehuda; Givon, Uri; Ratzon, Navah Z
2012-01-01
Typing is associated with musculoskeletal disorders (MSDs) caused by multiple risk factors. This control study aimed to evaluate the efficacy of a workplace intervention for reducing MSDs among computer workers. Sixty-six subjects with and without MSD were assigned consecutively to one of three groups: ergonomics intervention (work site and body posture adjustments, muscle activity training and exercises) accompanied with biofeedback training, the same ergonomics intervention without biofeedback and a control group. Evaluation of MSDs, body posture, psychosocial status, upper extremity (UE) kinematics and muscle surface electromyography were carried out before and after the intervention in the workplace and the motion lab. Our main hypothesis that significant differences in the reduction of MSDs will exist between subjects in the study groups and controls was confirmed (χ(2) = 13.3; p = 0.001). Significant changes were found in UE kinematics and posture as well. Both ergonomics interventions effectively reduced MSD and improved body posture. This study aimed to test the efficacy of an individual workplace intervention programme among computer workers by evaluating musculoskeletal disorders (MSDs), body posture, upper extremity kinematics, muscle activity and psychosocial factors were tested. The proposed ergonomics interventions effectively reduced MSDs and improved body posture.
Normotensive sepsis is associated with increased lipid peroxidation products in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, C.; Fox, G.; Neal, A.
Reactive oxygen species (ROS) have been implicated in the development of sepsis-induced multiple systems organ failure, possibly through biomembrane lipid perioxidation (BLP) which produces a loss of cell integrity and function. The authors examined the hypothesis that ROS activity contributes to non-pulmonary cell injury in hyperdynamic sepsis by measuring BLP products in skeletal muscle. The authors measured systemic flow (Q) by thermodilution and Q-gastrocnemius by the radioactive microsphere technique in 10 awake sheep, 48 hours following (i) the induction of hyperdynamic sepsis by cecal ligation and perforation or (ii) sham laparotomy. The animals were then anesthetized and biopsies from themore » gastrocnemius muscle were taken and flash frozen in liquid nitrogen for the determination of BLP products, which included conjugated dienes (CD), malondialdehyde (MDA), and acid-soluble sulfhydryls (SH). At the 48 hours study, Q was increased in the septic compared to the sham group while mean BP and Q-gastrocnemius were not different between the groups. Both CD and SH were significantly increased in the septic group. It was concluded that normotensive sepsis in this animal model produces evidence of increased ROS mediated BLP in non-pulmonary organs distant from the site of inflammation.« less
Hip-abduction torque and muscle activation in people with low back pain.
Sutherlin, Mark A; Hart, Joseph M
2015-02-01
Individuals with a history of low back pain (LBP) may present with decreased hip-abduction strength and increased trunk or gluteus maximus (GMax) fatigability. However, the effect of hip-abduction exercise on hip-muscle function has not been previously reported. To compare hip-abduction torque and muscle activation of the hip, thigh, and trunk between individuals with and without a history of LBP during repeated bouts of side-lying hip-abduction exercise. Repeated measures. Clinical laboratory. 12 individuals with a history of LBP and 12 controls. Repeated 30-s hip-abduction contractions. Hip-abduction torque, normalized root-mean-squared (RMS) muscle activation, percent RMS muscle activation, and forward general linear regression. Hip-abduction torque reduced in all participants as a result of exercise (1.57 ± 0.36 Nm/kg, 1.12 ± 0.36 Nm/kg; P < .001), but there were no group differences (F = 0.129, P = .723) or group-by-time interactions (F = 1.098, P = .358). All participants had increased GMax activation during the first bout of exercise (0.96 ± 1.00, 1.18 ± 1.03; P = .038). Individuals with a history of LBP had significantly greater GMax activation at multiple points during repeated exercise (P < .05) and a significantly lower percent of muscle activation for the GMax (P = .050) at the start of the third bout of exercise and for the biceps femoris (P = .039) at the end of exercise. The gluteal muscles best predicted hip-abduction torque in controls, while no consistent muscles were identified for individuals with a history of LBP. Hip-abduction torque decreased in all individuals after hip-abduction exercise, although individuals with a history of LBP had increased GMax activation during exercise. Gluteal muscle activity explained hip-abduction torque in healthy individuals but not in those with a history of LBP. Alterations in hip-muscle function may exist in individuals with a history of LBP.
Sasaki, Ryo; Takeuchi, Yuichi; Watanabe, Yorikatsu; Niimi, Yosuke; Sakurai, Hiroyuki; Miyata, Mariko; Yamato, Masayuki
2014-01-01
Background: Extensive facial nerve defects between the facial nerve trunk and its branches can be clinically reconstructed by incorporating double innervation into an end-to-side loop graft technique. This study developed a new animal model to evaluate the technique’s ability to promote nerve regeneration. Methods: Rats were divided into the intact, nonsupercharge, and supercharge groups. Artificially created facial nerve defects were reconstructed with a nerve graft, which was end-to-end sutured from proximal facial nerve stump to the mandibular branch (nonsupercharge group), or with the graft of which other end was end-to-side sutured to the hypoglossal nerve (supercharge group). And they were evaluated after 30 weeks. Results: Axonal diameter was significantly larger in the supercharge group than in the nonsupercharge group for the buccal (3.78 ± 1.68 vs 3.16 ± 1.22; P < 0.0001) and marginal mandibular branches (3.97 ± 2.31 vs 3.46 ± 1.57; P < 0.0001), but the diameter was significantly larger in the intact group for all branches except the temporal branch. In the supercharge group, compound muscle action potential amplitude was significantly higher than in the nonsupercharge group (4.18 ± 1.49 mV vs 1.87 ± 0.37 mV; P < 0.0001) and similar to that in the intact group (4.11 ± 0.68 mV). Retrograde labeling showed that the mimetic muscles were double-innervated by facial and hypoglossal nerve nuclei in the supercharge group. Conclusions: Multiple facial nerve branch reconstruction with an end-to-side loop graft was able to achieve axonal distribution. Additionally, axonal supercharge from the hypoglossal nerve significantly improved outcomes. PMID:25426357
Fatigue is associated with muscle weakness in Ehlers-Danlos syndrome: an explorative study.
Voermans, N C; Knoop, H; Bleijenberg, G; van Engelen, B G
2011-06-01
Ehlers-Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of inherited connective tissue disorders characterised by joint hypermobility, skin hyperextensibility and tissue fragility. It has recently been shown that muscle weakness occurs frequently in EDS, and that fatigue is a common and clinically important symptom. The aim of this study was to investigate the relationship between fatigue severity and subjective and objective measures of muscle weakness. Furthermore, the predictive value of muscle weakness for fatigue severity was determined, together with that of pain and physical activity. An explorative, cross-sectional, observational study. Thirty EDS patients, recruited from the Dutch patient association, were investigated at the neuromuscular outpatient department of a tertiary referral centre in The Netherlands. Muscle strength measured with manual muscle strength testing and hand-held dynamometry. Self-reported muscle weakness, pain, physical activity levels and fatigue were assessed with standardised questionnaires. Fatigue severity in EDS was significantly correlated with measured and self-reported muscle weakness (r=-0.408 for manual muscle strength, r=0.461 for hand-held dynamometry and r=0.603 for self-reported muscle weakness). Both muscle weakness and pain severity were significant predictors of fatigue severity in a multiple regression analysis. The results suggest a positive and direct relationship between fatigue severity and muscle weakness in EDS. Future research should focus on the relationship between fatigue, muscle weakness and objectively measured physical activity, preferably in a larger cohort of EDS patients. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Aliskiren targets multiple systems to alleviate cancer cachexia.
Wang, Chaoyi; Guo, Dunwei; Wang, Qiang; You, Song; Qiao, Zhongpeng; Liu, Yong; Dai, Hang; Tang, Hua
2016-11-01
To examine the effects of aliskiren, a small-molecule renin inhibitor, on cancer cachexia and to explore the underlying mechanisms. A cancer cachexia model was established by subcutaneously injecting C26 mouse colon carcinoma cells into isogenic BALB/c mice. Aliskiren was administered intragastrically [10 mg/kg body weight (BW)] on day 5 (as a preventive strategy, AP group) or on day 12 (as a therapeutic strategy, AT group) after C26 injection. Mice that received no C26 injection (healthy controls, HC group) or only C26 injection but not aliskiren (cancer, CA group) were used as controls. BW, tumor growth, whole body functions, and survival were monitored daily in half of the mice in each group, whereas serum, tumors, and gastrocnemius muscles were harvested from the other mice after sacrifice on day 20 for further analysis. Aliskiren significantly alleviated multiple cachexia‑associated symptoms, including BW loss, tumor burden, muscle wasting, muscular dysfunction, and shortened survival. On the molecular level, aliskiren antagonized cachexia‑induced activation of the renin‑angiotensin system (RAS), systematic and muscular inflammation, oxidative stress, and autophagy‑lysosome as well as ubiquitin‑proteasome stimulation. In addition, early administration of aliskiren before cachexia development (AP group) resulted in more robust effects in alleviating cachexia or targeting underlying mechanisms than administration after cachexia development (AT group). Aliskiren exhibited potent anti‑cachexia activities. These activities were achieved through the targeting of at least four mechanisms underlying cachexia development: RAS activation, increase in systematic inflammation, upregulation of oxidative stress, and stimulation of autophagy-lysosome pathway (ALP) and ubiquitin-proteasome pathway (UPP).
Falla, Deborah; Gizzi, Leonardo; Tschapek, Marika; Erlenwein, Joachim; Petzke, Frank
2014-05-01
This study investigated change in the distribution of lumbar erector spinae muscle activity and pressure pain sensitivity across the low back in individuals with low back pain (LBP) and healthy controls. Surface electromyographic (EMG) signals were recorded from multiple locations over the lumbar erector spinae muscle with a 13×5 grid of electrodes from 19 people with chronic nonspecific LBP and 17 control subjects as they performed a repetitive lifting task. The EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution. Pressure pain thresholds (PPT) were recorded before and after the lifting task over a similar area of the back. For the control subjects, the EMG RMS progressively increased more in the caudal region of the lumbar erector spinae during the repetitive task, resulting in a shift in the distribution of muscle activity. In contrast, the distribution of muscle activity remained unaltered in the LBP group despite an overall increase in EMG amplitude. PPT was lower in the LBP group after completion of the repetitive task compared to baseline (average across all locations: pre: 268.0±165.9 kPa; post: 242.0±166.7 kPa), whereas no change in PPT over time was observed for the control group (320.1±162.1 kPa; post: 322.0±179.5 kPa). The results demonstrate that LBP alters the normal adaptation of lumbar erector spinae muscle activity to exercise, which occurs in the presence of exercise-induced hyperalgesia. Reduced variability of muscle activity may have important implications for the provocation and recurrence of LBP due to repetitive tasks. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis.
Krieger, James W
2010-04-01
Previous meta-analyses have compared the effects of single to multiple sets on strength, but analyses on muscle hypertrophy are lacking. The purpose of this study was to use multilevel meta-regression to compare the effects of single and multiple sets per exercise on muscle hypertrophy. The analysis comprised 55 effect sizes (ESs), nested within 19 treatment groups and 8 studies. Multiple sets were associated with a larger ES than a single set (difference = 0.10 +/- 0.04; confidence interval [CI]: 0.02, 0.19; p = 0.016). In a dose-response model, there was a trend for 2-3 sets per exercise to be associated with a greater ES than 1 set (difference = 0.09 +/- 0.05; CI: -0.02, 0.20; p = 0.09), and a trend for 4-6 sets per exercise to be associated with a greater ES than 1 set (difference = 0.20 +/- 0.11; CI: -0.04, 0.43; p = 0.096). Both of these trends were significant when considering permutation test p values (p < 0.01). There was no significant difference between 2-3 sets per exercise and 4-6 sets per exercise (difference = 0.10 +/- 0.10; CI: -0.09, 0.30; p = 0.29). There was a tendency for increasing ESs for an increasing number of sets (0.24 for 1 set, 0.34 for 2-3 sets, and 0.44 for 4-6 sets). Sensitivity analysis revealed no highly influential studies that affected the magnitude of the observed differences, but one study did slightly influence the level of significance and CI width. No evidence of publication bias was observed. In conclusion, multiple sets are associated with 40% greater hypertrophy-related ESs than 1 set, in both trained and untrained subjects.
Ratamess, Nicholas A; Beller, Noah A; Gonzalez, Adam M; Spatz, Gregory E; Hoffman, Jay R; Ross, Ryan E; Faigenbaum, Avery D; Kang, Jie
2016-03-01
The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM) strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT) or a non-exercising control group (CTL). The IRT group underwent 6 weeks of training (2 days per week) consisting of 5 sets of 6-10 repetitions at 75-85% of subjects' peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s(-1) [3-sec concentric (CON) and 3-sec eccentric (ECC) phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey's post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg), 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg), and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions) increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women. Key pointsMultiple-joint isokinetic resistance training increases dynamic maximal muscular strength, local muscular endurance, and maximal isokinetic strength in women.Multiple-joint isokinetic resistance training increased 1RM strength in the bench press (by 10.2%), bent-over barbell row (by 11.2%), and maximal modified push-up performance (by 28.6%) indicating a carryover of training effects to dynamic exercise performance.The carryover effects may be attractive to strength training and conditioning professionals seeking to include alternative modalities such as multiple-joint isokinetic dynamometers to resistance training programs.
Ratamess, Nicholas A.; Beller, Noah A.; Gonzalez, Adam M.; Spatz, Gregory E.; Hoffman, Jay R.; Ross, Ryan E.; Faigenbaum, Avery D.; Kang, Jie
2016-01-01
The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM) strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT) or a non-exercising control group (CTL). The IRT group underwent 6 weeks of training (2 days per week) consisting of 5 sets of 6-10 repetitions at 75-85% of subjects’ peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s-1 [3-sec concentric (CON) and 3-sec eccentric (ECC) phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey’s post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg), 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg), and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions) increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women. Key points Multiple-joint isokinetic resistance training increases dynamic maximal muscular strength, local muscular endurance, and maximal isokinetic strength in women. Multiple-joint isokinetic resistance training increased 1RM strength in the bench press (by 10.2%), bent-over barbell row (by 11.2%), and maximal modified push-up performance (by 28.6%) indicating a carryover of training effects to dynamic exercise performance. The carryover effects may be attractive to strength training and conditioning professionals seeking to include alternative modalities such as multiple-joint isokinetic dynamometers to resistance training programs. PMID:26957924
Effects of Age, Sex, and Body Position on Orofacial Muscle Tone in Healthy Adults.
Dietsch, Angela M; Clark, Heather M; Steiner, Jessica N; Solomon, Nancy Pearl
2015-08-01
Quantification of tissue stiffness may facilitate identification of abnormalities in orofacial muscle tone and thus contribute to differential diagnosis of dysarthria. Tissue stiffness is affected by muscle tone as well as age-related changes in muscle and connective tissue. The Myoton-3 measured tissue stiffness in 40 healthy adults, including equal numbers of men and women in each of two age groups: 18-40 years and 60+ years. Data were collected from relaxed muscles at the masseter, cheek, and lateral tongue surfaces in two positions: reclined on the side and seated with head tilted. Tissue stiffness differed across age, sex, and measurement site with multiple interaction effects. Overall, older subjects exhibited higher stiffness coefficients and oscillation frequency measures than younger subjects whereas sex differences varied by tissue site. Effects of body position were inconsistent across tissue site and measurement. Although older subjects were expected to have lower muscle tone, age-related nonmuscular tissue changes may have contributed to yield a net effect of higher stiffness. These data raise several considerations for the development of accurate normative data and for future diagnostic applications of tissue stiffness assessment.
Characterization of the Inflammatory Response in Dystrophic Muscle Using Flow Cytometry.
Kastenschmidt, Jenna M; Avetyan, Ileen; Villalta, S A
2018-01-01
Although mutations of the dystrophin gene are the causative defect in Duchenne muscular dystrophy (DMD) patients, secondary disease processes such as inflammation contribute greatly to the pathogenesis of DMD. Genetic and histological studies have shown that distinct facets of the immune system promote muscle degeneration or regeneration during muscular dystrophy through mechanisms that are only beginning to be defined. Although histological methods have allowed the enumeration and localization of immune cells within dystrophic muscle, they are limited in their ability to assess the full spectrum of phenotypic states of an immune cell population and its functional characteristics. This chapter highlights flow cytometry methods for the isolation and functional study of immune cell populations from muscle of the mdx mouse model of DMD. We include a detailed description of preparing single-cell suspensions of dystrophic muscle that maintain the integrity of cell-surface markers used to identify macrophages, eosinophils, group 2 innate lymphoid cells, and regulatory T cells. This method complements the battery of histological assays that are currently used to study the role of inflammation in muscular dystrophy, and provides a platform capable of being integrated with multiple downstream methodologies for the mechanistic study of immunity in muscle degenerative diseases.
Exposure of mallards (Anas platyrhynchos) to the hepatotoxic cyanobacterium Nodularia spumigena
Sipia, V.O.; Franson, J. Christian; Sjovall, O.; Pflugmacher, S.; Shearn-Bochsler, Valerie I.; Rocke, Tonie E.; Meriluoto, J.A.O.
2008-01-01
Nodularin (NODLN) is a cyclic pentapeptide hepatotoxin produced by the cyanobacterium Nodularia spumigena, which forms extensive blooms during the summer in the Baltic Sea. Nodularin was detected in liver, muscle and/or feather samples of several common eiders (Somateria mollissima) from the Gulf of Finland (northern Baltic Sea) in 2002-2005. Published information on the adverse effects of NODLN in marine birds is scarce. The aim of this study was to evaluate the toxicity of NODLN, and determine the concentrations of NODLN in liver and muscle tissue in mallards (Anas platyrhynchos) exposed to N. spumigena. Mallards received a single or multiple exposure via oral gavage with an aqueous slurry containing toxic N. spumigena. Dosages ranged from 200 to 600 ??g NODLN per kg body weight (bw). There were minimal histopathological changes in liver tissue, and brain cholinesterase activity did not differ among treatment groups. Concentrations of NODLN measured by LC-MS in liver varied between approximately 3-120 ??g kg-1 dry weight (dw) and ducks receiving multiple exposures had significantly greater liver toxin levels than ducks receiving the two lowest single exposures. In muscle, NODLN concentrations were approximately 2-6 ??g kg-1 dw, but did not differ significantly among exposure groups. This is the first in vivo lab study examining the effects and bioaccumulation of NODLN from N. spumigena in birds. The mallards in this study were resistant to adverse effects and did not bioaccumulate substantial levels of NODLN at the doses given. ?? 2008 Taylor & Francis.
Central motor control failure in fibromyalgia: a surface electromyography study
Casale, Roberto; Sarzi-Puttini, Piercarlo; Atzeni, Fabiola; Gazzoni, Marco; Buskila, Dan; Rainoldi, Alberto
2009-01-01
Background Fibromyalgia (FM) is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Methods Eight female patients aged 55.6 ± 13.6 years (FM group) and eight healthy female volunteers aged 50.3 ± 9.3 years (MCG) were studied by means of non-invasive surface electromyography (s-EMG) involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited) contractions. Maximal voluntary contractions (MVCs), motor unit action potential conduction velocity distributions (mean ± SD and skewness), and the mean power frequency of the spectrum (MNF) were estimated in order to assess whether there were any significant differences between the two groups and contraction types. Results The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 ± 0.052%/s in FM vs -0.196 ± 0.133%/s in MCG; normalised MNF rate of changes: -0.29 ± 0.16%/s in FM vs -0.66 ± 0.34%/s in MCG). Mean conduction velocity distribution and skewnesses values were higher (p < 0.01) in the FM group. There were no between-group differences in the results obtained from the electrically elicited contractions. Conclusion The apparent paradox of fewer myoelectrical manifestations of fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered suprasegmental control. PMID:19570214
Muscle networks: Connectivity analysis of EMG activity during postural control
NASA Astrophysics Data System (ADS)
Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael
2015-12-01
Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.
Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease
Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina
2009-01-01
Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131
Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T
2015-01-01
The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Genetic risk factors associated with lipid-lowering drug-induced myopathies.
Vladutiu, Georgirene D; Simmons, Zachary; Isackson, Paul J; Tarnopolsky, Mark; Peltier, Wendy L; Barboi, Alexandru C; Sripathi, Naganand; Wortmann, Robert L; Phillips, Paul S
2006-08-01
Lipid-lowering drugs produce myopathic side effects in up to 7% of treated patients, with severe rhabdomyolysis occurring in as many as 0.5%. Underlying metabolic muscle diseases have not been evaluated extensively. In a cross-sectional study of 136 patients with drug-induced myopathies, we report a higher prevalence of underlying metabolic muscle diseases than expected in the general population. Control groups included 116 patients on therapy with no myopathic symptoms, 100 asymptomatic individuals from the general population never exposed to statins, and 106 patients with non-statin-induced myopathies. Of 110 patients who underwent mutation testing, 10% were heterozygous or homozygous for mutations causing three metabolic myopathies, compared to 3% testing positive among asymptomatic patients on therapy (P = 0.04). The actual number of mutant alleles found in the test group patients was increased fourfold over the control group (P < 0.0001) due to an increased presence of mutation homozygotes. The number of carriers for carnitine palmitoyltransferase II deficiency and for McArdle disease was increased 13- and 20-fold, respectively, over expected general population frequencies. Homozygotes for myoadenylate deaminase deficiency were increased 3.25-fold with no increase in carrier status. In 52% of muscle biopsies from patients, significant biochemical abnormalities were found in mitochondrial or fatty acid metabolism, with 31% having multiple defects. Variable persistent symptoms occurred in 68% of patients despite cessation of therapy. The effect of statins on energy metabolism combined with a genetic susceptibility to triggering of muscle symptoms may account for myopathic outcomes in certain high-risk groups.
Automated optimal coordination of multiple-DOF neuromuscular actions in feedforward neuroprostheses.
Lujan, J Luis; Crago, Patrick E
2009-01-01
This paper describes a new method for designing feedforward controllers for multiple-muscle, multiple-DOF, motor system neural prostheses. The design process is based on experimental measurement of the forward input/output properties of the neuromechanical system and numerical optimization of stimulation patterns to meet muscle coactivation criteria, thus resolving the muscle redundancy (i.e., overcontrol) and the coupled DOF problems inherent in neuromechanical systems. We designed feedforward controllers to control the isometric forces at the tip of the thumb in two directions during stimulation of three thumb muscles as a model system. We tested the method experimentally in ten able-bodied individuals and one patient with spinal cord injury. Good control of isometric force in both DOFs was observed, with rms errors less than 10% of the force range in seven experiments and statistically significant correlations between the actual and target forces in all ten experiments. Systematic bias and slope errors were observed in a few experiments, likely due to the neuromuscular fatigue. Overall, the tests demonstrated the ability of a general design approach to satisfy both control and coactivation criteria in multiple-muscle, multiple-axis neuromechanical systems, which is applicable to a wide range of neuromechanical systems and stimulation electrodes.
(–)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle
Nogueira, Leonardo; Ramirez-Sanchez, Israel; Perkins, Guy A; Murphy, Anne; Taub, Pam R; Ceballos, Guillermo; Villarreal, Francisco J; Hogan, Michael C; Malek, Moh H
2011-01-01
Abstract The flavanol (–)-epicatechin, a component of cacao (cocoa), has been shown to have multiple health benefits in humans. Using 1-year-old male mice, we examined the effects of 15 days of (–)-epicatechin treatment and regular exercise on: (1) exercise performance, (2) muscle fatigue, (3) capillarity, and (4) mitochondrial biogenesis in mouse hindlimb and heart muscles. Twenty-five male mice (C57BL/6N) were randomized into four groups: (1) water, (2) water–exercise (W-Ex), (3) (–)-epicatechin ((–)-Epi), and (4) (–)-epicatechin–exercise ((–)-Epi-Ex). Animals received 1 mg kg−1 of (–)-epicatechin or water (vehicle) via oral gavage (twice daily). Exercise groups underwent 15 days of treadmill exercise. Significant increases in treadmill performance (∼50%) and enhanced in situ muscle fatigue resistance (∼30%) were observed with (–)-epicatechin. Components of oxidative phosphorylation complexes, mitofilin, porin, nNOS, p-nNOS, and Tfam as well as mitochondrial volume and cristae abundance were significantly higher with (–)-epicatechin treatment for hindlimb and cardiac muscles than exercise alone. In addition, there were significant increases in skeletal muscle capillarity. The combination of (–)-epicatechin and exercise resulted in further increases in oxidative phosphorylation-complex proteins, mitofilin, porin and capillarity than (–)-epicatechin alone. These findings indicate that (–)-epicatechin alone or in combination with exercise induces an integrated response that includes structural and metabolic changes in skeletal and cardiac muscles resulting in greater endurance capacity. These results, therefore, warrant the further evaluation of the underlying mechanism of action of (–)-epicatechin and its potential clinical application as an exercise mimetic. PMID:21788351
Uda, Hirokazu; Tomioka, Yoko Katsuragi; Sarukawa, Syunji; Sunaga, Ataru; Kamochi, Hideaki; Sugawara, Yasusih; Yoshimura, Kotaro
2016-09-01
The reduced incidence of donor site morbidity after deep inferior epigastric perforator (DIEP) flap is because the rectus muscle and its fascia are preserved. However, no study has proved that trunk flexion recovers not by the compensatory effect of the contralateral rectus muscle but by reinnervation of the ipsilateral rectus muscle. We hypothesized that if sufficient reinnervation occurs, patients who undergo single-pedicled DIEP (S-DIEP) flap or double-pedicled DIEP (D-DIEP) flap breast reconstruction would have similar levels of preoperative trunk flexion. To determine this, we investigated perioperative changes in trunk flexor muscle ability quantitatively using an isokinetic dynamometer in patients who had received S-DIEP or D-DIEP. Patients who underwent breast reconstruction with S-DIEP (n = 37) and D-DIEP (n = 30) were included in this study. Pre- and postoperative trunk flexor muscle ability was measured prospectively by an isokinetic dynamometer in all patients. Postoperative abdominal pain and stiffness, patients' activity, and incidence of bulging were also investigated. Six months after surgery, the trunk flexor muscle ability recovered and did not significantly decrease subsequently in either group. This finding was consistent with the result that patients' activities and the incidence of bulging were similar between the two groups. Our results show that reinnervation of the rectus muscle can be confirmed at 6 months after DIEP flap elevation. Thus, we recommend D-DIEP flap without concern for abdominal wall weakness, especially in patients with multiple abdominal scars and who require breast tissue exceeding the amount of tissue that can be transferred with S-DIEP flap. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Kohara, Katsuhiko; Ochi, Masayuki; Okada, Yoko; Yamashita, Taiji; Ohara, Maya; Kato, Takeaki; Nagai, Tokihisa; Tabara, Yasuharu; Igase, Michiya; Miki, Tetsuro
2014-08-01
The relationship between plasma levels of adiponectin and cardiovascular events is inconclusive. We evaluated the clinical characteristics of people with high plasma adiponectin and high plasma leptin levels. Thousand seven hundred participants recruited from visitors to the Anti-Aging Doc were divided into four groups by combining the bipartiles of plasma adiponectin and leptin levels in men and women separately: AL, high adiponectin and high leptin; Al, high adiponectin and low leptin; al, low adiponectin and low leptin; aL, low adiponectin and high leptin. Body composition, including visceral fat area and thigh muscle cross-sectional area (CSA), brachial-ankle pulse wave velocity (baPWV), periventricular hyperintensity, and urinary albumin excretion, were determined. Twenty percent of the studied population fell within the AL group. This group had a significantly higher visceral fat area than the Al group. Thigh muscle CSA was lowest in the AL group among groups. baPWV, brain white matter lesions, and albuminuria findings in the AL group were significantly higher than those of the Al group. Multiple and logistic regression analyses with confounding parameters further confirmed that plasma adiponectin was not an independent determinant for brain and renal small vessel-related disease. These findings suggest that the plasma level of adiponectin alone is not enough for the risk stratification of cardiovascular disease. Leptin resistance associated with skeletal muscle loss in addition to obesity may need to be addressed to identify high risk people with high plasma adiponectin levels. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ultrasound evaluation of foot muscles and plantar fascia in pes planus.
Angin, Salih; Crofts, Gillian; Mickle, Karen J; Nester, Christopher J
2014-01-01
Multiple intrinsic and extrinsic soft tissue structures that apply forces and support the medial longitudinal arch have been implicated in pes planus. These structures have common functions but their interaction in pes planus is not fully understood. The aim of this study was to compare the cross-sectional area (CSA) and thickness of the intrinsic and extrinsic foot muscles and plantar fascia thickness between normal and pes planus feet. Forty-nine adults with a normal foot posture and 49 individuals with pes planus feet were recruited from a university population. Images of the flexor digitorum longus (FDL), flexor hallucis longus (FHL), peroneus longus and brevis (PER), flexor hallucis brevis (FHB), flexor digitorum brevis (FDB) and abductor hallucis (AbH) muscles and the plantar fascia were obtained using a Venue 40 ultrasound system with a 5-13 MHz transducer. The CSA and thickness of AbH, FHB and PER muscles were significantly smaller (AbH -12.8% and -6.8%, FHB -8.9% and -7.6%, PER -14.7% and -10%), whilst FDL (28.3% and 15.2%) and FHL (24% and 9.8%) were significantly larger in the pes planus group. The middle (-10.6%) and anterior (-21.7%) portions of the plantar fascia were thinner in pes planus group. Greater CSA and thickness of the extrinsic muscles might reflect compensatory activity to support the MLA if the intrinsic foot muscle function has been compromised by altered foot structure. A thinner plantar fascia suggests reduced load bearing, and regional variations in structure and function in feet with pes planus. Copyright © 2014 Elsevier B.V. All rights reserved.
Fluid-driven origami-inspired artificial muscles.
Li, Shuguang; Vogt, Daniel M; Rus, Daniela; Wood, Robert J
2017-12-12
Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg-all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration. Copyright © 2017 the Author(s). Published by PNAS.
Fluid-driven origami-inspired artificial muscles
Li, Shuguang; Vogt, Daniel M.; Rus, Daniela; Wood, Robert J.
2017-01-01
Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration. PMID:29180416
Fluid-driven origami-inspired artificial muscles
NASA Astrophysics Data System (ADS)
Li, Shuguang; Vogt, Daniel M.; Rus, Daniela; Wood, Robert J.
2017-12-01
Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ˜600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.
Real-Time Ultrasound Segmentation, Analysis and Visualisation of Deep Cervical Muscle Structure.
Cunningham, Ryan J; Harding, Peter J; Loram, Ian D
2017-02-01
Despite widespread availability of ultrasound and a need for personalised muscle diagnosis (neck/back pain-injury, work related disorder, myopathies, neuropathies), robust, online segmentation of muscles within complex groups remains unsolved by existing methods. For example, Cervical Dystonia (CD) is a prevalent neurological condition causing painful spasticity in one or multiple muscles in the cervical muscle system. Clinicians currently have no method for targeting/monitoring treatment of deep muscles. Automated methods of muscle segmentation would enable clinicians to study, target, and monitor the deep cervical muscles via ultrasound. We have developed a method for segmenting five bilateral cervical muscles and the spine via ultrasound alone, in real-time. Magnetic Resonance Imaging (MRI) and ultrasound data were collected from 22 participants (age: 29.0±6.6, male: 12). To acquire ultrasound muscle segment labels, a novel multimodal registration method was developed, involving MRI image annotation, and shape registration to MRI-matched ultrasound images, via approximation of the tissue deformation. We then applied polynomial regression to transform our annotations and textures into a mean space, before using shape statistics to generate a texture-to-shape dictionary. For segmentation, test images were compared to dictionary textures giving an initial segmentation, and then we used a customized Active Shape Model to refine the fit. Using ultrasound alone, on unseen participants, our technique currently segments a single image in [Formula: see text] to over 86% accuracy (Jaccard index). We propose this approach is applicable generally to segment, extrapolate and visualise deep muscle structure, and analyse statistical features online.
Iwamoto, Masami; Nakahira, Yuko; Kimpara, Hideyuki; Sugiyama, Takahiko; Min, Kyuengbo
2012-10-01
A few reports suggest differences in injury outcomes between cadaver tests and real-world accidents under almost similar conditions. This study hypothesized that muscle activity could primarily cause the differences, and then developed a human body finite element (FE) model with individual muscles. Each muscle was modeled as a hybrid model of bar elements with active properties and solid elements with passive properties. The model without muscle activation was firstly validated against five series of cadaver test data on impact responses in the anterior-posterior direction. The model with muscle activation levels estimated based on electromyography (EMG) data was secondly validated against four series of volunteer test data on bracing effects for stiffness and thickness of an upper arm muscle, and braced driver's responses under a static environment and a brake deceleration. A muscle controller using reinforcement learning (RL), which is a mathematical model of learning process in the basal ganglia associated with human postural controls, were newly proposed to estimate muscle activity in various occupant conditions including inattentive and attentive conditions. Control of individual muscles predicted by RL reproduced more human like head-neck motions than conventional control of two groups of agonist and antagonist muscles. The model and the controller demonstrated that head-neck motions of an occupant under an impact deceleration of frontal crash were different in between a bracing condition with maximal braking force and an occupant condition predicted by RL. The model and the controller have the potential to investigate muscular effects in various occupant conditions during frontal crashes.
Biomechanical paradigm and interpretation of female pelvic floor conditions before a treatment
Lucente, Vincent; van Raalte, Heather; Murphy, Miles; Egorov, Vladimir
2017-01-01
Background Further progress in restoring a woman’s health may be possible if a patient with a damaged pelvic floor could undergo medical imaging and biomechanical diagnostic tests. The results of such tests could contribute to the analysis of multiple treatment options and suggest the optimal one for that patient. Aim To develop a new approach for the biomechanical characterization of vaginal conditions, muscles, and connective tissues in the female pelvic floor. Methods Vaginal tactile imaging (VTI) allows biomechanical assessment of the soft tissue along the entire length of the anterior, posterior, and lateral vaginal walls at rest, with manually applied deflection pressures and with muscle contraction, muscle relaxation, and Valsalva maneuver. VTI allows a large body of measurements to evaluate individual variations in tissue elasticity, support defects, as well as pelvic muscle function. Presuming that 1) the female pelvic floor organs are suspended by ligaments against which muscles contract to open or close the outlets and 2) damaged ligaments weaken the support and may reduce the force of muscle contraction, we made an attempt to characterize multiple pelvic floor structures from VTI data. Results All of the 138 women enrolled in the study were successfully examined with the VTI. The study subjects have had normal pelvic support or pelvic organ prolapse (stages I–IV). The average age of this group of subjects was 60±15 years. We transposed a set of 31 VTI parameters into a quantitative characterization of pelvic muscles and ligamentous structures. Interpretation of the acquired VTI data for normal pelvic floor support and prolapse conditions is proposed based on biomechanical assessment of the functional anatomy. Conclusion Vaginal tactile imaging allows biomechanical characterization of female pelvic floor structures and tissues in vivo, which may help to optimize treatment of the diseased conditions such as prolapse, incontinence, atrophy, and some forms of pelvic pain. PMID:28831274
Yucesoy, Can A; Seref-Ferlengez, Zeynep; Huijing, Peter A
2013-01-01
The goal was to assess the effects of multiple aponeurotomy on mechanics of muscle with extramuscular myofascial connections. Using finite element modelling, effects of combinations of the intervention carried out at a proximal (P), an intermediate (I) and a distal (D) location were studied: (1) Case P, (2) Case P-I, (3) Case P-D and (4) Case P-I-D. Compared to Case P, the effects of multiple interventions on muscle geometry and sarcomere lengths were sizable for the distal population of muscle fibres: e.g. at high muscle length (1) summed gap lengths between the cut ends of aponeurosis increased by 16, 25 and 27% for Cases P-I, P-D and P-I-D, respectively, (2) characteristic substantial sarcomere shortening became more pronounced (mean shortening was 26, 29, 30 and 31% for Cases P, P-I, P-D and P-I-D, respectively) and (3) fibre stresses decreased (mean stress equalled 0.49, 0.39, 0.38 and 0.33 for Cases P, P-I, P-D and P-I-D, respectively). In contrast, no appreciable effects were shown for the proximal population. The overall change in sarcomere length heterogeneity was limited. Consequently, the effects of multiple aponeurotomy on muscle length-force characteristics were marginal: (1) a limited reduction in active muscle force (maximal 'muscle weakening effect' remained between 5 and 11%) and (2) an even less pronounced change in slack to optimum length range of force exertion (maximal 'muscle lengthening effect' distally was 0.2% for Case P-I-D) were shown. The intended effects of the intervention were dominated by the one intervention carried out closer to the tendon suggesting that aponeurotomies done additionally to that may counter-indicated.
Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?
NASA Technical Reports Server (NTRS)
Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)
2003-01-01
PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.
NASA Technical Reports Server (NTRS)
Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.
1995-01-01
Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.
Saito, Kosuke; Tamaki, Tetsuro; Hirata, Maki; Hashimoto, Hiroyuki; Nakazato, Kenei; Nakajima, Nobuyuki; Kazuno, Akihito; Sakai, Akihiro; Iida, Masahiro; Okami, Kenji
2015-01-01
Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST). Culture medium was transplanted as a control (NT). In the mouse experiment, facial-nerve-palsy (FNP) scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold) scores when compared to the NT-group after 2–8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks. PMID:26372044
Hara, Koji; Tohara, Haruka; Kobayashi, Kenichiro; Yamaguchi, Kohei; Yoshimi, Kanako; Nakane, Ayako; Minakuchi, Shunsuke
2018-05-31
Swallowing muscle strength weakens with aging. Although numerous studies have investigated tongue pressure (TP) changes with age, studies on jaw-opening force (JOF), an indicator of suprahyoid muscle strength, are lacking. We investigated differences between age-related declines in TP and JOF in a cross-sectional study of 980 healthy and independent participants (379 men, 601 women) without dysphagia. Hand grip strength (HGS), TP, and JOF were compared among decade-based age groups in multiple comparison analyses with post-hoc tests and effect size calculated. Participants were divided into adult (20 s-50 s) and elderly groups (60 s-80 s); within each group, Pearson correlations between age and muscle strength indices were evaluated. TP started to significantly decline in the 60 s and 50 s for men and women (p < .01, medium effect size and p < .05, small effect size, respectively); HGS also declined at these ages (men: p < .01, women: p < .01, medium effect size). JOF started to significantly decline in men in their 80 s (p < .01, large effect size), but remained unchanged in women. In the elderly group, all measurements declined with age more sharply in men (HGS: r = -0.56, TP: r = -0.63, JOF: r = -0.13) than in women (HGS: r = -0.38, TP: r = -0.49, JOF: r = -0.003). TP declined more steeply than did JOF. Thus, the age related-decline in TP was similar to that of the HGS, but not the JOF. The results reveal that different patterns exist in the age-related decline in swallowing muscle strength, and suggest that maintenance of JOF might contribute to safe swallowing in healthy elderly individuals. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok
2005-03-01
Duchene muscular dystrophy (DMD) is one of nine types of muscular dystrophy, a group of genetic degenerative diseases, primarily affecting voluntary muscles, caused by absence of dystrophin. New experiments on mice with DMD has shown that gene therapy can reverse some symptoms of the disease. The ultimate goal of gene therapy for muscle diseases is improvement of strength and function, which will require treatment in multiple muscles simultaneously. A major limitation to gene therapy until now has been that no one had found a method by which a new gene could be delivered to all the muscles of an adult animal. Recent utilization of nanotechnology to life sciences has shown exciting promises in a wide range of disciplines, showing advances in the ability to manipulate, fabricate and alter tiny subjects at the nanometer scale. In the present investigation, we have employed such techniques to study single motors such as myosin and kinesin, as well elastic proteins viz. titin and nebulin, muscle filaments, cytoskeletal filaments, and receptors in cellular membranes and cellular organelles viz. myofibril, ribosome, and chromatin. Application of AFM to images and measures the elastic properties of single monomeric and oligomeric protein, genetically engineered titin, and nebulin molecules will be presented.
Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle
Nicolato, Elena; Farace, Paolo; Asperio, Roberto M; Marzola, Pasquina; Lunati, Ernesto; Sbarbati, Andrea; Osculati, Francesco
2002-01-01
Background Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. Methods The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats. Results At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. Conclusion The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology. PMID:12049675
MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Edgar, Robert C
2004-01-01
We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
Banks, R W; Hulliger, M; Saed, H H; Stacey, M J
2009-06-01
The encapsulated sensory endings of mammalian skeletal muscles are all mechanoreceptors. At the most basic functional level they serve as length sensors (muscle spindle primary and secondary endings), tension sensors (tendon organs), and pressure or vibration sensors (lamellated corpuscles). At a higher functional level, the differing roles of individual muscles in, for example, postural adjustment and locomotion might be expected to be reflected in characteristic complements of the various end-organs, their sensory endings and afferent nerve fibres. This has previously been demonstrated with regard to the number of muscle-spindle capsules; however, information on the other types of end-organ, as well as the complements of primary and secondary endings of the spindles themselves, is sporadic and inconclusive regarding their comparative provision in different muscles. Our general conclusion that muscle-specific variability in the provision of encapsulated sensory endings does exist demonstrates the necessity for the acquisition of more data of this type if we are to understand the underlying adaptive relationships between motor control and the structure and function of skeletal muscle. The present quantitative and comparative analysis of encapsulated muscle afferents is based on teased, silver-impregnated preparations. We begin with a statistical analysis of the number and distribution of muscle-spindle afferents in hind-limb muscles of the cat, particularly tenuissimus. We show that: (i) taking account of the necessity for at least one primary ending to be present, muscles differ significantly in the mean number of additional afferents per spindle capsule; (ii) the frequency of occurrence of spindles with different sensory complements is consistent with a stochastic, rather than deterministic, developmental process; and (iii) notwithstanding the previous finding, there is a differential distribution of spindles intramuscularly such that the more complex ones tend to be located closer to the main divisions of the nerve. Next, based on a sample of tendon organs from several hind-foot muscles of the cat, we demonstrate the existence in at least a large proportion of tendon organs of a structural substrate to account for multiple spike-initiation sites and pacemaker switching, namely the distribution of sensory terminals supplied by the different first-order branches of the Ib afferent to separate, parallel, tendinous compartments of individual tendon organs. We then show that the numbers of spindles, tendon organs and paciniform corpuscles vary independently in a sample of (mainly) hind-foot muscles of the cat. Grouping muscles by anatomical region in the cat indicated the existence of a gradual proximo-distal decline in the overall average size of the afferent complement of muscle spindles from axial through hind limb to intrinsic foot muscles, but with considerable muscle-specific variability. Finally, we present some comparative data on muscle-spindle afferent complements of rat, rabbit and guinea pig, one particularly notable feature being the high incidence of multiple primary endings in the rat.
Dealing with time-varying recruitment and length in Hill-type muscle models.
Hamouda, Ahmed; Kenney, Laurence; Howard, David
2016-10-03
Hill-type muscle models are often used in muscle simulation studies and also in the design and virtual prototyping of functional electrical stimulation systems. These models have to behave in a sufficiently realistic manner when recruitment level and contractile element (CE) length change continuously. For this reason, most previous models have used instantaneous CE length in the muscle׳s force vs. length (F-L) relationship, but thereby neglect the instability problem on the descending limb (i.e. region of negative slope) of the F-L relationship. Ideally CE length at initial recruitment should be used but this requires a multiple-motor-unit muscle model to properly account for different motor-units having different initial lengths when recruited. None of the multiple-motor-unit models reported in the literature have used initial CE length in the muscle׳s F-L relationship, thereby also neglecting the descending limb instability problem. To address the problem of muscle modelling for continuously varying recruitment and length, and hence different values of initial CE length for different motor-units, a new multiple-motor-unit muscle model is presented which considers the muscle to comprise 1000 individual Hill-type virtual motor-units, which determine the total isometric force. Other parts of the model (F-V relationship and passive elements) are not dependent on the initial CE length and, therefore, they are implemented for the muscle as a whole rather than for the individual motor-units. The results demonstrate the potential errors introduced by using a single-motor-unit model and also the instantaneous CE length in the F-L relationship, both of which are common in FES control studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigation of electroacupuncture and manual acupuncture on carnitine and glutathione in muscle.
Toda, Shizuo
2011-01-01
Electroacupuncture (EA) and manual acupuncture (MA) have therapeutic effects on muscle fatigue in muscle disease. The deficiencies of carnitine and glutathione induce muscle fatigue. This report investigated the effects of EA and MA on carnitine and glutathione in muscle. After the mice of EA group were fixed in the animal cage, right Zusanli (ST36) and Jiexi (ST41) were acupunctured and stimulated with uniform reinforcing and reducing method by twirling the acupuncture needle for 15 min. And then, the needle handles were connected to an electric stimulator for stimulating the acupoint with dense-sparse waves. After the mice of MA group were fixed in an animal cage, right ST36 and ST41 were acupunctured and allowed for 15 min. The mice of normal control group were not acupunctured and stimulated for 15 min. The mice of all groups were killed for collecting muscle tissue 1 h after the final treatment. Carnitine and glutathione in homogenate of muscle tissue were determined with carnitine (Kainos Laboratories Co., Tokyo, Japan) and glutathione assay kit (Dojin Chemicals Co., Kumamoto, Japan). Carnitine level in muscle tissue of MA group was significantly higher than those of EA group and normal control group. Carnitine level in muscle tissue of EA group was not significantly different from that of normal control group. Glutathione levels in muscle tissue of EA group and MA group were significantly higher than that of normal control group. This report presented that carnitine in muscle is increased by MA, and not increased by EA, and that glutathione in muscle is increased by EA and MA.
Investigation of Electroacupuncture and Manual Acupuncture on Carnitine and Glutathione in Muscle
Toda, Shizuo
2011-01-01
Electroacupuncture (EA) and manual acupuncture (MA) have therapeutic effects on muscle fatigue in muscle disease. The deficiencies of carnitine and glutathione induce muscle fatigue. This report investigated the effects of EA and MA on carnitine and glutathione in muscle. After the mice of EA group were fixed in the animal cage, right Zusanli (ST36) and Jiexi (ST41) were acupunctured and stimulated with uniform reinforcing and reducing method by twirling the acupuncture needle for 15 min. And then, the needle handles were connected to an electric stimulator for stimulating the acupoint with dense-sparse waves. After the mice of MA group were fixed in an animal cage, right ST36 and ST41 were acupunctured and allowed for 15 min. The mice of normal control group were not acupunctured and stimulated for 15 min. The mice of all groups were killed for collecting muscle tissue 1 h after the final treatment. Carnitine and glutathione in homogenate of muscle tissue were determined with carnitine (Kainos Laboratories Co., Tokyo, Japan) and glutathione assay kit (Dojin Chemicals Co., Kumamoto, Japan). Carnitine level in muscle tissue of MA group was significantly higher than those of EA group and normal control group. Carnitine level in muscle tissue of EA group was not significantly different from that of normal control group. Glutathione levels in muscle tissue of EA group and MA group were significantly higher than that of normal control group. This report presented that carnitine in muscle is increased by MA, and not increased by EA, and that glutathione in muscle is increased by EA and MA. PMID:19592478
Effects of age and inactivity due to prolonged bed rest on atrophy of trunk muscles.
Ikezoe, Tome; Mori, Natsuko; Nakamura, Masatoshi; Ichihashi, Noriaki
2012-01-01
This study investigated the effects of age and inactivity due to being chronically bedridden on atrophy of trunk muscles. The subjects comprised 33 young women (young group) and 41 elderly women who resided in nursing homes or chronic care institutions. The elderly subjects were divided into two groups: independent elderly group who were able to perform activities of daily living involving walking independently (n = 28) and dependent elderly group who were chronically bedridden (n = 13). The thickness of the following six trunk muscles was measured by B-mode ultrasound: the rectus abdominis, external oblique, internal oblique, transversus abdominis, thoracic erector spinae (longissimus) and lumbar multifidus muscles. All muscles except for the transversus abdominis and lumbar multifidus muscles were significantly thinner in the independent elderly group compared with those in the young group. The thicknesses of all muscles in the dependent elderly group was significantly smaller than that in the young group, whereas there were no differences between the dependent elderly and independent elderly groups in the muscle thicknesses of the rectus abdominis and internal oblique muscles. In conclusion, our results suggest that: (1) age-related atrophy compared with young women was less in the deep antigravity trunk muscles than the superficial muscles in the independent elderly women; (2) atrophy associated with chronic bed rest was more marked in the antigravity muscles, such as the back and transversus abdominis.
Yoshida, Yosuke; Ikuno, Koki; Shomoto, Koji
2017-12-01
To compare sensory-level neuromuscular electrical stimulation (NMES) and conventional motor-level NMES in patients after total knee arthroplasty. Prospective randomized single-blind trial. Hospital total arthroplasty center: inpatients. Patients with osteoarthritis (N=66; mean age, 73.5±6.3y; 85% women) were randomized to receive either sensory-level NMES applied to the quadriceps (the sensory-level NMES group), motor-level NMES (the motor-level NMES group), or no stimulation (the control group) in addition to a standard rehabilitation program. Each type of NMES was applied in 45-minute sessions, 5d/wk, for 2 weeks. Data for the quadriceps maximum voluntary isometric contraction, the leg skeletal muscle mass determined using multiple-frequency bioelectrical impedance analysis, the timed Up and Go test, the 2-minute walk test, the visual analog scale, and the range of motion of the knee were measured preoperatively and at 2 and 4 weeks after total knee arthroplasty. The motor-level NMES (P=.001) and sensory-level NMES (P=.028) groups achieved better maximum voluntary isometric contraction results than did the control group. The motor-level NMES (P=.003) and sensory-level NMES (P=.046) groups achieved better 2-minute walk test results than did the control group. Some patients in the motor-level NMES group dropped out of the experiment because of discomfort. Motor-level NMES significantly improved muscle strength and functional performance more than did the standard program alone. Motor-level NMES was uncomfortable for some patients. Sensory-level NMES was comfortable and improved muscle strength and functional performance more than did the standard program alone. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina
2010-06-21
The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.
Guerron, Alfredo D.; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F.; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S.; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M.; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P.; Nagaraju, Kanneboyina
2010-01-01
Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. Conclusions/Significance These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity. PMID:20574530
Severijns, Deborah; Van Geel, Fanny; Feys, Peter
2018-01-01
Motor fatigability is increasingly acknowledged in persons with MS (pwMS). It is unknown whether fatigability is generalized across upper limb muscles and relates to fatigue and perceived difficulties in upper limb use. This observational case-controlled study included twenty PwMS (median EDSS = 3, range 1.5-6.5) and twenty healthy controls who performed 30″ sustained maximal muscle contractions for index finger abduction, hand grip, elbow flexion and shoulder abduction. A static fatigue index (SFI) was calculated to assess motor fatigability for each muscle group. PwMS completed the Fatigue Severity Scale (FSS) and Modified Fatigue Index Scale (MFIS), to quantify severity and perceived impact of fatigue and the Manual Ability Measure (MAM-36) reflecting perceived difficulty in using the upper limbs. Comparisons between groups and muscles was made by t-tests. Associations between outcomes were calculated with correlation coefficients. Fatigue was highest in pwMS. PwMS showed preserved muscle strength and a greater motor fatigability in elbow flexors compared to healthy controls. SFI of elbow flexors and shoulder abductors were associated, and contributed to FSS and MFIS. SFI of elbow flexors and finger abductors predicted half of the variation in MAM-36. Increased motor fatigability was only present in elbow flexors of PwMS, indicating that expression of motor fatigability is not generalized. Fatigability was associated with perceived fatigue (impact) and daily life upper limb use. Results are preliminary given the small sample size with predominantly persons with mild MS. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, David E; Brown, Jacob L; Rosa-Caldwell, Megan E; Blackwell, Thomas A; Perry, Richard A; Brown, Lemuel A; Khatri, Bhuwan; Seo, Dongwon; Bottje, Walter G; Washington, Tyrone A; Wiggs, Michael P; Kong, Byung-Whi; Greene, Nicholas P
2017-05-01
Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia. Copyright © 2017 the American Physiological Society.
Du, Bing-Li; Li, Jiang-Ning; Guo, Hong-Ming; Li, Song; Liu, Biao
2017-09-01
The aim of this study is to explore the effects of abnormal occlusion and functional recovery caused by functional mandible deviation on the head and neck muscles and muscle spindle sensory-motor system by electrophysiological response and endogenous monoamine neurotransmitters' distribution in the nucleus of the spinal tract. Seven-week-old male Wistar rats were randomly divided into 7 groups: normal control group, 2W experimental control group, 2W functional mandible deviation group, 2W functional mandible deviation recovery group, 4W experimental control group, 4W functional mandible deviation group, 4W functional mandible deviation recovery group. Chewing muscles, digastric muscle, splenius, and trapezius muscle spindles electrophysiological response activities at the opening and closing state were recorded. And then the chewing muscles, digastric, splenius, trapezius, and neck trigeminal nucleus were taken for histidine decarboxylase (HDC) detection by high performance liquid chromatography (HPLC), immunofluorescence, and reverse-transcription polymerase chain reaction (RT-PCR). Histamine receptor proteins in the neck nucleus of the spinal tract were also examined by immunofluorescence and RT-PCR. Electromyography activity of chewing muscles, digastric, and splenius muscle was significantly asymmetric; the abnormal muscle electromyography activity was mainly detected at the ipsilateral side. After functional mandibular deviation, muscle sensitivity on the ipsilateral sides of the chewing muscle and splenius decreased, muscle excitement weakened, modulation depth decreased, and the muscle spindle afferent impulses of excitation transmission speed slowed down. Changes for digastric muscle electrical activity were contrary. The functions recovered at different extents after removing the deflector. However, trapezius in all the experimental groups and recovery groups exhibited bilateral symmetry electrophysiological responses, and no significant difference compared with the control group. After functional mandibular deviation, HDC protein and messenger ribonucleic acid (mRNA) levels on the ipsilateral sides of the chewing muscle and splenius increased significantly. HDC level changes for digastric muscle were contrary. After the removal of the mandibular position deflector, HDC protein and mRNA levels decreased on the ipsilateral sides of the chewing muscle and splenius while they increased in the digastric muscle. The difference of histamine decarboxylase content in the bilateral trapezius in each experimental group was small. After functional mandibular deviation, the temporomandibular joint mechanical receptors not only caused the fusimotor fiber hypoallergenic fatigue slow response on the ipsilateral sides of splenius, but also increased the injury neurotransmitter histamine release. The authors' results further support the opinion that the temporomandibular joint receptors may be involved in the mechanical theory of the head and neck muscles nervous system regulation.
Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle
Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.
2013-01-01
Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665
Łyp, Marek; Stanisławska, Iwona; Witek, Bożena; Olszewska-Żaczek, Ewelina; Czarny-Działak, Małgorzata; Kaczor, Ryszard
2018-02-13
This study deals with the use of a robot-assisted body-weight-supported treadmill training in multiple sclerosis (MS) patients with gait dysfunction. Twenty MS patients (10 men and 10 women) of the mean of 46.3 ± 8.5 years were assigned to a six-week-long training period with the use of robot-assisted treadmill training of increasing intensity of the Lokomat type. The outcome measure consisted of the difference in motion-dependent torque of lower extremity joint muscles after training compared with baseline before training. We found that the training uniformly and significantly augmented the torque of both extensors and flexors of the hip and knee joints. The muscle power in the lower limbs of SM patients was improved, leading to corrective changes of disordered walking movements, which enabled the patients to walk with less effort and less assistance of care givers. The torque augmentation could have its role in affecting the function of the lower extremity muscle groups during walking. The results of this pilot study suggest that the robot-assisted body-weight-supported treadmill training may be a potential adjunct measure in the rehabilitation paradigm of 'gait reeducation' in peripheral neuropathies.
Tai, Suh-Jun; Liu, Ren-Shyan; Kuo, Ya-Chen; Hsu, Chi-Yang; Chen, Chi-Hsien
2010-04-30
The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important during running. Furthermore, for each unit muscle volume, movers of ankle are more glucose-demanding than those of hip.
Neural basis for hand muscle synergies in the primate spinal cord.
Takei, Tomohiko; Confais, Joachim; Tomatsu, Saeka; Oya, Tomomichi; Seki, Kazuhiko
2017-08-08
Grasping is a highly complex movement that requires the coordination of multiple hand joints and muscles. Muscle synergies have been proposed to be the functional building blocks that coordinate such complex motor behaviors, but little is known about how they are implemented in the central nervous system. Here we demonstrate that premotor interneurons (PreM-INs) in the primate cervical spinal cord underlie the spatiotemporal patterns of hand muscle synergies during a voluntary grasping task. Using spike-triggered averaging of hand muscle activity, we found that the muscle fields of PreM-INs were not uniformly distributed across hand muscles but rather distributed as clusters corresponding to muscle synergies. Moreover, although individual PreM-INs have divergent activation patterns, the population activity of PreM-INs reflects the temporal activation of muscle synergies. These findings demonstrate that spinal PreM-INs underlie the muscle coordination required for voluntary hand movements in primates. Given the evolution of neural control of primate hand functions, we suggest that spinal premotor circuits provide the fundamental coordination of multiple joints and muscles upon which more fractionated control is achieved by superimposed, phylogenetically newer, pathways.
Purves-Smith, Fennigje M; Sgarioto, Nicolas; Hepple, Russell T
2014-04-01
It is accepted widely that fast-twitch muscle fibers are preferentially impacted in aging muscle, yet we hypothesize that this is not valid when aging muscle atrophy becomes severe. In this review, we summarize the evidence of fiber type-specific effect in aging muscle and the potential confounding roles of fibers coexpressing multiple myosin heavy-chain isoforms and their histochemical identification.
Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.
Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu
2015-11-15
Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.
Blitz, Dawn M; Pritchard, Amy E; Latimer, John K; Wakefield, Andrew T
2017-04-01
Adaptive changes in the output of neural circuits underlying rhythmic behaviors are relayed to muscles via motor neuron activity. Presynaptic and postsynaptic properties of neuromuscular junctions can impact the transformation from motor neuron activity to muscle response. Further, synaptic plasticity occurring on the time scale of inter-spike intervals can differ between multiple muscles innervated by the same motor neuron. In rhythmic behaviors, motor neuron bursts can elicit additional synaptic plasticity. However, it is unknown whether plasticity regulated by the longer time scale of inter-burst intervals also differs between synapses from the same neuron, and whether any such distinctions occur across a physiological activity range. To address these issues, we measured electrical responses in muscles innervated by a chewing circuit neuron, the lateral gastric (LG) motor neuron, in a well-characterized small motor system, the stomatogastric nervous system (STNS) of the Jonah crab, Cancer borealis In vitro and in vivo , sensory, hormonal and modulatory inputs elicit LG bursting consisting of inter-spike intervals of 50-250 ms and inter-burst intervals of 2-24 s. Muscles expressed similar facilitation measured with paired stimuli except at the shortest inter-spike interval. However, distinct decay time constants resulted in differences in temporal summation. In response to bursting activity, augmentation occurred to different extents and saturated at different inter-burst intervals. Further, augmentation interacted with facilitation, resulting in distinct intra-burst facilitation between muscles. Thus, responses of multiple target muscles diverge across a physiological activity range as a result of distinct synaptic properties sensitive to multiple time scales. © 2017. Published by The Company of Biologists Ltd.
Hwang, Ok-Kyung; Park, Jin-Kyu; Lee, Eun-Joo; Lee, Eun-Mi; Kim, Ah-Young; Jeong, Kyu-Shik
2016-02-08
TGF-β1 is known to inhibit muscle regeneration after muscle injury. However, it is unknown if high systemic levels of TGF-β can affect the muscle regeneration process. In the present study, we demonstrated the effect of a CCl₄ intra-peritoneal injection and losartan (an angiotensin II type 1 receptor antagonist) on skeletal muscle (gastrocnemius muscle) injury and regeneration. Male C57BL/6 mice were grouped randomly as follows: control (n = 7), CCl₄-treatment group (n = 7), and CCl₄ + losartan treatment group (n = 7). After CCl₄ treatment for a 16-week period, the animals were sacrificed and analyzed. The expression of dystrophin significantly decreased in the muscle tissues of the control group, as compared with that of the CCl₄ + losartan group (p < 0.01). p(phospho)-Smad2/3 expression significantly increased in the muscles of the control group compared to that in the CCl₄ + losartan group (p < 0.01). The expressions of Pax7, MyoD, and myogenin increased in skeletal muscles of the CCl₄ + losartan group compared to the corresponding levels in the control group (p < 0.01). We hypothesize that systemically elevated TGF-β1 as a result of CCl₄-induced liver injury causes skeletal muscle injury, while losartan promotes muscle repair from injury via blockade of TGF-β1 signaling.
Silberstein, Eldad; Maor, Ehud; Sukmanov, Oleg; Bogdanov Berezovsky, Alexander; Shoham, Yaron; Krieger, Yuval
2018-04-06
Muscle activity contributes to the enhancement of facial aging deformity, blepharospasm, cerebral palsy spasticity, trismus, torticollis, and other conditions. Myotomy of the involved muscles in order to reduce the deformity has variable success rates due to muscle healing and regeneration of activity. The goal of this study was to investigate whether blocking striated muscle activity with Botulinum toxin (BtxA) during the healing time after myotomy alters the healing process and reduces long-term muscle activity. Eighteen Sprague Dawley rats where divided into 3 groups: group A (n = 7) underwent myotomy of their Latisimus Dorsi muscle; group B (n = 7) underwent myotomy and injection of BtxA into their severed muscle; group C (n = 4) injection of BtxA only. Muscle strength was tested periodically using a grip test. Starting at week 16 and until the termination of study at week 22, group B (Myotomy + BtxA) showed significant reduction in muscle power compared to the two control groups. Addition of BtxA injection into a muscle immediately after myotomy may interfere with muscle healing and contribute to a more successful long-term result.
Atrophy of the quadriceps muscle in children with a painful hip.
Robben, S G; Lequin, M H; Meradji, M; Diepstraten, A F; Hop, W C
1999-09-01
The objective of this study was to determine the degree of muscle wasting of various components of the quadriceps muscle in children with a painful hip. Between January 1994 and September 1997, 327 consecutive children with a unilateral painful hip and/or limping were evaluated prospectively with ultrasonography. Quadriceps thickness was measured on both sides. Moreover, muscle thickness was measured in 59 control subjects. The patients were divided into eight groups; transient synovitis (n = 134), Perthes' disease (n = 35), slipped capital femoral epiphysis (n = 5), osteomyelitis (n = 4), aspecific synovitis (n = 5), rheumatoid arthritis (n = 3) and miscellaneous (n = 16). In 125 patients, no sonographic and radiological abnormalities were found and during follow-up the symptoms disappeared ('no pathology' group). Ipsilateral muscle wasting was present in all patient groups, whereas the control subjects showed no significant difference in muscle thickness between legs. The degree of muscle wasting was compared between transient synovitis, the 'no pathology' group, Perthes' disease and control subjects. For both quadriceps and vastus intermedius muscles, there was a significant difference between these groups, except between control subjects and the 'no pathology' group. For the rectus femoris muscle, there was a significant difference between these groups, except between transient synovitis and 'no pathology'. Muscle wasting showed a positive correlation with duration of symptoms and pre-existing muscle mass. In conclusion, different diseases show different degrees of muscle wasting, and there are different patterns of muscle wasting of various components of the quadriceps femoris muscle.
Alexandre, T da Silva; Duarte, Y A de Oliveira; Santos, J L Ferreira; Wong, R; Lebrão, M L
2014-03-01
The aim of the present study was to examine the prevalence and factors associated with sarcopenia in older residents in São Paulo, Brazil. Cross-sectional study. São Paulo, Brazil. 1,149 older individuals from the second wave of the Saúde, Bem-Estar e Envelhecimento (SABE) study from 2006. The definition of sarcopenia was based on the consensus of the European Working Group on Sarcopenia in Older People (EWGSOP), which include three components: low muscle mass, assessed by a skeletal muscle mass index of ≤8.90 kg/m2 for men and ≤6.37 kg/m2 for women; low muscle strength, assessed by handgrip strength <30 kg for men and <20 kg for women; and low physical performance, assessed by gait speed <0.8 m/s. Diagnosis of sarcopenia required presence of low muscle mass plus low muscle strength or low physical performance. Socio-demographic and behavioral characteristics, medical conditions and nutritional status were considered as independent variables to determine the associated factors using a logistic regression model. The prevalence of sarcopenia was 16.1% in women and 14.4% in men. Advanced age with a dose response effect, cognitive impairment, lower income, smoking, undernutrition and risk for undernutrition (p<0.05) were factors associated with sarcopenia. The EWGSOP algorithm is useful to define sarcopenia. The prevalence of sarcopenia in the Brazilian elderly population is high and several associated factors show that this syndrome is affected by multiple domains. No differences were observed by gender in any age groups.
Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.
Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L
2007-05-01
We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (p<0.05). The artistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all p<0.05). The artistic gymnasts had higher lean mass (p<0.05) in the whole body and the extremities than both the rhythmic gymnasts and the controls. Body fat mass was 87.5 and 61.5 % higher in the controls than in the artistic and the rhythmic gymnasts (p<0.05). The upper extremity BMD was higher (p<0.05) in the artistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, p<0.001), and multiple regression analysis showed that total lean mass explained 64 % of the variability in whole body bone mineral content, but only 20 % in whole body bone mineral density. Therefore, recreational artistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.
Ferrari, Renata; Caram, Laura M O; Faganello, Marcia M; Sanchez, Fernanda F; Tanni, Suzana E; Godoy, Irma
2015-01-01
The aim of this study was to investigate the association between systemic inflammatory mediators and peripheral muscle mass and strength in COPD patients. Fifty-five patients (69% male; age: 64±9 years) with mild/very severe COPD (defined as forced expiratory volume in the first second [FEV1] =54%±23%) were evaluated. We evaluated serum concentrations of IL-8, CRP, and TNF-α. Peripheral muscle mass was evaluated by computerized tomography (CT); midthigh cross-sectional muscle area (MTCSA) and midarm cross-sectional muscle area (MACSA) were obtained. Quadriceps, triceps, and biceps strength were assessed through the determination of the one-repetition maximum. The multiple regression results, adjusted for age, sex, and FEV1%, showed positive significant association between MTCSA and leg extension (0.35 [0.16, 0.55]; P=0.001), between MACSA and triceps pulley (0.45 [0.31, 0.58]; P=0.001), and between MACSA and biceps curl (0.34 [0.22, 0.47]; P=0.001). Plasma TNF-α was negatively associated with leg extension (-3.09 [-5.99, -0.18]; P=0.04) and triceps pulley (-1.31 [-2.35, -0.28]; P=0.01), while plasma CRP presented negative association with biceps curl (-0.06 [-0.11, -0.01]; P=0.02). Our results showed negative association between peripheral muscle mass (evaluated by CT) and muscle strength and that systemic inflammation has a negative influence in the strength of specific groups of muscles in individuals with stable COPD. This is the first study showing association between systemic inflammatory markers and strength in upper limb muscles.
Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S
2018-03-01
We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.
Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children.
Chao, Tony; Porter, Craig; Herndon, David N; Siopi, Aikaterina; Ideker, Henry; Mlcak, Ronald P; Sidossis, Labros S; Suman, Oscar E
2018-03-01
Severe burns result in prolonged hypermetabolism and skeletal muscle catabolism. Rehabilitative exercise training (RET) programs improved muscle mass and strength in severely burned children. The combination of RET with β-blockade or testosterone analogs showed improved exercise-induced benefits on body composition and muscle function. However, the effect of RET combined with multiple drug therapy on muscle mass, strength, cardiorespiratory fitness, and protein turnover are unknown. In this placebo-controlled randomized trial, we hypothesize that RET combined with oxandrolone and propranolol (Oxprop) will improve muscle mass and function and protein turnover in severely burned children compared with burned children undergoing the same RET with a placebo. We studied 42 severely burned children (7-17 yr) with severe burns over 30% of the total body surface area. Patients were randomized to placebo (22 control) or to Oxprop (20) and began drug administration within 96 h of admission. All patients began RET at hospital discharge as part of their standardized care. Muscle strength (N·m), power (W), V˙O2peak, body composition, and protein fractional synthetic rate and fractional breakdown rate were measured pre-RET (PRE) and post-RET (POST). Muscle strength and power, lean body mass, and V˙O2peak increased with RET in both groups (P < 0.01). The increase in strength and power was significantly greater in Oxprop versus control (P < 0.01), and strength and power was greater in Oxprop over control POST (P < 0.05). Fractional synthetic rate was significantly higher in Oxprop than control POST (P < 0.01), resulting in improved protein net balance POST (P < 0.05). Rehabilitative exercise training improves body composition, muscle function, and cardiorespiratory fitness in children recovering from severe burns. Oxprop therapy augments RET-mediated improvements in muscle strength, power, and protein turnover.
Sosnoff, Jacob J; Finlayson, Marcia; McAuley, Edward; Morrison, Steve; Motl, Robert W
2014-03-01
To determine the feasibility, safety, and efficacy of a home-based exercise intervention targeting fall risk in older adults with multiple sclerosis. A randomized controlled pilot trial. A home-based exercise program. Participants were randomly allocated to either a home-based exercise intervention group (n = 13) or a waiting list control group (n = 14). The exercise group completed exercises targeting lower muscle strength and balance three times a week for 12 weeks. The control group continued normal activity. Fall risk (Physiological Profile Assessment scores), balance (Berg Balance Scale), and walking testing prior to and immediately following the 12-week intervention. Each outcome measure was placed in an analysis of covariance with group as the between-subject factor and baseline values as the covariate. Effect sizes were calculated. Twelve participants from the control group and ten from the exercise group completed the study. There were no related adverse events. Fall risk was found to decrease in the exercise group following the intervention (1.1 SD 1.0 vs. 0.6 SD 0.6) while there was an increase in fall risk in the control group (1.9 SD 1.5 vs. 2.2 SD 1.9). Effect sizes for most outcomes were large (η(2) > 0.15). Home-based exercise was found to be feasible, safe, and effective for reducing physiological fall risk in older adults with multiple sclerosis. Our findings support the implementation of a larger trial to reduce fall risk in persons with multiple sclerosis.
Effects of pelvic floor muscle training during pregnancy.
de Oliveira, Claudia; Lopes, Marco Antonio Borges; Carla Longo e Pereira, Luciana; Zugaib, Marcelo
2007-08-01
The objective of the present study was to evaluate the effect of pelvic floor muscle training in 46 nulliparous pregnant women. The women were divided into 2 groups: an exercise group and a control group. Functional evaluation of the pelvic floor muscle was performed by digital vaginal palpation using the strength scale described by Ortiz and by a perineometer (with and without biofeedback). The functional evaluation of the pelvic floor muscles showed a significant increase in pelvic floor muscle strength during pregnancy in both groups (P < .001). However, the magnitude of the change was greater in the exercise group than in the control group (47.4% vs. 17.3%, P < .001). The study also showed a significant positive correlation (Spearman's test, r = 0.643; P < .001) between perineometry and digital assessment in the strength of pelvic floor muscles. Pelvic floor muscle training resulted in a significant increase in pelvic floor muscle pressure and strength during pregnancy. A significant positive correlation between functional evaluation of the pelvic floor muscle and perineometry was observed during pregnancy.
Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Kinouchi, Nao; Kawakami, Emi; Tanne, Kazuo; Langenbach, Geerling E J; Tanaka, Eiji
2010-06-01
The development of the craniofacial system occurs, among other reasons, as a response to functional needs. In particular, the deficiency of the proper masticatory stimulus affects the growth. The purpose of this study was to relate alterations of muscle activity during postnatal development to adaptational changes in the muscle fibers. Fourteen 21-day-old Wistar strain male rats were randomly divided into two groups and fed on either a solid (hard-diet group) or a powder (soft-diet group) diet for 63 days. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time), the total burst number and their average length exceeding specified levels of the peak activity (5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of fibers by means of immunohistochemical staining and their cross-sectional area was measured. All muscle fibers were identified as slow type I and fast type IIA, IIX or IIB (respectively, with increasing twitch contraction speed and fatigability). At lower activity levels (exceeding 5% of the peak activity), the duty time of the anterior belly of the digastric muscle was significantly higher in the soft-diet group than in the hard-diet group (P < 0.05). At higher activity levels (exceeding 20 and 50% of the peak activity), the duty time of the superficial masseter muscle in the soft-diet group was significantly lower than that in the hard-diet group (P < 0.05). There was no difference in the duty time of the anterior temporalis muscle at any muscle activity level. The percentage of type IIA fibers of the superficial masseter muscle in the soft-diet group was significantly lower than that in the hard-diet group (P < 0.01) and the opposite was true with regard to type IIB fibers (P < 0.05). The cross-sectional area of type IIX and type IIB fibers of the superficial masseter muscle was significantly smaller in the soft-diet group than in the hard-diet group (P < 0.05). There was no difference in the muscle fiber composition and the cross-sectional area of the anterior belly of the digastric and anterior temporalis muscles. In conclusion, for the jaw muscles of male rats reared on a soft diet, the slow-to-fast transition of muscle fiber was shown in only the superficial masseter muscle. Therefore, the reduction in the amount of powerful muscle contractions could be important for the slow-to-fast transition of the myosin heavy chain isoform in muscle fibers.
Kim, Ki-Jong; Kim, Young-Eok; Jun, Hyun-Ju; Lee, Jin-Su; Ji, Sung-Ha; Ji, Sang-Goo; Seo, Tae-Hwa; Kim, Young-Ok
2014-03-01
[Purpose] The purpose of this study was to implement combined muscle strengthening and proprioceptive exercises to examine the effects of combined exercises on functional ankle instability. [Subjects and Methods] Experiments were conducted with 30 adult males and females. The study subjects were randomly assigned to either a control group (Group A), a muscle strengthening exercise group (Group B), or a combined muscle strengthening and proprioceptive exercise group (Group C) consisting of 10 subjects each. In Group A, measurements were only conducted before and after the experiment without any intervention, whereas the exercise programs for Group B and Group C were implemented three days per week for four weeks. [Results] Muscle strength showed significant increases in Groups B and C compared with the control group during plantar flexion, dorsiflexion, inversion, and eversion. The Cumberland ankle instability tool showed significant increases in Group B and Group C compared with Group A and significant increases in Group C compared with Group B. [Conclusion] Applying combined muscle strengthening and proprioceptive exercises to those who have functional ankle instability is more effective than applying only muscle strengthening exercises.
Fujita, Naoto; Arakawa, Takamitsu; Matsubara, Takako; Ando, Hiroshi; Miki, Akinori
2009-01-01
This study examined muscular atrophy and the recovery process induced by hindlimb unloading and joint immobilization in the rat soleus and plantaris muscles. Rats were divided into control, hindlimb unloading (HU), hindlimb unloading with ankle joint immobilization at the maximum dorsiflexion (HUD), and maximum plantarflexion (HUP) groups. The hindlimb was reloaded after fourteen days of unloading, and muscle atrophy and walking ability were assessed at 0, 3, and 7 days of reloading. A cross sectional area of muscle fibers in the soleus muscle on day 0 of reloading revealed sizes in order from the control, HUD, HUP down to the HU group, indicating that the HU group was the most atrophied among the four groups. These values in the plantaris muscle ranged in order from the control, HU, HUD, to HUP groups, the HUP group being the most atrophied among the four groups. These muscles recovered from atrophy in the same descending order, and the values in the HUD and HUP groups slowly recovered during the reloading periods. The HUD and HUP groups showed a central core lesion and reloading-induced lesions in some type I muscle fibers after the immobilization and reloading, one possible reason for the delayed recovery in these groups. The muscle atrophy in the HU, HUD, and HUP groups remained at day 7 although the walking ability appeared to be normal. Accordingly, further rehabilitation therapy might be necessary even if the functional ability appears to be normal.
Harris-Love, M. O.; Shrader, J. A.; Koziol, D.; Pahlajani, N.; Jain, M.; Smith, M.; Cintas, H. L.; McGarvey, C. L.; James-Newton, L.; Pokrovnichka, A.; Moini, B.; Cabalar, I.; Lovell, D. J.; Wesley, R.; Plotz, P. H.; Miller, F. W.; Hicks, J. E.
2009-01-01
Objective. To describe the distribution and severity of muscle weakness using manual muscle testing (MMT) in 172 patients with PM, DM and juvenile DM (JDM). The secondary objectives included characterizing individual muscle group weakness and determining associations of weakness with functional status and myositis characteristics in this large cohort of patients with myositis. Methods. Strength was assessed for 13 muscle groups using the 10-point MMT and expressed as a total score, subscores based on functional and anatomical regions, and grades for individual muscle groups. Patient characteristics and secondary outcomes, such as clinical course, muscle enzymes, corticosteroid dosage and functional status were evaluated for association with strength using univariate and multivariate analyses. Results. A gradient of proximal weakness was seen, with PM weakest, DM intermediate and JDM strongest among the three myositis clinical groups (P ≤ 0.05). Hip flexors, hip extensors, hip abductors, neck flexors and shoulder abductors were the muscle groups with the greatest weakness among all three clinical groups. Muscle groups were affected symmetrically. Conclusions. Axial and proximal muscle impairment was reflected in the five weakest muscles shared by our cohort of myositis patients. However, differences in the pattern of weakness were observed among all three clinical groups. Our findings suggest a greater severity of proximal weakness in PM in comparison with DM. PMID:19074186
Isaacs, Jonathan; Feher, Joseph; Shall, Mary; Vota, Scott; Fox, Michael A; Mallu, Satya; Razavi, Ashkon; Friebe, Ilvy; Shah, Sagar; Spita, Nathalie
2013-10-01
Suboptimal recovery following repair of major peripheral nerves has been partially attributed to denervation atrophy. Administration of anabolic steroids in conjunction with neurotization may improve functional recovery of chronically denervated muscle. The purpose of this study was to evaluate the effect of the administration of nandrolone on muscle recovery following prolonged denervation in a rat model. Eight groups of female Sprague-Dawley rats (15 rats per group, 120 in all) were divided into 3- or 6-month denervated hind limb and sham surgery groups and, then, nandrolone treatment groups and sham treatment groups. Evaluation of treatment effects included nerve conduction, force of contraction, comparative morphology, histology (of muscle fibers), protein electrophoresis (for muscle fiber grouping), and immunohistochemical evaluation. Although a positive trend was noted, neither reinnervated nor normal muscle showed a statistically significant increase in peak muscle force following nandrolone treatment. Indirect measures, including muscle mass (weight and diameter), muscle cell size, muscle fiber type, and satellite cell counts, all failed to support significant anabolic effect. There does not seem to be a functional benefit from nandrolone treatment following reinnervation of either mild or moderately atrophic muscle (related to prolonged denervation) in a rodent model.
Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart.
Wang, Zhong; Zhu, Tong; Qiao, Chunping; Zhou, Liqiao; Wang, Bing; Zhang, Jian; Chen, Chunlian; Li, Juan; Xiao, Xiao
2005-03-01
Systemic gene delivery into muscle has been a major challenge for muscular dystrophy gene therapy, with capillary blood vessels posing the principle barrier and limiting vector dissemination. Previous efforts to deliver genes into multiple muscles have relied on isolated vessel perfusion or pharmacological interventions to enforce broad vector distribution. We compared the efficiency of multiple adeno-associated virus (AAV) vectors after a single injection via intraperitoneal or intravenous routes without additional intervention. We show that AAV8 is the most efficient vector for crossing the blood vessel barrier to attain systemic gene transfer in both skeletal and cardiac muscles of mice and hamsters. Serotypes such as AAV1 and AAV6, which demonstrate robust infection in skeletal muscle cells, were less effective in crossing the blood vessel barrier. Gene expression persisted in muscle and heart, but diminished in tissues undergoing rapid cell division, such as neonatal liver. This technology should prove useful for muscle-directed systemic gene therapy.
Comparison of isokinetic muscle strength and muscle power by types of warm-up.
Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun
2015-05-01
[Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.
Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook
2017-04-01
[Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.
Güleçyüz, Mehmet F; Macha, Konstanze; Pietschmann, Matthias F; Ficklscherer, Andreas; Sievers, Birte; Roßbach, Björn P; Jansson, Volkmar; Müller, Peter E
2018-05-31
Rotator cuff (RC) tears result not only in functional impairment but also in RC muscle atrophy, muscle fattening and eventually to muscle fibrosis. We hypothesized that allogenic bone marrow derived mesenchymal stem cells (MSC) and myocytes can be utilized to improve the rotator cuff muscle fattening and increase the atrophied muscle mass in a rat model. The right supraspinatus (SSP) tendons of 105 inbred rats were detached and muscle fattening was provoked over 4 weeks; the left side remained untouched (control group). The animals (n = 25) of the output group were euthanized after 4 weeks for reference purposes. The SSP-tendon of one group (n = 16) was left unoperated to heal spontaneously. The SSP-tendons of the remaining 64 rats (4 groups with n = 16) were repaired with transosseous sutures. One group received a saline solution injection in the SSP muscle belly, two other groups received 5 × 10 6 allogenic myocytes and 5 × 10 6 allogenic MSC injections from donor rats, respectively, and one group received no additional treatment. After 4 weeks of healing, the supraspinatus muscle mass was compared quantitatively and histologically to all the treated groups and to the untreated contralateral side. In the end of the experiments at week 8, the myocyte and MCS treated groups showed a significantly higher muscle mass with 0.2322 g and 0.2257 g, respectively, in comparison to the output group (0.1911 g) at week 4 with p < 0.05. There was no statistical difference between the repaired, treated, or spontaneous healing groups at week 8. Supraspinatus muscle mass of all experimental groups of the right side was significantly lower compared to the untreated contralateral muscle mass. This defect model shows that the injection of allogenic mycocytes and MSC in fatty infiltrated SSP muscles is better than no treatment and can partially improve the SSP muscle belly fattening. Nevertheless, a full restoration of the degenerated and fattened rotator cuff muscle to its original condition is not possible using myocytes and MSC in this model.
Manca, Andrea; Cabboi, Maria Paola; Dragone, Daniele; Ginatempo, Francesca; Ortu, Enzo; De Natale, Edoardo Rosario; Mercante, Beniamina; Mureddu, Giovanni; Bua, Guido; Deriu, Franca
2017-07-01
To compare effects of contralateral strength training (CST) and direct strength training of the more affected ankle dorsiflexors on muscle performance and clinical functional outcomes in people with multiple sclerosis (MS) exhibiting interlimb strength asymmetry. Randomized controlled trial. University hospital. Individuals with relapsing-remitting MS (N=30) and mild-to-moderate disability (Expanded Disability Status Scale score ≤6) presenting with ankle dorsiflexors' strength disparity. Participants were randomly assigned to a CST (n=15) or direct strength training (n=15) group performing 6 weeks of maximal intensity strength training of the less or more affected dorsiflexors, respectively. Maximal strength, endurance to fatigue, and mobility outcomes were assessed before, at the intervention end, and at 12-week follow-up. Strength and fatigue parameters were measured after 3 weeks of training (midintervention). In the more affected limb of both groups, pre- to postintervention significant increases in maximal strength (P≤.006) and fatigue endurance (P≤.04) were detected along with consistent retention of these improvements at follow-up (P≤.04). At midintervention, the direct strength training group showed significant improvements (P≤.002), with no further increase at postintervention, despite training continuation. Conversely, the CST group showed nonsignificant strength gains, increasing to significance at postintervention (P≤.003). In both groups, significant pre- to postintervention improvements in mobility outcomes (P≤.03), not retained at follow-up, were observed. After 6 weeks of training, CST proved as effective as direct strength training in enhancing performance of the more affected limb with a different time course, which may have practical implications in management of severely weakened limbs where direct strength training is not initially possible. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Westerdahl, Elisabeth; Wittrin, Anna; Kånåhols, Margareta; Gunnarsson, Martin; Nilsagård, Ylva
2016-11-01
Breathing exercises with positive expiratory pressure are often recommended to patients with advanced neurological deficits, but the potential benefit in multiple sclerosis (MS) patients with mild and moderate symptoms has not yet been investigated in randomized controlled trials. To study the effects of 2 months of home-based breathing exercises for patients with mild to moderate MS on respiratory muscle strength, lung function, and subjective breathing and health status outcomes. Forty-eight patients with MS according to the revised McDonald criteria were enrolled in a randomized controlled trial. Patients performing breathing exercises (n = 23) were compared with a control group (n = 25) performing no breathing exercises. The breathing exercises were performed with a positive expiratory pressure device (10-15 cmH 2 O) and consisted of 30 slow deep breaths performed twice a day for 2 months. Respiratory muscle strength (maximal inspiratory and expiratory pressure at the mouth), spirometry, oxygenation, thoracic excursion, subjective perceptions of breathing and self-reported health status were evaluated before and after the intervention period. Following the intervention, there was a significant difference between the breathing group and the control group regarding the relative change in lung function, favoring the breathing group (vital capacity: P < 0.043; forced vital capacity: P < 0.025). There were no other significant differences between the groups. Breathing exercises may be beneficial in patients with mild to moderate stages of MS. However, the clinical significance needs to be clarified, and it remains to be seen whether a sustainable effect in delaying the development of respiratory dysfunction in MS can be obtained. © 2015 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.
Oh, Dongha; Kim, Gayeong; Lee, Wanhee; Shin, Mary Myong Sook
2016-01-01
[Purpose] This study evaluated the effects of inspiratory muscle training on pulmonary function, deep abdominal muscle thickness, and balance ability in stroke patients. [Subjects] Twenty-three stroke patients were randomly allocated to an experimental (n = 11) or control group (n = 12). [Methods] The experimental group received inspiratory muscle training-based abdominal muscle strengthening with conventional physical therapy; the control group received standard abdominal muscle strengthening with conventional physical therapy. Treatment was conducted 20 minutes per day, 3 times per week for 6 weeks. Pulmonary function testing was performed using an electronic spirometer. Deep abdominal muscle thickness was measured by ultrasonography. Balance was measured using the Berg balance scale. [Results] Forced vital capacity, forced expiratory volume in 1 second, deep abdominal muscle thickness, and Berg balance scale scores were significantly improved in the experimental group than in the control group. [Conclusion] Abdominal muscle strengthening accompanied by inspiratory muscle training is recommended to improve pulmonary function in stroke patients, and may also be used as a practical adjunct to conventional physical therapy. PMID:26957739
Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe
2012-01-01
Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow.
Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza
2016-06-01
Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.
Nam, Seung-Min; Kim, Won-Hyo; Yun, Chang-Kyo
2017-04-01
[Purpose] This study aimed to investigate the effects of multisensory dynamic balance training on muscles thickness such as rectus femoris, anterior tibialis, medial gastrocnemius, lateral gastrocnemius in children with spastic diplegic cerebral palsy by using ultrasonography. [Subjects and Methods] Fifteen children diagnosed with spastic diplegic cerebral palsy were divided randomly into the balance training group and control group. The experimental group only received a multisensory dynamic balance training, while the control group performed general physiotherapy focused balance and muscle strengthening exercise based Neurodevelopmental treatment. Both groups had a therapy session for 30 minutes per day, three times a week for six weeks. The ultrasonographic muscle thickness were obtained in order to compare and analyze muscle thickness before and after in each group. [Result] The experimental group had significant increases in muscle thickness in the rectus femoris, tibialis anterior, medial gastrocnemius and lateral gastrocnemius muscles. The control group had significant increases in muscle thickness in the tibialis anterior. The test results of the rectus femoris, medial gastrocnemius and lateral gastrocnemius muscle thickness values between the groups showed significant differences. [Conclusion] In conclusion, a multisensory dynamic balance training can be recommended as a treatment method for patients with spastic diplegic cerebral palsy.
Yanagisawa, Yukio; Matsuo, Yoshimi; Shuntoh, Hisato; Horiuchi, Noriaki
2014-01-01
[Purpose] The purpose of this study was to elucidate the effect of expiratory resistive loading on orbicularis oris muscle activity. [Subjects] Subjects were 23 healthy individuals (11 males, mean age 25.5±4.3 years; 12 females, mean age 25.0±3.0 years). [Methods] Surface electromyography was performed to measure the activity of the orbicularis oris muscle during maximum lip closure and resistive loading at different expiratory pressures. Measurement was performed at 10%, 30%, 50%, and 100% of maximum expiratory pressure (MEP) for all subjects. The t-test was used to compare muscle activity between maximum lip closure and 100% MEP, and analysis of variance followed by multiple comparisons was used to compare the muscle activities observed at different expiratory pressures. [Results] No significant difference in muscle activity was observed between maximum lip closure and 100% MEP. Analysis of variance with multiple comparisons revealed significant differences among the different expiratory pressures. [Conclusion] Orbicularis oris muscle activity increased with increasing expiratory resistive loading. PMID:24648644
Askar, Ibrahím; Sabuncuoglu, Bízden Tavíl
2002-01-01
Neurorraphy, conventional nerve grafting technique, and artificial nerve conduits are not enough for repair in severe injuries of peripheral nerves, especially when there is separation of motor nerve from muscle tissue. In these nerve injuries, reinnervation is indicated for neurotization. The distal end of a peripheral nerve is divided into fascicles and implanted into the aneural zone of target muscle tissue. It is not known how deeply fascicles should be implanted into muscle tissue. A comparative study of superficial and deep implantation of separated motor nerve into muscle tissue is presented in the gastrocnemius muscle of rabbits. In this experimental study, 30 white New Zealand rabbits were used and divided into 3 groups of 10 rabbits each. In the first group (controls, group I), only surgical exposure of the gastrocnemius muscle and motor nerve (tibial nerve) was done without any injury to nerves. In the superficial implantation group (group II), tibial nerves were separated and divided into their own fascicles. These fascicles were implanted superficially into the lateral head of gastrocnemius muscle-aneural zone. In the deep implantation group (group III), the tibial nerves were separated and divided into their own fascicles. These fascicles were implanted around the center of the muscle mass, into the lateral head of the gastrocnemius muscle-aneural zone. Six months later, histopathological changes and functional recovery of the gastrocnemius muscle were investigated. Both experimental groups had less muscular weight than in the control group. It was found that functional recovery was achieved in both experimental groups, and was better in the superficial implantation group than the deep implantation group. EMG recordings revealed that polyphasic and late potentials were frequently seen in both experimental groups. Degeneration and regeneration of myofibrils were observed in both experimental groups. New motor end-plates were formed in a scattered manner in both experimental groups. However, they were more dense in the superficial implantation group than the deep implantation group. It was concluded that superficial implantation has a more powerful contractile capacity than that of deep implantation. We believe that this might arise from the high activity of glycolytic enzymes in peripheral muscle fibers of gastrocnemius muscle, decrease in insufficient intramuscular guidance apparatus, and intramuscular microneuroma formation at the insufficient neuromuscular junction since the motor nerve had less route to muscle fibers. Copyright 2002 Wiley-Liss, Inc.
Żuraw, A; Dietert, K; Kühnel, S; Sander, J; Klopfleisch, R
2016-07-01
Evidence suggest there is a link between equine atypical myopathy (EAM) and ingestion of sycamore maple tree seeds. To further evaluate the hypothesis that the ingestion of hypoglycin A (HGA) containing sycamore maple tree seeds causes acquired multiple acyl-CoA dehydrogenase deficiency and might be associated with the clinical and pathological signs of EAM. Case report. Necropsy and histopathology, using hematoxylin and eosin and Sudan III stains, were performed on a 2.5-year-old mare that died following the development of clinical signs of progressive muscle stiffness and recumbency. Prior to death, the animal ingested sycamore maple tree seeds (Acer pseudoplatanus). Detection of metabolites in blood and urine obtained post mortem was performed by rapid ultra-performance liquid chromatography-tandem mass spectrometry. Data from this case were compared with 3 geldings with no clinical history of myopathy. Macroscopic examination revealed fragments of maple tree seeds in the stomach and severe myopathy of several muscle groups including Mm. intercostales, deltoidei and trapezii. Histologically, the affected muscles showed severe, acute rhabdomyolysis with extensive accumulation of finely dispersed fat droplets in the cytoplasm of degenerated skeletal muscle cells not present in controls. Urine and serum concentrations of several acyl carnitines and acyl glycines were increased, and both contained metabolites of HGA, a toxic amino acid present in sycamore maple tree seeds. The study supports the hypothesis that ingestion of HGA-containing maple tree seeds may cause EAM due to acquired multiple acyl-CoA dehydrogenase deficiency. © 2015 EVJ Ltd.
Perception of Muscular Effort During Dynamic Elbow Extension in Multiple Sclerosis.
Heller, Mario; Retzl, Irene; Kiselka, Anita; Greisberger, Andrea
2016-02-01
To investigate the perception of muscular effort in individuals with multiple sclerosis (MS) and healthy controls during dynamic contractions. Case-control study. MS day care center. Individuals with MS (n=28) and controls (n=28) (N=56). Not applicable. Perceived muscular effort during dynamic elbow extensions was rated at 9 different weight intensities (10%-90% of 1-repetition maximum) in a single-blind, randomized order using the OMNI-Resistance Exercise Scale. Muscle activity of the triceps brachii muscle (lateral head) was measured via surface electromyography and normalized to maximal voluntary excitation. According to OMNI-level ratings, significant main effects were found for the diagnostic condition (F=27.33, P<.001, η(2)=.11), indicating 0.7 (95% confidence interval [CI], 0.3-1.1) lower mean OMNI-level ratings for MS, and for the intensity level (F=46.81, P<.001, η(2)=.46), showing increased OMNI-level ratings for increased intensity levels for both groups. Furthermore, significant main effects were found for the diagnostic condition (F=16.52, P<.001, η(2)=.07), indicating 7.1% (95% CI, -8.6 to 22.8) higher maximal voluntary excitation values for MS, and for the intensity level (F=33.09, P<.001, η(2)=.36), showing higher relative muscle activities for increasing intensity levels in both groups. Similar to controls, individuals with MS were able to differentiate between different intensities of weight during dynamic elbow extensions when provided in a single-blind, randomized order. Therefore, perceived muscular effort might be considered to control resistance training intensities in individuals with MS. However, training intensity for individuals with MS should be chosen at approximately 1 OMNI level lower than recommended, at least for dynamic elbow extension exercises. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
The influence of fat infiltration of back extensor muscles on osteoporotic vertebral fractures.
So, Kwang-Young; Kim, Dae-Hee; Choi, Dong-Hyuk; Kim, Choong-Young; Kim, Jeong-Seok; Choi, Yong-Soo
2013-12-01
Retrospective study. To investigate the influence of fat infiltration at low back extensor muscles on osteoporotic vertebral fracture. In persons with stronger back muscles, the risk of osteoporotic vertebral fractures will likely be lower than in those persons with weaker back muscles. However, the degree of influence of fat infiltration of the back extensor muscle on osteoporotic vertebral fracture remains controversial. Two hundred and thirty-seven patients who had undergone lumbar spine magnetic resonance imaging and bone mineral density (BMD) were enrolled in this study. The amount of low back extensor muscle was determined using the pseudocoloring technique on an axial view of the L3 level. The patients were divided into two groups: osteoporotic vertebral fracture group (group A) and non-fracture group (group B). The amount of low back extensor muscle is compared with BMD, degenerative change of disc, osteophyte grade of facet joint and promontory angle to reveal the association between these factors. A negative correlation is found between age and the amount of low back extensor muscle (p=0.001). The amount of low back extensor muscle in group A and group B was 60.3%±14.5% and 64.2%±9.3% respectively, thus showing a significantly smaller amount of low back extensor muscle in the osteoporotic vertebral fracture group (p=0.015). Fat infiltration of low back extensor muscle was increased in osteoporotic vertebral fracture patients. Therefore, fat infiltration of low back extensor muscle in an elderly person may be a risk factor of osteoporotic vertebral fracture.
Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR.
Phillips, Brittany L; Banerjee, Ayan; Sanchez, Brenda J; Di Marco, Sergio; Gallouzi, Imed-Eddine; Pavlath, Grace K; Corbett, Anita H
2018-06-25
RNA processing is critical for proper spatial and temporal control of gene expression. The ubiquitous nuclear polyadenosine RNA binding protein, PABPN1, post-transcriptionally regulates multiple steps of gene expression. Mutations in the PABPN1 gene expanding an N-terminal alanine tract in the PABPN1 protein from 10 alanines to 11-18 alanines cause the muscle-specific disease oculopharyngeal muscular dystrophy (OPMD), which affects eyelid, pharynx, and proximal limb muscles. Previous work revealed that the Pabpn1 transcript is unstable, contributing to low steady-state Pabpn1 mRNA and protein levels in vivo, specifically in skeletal muscle, with even lower levels in muscles affected in OPMD. Thus, low levels of PABPN1 protein could predispose specific tissues to pathology in OPMD. However, no studies have defined the mechanisms that regulate Pabpn1 expression. Here, we define multiple cis-regulatory elements and a trans-acting factor, HuR, which regulate Pabpn1 expression specifically in mature muscle in vitro and in vivo. We exploit multiple models including C2C12 myotubes, primary muscle cells, and mice to determine that HuR decreases Pabpn1 expression. Overall, we have uncovered a mechanism in mature muscle that negatively regulates Pabpn1 expression in vitro and in vivo, which could provide insight to future studies investigating therapeutic strategies for OPMD treatment.
NASA Technical Reports Server (NTRS)
Farrell, E. R.; Keshishian, H.
1999-01-01
In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.
Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun
2016-11-01
Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.
Statins Affect Skeletal Muscle Performance: Evidence for Disturbances in Energy Metabolism.
Allard, Neeltje A E; Schirris, Tom J J; Verheggen, Rebecca J; Russel, Frans G M; Rodenburg, Richard J; Smeitink, Jan A M; Thompson, Paul D; Hopman, Maria T E; Timmers, Silvie
2018-01-01
Statin myopathy is linked to disturbances in mitochondrial function and exercise intolerance. To determine whether differences exist in exercise performance, muscle function, and muscle mitochondrial oxidative capacity and content between symptomatic and asymptomatic statin users, and control subjects. Cross-sectional study. Department of Physiology, Radboud University Medical Center. Long-term symptomatic and asymptomatic statin users, and control subjects (n = 10 per group). Maximal incremental cycling tests, involuntary electrically stimulated isometric quadriceps-muscle contractions, and biopsy of vastus lateralis muscle. Maximal exercise capacity, substrate use during exercise, muscle function, and mitochondrial energy metabolism. Peak oxygen uptake, maximal work load, and ventilatory efficiency were comparable between groups, but both statin groups had a depressed anaerobic threshold compared with the control group (P = 0.01). Muscle relaxation time was prolonged in both statin groups compared with the control group and rate of maximal force rise was decreased (Ptime×group < 0.001 for both measures). Mitochondrial activity of complexes II and IV was lower in symptomatic statin users than control subjects and tended to be lower for complex (C) III (CII: P = 0.03; CIII: P = 0.05; CIV: P = 0.04). Mitochondrial content tended to be lower in both statin groups than in control subjects. Statin use attenuated substrate use during maximal exercise performance, induced muscle fatigue during repeated muscle contractions, and decreased muscle mitochondrial oxidative capacity. This suggests disturbances in mitochondrial oxidative capacity occur with statin use even in patients without statin-induced muscle complaints. Copyright © 2017 Endocrine Society
Mahdy, Mohamed A A; Warita, Katsuhiko; Hosaka, Yoshinao Z
2017-11-01
Transforming growth factor (TGF)-β1 is associated with fibrosis in many organs. Recent studies demonstrated that delivery of TGF-β1 into chemically injured muscle enhances fibrosis. In this study, we investigated the effects of exogenous TGF-β1 on muscle regeneration and adipogenesis in glycerol-injured muscle of normal mice. Tibialis anterior (TA) muscles were injured by glycerol injection. TGF-β1 was either co-injected with glycerol, as an 'early treatment' group, or injected at day 4 after glycerol, as a 'late treatment' group and the TA muscles were collected at day 7 after initial injury. Myotube density was significantly lower in the early treatment group than in the glycerol-injured group (without TGF-β1 treatment). Moreover, the Oil red O-positive area was significantly smaller in the early treatment group than in the late treatment group and glycerol-injured group. Furthermore, TGF-β1 treatment increased endomysial fibrosis and induced immunostaining of α-smooth muscle actin. The greater inhibitory effects of early TGF-β1 treatment than that of late TGF-β1 treatment during regeneration in glycerol-injured muscle suggest a more potent effect of TGF-β1 on the initial stage of muscle regeneration and adipogenesis. Combination of TGF-β1 with glycerol might be an alternative to enhance muscle fibrosis for future studies. © 2017 Japanese Society of Animal Science.
Effect of mirror use on lower extremity muscle strength of patients with chronic stroke.
Kim, Myoung-Kwon; Choe, Yu-Won; Shin, Young-Jun; Peng, Cheng; Choi, Eun-Hong
2018-02-01
[Purpose] This study examines the effect on muscle strength of lower extremity muscle strength exercise while using a mirror on the non-paretic side in patients with chronic stroke. [Subjects and Methods] Subjects were randomly assigned to a non-mirror lower extremity exercise group (n=10), a mirror lower extremity exercise group (n=10), or a mirror lower extremity muscle strength exercise group (n=10). Subjects were asked to do the exercise assigned to their group (5 sets 30 times a day, 5 times weekly for 4 weeks) with general physical therapy in the hospital. Muscle strength in the knee extensor and flexor of paretic and non-paretic side were measured using electrical muscle testing device before and after the intervention. [Results] Muscle strength significantly increased within each group after intervention. No significant differences were found among the three groups. [Conclusion] This study showed that the lower extremity muscle strength exercise of the non-paretic side using a mirror has a positive effect on muscle strength in patient with chronic stroke.
Effect of aqua exercise on recovery of lower limb muscles after downhill running.
Takahashi, Junichiro; Ishihara, Keiji; Aoki, Junichiro
2006-08-01
The aim of the present study was to examine how the recovery of physiological functioning of the leg muscles after high-intensity eccentric exercise such as downhill running could be promoted by aqua exercise for a period until the damaged muscle had recovered almost completely. Ten male long-distance runners were divided equally into an aqua exercise group and a control group. From the first day (Day 0) to the fourth day (Day 3), the participants completed a questionnaire on muscle soreness, and serum creatine kinase activity, muscle power, flexibility, whole-body reaction time and muscle stiffness were measured. After measurements on Day 0, the participants performed downhill running (three 5 min runs with a 5 min rest interval at -10%, 335.7 +/- 6.1 m . min-1). The aqua exercise group performed walking, jogging and jumping in water on three successive days following the downhill running on Day 0 for 30 min each day. Muscle power was reduced on Day 1 in the control group (P < 0.05). Muscle soreness in the calf on Day 3 was greater in the control group than that in the aqua exercise group (P < 0.05). In the aqua exercise group, muscle stiffness in the calf was less than that in the control group over 4 days (time main effect: P < 0.05; group x time interaction: P < 0.05). We conclude that aqua exercise promoted physiological functioning of the muscles in the legs after high-intensity downhill running for a period until the damaged muscles had recovered almost completely.
Dinc, Ayten; Kizilkaya Beji, Nezihe; Yalcin, Onay
2009-10-01
The aim of this study was to determine the effectiveness of pelvic floor muscle exercises on urinary incontinence during pregnancy and the postpartum period. The study was carried out on 80 pregnant women (study group, 40 subjects; control group, 40 subjects).The study group was trained by the researcher on how to do the pelvic floor muscle exercises. Both groups were evaluated for pelvic floor muscle strength and urinary complaints in their 36th to 38th week of pregnancy and postpartum sixth to eighth week. The study group had a significant decrease in urinary incontinence episodes during pregnancy and in the postpartum period, and their pelvic floor muscle strength increased to a larger extent. Control group had an increase in the postpartum muscle strength and decrease in the incontinence episodes in the postpartum period. Pelvic floor muscle exercises are quite effective in the augmentation of the pelvic floor muscle strength and consequently in the treatment of urinary incontinence.
Comprehensive Analysis of Tropomyosin Isoforms in Skeletal Muscles by Top-down Proteomics
Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A.; Larsson, Lars; Ge, Ying
2016-01-01
Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236
Chen, Yen-Kung; Chen, Yen-Ling; Tsui, Chih-Cheng; Wang, Su-Chen; Cheng, Ru-Hwa
2013-10-01
Hyperthyroidism leads to an enhanced demand for glucose. The hypothesis of the study is that 2-[fluorine-18]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) can demonstrate the alteration of systemic glucose metabolism in hyperthyroidism patients by measuring the FDG standard uptake value (SUV) in liver and skeletal muscle. Forty-eight active hyperthyroidism patients and 30 control participants were recruited for the study. The intensity of FDG uptake in the liver and thigh muscles was graded subjectively, comprising three groups: group I, higher FDG uptake in the liver; group II, equal FDG uptake in the liver and muscles; and group III, higher FDG uptake in the muscles. Ten subjects with FDG PET scans at hyperthyroid and euthyroid status were analyzed. Serum levels of thyroxine (T4) and triiodothyronine (T3) correlated to the SUVs of the liver and muscles. Forty-one patients (41/48, 85.4%) showed symmetrically increased FDG uptake in the muscles (22 in group I, 9 in group II, and 17 in group III). Group I patients were significantly older than group II (P = .02) and group III (P = .001) patients. The correlation coefficient between the serum T3, T4, and SUV levels in the muscles was significant (r = 0.47-0.77, P < .01), particularly in liver and muscle FDG uptake between hyperthyroid and euthyroid states. In the 30 control subjects, there was normal physiological FDG uptake in the liver and muscles. In PET scans showing a pattern of decreased liver and increased skeletal muscle FDG uptake in hyperthyroidism patients, this change of FDG distribution is correspondence to the severity of hyperthyroidism status. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Fat-Free Mass Index for Evaluating the Nutritional Status and Disease Severity in COPD.
Luo, Yuwen; Zhou, Luqian; Li, Yun; Guo, Songwen; Li, Xiuxia; Zheng, Jingjing; Zhu, Zhe; Chen, Yitai; Huang, Yuxia; Chen, Rui; Chen, Xin
2016-05-01
Despite the high prevalence of weight loss in subjects with COPD, the 2011 COPD management guidelines do not include an index measuring nutritional status. Fat-free mass index (FFMI) can accurately determine the nutritional status of subjects and may be closely correlated with COPD severity. We aimed to determine the nutritional status evaluated by FFMI according to the 2011 Global Initiative for Chronic Obstructive Lung Disease (GOLD) levels in stable subjects with COPD and the association between nutritional status and respiratory symptoms, exercise capacity, and respiratory muscle function. We included 235 stable subjects with COPD in this cross-sectional study. All of the subjects were divided into the 2011 GOLD Groups A, B, C, and D. FFMI (measured by bioelectrical impedance), spirometry (FEV1, percent-of-predicted FEV1, and FEV1/FVC), respiratory muscle function (peak inspiratory and peak expiratory pressures), exercise capacity (6-min walk distance), and dyspnea severity (Modified Medical Research Council dyspnea scale) were measured and compared between the GOLD groups. Malnutrition was identified in 48.5% of subjects and most prevalent in Group D (Group A: 41%, Group B: 41%, Group C: 31%, and Group D: 62%). FFMI was significantly lower in Group D (P < .001), with both sexes considered malnourished. Low FFMI significantly correlated with frequent exacerbation, older age, decreased pulmonary function, 6-min walk distance, peak inspiratory pressure, and worsened dyspnea. FFMI was significantly lower in the emphysema-dominant phenotype and mixed phenotype compared with the normal phenotype and airway-dominant phenotype. A stepwise multiple linear regression analysis identified peak inspiratory pressures and older age as independent predictors of FFMI. Malnutrition is highly prevalent in all COPD groups, particularly in Group D subjects, who warrant special attention for nutritional intervention and pulmonary rehabilitation. FFMI significantly correlated with exercise capacity, dyspnea, respiratory muscle function, and pulmonary function and may be a useful predictor of COPD severity. Copyright © 2016 by Daedalus Enterprises.
Capacity of small groups of muscles to accomplish precision grasping tasks.
Towles, Joseph D; Valero-Cuevas, Francisco J; Hentz, Vincent R
2013-01-01
An understanding of the capacity or ability of various muscle groups to generate endpoint forces that enable grasping tasks could provide a stronger biomechanical basis for the design of reconstructive surgery or rehabilitation for the treatment of the paralyzed or paretic hand. We quantified two-dimensional endpoint force distributions for every combination of the muscles of the index finger, in cadaveric specimens, to understand the capability of muscle groups to produce endpoint forces that accomplish three common types of grasps-tripod, tip and lateral pinch-characterized by a representative level of Coulomb friction. We found that muscle groups of 4 or fewer muscles were capable of generating endpoint forces that enabled performance of each of the grasping tasks examined. We also found that flexor muscles were crucial to accomplish tripod pinch; intrinsic muscles, tip pinch; and the dorsal interosseus muscle, lateral pinch. The results of this study provide a basis for decision making in the design of reconstructive surgeries and rehabilitation approaches that attempt to restore the ability to perform grasping tasks with small groups of muscles.
SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.
Smith, Lucas R; Barton, Elisabeth R
2014-01-01
Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard operating procedures have been developed to guide analysis of many of these parameters, the software to freely, efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections incorporating user controls for muscle histological analysis. The software consists of multiple functions designed to provide tools for the analysis selected. Initial segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly larger than peripherally nucleated fibers. The MATLAB code described and provided along with this manuscript is designed for image processing of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection along with user correction. The output of the code provides data in accordance with established standards of practice. The results of the program have been validated using a small set of wild-type and mdx muscle sections. This program is the first freely available and open source image processing program designed to automate analysis of skeletal muscle histological sections.
Hall, Katharine E; McDonald, Matthew W; Grisé, Kenneth N; Campos, Oscar A; Noble, Earl G; Melling, C W James
2013-10-01
Individuals with Type 1 Diabetes Mellitus (T1DM) can develop insulin resistance. Regular exercise may improve insulin resistance partially through increased expression of skeletal muscle GLUT4 content. To examine if different exercise training modalities can alter glucose tolerance through changes in skeletal muscle GLUT4 content in T1DM rats. Fifty rats were divided into 5 groups; control, diabetic control, diabetic resistance exercised, and diabetic high and low intensity treadmill exercised. Diabetes was induced using multiple low dose Streptozotocin (20 mg/kg/day) injections and blood glucose concentrations were maintained moderately hyperglycemic through subcutaneous insulin pellets. Resistance trained rats climbed a ladder with incremental loads, while treadmill trained rats ran on a treadmill at 27 or 15 m/min, respectively, all for 6 weeks. At weeks 3 and 6, area under the curve measurements following an intravenous glucose tolerance test (AUC-IVGTT) in all diabetic groups were higher than control rats (p<0.05). At 6 weeks, all exercise groups had significantly lower AUC-IVGTT values than diabetic control animals (p<0.05). Treadmill trained rats had the lowest insulin dose requirement of the T1DM rats and the greatest reduction in insulin dosage was evident in high intensity treadmill exercise. Concomitant with improvements in glucose handling improvements, tissue-specific elevations in GLUT4 content were demonstrated in both red and white portions of vastus lateralis and gastrocnemius muscles, suggesting that glucose handling capacity was altered in the skeletal muscle of exercised T1DM rats. These results suggest that, while all exercise modalities can improve glucose tolerance, each mode leads to differential improvements in insulin requirements and protein content alterations. Copyright © 2013 Elsevier Inc. All rights reserved.
Chelly, Mohamed Souhaiel; Hermassi, Souhail; Shephard, Roy J
2015-08-01
We studied the effect of supplementing normal in-season training by a 10-week lower limb plyometric training program (hurdle and depth jumping), examining measures of competitive potential (peak power output [PP], sprint running velocity, squat jump [SJ], countermovement jump [CMJ], drop jump [DJ], and lower limb muscle volume). The subjects (27 male track athletes, aged 11.9 ± 1.0 years; body mass: 39.1 ± 6.1 kg; height: 1.56 ± 0.02 m; body fat: 12.8 ± 4.4%) were randomly assigned between a control (normal training) group (C; n = 13) and an experimental group (E; n = 14) who also performed plyometric training 3 times per week. A force-velocity ergometer test determined PP and SJ, and an Optojump apparatus evaluated CMJ height and DJ (height and power). A multiple-5-bound test assessed horizontal jumping, and video-camera analyses over a 40-m sprint yielded velocities for the first step (VS), the first 5 m (V5m), and between 35 and 40 m (Vmax). Leg muscle volume was estimated anthropometrically. Experimental group showed gains relative to C in SJ height (p < 0.001); CMJ height (p < 0.01); DJ height and power relative to body mass (p < 0.01 for both); and all sprint velocities (p < 0.01 for VS and V(5m, p) ≤ 0.05 for Vmax). There was also a significant increase (p < 0.01) in thigh muscle volume, but leg muscle volume, thigh cross-sectional area, and PP remained unchanged. We conclude that adding plyometric training improved important components of athletic performance relative to standard in-season training in young runners.
Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu
2016-01-01
Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could result in a decreased sensation of dyspnea. In addition, subjects with respiratory muscle weakness that performed inspiratory muscle training had higher gains in inspiratory muscle strength and endurance but not of dyspnea and submaximal exercise capacity. (ClinicalTrials.gov registration NCT01510041.). Copyright © 2016 by Daedalus Enterprises.
Cerebellar subjects show impaired adaptation of anticipatory EMG during catching.
Lang, C E; Bastian, A J
1999-11-01
We evaluated the role of the cerebellum in adapting anticipatory muscle activity during a multijointed catching task. Individuals with and without cerebellar damage caught a series of balls of different weights dropped from above. In Experiment 1 (light-heavy-light), each subject was required to catch light balls (baseline phase), heavy balls (adaptation phase), and then light balls again (postadaptation phase). Subjects were not told when the balls would be switched, and they were required to keep their hand within a vertical spatial "window" during the catch. During the series of trials, we measured three-dimensional (3-D) position and electromyogram (EMG) from the catching arm. We modeled the adaptation process using an exponential decay function; this model allowed us to dissociate adaptation from performance variability. Results from the position data show that cerebellar subjects did not adapt or adapted very slowly to the changed ball weight when compared with the control subjects. The cerebellar group required an average of 30.9 +/- 8.7 trials (mean +/- SE) to progress approximately two-thirds of the way through the adaptation compared with 1.7 +/- 0.2 trials for the control group. Only control subjects showed a negative aftereffect indicating storage of the adaptation. No difference in performance variability existed between the two groups. EMG data show that control subjects increased their anticipatory muscle activity in the flexor muscles of the arm to control the momentum of the ball at impact. Cerebellar subjects were unable to differentially increase the anticipatory muscle activity across three joints to perform the task successfully. In Experiment 2 (heavy-light-heavy), we tested to see whether the rate of adaptation changed when adapting to a light ball versus a heavy ball. Subjects caught the heavy balls (baseline phase), the light balls (adaptation phase), and then heavy balls again (postadaptation phase). Comparison of rates of adaptation between Experiment 1 and Experiment 2 showed that the rate of adaptation was unchanged whether adapting to a light ball or a heavy ball. Given these findings, we conclude that the cerebellum is important in generating the appropriate anticipatory muscle activity across multiple muscles and modifying it in response to changing demands though trial-and-error practice.
Lim, Kyoung-Il; Nam, Hyung-Chun; Jung, Kyoung-Sim
2014-01-01
[Purpose] The purpose of this study was to investigate the effects of two different stretching techniques on range of motion (ROM), muscle activation, and balance. [Subjects] For the present study, 48 adults with hamstring muscle tightness were recruited and randomly divided into three groups: a static stretching group (n=16), a PNF stretching group (n=16), a control group (n=16). [Methods] Both of the stretching techniques were applied to the hamstring once. Active knee extension angle, muscle activation during maximum voluntary isometric contraction (MVC), and static balance were measured before and after the application of each stretching technique. [Results] Both the static stretching and the PNF stretching groups showed significant increases in knee extension angle compared to the control group. However, there were no significant differences in muscle activation or balance between the groups. [Conclusion] Static stretching and PNF stretching techniques improved ROM without decrease in muscle activation, but neither of them exerted statistically significant effects on balance. PMID:24648633
Bhowate, R R; Sharda, N
2014-01-01
Objectives: Oral submucous fibrosis (OSMF) is an insidious chronic disease that is associated with significant functional morbidity and an increased risk for malignancy. It initially affects the lamina propria of the oral mucosa, and, as the disease progresses, it involves the submucosa and deeper tissue, including muscles of the oral cavity, resulting in loss of fibroelasticity. OSMF is a pre-malignant condition mainly caused by areca nut chewing. The aim of this study was to find out the involvement of muscles of mastication and facial expression in patients with OSMF by assessing the cross-sectional thickness and activity of the masseter, anterior temporalis and orbicularis oris muscles by ultrasonography and electromyography and comparing with healthy controls and also to find out any correlation between the ultrasonographic cross-sectional thicknesses of the masseter, anterior temporalis and orbicularis oris muscles with electromyographic activity. Methods: 40 patients with OSMF were included in the study group, and the patients were divided into four groups on the basis of interincisal mouth opening, i.e. Group I (mouth opening >35 mm), Group II (mouth opening between 30 and 35 mm), Group III (mouth opening between 20 and 30 mm) and Group IV (mouth opening <20 mm). Ultrasonographic cross-sectional thickness and electromyographic activity (amplitude and duration) of the masseter, anterior temporalis and orbicualris oris muscles were recorded in patients with OSMF and 20 controls. Intergroup comparison of ultrasonographic cross-sectional thickness and activity (amplitude and duration) was done, and Pearson's correlation coefficient was applied to find out any relation between ultrasonographic and electromyographic findings. Results: Thickness and activity of the masseter muscle was significantly reduced in Group IV (mouth opening <20 mm) when compared with the control group. The anterior temporalis and orbicularis oris muscles remained unaffected. A positive correlation was observed between the thicknesses of the masseter muscle and the amplitude in Groups I, II and III; the anterior temporalis muscle in Group II and the control group; and the orbicularis oris muscle in Groups II, III and IV. Conclusions: It was concluded that, among the muscles studied, there was an early involvement of the masseter muscle in patients with OSMF compared with that of other muscles. PMID:24720604
Kant, P; Bhowate, R R; Sharda, N
2014-01-01
Oral submucous fibrosis (OSMF) is an insidious chronic disease that is associated with significant functional morbidity and an increased risk for malignancy. It initially affects the lamina propria of the oral mucosa, and, as the disease progresses, it involves the submucosa and deeper tissue, including muscles of the oral cavity, resulting in loss of fibroelasticity. OSMF is a pre-malignant condition mainly caused by areca nut chewing. The aim of this study was to find out the involvement of muscles of mastication and facial expression in patients with OSMF by assessing the cross-sectional thickness and activity of the masseter, anterior temporalis and orbicularis oris muscles by ultrasonography and electromyography and comparing with healthy controls and also to find out any correlation between the ultrasonographic cross-sectional thicknesses of the masseter, anterior temporalis and orbicularis oris muscles with electromyographic activity. 40 patients with OSMF were included in the study group, and the patients were divided into four groups on the basis of interincisal mouth opening, i.e. Group I (mouth opening >35 mm), Group II (mouth opening between 30 and 35 mm), Group III (mouth opening between 20 and 30 mm) and Group IV (mouth opening <20 mm). Ultrasonographic cross-sectional thickness and electromyographic activity (amplitude and duration) of the masseter, anterior temporalis and orbicualris oris muscles were recorded in patients with OSMF and 20 controls. Intergroup comparison of ultrasonographic cross-sectional thickness and activity (amplitude and duration) was done, and Pearson's correlation coefficient was applied to find out any relation between ultrasonographic and electromyographic findings. Thickness and activity of the masseter muscle was significantly reduced in Group IV (mouth opening <20 mm) when compared with the control group. The anterior temporalis and orbicularis oris muscles remained unaffected. A positive correlation was observed between the thicknesses of the masseter muscle and the amplitude in Groups I, II and III; the anterior temporalis muscle in Group II and the control group; and the orbicularis oris muscle in Groups II, III and IV. It was concluded that, among the muscles studied, there was an early involvement of the masseter muscle in patients with OSMF compared with that of other muscles.
Effects of combined stretching and clenbuterol on disuse atrophy in rat soleus muscle.
Yamazaki, Toshiaki; Yokogawa, Masami; Tachino, Katsuhiko
2009-01-01
Clinically, disuse muscle atrophy is often seen among patients who are severely debilited and are on prolonged bed rest. Common physical therapy interventions are not successful in preventing disuse muscle atrophy early in the medical treatment of critically ill patients. In situations such as this, the use of a β 2-adrenergic agonist such as clenbuterol (Cb) may be of benefit in preventing atrophy. Also, recent studies have suggested that stretching is possible in preventing disuse muscle atrophy and the decline in muscle strength. The objective of this study was to evaluate the effects of Cb medication combined with stretching (ST) on rat soleus muscle (SOL) during the progression of disuse muscle atrophy. Thirty-five male Wistar rats were used in this study. The rats were divided into five groups: control (CON), hindlimb-unweighting (HU) only, HU+ST, HU+Cb medication, and HU+ST+Cb groups. The right SOL in stretching groups was maintained a stretched position for one hour daily by passively dorsiflexing the ankle joint under non-anesthesia. The experimental period was 2 weeks. In the ST group, peak twitch tension per cross-sectional area in soleus muscle was significantly larger than in the Cb group, while there was no significant difference between the CON and ST groups. The conversion of type I to type II fibers that was observed in the Cb group was not recognized in the combined ST and Cb group. Distinct effect of combined stretching and Cb medication was not recognized statistically. The results indicate that Cb affects muscle morphological characteristics while stretching affects contractile properties. These data suggest that a combined ST and Cb intervention considered the type-specificity of muscle fiber may be need more consideration for preventing disuse muscle atrophy and the decline in muscle strength.
Kassem, Rehab Rashad; El-Mofty, Randa Mohamed Abdel-Moneim; Khodeir, Mustafa Mahmoud; Hamza, Wael Mostafa
2018-03-01
To histopathologically compare the effect of different orientations of cryopreserved human amniotic membrane (AM) transplant during extraocular muscle surgery in rabbits. Fifty-two albino rabbit eyes underwent 4-mm resection of the superior rectus. Eyes were randomly divided into four groups. In Group C (Control group, 16 eyes) the muscle was not wrapped with amniotic membrane. In the three AM groups, cryopreserved AM was wrapped around the muscle, oriented with either its stroma (Group S, 15 eyes) or epithelium (Group E, nine eyes) towards the muscle, or folded on itself with the epithelium externally (Group F, 12 eyes). The rabbits were sacrificed and the eyes were enucleated 6 weeks after surgery. Histopathological examination was conducted for periamniotic, foreign body, scleral, and conjunctival inflammation, conjunctival vascularity, adhesions and muscle fibrosis. In all AM eyes, the AM was surrounded by periamniotic inflammation, with no adhesions detected between the muscle and surrounding tissues in the segment where the AM was present, but detected elsewhere. Adhesions were detected in all group C eyes. Foreign body inflammation was significantly less in Group C than in each of the AM groups (p < .05), but was insignificantly different among the three AM groups (p > .05). Scleral inflammation was absent in all specimens. No significant differences were noted among all groups in terms of conjunctival vascularity, conjunctival inflammation, or muscle fibrosis (p > .05). All AM orientations were equally effective in preventing the development of postoperative adhesions between the extraocular muscle and surrounding tissues.
de-Souza-Ferreira, Eduardo; Guerra Martinez, Camila; Kurtenbach, Eleonora; Casimiro-Lopes, Gustavo; Galina, Antonio
2015-01-01
High intensity interval training (HIIT) is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2) plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage) in three skeletal muscles with different twitch characteristics. Rats were assigned to two groups: sedentary (n=10) and HIIT (n=10, swimming training). We collected the tibialis anterior (TA-fast), gastrocnemius (GAST-fast/slow) and soleus (SOL-slow) muscles. The fibers were analyzed for mitochondrial respiration, H2O2 production and citrate synthase (CS) activity. A multi-substrate (glycerol phosphate (G3P), pyruvate, malate, glutamate and succinate) approach was used to analyze the mitochondria in permeabilized fibers. Compared to the control group, oxygen flow coupled to ATP synthesis, complex I and complex II was higher in the TA of the HIIT group by 1.5-, 3.0- and 2.7-fold, respectively. In contrast, oxygen consumed by mitochondrial glycerol phosphate dehydrogenase (mGPdH) was 30% lower. Surprisingly, the oxygen flow coupled to ATP synthesis was 42% lower after HIIT in the SOL. Moreover, oxygen flow coupled to ATP synthesis and complex II was higher by 1.4- and 2.7-fold in the GAST of the HIIT group. After HIIT, CS activity increased 1.3-fold in the TA, and H2O2 production was 1.3-fold higher in the TA at sites containing mGPdH. No significant differences in H2O2 production were detected in the SOL. Surprisingly, HIIT increased H2O2 production in the GAST via complex II, phosphorylation, oligomycin and antimycin by 1.6-, 1.8-, 2.2-, and 2.2-fold, respectively. Electron leakage was 3.3-fold higher in the TA with G3P and 1.8-fold higher in the GAST with multiple substrates. Unexpectedly, the HIIT protocol induced different respiration and electron leakage responses in different types of muscle. PMID:26121248
Ramos-Filho, Dionizio; Chicaybam, Gustavo; de-Souza-Ferreira, Eduardo; Guerra Martinez, Camila; Kurtenbach, Eleonora; Casimiro-Lopes, Gustavo; Galina, Antonio
2015-01-01
High intensity interval training (HIIT) is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2) plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage) in three skeletal muscles with different twitch characteristics. Rats were assigned to two groups: sedentary (n=10) and HIIT (n=10, swimming training). We collected the tibialis anterior (TA-fast), gastrocnemius (GAST-fast/slow) and soleus (SOL-slow) muscles. The fibers were analyzed for mitochondrial respiration, H2O2 production and citrate synthase (CS) activity. A multi-substrate (glycerol phosphate (G3P), pyruvate, malate, glutamate and succinate) approach was used to analyze the mitochondria in permeabilized fibers. Compared to the control group, oxygen flow coupled to ATP synthesis, complex I and complex II was higher in the TA of the HIIT group by 1.5-, 3.0- and 2.7-fold, respectively. In contrast, oxygen consumed by mitochondrial glycerol phosphate dehydrogenase (mGPdH) was 30% lower. Surprisingly, the oxygen flow coupled to ATP synthesis was 42% lower after HIIT in the SOL. Moreover, oxygen flow coupled to ATP synthesis and complex II was higher by 1.4- and 2.7-fold in the GAST of the HIIT group. After HIIT, CS activity increased 1.3-fold in the TA, and H2O2 production was 1.3-fold higher in the TA at sites containing mGPdH. No significant differences in H2O2 production were detected in the SOL. Surprisingly, HIIT increased H2O2 production in the GAST via complex II, phosphorylation, oligomycin and antimycin by 1.6-, 1.8-, 2.2-, and 2.2-fold, respectively. Electron leakage was 3.3-fold higher in the TA with G3P and 1.8-fold higher in the GAST with multiple substrates. Unexpectedly, the HIIT protocol induced different respiration and electron leakage responses in different types of muscle.
Evaluation of Relationship between Trunk Muscle Endurance and Static Balance in Male Students
Barati, Amirhossein; SafarCherati, Afsaneh; Aghayari, Azar; Azizi, Faeze; Abbasi, Hamed
2013-01-01
Purpose Fatigue of trunk muscle contributes to spinal instability over strenuous and prolonged physical tasks and therefore may lead to injury, however from a performance perspective, relation between endurance efficient core muscles and optimal balance control has not been well-known. The purpose of this study was to examine the relationship of trunk muscle endurance and static balance. Methods Fifty male students inhabitant of Tehran university dormitory (age 23.9±2.4, height 173.0±4.5 weight 70.7±6.3) took part in the study. Trunk muscle endurance was assessed using Sørensen test of trunk extensor endurance, trunk flexor endurance test, side bridge endurance test and static balance was measured using single-limb stance test. A multiple linear regression analysis was applied to test if the trunk muscle endurance measures significantly predicted the static balance. Results There were positive correlations between static balance level and trunk flexor, extensor and lateral endurance measures (Pearson correlation test, r=0.80 and P<0.001; r=0.71 and P<0.001; r=0.84 and P<0.001, respectively). According to multiple regression analysis for variables predicting static balance, the linear combination of trunk muscle endurance measures was significantly related to the static balance (F (3,46) = 66.60, P<0.001). Endurance of trunk flexor, extensor and lateral muscles were significantly associated with the static balance level. The regression model which included these factors had the sample multiple correlation coefficient of 0.902, indicating that approximately 81% of the variance of the static balance is explained by the model. Conclusion There is a significant relationship between trunk muscle endurance and static balance. PMID:24800004
Anabolic and catabolic biomarkers as predictors of muscle strength decline: the InCHIANTI study.
Stenholm, Sari; Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M; Ferrucci, Luigi
2010-02-01
Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. In a representative sample of 716 men and women aged >or=65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-alpha receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging.
Anabolic and Catabolic Biomarkers As Predictors of Muscle Strength Decline: The InCHIANTI Study
Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M.; Ferrucci, Luigi
2010-01-01
Abstract Background Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. Methods In a representative sample of 716 men and women aged ≥65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-α receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. Results In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Conclusions Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging. PMID:20230273
Pearson, William G; Hindson, David F; Langmore, Susan E; Zumwalt, Ann C
2013-03-01
Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Muscles of both the suprahyoid and the longitudinal pharyngeal muscle groups are active in swallowing, and both swallowing exercises effectively target muscles elevating the hyolaryngeal complex. mfMRI is useful in testing swallowing muscle function. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, William G., E-mail: bp1@bu.edu; Hindson, David F.; Langmore, Susan E.
2013-03-01
Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercisesmore » thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions: Muscles of both the suprahyoid and the longitudinal pharyngeal muscle groups are active in swallowing, and both swallowing exercises effectively target muscles elevating the hyolaryngeal complex. mfMRI is useful in testing swallowing muscle function.« less
Adherence of older women with strength training and aerobic exercise
Picorelli, Alexandra Miranda Assumpção; Pereira, Daniele Sirineu; Felício, Diogo Carvalho; Dos Anjos, Daniela Maria; Pereira, Danielle Aparecida Gomes; Dias, Rosângela Corrêa; Assis, Marcella Guimarães; Pereira, Leani Souza Máximo
2014-01-01
Background Participation of older people in a program of regular exercise is an effective strategy to minimize the physical decline associated with age. The purpose of this study was to assess adherence rates in older women enrolled in two different exercise programs (one aerobic exercise and one strength training) and identify any associated clinical or functional factors. Methods This was an exploratory observational study in a sample of 231 elderly women of mean age 70.5 years. We used a structured questionnaire with standardized tests to evaluate the relevant clinical and functional measures. A specific adherence questionnaire was developed by the researchers to determine motivators and barriers to exercise adherence. Results The adherence rate was 49.70% in the aerobic exercise group and 56.20% in the strength training group. Multiple logistic regression models for motivation were significant (P=0.003) for the muscle strengthening group (R2=0.310) and also significant (P=0.008) for the aerobic exercise group (R2=0.154). A third regression model for barriers to exercise was significant (P=0.003) only for the muscle strengthening group (R2=0.236). The present study shows no direct relationship between worsening health status and poor adherence. Conclusion Factors related to adherence with exercise in the elderly are multifactorial. PMID:24600212
Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe
2012-01-01
Background/Aim Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. Methods We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Results Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Conclusions Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow. PMID:23285055
Duan, Y F; Wang, J; Jiang, S; Bi, Y; Pang, X H; Yin, S A; Yang, Z Y
2018-01-06
Objective: To investigate the prevalence of calf muscle cramps and possible influencing factors for pregnant women in China. Methods: Using a multi-stage stratified probability proportional to size cluster randomization sampling method during 2010-2012. A total of 3 582 pregnant women were investigated at 150 counties from 31 provinces in China mainland. Information on calf muscle cramps, demographic socio-economic status, pregnancy information, and the physical activities was collected through questionnaires. The semi-quantitative food frequency questionnaire (FFQ) was used to collect food intake of pregnant women. Dynamic cluster analysis was used to assess dietary pattern. Multiple logistic regression was used to investigate the possible influencing factors for calf muscle cramps. Results: The prevalence of calf muscle cramps was 32.9% (1 180/3 582) in Chinese pregnant women, which was 11.6% (87/748), 28.2% (420/1 492), and 50.2% (673/1 342), respectively, during the first, second and third trimester. There were significant differences between them (χ(2)=349.16, P< 0.001). Dietary patterns of the pregnant women were classified into three groups, which called relatively balanced pattern, high vegetables and fruits pattern, and high dairy pattern. Among the three groups, the prevalence of calf muscle cramps was 32.0% (952/2 971), 37.2% (186/500), and 37.8% (42/111), with significant differences (χ(2)=6.39, P= 0.041). The OR (95 %CI ) values of calf muscle cramps in the second and third trimester was 2.96 (2.28-3.83), and 8.02 (6.16-10.44), respectively, comparing with the first trimester. The OR (95 %CI ) values of calf muscle cramps in the women taking calcium before pregnant was 1.45 (1.19-1.76), comparing with the one who was not taken. The OR (95 %CI ) values of calf muscle cramps in the women who had been diagnosed by pregnancy-induced hypertension was 5.76 (2.06-16.12), comparing with the one who had not been diagnosed. The OR (95 %CI ) values of calf muscle cramps in the high vegetables and fruits pattern and high dairy pattern was 1.13 (0.91-1.41), and 1.18 (0.76-1.81), respectively, comparing with the relatively balanced pattern. Conclusion: The prevalence of calf muscle cramps was relatively high in Chinese pregnant women, which was significantly different among three trimesters. The residential areas, occupation, and pregnancy-induced hypertension might be related to the prevalence of calf muscle cramps. However, there was no significant difference among different dietary patterns.
Short-term glycemic control is effective in reducing surgical site infection in diabetic rats.
Kroin, Jeffrey S; Buvanendran, Asokumar; Li, Jinyuan; Moric, Mario; Im, Hee-Jeong; Tuman, Kenneth J; Shafikhani, Sasha H
2015-06-01
Patients and animals with diabetes exhibit enhanced vulnerability to bacterial surgical infections. Despite multiple retrospective studies demonstrating the benefits associated with glycemic control in reducing bacterial infection after cardiac surgery, there are fewer guidelines on the use of glycemic control for noncardiac surgeries. In the current study, we investigated whether long-term (begun 2 weeks before surgery) or immediate (just before surgery) glycemic controls, continued postoperatively, can reduce surgical site infection in type 1 diabetic-induced rats. Rats were injected with streptozotocin to induce type 1 diabetes. Four groups of animals underwent surgery and thigh muscle Staphylococcus aureus bacteria challenge (1 × 10 colony forming units) at the time of surgery. Group 1 diabetic rats received insulin treatment just before surgery and continued until the end of study (short-term glycemic control group). Group 2 diabetic rats received insulin treatment 2 weeks before surgery and continued until the end of study (long-term glycemic control). Group 3 diabetic rats received no insulin treatment (no glycemic control group). Group 4 nondiabetic rats served as a healthy control group. Rats were euthanized at 3 or 6 days after surgery. Blood glucose and muscle bacterial burden were measured at 3 or 6 days after surgery. Glycemic control was achieved in both long- and short-term insulin-treated diabetic rats. Compared with untreated diabetic rats, the bacterial burden in muscle was significantly lower in both groups of glycemic controlled diabetic rats at 3 (all P < 0.003) and 6 (all P < 0.0001) days after surgery. A short-term glycemic control regimen, initiated just before surgery and bacterial exposure, was as effective in reducing surgical site infection as a long-term glycemic control in type 1 diabetic rats. These data suggest that immediately implementing glycemic control in type 1 diabetic surgical patients before undergoing noncardiac surgery may decrease the risk of infection.
Muscle strength and kinetic gait pattern in children with bilateral spastic CP.
Eek, Meta Nyström; Tranberg, Roy; Beckung, Eva
2011-03-01
Cerebral palsy is often associated with an abnormal gait pattern. This study put focus on relation between muscle strength and kinetic gait pattern in children with bilateral spastic cerebral palsy and compares them with a reference group. In total 20 children with CP and 20 typically developing children participated. They were all assessed with measurement of muscle strength in eight muscle groups in the legs and a 3-dimensional gait analysis including force data. It was found that children with CP were not only significantly weaker in all muscle groups but also walked with slower velocity and shorter stride length when compared with the reference group. Gait moments differed at the ankle level with significantly lower moments in children with CP. Gait moments were closer to the maximal muscle strength in the group of children with CP. Furthermore a correlation between plantarflexing gait moment and muscle strength was observed in six of the eight muscle groups in children with CP, a relation not found in the reference group. A similar pattern was seen between muscle strength and generating ankle power with a rho=0.582-0.766. The results of this study state the importance of the relationship of the overall muscle strength pattern in the lower extremity, not only the plantarflexors. Copyright © 2010 Elsevier B.V. All rights reserved.
Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.
Haick, Jennifer M; Byron, Kenneth L
2016-09-01
Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body. Published by Elsevier Inc.
Brzeszczyńska, Joanna; Meyer, Angelika; McGregor, Robin; Schilb, Alain; Degen, Simone; Tadini, Valentina; Johns, Neil; Langen, Ramon; Schols, Annemie; Glass, David J.; Roubenoff, Ronenn; Ross, James A.; Fearon, Kenneth C.H.; Greig, Carolyn A.
2017-01-01
Abstract Background Sarcopenia is defined as the age‐related loss of skeletal muscle mass and function. While all humans lose muscle with age, 2–5% of elderly adults develop functional consequences (disabilities). The aim of this study was to investigate muscle myogenesis in healthy elderly adults, with or without sarcopenia, compared with middle‐aged controls using both in vivo and in vitro approaches to explore potential biomarker or causative molecular pathways associated with sarcopenic versus non‐sarcopenic skeletal muscle phenotypes during ageing. Methods Biomarkers of multiple molecular pathways associated with muscle regeneration were analysed using quantitative polymerase chain reaction in quadriceps muscle samples obtained from healthy elderly sarcopenic (HSE, n = 7) or non‐sarcopenic (HENS, n = 21) and healthy middle‐aged control (HMC, n = 22) groups. An in vitro system of myogenesis (using myoblasts from human donors aged 17–83 years) was used to mimic the environmental challenges of muscle regeneration over time. Results The muscle biopsies showed evidence of satellite cell activation in HENS (Pax3, P < 0.01, Pax7, P < 0.0001) compared with HMC. Early myogenesis markers Myogenic Differentiation 1 (MyoD1) and Myogenic factor 5 (Myf5) (P < 0.0001) and the late myogenesis marker myogenin (MyoG) (P < 0.01) were increased in HENS. In addition, there was a 30‐fold upregulation of TNF‐α in HENS compared with HMC (P < 0.0001). The in vitro system demonstrated age‐related upregulation of pro‐inflammatory cytokines (2‐fold upregulation of interleukin (IL)‐6, IL‐8 mRNA, increased secretion of tumor necrosis factor‐α (TNF‐α) and IL‐6, all P < 0.05) associated with impaired kinetics of myotube differentiation. The HSE biopsy samples showed satellite cell activation (Pax7, P < 0.05) compared with HMC. However, no significant upregulation of the early myogenesis (MyoD and Myf5) markers was evident; only the late myogenesis marker myogenin was upregulated (P < 0.05). Higher activation of the oxidative stress pathway was found in HENS compared with the HSE group. In contrast, there was 10‐fold higher upregulation of HSPA1A a stress‐induced chaperone acting upon misfolded proteins in HSE compared with the HENS group. Conclusions Both pathological and adaptive processes are active in skeletal muscle during healthy ageing. Muscle regeneration pathways are activated during healthy ageing, but there is evidence of dysregulation in sarcopenia. In addition, increased cellular stress, with an impaired oxidative‐stress and mis‐folded protein response (HSPA1A), may be associated with the development of sarcopenia. The in vitro system of young and old myoblasts replicated some of the differences between young and old muscle. PMID:29214748
Kim, Kyoung-Eun; Jang, Soong-Nang; Lim, Soo; Park, Young Joo; Paik, Nam-Jong; Kim, Ki Woong; Jang, Hak Chul; Lim, Jae-Young
2012-11-01
the relationship between muscle mass and physical performance has not been consistent among studies. to clarify the relationship between muscle mass and physical performance in older adults with weak muscle strength. cross-sectional analysis using the baseline data of 542 older men and women from the Korean Longitudinal Study on Health and Aging. dual X-ray absorptiometry, isokinetic dynamometer and the Short Physical Performance Battery (SPPB) were performed. Two muscle mass parameters, appendicular skeletal mass divided by weight (ASM/Wt) and by height squared (ASM/Ht(2)), were measured. We divided the participants into a lower-quartile (L25) group and an upper-three-quartiles (H75) group based on the knee-extensor peak torque. Correlation analysis and logistic regression models were used to assess the association between muscle mass and low physical performance, defined as SPPB scores <9, after controlling for confounders. in the L25 group, no correlation between mass and SPPB was detected, whereas the correlation between peak torque and SPPB was significant and higher than that in the H75 group. Results from the logistic models also showed no association between muscle mass and SPPB in the L25 group, whereas muscle mass was associated with SPPB in the H75 group. muscle mass was not associated with physical performance in weak older adults. Measures of muscle strength may be of greater clinical importance in weak older adults than is muscle mass per se.
Hirose, Tomoya; Shiozaki, Tadahiko; Shimizu, Kentaro; Mouri, Tomoyoshi; Noguchi, Kazuo; Ohnishi, Mitsuo; Shimazu, Takeshi
2013-08-01
Disuse atrophy of the lower limbs of patients with consciousness disturbance has often been recognized as "an unavoidable consequence," such that the mechanism was not investigated diligently. In this study, we examined the preventive effects of electrical muscle stimulation (EMS) against disuse atrophy of the lower limbs in patients in coma after stroke or traumatic brain injury in the intensive care unit. We evaluated changes in cross-sectional area of lower limb muscles weekly with computed tomography in 6 control group patients and 9 EMS group patients. Electrical muscle stimulation was performed daily from day 7 after admission. We evaluated the anterior thigh muscle compartment, posterior thigh muscle compartment, anterior leg muscle compartment, and posterior leg muscle compartment. In the control group, the decrease in cross-sectional area progressed in all compartments every week (P < .0001). Cross-sectional areas of all compartments at day 14 were significantly decreased in the control group compared with those in the EMS group at day 7 (P < .001). We were able to limit the rate of muscle atrophy as measured in the cross-sectional areas to within 4% during the period of EMS (days 7-42) in 5 patients. The difference between the control and the EMS groups was statistically significant (P < .001). Electrical muscle stimulation is effective in the prevention of disuse muscle atrophy in patients with consciousness disorder. Copyright © 2013 Elsevier Inc. All rights reserved.
Multi-muscle FES force control of the human arm for arbitrary goals.
Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M
2014-05-01
We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.
Weber, Marc-André; Kinscherf, Ralf; Krakowski-Roosen, Holger; Aulmann, Michael; Renk, Hanna; Künkele, Annette; Edler, Lutz; Kauczor, Hans-Ulrich; Hildebrandt, Wulf
2007-08-01
Progressive muscle wasting is a central feature of cancer-related cachexia and has been recognized as a determinant of poor prognosis and quality of life. However, until now, no easily assessable clinical marker exists that allows to predict or to track muscle wasting. The present study evaluated the potential of myoglobin (MG) plasma levels to indicate wasting of large locomotor muscles and, moreover, to reflect the loss of MG-rich fiber types, which are most relevant for daily performance. In 17 cancer-cachectic patients (weight loss 22%) and 27 age- and gender-matched healthy controls, we determined plasma levels of MG and creatine kinase (CK), maximal quadriceps muscle cross-sectional area (CSA) by magnetic resonance imaging, muscle morphology and fiber composition in biopsies from the vastus lateralis muscle, body cell mass (BCM) by impedance technique as well as maximal oxygen uptake (VO(2)max). In cachectic patients, plasma MG, muscle CSA, BCM, and VO(2)max were 30-35% below control levels. MG showed a significant positive correlation to total muscle CSA (r = 0.65, p < 0.001) and to the CSA fraction formed by type 1 and 2a fibers (r = 0.80, p < 0.001). However, when adjusted for body height and age by multiple regression, MG yielded a largely improved prediction of total CSA (multiple r = 0.83, p < 0.001) and of fiber type 1 and 2a CSA (multiple r = 0.89, p < 0.001). The correlations between CK and these muscle parameters were weaker, and elevated CK values were observed in 20% of control subjects despite a prior abstinence from exercise for 5 days. In conclusion, plasma MG, when adjusted for anthropometric parameters unaffected by weight, may be considered as a novel marker of muscle mass (CSA) indicating best the mass of MG-rich type 1 and 2a fibers as well as VO(2)max as an important functional readout. CK plasma levels appear to be less reliable because prolonged increases are observed in even subclinical myopathies or after exercise. Notably, cancer-related muscle wasting was not associated with increases in plasma MG or CK in this study.
Fernández-de-las-Peñas, César; Caminero, Ana B; Madeleine, Pascal; Guillem-Mesado, Amparo; Ge, Hong-You; Arendt-Nielsen, Lars; Pareja, Juan A
2009-01-01
To describe the common locations of active trigger points (TrPs) in the temporalis muscle and their referred pain patterns in chronic tension type headache (CTTH), and to determine if pressure sensitivity maps of this muscle can be used to describe the spatial distribution of active TrPs. Forty women with CTTH were included. An electronic pressure algometer was used to assess pressure pain thresholds (PPT) from 9 points over each temporalis muscle: 3 points in the anterior, medial and posterior part, respectively. Both muscles were examined for the presence of active TrPs over each of the 9 points. The referred pain pattern of each active TrP was assessed. Two-way analysis of variance detected significant differences in mean PPT levels between the measurement points (F=30.3; P<0.001), but not between sides (F=2.1; P=0.2). PPT scores decreased from the posterior to the anterior column (P<0.001). No differences were found in the number of active TrPs (F=0.3; P=0.9) between the dominant side the nondominant side. Significant differences were found in the distribution of the active TrPs (chi2=12.2; P<0.001): active TrPs were mostly found in the anterior column and in the middle of the muscle belly. The analysis of variance did not detect significant differences in the referred pain pattern between active TrPs (F=1.1, P=0.4). The topographical pressure pain sensitivity maps showed the distinct distribution of the TrPs indicated by locations with low PPTs. Multiple active TrPs in the temporalis muscle were found, particularly in the anterior column and in the middle of the muscle belly. Bilateral posterior to anterior decreased distribution of PPTs in the temporalis muscle in women with CTTH was found. The locations of active TrPs in the temporalis muscle corresponded well to the muscle areas with lower PPT, supporting the relationship between multiple active muscle TrPs and topographical pressure sensitivity maps in the temporalis muscle in women with CTTH.
Wang, Ye; Liu, Min; Cheng, Wei-bo; He, Gui-qiong; Li, Fan; Liao, Zhi-gang
2008-08-01
To study the changes of HSP 70 mRNA and c-fos mRNA expression and to find a method to differentiate antemortem from postmortem electrocution. Fifteen New Zealand rabbits were randomly divided into three groups, the antemortem electrocution group, the postmortem electrocution group, and the control group. Each group consists of five rabbits. The levels of HSP 70 mRNA and c-fos mRNA in skeletal muscle and cardiac muscle were examined with quantitative fluorescent RT-PCR. The levels of HSP 70 mRNA and c-fos mRNA in the antemortem electrocution group increased significantly (P<0.05), compared with that of the postmortem electrocution group. The changes of HSP 70 mRNA and c-fos mRNA expression in skeletal muscle and cardiac muscle can be used as an indicator to distinguish antemortem from postmortem electrocution.
ERIC Educational Resources Information Center
Morris, A. F.; And Others
1983-01-01
College men and women were studied to ascertain the force-time components of a rapid voluntary muscle contraction for five muscle groups. Researchers found that the time required for full contraction differs: (1) in men and women; and (2) among the five muscle groups. (Authors/PP)
Pietrzak, M; Greaser, M L; Sosnicki, A A
1997-08-01
The pale, soft, exudative (PSE) phenomenon in turkey pectoralis major (breast) muscle was studied using a combination of biochemical, meat quality, microscopic, and gel electrophoresis techniques. Breast muscle samples were collected from turkeys characterized by slow vs fast postmortem glycolysis assessed by muscle pH at 20 min after death. The PSE group was characterized by lower muscle ATP (P < .05) and higher lactate levels (P < .05) compared with the normal group. Excess water-holding capacity and cooking yield were significantly lower (P < .05) in the PSE group than in normal turkeys. Breast muscle of the PSE group was also lighter (P < .05) than that in the normal group as determined by Minolta L* values. The SDS-PAGE, Western blotting, and immunofluorescence microscopy revealed that phosphorylase, a soluble enzyme, became tightly associated with the myofibrils in muscle from the PSE group. Also, less myosin could be solubilized from PSE vs normal myofibril samples. The results indicate that irreversible myosin insolubility due to low pH and high-temperature conditions is decisive in the development of PSE turkey breast muscle.
Muscle-related side-effects of statins: from mechanisms to evidence-based solutions.
Taylor, Beth A; Thompson, Paul D
2015-06-01
This article highlights the recent findings regarding statin-associated muscle side effects, including mechanisms and treatment as well as the need for more comprehensive clinical trials in statin myalgia. Statin myalgia is difficult to diagnose and treat, as major clinical trials have not routinely assessed muscle side-effects, there are few clinically relevant biomarkers and assessment tools for the symptoms, many apparent statin-related muscle symptoms may be nonspecific and related to other drugs or health conditions, and prevalence estimates vary widely. Data thus suggest that only 30-50% of patients with self-reported statin myalgia actually experience muscle pain on statins during blinded, placebo-controlled trials. In addition, evidence to date involving mechanisms underlying statin myalgia and its range of symptoms and presentations supports the hypothesis that there are multiple, interactive and potentially additive mechanisms underlying statin-associated muscle side-effects. There are likely multiple and interactive mechanisms underlying statin myalgia, and recent studies have produced equivocal data regarding prevalence of statin-associated muscle side-effects, contributing factors and effectiveness of common interventions. Therefore, more clinical trials on statin myalgia are critical to the field, as are systematic resources for quantifying, predicting and reporting statin-associated muscle side-effects.
Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo
2017-11-01
[Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.
McManus, Jeffrey M; Lu, Hui; Cullins, Miranda J; Chiel, Hillel J
2014-08-15
To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality. Copyright © 2014 the American Physiological Society.
Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L
2015-02-15
During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.
Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo
2016-05-01
[Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.
Kaneguchi, Akinori; Ozawa, Junya; Kawamata, Seiichi; Kurose, Tomoyuki; Yamaoka, Kaoru
2014-09-26
Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each). Hindlimb suspension was applied for 2 weeks in HS, HS + WB, and HS + VIB groups. During suspension, rats in HS + VIB group were placed daily on a vibrating whole-body vibration platform for 20 min. In HS + WB group, suspension was interrupted for 20 min/day, allowing weight bearing. Untreated rats were used as controls. Soleus muscle wet weights and muscle fiber cross-sectional areas (CSA) significantly decreased in HS, HS + WB, and HS + VIB groups compared with CONT group. Both muscle weights and CSA were significantly greater in HS + WB and HS + VIB groups compared with HS group. Capillary numbers (represented by capillary-to-muscle fiber ratio) were significantly smaller in all hindlimb suspension-treated groups compared with CONT group. However, a reduction in capillary number by unloading hindlimbs was partially prevented by whole-body vibration. These findings were supported by examining mRNA for angiogenic-related factors. Expression levels of a pro-angiogenic factor, vascular endothelial growth factor-A mRNA, were significantly lower in all hindlimb suspension-treated groups compared with CONT group. There were no differences among hindlimb suspension-treated groups. Expression levels of an anti-angiogenic factor, CD36 (receptor for thrombospondin-1) mRNA, were significantly higher in all hindlimb suspension-treated groups compared with CONT group. Among the hindlimb suspension-treated groups, expression of CD36 mRNA in HS + VIB group tended to be suppressed (less than half the HS group). Our results suggest that weight bearing with or without vibration is effective for disuse-derived disturbance by preventing muscle atrophy, and whole-body vibration exercise has an additional benefit of maintaining microcirculation of skeletal muscle.
Qiao, Xiu-Fang; Pan, Hong-Ying
2010-08-01
To explore the effects of hippophae juice on free radical metabolism of rat skeletal muscle and partial biomarkers in blood. Randomly dividing the 30 SD rats into 3 groups (n = 10): sedentary group, training group and hippophae training group. Measuring related indices of skeletal muscle and blood in rat after 6 week training and hippophae juice supplement. Compared with training group, hippophae training group showed obviously longer exhaustive time, significantly increased antioxidant enzyme in skeletal muscle, remarkably decreased malonaldehyde (MDA) content in skeletal muscle, obviously increased testosterone (T) and hemoglobin (Hb) content in blood, significantly decreased creatine kinase (CK). Hippophae juice can impove the antioxidant ability of rat skeletal muscle, the level of T and Hb in blood, delay fatigue, therefore effectively enhance the aerobic stamina of rat.
Han, Sang-Wan; Lee, Jeong-Woo
2018-06-01
[Purpose] This study aimed to investigate the effects of the therapeutic device combined with LED and microcurrent (MC) on muscle tone and stiffness in the calf muscle after its application during moderate aerobic exercise. [Subjects and Methods] Twenty healthy adult subjects were randomized to either the test group of the therapeutic device combined with LED and MC or the control group, and they walked on a 10%-sloped treadmill with a 5 km/hr speed for 30 minutes. Each of the subjects in the test group performed treadmill exercise with the therapeutic device attached to the edge of his or her calf muscle. After the exercise, the muscle tone and stiffness at the edge of the calf muscle were measured. [Results] With respect to the muscle tone, a statistically significant difference was found between the two groups only 5 minutes after the exercise. Concerning muscle stiffness, significant differences were shown between the two groups right after the exercise and 5 minutes after the exercise. [Conclusion] Integrated treatment with LED and MC on is considered helpful for lowering the muscle tone 5 minutes after the exercise, and for lowering the muscle stiffness right after the exercise and 5 minutes after the exercise.
The Effects of Multiple Cold Water Immersions on Indices of Muscle Damage
Goodall, Stuart; Howatson, Glyn
2008-01-01
The aim of this investigation was to elucidate the efficacy of repeated cold water immersions (CWI) in the recovery of exercise induced muscle damage. A randomised group consisting of eighteen males, mean ± s age, height and body mass were 24 ± 5 years, 1.82 ± 0.06 m and 85.7 ± 16.6 kg respectively, completed a bout of 100 drop jumps. Following the bout of damaging exercise, participants were randomly but equally assigned to either a 12 min CWI (15 ± 1 °C; n = 9) group who experienced immersions immediately post-exercise and every 24 h thereafter for the following 3 days, or a control group (no treatment; n = 9). Maximal voluntary contraction (MVC) of the knee extensors, creatine kinase activity (CK), muscle soreness (DOMS), range of motion (ROM) and limb girth were measured pre-exercise and then for the following 96 h at 24 h increments. In addition MVC was also recorded immediately post-exercise. Significant time effects were seen for MVC, CK, DOMS and limb girth (p < 0.05) indicating muscle damage was evident, however there was no group effect or interaction observed showing that CWI did not attenuate any of the dependent variables (p > 0.05). These results suggest that repeated CWI do not enhance recovery from a bout of damaging eccentric contractions. Key pointsCryotherapy, particularly cold water immersions are one of the most common interventions used in order to enhance recovery post-exercise.There is little empirical evidence demonstrating benefits from cold water immersions. Research evidence is equivocal, probably due to methodological inconsistencies.Our results show that the cryotherapy administered did not attenuate any markers of EIMD or enhance the recovery of function.We conclude that repeated cold water immersions are ineffective in the recovery from heavy plyometric exercise and suggest athletes and coaches should use caution before using this intervention as a recovery strategy PMID:24149455
Effect of shoulder girdle strengthening on trunk alignment in patients with stroke.
Awad, Amina; Shaker, Hussien; Shendy, Wael; Fahmy, Manal
2015-07-01
[Purpose] This study investigated the effect of shoulder girdle strengthening, particularly the scapular muscles, on poststroke trunk alignment. [Subjects and Methods] The study involved 30 patients with residual hemiparesis following cerebrovascular stroke. Patient assessment included measuring shoulder muscle peak torque, scapular muscles peak force, spinal lateral deviation angle, and motor functional performance. Patients were randomly allocated either to the control group or the study group and received an 18-session strengthening program including active resisted exercises for shoulder abductors and external rotators in addition to trunk control exercises. The study group received additional strengthening exercises for the scapular muscles. [Results] The two groups showed significant improvement in strength of all shoulder and scapular muscles, with higher improvement in the study group. Similarly, the lateral spinal deviation angles significantly improved in both groups, with significantly higher improvement in the study group. Transfer activity, sitting balance, upper limb functions, and hand movements significantly improved in the two groups, with higher improvement in the latter two functions in the study group. [Conclusion] Strengthening of shoulder girdle muscles, particularly scapular muscles, can significantly contribute to improving the postural alignment of the trunk in patients with poststroke hemiparesis.
Kim, Tae-Whan; Lee, Sang-Cheol; Kil, Se-Kee; Kang, Sung-Chul; Lim, Young-Tae; Kim, Ki-Tae; Panday, Siddhartha Bikram
2017-05-01
The purpose of the study was to investigate the effect of different kicking modality, i.e., erratic-dynamic target (EDT) versus static target (ST) on the performance of the roundhouse kick in two groups of taekwondo athletes of different skill level. Three-dimensional analysis and surface electromyography (SEMG) analysis were performed on 12 (Group A: six sub-elite, Group B: six elite) athletes to investigate muscle co-activation pattern under two conditions, i.e., EDT versus ST. In the results, the muscle recruitment ratio of the agonistic muscles was higher for Group A, whereas Group B had higher recruitment ratio for antagonist muscles. Overall, the co-activation index (CI) of hip joints appeared higher in the extensors for Group A, whereas higher CI was observed in flexor muscles for Group B with comparatively higher CI during EDT condition than ST condition. Higher value of CI was observed in flexor muscles of the knee joints among Group A during EDT conditions, in contrast, higher CI in the extensor muscles was observed among Group B during ST conditions. In conclusion, the study confirmed that erratic-dynamic movements of target could change the movement coordination pattern to maintain the joint stability of participants.
Fukumoto, Yoshihiro; Ikezoe, Tome; Tateuchi, Hiroshige; Tsukagoshi, Rui; Akiyama, Haruhiko; So, Kazutaka; Kuroda, Yutaka; Yoneyama, Tomohide; Ichihashi, Noriaki
2012-09-01
The objective of this study was to compare muscle mass and composition between individuals with and without hip osteoarthritis. Twenty-four women with hip osteoarthritis (OA group) and 16 healthy women (healthy group) participated in this study. Muscle thickness (MT) and echo intensity (EI) were measured as indices of muscle mass and composition, respectively, using ultrasound imaging. Seven muscles were examined: gluteus maximus, gluteus medius, quadriceps femoris, rectus abdominis, external oblique, internal oblique and transversus abdominis. MT of only quadriceps femoris in the OA group was significantly thinner than that in the healthy group. EIs of gluteus medius, quadriceps femoris and rectus abdominis were significantly higher in the OA group than those in the healthy group. Thus, actual contractile tissue of gluteus medius and rectus abdominis substantially decreased, although muscle mass was similar, whereas both quantitative and qualitative changes occurred in quadriceps femoris in patients with hip OA. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. Methods 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. Results The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). Conclusion The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes. PMID:23842456
Tarpey, Michael D; Amorese, Adam J; Balestrieri, Nicholas P; Ryan, Terence E; Schmidt, Cameron A; McClung, Joseph M; Spangenburg, Espen E
2018-04-17
The ability to assess skeletal muscle function and delineate regulatory mechanisms is essential to uncovering therapeutic approaches that preserve functional independence in a disease state. Skeletal muscle provides distinct experimental challenges due to inherent differences across muscle groups, including fiber type and size that may limit experimental approaches. The flexor digitorum brevis (FDB) possesses numerous properties that offer the investigator a high degree of experimental flexibility to address specific hypotheses. To date, surprisingly few studies have taken advantage of the FDB to investigate mechanisms regulating skeletal muscle function. The purpose of this study was to characterize and experimentally demonstrate the value of the FDB muscle for scientific investigations. First, we characterized the FDB phenotype and provide reference comparisons to skeletal muscles commonly used in the field. We developed approaches allowing for experimental assessment of force production, in vitro and in vivo microscopy, and mitochondrial respiration to demonstrate the versatility of the FDB. As proof-of principle, we performed experiments to alter force production or mitochondrial respiration to validate the flexibility the FDB affords the investigator. The FDB is made up of small predominantly type IIa and IIx fibers that collectively produce less peak isometric force than the extensor digitorum longus (EDL) or soleus muscles, but demonstrates a greater fatigue resistance than the EDL. Unlike the other muscles, inherent properties of the FDB muscle make it amenable to multiple in vitro- and in vivo-based microscopy methods. Due to its anatomical location, the FDB can be used in cardiotoxin-induced muscle injury protocols and is amenable to electroporation of cDNA with a high degree of efficiency allowing for an effective means of genetic manipulation. Using a novel approach, we also demonstrate methods for assessing mitochondrial respiration in the FDB, which are comparable to the commonly used gastrocnemius muscle. As proof of principle, short-term overexpression of Pgc1α in the FDB increased mitochondrial respiration rates. The results highlight the experimental flexibility afforded the investigator by using the FDB muscle to assess mechanisms that regulate skeletal muscle function.
Cidem, Muharrem; Karacan, İlhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Özkaya, Murat; Karamehmetoğlu, Şafak Sahir
2014-01-01
Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Aims: The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. Study Design: A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Methods: Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. Results: In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). Conclusion: This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. Trial registration: ClinicalTrials.gov: NCT01310348. PMID:25207162
Cidem, Muharrem; Karacan, Ilhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Ozkaya, Murat; Karamehmetoğlu, Safak Sahir
2014-03-01
Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. ClinicalTrials.gov: NCT01310348.
Celiker Tosun, O; Kaya Mutlu, E; Ergenoglu, A M; Yeniel, A O; Tosun, G; Malkoc, M; Askar, N; Itil, I M
2015-06-01
To determine whether symptoms of urinary incontinence is reduced by pelvic floor muscle training, to determine whether urinary incontinence can be totally eliminated by strengthening the pelvic floor muscle to grade 5 on the Oxford scale. Prospective randomized controlled clinical trial. Outpatient urogynecology department. One hundred thirty cases with stress and mixed urinary incontinence. All participants were randomly allocated to the pelvic floor muscle training group or control group. A 12-week home based exercise program, prescribed individually, was performed by the pelvic floor muscle training group. Urinary incontinence symptoms (Incontinence Impact Questionnaire-7, Urogenital Distress Inventory-6, bladder diary, stop test and pad test) were assessed, and the pelvic floor muscle strength was measured for (PERFECT testing, perineometric and ultrasound) all participants before and after 12 weeks of treatment. The pelvic floor muscle training group had significant improvement in their symptoms of urinary incontinence (P=0.001) and an increase in pelvic floor muscle strength (P=0.001, by the dependent t test) compared with the control group. All the symptoms of urinary incontinence were significantly decreased in the patients that had reached pelvic floor muscle strength of grade 5 and continued the pelvic floor muscle training (P<0.05). The study demonstrated that pelvic floor muscle training is effective in reducing the symptoms of stress and mixed urinary incontinence and in increasing pelvic floor muscle strength. © The Author(s) 2014.
Muscle synergy analysis in children with cerebral palsy
NASA Astrophysics Data System (ADS)
Tang, Lu; Li, Fei; Cao, Shuai; Zhang, Xu; Wu, De; Chen, Xiang
2015-08-01
Objective. To explore the mechanism of lower extremity dysfunction of cerebral palsy (CP) children through muscle synergy analysis. Approach. Twelve CP children were involved in this study, ten adults (AD) and eight typically developed (TD) children were recruited as a control group. Surface electromyographic (sEMG) signals were collected bilaterally from eight lower limb muscles of the subjects during forward walking at a comfortable speed. A nonnegative matrix factorization algorithm was used to extract muscle synergies. In view of muscle synergy differences in number, structure and symmetry, a model named synergy comprehensive assessment (SCA) was proposed to quantify the abnormality of muscle synergies. Main results. There existed larger variations between the muscle synergies of the CP group and the AD group in contrast with the TD group. Fewer mature synergies were recruited in the CP group, and many abnormal synergies specific to the CP group appeared. Specifically, CP children were found to recruit muscle synergies with a larger difference in structure and symmetry between two legs of one subject and different subjects. The proposed SCA scale demonstrated its great potential to quantitatively assess the lower-limb motor dysfunction of CP children. SCA scores of the CP group (57.00 ± 16.78) were found to be significantly less (p < 0.01) than that of the control group (AD group: 95.74 ± 2.04; TD group: 84.19 ± 11.76). Significance. The innovative quantitative results of this study can help us to better understand muscle synergy abnormality in CP children, which is related to their motor dysfunction and even the physiological change in their nervous system.
Contributions of Altered Stretch Reflex Coordination to Arm Impairments Following Stroke
Ravichandran, Vengateswaran J.; Krutky, Matthew A.; Perreault, Eric J.
2010-01-01
Patterns of stereotyped muscle coactivation, clinically referred to as synergies, emerge following stroke and impair arm function. Although researchers have focused on cortical contributions, there is growing evidence that altered stretch reflex pathways may also contribute to impairment. However, most previous reflex studies have focused on passive, single-joint movements without regard to their coordination during volitional actions. The purpose of this study was to examine the effects of stroke on coordinated activity of stretch reflexes elicited in multiple arm muscles following multijoint perturbations. We hypothesized that cortical injury results in increased stretch reflexes of muscles characteristic of the abnormal flexor synergy during active arm conditions. To test this hypothesis, we used a robot to apply position perturbations to impaired arms of 10 stroke survivors and dominant arms of 8 healthy age-matched controls. Corresponding reflexes were assessed during volitional contractions simulating different levels of gravitational support, as well as during voluntary flexion and extension of the elbow and shoulder. Reflexes were quantified by average rectified surface electromyogram, recorded from eight muscles spanning the elbow and shoulder. Reflex coordination was quantified using an independent components analysis. We found stretch reflexes elicited in the stroke group were significantly less sensitive to changes in background muscle activation compared with those in the control group (P < 0.05). We also observed significantly increased reflex coupling between elbow flexor and shoulder abductor–extensor muscles in stroke subjects relative to that in control subjects. This increased coupling was present only during volitional tasks that required elbow flexion (P < 0.001), shoulder extension (P < 0.01), and gravity opposition (P < 0.01), but not during the “no load” condition. During volitional contractions, reflex amplitudes scaled with the level of impairment, as assessed by Fugl-Meyer scores (r2 = 0.63; P < 0.05). We conclude that altered reflex coordination is indicative of motor impairment level and may contribute to impaired arm function following stroke. PMID:20962072
Goldberg, Allon; Alexander, Neil B.
2010-01-01
Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment. PMID:19942678
Macedo, Aline Barbosa; Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda Dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana; Minatel, Elaine
2015-01-01
The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.
Frevel, D; Mäurer, M
2015-02-01
Balance disorders are common in multiple sclerosis. Aim of the study is to investigate the effectiveness of an Internet-based home training program (e-Training) to improve balance in patients with multiple sclerosis. A randomized, controlled study. Academic teaching hospital in cooperation with the therapeutic riding center Gut Üttingshof, Bad Mergentheim. Eighteen multiple sclerosis patients (mean EDSS 3,5) took part in the trial. Outcome of patients using e-Training (N.=9) was compared to the outcome of patients receiving hippotherapy (N.=9), which can be considered as an advanced concept for the improvement of balance and postural control in multiple sclerosis. After simple random allocation patients received hippotherapy or Internet-based home training (balance, postural control and strength training) twice a week for 12 weeks. Assessments were done before and after the intervention and included static and dynamic balance (primary outcome). Isometric muscle strength of the knee and trunk extension/flexion (dynamometer), walking capacity, fatigue and quality of life served as secondary outcome parameters. Both intervention groups showed comparable and highly significant improvement in static and dynamic balance capacity, no difference was seen between the both intervention groups. However looking at fatigue and quality of life only the group receiving hippotherapy improved significantly. Since e-Training shows even comparable effects to hippotherapy to improve balance, we believe that the established Internet-based home training program, specialized on balance and postural control training, is feasible for a balance and strength training in persons with multiple sclerosis. We demonstrated that Internet-based home training is possible in patients with multiple sclerosis.
Growth hormone therapy, muscle thickness, and motor development in Prader-Willi syndrome: an RCT.
Reus, Linda; Pillen, Sigrid; Pelzer, Ben J; van Alfen-van der Velden, Janielle A A E M; Hokken-Koelega, Anita C S; Zwarts, Machiel; Otten, Barto J; Nijhuis-van der Sanden, Maria W G
2014-12-01
To investigate the effect of physical training combined with growth hormone (GH) on muscle thickness and its relationship with muscle strength and motor development in infants with Prader-Willi syndrome (PWS). In a randomized controlled trial, 22 infants with PWS (12.9 ± 7.1 months) were followed over 2 years to compare a treatment group (n = 10) with a waiting-list control group (n = 12). Muscle thickness of 4 muscle groups was measured by using ultrasound. Muscle strength was evaluated by using the Infant Muscle Strength meter. Motor performance was measured with the Gross Motor Function Measurement. Analyses of variance were used to evaluate between-group effects of GH on muscle thickness at 6 months and to compare pre- and posttreatment (after 12 months of GH) values. Multilevel analyses were used to evaluate effects of GH on muscle thickness over time, and multilevel bivariate analyses were used to test relationships between muscle thickness, muscle strength, and motor performance. A significant positive effect of GH on muscle thickness (P < .05) was found. Positive relationships were found between muscle thickness and muscle strength (r = 0.61, P < .001), muscle thickness and motor performance (r = 0.81, P < .001), and muscle strength and motor performance (r = 0.76, P < .001). GH increased muscle thickness, which was related to muscle strength and motor development in infants with PWS. Catch-up growth was faster in muscles that are most frequently used in early development. Because this effect was independent of GH, it suggests a training effect. Copyright © 2014 by the American Academy of Pediatrics.
Sericin and swimming on histomorphometric parameters of denervated plantar muscle in Wistar rats.
Santana, André Junior; Debastiani, Jean Carlos; Buratti, Pâmela; Peretti, Ana Luiza; Kunz, Regina Inês; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Torrejais, Márcia Miranda; Bertolini, Gladson Ricardo Flor
2018-01-01
Objective To analyze the combined effects of the silk protein sericin and swimming exercise on histomorphometry of the plantar muscle in Wistar rats. Methods Forty adult rats were randomly allocated into 5 groups comprising 8 animals each, as follows: Control, Injury, Sericin, Swim, and Swim plus Sericin. Three days after crushing of the sciatic nerve the rats in the Swim and Swim plus Sericin Groups were submitted to swimming exercise for 21 days. Rats were then euthanized and the plantar muscle harvested and processed. Results Cross-sectional area, peripheral nuclei and muscle fiber counts, nucleus/fiber ratio and smallest muscle fiber width did not differ significantly between groups. Morphological analysis revealed hypertrophic fibers in the Swim Group and evident muscle damage in the Swim plus Sericin and Injury Groups. The percentage of intramuscular collagen was apparently maintained in the Swim Group compared to remaining groups. Conclusion Combined treatment with sericin and swimming exercise did not improve muscle properties. However, physical exercise alone was effective in maintaining intramuscular connective tissue and preventing progression of deleterious effects of peripheral nerve injury.
Aerobic exercise and respiratory muscle strength in patients with cystic fibrosis.
Dassios, Theodore; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel
2013-05-01
The beneficial role of exercise in maintaining health in patients with cystic fibrosis (CF) is well described. Few data exist on the effect of exercise on respiratory muscle function in patients with CF. Our objective was to compare respiratory muscle function indices in CF patients that regularly exercise with those CF patients that do not. This cross-sectional study assessed nutrition, pulmonary function and respiratory muscle function in 37 CF patients that undertook regular aerobic exercise and in a control group matched for age and gender which consisted of 44 CF patients that did not undertake regular exercise. Respiratory muscle function in CF was assessed by maximal inspiratory pressure (Pimax), maximal expiratory pressure (Pemax) and pressure-time index of the respiratory muscles (PTImus). Median Pimax and Pemax were significantly higher in the exercise group compared to the control group (92 vs. 63 cm H2O and 94 vs. 64 cm H2O respectively). PTImus was significantly lower in the exercise group compared to the control group (0.089 vs. 0.121). Upper arm muscle area (UAMA) and mid-arm muscle circumference were significantly increased in the exercise group compared to the control group (2608 vs. 2178 mm2 and 23 vs. 21 cm respectively). UAMA was significantly related to Pimax in the exercising group. These results suggest that CF patients that undertake regular aerobic exercise maintain higher indices of respiratory muscle strength and lower PTImus values, while increased UAMA values in exercising patients highlight the importance of muscular competence in respiratory muscle function in this population. Copyright © 2013 Elsevier Ltd. All rights reserved.
Slowik, Jonathan S; McNitt-Gray, Jill L; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R
2016-03-01
The considerable physical demand placed on the upper extremity during manual wheelchair propulsion is distributed among individual muscles. The strategy used to distribute the workload is likely influenced by the relative force-generating capacities of individual muscles, and some strategies may be associated with a higher injury risk than others. The objective of this study was to use forward dynamics simulations of manual wheelchair propulsion to identify compensatory strategies that can be used to overcome weakness in individual muscle groups and identify specific strategies that may increase injury risk. Identifying these strategies can provide rationale for the design of targeted rehabilitation programs aimed at preventing the development of pain and injury in manual wheelchair users. Muscle-actuated forward dynamics simulations of manual wheelchair propulsion were analyzed to identify compensatory strategies in response to individual muscle group weakness using individual muscle mechanical power and stress as measures of upper extremity demand. The simulation analyses found the upper extremity to be robust to weakness in any single muscle group as the remaining groups were able to compensate and restore normal propulsion mechanics. The rotator cuff muscles experienced relatively high muscle stress levels and exhibited compensatory relationships with the deltoid muscles. These results underline the importance of strengthening the rotator cuff muscles and supporting muscles whose contributions do not increase the potential for impingement (i.e., the thoracohumeral depressors) and minimize the risk of upper extremity injury in manual wheelchair users. Copyright © 2016 Elsevier Ltd. All rights reserved.
Slowik, Jonathan S.; McNitt-Gray, Jill L.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.
2016-01-01
Background The considerable physical demand placed on the upper extremity during manual wheelchair propulsion is distributed among the individual muscles. The strategy used to distribute the workload is likely influenced by the relative force-generating capacities of individual muscles, and some strategies may be associated with a higher injury risk than others. The objective of this study was to use forward dynamics simulations of manual wheelchair propulsion to identify compensatory strategies that can be used to overcome weakness in individual muscle groups and identify specific strategies that may increase injury risk. Identifying these strategies can provide rationale for the design of targeted rehabilitation programs aimed at preventing the development of pain and injury in manual wheelchair users. Methods Muscle-actuated forward dynamics simulations of manual wheelchair propulsion were analyzed to identify compensatory strategies in response to individual muscle group weakness, using individual muscle mechanical power and stress as measures of upper extremity demand. Findings The simulation analyses found the upper extremity to be robust to weakness in any single muscle group as the remaining groups were able to compensate and restore normal propulsion mechanics. The rotator cuff muscles experienced relatively high muscle stress levels and exhibited compensatory relationships with the deltoid muscles. Interpretation These results underline the importance of strengthening the rotator cuff muscles and supporting muscles whose contributions do not increase the potential for impingement (i.e., the thoracohumeral depressors) and minimize the risk of upper extremity injury in manual wheelchair users. PMID:26945719
Leftin, Avigdor; Roussel, Tangi; Frydman, Lucio
2014-01-01
Measuring metabolism's time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water's sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hind-limb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic functional magnetic resonance studies in muscle, the simplicity of our approach makes this technique amenable to a wide range of functional metabolic tracer studies.
Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats.
Tanahashi, Masayuki; Karicheti, Venkateswarlu; Thor, Karl B; Marson, Lesley
2012-10-01
The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats (n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts did not significantly alter any parameter. Transection of all three nerves eliminated BSM activation completely. In conclusion, penile clamping occlusion recruits penile and urethral primary afferent fibers that are necessary for an ELR. Urethral distension without significant penile afferent activation recruits urethral primary afferent fibers carried in either the pelvic or pudendal nerve that are necessary for the single-burst UBS reflex.
Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles.
McKenna, D R; Mies, P D; Baird, B E; Pfeiffer, K D; Ellebracht, J W; Savell, J W
2005-08-01
Steaks from muscles (n=19 from nine beef carcasses) were evaluated over the course of retail display (0-, 1-, 2-, 3-, 4- or 5-d) for objective measures of discoloration (metmyoglobin, oxymyoglobin, L*-, a*-, and b*-values), reducing ability (metmyoglobin reductase activity (MRA), resistance to induced metmyoglobin formation (RIMF), and nitric oxide metmyoglobin reducing ability (NORA)), oxygen consumption rate (OCR), oxygen penetration depth, myoglobin content, oxidative rancidity, and pH. Muscles were grouped according to objective color measures of discoloration. M. longissimus lumborum, M. longissimus thoracis, M. semitendinosus, and M. tensor fasciae latae were grouped as "high" color stability muscles, M. semimembranosus, M. rectus femoris, and M. vastus lateralis were grouped as "moderate" color stability muscles, M. trapezius, M. gluteus medius, and M. latissimus dorsi were grouped as "intermediate" color stability muscles, M. triceps brachi - long head, M. biceps femoris, M. pectoralis profundus, M. adductor, M. triceps brachi - lateral head, and M. serratus ventralis were grouped as "low" color stability muscles, and M. supraspinatus, M. infraspinatus, and M. psoas major were grouped as "very low" color stability muscles. Generally, muscles of high color stability had high RIMF, nitric oxide reducing ability, and oxygen penetration depth and possessed low OCRs, myoglobin content, and oxidative rancidity. In contrast, muscles of low color stability had high MRA, OCRs, myoglobin content, and oxidative rancidity and low RIMF, NORA, and oxygen penetration depth. Data indicate that discoloration differences between muscles are related to the amount of reducing activity relative to the OCR.
Effects of voluntary wheel running on satellite cells in the rat plantaris muscle.
Kurosaka, Mitsutoshi; Naito, Hisashi; Ogura, Yuji; Kojima, Atsushi; Goto, Katsumasa; Katamoto, Shizuo
2009-01-01
This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p < 0.05). The percentage of satellite cells was also positively correlated with distance run in the training group (r = 0.61, p < 0.05). Voluntary running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run. Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.
Lee, In Sook; Choi, Euy Soon
2006-12-01
This study was conducted to investigate the effectiveness of pelvic floor muscle exercise using biofeedback and electrical stimulation after normal delivery. The subjects of this study were 49 (experimental group: 25, control group: 24) postpartum women who passed 6 weeks after normal delivery without complication of pregnancy, delivery and postpartum. The experimental group was applied to the pelvic muscle enforcement program by biofeedback and electrical stimulation for 30 minutes per session, twice a week for 6 weeks, after then self-exercise of pelvic floor muscle was done 50-60 repetition per session, 3 times a day for 6 weeks. Maximum pressure of pelvic floor muscle contraction (MPPFMC), average pressure of pelvic floor muscle contraction (APPFMC), duration time of pelvic floor muscle contraction (DTPFMC) and the subjective lower urinary symptoms were measured by digital perineometer and Bristol Female Urinary Symptom Questionnaire and compared between two groups prior to trial, at the end of treatment and 6 weeks after treatment. The results of this study indicated that MPPFMC, APPFMC, DTPFMC were significantly increased and subjective lower urinary symptoms were significantly decreased after treatment in the experimental group than in the control group. This study suggested that the pelvic floor muscle exercise using biofeedback and electrical stimulation might be a safer and more effective program for reinforcing pelvic floor muscle after normal delivery.
Pearson, William G.; Hindson, David F.; Langmore, Susan E.; Zumwalt, Ann C.
2012-01-01
Summary Elevation of the larynx is critical to swallowing function, an observation supported by the fact that radiation therapy-induced dysphagia is associated with reduced laryngeal elevation. We investigated muscles underlying hyolaryngeal elevation by using muscle functional MRI. We acquired scans from 11 healthy subjects to determine whole-muscle T2 signal profiles pre-swallowing, post-swallowing, and after performing swallowing exercises. Results demonstrate muscles essential to laryngeal elevation and exercises that target them. Purpose Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions Muscles of both the suprahyoid and the longitudinal pharyngeal muscle groups are active in swallowing, and both swallowing exercises effectively target muscles elevating the hyolaryngeal complex. mfMRI is useful in testing swallowing muscle function. PMID:22995662
Van, Khai; Hides, Julie A; Richardson, Carolyn A
2006-12-01
Randomized controlled trial. To determine if the provision of visual biofeedback using real-time ultrasound imaging enhances the ability to activate the multifidus muscle. Increasingly clinicians are using real-time ultrasound as a form of biofeedback when re-educating muscle activation. The effectiveness of this form of biofeedback for the multifidus muscle has not been reported. Healthy subjects were randomly divided into groups that received different forms of biofeedback. All subjects received clinical instruction on how to activate the multifidus muscle isometrically prior to testing and verbal feedback regarding the amount of multifidus contraction, which occurred during 10 repetitions (acquisition phase). In addition, 1 group received visual biofeedback (watched the multifidus muscle contract) using real-time ultrasound imaging. All subjects were reassessed a week later (retention phase). Subjects from both groups improved their voluntary contraction of the multifidus muscle in the acquisition phase (P<.001) and the ability to recruit the multifidus muscle differed between groups (P<.05), with subjects in the group that received visual ultrasound biofeedback achieving greater improvements. In addition, the group that received visual ultrasound biofeedback retained their improvement in performance from week 1 to week 2 (P>.90), whereas the performance of the other group decreased (P<.05). Real-time ultrasound imaging can be used to provide visual biofeedback and improve performance and retention in the ability to activate the multifidus muscle in healthy subjects.
NASA Astrophysics Data System (ADS)
Gupta, Shikha; Manske, Sarah L.; Judex, Stefan
2013-11-01
A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.
The Influence of Protein Supplementation on Muscle Hypertrophy
NASA Astrophysics Data System (ADS)
Fardi, A.; Welis, W.
2018-04-01
The problem of this study was the lack of knowledge about nutrition, so the use of protein supplements to support the occurrence of muscle hypertrophy is not optimal. The use of natural supplements is a substitute of the manufacturer's supplements. The purpose of this study was to determine the effect of natural protein supplementation to muscle hypertrophy.The method of the research was a quasi experiment. There are 26 subject and were divided two group. Instrument of this research is to use tape measure and skinfold to measure muscle rim and thickness of fat in arm and thigh muscle. Then to calculate the circumference of the arm and thigh muscles used the formula MTC - (3.14 x TSF). MTC is the arm muscle or thigh muscle and TSF is the thickness of the muscles of the arm or thigh muscles. Data analysis technique used was t test at 5% significant level. The result of the research showed that average score of arm muscle hypertrophy at pretest control group was 255.61 + 17.69 mm and posttest average score was 263.48.58 + 17.21 mm and average score of thigh muscle hypertrophy at pretest control group was 458.32 + 8.72 mm and posttest average score was 468.78 + 11.54 mm. Average score of arm muscle hypertrophy at pretest experiment group was 252.67 + 16.05 mm and posttest average score was 274.58 ± 16.89 mm and average score of thigh muscle hypertrophy at pretest experiment group was 459.49 ± 6.99 mm and posttest average score was 478.70 + 9.05 mm. It can be concluded that there was a significant effect of natural protein supplementation on muscle hypertrophy.
EBF proteins participate in transcriptional regulation of Xenopus muscle development.
Green, Yangsook Song; Vetter, Monica L
2011-10-01
EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla
2013-01-01
Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.
Individual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI.
Fernandez-Gonzalo, R; Tesch, P A; Linnehan, R M; Kreider, R B; Di Salvo, V; Suarez-Arrones, L; Alomar, X; Mendez-Villanueva, A; Rodas, G
2016-06-01
This study used functional magnetic resonance imaging (fMRI) to compare individual muscle use in exercises aimed at preventing hamstring injuries. Thirty-six professional soccer players were randomized into 4 groups, each performing either Nordic hamstring, flywheel leg curl, Russian belt or conic-pulley exercise. MRIs were performed before and immediately after a bout of 4 sets of 8 repetitions. Pre-post exercise differences in contrast shift (T2) were analyzed for the long (BFLh) and short head (BFSh) of biceps femoris, semitendinosus (ST), semimembranosus (SM) and gracilis (GR) muscles. Flywheel leg curl increased (P<0.001) T2 of GR (95%), ST (65%), BFSh (51%) and BFLh (14%). After the Nordic hamstring, GR (39%), ST (16%) and BFSh (14%) showed increased T2 (P<0.001). Russian belt and conic-pulley exercise produced subtle (P<0.02) T2 increases of ST (9 and 6%, respectively) and BFLh (7 and 6%, respectively). Russian belt increased T2 of SM (7%). Among exercises examined, flywheel leg curl showed the most substantial hamstring and GR muscle use. However, no single exercise executed was able to increase T2 of all hamstring and synergist muscles analyzed. It is therefore suggested that multiple exercises must be carried out to bring in, and fully activate all knee flexors and hip extensors. © Georg Thieme Verlag KG Stuttgart · New York.
Wei, Jiao; Xu, Hua; Dong, Jiasheng; Li, Qingfeng; Dai, Chuanchang
2015-01-01
Botulinum toxin type A (BTX-A) is widely used for the clinical treatment of masseteric hypertrophy. Until now, few reports have discussed how to prolong the duration of its effectiveness. This study evaluated that purposely adjusting the masticatory movements is possible of postponing the masseter muscle rehypertrophy. Ninety-eight patients were randomly and equally divided into 2 groups, and 35 U BTX-A per side was injected into the masseters. The thickness and volume of the masticatory muscles were measured by ultrasound and computerized tomography, respectively. Patients in Group 1 were instructed to strengthen their masticatory effort during the denervated atrophic stage of the masseter (the interval was evaluated by real-time ultrasound monitoring), whereas patients in Group 2 were not given this instruction. When the masseter muscle began to recover, patients in both groups were instructed to reduce their chewing. The duration of the masseter muscle rehypertrophy was significantly prolonged in Group 1 patients. The thickness and the volume of the other masticatory muscles were significantly increased in Group 1 but were either slightly decreased or insignificantly different in Group 2. Purposely strengthening masticatory muscle movement during the denervated atrophic stage of the masseter can prolong the duration of masseter rehypertrophy.
Muscle damage and repeated bout effect following blood flow restricted exercise.
Sieljacks, Peter; Matzon, Andreas; Wernbom, Mathias; Ringgaard, Steffen; Vissing, Kristian; Overgaard, Kristian
2016-03-01
Blood-flow restricted resistance exercise training (BFRE) is suggested to be effective in rehabilitation training, but more knowledge is required about its potential muscle damaging effects. Therefore, we investigated muscle-damaging effects of BFRE performed to failure and possible protective effects of previous bouts of BFRE or maximal eccentric exercise (ECC). Seventeen healthy young men were allocated into two groups completing two exercise bouts separated by 14 days. One group performed BFRE in both exercise bouts (BB). The other group performed ECC in the first and BFRE in the second bout. BFRE was performed to failure. Indicators of muscle damage were evaluated before and after exercise. The first bout in the BB group led to decrements in maximum isometric torque, and increases in muscle soreness, muscle water retention, and serum muscle protein concentrations after exercise. These changes were comparable in magnitude and time course to what was observed after first bout ECC. An attenuated response was observed in the repeated exercise bout in both groups. We conclude that unaccustomed single-bout BFRE performed to failure induces significant muscle damage. Additionally, both ECC and BFRE can precondition against muscle damage induced by a subsequent bout of BFRE.
Tang, Pan; Gu, Yu; Gu, Jia-Ming; Xie, Zi-Ang; Xu, Jia-Qi; Zhao, Xiang-De; Huang, Kang-Mao; Wang, Ji-Ying; Jiang, Xue-Sheng; Fan, Shun-Wu; Hu, Zhi-Jun
2018-04-11
A rat model of multifidus muscles injury and atrophy after posterior lumbar spine surgery. We determined the effect of ascorbic acid (AA) on the postoperative multifidus muscles in rat model. Previous studies show oxidative stress and inflammation are two main molecular mechanisms in multifidus muscle injury and atrophy after posterior lumbar surgery. AA may have a protective effect in postoperative multifidus muscles. Rats were divided into sham surgery, control surgery, and surgery plus AA groups. Multifidus muscles of the control and AA groups were excised from the osseous structures. The muscles were retracted continuously for 2 h. In the sham and AA groups, AA was administered via oral gavage daily in the first week. In each group, the oxidative stress was evaluated by measuring malondialdehyde (MDA) and Total superoxide dismutase (T-SOD). The inflammation, fat degeneration or fibrosis of multifidus muscle were evaluated by Q-PCR, histology or immunohistochemical analysis. T-SOD activity was significantly lower in the control group than that in the AA group in the first week. MDA levels were significantly higher in the AA group. Interleukin-6 and tumor necrosis factor-α in multifidus muscles also showed significant differences when treated with AA. The inflammation score on histology was significantly lower in the AA group postoperatively in the first week. In the long run, marker genes for fibrosis and fat degeneration, and fibrosis and fat degeneration scores, were significantly lower in the AA than the control group on days 14 and 28 postoperatively. In conclusion, AA attenuated the oxidative stress and inflammation response in the postoperative multifidus muscles, and remarkable differences were observed from the histological assessment and related marker genes expression. Our results provided important insight into the anti-inflammatory and anti-oxidative effects of AA in the postoperative multifidus muscles. N/A.
Randolph, Matthew E.; Pavlath, Grace K.
2015-01-01
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547
Marasco, Paul D; Bourbeau, Dennis J; Shell, Courtney E; Granja-Vazquez, Rafael; Ina, Jason G
2017-01-01
Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.
Marasco, Paul D.; Bourbeau, Dennis J.; Shell, Courtney E.; Granja-Vazquez, Rafael; Ina, Jason G.
2017-01-01
Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing. PMID:29182648
Nemani, Shivaram; Putchha, Uday K; Periketi, Madhusudhanachary; Pothana, Sailaja; Nappanveettil, Giridharan; Nemani, Harishankar
2016-09-01
WNIN/Ob obese mutant rats are unique in comparison to similar rodent models of obesity established in the West. The present study is aimed to evaluate the masticatory function and histological changes in masseter muscle fibres treated with botulinum toxin type A (BoNT/A) in WNIN/Ob rats. Twelve WNIN/Ob obese rats and 12 lean rats at 35 days of age were taken and divided into four groups (6 rats in each group): Group-I (WNIN/Ob) and Group-II (lean) rats were injected with BoNT/A (1 unit) into right side of masseter muscle. For control left masseter of both phenotypes was injected with saline. Group-III (WNIN/Ob) and Group-IV (lean) rats were without any treatment. Growth and food intake was monitored daily for 45 days. Rats were euthanized and gross necropsy was carried out to check any abnormalities. Masseter muscles were dissected and mean muscle mass was recorded. Small portion of muscle was stored in 10% formalin for hematoxylin-eosin (H&E) staining and remaining tissue stored in gluteraldehyde for scanning electron microscopy (SEM). There is a significant decrease in the body weights and food intake of BoNT/A treated obese rats. The H&E staining of the masseter muscle in both groups showed normal morphology and orientation. The SEM analysis showed that, fibre size in BoNT/A treated masseter muscle of obese rats increased more than the saline treated side and in control rats. The increase in the muscle fibre size and transition of muscle fibre subtypes may be due to the reduced masticatory function of the masseter muscle. SCANNING 38:396-402, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors.
Kay, Anthony David; Richmond, Dominic; Talbot, Chris; Mina, Minas; Baross, Anthony William; Blazevich, Anthony John
2016-07-01
The muscle stretch intensity imposed during "flexibility" training influences the magnitude of joint range of motion (ROM) adaptation. Thus, stretching while the muscle is voluntarily activated was hypothesized to provide a greater stimulus than passive stretching. The effect of a 6-wk program of stretch imposed on an isometrically contracting muscle (i.e., qualitatively similar to isokinetic eccentric training) on muscle-tendon mechanics was therefore studied in 13 healthy human volunteers. Before and after the training program, dorsiflexion ROM, passive joint moment, and maximal isometric plantarflexor moment were recorded on an isokinetic dynamometer. Simultaneous real-time motion analysis and ultrasound imaging recorded gastrocnemius medialis muscle and Achilles tendon elongation. Training was performed twice weekly and consisted of five sets of 12 maximal isokinetic eccentric contractions at 10°·s. Significant increases (P < 0.01) in ROM (92.7% [14.7°]), peak passive moment (i.e., stretch tolerance; 136.2%), area under the passive moment curve (i.e., energy storage; 302.6%), and maximal isometric plantarflexor moment (51.3%) were observed after training. Although no change in the slope of the passive moment curve (muscle-tendon stiffness) was detected (-1.5%, P > 0.05), a significant increase in tendon stiffness (31.2%, P < 0.01) and a decrease in passive muscle stiffness (-14.6%, P < 0.05) were observed. The substantial positive adaptation in multiple functional and physiological variables that are cited within the primary etiology of muscle strain injury, including strength, ROM, muscle stiffness, and maximal energy storage, indicate that the stretching of active muscle might influence injury risk in addition to muscle function. The lack of change in muscle-tendon stiffness simultaneous with significant increases in tendon stiffness and decreases in passive muscle stiffness indicates that tissue-specific effects were elicited.
Xing, Ji-Juan; Liu, Xiu-Fen; Xiong, Xiao-Ming; Huang, Li; Lao, Cheng-Yi; Yang, Mei; Gao, Shan; Huang, Qiong-Yan; Yang, Wei; Zhu, Yun-Feng; Zhang, Di-Hua
2015-01-01
Combined spinal-epidural analgesia (CSEA) is sometimes used for difficult births, but whether it contributes to postpartum pelvic muscle disorder is unclear. This randomized controlled trial examined whether CSEA given during labor affects the electrophysiological index of postpartum pelvic floor muscle function. A consecutive sample of primiparous women who delivered vaginally at term were randomly assigned to a CSEA group (n = 143) and control group (n = 142) between June 2013 and June 2014. All were assessed 6-8 weeks later for electrophysiological function of pelvic floor muscle. The two groups were similar in the degree of muscle strength, muscle fatigue, and pelvic dynamic pressure of pelvic floor muscle. The CSEA and control groups showed similar proportions of women with normal muscle strength (score ≥4) in type I pelvic fibers (23.1% vs. 14.1%, P = 0.051) and type II pelvic fibers (28.0% vs. 24.6%, P = 0.524). The groups also contained similar proportions of women who showed no fatigue in type I fibers (54.5% vs. 48.6%, P = 0.315) or type II fibers (88.8% vs. 87.3%, P = 0.699). Similarly low proportions of women in the CSEA group and control group showed normal pelvic dynamic pressure (11.2% vs. 7.7%, P = 0.321). However, women in the CSEA group spent significantly less time in labor than those in the control group (7.25 vs. 9.52 h, P <0.001). CSEA did not affect the risk of postpartum pelvic muscle disorder in this cohort of primiparous women who gave birth vaginally. A significant shorter duration of labour was observed in the CSEA-group. ClinicalTrials.gov NCT02334150.
Xiong, Xiao-Ming; Huang, Li; Lao, Cheng-Yi; Yang, Mei; Gao, Shan; Huang, Qiong-Yan; Yang, Wei; Zhu, Yun-Feng; Zhang, Di-Hua
2015-01-01
Objective Combined spinal-epidural analgesia (CSEA) is sometimes used for difficult births, but whether it contributes to postpartum pelvic muscle disorder is unclear. This randomized controlled trial examined whether CSEA given during labor affects the electrophysiological index of postpartum pelvic floor muscle function. Methods A consecutive sample of primiparous women who delivered vaginally at term were randomly assigned to a CSEA group (n = 143) and control group (n = 142) between June 2013 and June 2014. All were assessed 6–8 weeks later for electrophysiological function of pelvic floor muscle. Results The two groups were similar in the degree of muscle strength, muscle fatigue, and pelvic dynamic pressure of pelvic floor muscle. The CSEA and control groups showed similar proportions of women with normal muscle strength (score ≥4) in type I pelvic fibers (23.1% vs. 14.1%, P = 0.051) and type II pelvic fibers (28.0% vs. 24.6%, P = 0.524). The groups also contained similar proportions of women who showed no fatigue in type I fibers (54.5% vs. 48.6%, P = 0.315) or type II fibers (88.8% vs. 87.3%, P = 0.699). Similarly low proportions of women in the CSEA group and control group showed normal pelvic dynamic pressure (11.2% vs. 7.7%, P = 0.321). However, women in the CSEA group spent significantly less time in labor than those in the control group (7.25 vs. 9.52 h, P <0.001). Conclusions CSEA did not affect the risk of postpartum pelvic muscle disorder in this cohort of primiparous women who gave birth vaginally. A significant shorter duration of labour was observed in the CSEA-group. Trial Registration ClinicalTrials.gov NCT02334150 PMID:26340002
Uszynski, Marcin Kacper; Purtill, Helen; Donnelly, Alan; Coote, Susan
2016-07-01
This study aimed firstly to investigate the feasibility of the study protocol and outcome measures, secondly to obtain data in order to inform the power calculations for a larger randomised controlled trial, and finally to investigate if whole-body vibration (WBV) is more effective than the same duration and intensity of standard exercises (EXE) in people with Multiple Sclerosis (PwMS). Randomised controlled feasibility study. Outpatient MS centre. Twenty seven PwMS (age mean (SD) 48.1 (11.2)) with minimal gait impairments. Twelve weeks of WBV or standard EXE, three times weekly. Participants were measured with isokinetic muscle strength, vibration threshold, Timed Up and Go test (TUG), Mini-BESTest (MBT), 6 Minute Walk test (6MWT), Multiple Sclerosis Impact Scale 29 (MSIS 29), Modified Fatigue Impact Scale (MFIS) and Verbal Analogue scale for sensation (VAS) pre and post 12 week intervention. WBV intervention was found feasible with low drop-out rate (11.1%) and high compliance (90%). Data suggest that a sample of 52 in each group would be sufficient to detect a moderate effect size, with 80% power and 5% significance for 6 minute walk test. Large effect sizes in favour of standard exercise were found for vibration threshold at 5th metatarsophalangeal joint and heel (P=0.014, r= 0.5 and P=0.005, r=0.56 respectively). No between group differences were found for muscle strength, balance or gait (P>0.05). Data suggest that the protocol is feasible, there were no adverse effects. A trial including 120 people would be needed to detect an effect on walking endurance. © The Author(s) 2015.
Askar, I; Sabuncuoglu, B T; Yormuk, E; Saray, A
2001-07-01
In nerve injuries, if it is not possible to reinnervate muscle by using neurorrhaphy and nerve grafting technique, reinnervation should be provided by the use of neuroization-directly implanting motor nerve into muscle. A comparative study of three techniques of neurotization is presented in rabbits. In this experimental study, a total of 40 white New Zealand rabbits were used and divided into four groups, each including 10 rabbits. In the first group (control--Group 1), only surgical exposure of the gastrocnemius muscle, main muscle nerve (tibial nerve), and peroneal nerve was done, without any injury to the nerves. In the second group (direct neurotization group--Group 2), the tibial nerve was transected, and the peroneal nerve, which had already been divided into fascicles, was implanted into the lateral head of the gastrocnemius muscle aneural zone. In the third group (dual neurotization group--Group 3), the tibial nerve which had been transected and re-anastomosed, and the peroneal nerve were implanted into the lateral head of the gastrocnemius muscle. In the last experimental group (hyperneurotization group--Group 4), fascicles of the peroneal nerve were implanted into the lateral head of the gastrocnemius, preserving the tibial nerve. Six months later, changes in the histologic pattern and the functional recovery of the gastrocnemius muscle were investigated. It was found that functional recovery was achieved in all neurotization groups. Groups with the tibial nerve transected had less muscular weights than those of groups with the tibial nerve intact. EMG recordings showed that polyphasic and late potentials were frequently seen in groups with the tibial nerve transected. Degeneration and regeneration of myofibrils was observed in such groups as well. New motor end-plates, including vesicles, were formed in a scattered manner in all neurotization groups. As a result, the authors conclude that direct and dual neurotization techniques are useful in peripheral nerve injuries, if it is not possible to reinnervate muscle by using neurorraphy and nerve grafting, and that there is no suggested superiority among these techniques.
NASA Astrophysics Data System (ADS)
Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry
2015-03-01
The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.
Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.
Veilleux, Louis-Nicolas; Lemay, Martin; Pouliot-Laforte, Annie; Cheung, Moira S; Glorieux, Francis H; Rauch, Frank
2014-02-01
Results of previous studies suggested that children and adolescents with osteogenesis imperfecta (OI) type I have a muscle force deficit. However, muscle function has only been assessed by static isometric force tests and not in more natural conditions such as dynamic force and power tests. The purpose of this study was to assess lower extremity dynamic muscle function and muscle anatomy in OI type I. The study was performed in the outpatient department of a pediatric orthopedic hospital. A total of 54 individuals with OI type I (6-21 years; 20 male) and 54 age- and sex-matched controls took part in this study. Calf muscle cross-sectional area and density were measured by peripheral quantitative computed tomography. Lower extremity muscle function (peak force per body weight and peak power per body mass) was measured by jumping mechanography through 5 tests: multiple two-legged hopping, multiple one-legged hopping, single two-legged jump, chair-rise test, and heel-rise test. Compared with age- and sex-matched controls, patients with OI type I had smaller muscle size (P = .04) but normal muscle density (P = .21). They also had lower average peak force and lower specific force (peak force/muscle cross-sectional area; all P < .008). Average peak power was lower in patients with OI type I but not significantly so (all P > .054). Children and adolescents with OI type I have, on average, a significant force deficit in the lower limb as measured by dynamic force tests. Nonetheless, these data also show that OI type I is compatible with normal muscle performance in some individuals.
Maas, Huub; Baan, Guus C; Huijing, Peter A
2013-01-01
The aim of this paper is to investigate mechanical functioning of a single skeletal muscle, active within a group of (previously) synergistic muscles. For this purpose, we assessed wrist angle-active moment characteristics exerted by a group of wrist flexion muscles in the rat for three conditions: (i) after resection of the upper arm skin; (ii) after subsequent distal tenotomy of flexor carpi ulnaris muscle (FCU); and (iii) after subsequent freeing of FCU distal tendon and muscle belly from surrounding tissues (MT dissection). Measurements were performed for a control group and for an experimental group after recovery (5 weeks) from tendon transfer of FCU to extensor carpi radialis (ECR) insertion. To assess if FCU tenotomy and MT dissection affects FCU contributions to wrist moments exclusively or also those of neighboring wrist flexion muscles, these data were compared to wrist angle-moment characteristics of selectively activated FCU. FCU tenotomy and MT dissection decreased wrist moments of the control group at all wrist angles tested, including also angles for which no or minimal wrist moments were measured when activating FCU exclusively. For the tendon transfer group, wrist flexion moment increased after FCU tenotomy, but to a greater extent than can be expected based on wrist extension moments exerted by selectively excited transferred FCU. We conclude that dissection of a single muscle in any surgical treatment does not only affect mechanical characteristics of the target muscle, but also those of other muscles within the same compartment. Our results demonstrate also that even after agonistic-to-antagonistic tendon transfer, mechanical interactions with previously synergistic muscles do remain present.
Unstable rocker shoes promote recovery from marathon-induced muscle damage in novice runners.
Nakagawa, K; Inami, T; Yonezu, T; Kenmotsu, Y; Narita, T; Kawakami, Y; Kanosue, K
2018-02-01
We recently reported that wearing unstable rocker shoes (Masai Barefoot Technology: MBT) may enhance recovery from marathon race-induced fatigue. However, this earlier study only utilized a questionnaire. In this study, we evaluated MBT utilizing objective physiological measures of recovery from marathon-induced muscle damages. Twenty-five university student novice runners were divided into two groups. After running a full marathon, one group wore MBT shoes (MBT group), and the control group (CON) wore ordinary shoes daily for 1 week following the race. We measured maximal isometric joint torque, muscle hardness (real time tissue elastography of the strain ratio) in the lower limb muscles before, immediately after, and 1, 3, and 8 days following the marathon. We calculated the magnitude of recovery by observing the difference in each value between the first measurement and the latter measurements. Results showed that isometric torques in knee flexion recovered at the first day after the race in the MBT group while it did not recover even at the eighth day in the CON group. Muscle hardness in the gastrocnemius and vastus lateralis showed enhanced recovery in the MBT group in comparison with the CON group. Also for muscle hardness in the tibialis anterior and biceps femoris, the timing of recovery was delayed in the CON group. In conclusion, wearing MBT shoes enhanced recovery in lower leg and thigh muscles from muscle damage induced by marathon running. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dudgeon, Deborah; Baracos, Vickie E
2016-09-01
Loss of skeletal muscle mass and cachexia are important manifestations of chronic obstructive pulmonary disease and have been associated with breathlessness, functional limitation and poor prognosis. A number of other life-limiting illnesses, including cancer and chronic heart failure as well as acute conditions seen in ICU such as sepsis, are characteristically associated with cachexia and sarcopenia. These conditions may have respiratory muscle atrophy of sufficient magnitude to contribute to the development of breathlessness and associated functional limitation. The purpose of this review is to summarize findings related to a direct role for severe respiratory muscle wasting in the etiology of breathlessness in advanced, life limiting illness. Localized wasting of respiratory muscles appears to be part of systemic wasting of skeletal muscles, driven by deconditioning, nutritional insufficiencies and inflammation, and because of disease-specific factors (tumor factors and exacerbations), anabolic insufficiency, autonomic dysfunction, drugs (such as corticosteroids and chemotherapy agents), mechanical ventilation and comorbidities. Marked morphological and biochemical abnormalities have been noted in diaphragm muscle biopsies. Older patients with multiple comorbidities associated with muscle loss and cachexia are likely to be at elevated risk of respiratory muscle atrophy and functional loss, because of the presence of multiple, interacting etiologic factors.
An EMG-CT method using multiple surface electrodes in the forearm.
Nakajima, Yasuhiro; Keeratihattayakorn, Saran; Yoshinari, Satoshi; Tadano, Shigeru
2014-12-01
Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject's forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of changes in dietary fatty acids on isolated skeletal muscle functions in rats.
Ayre, K J; Hulbert, A J
1996-02-01
The effects of manipulating dietary levels of essential polyunsaturated fatty acids on the function of isolated skeletal muscles in male Wistar rats were examined. Three isoenergetic diets were used: an essential fatty acid-deficient diet (EFAD), a diet high in essential (n-6) fatty acids [High (n-6)], and a diet enriched with essential (n-3) fatty acids [High (n-3)]. After 9 wk, groups of rats on each test diet were fed a stock diet of laboratory chow for a further 6 wk. Muscle function was examined by using a battery of five tests for soleus (slow twitch) and extensor digitorum longus (EDL; fast twitch). Tests included single muscle twitches, sustained tetanic contractions, posttetanic potentiation, sustained high-frequency stimulation, and intermittent low-frequency stimulation. Results for muscles from the High (n-6) and High (n-3) groups were very similar. However, the EFAD diet resulted in significantly lower muscular tensions and reduced response times compared with the High (n-6) and High (n-3) diets. Peak twitch tension in soleus muscles was 16-21% less in the EFAD group than in the High (n-6) and High (n-3) groups, respectively [analysis of variance (ANOVA), P < 0.01). During high-frequency stimulation, EDL muscles from the EFAD rats fatigued 32% more quickly (ANOVA, P < 0.01)]. Also, twitch contraction and half-relaxation times were significantly 5-7% reduced in the EFAD group (ANOVA, P < 0.01). During intermittent low-frequency stimulation, soleus muscles from the EFAD group generated 25-28% less tension than did the other groups (ANOVA, P < 0.01), but in EDL muscles from the EFAD group, endurance was 20% greater than in the High (n-6) group (ANOVA, P < 0.05). After 6 wk on the stock diet, there were no longer any differences between the dietary groups. Manipulation of dietary fatty acids results in significant, but reversible, effects in muscles of rats fed an EFAD diet.
Uhm, Yo-Han; Yang, Dae-Jung
2018-02-01
[Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.
Contreras-Muñoz, Paola; Torrella, Joan Ramon; Serres, Xavier; Rizo-Roca, David; De la Varga, Meritxell; Viscor, Ginés; Martínez-Ibáñez, Vicente; Peiró, José Luis; Järvinen, Tero A H; Rodas, Gil; Marotta, Mario
2017-07-01
Skeletal muscle injuries are the most common sports-related injury and a major concern in sports medicine. The effect of platelet-rich plasma (PRP) injections on muscle healing is still poorly understood, and current data are inconclusive. To evaluate the effects of an ultrasound-guided intramuscular PRP injection, administered 24 hours after injury, and/or posttraumatic daily exercise training for 2 weeks on skeletal muscle healing in a recently established rat model of skeletal muscle injury that highly mimics the muscle trauma seen in human athletes. Controlled laboratory study. A total of 40 rats were assigned to 5 groups. Injured rats (medial gastrocnemius injury) received a single PRP injection (PRP group), daily exercise training (Exer group), or a combination of a single PRP injection and daily exercise training (PRP-Exer group). Untreated and intramuscular saline-injected animals were used as controls. Muscle force was determined 2 weeks after muscle injury, and muscles were harvested and evaluated by means of histological assessment and immunofluorescence microscopy. Both PRP (exhibiting 4.8-fold higher platelet concentration than whole blood) and exercise training improved muscle strength (maximum tetanus force, TetF) in approximately 18%, 20%, and 30% of rats in the PRP, PRP-Exer, and Exer groups, respectively. Specific markers of muscle regeneration (developmental myosin heavy chain, dMHC) and scar formation (collagen I) demonstrated the beneficial effect of the tested therapies in accelerating the muscle healing process in rats. PRP and exercise treatments stimulated the growth of newly formed regenerating muscle fibers (1.5-, 2-, and 2.5-fold increase in myofiber cross-sectional area in PRP, PRP-Exer, and Exer groups, respectively) and reduced scar formation in injured skeletal muscle (20%, 34%, and 41% of reduction in PRP, PRP-Exer, and Exer groups, respectively). Exercise-treated muscles (PRP-Exer and Exer groups) had significantly reduced percentage of dMHC-positive regenerating fibers (35% and 47% decrease in dMHC expression, respectively), indicating that exercise therapies accelerated the muscle healing process witnessed by the more rapid replacement of the embryonic-developmental myosin isoform by mature muscle myosin isoforms. Intramuscular PRP injection and, especially, treadmill exercise improve histological outcome and force recovery of the injured skeletal muscle in a rat injury model that imitates sports-related muscle injuries in athletes. However, there was not a synergistic effect when both treatments were combined, suggesting that PRP does not add any beneficial effect to exercise-based therapy in the treatment of injured skeletal muscle. This study demonstrates the efficacy of an early active rehabilitation protocol or single intramuscular PRP injection on muscle recovery. The data also reveal that the outcome of the early active rehabilitation is adversely affected by the PRP injection when the two therapies are combined, and this could explain why PRP therapies have failed in randomized clinical trials where the athletes have adhered to postinjection rehabilitation protocols based on the principle of early, active mobilization.
Effect of depressor septi nasi muscle activity on nasal lengthening with time.
Beiraghi-Toosi, Arash; Rezaei, Ezzatollah; Jabbari Nooghabi, Mehdi; Izadpanah, Shahram
2013-10-01
The depressor septi nasi (DSN) muscle is an important muscle in nose dynamics. Its hyperactivity causes smile deformity including nasal tip depression. The nasal tip of individuals with a hyperactive DSN muscle depresses repeatedly while they are speaking and smiling. This may result in nasal lengthening as they age. Pairs of cases consisting of a child and one of his or her parents were studied in two groups: case group (with DSN muscle hyperactivity) and the control group (with DSN muscle inactivity in both child and parent). Nasal length from nasion to tip and facial length from nasion to menton were measured during repose and during smiling. This study investigated 80 pairs of children and parents. In both groups, a significant linear correlation between the nasal length of the parent and the child was found. In both groups (case and control), the nasal length of the child differed significantly from that of the parent. The increase in the nasal length of the parents compared with the children was greater in the control group. This study demonstrated that nasal length increases with age and that DSN muscle hyperactivity is not an effective factor in this increase. This unpredictable result may affect the presumption that patients with DSN muscle hyperactivity will have longer noses in the future. Long-term prospective studies investigating cohort groups are required to clarify the variables affecting nasal lengthening with aging, and interventional studies are needed to examine the effects of DSN muscle resection on this phenomenon.
[Characteristics of opening movement in patients with unilateral mastication].
Jia, Ling; Wang, Yun; Wang, Mengya
2016-08-01
To analyze characteristics of mandibular movement in patients with unilateral mastication. Undergraduate students in oral medicine from Grade 2011 and 2012 in Wannan Medical College were enrolled for this study by cluster sampling method, which include 30 people with unilateral mastication and 30 people with bilateral mastication. The surface electromyogram (sEMG) of masseter muscle and anterovent of digastric muscle were recorded and the trajectory of mandibular incisor point was recorded simultaneously in the maximum opening and closing movement. The results were analyzed by SPSS 19.0 software. Average electrical peak of left anterior digastric muscle and right anterior digastric muscle in the unilateral chewing group was lower than that in the bilateral chewing group (P<0.05). The jaw tangent point trajectory was separate in the unilateral chewing group. There were significant differences at the opening type between the 2 groups. The vertical displacement and the sagittal displacement in the unilateral chewing group were significantly lower than those in the bilateral chewing group (P<0.01). There was significant positive correlation between the average peak potential of masseter muscle and displacement on the right side. Average electrical peak of left masseter muscle, left anterior digastric muscle, and right anterior digastric muscle decreases in the unilateral chewing group. Jaw tracking in most people deflects to the working side. Opening and closing jaw tracking is separate in 50% unilateral chewing individuals with the decreased opening degree. Unilateral chewing leads to changes in muscle performance accompanied by trajectory anomalies.
Nakagawa, Kazumasa; Maeda, Misako
2017-03-01
[Purpose] From the viewpoint of prevention of knee osteoarthritis, the aim of this study was to verify how muscle strength and joint laxity are related to knee osteoarthritis. [Subjects and Methods] The study subjects consisted of 90 community-dwelling elderly people aged more than 60 years (22 males, 68 females). Femorotibial angle alignment, knee joint laxity, knee extensors and flexor muscle strengths were measured in all subjects. In addition, the subjects were divided into four groups based on the presence of laxity and knee joint deformation, and the muscle strength values were compared. [Results] There was no significant difference in knee extensor muscle strength among the four groups. However, there was significant weakness of the knee flexor muscle in the group with deformation and laxity was compared with the group without deformation and laxity. [Conclusion] Decreased knee flexor muscle strengths may be involved in knee joint deformation. The importance of muscle strength balance was also considered.
Lee, Jeeyeon
2015-01-01
Background An acellular dermal matrix (ADM) is applied to release the surrounding muscles and prevent dislocation or rippling of the implant. We compared implant-based breast reconstruction using the latissimus dorsi (LD) muscle, referred to as an “LD muscle onlay patch,” with using an ADM. Method A total of 56 patients (60 breasts) underwent nipple sparing mastectomy with implant-based breast reconstruction using an ADM or LD muscle onlay patch. Cosmetic outcomes were assessed 4 weeks after chemotherapy or radiotherapy, and statistical analyses were performed. Results Mean surgical time and hospital stay were significantly longer in the LD muscle onlay patch group than the ADM group. However, there were no statistically significant differences between groups in postoperative complications. Cosmetic outcomes for breast symmetry and shape were higher in the LD muscle onlay patch group. Conclusions Implant-based breast reconstruction with an LD muscle onlay patch would be a feasible alternative to using an ADM. PMID:26161312
Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Kouzaki, Motoki; Gu, Ning; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko
2012-03-01
Skeletal muscles in animals with metabolic syndrome exhibit reduced oxidative capacity. We investigated the effects of running exercise on fiber characteristics, oxidative capacity, and mRNA levels in the soleus muscles of rats with metabolic syndrome [SHR/NDmcr-cp (cp/cp); CP]. We divided 5-week-old CP rats into non-exercise (CP) and exercise (CP-Ex) groups. Wistar-Kyoto rats (WKY) were used as the control group. CP-Ex rats were permitted voluntary exercise on running wheels for 10 weeks. Triglyceride levels were higher and adiponectin levels lower in the CP and CP-Ex groups than in the WKY group. However, triglyceride levels were lower and adiponectin levels higher in the CP-Ex group than in the CP group. The soleus muscles in CP-Ex rats contained only high-oxidative type I fibers, whereas those in WKY and CP rats contained type I, IIA, and IIC fibers. Muscle succinate dehydrogenase (SDH) activity was higher in the CP-Ex group than in the CP group; there was no difference in SDH activity between the WKY and CP-Ex groups. Muscle proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels were higher in the CP-Ex group than in the CP group; there was no difference in PGC-1α mRNA levels between the WKY and CP-Ex groups. In CP-Ex rats, longer running distance was associated with increased muscle SDH activity and PGC-1α mRNA levels. We concluded that running exercise restored decreased muscle oxidative capacity and PGC-1α mRNA levels and improved hypertriglyceridemia in rats with metabolic syndrome.
Fish-oil supplementation enhances the effects of strength training in elderly women.
Rodacki, Cintia L N; Rodacki, André L F; Pereira, Gleber; Naliwaiko, Katya; Coelho, Isabela; Pequito, Daniele; Fernandes, Luiz Cléudio
2012-02-01
Muscle force and functional capacity generally decrease with aging in the older population, although this effect can be reversed, attenuated, or both through strength training. Fish oil (FO), which is rich in n-3 (omega-3) PUFAs, has been shown to play a role in the plasma membrane and cell function of muscles, which may enhance the benefits of training. The effect of strength training and FO supplementation on the neuromuscular system of the elderly has not been investigated. The objective was to investigate the chronic effect of FO supplementation and strength training on the neuromuscular system (muscle strength and functional capacity) of older women. Forty-five women (aged 64 ± 1.4 y) were randomly assigned to 3 groups. One group performed strength training only (ST group) for 90 d, whereas the others performed the same strength-training program and received FO supplementation (2 g/d) for 90 d (ST90 group) or for 150 d (ST150 group; supplemented 60 d before training). Muscle strength and functional capacity were assessed before and after the training period. No differences in the pretraining period were found between groups for any of the variables. The peak torque and rate of torque development for all muscles (knee flexor and extensor, plantar and dorsiflexor) increased from pre- to posttraining in all groups. However, the effect was greater in the ST90 and ST150 groups than in the ST group. The activation level and electromechanical delay of the muscles changed from pre- to posttraining only for the ST90 and ST150 groups. Chair-rising performance in the FO groups was higher than in the ST group. Strength training increased muscle strength in elderly women. The inclusion of FO supplementation caused greater improvements in muscle strength and functional capacity.
Winters, Michael V; Blake, Charles G; Trost, Jennifer S; Marcello-Brinker, Toni B; Lowe, Lynne M; Garber, Matthew B; Wainner, Robert S
2004-09-01
Active stretching is purported to stretch the shortened muscle and simultaneously strengthen the antagonist muscle. The purpose of this study was to determine whether active and passive stretching results in a difference between groups at improving hip extension range of motion in patients with hip flexor muscle tightness. Thirty-three patients with low back pain and lower-extremity injuries who showed decreased range of motion, presumably due to hip flexor muscle tightness, completed the study. The subjects, who had a mean age of 23.6 years (SD = 5.3, range = 18-25), were randomly assigned to either an active home stretching group or a passive home stretching group. Hip extension range of motion was measured with the subjects in the modified Thomas test position at baseline and 3 and 6 weeks after the start of the study. Range of motion in both groups improved over time, but there were no differences between groups. The results indicate that passive and active stretching are equally effective for increasing range of motion, presumably due to increased flexibility of tight hip flexor muscles. Whether the 2 methods equally improve flexibility of other muscle groups or whether active stretching improves the function of the antagonist muscles is not known. Active and passive stretching both appeared to increase the flexibility of tight hip flexor muscles in patients with musculoskeletal impairments.
Bahreinipour, Mohammad-Ali; Joukar, Siyavash; Hovanloo, Fariborz; Najafipour, Hamid; Naderi, Vida; Rajiamirhasani, Alireza; Esmaeili-Mahani, Saeed
2018-06-01
Existing evidence emphasize the role of mitochondrial dysfunction in sarcopenia which is revealed as loss of skeletal muscle mass and neuromuscular junction remodeling. We assessed the effect of low-intensity aerobic training along with blood flow restriction on muscle hypertrophy index, muscle-specific kinase (MuSK), a pivotal protein of the neuromuscular junction and Peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) in aged male rats. Animals groups were control (CTL), sham (Sh), leg blood flow restriction (BFR), exercise (Ex), sham + exercise (Sh + Ex), and BFR plus exercise (BFR + Ex) groups. The exercise groups were trained with low intensity exercise for 10 weeks. 48 h after the last training session, animals were sacrificed under anesthesia. Soleus and EDL muscles were isolated, hypertrophy index was estimated and MuSK and PGC-1α were measured by western blot method. Hypertrophy index enhanced in soleus and Extensor digitorum longus (EDL) muscles of BFR + Ex group (P < 0.01 versus CTL and Sh groups, and P < 0.001 versus other groups). The MuSK protein of soleus and EDL muscles increased in BFR + Ex group (P < 0.01 and P < 0.001, respectively) in comparison with CTL and Sh groups. In BFR + Ex group, the PGC-1α protein increased in both soleus and EDL (P < 0.001 compared to other groups). Also the PGC-1α of soleus muscle was higher in Ex and Sh + Ex groups versus CTL and Sh groups (P < 0.05). Findings suggest that low endurance exercise plus BFR improves the MuSK and hypertrophy index of both slow and fast muscles of elderly rats probably through the rise of PGC-1α expression. Copyright © 2018. Published by Elsevier Inc.
Kim, Min-hee; Yoo, Won-gyu; Choi, Bo-ram
2013-04-01
The present study was performed to examine lumbopelvic rotation and to identify asymmetry of the erector spinae and hamstring muscles in people with and without low back pain (LBP). The control group included 16 healthy subjects, the lumbar-flexion-rotation syndrome LBP group included 17 subjects, and the lumbar-extension-rotation syndrome LBP group included 14 subjects. Kinematic parameters were recorded using a 3D motion-capture system, and electromyography parameters were measured using a Noraxon TeleMyo 2400T. The two LBP subgroups showed significantly more lumbopelvic rotation during trunk flexion in standing than did the control group. The muscle activity and flexion-relaxation ratio asymmetries of the erector spinae muscles in the lumbar-flexion-rotation syndrome LBP group were significantly greater than those in the control group, and the muscle activity and flexion-relaxation ratio asymmetry of the hamstring muscles in the lumbar-extension-rotation syndrome LBP group were significantly greater than those in the control group. Imbalance or asymmetry of passive tissue could lead to asymmetry of muscular activation. Muscle imbalance can cause asymmetrical alignment or movements such as unexpected rotation. The results showed a greater increase in lumbopelvic rotation during trunk flexion in standing among the lumbar-flexion-rotation syndrome and lumbar-extension-rotation syndrome LBP groups compared with the control group. The differences between the two LBP subgroups may be a result of imbalance and asymmetry in erector spinae and hamstring muscle properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yildiz, Ahmet; Ozdemir, Ercan; Gulturk, Sefa; Erdal, Sena
2009-01-01
Creatine (Cr) has been shown to increase the total muscle mass. The purpose of this study was to investigate the effect of Cr supplementation on muscle morphology and swimming performance, using an animal model. Each rat was subjected to exercise 15-minute period daily for the 12 weeks. The rats were randomly divided into four groups: no Cr supplementation (CON), no Cr supplementation and incomplete food intake (lacking lysine and methionine in diet for rats) (INCO), Cr supplementation 1 g·kg-1·day-1 (CREAT-I) and Cr supplementation 2 g·kg-1·day-1 (CREAT-II). Three months later, all groups adult rats exercised in swimming pool chambers. Swimming time was recorded as minute for each rat. Following swimming performance period, the animals were killed by cervical dislocation and the gastrocnemius and diaphragm muscles were dissected. Serial slices of 5-7 μm were allocated paraffin wax and histochemical staining procedure of cross-sections was carried out with heamatoxylin-eosin technics. All groups gained body weight at the end of 12 weeks but there was no statistical difference among them. Swimming time values were statistical difference between CREAT-II and CON group as well as between CREAT-I and CON group (p < 0.05). In the INCO group was determined increased connective tissue cell of the muscle sample. In contrast, in the CREAT-I and CREAT-II group, the basic histological changes were large-scale muscle fibers and hypertrophic muscle cells. These results suggest that long-term creatine supplementation increased the number of muscle fibers and enhanced endurance swimming performance in rats. Key points There is no study about the effects of creatine long-term supplementation on muscle morphology and swimming performance in rats. Long-term creatine supplementation increase muscle hypertrophy (but not body weight) and enhance endurance swimming performance in rats. The quantitative analysis indicated that the number of muscle fibers per defined area increased in creatine supplementation groups. PMID:24149591
Luo, Yu-wen; Wang, Mei; Hu, Yu-he; Xu, Wen-hui; Zhou, Lu-qian; Chen, Rong-chang; Chen, Xin
2017-01-01
Background Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Materials and methods Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Results Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group (P<0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPImax [maximal inspiratory pressure] 5.20±0.89 cmH2O vs 1.32±0.91 cmH2O; P<0.05). However, there were no significant differences in the other indices between the two groups (P>0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness (P>0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program (P>0.05). Conclusion Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT. PMID:28919733
Wang, Kai; Zeng, Guang-Qiao; Li, Rui; Luo, Yu-Wen; Wang, Mei; Hu, Yu-He; Xu, Wen-Hui; Zhou, Lu-Qian; Chen, Rong-Chang; Chen, Xin
2017-01-01
Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group ( P <0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPI max [maximal inspiratory pressure] 5.20±0.89 cmH 2 O vs 1.32±0.91 cmH 2 O; P <0.05). However, there were no significant differences in the other indices between the two groups ( P >0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness ( P >0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program ( P >0.05). Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT.
Sharifah Maimunah, S M P; Hashim, H A
2016-02-01
This study compares two versions of progressive muscle relaxation (PMR) training (7 and 16 muscle groups) on oxygen consumption (VO2), heart rates, rating of perceived exertion and choice reaction time. Football (soccer) players (N = 26; M age = 13.4 yr., SD = 0.5) were randomly assigned to either 7 muscle groups PMR, 16 muscle groups PMR, or a control group. PMR training requires the participants to tense a muscle, hold the muscle contraction, and then relax it. Measurement was conducted prior to and after the completion of 12 sessions of PMR. The dependent variables were measured following four bouts of intermittent exercise consisting of 12 min. of running at 60% VO2max for 10 min. followed by running at 90% VO2max for 2 min. with a 3-min. rest for each bout. Lower VO2, heart rate, perceived exertion, and quicker reaction time were expected in both relaxation groups compared to the control group. The results revealed a significant reduction in heart rates and choice reaction time for both relaxation groups, but the longer version produced significantly quicker choice reaction time. © The Author(s) 2016.
ERIC Educational Resources Information Center
Waninge, A.; Rook, R. A.; Dijkhuizen, A.; Gielen, E.; van der Schans, C. P.
2011-01-01
Caregivers of persons with profound intellectual and multiple disabilities (PIMD) often describe the quality of the daily movements of these persons in terms of flexibility or stiffness. Objective outcome measures for flexibility and stiffness are muscle tone or level of spasticity. Two instruments used to grade muscle tone and spasticity are the…
Chen, Wen-Chun; Chu, Hsin; Lu, Ru-Band; Chou, Yuan-Hwa; Chen, Chung-Hua; Chang, Yue-Cune; O'Brien, Anthony Paul; Chou, Kuei-Ru
2009-08-01
The objective of this study was to examine the efficacy of progressive muscle relaxation training on anxiety in patients with acute schizophrenia. Many empirical studies have found progressive muscle relaxation training beneficial in reducing the psychological effects of anxiety. Progressive muscle relaxation training is also effective in reducing the distress symptoms associated with the symptomatology of schizophrenia. An experimental randomised controlled trial using repeated measures. The study was designed to examine the effects of progressive muscle relaxation training on patients diagnosed with schizophrenia. Study participants were acute psychiatric inpatients in Taiwan. Eighteen patients were block randomised and then assigned to an experimental or control group. The experimental group received progressive muscle relaxation training and the control group received a placebo intervention. Results from the Beck anxiety inventory were compared between groups as a pretest before intervention, on day 11 of intervention and one week post-test after the intervention was completed. Changes in finger temperature were measured throughout the experiment. The degree of anxiety improvement was significantly higher in the progressive muscle relaxation training group than in the control group after progressive muscle relaxation training intervention (p < 0.0001) and at follow-up (p = 0.0446; the mean BAI score fell from 16.4 pretest to -5.8 post-test. After adjusting for the change in patient finger temperature, the mean change in temperature was significantly different between the two patient groups. The average body temperature increased significantly after applying the progressive muscle relaxation training to patients with schizophrenia. This study demonstrated that progressive muscle relaxation training can effectively alleviate anxiety in patients with schizophrenia. Progressive muscle relaxation training is potentially an effective nursing intervention in the reduction of anxiety in patients diagnosed with schizophrenia, depending on the quality of their mental status at the time of intervention. Progressive muscle relaxation training is a useful intervention as it is proven to reduce anxiety levels across a spectrum of psychiatric disorders.
van Dijk, J P; Eiglsperger, U; Hellmann, D; Giannakopoulos, N N; McGill, K C; Schindler, H J; Lapatki, B G
2016-09-01
To study motor unit activity in the medio-lateral extension of the masseter using an adapted scanning EMG technique that allows studying the territories of multiple motor units (MUs) in one scan. We studied the m. masseter of 10 healthy volunteers in whom two scans were performed. A monopolar scanning needle and two pairs of fine-wire electrodes were inserted into the belly of the muscle. The signals of the fine wire electrodes were decomposed into the contribution of single MUs and used as a trigger for the scanning needle. In this manner multiple MU territory scans were obtained simultaneously. We determined 161 MU territories. The maximum number of territories obtained in one scan was 15. The median territory size was 4.0mm. Larger and smaller MU territories were found throughout the muscle. The presented technique showed its feasibility in obtaining multiple MU territories in one scan. MUs were active throughout the depth of the muscle. The distribution of electrical and anatomical size of MUs substantiates the heterogeneous distribution of MUs throughout the muscle volume. This distributed activity may be of functional significance for the stabilization of the muscle during force generation. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.
Numata, Hitoaki; Nakase, Junsuke; Inaki, Anri; Mochizuki, Takafumi; Oshima, Takeshi; Takata, Yasushi; Kinuya, Seigo; Tsuchiya, Hiroyuki
2016-01-01
Lower-extremity muscle weakness in athletes after lower limb trauma or surgery can hinder their return to sports, and the associated muscle atrophy may lead to deterioration in performance after returning to sports. Recently, belt electrode skeletal muscle electrical stimulation (B-SES) which can contract all the lower limb skeletal muscles simultaneously was developed. However, no study has evaluated skeletal muscle activity with B-SES. Since only superficial muscles as well as a limited number of muscles can be investigated using electromyography, we investigated whether positron emission tomography (PET) can evaluate the activity of all the skeletal muscles in the body simultaneously. The purpose of this study was to evaluate the effectiveness of the B-SES system using PET. Twelve healthy males (mean age, 24.3 years) were divided into two groups. The subjects in the control group remained in a sitting position for 10 min, and [(18)F] fluorodeoxyglucose (FDG) was intravenously injected. In the exercise group, subjects exercised using the B-SES system for 20 min daily for three consecutive days as a pre-test exercise. On the measurement day, they exercised for 10 min, received an injection of FDG, and exercised for another 10 min. PET-computed tomography images were obtained in each group 60 min after the FDG injection. Regions of interest were drawn in each lower-extremity muscle. We compared each skeletal muscle metabolism using the standardized uptake value. In the exercise group, FDG accumulation in the gluteus maximus, gluteus medius, gluteus minimus, quadriceps femoris, sartorius, and hamstrings was significantly higher than the muscles in the control (P < 0.05). Exercise with B-SES increased the skeletal muscle activity of the gluteal muscles as well as the most lower-extremity muscles simultaneously. Copyright © 2015 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Kang, Sung-Bum; Olson, Jennifer L; Atala, Anthony; Yoo, James J
2012-09-01
Tissue-engineered muscle has been proposed as a solution to repair volumetric muscle defects and to restore muscle function. To achieve functional recovery, engineered muscle tissue requires integration of the host nerve. In this study, we investigated whether denervated muscle, which is analogous to tissue-engineered muscle tissue, can be reinnervated and can recover muscle function using an in vivo model of denervation followed by neurotization. The outcomes of this investigation may provide insights on the ability of tissue-engineered muscle to integrate with the host nerve and acquire normal muscle function. Eighty Lewis rats were classified into three groups: a normal control group (n=16); a denervated group in which sciatic innervations to the gastrocnemius muscle were disrupted (n=32); and a transplantation group in which the denervated gastrocnemius was repaired with a common peroneal nerve graft into the muscle (n=32). Neurofunctional behavior, including extensor postural thrust (EPT), withdrawal reflex latency (WRL), and compound muscle action potential (CMAP), as well as histological evaluations using alpha-bungarotoxin and anti-NF-200 were performed at 2, 4, 8, and 12 weeks (n=8) after surgery. We found that EPT was improved by transplantation of the nerve grafts, but the EPT values in the transplanted animals at 12 weeks postsurgery were still significantly lower than those measured for the normal control group at 4 weeks (EPT, 155.0±38.9 vs. 26.3±13.8 g, p<0.001; WRL, 2.7±2.30 vs. 8.3±5.5 s, p=0.027). In addition, CMAP latency and amplitude significantly improved with time after surgery in the transplantation group (p<0.001, one-way analysis of variance), and at 12 weeks postsurgery, CMAP latency and amplitude were not statistically different from normal control values (latency, 0.9±0.0 vs. 1.3±0.7 ms, p=0.164; amplitude, 30.2±7.0 vs. 46.4±26.9 mV, p=0.184). Histologically, regeneration of neuromuscular junctions was seen in the transplantation group. This study indicates that transplanted nerve tissue is able to regenerate neuromuscular junctions within denervated muscle, and thus the muscle can recover partial function. However, the function of the denervated muscle remains in the subnormal range even at 12 weeks after direct nerve transplantation. These results suggest that tissue-engineered muscle, which is similarly denervated, could be innervated and become functional in vivo if it is properly integrated with the host nerve.
Muscle Degeneration Associated With Rotator Cuff Tendon Release and/or Denervation in Sheep.
Gerber, Christian; Meyer, Dominik C; Flück, Martin; Valdivieso, Paola; von Rechenberg, Brigitte; Benn, Mario C; Wieser, Karl
2017-03-01
The effect of an additional neurological injury (suprascapular nerve traction injury) to a chronically retracted rotator cuff muscle is incompletely understood and warrants clarification. To investigate the microscopic and macroscopic muscle degeneration patterns caused by tendon release and/or muscle denervation in a sheep rotator cuff model. Controlled laboratory study. Infraspinatus muscle biopsy specimens (for histological analysis) were obtained from 18 Swiss alpine sheep before and 16 weeks after release of the infraspinatus tendon (tenotomy [T] group; n = 6), transection of the suprascapular nerve (neurectomy [N] group; n = 6), or tendon release plus nerve transection (tenotomy + neurectomy [T&N] group; n = 6). Magnetic resonance imaging (MRI) and computed tomography (CT) were used to assess retraction (CT), muscle density (CT), volume (MRI T2), and fat fraction (MRI Dixon). Stiffness of the infraspinatus was measured with a spring scale. At 16 weeks postoperatively, the mean infraspinatus muscle volume had decreased significantly more after neurectomy (to 47% ± 7% of the original volume; P = .001) and tenotomy plus neurectomy (48% ± 13%; P = .005) than after tenotomy alone (78% ± 11%). Conversely, the mean amount of intramuscular fat (CT/MRI Dixon) was not significantly different in the 3 groups (T group: 50% ± 9%; N group: 40% ± 11%; T&N group: 46% ± 10%) after 16 weeks. The mean myotendinous retraction (CT) was not significantly different in the T and T&N groups (5.8 ± 1.0 cm and 6.4 ± 0.4 cm, respectively; P = .26). Stiffness was, however, most increased after additional neurectomy. In contrast to muscle changes after tendon release, denervation of the muscle led to a decrease in the pennation angle of lengthened muscle fibers, with a reduced mean cross-sectional area of pooled muscle fibers, a slow- to fast-type transformation, and an increase in the area percentage of hybrid fibers, leading to overall significantly greater atrophy of the corresponding muscle. Although it is unclear which experimental group (T or T&N) most accurately reflects the clinical scenario in a given case, these findings provide baseline information for clinical differentiation between muscle changes caused by denervation or rotator cuff tendon lesions. The findings of this study help to understand how and to which extent a neurological lesion of the supplying suprascapular nerve could influence the pattern of anatomic-physiological muscular changes after rotator cuff tendon tears.
Repeated blood flow restriction induces muscle fiber hypertrophy.
Sudo, Mizuki; Ando, Soichi; Kano, Yutaka
2017-02-01
We recently developed an animal model to investigate the effects of eccentric contraction (ECC) and blood flow restriction (BFR) on muscle tissue at the cellular level. This study clarified the effects of repeated BFR, ECC, and BFR combined with ECC (BFR+ECC) on muscle fiber hypertrophy. Male Wistar rats were assigned to 3 groups: BFR, ECC, and BFR+ECC. The contralateral leg in the BFR group served as a control (CONT). Muscle fiber cross-sectional area (CSA) of the tibialis anterior was determined after the respective treatments for 6 weeks. CSA was greater in the BFR+ECC group than in the CONT (P < 0.01) and ECC (P < 0.05) groups. CSA was greater in the BFR group than that in the CONT group (P < 0.05). These results suggest that repeated BFR alone as well as BFR+ECC induces muscle fiber hypertrophy at the cellular level. Muscle Nerve 55: 274-276, 2017. © 2016 Wiley Periodicals, Inc.
Unilateral microform cleft lip repair: application of muscle tension line group theory.
Yin, Ningbei; Song, Tao; Wu, Jiajun; Chen, Bo; Ma, Hengyuan; Zhao, Zhenmin; Wang, Yongqian; Li, Haidong; Wu, Di
2015-03-01
In microform cleft lip repair, reconstructing the elaborate structures is difficult. We describe a new technique of unilateral microform cleft lip repair that is based on the muscle tension line group theory. According to the shape of Cupid bow, a different small incision is used without creating an obvious cutaneous scar. First, the nasolabial muscle around the nasal floor (the first auxiliary tension line group) is reconstructed, and then the orbicularis oris muscle around the philtrum (the second auxiliary tension line group) is reconstructed based on the muscle tension line group theory. From June 2006 to June 2012, the technique was used in 263 unilateral microform cleft lip repairs. For 18 months, 212 patients were followed up. The appearance of the nasal alar, nasal sill, philtrum, and Cupid bow peak improved. Most patients had a satisfactory appearance. Based on the muscle tension line group theory, using this technique offers the ability to adduct the nasal alar effectively to form a good nasal sill and philtrum.
Baron, Stefan
2014-01-01
The aim of the study was the evaluation of myorelaxant action of bee venom (BV) ointment compared to placebo. Parallel group, randomized double blinded trial was performed. Experimental group patients were applying BV for 14 days, locally over masseter muscles, during 3-minute massage. Placebo group patients used vaseline for massage. Muscle tension was measured twice (TON1 and TON2) in rest muscle tonus (RMT) and maximal muscle contraction (MMC) on both sides, right and left, with Easy Train Myo EMG (Schwa-medico, Version 3.1). Reduction of muscle tonus was statistically relevant in BV group and irrelevant in placebo group. VAS scale reduction was statistically relevant in both groups: BV and placebo. Physiotherapy is an effective method for myofascial pain treatment, but 0,0005% BV ointment gets better relief in muscle tension reduction and analgesic effect. This trial is registered with Clinicaltrials.gov NCT02101632. PMID:25050337
Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu
2015-01-01
This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.
Stomatognathic function in Duchenne muscular dystrophy: a case-control study.
Ferreira, Bruno; Da Silva, Gabriel Pádua; Gonçalves, Camila Rosa; Arnoni, Veridiana Wanshi; Siéssere, Selma; Semprini, Marisa; Verri, Edson Donizetti; Chaves, Thais Cristina; Regalo, Simone Cecilio Hallak
2016-05-01
This study aimed to analyse electromyographic activity, masticatory efficiency, muscle thickness, and bite force of individuals with Duchenne muscular dystrophy (DMD). Forty males aged 4-15 years, 20 with DMD and 20 healthy age-, height-, and weight-matched controls, underwent electromyography and ultrasonography of temporalis, masseter, and sternocleidomastoid muscles during postural control of the jaw, mastication, and maximal molar bite force. The normalized electromyography signals showed higher activity in masseter and temporal muscles at rest, during protrusion, left and right laterality, and fatigue condition in the group with DMD than in the comparison group (p≤0.05). For masticatory efficiency of cycles, in analysis of non-habitual chewing of flavourless gum, and habitual chewing of peanuts and raisins, the group with DMD presented lower averages (p≤0.05). For the muscle thickness, the results showed that there was a lower muscle thickness in the group with DMD for all muscles during the rest and maximal voluntary contraction, except for masseter and sternocleidomastoid in the maximal voluntary contraction. In the maximal molar bite force, the group with DMD presented higher values for both sides than the comparison group (p≤0.05). Patients with DMD show muscle changes related to the stomatognathic system, in their activity, bite force, and muscle thickness. © 2016 Mac Keith Press.
Differences in muscle sympathetic nerve response to isometric exercise in different muscle groups.
Saito, M
1995-01-01
The aim of this study was to examine the effects of muscle fibre composition on muscle sympathetic nerve activity (MSNA) in response to isometric exercise. The MSNA, recorded from the tibial nerve by a microneurographic technique during contraction and following arterial occlusion, was compared in three different muscle groups: the forearm (handgrip), anterior tibialis (foot dorsal contraction), and soleus muscles (foot plantar contraction) contracted separately at intensities of 20%, 33% and 50% of the maximal voluntary force. The increases in MSNA relative to control levels during contraction and occlusion were significant at all contracting forces for handgrip and at 33% and 50% of maximal for dorsal contraction, but there were no significant changes, except during exercise at 50%, for plantar contraction. The size of the MSNA response correlated with the contraction force in all muscle groups. Pooling data for all contraction forces, there were different MSNA responses among muscle groups in contraction forces (P = 0.0001, two-way analysis of variance), and occlusion periods (P = 0.0001). The MSNA increases were in the following order of magnitude: handgrip, dorsal, and plantar contractions. The order of the fibre type composition in these three muscles is from equal numbers of types I and II fibres in the forearm to increasing number of type I fibres in the leg muscles. The different MSNA responses to the contraction of different muscle groups observed may have been due in part to muscle metaboreflex intensity influenced by their metabolic capacity which is related to by their metabolic capacity which is related to the fibre type.
Exercise training prevents skeletal muscle damage in an experimental sepsis model
Coelho, Carla Werlang; Jannig, Paulo R; de Souza, Arlete B; Fronza, Hercilio; Westphal, Glauco A; Petronilho, Fabricia; Constantino, Larissa; Dal-Pizzol, Felipe; Ferreira, Gabriela K; Streck, Emilio E; Silva, Eliezer
2013-01-01
OBJECTIVE: Oxidative stress plays an important role in skeletal muscle damage in sepsis. Aerobic exercise can decrease oxidative stress and enhance antioxidant defenses. Therefore, it was hypothesized that aerobic exercise training before a sepsis stimulus could attenuate skeletal muscle damage by modulating oxidative stress. Thus, the aim of this study was to evaluate the effects of aerobic physical preconditioning on the different mechanisms that are involved in sepsis-induced myopathy. METHODS: Male Wistar rats were randomly assigned to either the untrained or trained group. The exercise training protocol consisted of an eight-week treadmill program. After the training protocol, the animals from both groups were randomly assigned to either a sham group or a cecal ligation and perforation surgery group. Thus, the groups were as follows: sham, cecal ligation and perforation, sham trained, and cecal ligation and perforation trained. Five days after surgery, the animals were euthanized and their soleus and plantaris muscles were harvested. Fiber cross-sectional area, creatine kinase, thiobarbituric acid reactive species, carbonyl, catalase and superoxide dismutase activities were measured. RESULTS: The fiber cross-sectional area was smaller, and the creatine kinase, thiobarbituric acid reactive species and carbonyl levels were higher in both muscles in the cecal ligation and perforation group than in the sham and cecal ligation and perforation trained groups. The muscle superoxide dismutase activity was higher in the cecal ligation and perforation trained group than in the sham and cecal ligation and perforation groups. The muscle catalase activity was lower in the cecal ligation and perforation group than in the sham group. CONCLUSION: In summary, aerobic physical preconditioning prevents atrophy, lipid peroxidation and protein oxidation and improves superoxide dismutase activity in the skeletal muscles of septic rats. PMID:23420166
One session of partial-body cryotherapy (-110 °C) improves muscle damage recovery.
Ferreira-Junior, J B; Bottaro, M; Vieira, A; Siqueira, A F; Vieira, C A; Durigan, J L Q; Cadore, E L; Coelho, L G M; Simões, H G; Bemben, M G
2015-10-01
To evaluate the effects of a single session of partial-body cryotherapy (PBC) on muscle recovery, 26 young men performed a muscle-damaging protocol that consisted of five sets of 20 drop jumps with 2-min rest intervals between sets. After the exercise, the PBC group (n = 13) was exposed to 3 min of PBC at -110 °C, and the control group (n = 13) was exposed to 3 min at 21 °C. Anterior thigh muscle thickness, isometric peak torque, and muscle soreness of knee extensors were measured pre, post, 24, 48, 72, and 96 h following exercise. Peak torque did not return to baseline in control group (P < 0.05), whereas the PBC group recovered peak torques 96 h post exercise (P > 0.05). Peak torque was also higher after PBC at 72 and 96 h compared with control group (P < 0.05). Muscle thickness increased after 24 h in the control group (P < 0.05) and was significantly higher compared with the PBC group at 24 and 96 h (P < 0.05). Muscle soreness returned to baseline for the PBC group at 72 h compared with 96 h for controls. These results indicate that PBC after strenuous exercise may enhance recovery from muscle damage. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Abbs, J H; Gracco, V L
1984-04-01
The contribution of ascending afferents to the control of speech movement was evaluated by applying unanticipated loads to the lower lip during the generation of combined upper lip-lower lip speech gestures. To eliminate potential contamination due to anticipation or adaptation, loads were applied randomly on only 10-15% of the trials. Physical characteristics of the perturbations were within the normal range of forces and movements involved in natural lip actions for speech. Compensatory responses in multiple facial muscles and lip movements were observed the first time a load was introduced, and achievement of the multimovement speech goals was never disrupted by these perturbations. Muscle responses were seen in the lower lip muscles, implicating corrective, feedback processes. Additionally, compensatory responses to these lower lip loads were also observed in the independently controlled muscles of the upper lip, reflecting the parallel operation of open-loop, sensorimotor mechanisms. Compensatory responses from both the upper and lower lip muscles were observed with small (1 mm) as well as large (15 mm) perturbations. The latencies of these compensatory responses were not discernible by conventional ensemble averaging. Moreover, responses at latencies of lower brain stem-mediated reflexes (i.e., 10-18 ms) were not apparent with inspection of individual records. Response latencies were determined on individual loaded trials through the use of a computer algorithm that took into account the variability of electromyograms (EMG) among the control trials. These latency measures confirmed the absence of brain stem-mediated responses and yielded response latencies that ranged from 22 to 75 ms. Response latencies appeared to be influenced by the time relation between load onset and the initiation of muscle activation. Examination of muscle activity changes for individual loaded trials revealed complementary variations in the magnitude of responses among multiple muscles contributing to a movement compensation. These observations may have implications for limb movement control if multimovement speech gestures are considered analogous to a limb action requiring coordinated movements around multiple joints. In this context, these speech motor control data might be interpreted to suggest that for complex movements, both corrective feedback and open-loop predictive processes are operating, with the latter involved in the control of coordination among multiple movement subcomponents.
Muscle function in Turner syndrome: normal force but decreased power.
Soucek, Ondrej; Lebl, Jan; Matyskova, Jana; Snajderova, Marta; Kolouskova, Stanislava; Pruhova, Stepanka; Hlavka, Zdenek; Sumnik, Zdenek
2015-02-01
Although hypogonadism and SHOX gene haploinsufficiency likely cause the decreased bone mineral density and increased fracture rate associated with Turner syndrome (TS), the exact mechanism remains unclear. We tested the hypothesis that muscle dysfunction in patients with TS contributes to increased fracture risk. The secondary aim was to determine whether menarche, hormone therapy duration, positive fracture history and genotype influence muscle function parameters in patients with TS. A cross-sectional study was conducted in a single university hospital referral centre between March 2012 and October 2013. Sixty patients with TS (mean age of 13·7 ± 4·5 years) were compared to the control group of 432 healthy girls. A Leonardo Mechanograph(®) Ground Reaction Force Platform was used to assess muscle force (Fmax ) by the multiple one-legged hopping test and muscle power (Pmax ) by the single two-legged jump test. While the Fmax was normal (mean weight-specific Z-score of 0·11 ± 0·77, P = 0·27), the Pmax was decreased in patients with TS (Z-score of -0·93 ± 1·5, P < 0·001) compared with healthy controls. The muscle function parameters were not significantly influenced by menarcheal stage, hormone therapy duration, fracture history or genotype (linear regression adjusted for age, weight and height; P > 0·05 for all). Fmax , a principal determinant of bone strength, is normal in patients with TS. Previously described changes in bone quality and structure in TS are thus not likely related to inadequate mechanical loading but rather represent a primary bone deficit. A decreased Pmax indicates impaired muscle coordination in patients with TS. © 2014 John Wiley & Sons Ltd.
Padhi, Desmond; Higano, Celestia S; Shore, Neal D; Sieber, Paul; Rasmussen, Erik; Smith, Matthew R
2014-10-01
Myostatin is a negative regulator of muscle growth. Androgen deprivation (ADT) is associated with muscle loss and increased body fat, and currently available therapies have limited efficacy to treat this complication. The antimyostatin peptibody (AMG 745/Mu-S) markedly attenuated muscle loss and decreased fat accumulation in orchiectomized mice. The objective of the study was to evaluate the safety, pharmacokinetics, and muscle efficacy of AMG 745 in men undergoing ADT for nonmetastatic prostate cancer. This was a randomized, blinded, placebo-controlled, multiple-dose, phase 1 study of AMG 745 given for 28 days. The end point of percentage change from baseline in lean body mass (LBM) as assessed by dual x-ray absorptiometry was prespecified. Rates of adverse events (AMG 745 vs placebo) were the following: diarrhea (13% vs 9%), fatigue (13% vs 4%), contusion (10% vs 0%), and injection site bruising (6% vs 4%). Exposure increased linearly from 0.3 mg/kg to 3 mg/kg. AMG 745 significantly increased LBM in the 3 mg/kg vs the placebo groups on day 29 by 2.2% (±0.8% SE, P = 0.008); in exploratory fat mass analysis, a decrease of -2.5% (±1.0% SE, P = 0.021) was observed. Pharmacodynamic changes in muscle and fat were maintained at follow-up, 1 month after day 29. Four weekly s.c. doses of AMG 745 were well tolerated and were associated with increased LBM and decreased fat in the men receiving ADT for nonmetastatic prostate cancer. RESULTS support further investigation of AMG 745 in clinical settings with muscle loss and atrophy.
... become unhealthy or die, communication between your nervous system and muscles breaks down. As a result, your muscles weaken ... Amyotrophic lateral sclerosis Multiple sclerosis Myasthenia ... your genes. Sometimes, an immune system disorder can cause them. Most of them have ...
2014-06-01
brain tissue and skeletal muscles , is also discussed. transversely isotropic hyperelastic, two fiber families, nearly incompressible, anisotropic...comprised of fibrous structures, such as muscles , ligaments, tendons, intervertebral discs and the brain, often exhibit strong anisotropy along these fiber ...directions, e.g., collagen fibers of the cornea, striated muscle fibers in skeletal muscles , multiple axonal directions within the brain. In each case
Relative Activity of Abdominal Muscles during Commonly Prescribed Strengthening Exercises.
ERIC Educational Resources Information Center
Willett, Gilbert M.; Hyde, Jennifer E.; Uhrlaub, Michael B.; Wendel, Cara L.; Karst, Gregory M.
2001-01-01
Examined the relative electromyographic (EMG) activity of upper and lower rectus abdominis (LRA) and external oblique (EOA) muscles during five abdominal strengthening exercises. Isometric and dynamic EMG data indicated that abdominal strengthening exercises activated various abdominal muscle groups. For the LRA and EOA muscle groups, there were…
The effect of the inspiratory muscle training on functional ability in stroke patients.
Jung, Nam-Jin; Na, Sang-Su; Kim, Seung-Kyu; Hwangbo, Gak
2017-11-01
[Purpose] This study was to find out an inspiratory muscle training (IMT) program therapeutic effects on stroke patients' functional ability. [Subjects and Methods] Twenty stroke patients were assigned to one of two groups: inspiratory muscle training (n=10), and control (n=10), randomization. The inspiratory muscle training participants undertook an exercise program for 30 minute per times, 5 times a week for 6 weeks. The investigator measured the patients' trunk impairment scale (TIS) and 6 minute walking test (6MW) for functional ability before and after IMT. [Results] The TIS appeared some significant differences in both groups before and after the training. The 6MW test showed some significant differences in the inspiratory muscle training group, but didn't show any significant difference in the control group. And the differences in both groups after depending the inspiratory muscle training were significantly found in the tests of TIS and 6MW test [Conclusion] The results showed that the inspiratory muscle training in stroke patients are correlated with the trunk stability and locomotion ability, suggesting that physical therapist must take into consideration the inspiratory muscle training, as well as functional training to improve physical function in stroke patients.
Awa, Hiroko; Futamura, Akihiko; Higashiguchi, Takashi; Ito, Akihiro; Mori, Naoharu; Murai, Miyo; Ohara, Hiroshi; Chihara, Takeshi; Kaneko, Takaaki
2017-03-01
A functional dietary supplement (FDS) containing Coenzyme Q10, branched-chain amino acids and L-carnitine was administered to tumor-bearing mice, investigating its effects on tumor and muscle tissues. Experiment (A): B16 melanoma cells were implanted subcutaneously into the right side of the abdomen of 8- to 9-week-old C57BL/6J mice. The mice were divided into two groups: a FDS group that received oral administration of FDS (n=10), and a control group that received oral administration of glucose (n=10). The moribund condition was used as the endpoint, and median survival time was determined. Experiment (B): On day 21 after tumor implantation, tumors, soleus muscle, gastrocnemius muscle, and suprahyoid muscles were collected. Tumor and muscle weight and other aspects were evaluated in each group: FDS group (n=15) and control group (n=15). The median survival time was comparable (21 d in the FDS group vs. 18 d in the control group, p=0.30). However, cumulative food intake was significantly higher in the FDS group than the control group (p=0.011). Metastasis of melanoma to the lung was observed in the control group but not in the FDS group (p=0.043). The weight of the suprahyoid muscles was significantly higher in the FDS group than in the control group (p=0.0045). The weight of the tumor was significantly lower in the FDS group than in the control group (p=0.013). The results possibly suggest oral administration of FDS in tumor-bearing mice enhances the maintenance of suprahyoid muscles, resulting in an extended feeding period and suppression of tumor growth and metastasis.
Darques, J L; Jammes, Y
1997-03-07
Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.
Hara, Yuki; Nishiura, Yasumasa; Ochiai, Naoyuki; Murai, Shinji; Yamazaki, Masashi
2017-05-01
Needle electromyography provides essential information about the functional aspects of the muscle. But little attention has been given in the literature to needle electromyography examinations in carpal tunnel syndrome. We examined the relationship between preoperative needle electromyography findings and functional recovery of the abductor pollicis brevis (APB) muscle in severe carpal tunnel syndrome patients. The subjects of this study were 49 patients, 58 hands, who fit the following 5 criteria: (1) idiopathic carpal tunnel syndrome; (2) pre-op MMT grade of the APB muscle was M0 or M1; (3) APB-CMAP (compound muscle action potential) was not evoked in a median nerve conduction study; (4) needle electromyography of the APB muscle had been done; (5) underwent carpal tunnel release only. The patients were divided into two groups according to the results of pre-op needle electromyography: voluntary motor unit potential of the APB muscle was evoked [MUP(+) group]or not [MUP(-) group]. We evaluated APB muscle strength at one year after surgery, and patient satisfaction and functional evaluations (CTSI-FS) at more than one year after. The APB muscle recovery rate to M3 or higher was 100% in the MUP(+) group, and 57% in the MUP(-) group. Patient satisfaction was also high and functional recovery was sufficient in the MUP(+) group. No patients requested a second opponensplasty. Our findings suggest that post-op restoration of thumb function relates to whether or not the MUP ofthe APB muscle is evoked. Single-stage opponensplasty may be unnecessary if the MUP of the APB muscle is; evoked. Needle electromyography is therefore useful in consideration for opponensplasty. Level Ⅲ, case-control study. Copyright © 2017. Published by Elsevier B.V.
Masticatory biomechanics in the rabbit: a multi-body dynamics analysis.
Watson, Peter J; Gröning, Flora; Curtis, Neil; Fitton, Laura C; Herrel, Anthony; McCormack, Steven W; Fagan, Michael J
2014-10-06
Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments.
Masticatory biomechanics in the rabbit: a multi-body dynamics analysis
Watson, Peter J.; Gröning, Flora; Curtis, Neil; Fitton, Laura C.; Herrel, Anthony; McCormack, Steven W.; Fagan, Michael J.
2014-01-01
Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments. PMID:25121650
Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar; Berry, David A.
2014-01-01
The interactions of the intrinsic laryngeal muscles (ILMs) in controlling fundamental frequency (F0) and glottal posture remain unclear. In an in vivo canine model, three sets of intrinsic laryngeal muscles—the thyroarytenoid (TA), cricothyroid (CT), and lateral cricoarytenoid plus interarytenoid (LCA/IA) muscle complex—were independently and accurately stimulated in a graded manner using distal laryngeal nerve stimulation. Graded neuromuscular stimulation was used to independently activate these paired intrinsic laryngeal muscles over a range from threshold to maximal activation, to produce 320 distinct laryngeal phonatory postures. At phonation onset these activation conditions were evaluated in terms of their vocal fold strain, glottal width at the vocal processes, fundamental frequency (F0), subglottic pressure, and airflow. F0 ranged from 69 to 772 Hz and clustered into chest-like and falsetto-like groups. CT activation was always required to raise F0, but could also lower F0 at low TA and LCA/IA activation levels. Increasing TA activation first increased then decreased F0 in all CT and LCA/IA activation conditions. Increasing TA activation also facilitated production of high F0 at a lower onset pressure. Independent control of membranous (TA) and cartilaginous (LCA/IA) glottal closure enabled multiple pathways for F0 control via changes in glottal posture. PMID:25235003
Helgeland, Geir; Petzold, Axel; Hoff, Jana Midelfart; Gilhus, Nils Erik; Plant, Gordon T; Romi, Fredrik Robert
2010-08-25
Myasthenia gravis (MG) is an autoimmune disorder where patients develop autoantibodies towards skeletal muscle proteins (e.g. acetylcholine receptor and muscle specific kinase), causing weakness in striated muscles. Ocular MG (OMG) represents a subtype of (MG) affecting only the periocular muscles. The pathogenesis of this phenotype remains unclear. Heat Shock Protein 70 (Hsp70) plays a role in immune regulation. Antibodies against this protein are associated with several autoimmune diseases, and its biological significance has been shown in vivo. We have therefore examined the concentration of anti-Hsp70 antibodies in sera from 35 OMG patients and 94 patients with generalized MG (GMG) using ELISA assays. The antibody concentrations were compared to those in patients with multiple sclerosis (MS), Guillain-Barré syndrome (GBS) and to healthy controls. MG patients had significantly higher anti-Hsp70 antibody concentrations than both MS patients and healthy controls. GBS patients had higher antibody levels than all other groups. No difference in antibody levels was found when comparing OMG and GMG. Our results suggest that patients with MG and GBS have a previous or current increased exposure to Hsp70 antigens. The similarity between GMG and OMG strengthens the hypothesis that OMG represents a systemic disease, similar to GMG. Copyright 2010 Elsevier B.V. All rights reserved.
Wong, Kari E.; Mikus, Catherine R.; Slentz, Dorothy H.; Seiler, Sarah E.; DeBalsi, Karen L.; Ilkayeva, Olga R.; Crain, Karen I.; Kinter, Michael T.; Kien, C. Lawrence; Stevens, Robert D.
2015-01-01
This study used mice with muscle-specific overexpression of PGC-1α, a transcriptional coactivator that promotes mitochondrial biogenesis, to determine whether increased oxidative potential facilitates metabolic improvements in response to lifestyle modification. MCK-PGC1α mice and nontransgenic (NT) littermates were fed a high-fat diet (HFD) for 10 weeks, followed by stepwise exposures to voluntary wheel running (HFD+Ex) and then 25% caloric restriction with exercise (Ex/CR), each for an additional 10 weeks with continued HFD. Running and CR improved weight and glucose control similarly in MCK-PGC1α and NT mice. Sedentary MCK-PGC1α mice were more susceptible to diet-induced glucose intolerance, and insulin action measured in isolated skeletal muscles remained lower in the transgenic compared with the NT group, even after Ex/CR. Comprehensive profiling of >200 metabolites and lipid intermediates revealed dramatic group-specific responses to the intervention but did not produce a lead candidate that tracked with changes in glucose tolerance irrespective of genotype. Instead, principal components analysis identified a chemically diverse metabolite cluster that correlated with multiple measures of insulin responsiveness. These findings challenge the notion that increased oxidative capacity defends whole-body energy homeostasis and suggest that the interplay between mitochondrial performance, lipotoxicity, and insulin action is more complex than previously proposed. PMID:25422105
Mickleborough, Timothy D; Sinex, Jacob A; Platt, David; Chapman, Robert F; Hirt, Molly
2015-01-01
The purpose of the present study was to evaluate the effects of PCSO-524®, a marine oil lipid and n-3 LC PUFA blend, derived from New Zealand green- lipped mussel (Perna canaliculus), on markers of muscle damage and inflammation following muscle damaging exercise in untrained men. Thirty two untrained male subjects were randomly assigned to consume 1200 mg/d of PCSO- 524® (a green-lipped mussel oil blend) or placebo for 26 d prior to muscle damaging exercise (downhill running), and continued for 96 h following the muscle damaging exercise bout. Blood markers of muscle damage (skeletal muscle slow troponin I, sTnI; myoglobin, Mb; creatine kinase, CK), and inflammation (tumor necrosis factor, TNF-α), and functional measures of muscle damage (delayed onset muscle soreness, DOMS; pressure pain threshold, PPT; knee extensor joint range of motion, ROM; isometric torque, MVC) were assessed pre- supplementation (baseline), and multiple time points post-supplementation (before and after muscle damaging exercise). At baseline and 24 h following muscle damaging exercise peripheral fatigue was assessed via changes in potentiated quadriceps twitch force (∆Qtw,pot) from pre- to post-exhaustive cycling ergometer test in response to supra-maximal femoral nerve stimulation. Compared to placebo, supplementation with the green-lipped mussel oil blend significantly attenuated (p < 0.05) sTnI and TNF-α at 2, 24, 48, 72 and 96 h., Mb at 24, 48, 72, 96 h., and CK-MM at all-time points following muscle damaging exercise, significantly reduced (p < 0.05) DOMS at 72 and 96 h post-muscle damaging exercise, and resulted in significantly less strength loss (MVC) and provided a protective effect against joint ROM loss at 96 h post- muscle damaging exercise. At 24 h after muscle damaging exercise perceived pain was significantly greater (p < 0.05) compared to baseline in the placebo group only. Following muscle damaging exercise ∆Qtw,pot was significantly less (p < 0.05) on the green-lipped mussel oil blend compared to placebo. Supplementation with a marine oil lipid and n-3 LC PUFA blend (PCSO-524®), derived from the New Zealand green lipped mussel, may represent a useful therapeutic agent for attenuating muscle damage and inflammation following muscle damaging exercise.
Kresta, Julie Y; Oliver, Jonathan M; Jagim, Andrew R; Fluckey, James; Riechman, Steven; Kelly, Katherine; Meininger, Cynthia; Mertens-Talcott, Susanne U; Rasmussen, Christopher; Kreider, Richard B
2014-01-01
The purpose of this study was to examine the short-term and chronic effects of β-ALA supplementation with and without creatine monohydrate on body composition, aerobic and anaerobic exercise performance, and muscle carnosine and creatine levels in college-aged recreationally active females. Thirty-two females were randomized in a double-blind, placebo-controlled manner into one of four supplementation groups: β-ALA only (BA, n = 8), creatine only (CRE, n = 8), β-ALA and creatine combined (BAC, n = 9) and placebo (PLA, n = 7). Participants supplemented for four weeks included a loading phase for the creatine for week 1 of 0.3 g/kg of body weight and a maintenance phase for weeks 2-4 of 0.1 g/kg of body weight, with or without a continuous dose of β-ALA of 0.1 g/kg of body weight with doses rounded to the nearest 800 mg capsule providing an average of 6.1 ± 0.7 g/day of β-ALA. Participants reported for testing at baseline, day 7 and day 28. Testing sessions consisted of obtaining a resting muscle biopsy of the vastus lateralis, body composition measurements, performing a graded exercise test on the cycle ergometer for VO2peak with lactate threshold determination, and multiple Wingate anaerobic capacity tests. Although mean changes were consistent with prior studies and large effect sizes were noted, no significant differences were observed among groups in changes in muscle carnosine levels (BA 35.3 ± 45; BAC 42.5 ± 99; CRE 0.72 ± 27; PLA 13.9 ± 44%, p = 0.59). Similarly, although changes in muscle phosphagen levels after one week of supplementation were consistent with prior reports and large effect sizes were seen, no statistically significant effects were observed among groups in changes in muscle phosphagen levels and the impact of CRE supplementation appeared to diminish during the maintenance phase. Additionally, significant time × group × Wingate interactions were observed among groups for repeated sprint peak power normalized to bodyweight (p = 0.02) and rate of fatigue (p = 0.04). Results of the present study did not reveal any consistent additive benefits of BA and CRE supplementation in recreationally active women.
Muscle-protective effects of Schisandrae Fructus extracts in old mice after chronic forced exercise.
Kim, Ki-Young; Ku, Sae-Kwang; Lee, Ki-Won; Song, Chang-Hyun; An, Won G
2018-02-15
Schisandrae Fructus (SF), the dried fruit of Schisandra chinensis (Turcz.) Baill., is a well-known traditional herb used in Asia for enhancing physical work capacity as well as providing anti-stress and anti-inflammatory effects. Extracts of SF (SFe) have also been reported to increase skeletal muscle mass and inhibit muscle atrophy. We examined whether SFe had muscle-protective effects in old mice after chronic forced exercises, and, if so, relevant mechanisms. Ten-month-old aged male mice were divided into six groups. One group received no forced swimming after oral administration of distilled water (Intact); the other groups received forced swimming after administration of distilled water (SW), oxymetholone (OXY), or SFe at 500, 250 and 125mg/kg (SFe500, SFe250, and SFe125, respectively). Forced swimming was conducted for 2min at 30min after oral administration; the treatment was repeated for 28 days. Muscle thickness, weight, lean proportion, and strength were examined. The sampled muscles were subjected to histopathological and biochemical analyses. Plasma was examined by biochemical analyses. The thicknesses of the calf muscle and the sampled gastrocnemius and soleus, protein proportion and muscle strength increased significantly in the SW group versus Intact, and they were further increased in the SFe and OXY groups versus SW. The forced swimming in the SW group upregulated mRNA expression related to protein synthesis (Akt1, PI3K) and muscle growth (A1R, TRPV4), while it downregulated mRNAs related to protein degradation (atrogin-1, MuRF1) and muscle growth inhibitor (myostatin, SIRT1). The detected upregulation and downregulation were enhanced in the SFe groups. In addition, the SFe administration inhibited lipid peroxidation and reactive oxygen species, and accelerated activities of endogenous anti-oxidants and anti-oxidant enzymes. Plasma biochemistry showed decreases in creatine, creatine kinase and LDH in the SFe groups versus SW, suggesting muscle-protective effects of SFe. In the SFe groups versus SW, histopathological analyses revealed an increase in myofibre diameter, and immunohistochemistry showed increases in myofibres immunoreactive for ATPase and decreases in myofibres for apoptosis markers (caspase-3, PARP) and oxidative stress markers (NT, 4HNE, iNOS). Oral administration of SFe, especially SFe500, enhanced exercise-induced adaptive muscle strengthening in aged mice after forced swimming through anti-apoptotic and anti-oxidant effects, mediated via modulation of gene expression related to muscle synthesis or degradation. These results suggest that SFe may be helpful in improvement various muscle disorders as an adjuvant therapy to exercise-based remedies. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Hufei; Liu, Xinhe; Jiang, Hongye; Liu, Zimeng; Zhang, Xu-Yu; Xie, Hong-Zhe
2016-01-01
Postlaparoscopic shoulder pain (PLSP) remains a common problem after laparoscopies. The aim of this study was to investigate the correlation between pressure pain threshold (PPT) of different muscles and PLSP after gynecologic laparoscopy, and to explore the effect of parecoxib, a cyclooxygenase-2 inhibitor, on the changes of PPT. The patients were randomly allocated into two groups; group P and group C. In group P, parecoxib 40 mg was intravenously infused at 30 minutes before surgery and 8 and 20 hours after surgery. In group C, normal saline was infused at the corresponding time point. PPT assessment was performed 1 day before surgery and at postoperative 24 hours by using a pressure algometer at bilateral shoulder muscles (levator scapulae and supraspinatus) and forearm (flexor carpi ulnaris). Meanwhile, bilateral shoulder pain was evaluated through visual analog scale score at 24 hours after surgery. Preoperative PPT level of the shoulder, but not of the forearm, was significantly and negatively correlated with the intensity of ipsilateral PLSP. In group C, PPT levels of shoulder muscles, but not of forearm muscles, decreased after laparoscopy at postoperative 24 hours. The use of parecoxib significantly improved the decline of PPT levels of bilateral shoulder muscles (all P <0.01). Meanwhile, parecoxib reduced the incidence of PLSP (group P: 45% vs group C: 83.3%; odds ratio: 0.164; 95% confidence interval: 0.07-0.382; P <0.001) and the intensity of bilateral shoulder pain (both P <0.01). Preoperative PPT levels of shoulder muscles are closely associated with the severity of shoulder pain after gynecologic laparoscopy. PPT levels of shoulder muscles, but not of forearm muscles, significantly decreased after surgery. Parecoxib improved the decrease of PPT and relieved PLSP.
Antoun, Ghadi; McMurray, Fiona; Thrush, A Brianne; Patten, David A; Peixoto, Alyssa C; Slack, Ruth S; McPherson, Ruth; Dent, Robert; Harper, Mary-Ellen
2015-12-01
Skeletal muscle mitochondrial dysfunction has been documented in patients with type 2 diabetes mellitus; however, specific respiratory defects and their mechanisms are poorly understood. The aim of the current study was to examine oxidative phosphorylation and electron transport chain (ETC) supercomplex assembly in rectus abdominis muscles of 10 obese diabetic and 10 obese non-diabetic individuals. Twenty obese women undergoing Roux-en-Y gastric bypass surgery were recruited for this study. Muscle samples were obtained intraoperatively and subdivided for multiple analyses, including high-resolution respirometry and assessment of supercomplex assembly. Clinical data obtained from referring physicians were correlated with laboratory findings. Participants in both groups were of a similar age, weight and BMI. Mitochondrial respiration rates were markedly reduced in diabetic vs non-diabetic patients. This defect was observed during maximal ADP-stimulated respiration in the presence of complex I-linked substrates and complex I- and II-linked substrates, and during maximal uncoupled respiration. There were no differences in fatty acid (octanoyl carnitine) supported respiration, leak respiration or isolated activity of cytochrome c oxidase. Intriguingly, significant correlations were found between glycated haemoglobin (HbA1c) levels and maximal respiration or respiration supported by complex I, complex I and II or fatty acid. In the muscle of diabetic patients, blue native gel electrophoresis revealed a striking decrease in complex I, III and IV containing ETC supercomplexes. These findings support the hypothesis that ETC supercomplex assembly may be an important underlying mechanism of muscle mitochondrial dysfunction in type 2 diabetes mellitus.
Furlanetto, Roberto; de Paula Souza, Aletéia; de Oliveira, Anselmo Alves; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Chica, Javier Emilio Lazo; Murta, Eddie Fernando Candido; Orsatti, Fábio Lera
2016-12-01
We studied the effect of resistance exercise (RE) on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF). Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams) were randomly allocated into five groups: control group (CT-Sham; n = 6); group with rheumatoid arthritis (RA; n = 6); group with rheumatoid arthritis subjected to RE (RAEX; n = 6); ovariectomy group with rheumatoid arthritis (RAOV; n = 6); and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6). After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA) of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV), but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1). However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF.
Furlanetto, Roberto; de Paula Souza, Aletéia; de Oliveira, Anselmo Alves; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Chica, Javier Emilio Lazo; Murta, Eddie Fernando Candido
2017-01-01
Objective We studied the effect of resistance exercise (RE) on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF). Material and methods Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams) were randomly allocated into five groups: control group (CT-Sham; n = 6); group with rheumatoid arthritis (RA; n = 6); group with rheumatoid arthritis subjected to RE (RAEX; n = 6); ovariectomy group with rheumatoid arthritis (RAOV; n = 6); and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6). After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA) of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV), but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1). However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF. PMID:28250722
Kobayashi, Makoto; Ota, Shusuke; Terada, Satoshi; Kawakami, Yohei; Otsuka, Takanobu; Fu, Freddie H; Huard, Johnny
2016-12-01
Although muscle injuries tend to heal uneventfully in most cases, incomplete functional recovery commonly occurs as a result of scar tissue formation at the site of injury, even after treatment with muscle-derived stem cells (MDSCs). The transplantation of MDSCs in the presence of a transforming growth factor β1 (TGF-β1) antagonist (losartan) would result in decreased scar tissue formation and enhance muscle regeneration after contusion injuries in a mouse model. Controlled laboratory study. An animal model of muscle contusion was developed using the tibialis anterior muscle in 48 healthy mice at 8 to 10 weeks of age. After sustaining muscle contusion injuries, the mice were divided into 4 groups: (1) saline injection group (control group; n = 15), (2) MDSC transplantation group (MDSC group; n = 15), (3) MDSC transplantation plus oral losartan group (MDSC/losartan group; n = 15), and (4) healthy uninjured group (healthy group; n = 3). Losartan was administrated systemically beginning 3 days after injury and continued until the designated endpoint (1, 2, or 4 weeks after injury). MDSCs were transplanted 4 days after injury. Muscle regeneration and fibrotic scar formation were evaluated by histology, and the expression of follistatin, MyoD, Smad7, and Smad2/3 were analyzed by immunohistochemistry and reverse transcription polymerase chain reaction analysis. Functional recovery was measured via electrical stimulation of the peroneal nerve. When compared with MDSC transplantation alone, MDSC/losartan treatment resulted in significantly decreased scar formation, an increase in the number of regenerating myofibers, and improved functional recovery after muscle contusions. In support of these findings, the expression levels of Smad7 and MyoD were significantly increased in the group treated with both MDSCs and losartan. When compared with MDSCs alone, the simultaneous treatment of muscle contusions with MDSCs and losartan significantly reduced scar formation, increased the number of regenerating myofibers, and improved the functional recovery of muscle; these effects were caused, at least in part, by the losartan-mediated upregulation of Smad7 and MyoD. Increased levels of Smad7 and MyoD together reduced the deposition of scar tissue (via the inhibition of TGF-β1 by Smad7) and committed the transplanted MDSCs toward a myogenic lineage (via Smad7-regulated MyoD expression). The study findings contribute to the development of biological treatments to accelerate and improve the quality of muscle healing after injury. © 2016 The Author(s).
Azevedo, Daniel Camara; Melo, Raphael Marques; Alves Corrêa, Ricardo Vidal; Chalmers, Gordon
2011-08-01
The purpose of this study was to compare the acute effect of the contract-relax (CR) stretching technique on knee active range of motion (ROM) using target muscle contraction or an uninvolved muscle contraction. pre-test post-test control experimental design. Clinical research laboratory. Sixty healthy men were randomly assigned to one of three groups. The Contract-Relax group (CR) performed a traditional hamstring CR stretch, the Modified Contract-Relax group (MCR) performed hamstring CR stretching using contraction of an uninvolved muscle distant from the target muscle, and the Control group (CG) did not stretch. Active knee extension test was performed before and after the stretching procedure. Two-way between-within analysis of variance (ANOVA) results showed a significant interaction between group and pre-test to post-test (p < 0.001). Post-hoc examination of individual groups showed no significant change in ROM for the CG (0.8°, p = 0.084), and a significant moderate increase in ROM for both the CR (7.0°, p < 0.001) and MCR (7.0°, p < 0.001) groups. ROM gain following a CR PNF procedure is the same whether the target stretching muscle is contracted, or an uninvolved muscle is contracted. Copyright © 2011 Elsevier Ltd. All rights reserved.
2013-01-01
Background Studies have shown that ischemia-reperfusion (I/R) produces free radicals leading to lipid peroxidation and damage to skeletal muscle. The purposes of this study were 1) to assess the histological findings of gastrocnemius muscle (GC) and tibialis anterior muscle (TA) in I/R injury model mice, 2) to histologically analyze whether a single pretreatment of edaravone inhibits I/R injury to skeletal muscle in murine models and 3) to evaluate the effect of oxidative stress on these muscles. Methods C57BL6 mice were divided in two groups, with one group receiving 3 mg/kg intraperitoneal injections of edaravone (I/R + Ed group) and the other group receiving an identical amount of saline (I/R group) 30 minutes before ischemia. Edaravone (3-methy-1-pheny1-2-pyrazolin-5-one) is a potent and novel synthetic scavenger of free radicals. This drug inhibits both nonenzymatic lipid peroxidation and the lipoxygenase pathway, in addition to having potent antioxidant effects against ischemia reperfusion. The duration of the ischemia was 1.5 hours, with reperfusion at either 24 or 72 hours (3 days). Specimens of gastrocnemius (GC) and anterior tibialis (TA) were removed for histological evaluation and biochemical analysis. Results This model of I/R injury was highly reproducible in histologic muscle damage. In the histologic damage score, the mean muscle fibers and inflammatory cell infiltration in the I/R + Ed group were significantly less than the corresponding values of observed in the I/R group. Thus, pretreatment with edaravone was observed to have a protective effect on muscle damage after a period of I/R in mice. In addition, the mean muscle injury score in the I/R + Ed group was also significantly less than the I/R group. In the I/R + Ed group, the mean malondialdehyde (MDA) level was lower than in the I/R group and western-blotting revealed that edaravone pretreatment decreased the level of inducible nitric oxide synthase (iNOS) expression. Conclusions Edaravone was found to have a protective effect against I/R injury by directly inhibiting lipid peroxidation of the myocyte by free radicals in skeletal muscles and may also reduce the secondary edema and inflammatory infiltration incidence of oxidative stress on tissue. PMID:23530927
NASA Technical Reports Server (NTRS)
Caiozzo, V. J.; Haddad, F.; Lee, S.; Baker, M.; Baldwin, K. M.
2007-01-01
The goal of this project was to examine the effects of artificial gravity (2.5 g) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) control (C) group (N=7); and 2) an AG group (N=8), which was exposed to 21 days of bed-rest plus daily 1 hr exposures to AG (2.5 g). This particular experiment was part of an integrated AG Pilot Project sponsored by NASA/Johnson Space Center. The in vivo torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre and post treatment. Also, pre- and post treatment biopsy samples were obtained from both the vastus lateralis and soleus muscles and were used, in part, for a series of analyses on gene expression (mRNA abundance) of key factors implicated in the anabolic versus catabolic state of the muscle. Post/Pre toque-velocity determinations revealed greater decrements in knee extensor performance in the C versus AG group (P less than 0.04). The plantar flexor muscle group of the AG subjects actually demonstrated a net gain in torque-velocity relationship; whereas, in the C group the overall post/pre responses declined (AG vs C; P less than 0.001). Measurements of muscle fiber cross-sectional area (for both muscles) demonstrated a loss of approx. 20% in the C group while no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity (IGF-1, IGF-1 BP4, mechano growth factor, total RNA, and pro-collagen 3a) were higher in the AG group, whereas catabolic markers (myostatin and atrogen) were elevated in the C group. Importantly, these patterns were seen in both muscles. Based on these observations we conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading states. These findings also warrant further studies since it is likely that other robust paradigms of AG that employ various exercise strategies may be more effective in counteracting long duration unloading states as anticipated on the platforms of the Moon and Mars.
Brunnquell, Cláudia R; Vieira, Nichelle A; Sábio, Laís R; Sczepanski, Felipe; Cecchini, Alessandra L; Cecchini, Rubens; Guarnier, Flávia A
2015-06-01
The objective of this study was to investigate whether emphysema induced by elastase or papain triggers the same effects on skeletal muscle, related to oxidative stress and proteolysis, in hamsters. For this purpose, we evaluated pulmonary lesions, body weight, muscle loss, oxidative stress (thiobarbituric acid-reactive substances, total and oxidized glutathiones, chemiluminescence stimulated by tert-butyl hydroperoxide and carbonyl proteins), chymotrypsin-like and calpain-like proteolytic activities and muscle fibre cross-sectional area in the gastrocnemius muscles of emphysemic hamsters. Two groups of animals received different intratracheal inductions of experimental emphysema: by 40 mg/ml papain (EP) or 5.2 IU/100 g animal (EE) elastase (n = 10 animals/group). The control group received intratracheal instillation of 300 μl sterile NaCl 0.9%. Compared with the control group, the EP group had reduced muscle weight (18.34%) and the EE group had increased muscle weight (8.37%). Additionally, tert-butyl hydroperoxide-initiated chemiluminescence, carbonylated proteins and chymotrypsin-like proteolytic activity were all elevated in the EP group compared to the CS group, while total glutathione was decreased compared to the EE group. The EE group showed more fibres with increased cross-sectional areas and increased calpain-like activity. Together, these data show that elastase and papain, when used to induce experimental models of emphysema, lead to different speeds and types of adaptation. These findings provide more information on choosing a suitable experimental model for studying skeletal muscle adaptations in emphysema. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.
Cornfeld, Daniel; Israel, Gary; Detroy, Ezra; Bokhari, Jamal; Mojibian, Hamid
2011-03-01
The purpose of the study was to quantify the radiation dose reduction achieved when imaging the aorta using Adaptive Statistical Iterative Reconstruction (ASIR) and to determine if this has an effect on image quality. We retrospectively reviewed 31 CT angiography examinations of the thoracic and abdominal aorta performed with ASIR and 32 consecutive similar examinations performed without ASIR. Volume CT dose index (CTDI(vol)), dose-length product (DLP), aortic enhancement at multiple levels, aorta-to-muscle contrast-to-noise ratio at multiple levels, and subjective image quality were compared between the two groups. The mean CTDI(vol) and DLP were significantly lower for the studies performed with ASIR versus studies without ASIR (15.6 vs 21.5 mGy, with an average difference of 5.8 mGy [95% CI 2.3-9.4 mGy] and 818 vs 1075 mGy × cm with an average difference of -257 mGy × cm [54-460 mGy × cm], respectively). Aortic enhancement, aortic signal-to-noise ratio, and aortic to muscle contrast-to-noise ratio were not different between the two groups. Subjectively, one reviewer preferred the non-ASIR images and one found the images equivalent. Both reviewers believed the images were of diagnostic quality. A 29% decrease in CTDI(vol) and a 20% decrease in DLP were obtained in scans with ASIR compared with scans without ASIR, without a quantitative loss of image quality.
Kubsik, Anna; Klimkiewicz, Paulina; Klimkiewicz, Robert; Jankowska, Katarzyna; Jankowska, Agnieszka; Woldańska-Okońska, Marta
2014-07-01
Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system, which is characterized by diverse symptomatology. Most often affects people at a young age gradually leading to their disability. Looking for new therapies to alleviate neurological deficits caused by the disease. One of the alternative methods of therapy is high - tone power therapy. The article is a comparison of high-tone power therapy and kinesis in improving patients with multiple sclerosis. The aim of this study was to evaluate the effectiveness of high-tone power therapy and exercises in kinesis on the functional status of patients with multiple sclerosis. The study involved 20 patients with multiple sclerosis, both sexes, treated at the Department of Rehabilitation and Physical Medicine in Lodz. Patients were randomly divided into two groups studied. In group high-tone power therapy applied for 60 minutes, while in group II were used exercises for kinesis. Treatment time for both groups of patients was 15 days. To assess the functional status scale was used: Expanded Disability Status Scale of Kurtzke (EDSS), as well as by Barthel ADL Index. Assessment of quality of life were made using MSQOL Questionnaire-54. For the evaluation of gait and balance using Tinetti scale, and pain VAS rated, and Laitinen. Changes in muscle tone was assessed on the basis of the Ashworth scale. Both group I and II improved on scales conducted before and after therapy. In group I, in which the applied high-tone power therapy, reported statistically significant results in 9 out of 10 tested parameters, while in group II, which was used in the exercises in kinesis an improvement in 6 out of 10 tested parameters. Correlating the results of both the test groups in relation to each other did not show statistically significant differences. High-Tone Power Therapy beneficial effect on the functional status of patients with multiple sclerosis. Obtaining results in terms of number of tested parameters allows for the use of this therapy in the comprehensive improvement of patients with multiple sclerosis. Exercises from the scheme kinesis favorable impact on the functional status of patients with MS and are essential in the rehabilitation of these patients. In any group, no adverse effects were observed.
Effects of systemic hypoxia on human muscular adaptations to resistance exercise training
Kon, Michihiro; Ohiwa, Nao; Honda, Akiko; Matsubayashi, Takeo; Ikeda, Tatsuaki; Akimoto, Takayuki; Suzuki, Yasuhiro; Hirano, Yuichi; Russell, Aaron P.
2014-01-01
Abstract Hypoxia is an important modulator of endurance exercise‐induced oxidative adaptations in skeletal muscle. However, whether hypoxia affects resistance exercise‐induced muscle adaptations remains unknown. Here, we determined the effect of resistance exercise training under systemic hypoxia on muscular adaptations known to occur following both resistance and endurance exercise training, including muscle cross‐sectional area (CSA), one‐repetition maximum (1RM), muscular endurance, and makers of mitochondrial biogenesis and angiogenesis, such as peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), citrate synthase (CS) activity, nitric oxide synthase (NOS), vascular endothelial growth factor (VEGF), hypoxia‐inducible factor‐1 (HIF‐1), and capillary‐to‐fiber ratio. Sixteen healthy male subjects were randomly assigned to either a normoxic resistance training group (NRT, n =7) or a hypoxic (14.4% oxygen) resistance training group (HRT, n =9) and performed 8 weeks of resistance training. Blood and muscle biopsy samples were obtained before and after training. After training muscle CSA of the femoral region, 1RM for bench‐press and leg‐press, muscular endurance, and skeletal muscle VEGF protein levels significantly increased in both groups. The increase in muscular endurance was significantly higher in the HRT group. Plasma VEGF concentration and skeletal muscle capillary‐to‐fiber ratio were significantly higher in the HRT group than the NRT group following training. Our results suggest that, in addition to increases in muscle size and strength, HRT may also lead to increased muscular endurance and the promotion of angiogenesis in skeletal muscle. PMID:24907297
Belhaj, K; Meftah, S; Mahir, L; Lmidmani, F; Elfatimi, A
2016-11-01
This study aims to compare the isokinetic profile of hip abductor and adductor muscle groups between soccer players suffering from chronic adductor-related groin pain (ARGP), soccer players without ARGP and healthy volunteers from general population. Study included 36 male professional soccer players, who were randomly selected and followed-up over two years. Of the 21 soccer players eligible to participate in the study, 9 players went on to develop chronic ARGP and 12 players did not. Ten healthy male volunteers were randomly selected from the general population as a control group. Comparison between the abductor and adductor muscle peak torques for players with and without chronic ARGP found a statistically significant difference on the dominant and non-dominant sides (p < .005), with the abductor muscle significantly stronger than the adductor muscle. In the group of healthy volunteers, the adductor muscle groups were significantly stronger than the abductor muscle groups on both dominant and non-dominant sides (p < .05). For the group of players who had developed chronic ARGP, abductor-adductor torque ratios were significantly higher on the affected side (p = .008). The adductor muscle strength was also significantly decreased on the affected side. This imbalance appears to be a risk factor for adductor-related groin injury. Therefore, restoring the correct relationship between these two agonist and antagonist hip muscles may be an important preventative measure that should be a primary concern of training and rehabilitation programmes.
Effect of nandrolone decanoate on skeletal muscle repair.
Piovesan, R F; Fernandes, K P S; Alves, A N; Teixeira, V P; Silva Junior, J A; Martins, M D; Bussadori, S K; Albertini, R; Mesquita-Ferrari, R A
2013-01-01
This study analyzed the effect of nandrolone decanoate (ND) on muscle repair and the expression of myogenic regulatory factors following cryoinjury in rat skeletal muscle. Adult male Wistar rats were randomly divided into 4 groups: control group, sham group, cryoinjured group treated with ND and non-injured group treated with ND. Treatment consisted of subcutaneous injections of ND (5 mg/kg) twice a week. After sacrifice, the tibialis anterior muscle was removed for the isolation of total RNA and analysis of myogenic regulatory factors using real-time PCR as well as morphological analysis using the hematoxylin-eosin assay. There was a significant increase in MyoD mRNA after 7 days and in myogenin mRNA after 21 days in the cryoinjured ND group in comparison to other groups in the same period. The morphological analysis revealed no edema or myonecrosis after 7 days as well as no edema or inflammatory infiltrate after 14 days in the cryoinjured ND group. In conclusion the anabolic steroid nandrolone decanoate can modulate the muscle repair process in rats following cryoinjury by influencing the expression of regulatory myogenic factors and phases of muscle repair. © Georg Thieme Verlag KG Stuttgart · New York.
Effect of anabolic steroids on overloaded and overloaded suspended skeletal muscle
NASA Technical Reports Server (NTRS)
Tsika, R. W.; Herrick, R. E.; Baldwin, K. M.
1987-01-01
The effect of treatment with an anabolic steroid (nandrolone decanoate) on the muscle mass, the subcellular protein content, and the myosin patterns of normal overloaded and suspended overloaded plantaris muscle in female rat was investigated, dividing rats into six groups: normal control (NC), overload (OV), OV steroid (OV-S), normal suspended (N-sus), OV suspended (OV-sus), and OV suspended steroid (OV-sus-S). Relative to control values, overload produced a sparing effect on the muscle weight of the OV-sus group as well as increases of muscle weight of the OV group; increased protein content; and an increased expression of slow myosin in both OV and OV-sus groups. Steroid treatment of OV animals did not after the response of any parameter analyzed for the OV group, but in the OV-sus group steroid treatment induced increases in muscle weight and in protein content of the OV-sus-S group. The treatment did not alter the pattern of isomyosin expression observed in the OV or the OV-sus groups. These result suggest that the steroid acts synergistically with functional overload only under conditions in which the effect of overload is minimized by suspension.
Correlates of Physical Functioning and Performance Across the Spectrum of Kidney Function.
Segura-Ortí, E; Gordon, P L; Doyle, J W; Johansen, K L
2018-06-01
The aim of this study was to determine the extent to which poor physical functioning, low participation in physical activity, and muscle atrophy observed among patients on hemodialysis are evident in the earlier stages of chronic kidney disease (CKD). We enrolled adults in three groups: no CKD, Stages 3 to 4 CKD, and hemodialysis. Outcomes measured were physical activity, muscle size, thigh muscle strength, physical performance, and self-reported physical function. Patients with CKD had muscle area intermediate between the no CKD and hemodialysis groups, but they had low levels of physical activity that were similar to the hemodialysis group. Physical activity and muscle size were significantly associated with all outcomes. Kidney function was not significantly associated with muscle strength or physical performance after adjustment for physical activity and muscle size. In conclusion, interventions aimed to increase muscle mass and energy expenditure might have an impact on improving physical function of CKD patients.
NASA Technical Reports Server (NTRS)
Dudley, Gary A.; Duvoisin, Marc; Convertino, Victor A.; Buchanan, Paul
1989-01-01
The effect of a continuous 30-d-long 6-deg headdown bedrest (BR) on the force output ability of skeletal muscles was investigated in human subjects by measuring peak angle specific torque of the knee extensor (KE) and knee flexor (KF) muscle groups of both limbs during unilateral efforts at four speeds (0.52. 1.74, 2.97, and 4.19 rad/sec) during eccentric action. It was found that, for the KE muscle group, the headdown BR resulted in decreases, by 19 percent on the average, of peak angle specific torque; on the other hand, the strength of the KF muscles was not altered significantly. A post-BR recovery for 30 days was found to restore muscle strength of the KE muscle group to about 92 percent of the pre-BR values. Changes of strength were not affected by the type of speed of muscle action.
Ruan, Xiuhang; Xu, Guangqing; Gao, Cuihua; Liu, Lingling; Liu, Yanli; Jiang, Lisheng; Chen, Xin; Yu, Shaode; Jiang, Xinqing; Lan, Yue; Wei, Xinhua
2017-12-04
Theta burst stimulation (TBS) has emerged as a promising tool for the treatment of swallowing disorders; however, the short-term after-effects of brain activation induced by TBS remain unknown. Here, we measured the changes in spontaneous brain activation using the amplitude of low-frequency fluctuation (ALFF) approach in subjects who underwent different TBS protocols. Sixty right-handed healthy participants (male, n=30; female, n=30; mean age=23.5y) were recruited in this study and randomly assigned to three groups that underwent three different TBS protocols. In group 1, continuous TBS (cTBS) was positioned on the left hemisphere of the suprahyoid muscle cortex. For group 2, intermittent TBS (iTBS) was placed on the left hemisphere of the suprahyoid muscle cortex. Group 3 underwent combined cTBS/iTBS protocols in which iTBS on the right hemisphere was performed immediately after completing cTBS on the left suprahyoid muscle cortex. Compared to pre-TBS, post-cTBS showed decreased ALFF in the anterior cingulate gyrus (BA 32); post-iTBS induced an increase in ALFF in the bilateral precuneus (BA 7); and post-cTBS/iTBS induced a decrease in ALFF in the brainstem, and resulted in increased ALFF in the middle cingulate gyrus (BA 24) as well as the left precentral gyrus (BA 6). Compared the effect of post-TBS protocols, increased ALFF was found in left posterior cerebellum lobe and left inferior parietal lobule (BA 40) (post-cTBS vs post-iTBS), and decreased ALFF exhibited in paracentral lobule (BA 4) (post-iTBS vs post-cTBS/iTBS). These findings indicate that multiple brain areas involved in swallowing regulation after stimulation of TBS over the suprahyoid muscles. cTBS induces decreased after-effects while iTBS results in increased after-effects on spontaneous brain activation. Moreover, iTBS can eliminate the after-effects of cTBS applied on the contralateral swallowing cortex and alter the activity of contralateral motor cortex and brainstem. Our findings provide a novel evidence for the short-term effect of TBS on spontaneous brain activation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Halldorsson, Arnljotur Bjorn; Benedikz, Elisabet; Olafsson, Isleifur; Mogensen, Brynjolfur
2016-03-01
Overexertion and too much training are among the -multiple etiologies of rhabdomyolysis. Creatine kinase (CK) and myo-globine, released from skeletal muscle cells, are useful for diagnosis and follow-up. Acute kidney injury is a serious complication of myoglobinemia. Literature on exertional rhabdomyolysis in the general population is scarce. The aim of this study was to investigate the epidemiology of exertional rhabdomyolysis among patients diagnosed at Landspítali The National University Hospital of Iceland in 2008-2012. The study was retrospective and observational. All patients presenting with muscle pain after exertion and elevated creatine kinase >1000 IU/L, during the period from 1 January 2008 to 31 December 2012, were included. Patients with CK elevations secondary to causes other than exertion were excluded. Variables included: patient number and gender, CK-levels, date of hospital admission, cause of rhabdomyolysis, location of injured muscle groups, length of hospital stay, complications and means of fluid replacement. Population figures of the capital region were gathered from Statistics Iceland and information on sport practice in the capital region from The National Olympic and Sports Association of Iceland. Exertional rhabdomyolysis was diagnosed in 54 patients, 18 females (33,3%) and 36 males (66,7%), or 8,3% of rhabdomyolysis cases from all causes in the study period (648 cases). Incidence in the capital region was 5,0/100.000 inhabitants per year in the study period. Median age was 28 years and median CK-level was 24.132 IU/L. CK-levels were higher among females but the difference between genders was not significant. Muscle groups of the upper and lower extremities were most frequently affected (89%). Thirty patients received intravenous fluids. They had significantly higher CK values than other patients. One patient developed acute kidney injury. Information on sport practice and physical training in the capital region was not available. Exertional rhabdomyolysis is uncommon but mostly affects younger people. Information on the practice of exertion among males and females is not available but CK-levels were not significantly different between genders, age groups or different muscle groups. CK-levels were high but complications uncommon. Studies of exertional rhabdomyolysis in the general population are lacking. Rhabdomyolysis, exertion, sports, physical training, CK elevation. Correspondence: Brynjolfur Mogensen, brynmog@landspitali.is.
Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E
2016-10-01
We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with decompensated chronic heart failure. © The European Society of Cardiology 2016.
Wang, Rong; Xu, Xin
2015-12-01
To compare the effect of 2 methods of occlusion adjustment on occlusal balance and muscles of mastication in patients with dental implant restoration. Twenty patients, each with a single edentulous posterior dentition with no distal dentition were selected, and divided into 2 groups. Patients in group A underwent original occlusion adjustment method and patients in group B underwent occlusal plane reduction technique. Ankylos implants were implanted in the edentulous space in each patient and restored with fixed prosthodontics single unit crown. Occlusion was adjusted in each restoration accordingly. Electromyograms were conducted to determine the effect of adjustment methods on occlusion and muscles of mastication 3 months and 6 months after initial restoration and adjustment. Data was collected and measurements for balanced occlusal measuring standards were obtained, including central occlusion force (COF), asymmetry index of molar occlusal force(AMOF). Balanced muscles of mastication measuring standards were also obtained including measurements from electromyogram for the muscles of mastication and the anterior bundle of the temporalis muscle at the mandibular rest position, average electromyogram measurements of the anterior bundle of the temporalis muscle at the intercuspal position(ICP), Astot, masseter muscle asymmetry index, and anterior temporalis asymmetry index (ASTA). Statistical analysis was performed using Student 's t test with SPSS 18.0 software package. Three months after occlusion adjustment, parameters of the original occlusion adjustment method were significantly different between group A and group B in balanced occlusal measuring standards and balanced muscles of mastication measuring standards. Six months after occlusion adjustment, parameters of the original occlusion adjustment methods were significantly different between group A and group B in balanced muscles of mastication measuring standards, but was no significant difference in balanced occlusal measuring standards. Using occlusion plane reduction adjustment technique, it is possible to obtain occlusion index and muscles of mastication's electromyogram index similar to the opposite side's natural dentition in patients with single unit fix prosthodontics crown and single posterior edentulous dentition without distal dentitions.
Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.
Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry
2009-06-01
The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.
Ruet, Alexis; Durand, Marie Christine; Denys, Pierre; Lofaso, Frederic; Genet, François; Schnitzler, Alexis
2015-06-01
To characterize electromyographic abnormalities according to symptoms (asymptomatic, fatigue, pseudobotulism) reported 1 month after botulinum toxin injection. Retrospective, single-center study comparing single-fiber electromyography (SFEMG) in the extensor digitorum communis (EDC) or orbicularis oculi (OO) muscles. Hospital. Four groups of adults treated for spasticity or neurologic bladder hyperactivity (N=55): control group (asymptomatic patients: n=17), fatigue group (unusual fatigue with no weakness: n=15), pseudobotulism group (muscle weakness and/or visual disturbance: n=20), and botulism group (from intensive care unit of the same hospital: n=3). Not applicable. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers were compared between groups. SFEMG was abnormal for 17.6% of control patients and 75% of patients in the pseudobotulism group. There were no differences between the control and fatigue groups. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers of the EDC muscle were significantly higher in the pseudobotulism group than in the fatigue and control groups. There were no differences between groups for the OO muscle. The SFEMG results in the botulism group were qualitatively similar to those of the pseudobotulism group. SFEMG of the EDC muscle confirmed diffusion of the toxin into muscles distant from the injection site in the pseudobotulism group. SFEMG in the OO muscle is not useful for the diagnosis of diffusion. No major signs of diffusion of botulinum toxin type A were found away from the injection site in patients with fatigue but no motor weakness. Such fatigue may be related to other mechanisms. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Development of the shoulder girdle musculature.
Pu, Qin; Huang, Ruijin; Brand-Saberi, Beate
2016-03-01
The muscles of the shoulder region are important for movements of the upper limbs and for stabilizing the girdle elements by connecting them to the trunk. They have a triple embryonic origin. First, the branchiomeric shoulder girdle muscles (sternocleidomastoideus and trapezius muscles) develop from the occipital lateral plate mesoderm using Tbx1 over the course of this development. The second population of cells constitutes the superficial shoulder girdle muscles (pectoral and latissimus dorsi muscles), which are derived from the wing premuscle mass. This muscle group undergoes a two-step development, referred to as the "in-out" mechanism. Myogenic precursor cells first migrate anterogradely into the wing bud. Subsequently, they migrate in a retrograde manner from the wing premuscle mass to the trunk. SDF-1/CXCR4 signaling is involved in this outward migration. A third group of shoulder muscles are the rhomboidei and serratus anterior muscles, which are referred to as deep shoulder girdle muscles; they are thought to be derived from the myotomes. It is, however, not clear how myotome cells make contact to the scapula to form these two muscles. In this review, we discuss the development of the shoulder girdle muscle in relation to the different muscle groups. © 2015 Wiley Periodicals, Inc.
Kim, Seong-Gil; Lee, Jung-Ho
2015-01-01
This study aimed to investigate the effect of horse riding simulation (HRS) on balance and trunk muscle activation as well as to provide evidence of the therapeutic benefits of the exercise. Thirty elderly subjects were recruited from a medical care hospital and randomly divided into an experimental and a control group. The experimental group performed the HRS exercise for 20 min, 5 times a week, for 8 weeks, and conventional therapy was also provided as usual. The muscle activation and limits of stability (LOS) were measured. The LOS significantly increased in the HRS group (p<0.05) but not in the control group (p>0.05). The activation of all muscles significantly increased in the HRS group. However, in the control group, the muscle activations of the lateral low-back (external oblique and quadratus lumborum) and gluteus medius (GM) significantly decreased, and there was no significant difference in other muscles. After the intervention, the LOS and all muscle activations significantly increased in the HRS group compared with the control group. The results suggest that the HRS exercise is effective for reducing the overall risk of falling in the elderly. Thus, it is believed that horse riding exercise would help to increase dynamic stability and to prevent elderly people from falling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Hosoyama, Katsuhiro; Wakao, Shohei; Kushida, Yoshihiro; Ogura, Fumitaka; Maeda, Kay; Adachi, Osamu; Kawamoto, Shunsuke; Dezawa, Mari; Saiki, Yoshikatsu
2018-06-01
Aortic aneurysms result from the degradation of multiple components represented by endothelial cells, vascular smooth muscle cells, and elastic fibers. Cells that can replenish these components are desirable for cell-based therapy. Intravenously injected multilineage-differentiating stress-enduring (Muse) cells, endogenous nontumorigenic pluripotent-like stem cells, reportedly integrate into the damaged site and repair the tissue through spontaneous differentiation into tissue-compatible cells. We evaluated the therapeutic efficacy of Muse cells in a murine aortic aneurysm model. Human bone marrow Muse cells, isolated as stage-specific embryonic antigen-3 + from bone marrow mesenchymal stem cells, or non-Muse cells (stage-specific embryonic antigen-3 - cells in mesenchymal stem cells), bone marrow mesenchymal stem cells, or vehicle was intravenously injected at day 0, day 7, and 2 weeks (20,000 cells/injection) after inducing aortic aneurysms by periaortic incubation of CaCl 2 and elastase in severe combined immunodeficient mice. At 8 weeks, infusion of human Muse cells attenuated aneurysm dilation, and the aneurysmal size in the Muse group corresponded to approximately 62.5%, 55.6%, and 45.6% in the non-Muse, mesenchymal stem cell, and vehicle groups, respectively. Multiphoton laser confocal microscopy revealed that infused Muse cells migrated into aneurysmal tissue from the adventitial side and penetrated toward the luminal side. Histologic analysis demonstrated robust preservation of elastic fibers and spontaneous differentiation into endothelial cells and vascular smooth muscle cells. After intravenous injection, Muse cells homed and expanded to the aneurysm from the adventitial side. Subsequently, Muse cells differentiated spontaneously into vascular smooth muscle cells and endothelial cells, and elastic fibers were preserved. These Muse cell features together led to substantial attenuation of aneurysmal dilation. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
2011-07-28
the muscle through rotation of the micrometer head. Peak isometric con- tractile force was measured at optimal length with a 1200 ms train of 0.2 ms...LD muscle was 150.8– 4.8 mN/mm2, which was similar to that reported previously by our group.31 Maximal specific isometric force for the NR group one...99.2– 17.7 mN/mm2 at 2 months, with the latter being 66% of the native LD muscle isometric specific force. Isometric specific force of the R-S group
Hooijmans, M T; Doorenweerd, N; Baligand, C; Verschuuren, J J G M; Ronen, I; Niks, E H; Webb, A G; Kan, H E
2017-01-01
To assess the changes in phosphodiester (PDE)-levels, detected by 31P magnetic resonance spectroscopy (MRS), over 24-months to determine the potential of PDE as marker for muscle tissue changes in Duchenne Muscular Dystrophy (DMD) patients. Spatially resolved phosphorous datasets were acquired in the right lower leg of 18 DMD patients (range: 5-15.4 years) and 12 age-matched healthy controls (range: 5-14 years) at three time-points (baseline, 12-months, and 24-months) using a 7T MR-System (Philips Achieva). 3-point Dixon images were acquired at 3T (Philips Ingenia) to determine muscle fat fraction. Analyses were done for six muscles that represent different stages of muscle wasting. Differences between groups and time-points were assessed with non-parametric tests with correction for multiple comparisons. Coefficient of variance (CV) were determined for PDE in four healthy adult volunteers in high and low signal-to-noise ratio (SNR) datasets. PDE-levels were significantly higher (two-fold) in DMD patients compared to controls in all analyzed muscles at almost every time point and did not change over the study period. Fat fraction was significantly elevated in all muscles at all time points compared to healthy controls, and increased significantly over time, except in the tibialis posterior muscle. The mean within subject CV for PDE-levels was 4.3% in datasets with high SNR (>10:1) and 5.7% in datasets with low SNR. The stable two-fold increase in PDE-levels found in DMD patients in muscles with different levels of muscle wasting over 2-year time, including DMD patients as young as 5.5 years-old, suggests that PDE-levels may increase very rapidly early in the disease process and remain elevated thereafter. The low CV values in high and low SNR datasets show that PDE-levels can be accurately and reproducibly quantified in all conditions. Our data confirms the great potential of PDE as a marker for muscle tissue changes in DMD patients.
Doorenweerd, N.; Baligand, C.; Verschuuren, J. J. G. M.; Ronen, I.; Niks, E. H.; Webb, A. G.; Kan, H. E.
2017-01-01
Objectives To assess the changes in phosphodiester (PDE)-levels, detected by 31P magnetic resonance spectroscopy (MRS), over 24-months to determine the potential of PDE as marker for muscle tissue changes in Duchenne Muscular Dystrophy (DMD) patients. Methods Spatially resolved phosphorous datasets were acquired in the right lower leg of 18 DMD patients (range: 5–15.4 years) and 12 age-matched healthy controls (range: 5–14 years) at three time-points (baseline, 12-months, and 24-months) using a 7T MR-System (Philips Achieva). 3-point Dixon images were acquired at 3T (Philips Ingenia) to determine muscle fat fraction. Analyses were done for six muscles that represent different stages of muscle wasting. Differences between groups and time-points were assessed with non-parametric tests with correction for multiple comparisons. Coefficient of variance (CV) were determined for PDE in four healthy adult volunteers in high and low signal-to-noise ratio (SNR) datasets. Results PDE-levels were significantly higher (two-fold) in DMD patients compared to controls in all analyzed muscles at almost every time point and did not change over the study period. Fat fraction was significantly elevated in all muscles at all time points compared to healthy controls, and increased significantly over time, except in the tibialis posterior muscle. The mean within subject CV for PDE-levels was 4.3% in datasets with high SNR (>10:1) and 5.7% in datasets with low SNR. Discussion and conclusion The stable two-fold increase in PDE-levels found in DMD patients in muscles with different levels of muscle wasting over 2-year time, including DMD patients as young as 5.5 years-old, suggests that PDE-levels may increase very rapidly early in the disease process and remain elevated thereafter. The low CV values in high and low SNR datasets show that PDE-levels can be accurately and reproducibly quantified in all conditions. Our data confirms the great potential of PDE as a marker for muscle tissue changes in DMD patients. PMID:28763477
Bacle, Guillaume; Gregoire, Jean-Marc; Patat, Frédéric; Clavert, Philippe; de Pinieux, Gonzague; Laulan, Jacky; Lakhal, Walid; Favard, Luc
2017-02-01
Despite their functional importance, the infraspinatus (ISP) and teres minor (TM) muscles have been little investigated. This study aimed to describe the macroscopic morphology, innervation, and inter-relations of the ISP and TM muscles. Forty fresh cadaver dissections and histologic analysis were performed. Three groups of specimens were distinguished according to the rotator cuff tendon status: (1) intact rotator cuff; (2) supraspinatus tendon tears with intact ISP tendon; and (3) both supraspinatus and ISP tendons torn. Muscle fiber organization and muscle and tendon length were recorded. ISP and TM innervation and fiber structure were studied. ISP muscles were composed of three groups of fiber organized in two planes: two superficial groups, with mean pennation angles of, respectively, 27° ± 4° and 23° ± 3° with respect to the axis of the central tendon of the underlying group. TMs were thick fusiform muscles showing a parallel organization; 26 specimens (67 %) had aponeuroses isolating the TM, with a mean length of 5.2 ± 2.7 cm. Rotator cuff lesions were associated with relatively greater ISP tendon than muscle length. Innervation of the ISP muscle comprised 2-4 main branches from the suprascapular nerve and that of the TM 1 branch from the axillary nerve. ISP muscle body morphology derives from three groups of fibers in two planes. The TM has a parallel organization. Several nerve branches innervate the ISP muscle, whereas only one supplies the TM. The limits between the two muscles bodies consist of an aponeurotic fascia in two-thirds of cases.
Özengin, Nuriye; Ün Yıldırım, Necmiye; Duran, Bülent
2015-03-01
This study aimed to compare the effectiveness of stabilization exercises and pelvic floor muscle training in women with stage 1 and 2 pelvic organ prolapse. In a total 38 women with pelvic organ prolapse whose average age was 45.60 years, pelvic floor muscles were evaluated with electromyography, and prolapse with pelvic organ prolapse quantification system, and the quality of life with prolapse quality of life questionnaire. Afterwards, the subjects were divided into two groups; stabilization exercise group (n=19) and pelvic floor muscle training group (n=19). Stabilization exercise group were given training for 8 weeks, 3 times a week. Pelvic floor muscle training group were given eight-week home exercises. Each group was assessed before training and after eight weeks. An increase was found in the pelvic muscle activation response in the 2 groups (p≤0.05). There was no difference in EMG activity values between the groups (p>0.05). A difference was found in the values Aa, Ba and C in subjects of each group (p≤0.05), and the TVL, Ap, Bp and D values of subjects in pelvic floor muscle training group (p≤0.05) in the before and after pelvic organ prolapse quantification system assessment, however, no difference was found between the groups (p≤0.05). A positive difference was found in the effect of prolapse sub parameter in each of the two groups, and in general health perception sub parameter in subjects of stabilization exercise group (p<0.05) in the prolapse quality of life questionnaire. It was concluded that both training programs increased the pelvic floor muscle strength, provided a decline in prolapse stages. Stabilization exercise has increased general health perception unlike home training, thus, these exercises can be added to the treatment of women with prolapse.
Özengin, Nuriye; Ün Yıldırım, Necmiye; Duran, Bülent
2015-01-01
Objective: This study aimed to compare the effectiveness of stabilization exercises and pelvic floor muscle training in women with stage 1 and 2 pelvic organ prolapse. Materials and Methods: In a total 38 women with pelvic organ prolapse whose average age was 45.60 years, pelvic floor muscles were evaluated with electromyography, and prolapse with pelvic organ prolapse quantification system, and the quality of life with prolapse quality of life questionnaire. Afterwards, the subjects were divided into two groups; stabilization exercise group (n=19) and pelvic floor muscle training group (n=19). Stabilization exercise group were given training for 8 weeks, 3 times a week. Pelvic floor muscle training group were given eight-week home exercises. Each group was assessed before training and after eight weeks. Results: An increase was found in the pelvic muscle activation response in the 2 groups (p≤0.05). There was no difference in EMG activity values between the groups (p>0.05). A difference was found in the values Aa, Ba and C in subjects of each group (p≤0.05), and the TVL, Ap, Bp and D values of subjects in pelvic floor muscle training group (p≤0.05) in the before and after pelvic organ prolapse quantification system assessment, however, no difference was found between the groups (p≤0.05). A positive difference was found in the effect of prolapse sub parameter in each of the two groups, and in general health perception sub parameter in subjects of stabilization exercise group (p<0.05) in the prolapse quality of life questionnaire. Conclusions: It was concluded that both training programs increased the pelvic floor muscle strength, provided a decline in prolapse stages. Stabilization exercise has increased general health perception unlike home training, thus, these exercises can be added to the treatment of women with prolapse. PMID:28913034
Influence of Exergaming on the Perception of Cancer-Related Fatigue.
da Silva Alves, Ricardo; Iunes, Denise Hollanda; Pereira, Isabela Carvalho; Borges, Juliana Bassalobre Carvalho; Nogueira, Denismar Alves; Silva, Andreia Maria; Lobato, Daniel Ferreira Moreira; Carvalho, Leonardo Cesar
2017-04-01
Exercise is recommended for cancer patients to reduce fatigue and improve quality of life. This study's aim is to evaluate the influence of an exergaming protocol on cancer-related fatigue, muscle fatigue, and muscle strength in cancer patients. We conducted a quasi-experimental control study using exergaming in all groups through an Xbox360 Kinect™ console, two to three times per week, for 20 sessions. Three groups were created: cancer patients in chemotherapy and/or radiotherapy group (CRG; n:15), cancer patients after chemotherapy and/or radiotherapy (CAG; n:15), and a control group (CG; n:15). They were assessed for cancer-related fatigue using the fatigue subscale of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) questionnaire. To assess dorsiflexor and plantar flexor muscle functioning, we used median frequency (MDF) of the surface electromyography and muscle strength using a dynamometer. The assessments were performed preintervention (EV0), after 10 sessions (EV1), and after 20 sessions (EV2). With an exergaming protocol, CRG and CAG showed a reduction in related fatigue compared with CG (P < 0.01). The CRG group saw an increase in maximal voluntary isometric contraction in right plantar flexor muscles and dorsiflexor muscles, as well as an increase in the MDF of both medial gastrocnemius muscles and the left tibialis anterior muscle of the CAG. For other analyses done, the differences were observed during exergaming. Exergaming demonstrated efficacy in reducing cancer patients' fatigue, including muscle fatigue, and increasing muscle strength in patients' legs.
Henderson, A L; Hecht, S; Millis, D L
2015-10-01
To investigate whether dogs with degenerative lumbosacral stenosis have decreased lumbar paraspinal muscle transverse area and symmetry compared with control dogs. Retrospective cross-sectional study comparing muscles in transverse T2-weighted magnetic resonance images for nine dogs with and nine dogs without degenerative -lumbosacral stenosis. Mean transverse area was measured for the lumbar multifidus and sacrocaudalis dorsalis lateralis muscles bilaterally and the L7 vertebral body at the level of the caudal endplate. Transverse areas of both muscle groups relative to L7 and asymmetry indices were compared between study populations using independent t tests. Mean muscle-to-L7 transverse area ratios were significantly smaller in the degenerative lumbosacral stenosis group compared with those in the control group in both lumbar multifidus (0·84 ±0·26 versus 1·09 ±0·25; P=0·027) and sacrocaudalis dorsalis lateralis (0·5 ±0·15 versus 0·68 ±0·12; P=0·005) muscles. Mean asymmetry indices were higher for both muscles in the group with degenerative lumbosacral stenosis than in the control group, but highly variable and the difference was not statistically significant. These findings suggest that dogs with degenerative lumbosacral stenosis have decreased lumbar paraspinal muscle mass that may be a cause or consequence of the -syndrome. Understanding altered paraspinal muscle characteristics may improve understanding of the -pathophysiology and management options for degenerative lumbosacral stenosis. © 2015 British Small Animal Veterinary Association.
Svensson, Kjell; Alricsson, Marie; Karnebäck, Gustav; Magounakis, Theo; Werner, Suzanne
2016-07-01
The aim of this study was to make a comparison between players in two age groups in an elite male soccer team regarding injury localisation within the muscle-tendon unit, injury size and muscle group in terms of muscle injuries of the lower extremity. Cohort study based on data collected from a Swedish elite male soccer team during the seasons 2007-2012. In total, 145 muscle injuries were included. Injury localisation to the tendon or muscle, the size of haematoma and the affected muscle group were assessed using ultrasound. Age comparison was made between younger players (≤23 years) and older players (>23 years). No difference regarding injury localisation to either the tendon or the muscle, or the size of haematoma between the two age groups was found. However, the older group of players suffered a significantly higher number of injuries to the triceps surae than the younger players (p = 0.012). In a Swedish team of male soccer players at elite level, there was no difference between players 23 years or younger and players older than 23 years, in terms of injury distribution to muscles or tendons. Players older than 23 years sustained more injuries to triceps surae when compared with players 23 years or younger. The clinical relevance is to pay attention to muscle function of triceps surae in older players and to screen those players who may need an injury prevention programme. II.
Snijders, Tim; Nederveen, Joshua P; Joanisse, Sophie; Leenders, Marika; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni
2017-04-01
Adequate muscle fibre perfusion is critical for the maintenance of muscle mass; it is essential in the rapid delivery of oxygen, nutrients and growth factors to the muscle, stimulating muscle fibre growth. Muscle fibre capillarization is known to decrease substantially with advancing age. However, whether (relative) low muscle fibre capillarization negatively impacts the muscle hypertrophic response following resistance exercise training in older adults is unknown. Twenty-two healthy older men (71 ± 1 years) performed 24 weeks of progressive resistance type exercise training. To assess the change in muscle fibre characteristics, percutaneous biopsies from the vastus lateralis muscle were taken before and following 12 and 24 weeks of the intervention programme. A comparison was made between participants who had a relatively low type II muscle fibre capillary-to-fibre perimeter exchange index (CFPE; LOW group) and high type II muscle fibre CFPE (HIGH group) at baseline. Type I and type II muscle fibre size, satellite cell, capillary content and distance between satellite cells to the nearest capillary were determined by immunohistochemistry. Overall, type II muscle fibre size (from 5150 ± 234 to 6719 ± 446 µm 2 , P < 0.05) and satellite cell content (from 0.058 ± 0.006 to 0.090 ± 0.010 satellite cells per muscle fibre, P < 0.05) had increased significantly in response to 24 weeks of resistance exercise training. However, these improvements where mainly driven by differences in baseline type II muscle fibre capillarization, whereas muscle fibre size (from 5170 ± 390 to 7133 ± 314 µm 2 , P < 0.05) and satellite cell content (from 0.059 ± 0.009 to 0.102 ± 0.017 satellite cells per muscle fibre, P < 0.05) increased significantly in the HIGH group, no significant changes were observed in LOW group following exercise training. No significant changes in type I and type II muscle fibre capillarization were observed in response to 12 and 24 weeks of resistance exercise training in both the LOW and HIGH group. Type II muscle fibre capillarization at baseline may be a critical factor for allowing muscle fibre hypertrophy to occur during prolonged resistance exercise training in older men. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Protective effect of Naringin on experimental hindlimb ischemia/reperfusion injury in rats.
Gürsul, Cebrail; Ekinci Akdemir, Fazile Nur; Akkoyun, Turan; Can, İsmail; Gül, Mustafa; Gülçin, İlhami
2016-01-01
This study was designed to investigate the antioxidant effects of Naringin, in ischemia/reperfusion (I/R)-induced skeletal muscle injury in rats. The rats were randomly allocated into three groups including control, I/R and I/R + Naringin groups. Muscle tissues of I/R groups revealed significantly higher antioxidant enzyme activities, and increased levels of malondialdehyde, as specific a marker of the lipid peroxidation and tissue damage, compared to the control group (p < 0.05). Levels of these parameters in muscle revealed significant reductions in the I/R + Naringin group compared to the I/R group (p < 0.05). Histopathological examination of ischemia muscles in the I/R group showed significant degeneration and inflammation compared to the control group, whereas ischemic muscles of Naringin-administered group showed significant reduction in degeneration and inflammation compared to the I/R group (p < 0.05). We suggest that the protective effect of Naringin may reduce the I/R injury in cases of extremity injuries with acute vascular complications, extremity surgery with prolonged tourniquet application.
Tosun, Ozge Celiker; Solmaz, Ulas; Ekin, Atalay; Tosun, Gokhan; Gezer, Cenk; Ergenoglu, Ahmet Mete; Yeniel, Ahmet Ozgur; Mat, Emre; Malkoc, Mehtap; Askar, Niyazi
2016-01-01
[Purpose] The aim of this study was to evaluate whether the effect of pelvic floor exercises on pelvic floor muscle strength could be detected via ultrasonography in patients with urinary incontinence. [Subjects and Methods] Of 282 incontinent patients, 116 participated in the study and were randomly divided into a pelvic floor muscle training (n=65) group or control group (n=51). The pelvic floor muscle training group was given pelvic floor exercise training for 12 weeks. Both groups were evaluated at the beginning of the study and after 12 weeks. Abdominal ultrasonography measurements in transverse and longitudinal planes, the PERFECT scheme, perineometric evaluation, the stop test, the stress test, and the pad test were used to assess pelvic floor muscle strength in all cases. [Results] After training, the PERFECT, perineometry and transabdominal ultrasonography measurements were found to be significantly improved, and the stop test and pad test results were significantly decreased in the pelvic floor muscle training group, whereas no difference was observed in the control group. There was a positive correlation between the PERFECT force measurement scale and ultrasonography force measurement scale before and after the intervention in the control and pelvic floor muscle training groups (r=0.632 and r=0.642, respectively). [Conclusion] Ultrasonography can be used as a noninvasive method to identify the change in pelvic floor muscle strength with exercise training. PMID:27065519
Majzoub, Ramsey K; Bardoel, Janou W J M; Maldonado, Claudio; Barker, John H; Stadelmann, Wayne K
2003-01-01
Dynamic skeletal muscle flaps are designed to perform a specific functional task through contraction and relaxation of their muscle fibers. The most commonly used dynamic skeletal flaps today are for cardiomyoplasty and anal or urinary myoplasty. Low-frequency chronic stimulation of these flaps enables them to use their intrinsic energy stores in a more efficient manner through aerobic metabolic pathways for increased endurance and improved work capacity. The purpose of this study was to (1) determine whether fiber type transformation from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers could be demonstrated in the authors' chronic canine stomal sphincter model where the rectus abdominis muscle was used to create a functional stomal sphincter, (2) assess whether there is any correlation between the degree of muscle fiber type transformation and the continence times, and (3) examine the long-term effects of the training regimens on the skeletal muscle fibers through histologic and volumetric analysis. Eight dynamic island-flap sphincters were created from a part of the rectus abdominis muscle in mongrel dogs by preserving the deep inferior epigastric vascular pedicle and the most caudal investing intercostal nerve. The muscular sphincters were wrapped around a blind loop of distal ileum and trained with pacing electrodes. Two different training protocols were used. In group A (n = 4), a preexisting anal dynamic graciloplasty training protocol was used. A revised protocol was used in group B (n = 4). Muscle biopsy specimens were obtained before and after training from the rectus abdominis muscle sphincter. Fiber type transformation was assessed using a monoclonal antibody directed against the fatigue-prone type II fibers. Pretraining and posttraining skeletal muscle specimens were examined histologically. A significant fiber type conversion was achieved in both group A and group B animals, with each group achieving greater than 50 percent conversion from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers. The continence time was different for both groups. Biopsy specimens 1 cm from the electrodes revealed that fiber type transformation was uniform throughout this region of the sphincters. Skeletal muscle fibers within both groups demonstrated a reduction in their fiber diameter and volume. Fiber type transformation is possible in this unique canine island-flap rectus abdominis sphincter model. The relative design of the flap with preservation of the skeletal muscle resting length and neuronal and vascular supply are important characteristics when designing a functional dynamic flap for stomal continence.
Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan P
2013-05-01
Whilst extensive research has detailed the loss of muscle strength with ageing for isolated single joint actions, there has been little attention to power production during more functionally relevant multiple joint movements. The extent to which force or velocity are responsible for the loss in power with ageing is also equivocal. The aim of this study was to evaluate the contribution of force and velocity to the differences in power with age by comparing the force-velocity and power-velocity relationships in young and older men during a multiple joint leg press movement. Twenty-one older men (66 ± 3 years) and twenty-three young men (24 ± 2 years) completed a series of isometric (maximum and explosive) and dynamic contractions on a leg press dynamometer instrumented to record force and displacement. The force-velocity relationship was lower for the older men as reflected by their 19 % lower maximum isometric strength (p < 0.001). Explosive isometric strength (peak rate of force development) was 21 % lower for the older men (p < 0.05) but was similar between groups when normalised to maximum strength (p = 0.58). The power-velocity relationship was lower for the older men as shown by reduced maximum power (-28 %, p < 0.001) and lower force (-20 %, p < 0.001) and velocity (-11 %, p < 0.05). Whilst force and velocity were lower in older men, the decrement in force was greater and therefore the major explanation for the attenuation of power during a functionally relevant multiple joint movement.
Kömürcü, Erkam; Yüksel, Halil Yalçın; Ersöz, Murat; Aktekin, Cem Nuri; Hapa, Onur; Çelebi, Levent; Akbal, Ayla; Biçimoğlu, Ali
2014-12-01
The aim of this study was to evaluate the effect of knee position during wound closure (flexed vs. extended) in total knee arthroplasty on knee strength and function, as determined by knee society scores and isokinetic testing of extensor and flexor muscle groups. In a prospective, randomized, double-blind trial, 29 patients were divided in two groups: for Group 1 patients, surgical closing was performed with the knee extended, and for Group 2 patients, the knee flexed at 90°. All the patients were treated with the same anaesthesia method, surgical team, surgical technique, prosthesis type, and rehabilitation process. American Knee Society Score values and knee flexion degrees were recorded. Isokinetic muscle strength measurements of both knees in flexion and extension were taken using 60° and 180°/s angular velocity. The peak torque and total work values, isokinetic muscle strength differences, and total work difference values were calculated for surgically repaired and healthy knees. No significant difference in the mean American Knee Society Score values and knee flexion degrees was observed between the two groups. However, using isokinetic evaluation, a significant difference was found in the isokinetic muscle strength differences and total work difference of the flexor muscle between the two groups when patients were tested at 180°/s. Less loss of strength was detected in the isokinetic muscle strength differences of the flexor muscle in Group 2 (-4.2%) than in Group 1 (-23.1%). For patients undergoing total knee arthroplasty, post-operative flexor muscle strength is improved if the knee is flexed during wound closure. II.
Comparison of upper and lower lip muscle activity between stutterers and fluent speakers.
de Felício, Cláudia Maria; Freitas, Rosana Luiza Rodrigues Gomes; Vitti, Mathias; Regalo, Simone Cecilio Hallak
2007-08-01
There is a widespread clinical view that stuttering is associated with high levels of muscles activity. The proposal of this research was to compare stutterers and fluent speakers with respect to the electromyographic activity of the upper and lower lip muscles. Ten individuals who stutter and 10 fluent speakers (control group) paired by gender and age were studied (mean age: 13.4 years). Groups were defined by the speech sample analysis of the ABFW-Language Test. A K6-I EMG (Myo-tronics Co., Seattle, WA, USA) with double disposable silver electrodes (Duotrodes, Myo-tronics Co., Seattle, WA) being used in order to analyze lip muscle activity. The clinical conditions investigated were movements during speech, orofacial non-speech tasks, and rest. Electromyographic data were normalized by lip pursing activity. The non-parametric Mann-Whitney test was used for the comparison of speech fluency profile, and the Student t-test for independent samples for group comparison regarding electromyographic data. There was a statistically significant difference between groups regarding speech fluency profile and upper lip activity in the following conditions: lip lateralization to the right and to the left and rest before exercises (P<0.05). There was no significant difference between groups regarding lower lip activity (P>0.05). The EMG activity of the upper lip muscle in the group with stuttering was significantly lower than in the control group in some of the clinical conditions analyzed. There was no significant difference between groups regarding the lower lip muscle. The subjects who stutter did not present higher levels of muscle activity in lip muscles than fluent speakers.
Latorre-Román, Pedro Ángel; Segura-Jiménez, Víctor; Aparicio, Virginia A; Santos E Campos, María Aparecida; García-Pinillos, Felipe; Herrador-Colmenero, Manuel; Álvarez-Gallardo, Inmaculada C; Delgado-Fernández, Manuel
2015-07-01
Fibromyalgia is associated with physical disabilities in daily activities. Moreover, patients with fibromyalgia present similar levels of functional capacity and physical condition than elderly people. The aim of this study was to analyse the evolution of strength and muscle mass in women with fibromyalgia along ageing. A total sample of 492 fibromyalgia patients and 279 healthy control women were included in the study. Participants in each group were further divided into four age subgroups: subgroup 1: 30-39 years old, subgroup 2: 40-49 years old, subgroup 3: 50-59 years old and subgroup 4: 60-69 years old. Standardized field-based fitness tests were used to assess muscle strength (30-s chair stand, handgrip strength and arm curl tests). Fibromyalgia patients did not show impairment on muscle mass along ageing, without values of skeletal muscle mass index below 6.76 kg/m(2) in any group. However, in all variables of muscle strength, the fibromyalgia group showed less strength than the healthy group (p < 0.05) for all age groups. As expected, handgrip strength test showed differences along ageing only in the fibromyalgia group (p < 0.001). Age was inversely associated with skeletal muscle mass (r = -0.155, p < 0.01) and handgrip strength (r = -0.230, p < 0.001) in the FM group. Women with fibromyalgia showed a reduction in muscle strength along ageing process, with significantly lower scores than healthy women for each age group, representing a risk of dynapenia.
The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability.
Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo
2017-06-01
Although it is widely accepted that diabetic polyneuropathy (DPN) is linked to a marked decline in neuromuscular performance, information on the possible impact of type 1 diabetes (T1D) on muscle strength and fatigue remains unclear. The purpose of this study was to investigate the effects of T1D and DPN on strength and fatigability in knee extensor muscles. Thirty-one T1D patients (T1D), 22 T1D patients with DPN (DPN) and 23 matched healthy control participants (C) were enrolled. Maximal voluntary contraction (MVC) and endurance time at an intensity level of 50% of the MVC were assessed at the knee extensor muscles with an isometric dynamometer. Clinical characteristics of diabetic patients were assessed by considering a wide range of vascular and neurological parameters. DPN group had lower knee extensor muscles strength than T1D (-19%) and the C group (-37.5%). T1D group was 22% weaker when compared to the C group. Lower body muscle fatigability of DPN group was 22 and 45.5% higher than T1D and C group, respectively. T1D group possessed a higher fatigability (29.4%) compared to C group. A correlation was found between motor and sensory nerve conduction velocity and muscle strength and fatigability. Patients with T1D are characterised by both a higher fatigability and a lower muscle strength, which are aggravated by DPN. Our data suggest that factors other than nervous damage play a role in the pathogenesis of such defect.
NASA Technical Reports Server (NTRS)
Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.
2001-01-01
An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.
Inspiratory Muscle Training and Functional Capacity in Patients Undergoing Cardiac Surgery.
Cordeiro, André Luiz Lisboa; de Melo, Thiago Araújo; Neves, Daniela; Luna, Julianne; Esquivel, Mateus Souza; Guimarães, André Raimundo França; Borges, Daniel Lago; Petto, Jefferson
2016-04-01
Cardiac surgery is a highly complex procedure which generates worsening of lung function and decreased inspiratory muscle strength. The inspiratory muscle training becomes effective for muscle strengthening and can improve functional capacity. To investigate the effect of inspiratory muscle training on functional capacity submaximal and inspiratory muscle strength in patients undergoing cardiac surgery. This is a clinical randomized controlled trial with patients undergoing cardiac surgery at Instituto Nobre de Cardiologia. Patients were divided into two groups: control group and training. Preoperatively, were assessed the maximum inspiratory pressure and the distance covered in a 6-minute walk test. From the third postoperative day, the control group was managed according to the routine of the unit while the training group underwent daily protocol of respiratory muscle training until the day of discharge. 50 patients, 27 (54%) males were included, with a mean age of 56.7±13.9 years. After the analysis, the training group had significant increase in maximum inspiratory pressure (69.5±14.9 vs. 83.1±19.1 cmH2O, P=0.0073) and 6-minute walk test (422.4±102.8 vs. 502.4±112.8 m, P=0.0031). We conclude that inspiratory muscle training was effective in improving functional capacity submaximal and inspiratory muscle strength in this sample of patients undergoing cardiac surgery.
Nakagawa, Kouki; Hayao, Keishi; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki
2017-01-01
The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs. PMID:28497057
Tibaek, Sigrid; Gard, Gunvor; Dehlendorff, Christian; Iversen, Helle K; Biering-Soerensen, Fin; Jensen, Rigmor
2017-09-01
The aim of the current study was to evaluate the effect of pelvic floor muscle training in men with poststroke lower urinary tract symptoms. Thirty-one poststroke men, median age 68 years, were included in this single-blinded randomized controlled trial. Thirty participants, 15 in each group, completed the study. The intervention consisted of 3 months (12 weekly sessions) of pelvic floor muscle training in groups and home exercises. The effect was evaluated by the DAN-PSS-1 (Danish Prostate Symptom Score) questionnaire, a voiding diary, and digital anal palpation of the pelvic floor muscle. The DAN-PSS-1, symptom score indicated a statistical significant improvement ( p < .01) in the treatment group from pretest to posttest, but not in the control group. The DAN-PSS-1, total score improved statistically significantly in both groups from pretest to posttest (treatment group: p < .01; control group: p = .03). The median voiding frequency per 24 hours decreased from 11 at pretest to 7 (36%; p = .04) at posttest and to 8 (27%; p = .02) at follow-up in treatment group, although not statistical significantly more than the control group. The treatment group but not the control group improved statistically significantly in pelvic floor muscle function ( p < .01) and strength ( p < .01) from pretest to posttest and from pretest to follow-up ( p = .03; p < .01). Compared with the control group the pretest to posttest was significantly better in the treatment group ( p = .03). The results indicate that pelvic floor muscle training has an effect for lower urinary tract symptoms, although statistical significance was only seen for pelvic floor muscle.
Chen, Hung-Ting; Chung, Yu-Chun; Chen, Yu-Jen; Ho, Sung-Yen; Wu, Huey-June
2017-04-01
To investigate the influence of resistance training (RT), aerobic training (AT), or combination training (CT) interventions on the body composition, muscle strength performance, and insulin-like growth factor 1 (IGF-1) of patients with sarcopenic obesity. Randomized controlled trial. Community center and research center. Sixty men and women aged 65-75 with sarcopenic obesity. Participants were randomly assigned to RT, AT, CT, and control (CON) groups. After training twice a week for 8 weeks, the participants in each group ceased training for 4 weeks before being examined for the retention effects of the training interventions. The body composition, grip strength, maximum back extensor strength, maximum knee extensor muscle strength, and blood IGF-1 concentration were measured. The skeletal muscle mass (SMM), body fat mass, appendicular SMM/weight %, and visceral fat area (VFA) of the RT, AT, and CT groups were significantly superior to those of the CON group at both week 8 and week 12. Regarding muscle strength performance, the RT group exhibited greater grip strength at weeks 8 and 12 as well as higher knee extensor performance at week 8 than that of the other groups. At week 8, the serum IGF-1 concentration of the RT group was higher than the CON group, whereas the CT group was superior to the AT and CON groups. Older adults with sarcopenic obesity who engaged in the RT, AT, and CT interventions demonstrated increased muscle mass and reduced total fat mass and VFA compared with those without training. The muscle strength performance and serum IGF-1 level in trained groups, especially in the RT group, were superior to the control group. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C
2015-01-01
muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.
Javanshir, Khodabakhsh; Amiri, Mohsen; Mohseni Bandpei, Mohammad Ali; De las Penas, Cesar Fernandez; Rezasoltani, Asghar
2015-01-01
The effect of different exercise programs on cervical flexor muscles dimensions in patients with chronic neck pain is yet to be demonstrated. The purpose of this study was to assess the effect of two exercise programs; craniocervical flexion (CCF) and cervical flexion (CF), on flexor muscles dimensions in patients with chronic neck pain. Following ethical approval, 60 patients were randomly assigned into either a CCF group or a CF group. Patients in the CCF group were given CCF exercises and those in the CF group received CF exercises. All patients received interventions for a period of ten weeks. Pain intensity and functional disability were assessed using numerical pain rate scale and neck disability index, respectively. Dimensions of longus colli (LC) and sternoclidomastoid (SCM) muscles were measured using ultrasonography (US). All measurements were taken before and after interventions. Following intervention, the CCF group demonstrated a significant increase in LC muscle dimensions including cross sectional area, width and thickness compared with the CF group. A statistically significant increase was found on SCM thickness in the CF group. Following intervention, SCM thickness measurement in the CCF group showed no significant changes. Statistically significant decrease on pain intensity and disability were also found in both groups. Present findings demonstrated that craniocervical flexion program which specifically recruiting deep cervical flexor muscles increased LC muscle dimension significantly and CF program as an endurance training program increased SCM thickness.
Song, Halim; Kim, Jinu; Yoon, Sang-Pil
2018-05-26
Although anatomical variations in the upper limb are frequent, coexistence of multiple combined variations is rare. During a routine educational dissection at Jeju National University Medical School, three muscular variations were found in a 75-year-old Korean male cadaver, in which a supraclavicular cephalic vein was also found in ipsilateral upper extremity during skinning (Go et al., 2017). Here we describe characteristics of the pectoralis quartus muscle, the supernumerary head of biceps brachii muscle and an accessory head of flexor digitorum profundus muscle, and discuss their coexistence from morphological and embryological points of view.
FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury
Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.
2008-01-01
Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525
Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E
2014-05-01
The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Allen, David G.; Whitehead, Nicholas P.; Froehner, Stanley C.
2015-01-01
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca2+-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca2+ entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease. PMID:26676145
Resistance training and mitochondrial metabolism
USDA-ARS?s Scientific Manuscript database
Objective: To determine if resistance exercise training improves skeletal muscle substrate oxidative capacity in older adults. Background: A decline in skeletal muscle oxidative capacity occurs with aging. Aerobic exercise increases skeletal muscle’s ability to oxidize multiple substrates. Th...
2013-01-01
Background A recent study showed that niacin supplementation counteracts the obesity-induced muscle fiber switching from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PGC-1α and PGC-1β, leading to muscle fiber switching and up-regulation of genes involved in mitochondrial fatty acid import and oxidation, citrate cycle, oxidative phosphorylation, mitochondrial biogenesis. The aim of the present study was to investigate whether niacin supplementation causes type II to type I muscle and changes the metabolic phenotype of skeletal muscles in growing pigs. Results 25 male, 11 wk old crossbred pigs (Danzucht x Pietrain) with an average body weight of 32.8 ± 1.3 (mean ± SD) kg were randomly allocated to two groups of 12 (control group) and 13 pigs (niacin group) which were fed either a control diet or a diet supplemented with 750 mg niacin/kg diet. After 3 wk, the percentage number of type I fibers in three different muscles (M. longissismus dorsi, M. quadriceps femoris, M. gastrocnemius) was greater in the niacin group and the percentage number of type II fibers was lower in the niacin group than in the control group (P < 0.05). The mRNA levels of PGC-1β and genes involved in mitochondrial fatty acid catabolism (CACT, FATP1, OCTN2), citrate cycle (SDHA), oxidative phosphorylation (COX4/1, COX6A1), and thermogenesis (UCP3) in M. longissimus dorsi were greater in the niacin group than in the control group (P < 0.05). Conclusions The study demonstrates that niacin supplementation induces type II to type I muscle fiber switching, and thereby an oxidative metabolic phenotype of skeletal muscle in pigs. Given that oxidative muscle types tend to develop dark, firm and dry pork in response to intense physical activity and/or high psychological stress levels preslaughter, a niacin-induced change in the muscle´s fiber type distribution may influence meat quality of pigs. PMID:24010567
Cagnie, Barbara; Dolphens, Mieke; Peeters, Ian; Achten, Eric; Cambier, Dirk; Danneels, Lieven
2010-08-01
Chronic whiplash-associated disorders (WAD) have been shown to be associated with motor dysfunction. Increased electromyographic (EMG) activity in neck and shoulder girdle muscles has been demonstrated during different tasks in participants with persistent WAD. Muscle functional magnetic resonance imaging (mfMRI) is an innovative technique to evaluate muscle activity and differential recruitment of deep and superficial muscles following exercise. The purpose of this study was to compare the recruitment pattern of deep and superficial neck flexors between patients with WAD and controls using mfMRI. A cross-sectional design was used. The study was conducted in a physical and rehabilitation medicine department. The participants were 19 controls who were healthy (10 men, 9 women; mean [+/-SD] age=22.2+/-0.6 years) and 16 patients with WAD (5 men, 11 women; mean [+/-SD] age=32.9+/-12.7 years). The T2 values were calculated for the longus colli (Lco), longus capitis (Lca), and sternocleidomastoid (SCM) muscles at rest and following cranio-cervical flexion (CCF). In the overall statistical model for T2 shift, there was a significant main effect for muscle (F=3.906, P=.033) but not for group (F=2.855, P=.101). The muscle x group interaction effect was significant (F=3.618, P=.041). Although not significant, there was a strong trend for lesser Lco (P=.061) and Lca (P=.060) activity for the WAD group compared with the control group. Although the SCM showed higher T2 shifts, this difference was not significant (P=.291). Although mfMRI is an innovative and useful technique for the evaluation of deep cervical muscles, consideration is required, as this method encompasses a postexercise evaluation and is limited to resistance types of exercises. Muscle functional magnetic resonance imaging demonstrated a difference in muscle recruitment between the Lco, Lca, and SCM during CCF in the control group, but failed to demonstrate a changed activity pattern in the WAD group compared with the control group. The mild symptoms in the WAD group and the wide variability in T2 values may explain the lack of significance.
Santos, Fernando Farias Dos; Moura, José A. A.; Curi, Rui; Fernandes, Luiz C.
2002-01-01
Creatine has been shown to increase the total muscle mass. In this study, we investigated the effect of oral creatine monohydrate supplementation on cross-sectional area of type I, IIA and IIB fibers of gastrocnemius, extensor digitorum longus - EDL and soleus muscles from male Wistar rats subjected to swimming training for 33 days. Four groups were set up: sedentary with no supplementation (CON), sedentary with creatine supplementation (3.3 mg creatine per g chow) (CR), exercised with no supplementation (EX) and exercised with supplementation (CREX). The rats performed in a special swimming pool and swam five times a week for 1 hour each day, with a extra lead weight corresponding to 15% of their body weight. At the end of 33 days, skeletal muscles of the animals were dissected and the samples got immediately frozen using liquid nitrogen. Muscle samples were allocated to slices of 10 μm by a cryostat at -20°C, which was followed by histochemical analysis in order to identify fiber types of the muscles, and morphometrical analysis to calculate the muscle fiber areas. All groups gained body weight at the end of 33 days but there was no statistical difference among them. The EX and CREX rats had a larger food intake than the sedentary groups (CON and CR), and the CREX group had a larger food intake than CR rats. The cross-sectional area of type I and IIA fibers of the soleus muscle, type IIA and IIB fibers of EDL muscle and type IIA and IIB fibers of the white portion of gastrocnemius muscle were greater in the EX and CREX groups in comparison to sedentary rats. In addition, these fibers were greater in the CREX rats than in the EX group. There was no change in the cross sectional area of type I fibers in EDL muscle among all groups studied. Our results suggest that creatine supplementation enhances the exercise related muscle fiber hypertrophy in rodents. PMID:24701129
Effect of β-hydroxy-β-methylbutyrate in masticatory muscles of rats
Daré, Leticia R; Dias, Daniel V; Rosa Junior, Geraldo M; Bueno, Cleuber R S; Buchaim, Rogerio L; Rodrigues, Antonio de C; Andreo, Jesus C
2015-01-01
The aim of this research was to examine the influence of β-hydroxy-β-methylbutyrate (HMB) on changes in the profile of muscle fibers, whether these alterations were similar between the elevator and depressor muscles of the jaw, and whether the effects would be similar in male and female animals. Fifty-eight rats aged 60 days (29 animals of each gender) were divided into four groups: the initial control group (ICG) was sacrificed at the beginning of the experiment; the placebo control group (PCG) received saline and was fed ad libitum; the experimental group (EG) received 0.3 g kg−1 of HMB daily for 4 weeks by gavage as well as the same amount of food consumed by the PCG in the previous day; and the experimental ad libitum group (EAG) received the same dose of the supplement along with food ad libitum. Samples included the digastric and masseter muscles for the histoenzymological analysis. Data were subjected to statistical analysis with a significance level of P < 0.05. Use of HMB caused a decrease in the percentage of fast twitch glycolytic (FG) fibers and an increase in fast twitch oxidative glycolytic (FOG) fibers in males in both experimental groups (EG and EAG). However, it produced no increase in the muscle fiber area, in either gender, in the masseter muscle. In the digastric muscle, the HMB did not change the frequency or the area of any muscle fiber types in either gender. Our data suggest that the use of HMB caused small changes in the enzymological profile of fibers of the mastication muscles; the changes were different in the elevator and depressor muscles of the jaw and the results were different depending on gender. PMID:25400135
Ju, Sung-Bum; Park, Gi Duck; Kim, Sang-Soo
2015-08-01
[Purpose] This study applied proprioceptive circuit exercise to patients with degenerative knee osteoarthritis and examined its effects on knee joint muscle function and the level of pain. [Subjects] In this study, 14 patients with knee osteoarthritis in two groups, a proprioceptive circuit exercise group (n = 7) and control group (n = 7), were examined. [Methods] IsoMed 2000 (D&R Ferstl GmbH, Hemau, Germany) was used to assess knee joint muscle function, and a Visual Analog Scale was used to measure pain level. [Results] In the proprioceptive circuit exercise group, knee joint muscle function and pain levels improved significantly, whereas in the control group, no significant improvement was observed. [Conclusion] A proprioceptive circuit exercise may be an effective way to strengthen knee joint muscle function and reduce pain in patients with knee osteoarthritis.
Jambassi Filho, José Claudio; Gurjão, André Luiz Demantova; Ceccato, Marilia; Prado, Alexandre Konig Garcia; Gallo, Luiza Herminia; Gobbi, Sebastião
2017-09-01
This study investigated the chronic effects of different rest intervals (RIs) between sets on dynamic and isometric muscle strength and muscle activity. We used a repeated-measures design (pretraining and posttraining) with independent groups (different RI). Twenty-one resistance-trained older women (66.4 ± 4.4 years) were randomly assigned to either a 1-minute RI group (G-1 min; n = 10) or 3-minute RI group (G-3 min; n = 11). Both groups completed 3 supervised sessions per week during 8 weeks. In each session, participants performed 3 sets of 15 repetitions of leg press exercise, with a load that elicited muscle failure in the third set. Fifteen maximum repetitions, maximal voluntary contraction, peak rate of force development, and integrated electromyography activity of the vastus lateralis and vastus medialis muscles were assessed pretraining and posttraining. There was a significant increase in load of 15 maximum repetitions posttraining for G-3 min only (3.6%; P < 0.05). However, posttraining results showed no significant differences between G-1 min and G-3 min groups for all dependent variables (P > 0.05). The findings suggest that different RIs between sets did not influence dynamic and isometric muscle strength and muscle activity in resistance-trained older women.
Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel
2015-08-01
In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori. Copyright © 2015 Elsevier Inc. All rights reserved.
Lima, Leonardo C R; Bassan, Natália M; Cardozo, Adalgiso C; Gonçalves, Mauro; Greco, Camila C; Denadai, Benedito S
2018-05-08
Running economy (RE) is impaired following unaccustomed eccentric-biased exercises that induce muscle damage. It is also known that muscle damage is reduced when maximal voluntary isometric contractions (MVIC) are performed at a long muscle length 2-4 days prior to maximal eccentric exercise with the same muscle, a phenomenon that can be described as isometric pre-conditioning (IPC). We tested the hypothesis that IPC could attenuate muscle damage and changes in RE following downhill running. Thirty untrained men were randomly assigned into experimental or control groups and ran downhill on a treadmill (-15%) for 30 min. Participants in the experimental group completed 10 MVIC in a leg press machine two days prior to downhill running, while participants in the control group did not perform IPC. The magnitude of changes in muscle soreness determined 48 h after downhill running was greater for the control group (122 ± 28 mm) than for the experimental group (92 ± 38 mm). Isometric peak torque recovered faster in the experimental group compared with the control group (3 days vs. no full recovery, respectively). No significant effect of IPC was found for countermovement jump height, serum creatine kinase activity or any parameters associated with RE. These results supported the hypothesis that IPC attenuates changes in markers of muscle damage. The hypothesis that IPC attenuates changes in RE was not supported by our data. It appears that the mechanisms involved in changes in markers of muscle damage and parameters associated with RE following downhill running are not completely shared. Copyright © 2018 Elsevier B.V. All rights reserved.
Flap surgery for pressure sores: should the underlying muscle be transferred or not?
Thiessen, Filip E; Andrades, Patricio; Blondeel, Philip N; Hamdi, Moustapha; Roche, Nathalie; Stillaert, Filip; Van Landuyt, Koenraad; Monstrey, Stan
2011-01-01
Musculocutaneous flaps have become the first choice in the surgical repair of pressure sores, but the indication for including muscle in the transferred flaps still remains poorly defined. This study compares outcomes after muscle and non-muscle flap coverage of pressure sores to investigate whether it is still necessary to incorporate muscle tissue as part of the surgical treatment of these ulcers. A retrospective revision of 94 consecutive patients with ischial or sacral pressure sores operated between 1996 and 2002 was performed. Depending on the inclusion of muscle into the flap, the patients were divided in two groups: musculocutaneous flap group and fasciocutaneous flap group. Charts were reviewed for patient characteristics, ulcer features and reconstructive information. Data between groups were compared with emphasis on early (haematoma or seroma, dehiscence, infections, necrosis and secondary procedures) and late (recurrence) postoperative complications. A total of 37 wounds were covered with muscle and 57 wounds covered without muscle tissue. The groups were comparable in relation to age, gender, ulcer characteristics and timing for surgery. There were no significant differences in early complications between the study groups. The mean follow-up period was 3.10 ± 1.8 years (range: 0.5 to 6.7). There were no statistical differences in ulcer recurrence between the groups. The type of flap used was not associated with postoperative morbidity or recurrence in the univariate and multivariate analyses. The findings of this clinical study indicate that the musculocutaneous flaps are as good as fasciocutaneous flaps in the reconstruction of pressure sores, and they question the long-standing dogma that muscle is needed in the repair of these ulcers. Copyright © 2010 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Eccentric Torque-Producing Capacity is Influenced by Muscle Length in Older Healthy Adults.
Melo, Ruth C; Takahashi, Anielle C M; Quitério, Robison J; Salvini, Tânia F; Catai, Aparecida M
2016-01-01
Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2 ± 2.9 years) and 16 older men (62.7 ± 2.5 years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60 and 120° · s(-1) through a functional range of motion. The older group presented lower peak torque (in newton-meters) than the young group for both isokinetic contraction types (age effect, p < 0.001). Peak torque deficits in the older group were near 30 and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120° · s(-1) than at 60° · s(-1) for both groups (angular velocity effect, p < 0.001). Eccentric knee extension torque was the only exercise tested that showed an interaction effect between age and muscle length (p < 0.001), which suggested different torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22-56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in the stretched muscle length. In older men, the production of eccentric knee strength seems to be dependent on the muscle length. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.
Jung, Kyoungsim; Jung, Jinhwa; In, Taesung; Kim, Taehoon; Cho, Hwi-Young
2017-01-01
This study investigated the efficacy of Task-Related Training (TRT) Combined with Transcutaneous Electrical Nerve Stimulation (TENS) on the improvement of upper limb muscle activation in chronic stroke survivors with mild or moderate paresis. A single-blind, randomized clinical trial was conducted with 46stroke survivors with chronic paresis. They were randomly allocated two groups: the TRT+TENS group (n = 23) and the TRT+ placebo TENS (TRT+PLBO) group (n = 23). The TRT+TENS group received 30 minutes of high-frequency TENS on wrist and elbow extensors, while the TRT+PLBO group received placebo TENS that was not real ES. Both groups did 30 minutes of TRT after TENS application. Intervention was given five days a week for four weeks. The primary outcomes of upper limb muscle activation were measured by integrated EMG (IEMG), a digital manual muscle tester for muscle strength, active range of motion (AROM) and Fugl-Meyer Assessment of the upper extremity (FMA-UE). The measurements were performed before and after the 4 weeks intervention period. Both groups demonstrated significant improvements of outcomes in IEMG, AROM, muscle strength and FMA-UE during intervention period. When compared with the TRT+PLBO group, the TRT+TENS group showed significantly greater improvement in muscle activation (wrist extensors, P = 0.045; elbow extensors, P = 0.004), muscle strength (wrist extensors, P = 0.044; elbow extensors, P = 0.012), AROM (wrist extension, P = 0.042; elbow extensors, P = 0.040) and FMA-UE (total, P < 0.001; shoulder/elbow/forearm, P = 0.001; wrist, P = 0.002; coordination, P = 0.008) at the end of intervention. Our findings indicate that TRT Combined with TENS can improve paretic muscle activity in upper limb paresis, highlighting the benefits of somatosensory stimulation from TENS.
Janicke, Elise C; Nazareth, Michael R; Rothman, Ilene L
2014-01-01
We report a patient with generalized smooth muscle hamartoma who presented with many of the variety of congenital anomalies that have been reported in babies with multiple symmetric circumferential rings of folded skin known as Michelin tire baby (MTB) syndrome, but our patient did not show the MTB phenotype. This constellation of findings in the absence of the MTB phenotype has not been previously reported. © 2014 Wiley Periodicals, Inc.
Reyes, Alvaro; Castillo, Adrián; Castillo, Javiera; Cornejo, Isabel
2018-05-01
To compare the effects of an inspiratory versus and expiratory muscle-training program on voluntary and reflex peak cough flow in patients with Parkinson disease. A randomized controlled study. Home-based training program. In all, 40 participants with diagnosis of Parkinson's disease were initially recruited in the study and randomly allocated to three study groups. Of them, 31 participants completed the study protocol (control group, n = 10; inspiratory training group, n = 11; and expiratory training group, n = 10) Intervention: The inspiratory and expiratory group performed a home-based inspiratory and expiratory muscle-training program, respectively (five sets of five repetitions). Both groups trained six times a week for two months using a progressively increased resistance. The control group performed expiratory muscle training using the same protocol and a fixed resistance. Spirometric indices, maximum inspiratory pressure, maximum expiratory pressure, and peak cough flow during voluntary and reflex cough were assessed before and at two months after training. The magnitude of increase in maximum expiratory pressure ( d = 1.40) and voluntary peak cough flow ( d = 0.89) was greater for the expiratory muscle-training group in comparison to the control group. Reflex peak cough flow had a moderate effect ( d = 0.27) in the expiratory group in comparison to the control group. Slow vital capacity ( d = 0.13) and forced vital capacity ( d = 0.02) had trivial effects in the expiratory versus the control group. Two months of expiratory muscle-training program was more beneficial than inspiratory muscle-training program for improving maximum expiratory pressure and voluntary peak cough flow in patients with Parkinson's disease.
Yin, Ningbei; Wu, Jiajun; Chen, Bo; Song, Tao; Ma, Hengyuan; Zhao, Zhenmin; Wang, Yongqian; Li, Haidong; Wu, Di
2015-03-01
Plastic surgeons have attempted various ways to rebuild the aesthetic subunits of the upper lip in patients with cleft lip with less than perfect results in most cases. We propose that repairing the 3 muscle tension line groups in the nasolabial complex will have improved aesthetic results. Micro-computed tomographic scans were performed on the nasolabial tissues of 5 normal aborted fetuses and used to construct a 3-dimensional model to study the nasolabial muscle complex structure. The micro-computed tomographic (CT) scans showed the close relationship and interaction between the muscle fibers of nasalis, pars peripheralis, levator labii superioris, and pars marginalis. Based on the 2-dimensional images obtained from the micro-computed tomographic scans, we suggest the concept of nasolabial muscle complex and muscle tension line group theory: there is a close relationship among the alar part of the nasalis, depressor septi muscle, orbicularis oris muscle, and levator labii superioris alaeque nasi. The tension line groups are 3 tension line structures in the nasolabial muscle complex that interlock with each other at the intersections and maintain the specific shape and aesthetics of the lip and nose.
Sensitivity of estimated muscle force in forward simulation of normal walking
Xiao, Ming; Higginson, Jill
2009-01-01
Generic muscle parameters are often used in muscle-driven simulations of human movement estimate individual muscle forces and function. The results may not be valid since muscle properties vary from subject to subject. This study investigated the effect of using generic parameters in a muscle-driven forward simulation on muscle force estimation. We generated a normal walking simulation in OpenSim and examined the sensitivity of individual muscle to perturbations in muscle parameters, including the number of muscles, maximum isometric force, optimal fiber length and tendon slack length. We found that when changing the number muscles included in the model, only magnitude of the estimated muscle forces was affected. Our results also suggest it is especially important to use accurate values of tendon slack length and optimal fiber length for ankle plantarflexors and knee extensors. Changes in force production one muscle were typically compensated for by changes in force production by muscles in the same functional muscle group, or the antagonistic muscle group. Conclusions regarding muscle function based on simulations with generic musculoskeletal parameters should be interpreted with caution. PMID:20498485
Irisin is more strongly predicted by muscle oxidative potential than adiposity in non-diabetic men.
Huth, Claire; Dubois, Marie-Julie; Marette, André; Tremblay, Angelo; Weisnagel, S John; Lacaille, Michel; Mauriège, Pascale; Joanisse, Denis R
2015-09-01
Numerous controversies surround the peptide hormone irisin. Although implicated as a myokine promoting the browning of adipose tissue in rodents, its roles in humans remain unclear. Contradictory results have also been found with respect to the relationships between adiposity or metabolic health and plasma irisin levels in humans. We investigated the relationship between irisin levels and body composition (hydrostatic weighing), insulin sensitivity (hyperinsulinemic-euglycemic clamp), fitness level (ergocycle VO2max) and skeletal muscle metabolic profile in 53 men (aged 34-53 years) from four groups: sedentary non-obese controls (body mass index [BMI] <25 kg/m(2)), sedentary obese (BMI >30 kg/m(2)), sedentary obese glucose-intolerant, and non-obese highly trained endurance active. Baseline plasma irisin levels were significantly different between groups, being lowest in trained men (140.6 ± 38.2 ng/mL) and highest in metabolically deteriorated glucose-intolerant subjects (204.0 ± 50.5 ng/mL; ANOVA p = 0.01). Including all subjects, irisin levels were positively associated with adiposity (e.g. fat mass, r = 0.430, p < 0.01) and negatively associated with fitness (r = -0.369, p < 0.01), insulin sensitivity (M/I, r = -0.355, p < 0.01) and muscle citrate synthase (CS) activity (r = -0.482, p < 0.01). Most correlations lost statistical significance when excluding active individuals, except for insulin resistance (r = -0.413, p < 0.01) and CS (r = -0.462, p < 0.01). Multiple regression analyses reveal CS as the strongest independent predictor of irisin levels (r(2) range 0.214 to 0.237). We conclude that muscle oxidative potential is an important factor linked to circulating irisin levels.
Watanabe, K; Akima, H
2011-12-01
The purpose of this study was to compare the relationship between surface electromyography (EMG) and knee joint angle of the vastus intermedius muscle (VI) with the synergistic muscles in the quadriceps femoris (QF) muscle group. Fourteen healthy men performed maximal voluntary contractions during isometric knee extension at four knee joint angles from 90°, 115°, 140°, and 165° (180° being full extension). During the contractions, surface EMG was recorded at four muscle components of the QF muscle group: the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles. The root mean square of the surface EMG at each knee joint angle was calculated and normalized by that at a knee joint angle of 90° for individual muscles. The normalized RMS of the VI muscle was significantly lower than those of the VL and RF muscles at the knee joint angles of 115° and 165° and those of the VL, VM, and RF muscles at the knee joint angle of 140° (P<0.05). The present results suggest that the neuromuscular activation of the VI muscle is regulated in a manner different from the alteration of the knee joint angle compared with other muscle components of the QF muscle group. © 2011 John Wiley & Sons A/S.
Lee, GyuChang
2013-01-01
[Purpose] The purpose of this study was to investigate the effects of training using video games played on the Xbox Kinect on the muscle strength, muscle tone, and activities of daily living of post-stroke patients. [Subjects] Fourteen stroke patients were recruited. They were randomly allocated into two groups; the experimental group (n=7) and the control group (n=7). [Methods] The experimental group performed training using video games played on the Xbox Kinect together with conventional occupational therapy for 6 weeks (1 hour/day, 3 days/week), and the control group received conventional occupational therapy only for 6 weeks (30 min/day, 3 days/week). Before and after the intervention, the participants were measured for muscle strength, muscle tone, and performance of activities of daily living. [Results] There were significant differences pre- and post-test in muscle strength of the upper extremities, except the wrist, and performance of activities of daily living in the experimental group. There were no significant differences between the two groups at post-test. [Conclusion] The training using video games played on the Xbox Kinect had a positive effect on the motor function and performance of activities of daily living. This study showed that training using video games played on the Xbox Kinect may be an effective intervention for the rehabilitation of stroke patients. PMID:24259810
Alfonsi, E; Merlo, I M; Ponzio, M; Montomoli, C; Tassorelli, C; Biancardi, C; Lozza, A; Martignoni, E
2010-01-01
Botulinum toxin (BTX) injection into the cricopharyngeal (CP) muscle has been proposed for the treatment of neurogenic dysphagia due to CP hyperactivity. The aim was to determine whether an electrophysiological method exploring oropharyngeal swallowing could guide treatment and discriminate responders from non-responders, based on the association of CP dysfunction with other electrophysiological abnormalities of swallowing. Patients with different neurological disorders were examined: Parkinson disease, progressive supranuclear palsy, multiple system atrophy-Parkinson variant, multiple system atrophy cerebellar variant, stroke, multiple sclerosis and ataxia telangiectasia. All patients presented with clinical dysphagia, and with complete absence of CP muscle inhibition during the hypopharyngeal phase of swallowing. Each patient underwent clinical and electrophysiological investigations before and after treatment with BTX into the CP muscle of one side (15 units of Botox). Clinical and electrophysiological procedures were performed in a blind manner by two different investigators. The following electrophysiological measures were analysed: (1) duration of EMG activity of suprahyoid/submental muscles (SHEMG-D); (2) duration of laryngopharyngeal mechanogram (LPM-D); (3) duration of the inhibition of the CP muscle EMG activity (CPEMG-ID); and (4) interval between onset of EMG activity of suprahyoid/submental muscles and onset of laryngopharyngeal mechanogram (I-SHEMG-LPM). Two months after treatment, 50% of patients showed a significant improvement. Patients with prolonged or reduced SHEMG-D values and prolonged I-SHEMG-LPM values did not respond to BTX. Therefore, values for which BTX had no effect (warning values) were identified. This electrophysiological method can recognise swallowing abnormalities which may affect the outcome of the therapeutic approach to dysphagia with BTX treatment.
Effects of hindlimb unloading on neuromuscular development of neonatal rats
NASA Technical Reports Server (NTRS)
Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.
2000-01-01
We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.
Enhancing Peripheral Nerve Regeneration with a Novel Drug Delivering Nerve Conduit
2017-12-01
control group ) or a conduit that released GDNF. The main outcome measures were muscle atrophy, electrophysiology, motor endplate reinnervation...prepared NGF+GDNF ( Control groups ). 8 Gastrocnemius Atrophy The gastrocnemius muscle weight of the GDNF treated group was ~ 60% of the non...experimental side at 10 weeks. GDNF conduit group (49.4±1.4 %) had statistically less muscle atrophy than the control group (65.1±5.1 %) (pɘ.05) at 10
Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.
Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M
2011-07-01
Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.
2014-01-01
Background Type 2 diabetes, also known non-insulin-dependent diabetes, is the most prevalent type of the disease and involves defects in the secretion and action of insulin. The aim of the proposed study is to evaluate the efficacy of pre-exercise low-level laser therapy (LLLT) on muscle performance of the quadriceps femoris in individuals with type 2 diabetes. Methods/Design A double-blind, randomized, controlled clinical trial will be carried out in two treatment phases. In the first phase, quadriceps muscle performance will be evaluated using an isokinetic dynamometer and the levels of creatine kinase and lactate dehydrogenase (biochemical markers of muscle damage) will be determined. The participants will then be allocated to four LLLT groups through a randomization process using opaque envelopes: Group A (4 Joules), Group B (6 Joules), Group C (8 Joules) and Group D (0 Joules; placebo). Following the administration of LLLT, the participants will be submitted to an isokinetic eccentric muscle fatigue protocol involving the quadriceps muscle bilaterally. Muscle performance and biochemical markers of muscle damage will be evaluated again immediately after as well as 24 and 48 hours after the experimental protocol. One week after the last evaluation the second phase will begin, during which Groups A, B and C will receive the LLLT protocol that achieved the best muscle performance in phase 1 for a period of 4 weeks. At the end of this period, muscle performance will be evaluated again. The protocol for this study is registered with the World Health Organization under Universal Trial Number U1111-1146-7109. Discussion The purpose of this randomized clinical trial is to evaluate the efficacy of pre-exercise LLLT on the performance of the quadriceps muscle (peak torque, total muscle work, maximum power and fatigue index – normalized by body mass) in individuals with DM-2. The study will support the practice of evidence-based to the use of LLLT in improving muscle performance in Individuals with DM-2. Data will be published after the study is completed. PMID:24716713
Costantino, Cosimo; Galuppo, Laura; Romiti, Davide
2017-02-01
In recent years, local muscle vibration received considerable attention as a useful method for muscle stimulation in clinical therapy. Some studies described specific vibration training protocol, and few of them were conducted on post-stroke patients. Therefore there is a general uncertainty regarding the vibrations protocol. The aim of this study was to evaluate the effects of local muscle high frequency mechano-acoustic vibratory treatment on grip muscle strength, muscle tonus, disability and pain in post-stroke individuals with upper limb spasticity. Single-blind randomized controlled trial. Outpatient rehabilitation center. Thirty-two chronic poststroke patients with upper-limb spasticity: 21 males, 11 females, mean age 61.59 years ±15.50, time passed from stroke 37.78±17.72 months. The protocol treatment consisted of the application of local muscle vibration, set to a frequency of 300 Hz, for 30 minutes 3 times per week, for 12 sessions, applied to the skin covering the venter of triceps brachii and extensor carpi radialis longus and brevis muscles during voluntary isometric contraction. All participants were randomized in two groups: group A treated with vibration protocol; group B with sham therapy. All participants were evaluated before and after 4-week treatment with Hand Grip Strength Test, Modified Ashworth Scale, QuickDASH score, FIM scale, Fugl-Meyer Assessment, Jebsen-Taylor Hand Function Test and Verbal Numerical Rating Scale of pain. Outcomes between groups was compared using a repeated-measures ANOVA. Over 4 weeks, the values recorded in group A when compared to group B demonstrated statistically significant improvement in grip muscle strength, pain and quality of life and decrease of spasticity; P-values were <0.05 in all tested parameters. Rehabilitation treatment with local muscle high frequency (300 Hz) vibration for 30 minutes, 3 times a week for 4 weeks, could significantly improve muscle strength and decrease muscle tonus, disability and pain in upper limb of hemiplegic post-stroke patients. Local muscle vibration treatment might be an additional and safe tool in the management of chronic poststroke patients, granted its high therapeutic efficiency, limited cost and short and repeatable protocol of use.
Gomes, Cid André Fidelis de Paula; Leal-Junior, Ernesto Cesar Pinto; Biasotto-Gonzalez, Daniela Aparecida; El-Hage, Yasmin; Politti, Fabiano; Gonzalez, Tabajara de Oliveira; Dibai-Filho, Almir Vieira; de Oliveira, Adriano Rodrigues; Frigero, Marcelo; Antonialli, Fernanda Colella; Vanin, Adriane Aver; de Tarso Camillo de Carvalho, Paulo
2014-04-09
Type 2 diabetes, also known non-insulin-dependent diabetes, is the most prevalent type of the disease and involves defects in the secretion and action of insulin. The aim of the proposed study is to evaluate the efficacy of pre-exercise low-level laser therapy (LLLT) on muscle performance of the quadriceps femoris in individuals with type 2 diabetes. A double-blind, randomized, controlled clinical trial will be carried out in two treatment phases. In the first phase, quadriceps muscle performance will be evaluated using an isokinetic dynamometer and the levels of creatine kinase and lactate dehydrogenase (biochemical markers of muscle damage) will be determined. The participants will then be allocated to four LLLT groups through a randomization process using opaque envelopes: Group A (4 Joules), Group B (6 Joules), Group C (8 Joules) and Group D (0 Joules; placebo). Following the administration of LLLT, the participants will be submitted to an isokinetic eccentric muscle fatigue protocol involving the quadriceps muscle bilaterally. Muscle performance and biochemical markers of muscle damage will be evaluated again immediately after as well as 24 and 48 hours after the experimental protocol. One week after the last evaluation the second phase will begin, during which Groups A, B and C will receive the LLLT protocol that achieved the best muscle performance in phase 1 for a period of 4 weeks. At the end of this period, muscle performance will be evaluated again. The protocol for this study is registered with the World Health Organization under Universal Trial Number U1111-1146-7109. The purpose of this randomized clinical trial is to evaluate the efficacy of pre-exercise LLLT on the performance of the quadriceps muscle (peak torque, total muscle work, maximum power and fatigue index - normalized by body mass) in individuals with DM-2. The study will support the practice of evidence-based to the use of LLLT in improving muscle performance in Individuals with DM-2. Data will be published after the study is completed.
Johnson, Eric G; Godges, Joseph J; Lohman, Everett B; Stephens, Joni A; Zimmerman, Grenith J; Anderson, Sharon P
2003-01-01
The purpose of this pilot study was to compare disability self-assessment and upper quarter muscle balance female dental hygienists and non dental hygienist females. The upper quarter was operationally defined as the shoulder and neck region. Muscle balance was operationally defined as muscle flexibility and muscle performance. A convenience sample of 41 working dental hygienists and 46 non dental hygienists participated in the study. Muscle flexibility of the upper quarter was measured by inclinometry or standard muscle length testing. Muscle performance was measured by timing the duration of four statically maintained positions. Subjects filled out the Northwick Park Neck Pain Questionnaire (NPNPQ), which is a disability self-assessment. Analysis of Covariance (ANCOVA) was used during data analysis to adjust for the mean age difference between the dental hygienist group (38.0 years) and the non-dental hygienist group (29.3 years). The results of this pilot study suggest that female dental hygienists are more likely than non dental hygienist females to develop tightness in the upper trapezius (p = 0.007) and the levator scapula (p = 0.01) of the non dominant upper quarter and lower fibers of the pectoralis major of the dominant upper quarter (p = 0.03) Muscle performance trends in the dental hygienist group supported muscle balance theory that short muscles remain strong while lengthened muscles become weak. The dental hygienist group had higher disability scores in all nine parts of the NPNPQ compared to the non-dental hygienist group, five of which were statistically significant (p < 0.05). The results of this pilot study suggest that muscle imbalances in the upper quarter are more common in female dental hygienists than in female non dental hygienists and may contribute to the numerous upper quarter pathologies associated with the practice of dental hygiene. Further research is needed to determine if upper quarter strengthening and flexibility exercises performed by dental hygienists can reduce disability self-assessment.
Wang, Huixue; Gao, Yingji; Ji, Lixin; Bai, Wanshan
2018-05-01
The clinical value of soleus muscle H-reflex monitoring in general anesthesia percutaneous interlaminar approach was investigated. A total of 80 cases with unilateral L5-S1 disc herniation between January 2015 and October 2016 were randomly divided into control group (without soleus muscle H-reflex monitoring, n=40) and observation group (with soleus muscle H-reflex monitoring, n=40). Results showed that the operation time of the observation group was shorter than that of the control group (P<0.05), and the blood loss during the operation was less than that of the control group (P<0.05). The length of postoperative hospital stay was shorter than that of the control group (P<0.05). At 24 h after operation, the amplitude of H-reflex in diseased side soleus muscle was significantly lower than that in healthy side (P<0.05). The preoperative, postoperative and 24 h postoperatively, the latency of H-reflex in diseased side soleus muscle was shorter than that of healthy side (P<0.05). The latency and amplitude of H-reflex latency in soleus muscle were significantly lower (P<0.05), and the height of intervertebral space in observation group was significantly higher than that in control group (P<0.05). The total percentage of postsurgical sensory dysfunction, dyskinesia, post-root canal stenosis, disc herniation and cerebrospinal fluid leakage was lower than that of the control group (P<0.05). Japanese Orthopaedic Association score of the observation group was significantly higher at 1 month, and 1 year after operation lower than the control group (P<0.05). Taken together, soleus muscle H-reflex monitoring can effectively reduce the damage to the nerve roots under percutaneous endoscopic intervertebral endoscopic surgery under general anesthesia, improve the accuracy of surgery, reduce the complications, shorten the operation time and reduce the surgical bleeding, which is more beneficial to patients smooth recovery.
Mitrakas, Lampros P; Zachos, Ioannis V; Tzortzis, Vassileios P; Gravas, Stavros A; Rouka, Erasmia C; Dimitropoulos, Konstantinos I; Vandoros, Gerasimos P; Karatzas, Anastasios D; Melekos, Michael D; Papavassiliou, Athanasios G
2015-07-01
The purpose of this study was to assess the correlation of previous bladder cancer history with the recurrence and progression of patients with high-risk non-muscle-invasive bladder cancer treated with adjuvant Bacillus Calmette-Guérin (BCG) and to evaluate their natural history. Patients were divided into two groups based on the existence of previous bladder cancer (primary, non-primary). A logistic regression analysis was used to identify the possible differences in the probabilities of recurrence and progression with respect to tumor history, while potential differences due to gender, tumor size (> 3 cm, < 3 cm), stage (pTa, T1), concomitant carcinoma in situ (pTis) and number of tumors (single, multiple) were also assessed. Univariate and multivariate models were employed. In addition, Kaplan-Meier survival analysis was used to compare recurrence- and progression-free survival between the groups. A total of 192 patients were included (144 with primary and 48 with non-primary tumors). The rates of recurrence and progression for patients with primary tumors were 27.8% and 12.5%, respectively. The corresponding percentages for patients with non-primary tumors were 77.1% and 33.3%, respectively. The latter group of patients displayed significantly higher probabilities of recurrence (p=0.000; 95% confidence interval [CI], 4.067 to 18.804) and progression (p=0.002; 95% CI, 1.609 to 7.614) in a univariate logistic regression analysis. Previous bladder cancer history remained significant in the multivariate model accounting for history, age, gender, tumor size , number of tumors, stage and concomitant pTis (p=0.000; 95% CI, 4.367 to 21.924 and p=0.002; 95% CI, 1.611 to 8.182 for recurrence and progression respectively). Kaplan-Meier curves revealed that the non-primary group hadreduced progression- and recurrence-free survival. Previous non-muscle-invasive bladder cancer history correlates significantly with recurrence and progression in patients with high-risk non-muscle-invasive disease treated with adjuvant BCG.
Which causes more ergonomic stress: Laparoscopic or open surgery?
Wang, Robert; Liang, Zhe; Zihni, Ahmed M; Ray, Shuddhadeb; Awad, Michael M
2017-08-01
There is increasing awareness of potential ergonomic challenges experienced by the laparoscopic surgeon. The purpose of this study is to quantify and compare the ergonomic stress experienced by a surgeon while performing open versus laparoscopic portions of a procedure. We hypothesize that a surgeon will experience greater ergonomic stress when performing laparoscopic surgery. We designed a study to measure upper-body muscle activation during the laparoscopic and open portions of sigmoid colectomies in a single surgeon. A sample of five cases was recorded over a two-month time span. Each case contained significant portions of laparoscopic and open surgery. We obtained whole-case electromyography (EMG) tracings from bilateral biceps, triceps, deltoid, and trapezius muscles. After normalization to a maximum voltage of contraction (%MVC), these EMG tracings were used to calculate average muscle activation during the open and laparoscopic segments of each procedure. Paired Student's t test was used to compare the average muscle activation between the two groups (*p < 0.05 considered statistically significant). Significant reductions in mean muscle activation in laparoscopic compared to open procedures were noted for the left triceps (4.07 ± 0.44% open vs. 2.65 ± 0.54% lap, 35% reduction), left deltoid (2.43 ± 0.45% open vs. 1.32 ± 0.16% lap, 46% reduction), left trapezius (9.93 ± 0.1.95% open vs. 4.61 ± 0.67% lap, 54% reduction), right triceps (2.94 ± 0.62% open vs. 1.85 ± 0.28% lap, 37% reduction), and right trapezius (10.20 ± 2.12% open vs. 4.69 ± 1.18% lap, 54% reduction). Contrary to our hypothesis, the laparoscopic approach provided ergonomic benefit in several upper-body muscle groups compared to the open approach. This may be due to the greater reach of laparoscopic instruments and camera in the lower abdomen/pelvis. Patient body habitus may also have less of an effect in the laparoscopic compared to open approach. Future studies with multiple subjects and different types of procedures are planned to further investigate these findings.
Hofmann, Marlene; Halper, Barbara; Oesen, Stefan; Franzke, Bernhard; Stuparits, Petra; Tschan, Harald; Bachl, Norbert; Strasser, Eva-Maria; Quittan, Michael; Ploder, Martin; Wagner, Karl-Heinz; Wessner, Barbara
2015-04-01
There is a high need for blood-based biomarkers detecting age-related changes in muscular performance at an early stage. Therefore, we investigated whether serum levels of growth and differentiation factor-15 (GDF-15), activin A, myostatin, follistatin, and insulin-like growth factor-1 (IGF-1) would reflect age- and physical performance-related differences between young (22-28 years) and elderly (65-92 years) females. Isokinetic peak torque of knee extension (PTE) was measured in young females to obtain reference values for the discrimination of different stages of age-associated muscle weakness. Additionally, elderly women were screened for sarcopenia using the algorithm of the European Working Group on Sarcopenia in Older People (low muscle mass in addition to low PTE and/or low walking speed). IGF-1 levels were higher and GDF-15 levels were lower in young females in comparison to the elderly (p < 0.01), whereas members of the activin A/myostatin/follistatin axis showed similar levels across age groups. In older women, IGF-1 correlated negatively with age (ρ = -0.359, p < 0.01) and positively with muscle mass (ρ = 0.365, p < 0.01). In contrast, GDF-15 correlated positively with age (ρ = 0.388, p < 0.001) and negatively with muscle mass (ρ = -0.320, p < 0.01). However, none of the serum markers differed between women classified as non-, mildly and severely dynapenic/sarcopenic. Multiple linear regression analyses revealed that a combination of all blood-based biomarkers obtained in addition to age and fat mass moderately predicted muscle mass (+2.9%). Neither a single nor a combined set of tested biomarkers reflected the presence of dynapenia or sarcopenia in elderly women. However, due to the associations of IGF-1 and GDF-15 with correlates of muscle mass and function, these parameters remain promising candidates in a potential set of blood-based biomarkers to diagnose sarcopenia and/or dynapenia. Copyright © 2015 Elsevier Inc. All rights reserved.
Activity of thoracic and lumbar epaxial extensors during postural responses in the cat
NASA Technical Reports Server (NTRS)
Macpherson, J. M.; Fung, J.; Peterson, B. W. (Principal Investigator)
1998-01-01
This study examined the role of trunk extensor muscles in the thoracic and lumbar regions during postural adjustments in the freely standing cat. The epaxial extensor muscles participate in the rapid postural responses evoked by horizontal translation of the support surface. The muscles segregate into two regional groups separated by a short transition zone, according to the spatial pattern of the electromyographic (EMG) responses. The upper thoracic muscles (T5-9) respond best to posteriorly directed translations, whereas the lumbar muscles (T13 to L7) respond best to anterior translations. The transition group muscles (T10-12) respond to almost all translations. Muscles group according to vertebral level rather than muscle species. The upper thoracic muscles change little in their response with changes in stance distance (fore-hindpaw separation) and may act to stabilize the intervertebral angles of the thoracic curvature. Activity in the lumbar muscles increases along with upward rotation of the pelvis (iliac crest) as stance distance decreases. Lumbar muscles appear to stabilize the pelvis with respect to the lumbar vertebrae (L7-sacral joint). The transition zone muscles display a change in spatial tuning with stance distance, responding to many directions of translation at short distances and focusing to respond best to contralateral translations at the long stance distance.
Ramirez-Sarmiento, Alba; Orozco-Levi, Mauricio; Guell, Rosa; Barreiro, Esther; Hernandez, Nuria; Mota, Susana; Sangenis, Merce; Broquetas, Joan M; Casan, Pere; Gea, Joaquim
2002-12-01
The present study was aimed at evaluating the effects of a specific inspiratory muscle training protocol on the structure of inspiratory muscles in patients with chronic obstructive pulmonary disease. Fourteen patients (males, FEV1, 24 +/- 7% predicted) were randomized to either inspiratory muscle or sham training groups. Supervised breathing using a threshold inspiratory device was performed 30 minutes per day, five times a week, for 5 consecutive weeks. The inspiratory training group was subjected to inspiratory loading equivalent to 40 to 50% of their maximal inspiratory pressure. Biopsies from external intercostal muscles and vastus lateralis (control muscle) were taken before and after the training period. Muscle samples were processed for morphometric analyses using monoclonal antibodies against myosin heavy chain isoforms I and II. Increases in both the strength and endurance of the inspiratory muscles were observed in the inspiratory training group. This improvement was associated with increases in the proportion of type I fibers (by approximately 38%, p < 0.05) and in the size of type II fibers (by approximately 21%, p < 0.05) in the external intercostal muscles. No changes were observed in the control muscle. The study demonstrates that inspiratory training induces a specific functional improvement of the inspiratory muscles and adaptive changes in the structure of external intercostal muscles.
Muscle Contractile Properties in Severely Burned Rats
Wu, Xiaowu; Wolf, Steven E.; Walters, Thomas J.
2010-01-01
Burn induces a sustained catabolic response which causes massive loss of muscle mass after injury. A better understanding of the dynamics of muscle wasting and its impact on muscle function is necessary for the development of effective treatments. Male Sprague-Dawley rats underwent either a 40% total body surface area (TBSA) scald burn or sham burn, and were further assigned to subgroups at four time points after injury (days 3, 7, 14 and 21). In situ isometric contractile properties were measured including twitch tension (Pt), tetanic tension (Po) and fatigue properties. Body weight decreased in burn and sham groups through day 3, however, body weight in the sham groups recovered and increased over time compared to burned groups, which progressively decreased until day 21 after injury. Significant differences in muscle wet weight and protein weight were found between sham and burn. Significant differences in muscle contractile properties were found at day 14 with lower absolute Po as well as specific Po in burned rats compared to sham. After burn, the muscle twitch tension was significantly higher than the sham at day 21. No significant difference in fatigue properties was found between the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the development of approaches designed to reduce the rate and extent of burn induced muscle loss and function. PMID:20381255
Muscle mass as a target to reduce fatigue in patients with advanced cancer.
Neefjes, Elisabeth C W; van den Hurk, Renske M; Blauwhoff-Buskermolen, Susanne; van der Vorst, Maurice J D L; Becker-Commissaris, Annemarie; de van der Schueren, Marian A E; Buffart, Laurien M; Verheul, Henk M W
2017-08-01
Cancer-related fatigue (CRF) reduces quality of life and the activity level of patients with cancer. Cancer related fatigue can be reduced by exercise interventions that may concurrently increase muscle mass. We hypothesized that low muscle mass is directly related to higher CRF. A total of 233 patients with advanced cancer starting palliative chemotherapy for lung, colorectal, breast, or prostate cancer were studied. The skeletal muscle index (SMI) was calculated as the patient's muscle mass on level L3 or T4 of a computed tomography scan, adjusted for height. Fatigue was assessed with the Functional Assessment of Chronic Illness Therapy-fatigue questionnaire (cut-off for fatigue <34). Multiple linear regression analyses were conducted to study the association between SMI and CRF adjusting for relevant confounders. In this group of patients with advanced cancer, the median fatigue score was 36 (interquartile range 26-44). A higher SMI on level L3 was significantly associated with less CRF for men (B 0.447, P 0.004) but not for women (B - 0.401, P 0.090). No association between SMI on level T4 and the Functional Assessment of Chronic Illness Therapy-fatigue score was found (n = 82). The association between SMI and CRF may lead to the suggestion that male patients may be able to reduce fatigue by exercise interventions aiming at an increased muscle mass. In women with advanced cancer, CRF is more influenced by other causes, because it is not significantly related to muscle mass. To further reduce CRF in both men and women with cancer, multifactorial assessments need to be performed in order to develop effective treatment strategies. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Imaging muscle as a potential biomarker of denervation in motor neuron disease
Jenkins, Thomas M; Alix, James J P; David, Charlotte; Pearson, Eilish; Rao, D Ganesh; Hoggard, Nigel; O’Brien, Eoghan; Baster, Kathleen; Bradburn, Michael; Bigley, Julia; McDermott, Christopher J; Wilkinson, Iain D; Shaw, Pamela J
2018-01-01
Objective To assess clinical, electrophysiological and whole-body muscle MRI measurements of progression in patients with motor neuron disease (MND), as tools for future clinical trials, and to probe pathophysiological mechanisms in vivo. Methods A prospective, longitudinal, observational, clinicoelectrophysiological and radiological cohort study was performed. Twenty-nine patients with MND and 22 age-matched and gender-matched healthy controls were assessed with clinical measures, electrophysiological motor unit number index (MUNIX) and T2-weighted whole-body muscle MRI, at first clinical presentation and 4 months later. Between-group differences and associations were assessed using age-adjusted and gender-adjusted multivariable regression models. Within-subject longitudinal changes were assessed using paired t-tests. Patterns of disease spread were modelled using mixed-effects multivariable regression, assessing associations between muscle relative T2 signal and anatomical adjacency to site of clinical onset. Results Patients with MND had 30% higher relative T2 muscle signal than controls at baseline (all regions mean, 95% CI 15% to 45%, p<0.001). Higher T2 signal was associated with greater overall disability (coefficient −0.009, 95% CI −0.017 to –0.001, p=0.023) and with clinical weakness and lower MUNIX in multiple individual muscles. Relative T2 signal in bilateral tibialis anterior increased over 4 months in patients with MND (right: 10.2%, 95% CI 2.0% to 18.4%, p=0.017; left: 14.1%, 95% CI 3.4% to 24.9%, p=0.013). Anatomically, contiguous disease spread on MRI was not apparent in this model. Conclusions Whole-body muscle MRI offers a new approach to objective assessment of denervation over short timescales in MND and enables investigation of patterns of disease spread in vivo. Muscles inaccessible to conventional clinical and electrophysiological assessment may be investigated using this methodology. PMID:29089397
Low-intensity training provokes adaptive extracellular matrix turnover of a muscular dystrophy model
Gaiad, Thaís P.; Oliveira, Murilo X.; Lobo, Adalfredo R.; Libório, Lívia R.; Pinto, Priscilla A.F.; Fernandes, Danielle C.; Santos, Ana Paula; Ambrósio, Carlos Eduardo; Machado, Alex Sander D.
2017-01-01
Recommendations of therapeutic exercise in Duchenne muscular dystrophy are still controversial. The hypothesis that a low-intensity training (LIT) protocol leads to muscle adaptations on mdx mice model was tested. Dystrophic male mice with 8 weeks old were separated in exercised (mdxE, n= 8) and sedentary (mdxC, n= 8) groups. Wild-type mice were used as control (WT, n= 8) group. Exercised group underwent a LIT protocol (9 m/min, 30 min, 3 days/wk, 60 days) on a horizontal treadmill. At day 60 all animals were analyzed regarding parameters of markers of muscle lesion and extracellular matrix turnover of muscle tissue by collagens fibers on tibial anterior muscle. Histomorphometry attested that centrally located nuclei fibers and the coefficient of variance of minimal Feret’s diameter was similar in mdxE and mdxC groups (P= 1.000) and both groups presented higher mean values than WT group (P< 0.001). Fraction area of collagen fibers of mdxE group was lower than mdxC group (P= 0,027) and similar to WT group (P= 0,751). Intramuscular area of Col3 of the mdxE group was higher than mdxC and WT groups (P<0.001). Intramuscular area of Col1 on the mdxE group was similar to the mdxC group (P= 1.000) and both groups were higher than WT group (P< 0.001). LIT protocol had not influenced muscle injuries resulting from the dystrophin-deficiency membrane fragility. Although, LIT had provoked adaptations on extracellular matrix bringing higher elastic feature to dystrophic muscle tissue. PMID:29326902
Effects of hypothyroidism on the skeletal muscle blood flow response to contractions.
Bausch, L; McAllister, R M
2003-04-01
Hypothyroidism is associated with impaired blood flow to skeletal muscle under whole body exercise conditions. It is unclear whether poor cardiac and/or vascular function account for blunted muscle blood flow. Our experiment isolated a small group of hindlimb muscles and simulated exercise via tetanic contractions. We hypothesized that muscle blood flow would be attenuated in hypothyroid rats (HYPO) compared with euthyroid rats (EUT). Rats were made hypothyroid by mixing propylthiouracil in their drinking water (2.35 x 10-3 mol/l). Treatment efficacy was evidenced by lower serum T3 concentrations and resting heart rates in HYPO (both P<0.05). In the experimental preparation, isometric contractions of the lower right hindlimb muscles at a rate of 30 tetani/min were induced via sciatic nerve stimulation. Regional blood flows were determined by the radiolabelled microsphere method at three time points: rest, 2 min of contractions and 10 min of contractions. Muscle blood flow generally increased from rest ( approximately 5-10 ml/min per 100 g) through contractions for both groups. Further, blood flow during contractions did not differ between groups for any muscle (eg. red section of gastrocnemius muscle; EUT, 59.9 +/- 14.1; HYPO, 61.1 +/- 15.0; NS between groups). These findings indicate that hypothyroidism does not significantly impair skeletal muscle blood flow when only a small muscle mass is contracting. Our findings suggest that impaired blood flow under whole body exercise is accounted for by inadequate cardiac function rather than abnormal vascular function.
Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle
NASA Technical Reports Server (NTRS)
Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.
1994-01-01
Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.
Tsai, Chi-Yang; Chiu, Wan Chi; Liao, Yi-Hsuan; Tsai, Chih-Mong
2009-02-01
The effects of botulinum neurotoxin type A (BoNT/A) on masseter muscles, when injected for cosmetic purposes (volumetric reduction) or treatment of excessive muscle activity (bruxism), have been investigated. However, the full anatomic effects of treatment are not known, particularly with respect to the mandible and relevant anthropometric measurements. The intent of this study was to use unilaterial BoNT/A injections to induce localized masseter atrophy and paresis and then to measure the effects of muscle influence on craniofacial growth and development. Growing male Wistar rats, 30 days old, were studied. The experimental group consisted of 8 rats. One side of the masseter muscle was injected with BoNT/A and the other side of the masseter muscle was injected with saline. The side with BoNT/A belonged to 1 group and the side with saline was the sham group. Three rats without injections was the control. After 45 days, the masseter muscles were dissected and weighed. Dry skulls were prepared, and anthropometric measurements determined. One-way ANOVA showed that the animals maintained their weight in both groups; however, the muscles injected with BoNT/A were smaller than the sham or control muscles. Anthropometric measurements of the bony structures attached to the masseter muscle showed a significant treatment effect. After localized masseter muscle atrophy induced by BoNT/A injection, alterations of craniofacial bone growth and development were seen. The results agree with the functional matrix theory that soft tissues regulate bone growth.
An approach to counteracting long-term microgravity-induced muscle atrophy
NASA Technical Reports Server (NTRS)
Tesch, P. A.; Buchanan, P.; Dudley, G. A.
1990-01-01
To find means of alleviating muscle atrophy induced by long-term microgravity, the effects of a 19-week-long heavy-resistance training regime (using either concentric muscle actions only or concentric and eccentric muscle actions) on the strengths of the exercised knee extensor muscle group were investigated in two groups of male human subjects performing two types of training exercises: supine leg press or/and seated knee extension. Results show that a training program in which both the concentric and the eccentric muscle action was performed led to substantially greater increases in maximal muscle strength than when only concentric exercises were performed.
Oliveira-Campelo, Natalia M; Rubens-Rebelatto, José; Martí N-Vallejo, Francisco J; Alburquerque-Sendí N, Francisco; Fernández-de-Las-Peñas, César
2010-05-01
A randomized controlled trial. To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P = .003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. Therapy, level 1b.J Orthop Sports Phys Ther 2010;40(5):310-317, Epub 12 April 2010. doi:10.2519/jospt.2010.3257.
The effect of amino acid infusion on anesthesia-induced hypothermia in muscle atrophy model rats.
Kanazawa, Masahiro; Ando, Satoko; Tsuda, Michio; Suzuki, Toshiyasu
2010-01-01
An infusion of amino acids stimulates heat production in skeletal muscle and then attenuates the anesthesia-induced hypothermia. However, in a clinical setting, some patients have atrophic skeletal muscle caused by various factors. The present study was therefore conducted to investigate the effect of amino acids on the anesthesia-induced hypothermia in the state of muscle atrophy. As the muscle atrophy model, Sprague-Dawley rats were subjected to hindlimb immobilization for 2 wk. Normal rats and atrophy model rats were randomly assigned to one of the two treatment groups: saline or amino acids (n=8 for each group). Test solutions were administered intravenously to the rats under sevoflurane anesthesia for 180 min, and the rectal temperature was measured. Plasma samples were collected for measurement of insulin, blood glucose, and free amino acids. The rectal temperature was significantly higher in the normal-amino acid group than in the muscle atrophy-amino acid group from 75 to 180 min. The plasma insulin level was significantly higher in the rats given amino acids than in the rats given saline in both normal and model groups. In the rats given amino acids, plasma total free amino acid concentration was higher in the model group than in the normal group. These results indicate that skeletal muscle plays an important role in changes in body temperature during anesthesia and the effect of amino acids on anesthesia-induced hypothermia decreases in the muscle atrophy state. In addition, intravenous amino acids administration during anesthesia induces an increase in the plasma insulin level.
Schuermans, Joke; Van Tiggelen, Damien; Danneels, Lieven; Witvrouw, Erik
2014-12-01
The hamstring injury mechanism was assessed by investigating the exercise-related metabolic activity characteristics of the hamstring muscles using a muscle functional MRI (mfMRI) protocol. 27 healthy male football players and 27 football players with a history of hamstring injuries (recovered and playing fully) underwent standardised mfMR Imaging. The mfMRI protocol consisted of a resting scan, a strenuous bilateral eccentric hamstring exercise and a postexercise scan. The exercise-related T2 increase or the signal intensity shift between both scans was used to detect differences in metabolic activation characteristics (1) between the different hamstring muscle bellies and (2) between the injury group and the control group. A more symmetrical muscle recruitment pattern corresponding to a less economic hamstring muscle activation was demonstrated in the formerly injured group (p<0.05). The injured group also demonstrated a significantly lower strength endurance capacity during the eccentric hamstring exercise. These findings suggest that the vulnerability of the hamstring muscles to football-related injury is related to the complexity and close coherence in the synergistic muscle recruitment of the biceps femoris and the semitendinosus. Discrete differences in neuromuscular coordination and activity distribution, with the biceps femoris partly having to compensate for the lack of endurance capacity of the semitendinosus, probably increase the hamstring injury risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Marín, Pedro J; Ferrero, Cristina M; Menéndez, Héctor; Martín, Juan; Herrero, Azael J
2013-10-01
The aim of the present study was to analyze the effects of whole-body vibration on lower limb muscle architecture, muscle strength, and balance in stroke patients during a period of 3 mos. The inclusion criteria were having had ischemic or hemorrhagic stroke at least 6 mos before the study and a National Institutes of Health Stroke Scale score of greater than 1 and less than 20. The patients were randomly divided into two groups: an experimental group (n = 11, six men and five women; age, 62.4 ± 10.7 yrs; height, 1.64 ± 0.07 m; mass, 69.4 ± 12.9 kg) and a sham group (n = 9, five men and four women; age, 64.4 ± 7.6 yrs; height, 1.62 ± 0.07 m; mass, 75.0 ± 15.8 kg). The experimental group received a whole-body vibration treatment, with an increase in frequency, sets, and time per set during 17 sessions. The sham group performed the same exercises as that of the experimental group but was not exposed to vibration. Outcome variables included the muscle architecture (the rectus femoris, the vastus lateralis, and the medial gastrocnemius), the maximal isometric voluntary contraction of the knee extensors, and the Berg Balance Scale. There were no significant differences between the groups on the primary outcomes of lower limb muscle architecture, muscle strength, and balance. It seems that whole-body vibration exercise does not augment the increase in neuromuscular performance and lower limb muscle architecture induced by isometric exercise alone in stroke patients.
Scholz, Kristen; Kynast, Anna Marie; Couturier, Aline; Mooren, Frank-Christoph; Krüger, Karsten; Most, Erika; Eder, Klaus; Ringseis, Robert
2014-08-01
It was recently shown that niacin prevents the obesity-induced type I to type II fiber switching in skeletal muscle of obese rats and favors the development of a more oxidative metabolic phenotype and thereby increases whole body utilization of fatty acids. Whether niacin also causes type II to type I fiber switching in skeletal muscle of healthy rats has not been investigated yet. Thus, the present study aimed to investigate whether niacin supplementation influences fiber distribution and metabolic phenotype of different skeletal muscles with a distinct type I-to-type II fiber ratio in healthy rats. Twenty-four male, 10-week-old Sprague-Dawley rats were randomly assigned into two groups of 12 rats each and fed either a control diet with 30 mg supplemented niacin/kg diet (control group) or a high-niacin diet with 780 mg supplemented niacin/kg diet (high-niacin group). After 27 days of treatment, the percentage number of type I fibers in rectus femoris, gastrocnemius, and tibialis anterior muscles was 5-10% greater in the niacin group than in the control group, but did not differ between groups in soleus and vastus intermedius muscles. Transcript levels of genes encoding transcription factors regulating fiber switching, fiber-specific myosin heavy chain isoforms, and proteins involved in fatty acid utilization, oxidative phosphorylation, and angiogenesis did not differ between groups. The results show that niacin has only negligible effects on fiber distribution and its regulation as well as the metabolic phenotype of skeletal muscle in healthy rats.
[Focal myositis: An unknown disease].
Gallay, L; Streichenberger, N; Benveniste, O; Allenbach, Y
2017-10-01
Focal myositis are inflammatory muscle diseases of unknown origin. At the opposite from the other idiopathic inflammatory myopathies, they are restricted to a single muscle or to a muscle group. They are not associated with extramuscular manifestations, and they have a good prognosis without any treatment. They are characterized by a localized swelling affecting mostly lower limbs. The pseudo-tumor can be painful, but is not associated with a muscle weakness. Creatine kinase level is normal. Muscle MRI shows an inflammation restricted to a muscle or a muscle group. Muscle biopsy and pathological analysis remain necessary for the diagnosis, showing inflammatory infiltrates composed by macrophages and lymphocytes without any specific distribution within the muscle. Focal overexpression of HLA-1 by the muscle fibers is frequently observed. The muscle biopsy permits to rule out differential diagnosis such a malignancy (sarcoma). Spontaneous remission occurs within weeks or months after the first symptoms, relapse is unusual. Copyright © 2017. Published by Elsevier SAS.
Skeletal muscle biopsy studies of cardiac patients.
Fekete, G; Boros, Z; Cserhalmi, L; Apor, P
1987-01-01
Eleven patients diagnosed and treated for congestive cardiomyopathy (COCM) of unknown aetiology, and another 10 patients, with congestive alcoholic heart muscle disease (ACOCM) were studied. Muscle biopsy samples were obtained from the vastus lateralis (VL) and the gastrocnemius (G) muscles. In part of the sample muscle the fibre pattern was classified by means of ATPase activity staining, a technique based on the pH lability of the fibres concerned. Fibre typing and area measurements were carried out by light microscope. The other part of the sample was used as muscle homogenate of which the Ca2+-activated ATPase activity as well as citrate synthetase (CS) and aldolase activities were measured. No significant difference was found in these enzyme activities between the two groups of patients. The proportion of the slow twitch (ST) fibres in the VL, mainly in the patients with ACOCM, was lower as compared to data for healthy subjects. A similar tendency was revealed for G. In both muscles tested, the area of ST fibres was smaller in the ACOCM group. The fast twitch (FT) fibre area proved to be slightly different in the two groups of subjects tested. Occurrence of degenerative signs in the histological tests was higher in the ACOCM than in the COCM group. It was concluded that differences in the skeletal muscles of patients with ACOCM and COCM may primarily account for the alcoholism. The disease of the heart muscle has little effect on the function of skeletal muscle. Even so, a low amount or lack of physical activity may have an unfavourable influence on the skeletal muscles of patients with heart muscle disease.
Sørensen, T J; Langberg, H; Hodges, P W; Bliddal, H; Henriksen, M
2012-01-01
Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals. Twenty-seven healthy untrained volunteers participated in a randomized controlled trial of quadriceps strengthening (3 times per week for 8 weeks). Participants were randomized to perform resistance training either during pain induced by injections of painful hypertonic saline (pain group, n = 13) or during a nonpainful control condition with injection of isotonic saline (control group, n = 14) into the infrapatellar fat pad. The primary outcome measure was change in maximal isokinetic muscle strength in knee extension/flexion (60, 120, and 180 degrees/second). The group who exercised with pain had a significantly larger improvement in isokinetic muscle strength at all angular velocities of knee extension compared to the control group. In knee flexion there were improvements in isokinetic muscle strength in both groups with no between-group differences. Experimental knee joint pain improved the training-induced gain in muscle strength following 8 weeks of quadriceps training. It remains to be studied whether knee joint pain has a positive effect on strength gain in patients with knee pathology. Copyright © 2012 by the American College of Rheumatology.
Suwa, M; Ishioka, T; Kato, J; Komaita, J; Imoto, T; Kida, A; Yokochi, T
2016-06-01
The purpose of this study was to investigate whether long-term wheel running would attenuate age-related loss of muscle fiber. Male ICR mice were divided into young (Y, n=12, aged 3 months), old-sedentary (OS, n=5, aged 24 months), and old-exercise (OE, n=6, aged 24 months) groups. The OE group started spontaneous wheel running at 3 months and continued until 24 months of age. Soleus and plantaris muscles were fixed in 4% paraformaldehyde buffer. The fixed muscle was digested in a 50% NaOH solution to isolate single fiber and then fiber number was quantified. The masses of the soleus and plantaris muscles were significantly lower at 24 months than at 3 months of age, and this age-related difference was attenuated by wheel running (P<0.05). Soleus muscle fiber number did not differ among the groups. In the plantaris muscle, the fiber number in the OS group (1 288±92 fibers) was significantly lower than in the Y group (1 874±93 fibers), and this decrease was attenuated in the OE group (1 591±80 fibers) (P<0.05). These results suggest that age-related fiber loss occurs only in the fast-twitch fiber-rich muscle of mice, and that life-long wheel running exercise can prevent this fiber loss. © Georg Thieme Verlag KG Stuttgart · New York.
Matsumura, Melissa D; Zavorsky, Gerald S; Smoliga, James M
2015-06-01
Ginger possesses analgesic and pharmacological properties mimicking non-steroidal antiinflammatory drugs. We aimed to determine if ginger supplementation is efficacious for attenuating muscle damage and delayed onset muscle soreness (DOMS) following high-intensity resistance exercise. Following a 5-day supplementation period of placebo or 4 g ginger (randomized groups), 20 non-weight trained participants performed a high-intensity elbow flexor eccentric exercise protocol to induce muscle damage. Markers associated with muscle damage and DOMS were repeatedly measured before supplementation and for 4 days following the exercise protocol. Repeated measures analysis of variance revealed one repetition maximum lift decreased significantly 24 h post-exercise in both groups (p < 0.005), improved 48 h post-exercise only in the ginger group (p = 0.002), and improved at 72 (p = 0.021) and 96 h (p = 0.044) only in the placebo group. Blood creatine kinase significantly increased for both groups (p = 0.015) but continued to increase only in the ginger group 72 (p = 0.006) and 96 h (p = 0.027) post-exercise. Visual analog scale of pain was significantly elevated following eccentric exercise (p < 0.001) and was not influenced by ginger. In conclusion, 4 g of ginger supplementation may be used to accelerate recovery of muscle strength following intense exercise but does not influence indicators of muscle damage or DOMS. Copyright © 2015 John Wiley & Sons, Ltd.
Ries, Lilian Gerdi Kittel; Alves, Marcelo Correa; Bérzin, Fausto
2008-01-01
The aim of this study was to analyze the symmetry of the electromyographic (EMG) activity of the temporalis, masseter, and sternocleidomastoid (SCM) muscles in volunteers divided into a control group and a temporomandibular disorder (TMD) group. The surface EMG recordings were made during mandibular rest position, maximal intercuspal position, and during the chewing cycle. Normalized EMG waves of paired muscles were compared by computing a percentage overlapping coefficient (POC). The difference between the groups and between the static and dynamic clenching tests was analyzed through repeated measures, ANOVA. Symmetry of the temporalis, masseter, and SCM muscles activity was smaller in the TMD group compared to the control group. The mandibular postures were also significantly different among themselves. The asymmetric activation of jaw and neck muscles was interpreted as a compensatory strategy to achieve stability for the mandibular and cervical systems during masticatory function.
Chihara, Takanori; Seo, Akihiko
2014-03-01
Proposed here is an evaluation of multiple muscle loads and a procedure for determining optimum solutions to ergonomic design problems. The simultaneous muscle load evaluation is formulated as a multi-objective optimization problem, and optimum solutions are obtained for each participant. In addition, one optimum solution for all participants, which is defined as the compromise solution, is also obtained. Moreover, the proposed method provides both objective and subjective information to support the decision making of designers. The proposed method was applied to the problem of designing the handrail position for the sit-to-stand movement. The height and distance of the handrails were the design variables, and surface electromyograms of four muscles were measured. The optimization results suggest that the proposed evaluation represents the impressions of participants more completely than an independent use of muscle loads. In addition, the compromise solution is determined, and the benefits of the proposed method are examined. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Gomes, Matheus M.; Reis, Júlia G.; Carvalho, Regiane L.; Tanaka, Erika H.; Hyppolito, Miguel A.; Abreu, Daniela C. C.
2015-01-01
BACKGROUND: muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. OBJECTIVES: the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. METHOD: eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. RESULTS: the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). CONCLUSION: despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women. PMID:25651132
Assessment of pelvic floor muscles in women with deep endometriosis.
Dos Bispo, Ana Paula Santos; Ploger, Christine; Loureiro, Alessandra Fernandes; Sato, Hélio; Kolpeman, Alexander; Girão, Manoel João Batista Castello; Schor, Eduardo
2016-09-01
To assess function and prevalence of spasms and trigger points of the pelvic floor muscles in women with deep endometriosis. One hundred and four (104) patients were assessed. Group 1 (G1) was composed of 52 subjects diagnosed with deep endometriosis proven by magnetic resonance imaging (MRI); Group 2 (G2) was composed of 52 women with no signs of endometriosis. Subjects from both G1 and G2 were seen at the Division of Pelvic Pain and Endometriosis and at Center for Prevention of Sexually Transmitted Diseases, both at Federal University of São Paulo (UNIFESP), respectively. A full physical therapy evaluation was carried out, including medical history, presence of dyspareunia and physical examination, which included detailed evaluation of pelvic floor muscles and occurrence of muscle spasm, trigger point and muscle function. The average age of the subjects in the study group was 36.4 and 30.9 years in the control group (p = 0.002). A greater prevalence of deep dyspareunia was found in the subjects in the endometriosis group when compared to the control group (p = 0.010). Women in G1 had higher prevalence of muscle spasms. In this group, 53.9 % had spasms-compared to only 17.3 % of women in G2 (p < 0.001). On the other hand, no significant difference between the groups (p = 0.153) was found while searching for the presence of trigger points. Women with deep endometriosis have increased prevalence of pelvic floor muscle spasms when compared to the control group.
Trudelle-Jackson, Elaine; Ferro, Emerenciana; Morrow, James R
2011-01-01
BACKGROUND: Reduction in muscle strength is strongly associated with functional decline in women, and women with lower quadriceps strength adjusted for body weight are more likely to develop knee osteoarthritis. OBJECTIVE: To compare body weight--adjusted strength among women of different age/racial groups. STUDY DESIGN: Cross-sectional study of muscle strength in 918 women aged 20--83 (M ± SD = 52 ± 13). METHODS: An orthopedic examination was conducted including measurement of handgrip and lower extremity strength (hip abductors/external rotators, knee flexors/extensors). Data were grouped into young (20--39 years, n = 139), middle (40--54 years, n = 300), and older (55+ years, n = 424) ages for white (n = 699) and African American (AA) (n = 164) women. Means and standard deviations for strength adjusted for body weight were calculated for each age and racial group and compared using 2-way multivariate analysis of variance and post hoc tests. RESULTS: No significant age-by-race interaction (P = .092) but significant main effects for age and race (P < .001). Pairwise comparisons revealed significant differences in knee extensor and flexor strength between all age groups. For grip and hip external rotator strength, significant differences were found between the middle and older groups. Differences in hip abductor strength were found between the young and middle-aged groups. AA women had lower strength than white women in all muscle groups (P < .05) except hip external rotators. CONCLUSIONS: Strength decreased with age in all muscle groups but magnitude of decrease varied by muscle. Strengthening programs should target different muscles, depending on a woman's age and race.
Choi, Hyoung Ju; Shin, Sung Hee
2016-08-01
The purpose of this study was to examine the effects of a facial muscle exercise program including facial massage on the facial muscle function, subjective symptoms related to paralysis and depression in patients with facial palsy. This study was a quasi-experimental research with a non-equivalent control group non-synchronized design. Participants were 70 patients with facial palsy (experimental group 35, control group 35). For the experimental group, the facial muscular exercise program including facial massage was performed 20 minutes a day, 3 times a week for two weeks. Data were analyzed using descriptive statistics, χ²-test, Fisher's exact test and independent sample t-test with the SPSS 18.0 program. Facial muscular function of the experimental group improved significantly compared to the control group. There was no significant difference in symptoms related to paralysis between the experimental group and control group. The level of depression in the experimental group was significantly lower than the control group. Results suggest that a facial muscle exercise program including facial massage is an effective nursing intervention to improve facial muscle function and decrease depression in patients with facial palsy.
Architecture of the Suprahyoid Muscles: A Volumetric Musculoaponeurotic Analysis.
Shaw, Stephanie M; Martino, Rosemary; Mahdi, Ali; Sawyer, Forrest Kip; Mathur, Sunita; Hope, Andrew; Agur, Anne M
2017-10-17
Suprahyoid muscles play a critical role in swallowing. The arrangement of the fiber bundles and aponeuroses has not been investigated volumetrically, even though muscle architecture is an important determinant of function. Thus, the purpose was to digitize, model in three dimensions, and quantify the architectural parameters of the suprahyoid muscles to determine and compare their relative functional capabilities. Fiber bundles and aponeuroses from 11 formalin-embalmed specimens were serially dissected and digitized in situ. Data were reconstructed in three dimensions using Autodesk Maya. Architectural parameters were quantified, and data were compared using independent samples t-tests and analyses of variance. Based on architecture and attachment sites, suprahyoid muscles were divided into 3 groups: anteromedial, superolateral, and superoposterior. Architectural parameters differed significantly (p < .05) across muscles and across the 3 groups, suggesting differential roles in hyoid movement during swallowing. When activated simultaneously, anteromedial and superoposterior muscle groups could work together to elevate the hyoid. The results suggest that the suprahyoid muscles can have individualized roles in hyoid excursion during swallowing. Muscle balance may be important for identifying and treating hyolaryngeal dysfunction in patients with dysphagia.
[F-waves in brachial plexus palsy correlated to the prognosis of intrinsic paralysis].
Nobuta, S
1995-04-01
F-waves were examined in 80 nerves of 40 brachial plexus palsies in 37 cases. The electrical responses were evoked by 30 consecutive supramaximal electric stimuli to the median and ulnar nerves at the wrist and elbow, and recorded from the abductor pollicis brevis and abductor digiti minimi muscles. Three parameters in the F-waves were analyzed--conduction velocity, the difference between the maximal and minimal latencies, and the amplitude. In all cases, examinations were done repeatedly to detect changes in these parameters, and the results were compared with the clinical course of the intrinsic muscle function. Twenty-seven cases were investigated before and after explorative surgery. The findings were divided into four groups. The 1st group consisted of 12 nerves in which F-waves were not recorded. The intrinsic muscle power in this group was zero, and did not show any restoration. The 2nd group consisted of 10 nerves in which the conduction velocity was delayed. The muscle power in this group was fair, poor or trace, and there was no change in conduction velocity and muscle function. The 3rd group consisted of 18 nerves in which parameters other than the conduction velocity were abnormal, and the intrinsic muscle power in this group was fair, good or normal. In 7 of these nerves, the large latency difference decreased to normal at the 2nd, 3rd or 4th test with functional recovery in the intrinsic muscle. The high amplitude also changed to normal at the 2nd test with functional recovery. The 4th group consisted of 40 nerves in which all the parameters were normal and had full intrinsic muscle power. In conclusion, an examination of the F-waves was valuable to indicate the prognosis of the intrinsic muscle in the hand in brachial plexus palsy.
New Advances in Molecular Therapy for Muscle Repair After Diseases and Injuries
2010-04-01
in grey matter indicated small neuron and axon communication . Project # 5 Final Report** Inhibiting cell death and promoting muscle growth for...the treatment of other genetic and acquired causes of muscle wasting. We produced multiple AAV8 vectors with expression cassettes designed to... communication between the various investigators and institutions. The Administrative Core holds weekly/biweekly seminar series for SCRC
Effects of neck exercise on high-school students' neck-shoulder posture.
Lee, Myoung-Hyo; Park, Su-Jin; Kim, Jin-Sang
2013-05-01
[Purpose] This study examined the effects of deep flexor muscle-strengthening exercise on the neck-shoulder posture, and the strength and endurance of the deep flexor muscles of high-school students. [Subjects] The subjects were 30 seventeen-year-old female high-school students who complained about bad posture and chronic neck-shoulder pain. They were randomly divided into an experimental group of 15 subjects, who performed a deep flexor muscle-strengthening exercise and a control group of 15 subjects, who performed a basic stretching exercise. [Methods] The experimental group of 15 subjects performed a deep flexor muscle-strengthening exercise consisting of low-load training of the cranio-cervical flexor muscle, and the control group of 15 subjects performed a basic stretching exercise consisting of seven motions. [Results] The experimental group showed statistically significant changes in head tilt angle, neck flexion angle, forward shoulder angle, and the result of the cranio-cervical flexion test after the training. In contrast, the control group showed no statistically significant changes in these measures following the training. When the results of the groups were compared, statistically significant differences were found for all items between the experimental group and the control group. [Conclusion] Strengthening cranio-cervical flexor muscles is important for the adjustment of neck posture, and maintaining their stability is required to improve neck-shoulder posture.
Peretti, Ana Luiza; Antunes, Juliana Sobral; Lovison, Keli; Kunz, Regina Inês; Castor, Lidyane Regina Gomes; Brancalhão, Rose Meire Costa; Bertolini, Gladson Ricardo Flor; Ribeiro, Lucinéia de Fátima Chasko
2017-01-01
ABSTRACT Objective To evaluate the action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after peripheral nerve injury. Methods Wistar rats were divided into four groups, with seven animals each: Control Group, Vanillin Group, Injury Group, and Injury + Vanillin Group. The Injury Group and the Injury + Vanillin Group animals were submitted to nerve injury by compression of the sciatic nerve; the Vanillin Group and Injury + Vanillin Group, were treated daily with oral doses of vanillin (150mg/kg) from the 3rd to the 21st day after induction of nerve injury. At the end of the experiment, the tibialis anterior and soleus muscles were dissected and processed for light microscopy and submitted to morphological analysis. Results The nerve compression promoted morphological changes, typical of denervation, and the treatment with vanillin was responsible for different responses in the studied muscles. For the tibialis anterior, there was an increase in the number of satellite cells, central nuclei and fiber atrophy, as well as fascicular disorganization. In the soleus, only increased vascularization was observed, with no exacerbation of the morphological alterations in the fibers. Conclusion The treatment with vanillin promoted increase in intramuscular vascularization for the muscles studied, with pro-inflammatory potential for tibialis anterior, but not for soleus muscle. PMID:28767917
Role of ROCK expression in gallbladder smooth muscle contraction.
Wang, Bin; Ding, You-Ming; Wang, Chun-Tao; Wang, Wei-Xing
2015-08-01
Cholelithiasis is a common medical condition whose incidence rate is increasing yearly, while its pathogenesis has yet to be elucidated. The present study assessed the expression of Rho-kinase (ROCK) in gallbladder smooth muscles and its effect on the contractile function of gallbladder smooth muscles during gallstone formation. Thirty male guinea pigs were randomly divided into three groups: The control group, the gallstone model group and the fasudil interference group. The fasting volume (FV) and bile capacity of the gallbladder (FB) as well as the total cholesterol (TC) and triglyceride (TG) contents of the gallbladder bile were determined. In addition, the gallbladder was dissected to identify whether any gallstones had formed. Part of the gallbladder tissue specimens were used for immunohistochemical analysis of ROCK expression in gallbladder smooth muscles. The results showed that four guinea pigs in the model group and eight in the fasudil group displayed gallstone formation, while there was no gallstone formation in the control group. The FV and FB were significantly increased in the model and fasudil groups. Similarly, the TC and TG contents of gallbladder bile were increased in these groups. The positive expression rate of ROCK in gallbladder smooth muscles in the model and fasudil groups was significantly reduced compared with that in the control group (P<0.05). The results of the present study indicated that the reduction of ROCK expression in guinea pig gallbladder smooth muscles weakened gallbladder contraction and thereby promoted gallstone formation.
Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus.
Lee, Minchul; Soya, Hideaki
2017-12-31
Voluntary loaded wheel running involves the use of a load during a voluntary running activity. A muscle-strength or power-type activity performed at a relatively high intensity and a short duration may cause fewer apparent metabolic adaptations but may still elicit muscle fiber hypertrophy. This study aimed to determine the effects of acute voluntary wheel running with an additional load on brain-derived neurotrophic factor (BDNF) expression in the rat hippocampus. Ten-week old male Wistar rats were assigned randomly to a (1) sedentary (Control) group; (2) voluntary exercise with no load (No-load) group; or (3) voluntary exercise with an additional load (Load) group for 1-week (acute period). The expression of BDNF genes was quantified by real-time PCR. The average distance levels were not significantly different in the No-load and Load groups. However, the average work levels significantly increased in the Load group. The relative soleus weights were greater in the No-load group. Furthermore, loaded wheel running up-regulated the BDNF mRNA level compared with that in the Control group. The BDNF mRNA levels showed a positive correlation with workload levels (r=0.75), suggesting that the availability of multiple workload levels contributes to the BDNF-related benefits of loaded wheel running noted in this study. This novel approach yielded the first set of findings showing that acute voluntary loaded wheel running, which causes muscular adaptation, enhanced BDNF expression, suggesting a possible role of high-intensity short-term exercise in hippocampal BDNF activity. ©2017 The Korean Society for Exercise Nutrition
Agüera, Eduardo; Castilla, Salvador; Luque, Evelio; Jimena, Ignacio; Leiva-Cepas, Fernando; Ruz-Caracuel, Ignacio; Peña, José
2016-12-01
This study was conducted to determine the effects of extracts obtained from both normal and denervated muscles on different muscle types. Wistar rats were used and were divided into a control group and four experimental groups. Each experimental group was treated intraperitoneally during 10 consecutive days with a different extract. These extracts were obtained from normal soleus muscle, denervated soleus, normal extensor digitorum longus, and denervated extensor digitorum longus. Following treatment, the soleus and extensor digitorum longus muscles were obtained for study under optic and transmission electron microscope; morphometric parameters and myogenic responses were also analyzed. The results demonstrated that the treatment with normal soleus muscle and denervated soleus muscle extracts provoked hypertrophy and increased myogenic activity. In contrast, treatment with extracts from the normal and denervated EDL had a different effect depending on the muscle analyzed. In the soleus muscle it provoked hypertrophy of type I fibers and increased myogenic activity, while in the extensor digitorum longus atrophy of the type II fibers was observed without changes in myogenic activity. This suggests that the muscular responses of atrophy and hypertrophy may depend on different factors related to the muscle type which could be related to innervation.
Bloemberg, Darin; Quadrilatero, Joe
2012-01-01
Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.
Skeletal muscle pathology in endurance athletes with acquired training intolerance
Grobler, L; Collins, M; Lambert, M; Sinclair-Smith, C; Derman, W; St, C; Noakes, T
2004-01-01
Background: It is well established that prolonged, exhaustive endurance exercise is capable of inducing skeletal muscle damage and temporary impairment of muscle function. Although skeletal muscle has a remarkable capacity for repair and adaptation, this may be limited, ultimately resulting in an accumulation of chronic skeletal muscle pathology. Case studies have alluded to an association between long term, high volume endurance training and racing, acquired training intolerance, and chronic skeletal muscle pathology. Objective: To systematically compare the skeletal muscle structural and ultrastructural status of endurance athletes with acquired training intolerance (ATI group) with asymptomatic endurance athletes matched for age and years of endurance training (CON group). Methods: Histological and electron microscopic analyses were carried out on a biopsy sample of the vastus lateralis from 18 ATI and 17 CON endurance athletes. The presence of structural and ultrastructural disruptions was compared between the two groups of athletes. Results: Significantly more athletes in the ATI group than in the CON group presented with fibre size variation (15 v 6; p = 0.006), internal nuclei (9 v 2; p = 0.03), and z disc streaming (6 v 0; p = 0.02). Conclusions: There is an association between increased skeletal muscle disruptions and acquired training intolerance in endurance athletes. Further studies are required to determine the nature of this association and the possible mechanisms involved. PMID:15562162
Kyröläinen, H; Komi, P V
1994-01-01
Neural, mechanical and muscle factors influence muscle force production. This study was therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P < 0.01-0.001) with higher rates for force production (P < 0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.
The Effects of a Transition to Minimalist Shoe Running on Intrinsic Foot Muscle Size.
Johnson, A W; Myrer, J W; Mitchell, U H; Hunter, I; Ridge, S T
2016-02-01
A proposed benefit of minimalist shoe running is an increase in intrinsic foot muscle strength. This study examined change in intrinsic foot muscle size in runners transitioning to Vibram FiveFingers™ minimalist shoes compared to a control group running in traditional running shoes. We compare pre-transition size between runners who developed bone marrow edema to those who did not. 37 runners were randomly assigned to the Vibram FiveFingers™ group (n=18) or control group (n=19). Runners' bone marrow edema and intrinsic foot muscle size were measured at baseline and after 10 weeks. Total running volume was maintained by all runners. A significant increase in abductor hallucis cross-sectional area of 10.6% occurred in the Vibram FiveFingers™ group compared to the control group (p=0.01). There was no significant change in any of the other muscles examined (p>0.05). 8 of the Vibram FiveFingers™ runners, and 1 control runner developed bone marrow edema. Those who developed bone marrow edema, primarily women, had significantly smaller size in all assessed muscles (p≤0.05). Size of intrinsic foot muscles appears to be important in safely transitioning to minimalist shoe running. Perhaps intrinsic foot muscle strengthening may benefit runners wanting to transition to minimalist shoes. © Georg Thieme Verlag KG Stuttgart · New York.
Coordination of deep hip muscle activity is altered in symptomatic femoroacetabular impingement.
Diamond, Laura E; Van den Hoorn, Wolbert; Bennell, Kim L; Wrigley, Tim V; Hinman, Rana S; O'Donnell, John; Hodges, Paul W
2017-07-01
Diagnosis of femoroacetabular impingement (FAI) is increasing, yet the associated physical impairments remain poorly defined. This morphological hip condition can cause joint pain, stiffness, impaired function, and eventually hip osteoarthritis. This exploratory study compared coordination of deep hip muscles between people with and without symptomatic FAI using analysis of muscle synergies (i.e., patterns of activity of groups of muscles activated in synchrony) during gait. Fifteen individuals (11 males) with symptomatic FAI (clinical examination and imaging) and 14 age- and sex-comparable controls without morphological FAI underwent testing. Intramuscular fine-wire and surface electrodes recorded electromyographic activity of selected deep and superficial hip muscles. A non-negative matrix factorization algorithm extracted three synergies which were compared between groups. Information regarding which muscles were activated together in the FAI group (FAI group synergy vector) was used to reconstruct individual electromyography patterns and compare groups. Variance accounted for (VAF) by three synergies was less for the control (94.8 [1.4]%) than FAI (96.0 [1.0]%) group (p = 0.03). VAF of obturator internus was significantly higher in the FAI group (p = 0.02). VAF of the reconstructed individual electromyography patterns with the FAI or control group vector were significantly higher for the FAI group (p < 0.01). Following reconstruction, VAF of quadratus femoris was significantly more reduced in controls (p = 0.04), indicating greater between-subject variability. Coordination of deep hip muscles in the synergy related to hip joint control during early swing differed between groups. This phase involves movement towards the impingement position, which has relevance for the interpretation of synergy differences and potential clinical importance. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1494-1504, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Yoon, Sung Jin; Lee, Moon Jin; Lee, Hyo Min; Lee, Jin Seok
2017-10-01
Several recent studies have reported that heat stress stimulates the activation of heat shock protein 72 (HSP72), leading to an increase in muscle synthesis. Some studies suggested that low-intensity resistance training combined with heat stress could improve muscle size and strength. This study aimed to identify the effect of low-intensity resistance training with heat stress over 12 weeks on the HSP72, anabolic hormones, muscle size, and strength in elderly women. The subjects were physically healthy women of 65-75 years, who were randomly assigned to one of three groups: a low-intensity resistance training with heating sheet group (HRT group, n = 8), a moderate-intensity resistance training (RT group, n = 6), and a heating sheet group (HEAT group, n = 7). Computed tomography scans, 1-repetition maximum (1RM), and blood samples were taken pre- and post-training. The HSP72 did not vary significantly between the different groups and times. The IGF-1 and 1RM had significantly increased in all three groups after the training (respectively, p < 0.05). Moreover, the cross-sectional area (CSA) of the quadriceps showed a significantly greater increase in the HRT group than in the HEAT group (p < 0.05). We found that low-intensity training with heat stress stimulated the anabolic hormones of elderly women, improving their muscle strength and hypertrophy. We believe that low-intensity training with heat stress is an effective way to prevent muscle atrophy and to improve muscle strength in elderly women.
Mazis, N; Papachristou, D J; Zouboulis, P; Tyllianakis, M; Scopa, C D; Megas, P
2009-12-01
Previous studies examining the multifidus fiber characteristics among low back pain (LBP) patients have not considered the variable of physical activity. The present study sought to investigate the muscle fiber size and type distribution of the lumbar multifidus muscle among LBP patient groups with different physical activity levels and healthy controls. Sixty-four patients were assigned to one of three groups named according to the physical activity level, determined for each patient by the International Physical Activity Questionnaire. These were low (LPA), medium (MPA) and high (HPA) physical activity groups. A control group comprising of 17 healthy individuals was also recruited. Muscle biopsy samples were obtained from the multifidus muscle at the level L4-L5. contrast with the control group, LBP patient groups showed a significantly higher Type II fiber distribution as well as reduced diameter in both fiber types (P<0.05). The physical activity level did not have an effect on multifidus characteristics since no significant differences were observed in fiber type and diameter (P>0.05) among LPA, MPA and HPA patient groups. Various pathological conditions were detected which were more pronounced in LBP groups compared to the control (P<0.05). Males had a larger fiber diameter compared to females for both fiber types (P<0.05). The results showed that the level of physical activity did not affect muscle fiber size and type distribution among LBP patients groups. These findings suggest that not only inactivity but also high physical activity levels can have an adverse effect on the multifidus muscle fiber characteristics.
Skeletal muscle metabolism in hypokinetic rats
NASA Technical Reports Server (NTRS)
Tischler, M. E.
1984-01-01
Muscle growth, protein metabolism, and amino acid metabolism were studied in various groups of rats. Certain groups were adrenaliectomized; some rats were suspended while others (the controls) were weight bearing. Results show that: (1) metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating glucocorticoids; (2) metabolic changes in the soleus muscle due to higher steroid levels are probably potentiated by greater numbers of steroid receptors; and (3) not all metabolic responses of the soleus muscle to unloading are due to the elevated levels of glucocorticoids or the increased sensitivity of this muscle to these hormones.
Azad, Milad; Khaledi, Neda; Hedayati, Mehdi
2016-06-15
Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3 days of week for 9 weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90 min, respectively. AEE group was running with 16 m/min on -16° slope for 3 consecutive days that included 18 sets of 5 min with rest interval of 2 min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1. Copyright © 2016 Elsevier B.V. All rights reserved.
Puah, Wee Choo; Wasser, Martin
2016-03-01
Time-lapse microscopy in developmental biology is an emerging tool for functional genomics. Phenotypic effects of gene perturbations can be studied non-invasively at multiple time points in chronological order. During metamorphosis of Drosophila melanogaster, time-lapse microscopy using fluorescent reporters allows visualization of alternative fates of larval muscles, which are a model for the study of genes related to muscle wasting. While doomed muscles enter hormone-induced programmed cell death, a smaller population of persistent muscles survives to adulthood and undergoes morphological remodeling that involves atrophy in early, and hypertrophy in late pupation. We developed a method that combines in vivo imaging, targeted gene perturbation and image analysis to identify and characterize genes involved in muscle development. Macrozoom microscopy helps to screen for interesting muscle phenotypes, while confocal microscopy in multiple locations over 4-5 days produces time-lapse images that are used to quantify changes in cell morphology. Performing a similar investigation using fixed pupal tissues would be too time-consuming and therefore impractical. We describe three applications of our pipeline. First, we show how quantitative microscopy can track and measure morphological changes of muscle throughout metamorphosis and analyze genes involved in atrophy. Second, our assay can help to identify genes that either promote or prevent histolysis of abdominal muscles. Third, we apply our approach to test new fluorescent proteins as live markers for muscle development. We describe mKO2 tagged Cysteine proteinase 1 (Cp1) and Troponin-I (TnI) as examples of proteins showing developmental changes in subcellular localization. Finally, we discuss strategies to improve throughput of our pipeline to permit genome-wide screens in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Barn, Ruth; Rafferty, Daniel; Turner, Deborah E.; Woodburn, James
2012-01-01
Objective To determine within- and between-day reliability characteristics of electromyographic (EMG) activity patterns of selected lower leg muscles and kinematic variables in patients with rheumatoid arthritis (RA) and pes planovalgus. Methods Five patients with RA underwent gait analysis barefoot and shod on two occasions 1 week apart. Fine-wire (tibialis posterior [TP]) and surface EMG for selected muscles and 3D kinematics using a multi-segmented foot model was undertaken barefoot and shod. Reliability of pre-determined variables including EMG activity patterns and inter-segment kinematics were analysed using coefficients of multiple correlation, intraclass correlation coefficients (ICC) and the standard error of the measurement (SEM). Results Muscle activation patterns within- and between-day ranged from fair-to-good to excellent in both conditions. Discrete temporal and amplitude variables were highly variable across all muscle groups in both conditions but particularly poor for TP and peroneus longus. SEMs ranged from 1% to 9% of stance and 4% to 27% of maximum voluntary contraction; in most cases the 95% confidence interval crossed zero. Excellent within-day reliability was found for the inter-segment kinematics in both conditions. Between-day reliability ranged from fair-to-good to excellent for kinematic variables and all ICCs were excellent; the SEM ranged from 0.60° to 1.99°. Conclusion Multi-segmented foot kinematics can be reliably measured in RA patients with pes planovalgus. Serial measurement of discrete variables for TP and other selected leg muscles via EMG is not supported from the findings in this cohort of RA patients. Caution should be exercised when EMG measurements are considered to study disease progression or intervention effects. PMID:22721819
Farmania, Rajni; Sitaraman, S; Das, Rashmi Ranjan
2017-08-01
The normative data on muscle tone of preterm infants by goniometric assessment in Indian setting are scarce. The aim of this study it to provide a normative objective data of muscle tone of preterm infants by gestation using goniometer. This was a prospective, observational study including preterm infants admitted in a tertiary care hospital from North India. The objective dimension of muscle tone assessment of 204 healthy preterm infants was done; 61 infants completed follow-up till 40 weeks' postconceptional age (PCA) and were compared to term infants. SPSS (version 16.0) was used. The intergroup comparison was done through ANOVA, and the localization of differences between the groups was determined through multiple comparisons by post hoc test. Mean gestational age was 34.3 ± 1.7 weeks. Angles were as follows: adductor = 100.1 ± 8.7, popliteal = 118.9 ± 8.6, dorsiflexion = 39.0 ± 9.0, heel to ear = 121.90 ± 7.90, wrist flexion = 46.0 ± 10.2, and arm recoil = 122.2° ± 16.6°. The evolution of muscle tone as indicated by heel-to-ear angle shows progressive maturation from 32 weeks' gestation while adductor angle, popliteal angle, and arm recoil mature predominantly after 36 weeks' gestation. Comparison of preterm infants to term at 40 weeks' PCA demonstrated significantly less tone in all except posture and heel to ear. Goniometric assessment provides a objective normative data of muscle tone for preterm infants. Maturation of heel to ear and posture evolves from 32 weeks onwards and are the earliest neurologic marker to mature in preterm infants independent of the gestational age at birth.
Datovo, Aléssio; Vari, Richard P.
2013-01-01
The infraclass Teleostei is a highly diversified group of bony fishes that encompasses 96% of all species of living fishes and almost half of extant vertebrates. Evolution of various morphological complexes in teleosts, particularly those involving soft anatomy, remains poorly understood. Notable among these problematic complexes is the adductor mandibulae, the muscle that provides the primary force for jaw adduction and mouth closure and whose architecture varies from a simple arrangement of two segments to an intricate complex of up to ten discrete subdivisions. The present study analyzed multiple morphological attributes of the adductor mandibulae in representatives of 53 of the 55 extant teleostean orders, as well as significant information from the literature in order to elucidate the homologies of the main subdivisions of this muscle. The traditional alphanumeric terminology applied to the four main divisions of the adductor mandibulae – A1, A2, A3, and Aω – patently fails to reflect homologous components of that muscle across the expanse of the Teleostei. Some features traditionally used as landmarks for identification of some divisions of the adductor mandibulae proved highly variable across the Teleostei; notably the insertion on the maxilla and the position of muscle components relative to the path of the ramus mandibularis trigeminus nerve. The evolutionary model of gain and loss of sections of the adductor mandibulae most commonly adopted under the alphanumeric system additionally proved ontogenetically incongruent and less parsimonious than a model of subdivision and coalescence of facial muscle sections. Results of the analysis demonstrate the impossibility of adapting the alphanumeric terminology so as to reflect homologous entities across the spectrum of teleosts. A new nomenclatural scheme is proposed in order to achieve congruence between homology and nomenclature of the adductor mandibulae components across the entire Teleostei. PMID:23565279
Suwa, Masataka; Nakano, Hiroshi; Radak, Zsolt; Kumagai, Shuzo
2015-01-01
It was hypothesized that nitric oxide synthases (NOS) regulated SIRT1 expression and lead to a corresponding changes of contractile and metabolic properties in skeletal muscle. The purpose of the present study was to investigate the influence of long-term inhibition of nitric oxide synthases (NOS) on the fiber-type composition, metabolic regulators such as and silent information regulator of transcription 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and components of mitochondrial biogenesis in the soleus and plantaris muscles of rats. Rats were assigned to two groups: control and NOS inhibitor (Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), ingested for 8 weeks in drinking water)-treated groups. The percentage of Type I fibers in the L-NAME group was significantly lower than that in the control group, and the percentage of Type IIA fibers was concomitantly higher in soleus muscle. In plantaris muscle, muscle fiber composition was not altered by L-NAME treatment. L-NAME treatment decreased the cytochrome C protein expression and activity of mitochondrial oxidative enzymes in the plantaris muscle but not in soleus muscle. NOS inhibition reduced the SIRT1 protein expression level in both the soleus and plantaris muscles, whereas it did not affect the PGC-1α protein expression. L-NAME treatment also reduced the glucose transporter 4 protein expression in both muscles. These results suggest that NOS plays a role in maintaining SIRT1 protein expression, muscle fiber composition and components of mitochondrial biogenesis in skeletal muscle. Key points NOS inhibition by L-NAME treatment decreased the SIRT1 protein expression in skeletal muscle. NOS inhibition induced the Type I to Type IIA fiber type transformation in soleus muscle. NOS inhibition reduced the components of mitochondrial biogenesis and glucose metabolism in skeletal muscle. PMID:26336341
Precision of MRI-based body composition measurements of postmenopausal women
Romu, Thobias; Thorell, Sofia; Lindblom, Hanna; Berin, Emilia; Holm, Anna-Clara Spetz; Åstrand, Lotta Lindh; Karlsson, Anette; Borga, Magnus; Hammar, Mats; Leinhard, Olof Dahlqvist
2018-01-01
Objectives To determine precision of magnetic resonance imaging (MRI) based fat and muscle quantification in a group of postmenopausal women. Furthermore, to extend the method to individual muscles relevant to upper-body exercise. Materials and methods This was a sub-study to a randomized control trial investigating effects of resistance training to decrease hot flushes in postmenopausal women. Thirty-six women were included, mean age 56 ± 6 years. Each subject was scanned twice with a 3.0T MR-scanner using a whole-body Dixon protocol. Water and fat images were calculated using a 6-peak lipid model including R2*-correction. Body composition analyses were performed to measure visceral and subcutaneous fat volumes, lean volumes and muscle fat infiltration (MFI) of the muscle groups’ thigh muscles, lower leg muscles, and abdominal muscles, as well as the three individual muscles pectoralis, latissimus, and rhomboideus. Analysis was performed using a multi-atlas, calibrated water-fat separated quantification method. Liver-fat was measured as average proton density fat-fraction (PDFF) of three regions-of-interest. Precision was determined with Bland-Altman analysis, repeatability, and coefficient of variation. Results All of the 36 included women were successfully scanned and analysed. The coefficient of variation was 1.1% to 1.5% for abdominal fat compartments (visceral and subcutaneous), 0.8% to 1.9% for volumes of muscle groups (thigh, lower leg, and abdomen), and 2.3% to 7.0% for individual muscle volumes (pectoralis, latissimus, and rhomboideus). Limits of agreement for MFI was within ± 2.06% for muscle groups and within ± 5.13% for individual muscles. The limits of agreement for liver PDFF was within ± 1.9%. Conclusion Whole-body Dixon MRI could characterize a range of different fat and muscle compartments with high precision, including individual muscles, in the study-group of postmenopausal women. The inclusion of individual muscles, calculated from the same scan, enables analysis for specific intervention programs and studies. PMID:29415060
Work ability in vibration-exposed workers.
Gerhardsson, L; Hagberg, M
2014-12-01
Hand-arm vibration exposure may cause hand-arm vibration syndrome (HAVS) including sensorineural disturbances. To investigate which factors had the strongest impact on work ability in vibration-exposed workers. A cross-sectional study in which vibration-exposed workers referred to a department of occupational and environmental medicine were compared with a randomized sample of unexposed subjects from the general population of the city of Gothenburg. All participants underwent a structured interview, answered several questionnaires and had a physical examination including measurements of hand and finger muscle strength and vibrotactile and thermal perception thresholds. The vibration-exposed group (47 subjects) showed significantly reduced sensitivity to cold and warmth in digit 2 bilaterally (P < 0.01) and in digit 5 in the left hand (P < 0.05) and to warmth in digit 5 in the right hand (P < 0.01), compared with the 18 referents. Similarly, tactilometry showed significantly raised vibration perception thresholds among the workers (P < 0.05). A strong relationship was found for the following multiple regression model: estimated work ability = 11.4 - 0.1 × age - 2.3 × current stress level - 2.5 × current pain in hands/arms (multiple r = 0.68; P < 0.001). Vibration-exposed workers showed raised vibrotactile and thermal perception thresholds, compared with unexposed referents. Multiple regression analysis indicated that stress disorders and muscle pain in hands/arms must also be considered when evaluating work ability among subjects with HAVS. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine.
Muscle wasting in osteoarthritis model induced by anterior cruciate ligament transection.
Silva, Jordana Miranda de Souza; Alabarse, Paulo Vinicius Gil; Teixeira, Vivian de Oliveira Nunes; Freitas, Eduarda Correa; de Oliveira, Francine Hehn; Chakr, Rafael Mendonça da Silva; Xavier, Ricardo Machado
2018-01-01
This study aimed to investigate the molecular pathways involved in muscle wasting in an animal model of osteoarthritis (OA) induced by anterior cruciate ligament transection (ACLT) in rats. Reduction of protein syntheses, increased proteolysis and impaired muscle regeneration are important pathways related to muscle wasting, and myogenin, MyoD, myostatin and MuRF-1 are some of their markers. Female Wistar rats were allocated into two groups: OA (submitted to the ACLT) and SHAM (submitted to surgery without ACLT). Nociception, spontaneous exploratory locomotion and body weight of animals were evaluated weekly. Twelve weeks after the disease induction, animals were euthanized, and the right knee joints were collected. Gastrocnemius muscle of the right hind paw were dissected and weighed. Gastrocnemius was used for evaluation of muscle atrophy and expression of IL-1β, TNF-α, Pax7, myogenin, MyoD, myostatin and MuRF-1. Histopathology of the knee confirmed the development of the disease in animals of OA group. Gastrocnemius of OA animals showed a reduction of about 10% in area and an increased IL-1β expression compared to animals of SHAM group. Expression of myostatin was increased in OA group, while myogenin expression was decreased. TNF-α, Pax7, MuRF-1 and MyoD expression was similar in both OA and SHAM groups. Nociception was significantly elevated in OA animals in the last two weeks of experimental period. Spontaneous exploratory locomotion, body weight and weight of gastrocnemius showed no difference between OA and SHAM groups. Gastrocnemius atrophy in OA induced by ACLT involves elevated expression of IL-1β within the muscle, as well as increased expression of myostatin and decreased expression of myogenin. Therefore, muscle wasting may be linked to impaired muscle regeneration.
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming
2009-08-01
A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.
Quantitative Muscle Ultrasonography in Carpal Tunnel Syndrome.
Lee, Hyewon; Jee, Sungju; Park, Soo Ho; Ahn, Seung-Chan; Im, Juneho; Sohn, Min Kyun
2016-12-01
To assess the reliability of quantitative muscle ultrasonography (US) in healthy subjects and to evaluate the correlation between quantitative muscle US findings and electrodiagnostic study results in patients with carpal tunnel syndrome (CTS). The clinical significance of quantitative muscle US in CTS was also assessed. Twenty patients with CTS and 20 age-matched healthy volunteers were recruited. All control and CTS subjects underwent a bilateral median and ulnar nerve conduction study (NCS) and quantitative muscle US. Transverse US images of the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) were obtained to measure muscle cross-sectional area (CSA), thickness, and echo intensity (EI). EI was determined using computer-assisted, grayscale analysis. Inter-rater and intra-rater reliability for quantitative muscle US in control subjects, and differences in muscle thickness, CSA, and EI between the CTS patient and control groups were analyzed. Relationships between quantitative US parameters and electrodiagnostic study results were evaluated. Quantitative muscle US had high inter-rater and intra-rater reliability in the control group. Muscle thickness and CSA were significantly decreased, and EI was significantly increased in the APB of the CTS group (all p<0.05). EI demonstrated a significant positive correlation with latency of the median motor and sensory NCS in CTS patients (p<0.05). These findings suggest that quantitative muscle US parameters may be useful for detecting muscle changes in CTS. Further study involving patients with other neuromuscular diseases is needed to evaluate peripheral muscle change using quantitative muscle US.
Muscle-Bone Interactions in Pediatric Bone Diseases.
Veilleux, Louis-Nicolas; Rauch, Frank
2017-10-01
Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders. When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function. Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.
Islam, Md Anamul; Sundaraj, Kenneth; Ahmad, R Badlishah; Sundaraj, Sebastian; Ahamed, Nizam Uddin; Ali, Md Asraf
2014-01-01
In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity. The aim of the present study was two-fold: i) to quantify the level of crosstalk in the mechanomyographic (MMG) signals from the longitudinal (Lo), lateral (La) and transverse (Tr) axes of the extensor digitorum (ED), extensor carpi ulnaris (ECU) and flexor carpi ulnaris (FCU) muscles during isometric wrist flexion (WF) and extension (WE), radial (RD) and ulnar (UD) deviations; and ii) to analyze whether the three-directional MMG signals influence the level of crosstalk between the muscle groups during these wrist postures. Twenty, healthy right-handed men (mean ± SD: age = 26.7±3.83 y; height = 174.47±6.3 cm; mass = 72.79±14.36 kg) participated in this study. During each wrist posture, the MMG signals propagated through the axes of the muscles were detected using three separate tri-axial accelerometers. The x-axis, y-axis, and z-axis of the sensor were placed in the Lo, La, and Tr directions with respect to muscle fibers. The peak cross-correlations were used to quantify the proportion of crosstalk between the different muscle groups. The average level of crosstalk in the MMG signals generated by the muscle groups ranged from: 34.28-69.69% for the Lo axis, 27.32-52.55% for the La axis and 11.38-25.55% for the Tr axis for all participants and their wrist postures. The Tr axes between the muscle groups showed significantly smaller crosstalk values for all wrist postures [F (2, 38) = 14-63, p<0.05, η2 = 0.416-0.769]. The results may be applied in the field of human movement research, especially for the examination of muscle mechanics during various types of the wrist postures.
Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L
2014-02-15
With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.
Assessing the immediate impact of botulinum toxin injection on impedance of spastic muscle.
Li, Xiaoyan; Shin, Henry; Li, Le; Magat, Elaine; Li, Sheng; Zhou, Ping
2017-05-01
This study aimed to investigate the immediate impacts of Botulinum Toxin A (BoNT-A) injections on the inherent electrical properties of spastic muscles using a newly developed electrical impedance myography (EIM) technique. Impedance measures were performed before and after a BoNT-A injection in biceps brachii muscles of 14 subjects with spasticity. Three major impedance variables, resistance (R), reactance (X) and phase angle (θ) were obtained from three different configurations, and were evaluated using the conventional EIM frequency at 50kHz as well as multiple frequency analysis. Statistical analysis demonstrated a significant decrease of resistance in the injected muscles (Multiple-frequency: R pre =25.17±1.94Ohm, R post =23.65±1.63Ohm, p<0.05; 50kHz: R pre =29.06±2.16Ohm, R post =27.7±1.89Ohm, p<0.05). Despite this decrease, there were no substantial changes in the reactance, phase angle, or anisotropy features after a BoNT-A injection. The significant changes of muscle resistance were most likely associated with the liquid injection of the BoNT-A-saline solution rather than the immediate toxin effects on the muscle. This study demonstrated high sensitivity of the EIM technique in the detection of alterations to muscle composition. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Park, Seong Hoon; Hwangbo, Gak
2015-03-01
[Purpose] The aim of this study was to investigate the effects of combined application of progressive resistance training and Russian electrical stimulation on quadriceps femoris muscle strength in elderly women with osteoarthritis of the knee. [Subjects] Thirty women over 65 years of age diagnosed with knee osteoarthritis participated in the present study. The subjects were randomly assigned to a control group (n=10), a progressive resistance training group (n=10), or a Russian electrical stimulation group (n=10). [Methods] Each group was treated 3 times weekly for 8 weeks, and each session lasted 45 minutes. Muscle strength was assessed by measuring the peak torque of the quadriceps femoris muscle. Outcome measurements were performed at baseline and at the fourth and eighth weeks of the treatment period. [Results] All groups showed significant intragroup differences in the quadriceps femoris muscle peak torque after the treatment intervention. There were significant intergroup differences between the Russian electrical stimulation group and the other groups. [Conclusion] The results of this study suggest that combined application of progressive resistance training and Russian electrical stimulation can be effective in strengthening the quadriceps femoris muscle in elderly women with knee osteoarthritis.
Fuentes, Aler D; Martin, Conchita; Bull, Ricardo; Santander, Hugo; Gutiérrez, Mario F; Miralles, Rodolfo
2015-12-29
There is scarce knowledge regarding the influence of a natural mediotrusive contact on mandibular and cervical muscular activity. The purpose of this study was to analyze the EMG activity of the anterior temporalis (AT) and sternocleidomastoid (SCM) muscles during awake grinding in healthy subjects with or without a natural mediotrusive occlusal contact. 15 subjects with natural mediotrusive occlusal contact (Group 1) and 15 subjects without natural mediotrusive occlusal contact (Group 2) participated. Bilateral surface EMG activity of AT and SCM muscles was recorded during unilateral eccentric or concentric tooth grinding tasks. EMG activity was normalized against the activity recorded during maximal voluntary clenching in intercuspal position (IP) for AT muscles and during maximal intentional isometric head-neck rotation to each side, for SCM muscles. EMG activity of AT and SCM muscles showed no statistical difference between groups. EMG activity of AT muscle was higher in the working side (WS) than in the non-WS (NWS) in Group 1 during concentric grinding (0.492 vs 0.331, P = 0.047), whereas no difference was observed in Group 2. EMG activity of SCM was similar between working and NWSs in both groups and tasks. Asymmetry indexes (AIs) were not significantly different between groups. These findings in healthy subjects support the assumption that during awake tooth grinding, central nerve control predominates over peripheral inputs, and reinforce the idea of a functional link between the motor-neuron pools that control jaw and neck muscles.
Fuentes, Aler D; Martin, Conchita; Bull, Ricardo; Santander, Hugo; Gutiérrez, Mario F; Miralles, Rodolfo
2016-07-01
There is scarce knowledge regarding the influence of a natural mediotrusive contact on mandibular and cervical muscular activity. The purpose of this study was to analyze the EMG activity of the anterior temporalis (AT) and sternocleidomastoid (SCM) muscles during awake grinding in healthy subjects with or without a natural mediotrusive occlusal contact. Fifteen subjects with natural mediotrusive occlusal contact (Group 1) and 15 subjects without natural mediotrusive occlusal contact (Group 2) participated. Bilateral surface EMG activity of AT and SCM muscles was recorded during unilateral eccentric or concentric tooth grinding tasks. EMG activity was normalized against the activity recorded during maximal voluntary clenching in intercuspal position (IP) for AT muscles and during maximal intentional isometric head-neck rotation to each side, for SCM muscles. EMG activity of AT and SCM muscles showed no statistical difference between groups. EMG activity of AT muscle was higher in the working side (WS) than in the non-WS (NWS) in Group 1 during concentric grinding (0.492 vs 0.331, p = 0.047), whereas no difference was observed in Group 2. EMG activity of SCM was similar between working and NWSs in both groups and tasks. Asymmetry indexes (AIs) were not significantly different between groups. These findings in healthy subjects support the assumption that during awake tooth grinding, central nerve control predominates over peripheral inputs, and reinforce the idea of a functional link between the motor-neuron pools that control jaw and neck muscles.
Effect of resistance exercise training combined with relatively low vascular occlusion.
Sumide, Takahiro; Sakuraba, Keishoku; Sawaki, Keisuke; Ohmura, Hirotoshi; Tamura, Yoshifumi
2009-01-01
Previous studies have demonstrated that a low-intensity resistance exercise, combined with vascular occlusion, results in a marked increase in muscular size and strength. We investigated the optimal pressure for reduction of muscle blood flow with resistance exercise to increase the muscular strength and endurance. Twenty-one subjects were randomly divided into four groups by the different application of vascular occlusion pressure at the proximal of thigh: without any pressure (0-pressure group), with a pressure of 50mmHg (50-pressure group), with a pressure of 150mmHg (150-pressure group), and with a pressure of 250mmHg (250-pressure group). The isokinetic muscle strength at angular velocities of 60 and 180 degrees /s, total muscle work, and the cross-sectional knee extensor muscle area were assessed before and after exercise. Exercise was performed three times a week over an 8-week period at an intensity of approximately 20% of one-repetition maximum for straight leg raising and hip joint adduction and maximum force for abduction training. A significant increase in strength at 180 degrees /s was noted after exercise in all subjects who exercised under vascular occlusion. Total muscle work increased significantly in the 50- and 150-pressure groups (P<0.05, P<0.01, respectively). There was no significant increase in cross-sectional knee extensor muscle area in any groups. In conclusion, resistance exercise with relatively low vascular occlusion pressure is potentially useful to increase muscle strength and endurance without discomfort.
NASA Astrophysics Data System (ADS)
Kartashkina, N.; Lomonosova, Y.; Shevchenko, T. F.; Bugrova, A. E.; Turtikova, O. V.; Kalamkarov, G. R.; Nemirovskaya, T. L.
2011-05-01
Gravitational unloading results in pronounced atrophy of m.soleus. Probably, the output of NO is controlled by the muscle activity. We hypothesized that NO may be involved in the protein metabolism and increase of its concentration in muscle can prevent atrophic changes induced by gravitational unloading. In order to test the hypothesis we applied NO donor L-arginine during gravitational unloading. 2.5-month-old male Wistar rats weighing 220-230g were divided into sedentary control group (CTR, n=7), 14-day hindlimb suspension (HS, n=7), 14 days of hindlimb suspension+ L-arginine (HSL, n=7) (with a daily supplementation of 500 mg/kg wt L-arginine) and 14 days of hindlimb suspension+ L-NAME (HSN, n=7) (90 mg/kg wt during 14 days). Cross sectional area (CSA) of slow twitch (ST) and fast twitch (FT) soleus muscle fibers decreased by 45% and 28% in the HS group ( p<0.05) and 40% and 25% in the HSN group, as compared to the CTR group ( p<0.05), respectively. CSA of ST and FT muscle fibers were 25% and 16% larger in the HSL group in comparison with the HS group ( p<0.05), respectively. The atrophy of FT muscle fibers in the HSL group was completely prevented since FT fiber CSA had no significant differences from the CTR group. In HS group, the percentage of fibers revealing either gaps/disruption of the dystrophin layer of the myofiber surface membrane increased by 27% and 17%, respectively, as compared to the controls (CTR group, p<0.05). The destructions in dystrophin layer integrity and reductions of desmin content were significantly prevented in HSL group. NO concentration decreased by 60% in the HS group (as well as HSN group) and at the same time no changes were detectable in the HSL group. This fact indicates the compensation of NO content in the unloaded muscle under L-arginine administration. The levels of atrogin-1 mRNA were considerably altered in suspended animals (HS group: plus 27%, HSL group: minus 13%) as compared to the control level. Conclusion: L-arginine administration allows maintaining NO concentration in m.soleus at the level of cage control group, prevents from dystrophin layer destruction, decreases the atrogin mRNA concentration in the muscle and atrophy level under gravitational unloading.
Tiggemann, Carlos Leandro; Dias, Caroline Pieta; Radaelli, Regis; Massa, Jéssica Cassales; Bortoluzzi, Rafael; Schoenell, Maira Cristina Wolf; Noll, Matias; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins
2016-04-01
The present study compared the effects of 12 weeks of traditional resistance training and power training using rated perceived exertion (RPE) to determine training intensity on improvements in strength, muscle power, and ability to perform functional task in older women. Thirty healthy elderly women (60-75 years) were randomly assigned to traditional resistance training group (TRT; n = 15) or power training group (PT; n = 15). Participants trained twice a week for 12 weeks using six exercises. The training protocol was designed to ascertain that participants exercised at an RPE of 13-18 (on a 6-20 scale). Maximal dynamic strength, muscle power, and functional performance of lower limb muscles were assessed. Maximal dynamic strength muscle strength leg press (≈58 %) and knee extension (≈20 %) increased significantly (p < 0.001) and similarly in both groups after training. Muscle power also increased with training (≈27 %; p < 0.05), with no difference between groups. Both groups also improved their functional performance after training period (≈13 %; p < 0.001), with no difference between groups. The present study showed that TRT and PT using RPE scale to control intensity were significantly and similarly effective in improving maximal strength, muscle power, and functional performance of lower limbs in elderly women.
Hides, Julie A; Endicott, Timothy; Mendis, M Dilani; Stanton, Warren R
2016-07-01
To investigate whether motor control training alters automatic contraction of abdominal muscles in elite cricketers with low back pain (LBP) during performance of a simulated unilateral weight-bearing task. Clinical trial. 26 male elite-cricketers attended a 13-week cricket training camp. Prior to the camp, participants were allocated to a LBP or asymptomatic group. Real-time ultrasound imaging was used to assess automatic abdominal muscle response to axial loading. During the camp, the LBP group performed a staged motor control training program. Following the camp, the automatic response of the abdominal muscles was re-assessed. At pre-camp assessment, when participants were axially loaded with 25% of their own bodyweight, the LBP group showed a 15.5% thicker internal oblique (IO) muscle compared to the asymptomatic group (p = 0.009). The post-camp assessment showed that participants in the LBP group demonstrated less contraction of the IO muscle in response to axial loading compared with the asymptomatic group. A trend was found in the automatic recruitment pattern of the transversus abdominis (p = 0.08). Motor control training normalized excessive contraction of abdominal muscles in response to a low load task. This may be a useful strategy for rehabilitation of cricketers with LBP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru
2016-04-06
Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.
Ren, Jimin; Sherry, A. Dean; Malloy, Craig R.
2015-01-01
Inversion transfer (IT) is a well-established technique with multiple attractive features for analysis of kinetics. However, its application in measurement of ATP synthesis rate in vivo has lagged behind the more common ST techniques. One well-recognized issue with IT is the complexity of data analysis in comparison to much simpler analysis by ST. This complexity arises, in part, because the γ-ATP spin is involved in multiple chemical reactions and magnetization exchanges, whereas Pi is involved in a single reaction, Pi → γ-ATP. By considering the reactions involving γ-ATP only as a lumped constant, the rate constant for the reaction of physiological interest, kPi→γATP, can be determined. Here, we present a new IT data analysis method to evaluate kPi→γATP using data collected from resting human skeletal muscle at 7T. The method is based on the basic Bloch-McConnell equation, which relates kPi→γATP with ṁPi, the rate of Pi magnetization change. The kPi→γATP value is accessed from ṁPi data by more familiar linear correlation approaches. For a group of human subjects (n = 15), the kPi→γATP value derived for resting calf muscle was 0.066 ± 0.017 s−1, in agreement with literature reported values. In this study we also explored possible time-saving strategies to speed up data acquisition for kPi→γATP evaluation using simulations. The analysis indicates that it is feasible to carry out a 31P inversion transfer experiment in ~10 minutes or shorter at 7T with reasonable outcome in kPi→γATP variance for measurement of ATP synthesis in resting human skeletal muscle. We believe that this new IT data analysis approach will facilitate the wide acceptance of IT to evaluate ATP synthesis rate in vivo. PMID:25943328
Zhang, C.; Wang, L.; Zhao, X. H.; Chen, X. Y.; Yang, L.; Geng, Z. Y.
2017-01-01
Abstract This experiment was to evaluate the effect of dietary resveratrol (Res) supplementation (0, 400 mg/kg) on growth performance, meat quality, and muscle anaerobic glycolysis and antioxidant capacity of transported broilers. A total of 360 21-day-old male Cobb broilers was randomly allotted to 2 dietary treatments (Res-free group and Res group) with 12 replicates of 15 birds each. On the morning of d 42, after a 9-hour fast, 24 birds (2 birds of each replicate) were selected from the Res-free group and then equally placed into 2 crates, and the other 12 birds (one bird of each replicate) were selected from the Res group and then placed into the other crate. All birds in the 3 crates were transported according to the following protocols: 0-hour transport of birds in the Res-free group (control group), 3-hour transport of birds in the Res-free group (T group), and 3-hour transport of birds in the Res group (T + Res group). The results showed that Res not only improved feed conversion ratio (P < 0.05) but also tended to improve birds’ final body weight (P < 0.10). In the Res-free group, a 3-hour transport increased serum corticosterone concentration, muscle malondialdehyde (MDA) and lactate contents, and muscle lactate dehydrogenase (LDH) activity, while it decreased muscle glycogen content, total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-PX) activities (P < 0.05), which induced decreased breast meat quality (lower pH24h and higher drip loss and L*24 h, P < 0.05). Nevertheless, compared with the T group, Res increased muscle glycogen content and T-SOD and GSH-PX activities (P < 0.05 or P < 0.10), while it decreased muscle MDA content and LDH activity (P < 0.05), which is beneficial to the meat quality maintenance of transported broilers (lower drip loss, L*24 h, and higher pH24h, P < 0.05 or P < 0.10). This study provides the first evidence that dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers, possibly through decreasing the muscle anaerobic glycolysis metabolism and improving the muscle antioxidant capacity. PMID:28339929
Mehani, Sherin Hassan Mohammed
2017-01-01
The aim of the present study was to compare threshold inspiratory muscle training (IMT) and expiratory muscle training (EMT) in elderly male patients with moderate degree of COPD. Forty male patients with moderate degree of COPD were recruited for this study. They were randomly divided into two groups: the IMT group who received inspiratory training with an intensity ranging from 15% to 60% of their maximal inspiratory pressure, and the EMT group who received expiratory training with an equal intensity which was adjusted according to the maximal expiratory pressure. Both groups received training three times per week for 2 months, in addition to their prescribed medications. Both IMT and EMT groups showed a significant improvement in forced vital capacity, forced expiratory volume in the first second, forced expiratory volume in the first second% from the predicted values, and forced vital capacity% from the predicted value, with no difference between the groups. Both types of training resulted in a significant improvement in blood gases (SaO 2 %, PaO 2 , PaCO 2 , and HCO 3 ), with the inspiratory muscle group showing the best results. Both groups showed a significant improvement in the 6-min walking distance: an increase of about 25% in the inspiratory muscle group and about 2.5% in the expiratory muscle group. Both IMT and EMT must be implemented in pulmonary rehabilitation programs in order to achieve improvements in pulmonary function test, respiratory muscle strength, blood oxygenation, and 6-min walking distance.
Comparison of sensory modes of biofeedback in relaxation training of frontalis muscle.
Chen, W
1981-12-01
The purpose of this study was to compare the effectiveness of various sensory modes of EMG biofeedback to relaxation training of the frontalis muscle. 19 male and 29 female subjects were randomly selected from a pool of college volunteers. They were then randomly assigned 12 each to audiofeedback, visual feedback, audiovisual feedback, and no feedback groups. There were 11 20-min. sessions per subject. Subjects in the biofeedback groups were trained to reduce muscle tension voluntarily by utilizing Cyborg J33 EMG portable trainers. The subjects in the three feedback groups exhibited significantly lower muscle tension than did the subjects in the no-feedback control group. There were no significant differences in relaxation among the three feedback groups.
Clague, J E; Wu, F C; Horan, M A
1999-08-01
Muscle wasting in older men may be related to androgen deficiency. We have assessed the effect of testosterone replacement therapy on muscle function in the upper and lower limbs of older (age > 60 years) men with blood testosterone levels < 14 nmol/L. Subjects (n = 7 per group) received testosterone enanthate 200 mg i.m. or placebo every 2 weeks in a double blind study over a 12-week period and underwent muscle testing every 4 weeks. A significant increase in blood levels of testosterone and a reduction in levels of sex hormone binding globulin occurred in the treatment group. Total body mass, haemoglobin and packed cell volume also increased significantly (p < 0.05). No improvements in handgrip strength, isometric strength of knee flexors and extensors or leg extensor power were seen in either group. Wide variability in all measures of muscle function were observed in these elderly men suggesting that very large study groups would be required to determine potential treatment benefits on muscle function.
Ahn, Ick Keun; Kim, You Lim; Bae, Young-Hyeon; Lee, Suk Min
2015-01-01
Objectives. The purpose of this cross-sectional single-blind study was to investigate the immediate effects of Kinesiology taping of quadriceps on motor performance after muscle fatigued induction. Design. Randomized controlled cross-sectional design. Subjects. Forty-five subjects participated in this study. Participants were divided into three groups: Kinesiology taping group, placebo taping group, and nontaping group. Methods. Subjects performed short-term exercise for muscle fatigued induction, followed by the application of each intervention. Peak torque test, one-leg single hop test, active joint position sense test, and one-leg static balance test were carried out before and after the intervention. Results. Peak torque and single-leg hopping distance were significantly increased when Kinesiology taping was applied (p < 0.05). But there were no significant effects on active joint position sense and single-leg static balance. Conclusions. We proved that Kinesiology taping is effective in restoring muscle power reduced after muscle fatigued induction. Therefore, we suggest that Kinesiology taping is beneficial for fatigued muscles.
Quantitative Ultrasound Using Texture Analysis of Myofascial Pain Syndrome in the Trapezius.
Kumbhare, Dinesh A; Ahmed, Sara; Behr, Michael G; Noseworthy, Michael D
2018-01-01
Objective-The objective of this study is to assess the discriminative ability of textural analyses to assist in the differentiation of the myofascial trigger point (MTrP) region from normal regions of skeletal muscle. Also, to measure the ability to reliably differentiate between three clinically relevant groups: healthy asymptomatic, latent MTrPs, and active MTrP. Methods-18 and 19 patients were identified with having active and latent MTrPs in the trapezius muscle, respectively. We included 24 healthy volunteers. Images were obtained by research personnel, who were blinded with respect to the clinical status of the study participant. Histograms provided first-order parameters associated with image grayscale. Haralick, Galloway, and histogram-related features were used in texture analysis. Blob analysis was conducted on the regions of interest (ROIs). Principal component analysis (PCA) was performed followed by multivariate analysis of variance (MANOVA) to determine the statistical significance of the features. Results-92 texture features were analyzed for factorability using Bartlett's test of sphericity, which was significant. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.94. PCA demonstrated rotated eigenvalues of the first eight components (each comprised of multiple texture features) explained 94.92% of the cumulative variance in the ultrasound image characteristics. The 24 features identified by PCA were included in the MANOVA as dependent variables, and the presence of a latent or active MTrP or healthy muscle were independent variables. Conclusion-Texture analysis techniques can discriminate between the three clinically relevant groups.
Ferreira, Diogo V; Ferreira-Júnior, João B; Soares, Saulo R S; Cadore, Eduardo L; Izquierdo, Mikel; Brown, Lee E; Bottaro, Martim
2017-01-01
Ferreira, DV, Ferreira-Júnior, JB, Soares, SRS, Cadore, EL, Izquierdo, M, Brown, LE, and Bottaro, M. Chest press exercises with different stability requirements result in similar muscle damage recovery in resistance trained men. J Strength Cond Res 31(1): 71-79, 2017-This study investigated the time course of 96 hours of muscle recovery after 3 different chest press exercises with different stability requirements in resistance-trained men. Twenty-seven men (23.5 ± 3.8 years) were randomly assigned to one of the 3 groups: (a) Smith machine bench press; (b) barbell bench press; or (c) dumbbell bench press. Participants performed 8 sets of 10 repetition maximum with 2 minutes rest between sets. Muscle thickness, peak torque (PT), and soreness were measured pre, post, 24, 48, 72, and 96 hours after exercise. There were no differences in the time course of PT or muscle thickness values of the pectoralis major (p = 0.98 and p = 0.91, respectively) or elbow extensors (p = 0.07 and p = 0.86, respectively) between groups. Muscle soreness of the pectoralis major was also not different between groups (p > 0.05). However, the Smith machine and barbell groups recovered from triceps brachii muscle soreness by 72 hours after exercise (p > 0.05), whereas the dumbbell group did not present any triceps brachii muscle soreness after exercise (p > 0.05). In conclusion, resistance-trained men experience similar muscle damage recovery after Smith machine, barbell, and dumbbell chest press exercise. However, muscle soreness of the elbow extensors takes a longer time to recover after using a barbell chest press exercise.
Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso Rf
2016-01-01
Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. This study was a randomized and controlled trial. A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG ( P <0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG ( P <0.001). Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment.
Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru
2017-01-01
Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.
Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso RF
2016-01-01
Background Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. Objective The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. Design This study was a randomized and controlled trial. Participants A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). Intervention The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Evaluations Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. Results After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001). Conclusion Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment. PMID:27822031
The effects of tamsulosin and alfuzosin on iris morphology: an ultrasound biomicroscopic comparison.
Aktas, Zeynep; Yuksel, Nilay; Ceylan, Gurhan; Polat, Fazli; Hasanreisoglu, Murat; Hasanreisoglu, Berati
2015-03-01
It is well known that Alpha-1 adrenergic receptor antagonists affect the receptors in the prostate and also iris dilator muscle, leading to loss of iris muscle tone. To compare morphological alterations of iris secondary to tamsulosin and alfuzosin use. Patients included in the study were grouped as follows: 16 patients treated with tamsulosin (Group 1), 14 patients treated with alfuzosin (Group 2) and 18 untreated controls (Group 3). All patients underwent ultrasound biomicroscopic and pupillometric examination. Iris thickness was measured at the dilator muscle region (DMR; measured at half of the distance between the scleral spur and the pupillary margin) and sphincter muscle region (SMR; Standardized at 0.75 mm from the pupillary margin). DMR/SMR was also calculated for each patient. Differences among groups were analysed. Main outcome measures were DMR, SMR, DMR/SMR and pupillary diameter. Mean duration of treatments were 2.4 ± 0.96 years (1-4) and 2.3 ± 1.01 years (1-4) in Groups 1 and 2. Pupillary diameters were reduced in Groups 1-2 compared to Group 3 (p < 0.001, p < 0.001). The SMR was similar in Groups 1 and 2 (p: 0.114). These values were not significantly different from that of Group 3 (p: 0.196, p: 0.209). However, thickness in the DMR in Groups 1-2 were significantly lower than that of controls (Group 3) whereas there was no significant difference between Groups 1 and 2 (p: 0.041, p: 0.039 and 0.986, respectively). Mean DMR/SMR ratios were significantly lower in Groups 1-2 than that of Group 3 (p: 0.040 and p: 0.040, respectively). In patients using these medications, the iris seems to be thinner at the dilator muscle region, but preserving the sphincter muscle region.
Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano
2012-01-01
This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.
Zhao, Chenyan; Li, Jun; Cheng, Minhua; Shi, Jialing; Shen, Juanhong; Gao, Tao; Xi, Fengchan; Yu, Wenkui
2017-03-01
Muscle wasting is one of the main contributors to the worse outcomes in sepsis. Whether estrogen could alleviate muscle wasting induced by sepsis remains unclear. This study was designed to test the effect of estrogen on muscle wasting and its relationship with central alteration in sepsis. Thirty Sprague-Dawley rats were divided into 3 groups: control group, sepsis group, and estrogen treated sepsis group. Animals were intraperitoneally injected with lipopolysaccharide (10 mg/kg) or saline, followed by subcutaneous injection of 17β-estradiol (1 mg/kg) or saline. Twenty-four hours later, all animals were killed and their hypothalamus and skeletal muscles were harvested for analysis. Muscle wasting markers, hypothalamic neuropeptides, and hypothalamic inflammatory markers were measured. As a result, lipopolysaccharide administration caused a significant increase in muscle wasting, hypothalamic inflammation, and anorexigenic neuropeptides (POMC and CART) gene expression, and a significant decrease in orexigenic neuropeptides (AgRP and NPY) gene expression. Administration of estrogen signifcantl attenuated lipopolysaccharide-induced muscle wasting (body weight and extensor digitorum longus loss [52 and 62 %], tyrosine and 3-methylhistidine release [17 and 22 %], muscle ring fnger 1 [MuRF-1; 65 %], and muscle atrophy F-box [MAFbx] gene expression), hypothalamic inflammation (Tumor necrosis factor-α and interlukin-1β [69 and 70%]) as well as alteration of POMC, CART and AgRP (61, 37, and 1008 %) expression.In conclusion, estrogen could alleviate sepsis-induced muscle wasting and it was associated with reducing hypothalamic inflammation and alteration of hypothalamic neuropeptides. © Georg Thieme Verlag KG Stuttgart · New York.
Hashimoto, Rie; Sakai, Atsuko; Murayama, Masumi; Ochi, Arisa; Abe, Tomoki; Hirasaka, Katsuya; Ohno, Ayako; Teshima-Kondo, Shigetada; Yanagawa, Hiroaki; Yasui, Natsuo; Inatsugi, Mikiko; Doi, Daisuke; Takeda, Masanori; Mukai, Rie; Terao, Junji; Nikawa, Takeshi
2015-01-01
In recent years, the number of bedridden people is rapidly increasing due to aging or lack of exercise in Japan. This problem is becoming more serious, since there is no countermeasure against it. In the present study, we designed to investigate whether dietary proteins, especially soy, had beneficial effects on skeletal muscle in 59 volunteers with various physical activities. We subjected 59 volunteers with various physical activities to meal intervention examination. Persons with low and high physical activities were divided into two dietary groups, the casein diet group and the soy diet group. They ate daily meals supplemented with 7.8 g of powdered casein or soy protein isolate every day for 30 days. Bedridden patients in hospitals were further divided into three dietary groups: the no supplementation diet group, the casein diet group and the soy diet group. They were also subjected to a blood test, a urinalysis, magnetic resonance imaging analysis and muscle strength test of the knee before and after the meal intervention study. Thirty-day soy protein supplementation significantly increased skeletal muscle volume in participants with low physical activity, compared with 30-day casein protein supplementation. Both casein and soy protein supplementation increased the volume of quadriceps femoris muscle in bedridden patients. Consistently, soy protein significantly increased their extension power of the knee, compared with casein protein. Although casein protein increased skeletal muscle volume more than soy protein in bedridden patients, their muscle strength changes by soy protein supplementation were bigger than those by casein protein supplementation. The supplementation of soy protein would be one of the effective foods which prevent the skeletal muscle atrophy caused by immobilization or unloading.
Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M
2013-03-01
The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.