Multiple-object tracking while driving: the multiple-vehicle tracking task.
Lochner, Martin J; Trick, Lana M
2014-11-01
Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, creating the multiple-vehicle tracking task. In Experiment 1, we employed a dual-task methodology to determine whether there was interference between tracking and driving. Findings suggest that although it is possible to track multiple vehicles while driving, driving reduces tracking performance, and tracking compromises headway and lane position maintenance while driving. Modified change-detection paradigms were used to assess whether there were change localization advantages for tracked targets in multiple-vehicle tracking. When changes occurred during a blanking interval, drivers were more accurate (Experiment 2a) and ~250 ms faster (Experiment 2b) at locating the vehicle that changed when it was a target rather than a distractor in tracking. In a more realistic driving task where drivers had to brake in response to the sudden onset of brake lights in one of the lead vehicles, drivers were more accurate at localizing the vehicle that braked if it was a tracking target, although there was no advantage in terms of braking response time. Overall, results suggest that multiple-object tracking is possible while driving and perhaps even advantageous in some situations, but further research is required to determine whether multiple-object tracking is actually used in day-to-day driving.
Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.
Franconeri, S L; Jonathan, S V; Scimeca, J M
2010-07-01
In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.
Self-motion impairs multiple-object tracking.
Thomas, Laura E; Seiffert, Adriane E
2010-10-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.
Studying visual attention using the multiple object tracking paradigm: A tutorial review.
Meyerhoff, Hauke S; Papenmeier, Frank; Huff, Markus
2017-07-01
Human observers are capable of tracking multiple objects among identical distractors based only on their spatiotemporal information. Since the first report of this ability in the seminal work of Pylyshyn and Storm (1988, Spatial Vision, 3, 179-197), multiple object tracking has attracted many researchers. A reason for this is that it is commonly argued that the attentional processes studied with the multiple object paradigm apparently match the attentional processing during real-world tasks such as driving or team sports. We argue that multiple object tracking provides a good mean to study the broader topic of continuous and dynamic visual attention. Indeed, several (partially contradicting) theories of attentive tracking have been proposed within the almost 30 years since its first report, and a large body of research has been conducted to test these theories. With regard to the richness and diversity of this literature, the aim of this tutorial review is to provide researchers who are new in the field of multiple object tracking with an overview over the multiple object tracking paradigm, its basic manipulations, as well as links to other paradigms investigating visual attention and working memory. Further, we aim at reviewing current theories of tracking as well as their empirical evidence. Finally, we review the state of the art in the most prominent research fields of multiple object tracking and how this research has helped to understand visual attention in dynamic settings.
ERIC Educational Resources Information Center
Rattanarungrot, Sasithorn; White, Martin; Newbury, Paul
2014-01-01
This paper describes the design of our service-oriented architecture to support mobile multiple object tracking augmented reality applications applied to education and learning scenarios. The architecture is composed of a mobile multiple object tracking augmented reality client, a web service framework, and dynamic content providers. Tracking of…
Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking
Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka
2017-01-01
Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430
Self-Motion Impairs Multiple-Object Tracking
ERIC Educational Resources Information Center
Thomas, Laura E.; Seiffert, Adriane E.
2010-01-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement…
How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking
Thomas, Laura E.; Seiffert, Adriane E.
2011-01-01
Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects. PMID:21991259
Tracking of multiple targets using online learning for reference model adaptation.
Pernkopf, Franz
2008-12-01
Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.
Attention Modulates Spatial Precision in Multiple-Object Tracking.
Srivastava, Nisheeth; Vul, Ed
2016-01-01
We present a computational model of multiple-object tracking that makes trial-level predictions about the allocation of visual attention and the effect of this allocation on observers' ability to track multiple objects simultaneously. This model follows the intuition that increased attention to a location increases the spatial resolution of its internal representation. Using a combination of empirical and computational experiments, we demonstrate the existence of a tight coupling between cognitive and perceptual resources in this task: Low-level tracking of objects generates bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces error probabilities in attended locations while increasing it at non-attended locations. Whereas earlier models of multiple-object tracking have predicted the big picture relationship between stimulus complexity and response accuracy, our approach makes accurate predictions of both the macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations in difficulty across individual trials and targets arising from the idiosyncratic within-trial interactions of targets and distractors. Copyright © 2016 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Keane, Brian P.; Mettler, Everett; Tsoi, Vicky; Kellman, Philip J.
2011-01-01
Multiple object tracking (MOT) is an attentional task wherein observers attempt to track multiple targets among moving distractors. Contour interpolation is a perceptual process that fills-in nonvisible edges on the basis of how surrounding edges (inducers) are spatiotemporally related. In five experiments, we explored the automaticity of…
Multiple Object Tracking Reveals Object-Based Grouping Interference in Children with ASD
ERIC Educational Resources Information Center
Van der Hallen, Ruth; Evers, Kris; de-Wit, Lee; Steyaert, Jean; Noens, Ilse; Wagemans, Johan
2018-01-01
The multiple object tracking (MOT) paradigm has proven its value in targeting a number of aspects of visual cognition. This study used MOT to investigate the effect of object-based grouping, both in children with and without autism spectrum disorder (ASD). A modified MOT task was administered to both groups, who had to track and distinguish four…
Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.
Tombu, Michael; Seiffert, Adriane E
2011-04-01
People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.
Assessing Multiple Object Tracking in Young Children Using a Game
ERIC Educational Resources Information Center
Ryokai, Kimiko; Farzin, Faraz; Kaltman, Eric; Niemeyer, Greg
2013-01-01
Visual tracking of multiple objects in a complex scene is a critical survival skill. When we attempt to safely cross a busy street, follow a ball's position during a sporting event, or monitor children in a busy playground, we rely on our brain's capacity to selectively attend to and track the position of specific objects in a dynamic scene. This…
Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs
Oh, Sang-Il; Kang, Hang-Bong
2017-01-01
Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194
Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong
2011-06-01
Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.
Multiple-Object Tracking in Children: The "Catch the Spies" Task
ERIC Educational Resources Information Center
Trick, L.M.; Jaspers-Fayer, F.; Sethi, N.
2005-01-01
Multiple-object tracking involves simultaneously tracking positions of a number of target-items as they move among distractors. The standard version of the task poses special challenges for children, demanding extended concentration and the ability to distinguish targets from identical-looking distractors, and may thus underestimate children's…
Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei
2012-12-01
Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.
Evidence against a speed limit in multiple-object tracking.
Franconeri, S L; Lin, J Y; Pylyshyn, Z W; Fisher, B; Enns, J T
2008-08-01
Everyday tasks often require us to keep track of multiple objects in dynamic scenes. Past studies show that tracking becomes more difficult as objects move faster. In the present study, we show that this trade-off may not be due to increased speed itself but may, instead, be due to the increased crowding that usually accompanies increases in speed. Here, we isolate changes in speed from variations in crowding, by projecting a tracking display either onto a small area at the center of a hemispheric projection dome or onto the entire dome. Use of the larger display increased retinal image size and object speed by a factor of 4 but did not increase interobject crowding. Results showed that tracking accuracy was equally good in the large-display condition, even when the objects traveled far into the visual periphery. Accuracy was also not reduced when we tested object speeds that limited performance in the small-display condition. These results, along with a reinterpretation of past studies, suggest that we might be able to track multiple moving objects as fast as we can a single moving object, once the effect of object crowding is eliminated.
Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.
Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D
2017-10-01
This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.
Real-time object detection, tracking and occlusion reasoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divakaran, Ajay; Yu, Qian; Tamrakar, Amir
A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.
Multi-view video segmentation and tracking for video surveillance
NASA Astrophysics Data System (ADS)
Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj
2009-05-01
Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.
Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm
Tombu, Michael
2014-01-01
People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target–distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking—one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone. PMID:21264704
Nonstationary EO/IR Clutter Suppression and Dim Object Tracking
2010-01-01
Brown, A., and Brown, J., Enhanced Algorithms for EO /IR Electronic Stabilization, Clutter Suppression, and Track - Before - Detect for Multiple Low...estimation-suppression and nonlinear filtering-based multiple-object track - before - detect . These algorithms are suitable for integration into...In such cases, it is imperative to develop efficient real or near-real time tracking before detection methods. This paper continues the work started
Multiple object tracking using the shortest path faster association algorithm.
Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.
Multiple Object Tracking Using the Shortest Path Faster Association Algorithm
Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322
Real-time optical multiple object recognition and tracking system and method
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Liu, Hua Kuang (Inventor)
1987-01-01
The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium.
Bae, Seung-Hwan; Yoon, Kuk-Jin
2018-03-01
Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.
Visual attention is required for multiple object tracking.
Tran, Annie; Hoffman, James E
2016-12-01
In the multiple object tracking task, participants attempt to keep track of a moving set of target objects embedded in an identical set of moving distractors. Depending on several display parameters, observers are usually only able to accurately track 3 to 4 objects. Various proposals attribute this limit to a fixed number of discrete indexes (Pylyshyn, 1989), limits in visual attention (Cavanagh & Alvarez, 2005), or "architectural limits" in visual cortical areas (Franconeri, 2013). The present set of experiments examined the specific role of visual attention in tracking using a dual-task methodology in which participants tracked objects while identifying letter probes appearing on the tracked objects and distractors. As predicted by the visual attention model, probe identification was faster and/or more accurate when probes appeared on tracked objects. This was the case even when probes were more than twice as likely to appear on distractors suggesting that some minimum amount of attention is required to maintain accurate tracking performance. When the need to protect tracking accuracy was relaxed, participants were able to allocate more attention to distractors when probes were likely to appear there but only at the expense of large reductions in tracking accuracy. A final experiment showed that people attend to tracked objects even when letters appearing on them are task-irrelevant, suggesting that allocation of attention to tracked objects is an obligatory process. These results support the claim that visual attention is required for tracking objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Eye Movements during Multiple Object Tracking: Where Do Participants Look?
ERIC Educational Resources Information Center
Fehd, Hilda M.; Seiffert, Adriane E.
2008-01-01
Similar to the eye movements you might make when viewing a sports game, this experiment investigated where participants tend to look while keeping track of multiple objects. While eye movements were recorded, participants tracked either 1 or 3 of 8 red dots that moved randomly within a square box on a black background. Results indicated that…
Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K
2013-03-20
Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.
Obstacle penetrating dynamic radar imaging system
Romero, Carlos E [Livermore, CA; Zumstein, James E [Livermore, CA; Chang, John T [Danville, CA; Leach, Jr Richard R. [Castro Valley, CA
2006-12-12
An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.
Zhong, Sheng-hua; Ma, Zheng; Wilson, Colin; Liu, Yan; Flombaum, Jonathan I
2014-01-01
Intuitively, extrapolating object trajectories should make visual tracking more accurate. This has proven to be true in many contexts that involve tracking a single item. But surprisingly, when tracking multiple identical items in what is known as “multiple object tracking,” observers often appear to ignore direction of motion, relying instead on basic spatial memory. We investigated potential reasons for this behavior through probabilistic models that were endowed with perceptual limitations in the range of typical human observers, including noisy spatial perception. When we compared a model that weights its extrapolations relative to other sources of information about object position, and one that does not extrapolate at all, we found no reliable difference in performance, belying the intuition that extrapolation always benefits tracking. In follow-up experiments we found this to be true for a variety of models that weight observations and predictions in different ways; in some cases we even observed worse performance for models that use extrapolations compared to a model that does not at all. Ultimately, the best performing models either did not extrapolate, or extrapolated very conservatively, relying heavily on observations. These results illustrate the difficulty and attendant hazards of using noisy inputs to extrapolate the trajectories of multiple objects simultaneously in situations with targets and featurally confusable nontargets. PMID:25311300
Multiple objects tracking with HOGs matching in circular windows
NASA Astrophysics Data System (ADS)
Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.
2014-09-01
In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.
Dynamic Binding of Identity and Location Information: A Serial Model of Multiple Identity Tracking
ERIC Educational Resources Information Center
Oksama, Lauri; Hyona, Jukka
2008-01-01
Tracking of multiple moving objects is commonly assumed to be carried out by a fixed-capacity parallel mechanism. The present study proposes a serial model (MOMIT) to explain performance accuracy in the maintenance of multiple moving objects with distinct identities. A serial refresh mechanism is postulated, which makes recourse to continuous…
Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences
Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong
2016-01-01
Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514
A data set for evaluating the performance of multi-class multi-object video tracking
NASA Astrophysics Data System (ADS)
Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David
2017-05-01
One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.
Connection-based and object-based grouping in multiple-object tracking: A developmental study.
Van der Hallen, Ruth; Reusens, Julie; Evers, Kris; de-Wit, Lee; Wagemans, Johan
2018-03-30
Developmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based and object-based grouping, and investigate their impact on object formation in participants, aged 9-21 years old (N = 113), using a multiple-object tracking paradigm. Results reveal a main effect of both age and grouping type, indicating that 9- to 21-year-olds are sensitive to both connection-based and object-based grouping interference, and tracking ability increases with age. In addition to its importance for typical development, these results provide an informative baseline to understand clinical aberrations in this regard. Statement of contribution What is already known on this subject? The origin of the Gestalt principles is still an ongoing debate: Are they innate, learned over time, or both? Developmental research has revealed how each Gestalt principle has its own trajectory and unique relationship to visual experience. Both connectedness and object-based grouping play an important role in object formation during childhood. What does this study add? The study identifies how sensitivity to connectedness and object-based grouping evolves in individuals, aged 9-21 years old. Using multiple-object tracking, results reveal that the ability to track multiple objects increases with age. These results provide an informative baseline to understand clinical aberrations in different types of grouping. © 2018 The Authors. British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Multiple objects tracking in fluorescence microscopy.
Kalaidzidis, Yannis
2009-01-01
Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.
ERIC Educational Resources Information Center
Ferrara, Katrina; Hoffman, James E.; O'Hearn, Kirsten; Landau, Barbara
2016-01-01
The ability to track moving objects is a crucial skill for performance in everyday spatial tasks. The tracking mechanism depends on representation of moving items as coherent entities, which follow the spatiotemporal constraints of objects in the world. In the present experiment, participants tracked 1 to 4 targets in a display of 8 identical…
Brain Activation during Spatial Updating and Attentive Tracking of Moving Targets
ERIC Educational Resources Information Center
Jahn, Georg; Wendt, Julia; Lotze, Martin; Papenmeier, Frank; Huff, Markus
2012-01-01
Keeping aware of the locations of objects while one is moving requires the updating of spatial representations. As long as the objects are visible, attentional tracking is sufficient, but knowing where objects out of view went in relation to one's own body involves an updating of spatial working memory. Here, multiple object tracking was employed…
Lapierre, Mark; Howe, Piers D. L.; Cropper, Simon J.
2013-01-01
Many tasks involve tracking multiple moving objects, or stimuli. Some require that individuals adapt to changing or unfamiliar conditions to be able to track well. This study explores processes involved in such adaptation through an investigation of the interaction of attention and memory during tracking. Previous research has shown that during tracking, attention operates independently to some degree in the left and right visual hemifields, due to putative anatomical constraints. It has been suggested that the degree of independence is related to the relative dominance of processes of attention versus processes of memory. Here we show that when individuals are trained to track a unique pattern of movement in one hemifield, that learning can be transferred to the opposite hemifield, without any evidence of hemifield independence. However, learning is not influenced by an explicit strategy of memorisation of brief periods of recognisable movement. The findings lend support to a role for implicit memory in overcoming putative anatomical constraints on the dynamic, distributed spatial allocation of attention involved in tracking multiple objects. PMID:24349555
MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems
NASA Astrophysics Data System (ADS)
Kopecky, Ken; Winer, Eliot
2014-06-01
Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.
Godinez, William J; Rohr, Karl
2015-02-01
Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.
NASA Astrophysics Data System (ADS)
Liu, Chenguang; Cheng, Heng-Da; Zhang, Yingtao; Wang, Yuxuan; Xian, Min
2016-01-01
This paper presents a methodology for tracking multiple skaters in short track speed skating competitions. Nonrigid skaters move at high speed with severe occlusions happening frequently among them. The camera is panned quickly in order to capture the skaters in a large and dynamic scene. To automatically track the skaters and precisely output their trajectories becomes a challenging task in object tracking. We employ the global rink information to compensate camera motion and obtain the global spatial information of skaters, utilize random forest to fuse multiple cues and predict the blob of each skater, and finally apply a silhouette- and edge-based template-matching and blob-evolving method to labelling pixels to a skater. The effectiveness and robustness of the proposed method are verified through thorough experiments.
Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding
Li, Xin; Guo, Rui; Chen, Chao
2014-01-01
Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216
Grouping and trajectory storage in multiple object tracking: impairments due to common item motions.
Suganuma, Mutsumi; Yokosawa, Kazuhiko
2006-01-01
In our natural viewing, we notice that objects change their locations across space and time. However, there has been relatively little consideration of the role of motion information in the construction and maintenance of object representations. We investigated this question in the context of the multiple object tracking (MOT) paradigm, wherein observers must keep track of target objects as they move randomly amid featurally identical distractors. In three experiments, we observed impairments in tracking ability when the motions of the target and distractor items shared particular properties. Specifically, we observed impairments when the target and distractor items were in a chasing relationship or moved in a uniform direction. Surprisingly, tracking ability was impaired by these manipulations even when observers failed to notice them. Our results suggest that differentiable trajectory information is an important factor in successful performance of MOT tasks. More generally, these results suggest that various types of common motion can serve as cues to form more global object representations even in the absence of other grouping cues.
Object tracking using multiple camera video streams
NASA Astrophysics Data System (ADS)
Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford
2010-05-01
Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.
Brockhoff, Alisa; Huff, Markus
2016-10-01
Multiple object tracking (MOT) plays a fundamental role in processing and interpreting dynamic environments. Regarding the type of information utilized by the observer, recent studies reported evidence for the use of object features in an automatic, low- level manner. By introducing a novel paradigm that allowed us to combine tracking with a noninterfering top-down task, we tested whether a voluntary component can regulate the deployment of attention to task-relevant features in a selective manner. In four experiments we found conclusive evidence for a task-driven selection mechanism that guides attention during tracking: The observers were able to ignore or prioritize distinct objects. They marked the distinct (cued) object (target/distractor) more or less often than other objects of the same type (targets /distractors)-but only when they had received an identification task that required them to actively process object features (cues) during tracking. These effects are discussed with regard to existing theoretical approaches to attentive tracking, gaze-cue usability as well as attentional readiness, a term that originally stems from research on attention capture and visual search. Our findings indicate that existing theories of MOT need to be adjusted to allow for flexible top-down, voluntary processing during tracking.
A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking
Shafiee, Mohammad Javad; Azimifar, Zohreh; Wong, Alexander
2015-01-01
In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering. PMID:26313943
Feature point based 3D tracking of multiple fish from multi-view images
Qian, Zhi-Ming
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly. PMID:28665966
Feature point based 3D tracking of multiple fish from multi-view images.
Qian, Zhi-Ming; Chen, Yan Qiu
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly.
The role of visual attention in multiple object tracking: evidence from ERPs.
Doran, Matthew M; Hoffman, James E
2010-01-01
We examined the role of visual attention in the multiple object tracking (MOT) task by measuring the amplitude of the N1 component of the event-related potential (ERP) to probe flashes presented on targets, distractors, or empty background areas. We found evidence that visual attention enhances targets and suppresses distractors (Experiment 1 & 3). However, we also found that when tracking load was light (two targets and two distractors), accurate tracking could be carried out without any apparent contribution from the visual attention system (Experiment 2). Our results suggest that attentional selection during MOT is flexibly determined by task demands as well as tracking load and that visual attention may not always be necessary for accurate tracking.
ERIC Educational Resources Information Center
O'Hearn, Kirsten; Hoffman, James E.; Landau, Barbara
2010-01-01
The ability to track moving objects, a crucial skill for mature performance on everyday spatial tasks, has been hypothesized to require a specialized mechanism that may be available in infancy (i.e. indexes). Consistent with the idea of specialization, our previous work showed that object tracking was more impaired than a matched spatial memory…
Normal aging delays and compromises early multifocal visual attention during object tracking.
Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman
2013-02-01
Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (~100-300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100-125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125-150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175-210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.
The what-where trade-off in multiple-identity tracking.
Cohen, Michael A; Pinto, Yair; Howe, Piers D L; Horowitz, Todd S
2011-07-01
Observers are poor at reporting the identities of objects that they have successfully tracked (Pylyshyn, Visual Cognition, 11, 801-822, 2004; Scholl & Pylyshyn, Cognitive Psychology, 38, 259-290, 1999). Consequently, it has been claimed that objects are tracked in a manner that does not encode their identities (Pylyshyn, 2004). Here, we present evidence that disputes this claim. In a series of experiments, we show that attempting to track the identities of objects can decrease an observer's ability to track the objects' locations. This indicates that the mechanisms that track, respectively, the locations and identities of objects draw upon a common resource. Furthermore, we show that this common resource can be voluntarily distributed between the two mechanisms. This is clear evidence that the location- and identity-tracking mechanisms are not entirely dissociable.
Trick, Lana M; Mutreja, Rachna; Hunt, Kelly
2012-02-01
An individual-differences approach was used to investigate the roles of visuospatial working memory and the executive in multiple-object tracking. The Corsi Blocks and Visual Patterns Tests were used to assess visuospatial working memory. Two relatively nonspatial measures of the executive were used: operation span (OSPAN) and reading span (RSPAN). For purposes of comparison, the digit span test was also included (a measure not expected to correlate with tracking). The tests predicted substantial amounts of variance (R (2) = .33), and the visuospatial measures accounted for the majority (R (2) = .30), with each making a significant contribution. Although the executive measures correlated with each other, the RSPAN did not correlate with tracking. The correlation between OSPAN and tracking was similar in magnitude to that between digit span and tracking (p < .05 for both), and when regression was used to partial out shared variance between the two tests, the remaining variance predicted by the OSPAN was minimal (sr ( 2 ) = .029). When measures of spatial memory were included in the regression, the unique variance predicted by the OSPAN became negligible (sr ( 2 ) = .000004). This suggests that the executive, as measured by tests such as the OSPAN, plays little role in explaining individual differences in multiple-object tracking.
Structure preserving clustering-object tracking via subgroup motion pattern segmentation
NASA Astrophysics Data System (ADS)
Fan, Zheyi; Zhu, Yixuan; Jiang, Jiao; Weng, Shuqin; Liu, Zhiwen
2018-01-01
Tracking clustering objects with similar appearances simultaneously in collective scenes is a challenging task in the field of collective motion analysis. Recent work on clustering-object tracking often suffers from poor tracking accuracy and terrible real-time performance due to the neglect or the misjudgment of the motion differences among objects. To address this problem, we propose a subgroup motion pattern segmentation framework based on a multilayer clustering structure and establish spatial constraints only among objects in the same subgroup, which entails having consistent motion direction and close spatial position. In addition, the subgroup segmentation results are updated dynamically because crowd motion patterns are changeable and affected by objects' destinations and scene structures. The spatial structure information combined with the appearance similarity information is used in the structure preserving object tracking framework to track objects. Extensive experiments conducted on several datasets containing multiple real-world crowd scenes validate the accuracy and the robustness of the presented algorithm for tracking objects in collective scenes.
Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera
NASA Astrophysics Data System (ADS)
Dziri, Aziz; Duranton, Marc; Chapuis, Roland
2016-07-01
Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.
Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies
NASA Astrophysics Data System (ADS)
Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.
2013-09-01
With the anticipated installation of more accurate sensors and the increased probability of future collisions between space objects, the potential number of observable space objects is likely to increase by an order of magnitude within the next decade, thereby placing an ever-increasing burden on current operational systems. Moreover, the need to track closely-spaced objects due, for example, to breakups as illustrated by the recent Chinese ASAT test or the Iridium-Kosmos collision, requires new, robust, and autonomous methods for space surveillance to enable the development and maintenance of the present and future space catalog and to support the overall space surveillance mission. The problem of correctly associating a stream of uncorrelated tracks (UCTs) and uncorrelated optical observations (UCOs) into common objects is critical to mitigating the number of UCTs and is a prerequisite to subsequent space catalog maintenance. Presently, such association operations are mainly performed using non-statistical simple fixed-gate association logic. In this paper, we report on the salient features and the performance of a newly-developed statistically-robust system-level multiple hypothesis tracking (MHT) system for advanced space surveillance. The multiple-frame assignment (MFA) formulation of MHT, together with supporting astrodynamics algorithms, provides a new joint capability for space catalog maintenance, UCT/UCO resolution, and initial orbit determination. The MFA-MHT framework incorporates multiple hypotheses for report to system track data association and uses a multi-arc construction to accommodate recently developed algorithms for multiple hypothesis filtering (e.g., AEGIS, CAR-MHF, UMAP, and MMAE). This MHT framework allows us to evaluate the benefits of many different algorithms ranging from single- and multiple-frame data association to filtering and uncertainty quantification. In this paper, it will be shown that the MHT system can provide superior tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.
Horowitz, Todd S.; Kuzmova, Yoana
2011-01-01
The evidence is mixed as to whether the visual system treats objects and holes differently. We used a multiple object tracking task to test the hypothesis that figural objects are easier to track than holes. Observers tracked four of eight items (holes or objects). We used an adaptive algorithm to estimate the speed allowing 75% tracking accuracy. In Experiments 1–5, the distinction between holes and figures was accomplished by pictorial cues, while red-cyan anaglyphs were used to provide the illusion of depth in Experiment 6. We variously used Gaussian pixel noise, photographic scenes, or synthetic textures as backgrounds. Tracking was more difficult when a complex background was visible, as opposed to a blank background. Tracking was easier when disks carried fixed, unique markings. When these factors were controlled for, tracking holes was no more difficult than tracking figures, suggesting that they are equivalent stimuli for tracking purposes. PMID:21334361
Multiple object, three-dimensional motion tracking using the Xbox Kinect sensor
NASA Astrophysics Data System (ADS)
Rosi, T.; Onorato, P.; Oss, S.
2017-11-01
In this article we discuss the capability of the Xbox Kinect sensor to acquire three-dimensional motion data of multiple objects. Two experiments regarding fundamental features of Newtonian mechanics are performed to test the tracking abilities of our setup. Particular attention is paid to check and visualise the conservation of linear momentum, angular momentum and energy. In both experiments, two objects are tracked while falling in the gravitational field. The obtained data is visualised in a 3D virtual environment to help students understand the physics behind the performed experiments. The proposed experiments were analysed with a group of university students who are aspirant physics and mathematics teachers. Their comments are presented in this paper.
Interactive Multiple Object Tracking (iMOT)
Thornton, Ian M.; Bülthoff, Heinrich H.; Horowitz, Todd S.; Rynning, Aksel; Lee, Seong-Whan
2014-01-01
We introduce a new task for exploring the relationship between action and attention. In this interactive multiple object tracking (iMOT) task, implemented as an iPad app, participants were presented with a display of multiple, visually identical disks which moved independently. The task was to prevent any collisions during a fixed duration. Participants could perturb object trajectories via the touchscreen. In Experiment 1, we used a staircase procedure to measure the ability to control moving objects. Object speed was set to 1°/s. On average participants could control 8.4 items without collision. Individual control strategies were quite variable, but did not predict overall performance. In Experiment 2, we compared iMOT with standard MOT performance using identical displays. Object speed was set to 2°/s. Participants could reliably control more objects (M = 6.6) than they could track (M = 4.0), but performance in the two tasks was positively correlated. In Experiment 3, we used a dual-task design. Compared to single-task baseline, iMOT performance decreased and MOT performance increased when the two tasks had to be completed together. Overall, these findings suggest: 1) There is a clear limit to the number of items that can be simultaneously controlled, for a given speed and display density; 2) participants can control more items than they can track; 3) task-relevant action appears not to disrupt MOT performance in the current experimental context. PMID:24498288
Exhausting Attentional Tracking Resources with a Single Fast-Moving Object
ERIC Educational Resources Information Center
Holcombe, Alex O.; Chen, Wei-Ying
2012-01-01
Driving on a busy road, eluding a group of predators, or playing a team sport involves keeping track of multiple moving objects. In typical laboratory tasks, the number of visual targets that humans can track is about four. Three types of theories have been advanced to explain this limit. The fixed-limit theory posits a set number of attentional…
Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.
Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald
2017-12-14
The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.
Direction information in multiple object tracking is limited by a graded resource.
Horowitz, Todd S; Cohen, Michael A
2010-10-01
Is multiple object tracking (MOT) limited by a fixed set of structures (slots), a limited but divisible resource, or both? Here, we answer this question by measuring the precision of the direction representation for tracked targets. The signature of a limited resource is a decrease in precision as the square root of the tracking load. The signature of fixed slots is a fixed precision. Hybrid models predict a rapid decrease to asymptotic precision. In two experiments, observers tracked moving disks and reported target motion direction by adjusting a probe arrow. We derived the precision of representation of correctly tracked targets using a mixture distribution analysis. Precision declined with target load according to the square-root law up to six targets. This finding is inconsistent with both pure and hybrid slot models. Instead, directional information in MOT appears to be limited by a continuously divisible resource.
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
NASA Technical Reports Server (NTRS)
Porter, D. W.; Lefler, R. M.
1979-01-01
A generalized hypothesis testing approach is applied to the problem of tracking several objects where several different associations of data with objects are possible. Such problems occur, for instance, when attempting to distinctly track several aircraft maneuvering near each other or when tracking ships at sea. Conceptually, the problem is solved by first, associating data with objects in a statistically reasonable fashion and then, tracking with a bank of Kalman filters. The objects are assumed to have motion characterized by a fixed but unknown deterministic portion plus a random process portion modeled by a shaping filter. For example, the object might be assumed to have a mean straight line path about which it maneuvers in a random manner. Several hypothesized associations of data with objects are possible because of ambiguity as to which object the data comes from, false alarm/detection errors, and possible uncertainty in the number of objects being tracked. The statistical likelihood function is computed for each possible hypothesized association of data with objects. Then the generalized likelihood is computed by maximizing the likelihood over parameters that define the deterministic motion of the object.
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.
2013-09-01
We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.
Li, Liyuan; Huang, Weimin; Gu, Irene Yu-Hua; Luo, Ruijiang; Tian, Qi
2008-10-01
Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.
NASA Technical Reports Server (NTRS)
Lewis, Steven J.; Palacios, David M.
2013-01-01
This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).
Attentional enhancement during multiple-object tracking.
Drew, Trafton; McCollough, Andrew W; Horowitz, Todd S; Vogel, Edward K
2009-04-01
What is the role of attention in multiple-object tracking? Does attention enhance target representations, suppress distractor representations, or both? It is difficult to ask this question in a purely behavioral paradigm without altering the very attentional allocation one is trying to measure. In the present study, we used event-related potentials to examine the early visual evoked responses to task-irrelevant probes without requiring an additional detection task. Subjects tracked two targets among four moving distractors and four stationary distractors. Brief probes were flashed on targets, moving distractors, stationary distractors, or empty space. We obtained a significant enhancement of the visually evoked P1 and N1 components (approximately 100-150 msec) for probes on targets, relative to distractors. Furthermore, good trackers showed larger differences between target and distractor probes than did poor trackers. These results provide evidence of early attentional enhancement of tracked target items and also provide a novel approach to measuring attentional allocation during tracking.
3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging
NASA Astrophysics Data System (ADS)
Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak
2017-10-01
Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.
Application of Multi-Hypothesis Sequential Monte Carlo for Breakup Analysis
NASA Astrophysics Data System (ADS)
Faber, W. R.; Zaidi, W.; Hussein, I. I.; Roscoe, C. W. T.; Wilkins, M. P.; Schumacher, P. W., Jr.
As more objects are launched into space, the potential for breakup events and space object collisions is ever increasing. These events create large clouds of debris that are extremely hazardous to space operations. Providing timely, accurate, and statistically meaningful Space Situational Awareness (SSA) data is crucial in order to protect assets and operations in space. The space object tracking problem, in general, is nonlinear in both state dynamics and observations, making it ill-suited to linear filtering techniques such as the Kalman filter. Additionally, given the multi-object, multi-scenario nature of the problem, space situational awareness requires multi-hypothesis tracking and management that is combinatorially challenging in nature. In practice, it is often seen that assumptions of underlying linearity and/or Gaussianity are used to provide tractable solutions to the multiple space object tracking problem. However, these assumptions are, at times, detrimental to tracking data and provide statistically inconsistent solutions. This paper details a tractable solution to the multiple space object tracking problem applicable to space object breakup events. Within this solution, simplifying assumptions of the underlying probability density function are relaxed and heuristic methods for hypothesis management are avoided. This is done by implementing Sequential Monte Carlo (SMC) methods for both nonlinear filtering as well as hypothesis management. This goal of this paper is to detail the solution and use it as a platform to discuss computational limitations that hinder proper analysis of large breakup events.
2007-09-30
the behavioral ecology of marine mammals by simultaneously tracking multiple vocalizing individuals in space and time. OBJECTIVES The ...goal is to contribute to the behavioral ecology of marine mammals by simultaneously tracking multiple vocalizing individuals in space and time. 15...OA Graduate Traineeship for E-M Nosal) LONG-TERM GOALS The goal of our research is to develop systems that use a widely spaced hydrophone array
Automatic feature-based grouping during multiple object tracking.
Erlikhman, Gennady; Keane, Brian P; Mettler, Everett; Horowitz, Todd S; Kellman, Philip J
2013-12-01
Contour interpolation automatically binds targets with distractors to impair multiple object tracking (Keane, Mettler, Tsoi, & Kellman, 2011). Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (>15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.
Object Acquisition and Tracking for Space-Based Surveillance
1991-11-27
on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect , and can...smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.
ERIC Educational Resources Information Center
Chen, Chi-hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-01-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories…
Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman
2011-02-01
The ability to attend to multiple objects that move in the visual field is important for many aspects of daily functioning. The attentional capacity for such dynamic tracking, however, is highly limited and undergoes age-related decline. Several aspects of the tracking process can influence performance. Here, we investigated effects of feature-based interference from distractor objects that appear in unattended regions of the visual field with a hemifield-tracking task. Younger and older participants performed an attentional tracking task in one hemifield while distractor objects were concurrently presented in the unattended hemifield. Feature similarity between objects in the attended and unattended hemifields as well as motion speed and the number of to-be-tracked objects were parametrically manipulated. The results show that increasing feature overlap leads to greater interference from the unattended visual field. This effect of feature-based interference was only present in the slow speed condition, indicating that the interference is mainly modulated by perceptual demands. High-performing older adults showed a similar interference effect as younger adults, whereas low-performing adults showed poor tracking performance overall.
Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features
NASA Astrophysics Data System (ADS)
Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique
2011-12-01
We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.
Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor.
Kim, Han-Ul; Kim, Chang-Su
2017-08-01
In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.
NASA Astrophysics Data System (ADS)
Gohatre, Umakant Bhaskar; Patil, Venkat P.
2018-04-01
In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.
Real-time edge tracking using a tactile sensor
NASA Technical Reports Server (NTRS)
Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.
1989-01-01
Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.
Detecting multiple moving objects in crowded environments with coherent motion regions
Cheriyadat, Anil M.; Radke, Richard J.
2013-06-11
Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.
NASA Astrophysics Data System (ADS)
Liu, Yu-Che; Huang, Chung-Lin
2013-03-01
This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.
Hue distinctiveness overrides category in determining performance in multiple object tracking.
Sun, Mengdan; Zhang, Xuemin; Fan, Lingxia; Hu, Luming
2018-02-01
The visual distinctiveness between targets and distractors can significantly facilitate performance in multiple object tracking (MOT), in which color is a feature that has been commonly used. However, the processing of color can be more than "visual." Color is continuous in chromaticity, while it is commonly grouped into discrete categories (e.g., red, green). Evidence from color perception suggested that color categories may have a unique role in visual tasks independent of its chromatic appearance. Previous MOT studies have not examined the effect of chromatic and categorical distinctiveness on tracking separately. The current study aimed to reveal how chromatic (hue) and categorical distinctiveness of color between the targets and distractors affects tracking performance. With four experiments, we showed that tracking performance was largely facilitated by the increasing hue distance between the target set and the distractor set, suggesting that perceptual grouping was formed based on hue distinctiveness to aid tracking. However, we found no color categorical effect, because tracking performance was not significantly different when the targets and distractors were from the same or different categories. It was concluded that the chromatic distinctiveness of color overrides category in determining tracking performance, suggesting a dominant role of perceptual feature in MOT.
Nonstationary EO/IR Clutter Suppression and Dim Object Tracking
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Brown, A.; Brown, J.
2010-09-01
We develop and evaluate the performance of advanced algorithms which provide significantly improved capabilities for automated detection and tracking of ballistic and flying dim objects in the presence of highly structured intense clutter. Applications include ballistic missile early warning, midcourse tracking, trajectory prediction, and resident space object detection and tracking. The set of algorithms include, in particular, adaptive spatiotemporal clutter estimation-suppression and nonlinear filtering-based multiple-object track-before-detect. These algorithms are suitable for integration into geostationary, highly elliptical, or low earth orbit scanning or staring sensor suites, and are based on data-driven processing that adapts to real-world clutter backgrounds, including celestial, earth limb, or terrestrial clutter. In many scenarios of interest, e.g., for highly elliptic and, especially, low earth orbits, the resulting clutter is highly nonstationary, providing a significant challenge for clutter suppression to or below sensor noise levels, which is essential for dim object detection and tracking. We demonstrate the success of the developed algorithms using semi-synthetic and real data. In particular, our algorithms are shown to be capable of detecting and tracking point objects with signal-to-clutter levels down to 1/1000 and signal-to-noise levels down to 1/4.
Reallocating attention during multiple object tracking.
Ericson, Justin M; Christensen, James C
2012-07-01
Wolfe, Place, and Horowitz (Psychonomic Bulletin & Review 14:344-349, 2007) found that participants were relatively unaffected by selecting and deselecting targets while performing a multiple object tracking task, such that maintaining tracking was possible for longer durations than the few seconds typically studied. Though this result was generally consistent with other findings on tracking duration (Franconeri, Jonathon, & Scimeca Psychological Science 21:920-925, 2010), it was inconsistent with research involving cuing paradigms, specifically precues (Pylyshyn & Annan Spatial Vision 19:485-504, 2006). In the present research, we broke down the addition and removal of targets into separate conditions and incorporated a simple performance model to evaluate the costs associated with the selection and deselection of moving targets. Across three experiments, we demonstrated evidence against a cost being associated with any shift in attention, but rather that varying the type of cue used for target deselection produces no additional cost to performance and that hysteresis effects are not induced by a reduction in tracking load.
Real-time optical holographic tracking of multiple objects
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Liu, Hua-Kuang
1989-01-01
A coherent optical correlation technique for real-time simultaneous tracking of several different objects making independent movements is described, and experimental results are presented. An evaluation of this system compared with digital computing systems is made. The real-time processing capability is obtained through the use of a liquid crystal television spatial light modulator and a dichromated gelatin multifocus hololens. A coded reference beam is utilized in the separation of the output correlation plane associated with each input target so that independent tracking can be achieved.
Howe, Piers D. L.
2017-01-01
To understand how the visual system represents multiple moving objects and how those representations contribute to tracking, it is essential that we understand how the processes of attention and working memory interact. In the work described here we present an investigation of that interaction via a series of tracking and working memory dual-task experiments. Previously, it has been argued that tracking is resistant to disruption by a concurrent working memory task and that any apparent disruption is in fact due to observers making a response to the working memory task, rather than due to competition for shared resources. Contrary to this, in our experiments we find that when task order and response order confounds are avoided, all participants show a similar decrease in both tracking and working memory performance. However, if task and response order confounds are not adequately controlled for we find substantial individual differences, which could explain the previous conflicting reports on this topic. Our results provide clear evidence that tracking and working memory tasks share processing resources. PMID:28410383
Lapierre, Mark D; Cropper, Simon J; Howe, Piers D L
2017-01-01
To understand how the visual system represents multiple moving objects and how those representations contribute to tracking, it is essential that we understand how the processes of attention and working memory interact. In the work described here we present an investigation of that interaction via a series of tracking and working memory dual-task experiments. Previously, it has been argued that tracking is resistant to disruption by a concurrent working memory task and that any apparent disruption is in fact due to observers making a response to the working memory task, rather than due to competition for shared resources. Contrary to this, in our experiments we find that when task order and response order confounds are avoided, all participants show a similar decrease in both tracking and working memory performance. However, if task and response order confounds are not adequately controlled for we find substantial individual differences, which could explain the previous conflicting reports on this topic. Our results provide clear evidence that tracking and working memory tasks share processing resources.
Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing
NASA Astrophysics Data System (ADS)
Ou, Meiying; Li, Shihua; Wang, Chaoli
2013-12-01
This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.
Development of a real time multiple target, multi camera tracker for civil security applications
NASA Astrophysics Data System (ADS)
Åkerlund, Hans
2009-09-01
A surveillance system has been developed that can use multiple TV-cameras to detect and track personnel and objects in real time in public areas. The document describes the development and the system setup. The system is called NIVS Networked Intelligent Video Surveillance. Persons in the images are tracked and displayed on a 3D map of the surveyed area.
Resolving occlusion and segmentation errors in multiple video object tracking
NASA Astrophysics Data System (ADS)
Cheng, Hsu-Yung; Hwang, Jenq-Neng
2009-02-01
In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.
Accurate object tracking system by integrating texture and depth cues
NASA Astrophysics Data System (ADS)
Chen, Ju-Chin; Lin, Yu-Hang
2016-03-01
A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.
Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking
Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang
2016-01-01
Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875
Position Affects Performance in Multiple-Object Tracking in Rugby Union Players
Martín, Andrés; Sfer, Ana M.; D'Urso Villar, Marcela A.; Barraza, José F.
2017-01-01
We report an experiment that examines the performance of rugby union players and a control group composed of graduate student with no sport experience, in a multiple-object tracking task. It compares the ability of 86 high level rugby union players grouped as Backs and Forwards and the control group, to track a subset of randomly moving targets amongst the same number of distractors. Several difficulties were included in the experimental design in order to evaluate possible interactions between the relevant variables. Results show that the performance of the Backs is better than that of the other groups, but the occurrence of interactions precludes an isolated groups analysis. We interpret the results within the framework of visual attention and discuss both, the implications of our results and the practical consequences. PMID:28951725
Simultaneous Tracking of Multiple Points Using a Wiimote
ERIC Educational Resources Information Center
Skeffington, Alex; Scully, Kyle
2012-01-01
This paper reviews the construction of an inexpensive motion tracking and data logging system, which can be used for a wide variety of teaching experiments ranging from entry-level physics courses to advanced courses. The system utilizes an affordable infrared camera found in a Nintendo Wiimote to track IR LEDs mounted to the objects to be…
Online Hierarchical Sparse Representation of Multifeature for Robust Object Tracking
Qu, Shiru
2016-01-01
Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then, the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models. Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show that the proposed algorithm performs well with superior tracking accuracy and robustness. PMID:27630710
Using LabView for real-time monitoring and tracking of multiple biological objects
NASA Astrophysics Data System (ADS)
Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika
2017-04-01
Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.
Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.
Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen
2015-04-01
In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.
Real-time tracking of visually attended objects in virtual environments and its application to LOD.
Lee, Sungkil; Kim, Gerard Jounghyun; Choi, Seungmoon
2009-01-01
This paper presents a real-time framework for computationally tracking objects visually attended by the user while navigating in interactive virtual environments. In addition to the conventional bottom-up (stimulus-driven) saliency map, the proposed framework uses top-down (goal-directed) contexts inferred from the user's spatial and temporal behaviors, and identifies the most plausibly attended objects among candidates in the object saliency map. The computational framework was implemented using GPU, exhibiting high computational performance adequate for interactive virtual environments. A user experiment was also conducted to evaluate the prediction accuracy of the tracking framework by comparing objects regarded as visually attended by the framework to actual human gaze collected with an eye tracker. The results indicated that the accuracy was in the level well supported by the theory of human cognition for visually identifying single and multiple attentive targets, especially owing to the addition of top-down contextual information. Finally, we demonstrate how the visual attention tracking framework can be applied to managing the level of details in virtual environments, without any hardware for head or eye tracking.
Real-Time Visual Tracking through Fusion Features
Ruan, Yang; Wei, Zhenzhong
2016-01-01
Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951
Tracking Object Existence From an Autonomous Patrol Vehicle
NASA Technical Reports Server (NTRS)
Wolf, Michael; Scharenbroich, Lucas
2011-01-01
An autonomous vehicle patrols a large region, during which an algorithm receives measurements of detected potential objects within its sensor range. The goal of the algorithm is to track all objects in the region over time. This problem differs from traditional multi-target tracking scenarios because the region of interest is much larger than the sensor range and relies on the movement of the sensor through this region for coverage. The goal is to know whether anything has changed between visits to the same location. In particular, two kinds of alert conditions must be detected: (1) a previously detected object has disappeared and (2) a new object has appeared in a location already checked. For the time an object is within sensor range, the object can be assumed to remain stationary, changing position only between visits. The problem is difficult because the upstream object detection processing is likely to make many errors, resulting in heavy clutter (false positives) and missed detections (false negatives), and because only noisy, bearings-only measurements are available. This work has three main goals: (1) Associate incoming measurements with known objects or mark them as new objects or false positives, as appropriate. For this, a multiple hypothesis tracker was adapted to this scenario. (2) Localize the objects using multiple bearings-only measurements to provide estimates of global position (e.g., latitude and longitude). A nonlinear Kalman filter extension provides these 2D position estimates using the 1D measurements. (3) Calculate the probability that a suspected object truly exists (in the estimated position), and determine whether alert conditions have been triggered (for new objects or disappeared objects). The concept of a probability of existence was created, and a new Bayesian method for updating this probability at each time step was developed. A probabilistic multiple hypothesis approach is chosen because of its superiority in handling the uncertainty arising from errors in sensors and upstream processes. However, traditional target tracking methods typically assume a stationary detection volume of interest, whereas in this case, one must make adjustments for being able to see only a small portion of the region of interest and understand when an alert situation has occurred. To track object existence inside and outside the vehicle's sensor range, a probability of existence was defined for each hypothesized object, and this value was updated at every time step in a Bayesian manner based on expected characteristics of the sensor and object and whether that object has been detected in the most recent time step. Then, this value feeds into a sequential probability ratio test (SPRT) to determine the status of the object (suspected, confirmed, or deleted). Alerts are sent upon selected status transitions. Additionally, in order to track objects that move in and out of sensor range and update the probability of existence appropriately a variable probability detection has been defined and the hypothesis probability equations have been re-derived to accommodate this change. Unsupervised object tracking is a pervasive issue in automated perception systems. This work could apply to any mobile platform (ground vehicle, sea vessel, air vehicle, or orbiter) that intermittently revisits regions of interest and needs to determine whether anything interesting has changed.
Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.
Frank, Sebastian M; Sun, Liwei; Forster, Lisa; Tse, Peter U; Greenlee, Mark W
2016-12-14
The midposterior fundus of the Sylvian fissure in the human brain is central to the cortical processing of vestibular cues. At least two vestibular areas are located at this site: the parietoinsular vestibular cortex (PIVC) and the posterior insular cortex (PIC). It is now well established that activity in sensory systems is subject to cross-modal attention effects. Attending to a stimulus in one sensory modality enhances activity in the corresponding cortical sensory system, but simultaneously suppresses activity in other sensory systems. Here, we wanted to probe whether such cross-modal attention effects also target the vestibular system. To this end, we used a visual multiple-object tracking task. By parametrically varying the number of tracked targets, we could measure the effect of attentional load on the PIVC and the PIC while holding the perceptual load constant. Participants performed the tracking task during functional magnetic resonance imaging. Results show that, compared with passive viewing of object motion, activity during object tracking was suppressed in the PIVC and enhanced in the PIC. Greater attentional load, induced by increasing the number of tracked targets, was associated with a corresponding increase in the suppression of activity in the PIVC. Activity in the anterior part of the PIC decreased with increasing load, whereas load effects were absent in the posterior PIC. Results of a control experiment show that attention-induced suppression in the PIVC is stronger than any suppression evoked by the visual stimulus per se. Overall, our results suggest that attention has a cross-modal modulatory effect on the vestibular cortex during visual object tracking. In this study we investigate cross-modal attention effects in the human vestibular cortex. We applied the visual multiple-object tracking task because it is known to evoke attentional load effects on neural activity in visual motion-processing and attention-processing areas. Here we demonstrate a load-dependent effect of attention on the activation in the vestibular cortex, despite constant visual motion stimulation. We find that activity in the parietoinsular vestibular cortex is more strongly suppressed the greater the attentional load on the visual tracking task. These findings suggest cross-modal attentional modulation in the vestibular cortex. Copyright © 2016 the authors 0270-6474/16/3612720-09$15.00/0.
Real-time acquisition and tracking system with multiple Kalman filters
NASA Astrophysics Data System (ADS)
Beard, Gary C.; McCarter, Timothy G.; Spodeck, Walter; Fletcher, James E.
1994-07-01
The design of a real-time, ground-based, infrared tracking system with proven field success in tracking boost vehicles through burnout is presented with emphasis on the software design. The system was originally developed to deliver relative angular positions during boost, and thrust termination time to a sensor fusion station in real-time. Autonomous target acquisition and angle-only tracking features were developed to ensure success under stressing conditions. A unique feature of the system is the incorporation of multiple copies of a Kalman filter tracking algorithm running in parallel in order to minimize run-time. The system is capable of updating the state vector for an object at measurement rates approaching 90 Hz. This paper will address the top-level software design, details of the algorithms employed, system performance history in the field, and possible future upgrades.
An open source framework for tracking and state estimation ('Stone Soup')
NASA Astrophysics Data System (ADS)
Thomas, Paul A.; Barr, Jordi; Balaji, Bhashyam; White, Kruger
2017-05-01
The ability to detect and unambiguously follow all moving entities in a state-space is important in multiple domains both in defence (e.g. air surveillance, maritime situational awareness, ground moving target indication) and the civil sphere (e.g. astronomy, biology, epidemiology, dispersion modelling). However, tracking and state estimation researchers and practitioners have difficulties recreating state-of-the-art algorithms in order to benchmark their own work. Furthermore, system developers need to assess which algorithms meet operational requirements objectively and exhaustively rather than intuitively or driven by personal favourites. We have therefore commenced the development of a collaborative initiative to create an open source framework for production, demonstration and evaluation of Tracking and State Estimation algorithms. The initiative will develop a (MIT-licensed) software platform for researchers and practitioners to test, verify and benchmark a variety of multi-sensor and multi-object state estimation algorithms. The initiative is supported by four defence laboratories, who will contribute to the development effort for the framework. The tracking and state estimation community will derive significant benefits from this work, including: access to repositories of verified and validated tracking and state estimation algorithms, a framework for the evaluation of multiple algorithms, standardisation of interfaces and access to challenging data sets. Keywords: Tracking,
A Lyapunov-based Approach for Time-Coordinated 3D Path-Following of Multiple Quadrotors in SO(3)
2012-12-10
January 2006. [22] T. Lee, “ Robust adaptive geometric tracking controls on so(3) with an application to the attitude dynamicsof a quadrotor uav,” 2011...in the presence of time-varying communication networks and spatial and temporal constraints. The objective is to enable n Quadrotors to track prede?ned...developing control laws to solve the Time-Coordinated 3D Path-Following task for multiple Quadrotor UAVs in the presence of time-varying communication
Real-time optical multiple object recognition and tracking system and method
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)
1990-01-01
System for optically recognizing and tracking a plurality of objects within a field of vision. Laser (46) produces a coherent beam (48). Beam splitter (24) splits the beam into object (26) and reference (28) beams. Beam expanders (50) and collimators (52) transform the beams (26, 28) into coherent collimated light beams (26', 28'). A two-dimensional SLM (54), disposed in the object beam (26'), modulates the object beam with optical information as a function of signals from a first camera (16) which develops X and Y signals reflecting the contents of its field of vision. A hololens (38), positioned in the object beam (26') subsequent to the modulator (54), focuses the object beam at a plurality of focal points (42). A planar transparency-forming film (32), disposed with the focal points on an exposable surface, forms a multiple position interference filter (62) upon exposure of the surface and development processing of the film (32). A reflector (53) directing the reference beam (28') onto the film (32), exposes the surface, with images focused by the hololens (38), to form interference patterns on the surface. There is apparatus (16', 64) for sensing and indicating light passage through respective ones of the positions of the filter (62), whereby recognition of objects corresponding to respective ones of the positions of the filter (62) is affected. For tracking, apparatus (64) focuses light passing through the filter (62) onto a matrix of CCD's in a second camera (16') to form a two-dimensional display of the recognized objects.
Automated multiple target detection and tracking in UAV videos
NASA Astrophysics Data System (ADS)
Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie
2010-04-01
In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.
Active illuminated space object imaging and tracking simulation
NASA Astrophysics Data System (ADS)
Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu
2016-10-01
Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.
ERIC Educational Resources Information Center
Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Greenberg, Mark T.; Lochman, John E.; McMahon, Robert J.; Pinderhughes, Ellen
2010-01-01
Objective: This article examines the impact of a universal social-emotional learning program, the Fast Track PATHS (Promoting Alternative Thinking Strategies) curriculum and teacher consultation, embedded within the Fast Track selective prevention model. Method: The longitudinal analysis involved 2,937 children of multiple ethnicities who remained…
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Brown, A.; Brown, J.
The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud, and these objects may not always be resolvable in individual data frames. In the present paper, the performance of the developed algorithms is demonstrated using real-world data containing resident space objects observed from the MSX platform, with backgrounds varying from celestial to combined celestial and earth limb, with instances of extremely bright aurora clutter. Simulation results are also presented for parameterized variations in signal-to-clutter levels (down to 1/1000) and signal-to-noise levels (down to 1/6) for simulated targets against real-world terrestrial clutter backgrounds. We also discuss algorithm processing requirements and C++ software processing capabilities from our on-going MDA- and AFRL-sponsored development of an image processing toolkit (iPTK). In the current effort, the iPTK is being developed to a Technology Readiness Level (TRL) of 6 by mid-2010, in preparation for possible integration with STSS-like, SBIRS high-like and SBSS-like surveillance suites.
Drew, Trafton; Horowitz, Todd S.; Wolfe, Jeremy M.; Vogel, Edward K.
2015-01-01
In the attentive tracking task, observers track multiple objects as they move independently and unpredictably among visually identical distractors. Although a number of models of attentive tracking implicate visual working memory as the mechanism responsible for representing target locations, no study has ever directly compared the neural mechanisms of the two tasks. In the current set of experiments, we used electrophysiological recordings to delineate similarities and differences between the neural processing involved in working memory and attentive tracking. We found that the contralateral electrophysiological response to the two tasks was similarly sensitive to the number of items attended in both tasks but that there was also a unique contralateral negativity related to the process of monitoring target position during tracking. This signal was absent for periods of time during tracking tasks when objects briefly stopped moving. These results provide evidence that, during attentive tracking, the process of tracking target locations elicits an electrophysiological response that is distinct and dissociable from neural measures of the number of items being attended. PMID:21228175
Tracking moving targets behind a scattering medium via speckle correlation.
Guo, Chengfei; Liu, Jietao; Wu, Tengfei; Zhu, Lei; Shao, Xiaopeng
2018-02-01
Tracking moving targets behind a scattering medium is a challenge, and it has many important applications in various fields. Owing to the multiple scattering, instead of the object image, only a random speckle pattern can be received on the camera when light is passing through highly scattering layers. Significantly, an important feature of a speckle pattern has been found, and it showed the target information can be derived from the speckle correlation. In this work, inspired by the notions used in computer vision and deformation detection, by specific simulations and experiments, we demonstrate a simple object tracking method, in which by using the speckle correlation, the movement of a hidden object can be tracked in the lateral direction and axial direction. In addition, the rotation state of the moving target can also be recognized by utilizing the autocorrelation of a speckle. This work will be beneficial for biomedical applications in the fields of quantitative analysis of the working mechanisms of a micro-object and the acquisition of dynamical information of the micro-object motion.
NASA Astrophysics Data System (ADS)
Hartung, Christine; Spraul, Raphael; Schuchert, Tobias
2017-10-01
Wide area motion imagery (WAMI) acquired by an airborne multicamera sensor enables continuous monitoring of large urban areas. Each image can cover regions of several square kilometers and contain thousands of vehicles. Reliable vehicle tracking in this imagery is an important prerequisite for surveillance tasks, but remains challenging due to low frame rate and small object size. Most WAMI tracking approaches rely on moving object detections generated by frame differencing or background subtraction. These detection methods fail when objects slow down or stop. Recent approaches for persistent tracking compensate for missing motion detections by combining a detection-based tracker with a second tracker based on appearance or local context. In order to avoid the additional complexity introduced by combining two trackers, we employ an alternative single tracker framework that is based on multiple hypothesis tracking and recovers missing motion detections with a classifierbased detector. We integrate an appearance-based similarity measure, merge handling, vehicle-collision tests, and clutter handling to adapt the approach to the specific context of WAMI tracking. We apply the tracking framework on a region of interest of the publicly available WPAFB 2009 dataset for quantitative evaluation; a comparison to other persistent WAMI trackers demonstrates state of the art performance of the proposed approach. Furthermore, we analyze in detail the impact of different object detection methods and detector settings on the quality of the output tracking results. For this purpose, we choose four different motion-based detection methods that vary in detection performance and computation time to generate the input detections. As detector parameters can be adjusted to achieve different precision and recall performance, we combine each detection method with different detector settings that yield (1) high precision and low recall, (2) high recall and low precision, and (3) best f-score. Comparing the tracking performance achieved with all generated sets of input detections allows us to quantify the sensitivity of the tracker to different types of detector errors and to derive recommendations for detector and parameter choice.
Enumeration versus multiple object tracking: the case of action video game players
Green, C.S.; Bavelier, D.
2010-01-01
Here, we demonstrate that action video game play enhances subjects’ ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills. PMID:16359652
Enumeration versus multiple object tracking: the case of action video game players.
Green, C S; Bavelier, D
2006-08-01
Here, we demonstrate that action video game play enhances subjects' ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills.
Feature Binding in Visual Working Memory Evaluated by Type Identification Paradigm
ERIC Educational Resources Information Center
Saiki, Jun; Miyatsuji, Hirofumi
2007-01-01
Memory for feature binding comprises a key ingredient in coherent object representations. Previous studies have been equivocal about human capacity for objects in the visual working memory. To evaluate memory for feature binding, a type identification paradigm was devised and used with a multiple-object permanence tracking task. Using objects…
Sensor modeling and demonstration of a multi-object spectrometer for performance-driven sensing
NASA Astrophysics Data System (ADS)
Kerekes, John P.; Presnar, Michael D.; Fourspring, Kenneth D.; Ninkov, Zoran; Pogorzala, David R.; Raisanen, Alan D.; Rice, Andrew C.; Vasquez, Juan R.; Patel, Jeffrey P.; MacIntyre, Robert T.; Brown, Scott D.
2009-05-01
A novel multi-object spectrometer (MOS) is being explored for use as an adaptive performance-driven sensor that tracks moving targets. Developed originally for astronomical applications, the instrument utilizes an array of micromirrors to reflect light to a panchromatic imaging array. When an object of interest is detected the individual micromirrors imaging the object are tilted to reflect the light to a spectrometer to collect a full spectrum. This paper will present example sensor performance from empirical data collected in laboratory experiments, as well as our approach in designing optical and radiometric models of the MOS channels and the micromirror array. Simulation of moving vehicles in a highfidelity, hyperspectral scene is used to generate a dynamic video input for the adaptive sensor. Performance-driven algorithms for feature-aided target tracking and modality selection exploit multiple electromagnetic observables to track moving vehicle targets.
Yan, Fei; Christmas, William; Kittler, Josef
2008-10-01
In this paper, we propose a multilayered data association scheme with graph-theoretic formulation for tracking multiple objects that undergo switching dynamics in clutter. The proposed scheme takes as input object candidates detected in each frame. At the object candidate level, "tracklets'' are "grown'' from sets of candidates that have high probabilities of containing only true positives. At the tracklet level, a directed and weighted graph is constructed, where each node is a tracklet, and the edge weight between two nodes is defined according to the "compatibility'' of the two tracklets. The association problem is then formulated as an all-pairs shortest path (APSP) problem in this graph. Finally, at the path level, by analyzing the APSPs, all object trajectories are identified, and track initiation and track termination are automatically dealt with. By exploiting a special topological property of the graph, we have also developed a more efficient APSP algorithm than the general-purpose ones. The proposed data association scheme is applied to tennis sequences to track tennis balls. Experiments show that it works well on sequences where other data association methods perform poorly or fail completely.
Enhancing Ground Based Telescope Performance with Image Processing
2013-11-13
driven by the need to detect small faint objects with relatively short integration times to avoid streaking of the satellite image across multiple...the time right before the eclipse. The orbital elements of the satellite were entered into the SST’s tracking system, so that the SST could be...short integration times , thereby avoiding streaking of the satellite image across multiple CCD pixels so that the objects are suitably modeled as point
Uninformative Prior Multiple Target Tracking Using Evidential Particle Filters
NASA Astrophysics Data System (ADS)
Worthy, J. L., III; Holzinger, M. J.
Space situational awareness requires the ability to initialize state estimation from short measurements and the reliable association of observations to support the characterization of the space environment. The electro-optical systems used to observe space objects cannot fully characterize the state of an object given a short, unobservable sequence of measurements. Further, it is difficult to associate these short-arc measurements if many such measurements are generated through the observation of a cluster of satellites, debris from a satellite break-up, or from spurious detections of an object. An optimization based, probabilistic short-arc observation association approach coupled with a Dempster-Shafer based evidential particle filter in a multiple target tracking framework is developed and proposed to address these problems. The optimization based approach is shown in literature to be computationally efficient and can produce probabilities of association, state estimates, and covariances while accounting for systemic errors. Rigorous application of Dempster-Shafer theory is shown to be effective at enabling ignorance to be properly accounted for in estimation by augmenting probability with belief and plausibility. The proposed multiple hypothesis framework will use a non-exclusive hypothesis formulation of Dempster-Shafer theory to assign belief mass to candidate association pairs and generate tracks based on the belief to plausibility ratio. The proposed algorithm is demonstrated using simulated observations of a GEO satellite breakup scenario.
The semantic category-based grouping in the Multiple Identity Tracking task.
Wei, Liuqing; Zhang, Xuemin; Li, Zhen; Liu, Jingyao
2018-01-01
In the Multiple Identity Tracking (MIT) task, categorical distinctions between targets and distractors have been found to facilitate tracking (Wei, Zhang, Lyu, & Li in Frontiers in Psychology, 7, 589, 2016). The purpose of this study was to further investigate the reasons for the facilitation effect, through six experiments. The results of Experiments 1-3 excluded the potential explanations of visual distinctiveness, attentional distribution strategy, and a working memory mechanism, respectively. When objects' visual information was preserved and categorical information was removed, the facilitation effect disappeared, suggesting that the visual distinctiveness between targets and distractors was not the main reason for the facilitation effect. Moreover, the facilitation effect was not the result of strategically shifting the attentional distribution, because the targets received more attention than the distractors in all conditions. Additionally, the facilitation effect did not come about because the identities of targets were encoded and stored in visual working memory to assist in the recovery from tracking errors; when working memory was disturbed by the object identities changing during tracking, the facilitation effect still existed. Experiments 4 and 5 showed that observers grouped targets together and segregated them from distractors on the basis of their categorical information. By doing this, observers could largely avoid distractor interference with tracking and improve tracking performance. Finally, Experiment 6 indicated that category-based grouping is not an automatic, but a goal-directed and effortful, strategy. In summary, the present findings show that a semantic category-based target-grouping mechanism exists in the MIT task, which is likely to be the major reason for the tracking facilitation effect.
ERIC Educational Resources Information Center
Markham, Paula T.; Porter, Bryan E.; Ball, J. D.
2013-01-01
Objective: In this article, the authors investigated the effectiveness of a behavior modification program using global positioning system (GPS) vehicle tracking devices with contingency incentives and disincentives to reduce the speeding behavior of drivers with ADHD. Method: Using an AB multiple-baseline design, six participants drove a 5-mile…
Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring
2016-05-02
individual animals . 15. SUBJECT TERMS Marine mammal; Passive acoustic monitoring ; Localization; Tracking ; Multiple source ; Sparse array 16. SECURITY...al. 2004; Thode 2005; Nosal 2007] to localize animals in situations where straight-line propagation assumptions made by conventional marine mammal...Objective 1: Inveti for sound speed profiles. hydrophone position and hydrophone timing offset in addition to animal position Almost all marine mammal
NASA Astrophysics Data System (ADS)
Mundhenk, T. Nathan; Ni, Kang-Yu; Chen, Yang; Kim, Kyungnam; Owechko, Yuri
2012-01-01
An aerial multiple camera tracking paradigm needs to not only spot unknown targets and track them, but also needs to know how to handle target reacquisition as well as target handoff to other cameras in the operating theater. Here we discuss such a system which is designed to spot unknown targets, track them, segment the useful features and then create a signature fingerprint for the object so that it can be reacquired or handed off to another camera. The tracking system spots unknown objects by subtracting background motion from observed motion allowing it to find targets in motion, even if the camera platform itself is moving. The area of motion is then matched to segmented regions returned by the EDISON mean shift segmentation tool. Whole segments which have common motion and which are contiguous to each other are grouped into a master object. Once master objects are formed, we have a tight bound on which to extract features for the purpose of forming a fingerprint. This is done using color and simple entropy features. These can be placed into a myriad of different fingerprints. To keep data transmission and storage size low for camera handoff of targets, we try several different simple techniques. These include Histogram, Spatiogram and Single Gaussian Model. These are tested by simulating a very large number of target losses in six videos over an interval of 1000 frames each from the DARPA VIVID video set. Since the fingerprints are very simple, they are not expected to be valid for long periods of time. As such, we test the shelf life of fingerprints. This is how long a fingerprint is good for when stored away between target appearances. Shelf life gives us a second metric of goodness and tells us if a fingerprint method has better accuracy over longer periods. In videos which contain multiple vehicle occlusions and vehicles of highly similar appearance we obtain a reacquisition rate for automobiles of over 80% using the simple single Gaussian model compared with the null hypothesis of <20%. Additionally, the performance for fingerprints stays well above the null hypothesis for as much as 800 frames. Thus, a simple and highly compact single Gaussian model is useful for target reacquisition. Since the model is agnostic to view point and object size, it is expected to perform as well on a test of target handoff. Since some of the performance degradation is due to problems with the initial target acquisition and tracking, the simple Gaussian model may perform even better with an improved initial acquisition technique. Also, since the model makes no assumption about the object to be tracked, it should be possible to use it to fingerprint a multitude of objects, not just cars. Further accuracy may be obtained by creating manifolds of objects from multiple samples.
Wang, Dandan; Zong, Qun; Tian, Bailing; Shao, Shikai; Zhang, Xiuyun; Zhao, Xinyi
2018-02-01
The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Intelligence-aided multitarget tracking for urban operations - a case study: counter terrorism
NASA Astrophysics Data System (ADS)
Sathyan, T.; Bharadwaj, K.; Sinha, A.; Kirubarajan, T.
2006-05-01
In this paper, we present a framework for tracking multiple mobile targets in an urban environment based on data from multiple sources of information, and for evaluating the threat these targets pose to assets of interest (AOI). The motivating scenario is one where we have to track many targets, each with different (unknown) destinations and/or intents. The tracking algorithm is aided by information about the urban environment (e.g., road maps, buildings, hideouts), and strategic and intelligence data. The tracking algorithm needs to be dynamic in that it has to handle a time-varying number of targets and the ever-changing urban environment depending on the locations of the moving objects and AOI. Our solution uses the variable structure interacting multiple model (VS-IMM) estimator, which has been shown to be effective in tracking targets based on road map information. Intelligence information is represented as target class information and incorporated through a combined likelihood calculation within the VS-IMM estimator. In addition, we develop a model to calculate the probability that a particular target can attack a given AOI. This model for the calculation of the probability of attack is based on the target kinematic and class information. Simulation results are presented to demonstrate the operation of the proposed framework on a representative scenario.
Visual tracking of da Vinci instruments for laparoscopic surgery
NASA Astrophysics Data System (ADS)
Speidel, S.; Kuhn, E.; Bodenstedt, S.; Röhl, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.
2014-03-01
Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.
NASA Astrophysics Data System (ADS)
DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.
2012-06-01
As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.
FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.
Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu
2017-07-18
Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention
Yu, Chen; Smith, Linda B.
2016-01-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of the present study is to understand the complex system of sensory-motor behaviors that may underlie the establishment of joint attention between parents and toddlers. In an experimental task, parents and toddlers played together with multiple toys. We objectively measured joint attention – and the sensory-motor behaviors that underlie it – using a dual head-mounted eye-tracking system and frame-by-frame coding of manual actions. By tracking the momentary visual fixations and hand actions of each participant, we precisely determined just how often they fixated on the same object at the same time, the visual behaviors that preceded joint attention, and manual behaviors that preceded and co-occurred with joint attention. We found that multiple sequential sensory-motor patterns lead to joint attention. In addition, there are developmental changes in this multi-pathway system evidenced as variations in strength among multiple routes. We propose that coordinated visual attention between parents and toddlers is primarily a sensory-motor behavior. Skill in achieving coordinated visual attention in social settings – like skills in other sensory-motor domains – emerges from multiple pathways to the same functional end. PMID:27016038
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention.
Yu, Chen; Smith, Linda B
2017-02-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of this study was to understand the complex system of sensory-motor behaviors that may underlie the establishment of joint attention between parents and toddlers. In an experimental task, parents and toddlers played together with multiple toys. We objectively measured joint attention-and the sensory-motor behaviors that underlie it-using a dual head-mounted eye-tracking system and frame-by-frame coding of manual actions. By tracking the momentary visual fixations and hand actions of each participant, we precisely determined just how often they fixated on the same object at the same time, the visual behaviors that preceded joint attention and manual behaviors that preceded and co-occurred with joint attention. We found that multiple sequential sensory-motor patterns lead to joint attention. In addition, there are developmental changes in this multi-pathway system evidenced as variations in strength among multiple routes. We propose that coordinated visual attention between parents and toddlers is primarily a sensory-motor behavior. Skill in achieving coordinated visual attention in social settings-like skills in other sensory-motor domains-emerges from multiple pathways to the same functional end. Copyright © 2016 Cognitive Science Society, Inc.
Sensor and tracking data integration into a common operating picture
NASA Astrophysics Data System (ADS)
Bailey, Mark E.
2003-09-01
With rapid technological developments, a new innovative range of possibilities can be actualized in mainstreaming a network with checks and balances to provide sensor and tracking data integration/information to a wider Department of Defense (DoD) audience or group of agencies. As technologies are developed, methods to display the data are required. Multiple diverse tracking devices and sensors need to be displayed on a common operating picture. Sensors and tracking devices are used to monitor an area or object for movement or boundary penetration. Tracking devices in turn determine transit patterns of humans, animals and/or vehicles. In consortium these devices can have dual applications for military requirements and for other general purposes. The DoD Counterdrug Technology Development Program Office (CDTDPO) has designed a system to distribute sensor and tracking data to multiple users in separate agencies. This information can be displayed in whole or in part as to the specific needs of the user. It is with this purpose that the Data Distribution Network (DDN) was created to disseminate information to a collective group or to a select audience.
Attentive Tracking Disrupts Feature Binding in Visual Working Memory
Fougnie, Daryl; Marois, René
2009-01-01
One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460
A Bootstrapping Model of Frequency and Context Effects in Word Learning
ERIC Educational Resources Information Center
Kachergis, George; Yu, Chen; Shiffrin, Richard M.
2017-01-01
Prior research has shown that people can learn many nouns (i.e., word--object mappings) from a short series of ambiguous situations containing multiple words and objects. For successful cross-situational learning, people must approximately track which words and referents co-occur most frequently. This study investigates the effects of allowing…
Robust visual tracking via multiple discriminative models with object proposals
NASA Astrophysics Data System (ADS)
Zhang, Yuanqiang; Bi, Duyan; Zha, Yufei; Li, Huanyu; Ku, Tao; Wu, Min; Ding, Wenshan; Fan, Zunlin
2018-04-01
Model drift is an important reason for tracking failure. In this paper, multiple discriminative models with object proposals are used to improve the model discrimination for relieving this problem. Firstly, the target location and scale changing are captured by lots of high-quality object proposals, which are represented by deep convolutional features for target semantics. And then, through sharing a feature map obtained by a pre-trained network, ROI pooling is exploited to wrap the various sizes of object proposals into vectors of the same length, which are used to learn a discriminative model conveniently. Lastly, these historical snapshot vectors are trained by different lifetime models. Based on entropy decision mechanism, the bad model owing to model drift can be corrected by selecting the best discriminative model. This would improve the robustness of the tracker significantly. We extensively evaluate our tracker on two popular benchmarks, the OTB 2013 benchmark and UAV20L benchmark. On both benchmarks, our tracker achieves the best performance on precision and success rate compared with the state-of-the-art trackers.
Estimation of contour motion and deformation for nonrigid object tracking
NASA Astrophysics Data System (ADS)
Shao, Jie; Porikli, Fatih; Chellappa, Rama
2007-08-01
We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.
Designs and Algorithms to Map Eye Tracking Data with Dynamic Multielement Moving Objects.
Kang, Ziho; Mandal, Saptarshi; Crutchfield, Jerry; Millan, Angel; McClung, Sarah N
2016-01-01
Design concepts and algorithms were developed to address the eye tracking analysis issues that arise when (1) participants interrogate dynamic multielement objects that can overlap on the display and (2) visual angle error of the eye trackers is incapable of providing exact eye fixation coordinates. These issues were addressed by (1) developing dynamic areas of interests (AOIs) in the form of either convex or rectangular shapes to represent the moving and shape-changing multielement objects, (2) introducing the concept of AOI gap tolerance (AGT) that controls the size of the AOIs to address the overlapping and visual angle error issues, and (3) finding a near optimal AGT value. The approach was tested in the context of air traffic control (ATC) operations where air traffic controller specialists (ATCSs) interrogated multiple moving aircraft on a radar display to detect and control the aircraft for the purpose of maintaining safe and expeditious air transportation. In addition, we show how eye tracking analysis results can differ based on how we define dynamic AOIs to determine eye fixations on moving objects. The results serve as a framework to more accurately analyze eye tracking data and to better support the analysis of human performance.
Designs and Algorithms to Map Eye Tracking Data with Dynamic Multielement Moving Objects
Mandal, Saptarshi
2016-01-01
Design concepts and algorithms were developed to address the eye tracking analysis issues that arise when (1) participants interrogate dynamic multielement objects that can overlap on the display and (2) visual angle error of the eye trackers is incapable of providing exact eye fixation coordinates. These issues were addressed by (1) developing dynamic areas of interests (AOIs) in the form of either convex or rectangular shapes to represent the moving and shape-changing multielement objects, (2) introducing the concept of AOI gap tolerance (AGT) that controls the size of the AOIs to address the overlapping and visual angle error issues, and (3) finding a near optimal AGT value. The approach was tested in the context of air traffic control (ATC) operations where air traffic controller specialists (ATCSs) interrogated multiple moving aircraft on a radar display to detect and control the aircraft for the purpose of maintaining safe and expeditious air transportation. In addition, we show how eye tracking analysis results can differ based on how we define dynamic AOIs to determine eye fixations on moving objects. The results serve as a framework to more accurately analyze eye tracking data and to better support the analysis of human performance. PMID:27725830
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Black, Jonathan T.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored, circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retroreflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Black, Jonathan T.; Pappa, Richard S.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retro- reflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang
2013-01-01
Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971
ACT-Vision: active collaborative tracking for multiple PTZ cameras
NASA Astrophysics Data System (ADS)
Broaddus, Christopher; Germano, Thomas; Vandervalk, Nicholas; Divakaran, Ajay; Wu, Shunguang; Sawhney, Harpreet
2009-04-01
We describe a novel scalable approach for the management of a large number of Pan-Tilt-Zoom (PTZ) cameras deployed outdoors for persistent tracking of humans and vehicles, without resorting to the large fields of view of associated static cameras. Our system, Active Collaborative Tracking - Vision (ACT-Vision), is essentially a real-time operating system that can control hundreds of PTZ cameras to ensure uninterrupted tracking of target objects while maintaining image quality and coverage of all targets using a minimal number of sensors. The system ensures the visibility of targets between PTZ cameras by using criteria such as distance from sensor and occlusion.
Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies
2013-09-01
processor. 1 . INTRODUCTION The Joint Space Operations Center (JSpOC) currently tracks more than 22,000 satellites and space debris orbiting the Earth... 1 , 2]. With the anticipated installation of more accurate sensors and the increased probability of future collisions between space objects, the...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-06-24
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-01-01
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961
Homography-based multiple-camera person-tracking
NASA Astrophysics Data System (ADS)
Turk, Matthew R.
2009-01-01
Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing
2018-01-01
For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.
Simultaneous Tracking of Multiple Points Using a Wiimote
NASA Astrophysics Data System (ADS)
Skeffington, Alex; Scully, Kyle
2012-11-01
This paper reviews the construction of an inexpensive motion tracking and data logging system, which can be used for a wide variety of teaching experiments ranging from entry-level physics courses to advanced courses. The system utilizes an affordable infrared camera found in a Nintendo Wiimote to track IR LEDs mounted to the objects to be tracked. Two quick experiments are presented using the motion tracking system to demonstrate the diversity of tasks this system can handle. The first experiment uses the Wiimote to record the harmonic motion of oscillating masses on a near-frictionless surface, while the second experiment uses the Wiimote as part of a feedback mechanism in a rotational system. The construction, capabilities, demonstrations, and suggested improvements of the system are reported here.
Liquid filtration properties in gravel foundation of railroad tracks
NASA Astrophysics Data System (ADS)
Strelkov, A.; Teplykh, S.; Bukhman, N.
2016-08-01
Railway bed gravel foundation has a constant permanent impact on urban ecology and ground surface. It is only natural that larger objects, such as railway stations, make broader impact. Surface run-off waters polluted by harmful substances existing in railroad track body (ballast section) flow along railroad tracks and within macadam, go down into subterranean ground flow and then enter neighbouring rivers and water basins. This paper presents analytic calculations and characteristics of surface run-off liquid filtration which flows through gravel multiple layers (railroad track ballast section). The authors analyse liquids with various density and viscosity flowing in multi-layer porous medium. The paper also describes liquid stationary and non-stationary weepage into gravel foundation of railroad tracks.
The Initial Development of Object Knowledge by a Learning Robot
Modayil, Joseph; Kuipers, Benjamin
2008-01-01
We describe how a robot can develop knowledge of the objects in its environment directly from unsupervised sensorimotor experience. The object knowledge consists of multiple integrated representations: trackers that form spatio-temporal clusters of sensory experience, percepts that represent properties for the tracked objects, classes that support efficient generalization from past experience, and actions that reliably change object percepts. We evaluate how well this intrinsically acquired object knowledge can be used to solve externally specified tasks including object recognition and achieving goals that require both planning and continuous control. PMID:19953188
NASA Astrophysics Data System (ADS)
Pak, A.; Correa, J.; Adams, M.; Clark, D.; Delande, E.; Houssineau, J.; Franco, J.; Frueh, C.
2016-09-01
Recently, the growing number of inactive Resident Space Objects (RSOs), or space debris, has provoked increased interest in the field of Space Situational Awareness (SSA) and various investigations of new methods for orbital object tracking. In comparison with conventional tracking scenarios, state estimation of an orbiting object entails additional challenges, such as orbit determination and orbital state and covariance propagation in the presence of highly nonlinear system dynamics. The sensors which are available for detecting and tracking space debris are prone to multiple clutter measurements. Added to this problem, is the fact that it is unknown whether or not a space debris type target is present within such sensor measurements. Under these circumstances, traditional single-target filtering solutions such as Kalman Filters fail to produce useful trajectory estimates. The recent Random Finite Set (RFS) based Finite Set Statistical (FISST) framework has yielded filters which are more appropriate for such situations. The RFS based Joint Target Detection and Tracking (JoTT) filter, also known as the Bernoulli filter, is a single target, multiple measurements filter capable of dealing with cluttered and time-varying backgrounds as well as modeling target appearance and disappearance in the scene. Therefore, this paper presents the application of the Gaussian mixture-based JoTT filter for processing measurements from Chilbolton Advanced Meteorological Radar (CAMRa) which contain both defunct and operational satellites. The CAMRa is a fully-steerable radar located in southern England, which was recently modified to be used as a tracking asset in the European Space Agency SSA program. The experiments conducted show promising results regarding the capability of such filters in processing cluttered radar data. The work carried out in this paper was funded by the USAF Grant No. FA9550-15-1-0069, Chilean Conicyt - Fondecyt grant number 1150930, EU Erasmus Mundus MSc Scholarship, Defense Science and Technology Laboratory (DSTL), U. K., and the Chilean Conicyt, Fondecyt project grant number 1150930.
Vision-based object detection and recognition system for intelligent vehicles
NASA Astrophysics Data System (ADS)
Ran, Bin; Liu, Henry X.; Martono, Wilfung
1999-01-01
Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.
A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network
NASA Astrophysics Data System (ADS)
Li, Yiming; Bhanu, Bir
Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.
Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking
Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua
2014-01-01
To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252
Alnæs, Dag; Sneve, Markus Handal; Espeseth, Thomas; Endestad, Tor; van de Pavert, Steven Harry Pieter; Laeng, Bruno
2014-04-01
Attentional effort relates to the allocation of limited-capacity attentional resources to meet current task demands and involves the activation of top-down attentional systems in the brain. Pupillometry is a sensitive measure of this intensity aspect of top-down attentional control. Studies relate pupillary changes in response to cognitive processing to activity in the locus coeruleus (LC), which is the main hub of the brain's noradrenergic system and it is thought to modulate the operations of the brain's attentional systems. In the present study, participants performed a visual divided attention task known as multiple object tracking (MOT) while their pupil sizes were recorded by use of an infrared eye tracker and then were tested again with the same paradigm while brain activity was recorded using fMRI. We hypothesized that the individual pupil dilations, as an index of individual differences in mental effort, as originally proposed by Kahneman (1973), would be a better predictor of LC activity than the number of tracked objects during MOT. The current results support our hypothesis, since we observed pupil-related activity in the LC. Moreover, the changes in the pupil correlated with activity in the superior colliculus and the right thalamus, as well as cortical activity in the dorsal attention network, which previous studies have shown to be strongly activated during visual tracking of multiple targets. Follow-up pupillometric analyses of the MOT task in the same individuals also revealed that individual differences to cognitive load can be remarkably stable over a lag of several years. To our knowledge this is the first study using pupil dilations as an index of attentional effort in the MOT task and also relating these to functional changes in the brain that directly implicate the LC-NE system in the allocation of processing resources.
Feghali, Rosario; Mitiche, Amar
2004-11-01
The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.
Multithreaded hybrid feature tracking for markerless augmented reality.
Lee, Taehee; Höllerer, Tobias
2009-01-01
We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.
Chen, Chi-Hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-08-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership than English, were able to learn words and form object categories when trained with the same type of structures. The results indicate that both groups of learners successfully extracted multiple levels of co-occurrence and used them to learn words and object categories simultaneously. However, marked individual differences in performance were also found, suggesting possible interference and competition in processing the two concurrent streams of regularities. Copyright © 2016 Cognitive Science Society, Inc.
Stereo vision tracking of multiple objects in complex indoor environments.
Marrón-Romera, Marta; García, Juan C; Sotelo, Miguel A; Pizarro, Daniel; Mazo, Manuel; Cañas, José M; Losada, Cristina; Marcos, Alvaro
2010-01-01
This paper presents a novel system capable of solving the problem of tracking multiple targets in a crowded, complex and dynamic indoor environment, like those typical of mobile robot applications. The proposed solution is based on a stereo vision set in the acquisition step and a probabilistic algorithm in the obstacles position estimation process. The system obtains 3D position and speed information related to each object in the robot's environment; then it achieves a classification between building elements (ceiling, walls, columns and so on) and the rest of items in robot surroundings. All objects in robot surroundings, both dynamic and static, are considered to be obstacles but the structure of the environment itself. A combination of a Bayesian algorithm and a deterministic clustering process is used in order to obtain a multimodal representation of speed and position of detected obstacles. Performance of the final system has been tested against state of the art proposals; test results validate the authors' proposal. The designed algorithms and procedures provide a solution to those applications where similar multimodal data structures are found.
Witteman, Holly O; Hafeez, Baria; Provencher, Thierry; Van de Graaf, Mary; Wei, Esther
2015-01-01
Background Consumer health information technologies (HIT) that encourage self-tracking, such as diet and fitness tracking apps and disease journals, are attracting widespread interest among technology-oriented consumers (such as “quantified self” advocates), entrepreneurs, and the health care industry. Such electronic technologies could potentially benefit the growing population of patients with multiple chronic conditions (MCC). However, MCC is predominantly a condition of the elderly and disproportionately affects the less affluent, so it also seems possible that the barriers to use of consumer HIT would be particularly severe for this patient population. Objective Our aim was to explore the perspectives of individuals with MCC using a semistructured interview study. Our research questions were (1) How do individuals with MCC track their own health and medical data? and (2) How do patients and providers perceive and use patient-tracked data? Methods We used semistructured interviews with patients with multiple chronic diseases and providers with experience caring for such patients, as well as participation in a diabetes education group to triangulate emerging themes. Data were analyzed using grounded theory and thematic analysis. Recruitment and analysis took place iteratively until thematic saturation was reached. Results Interviews were conducted with 22 patients and 7 health care providers. The patients had an average of 3.5 chronic conditions, including type 2 diabetes, heart disease, chronic pain, and depression, and had regular relationships with an average of 5 providers. Four major themes arose from the interviews: (1) tracking this data feels like work for many patients, (2) personal medical data for individuals with chronic conditions are not simply objective facts, but instead provoke strong positive and negative emotions, value judgments, and diverse interpretations, (3) patients track for different purposes, ranging from sense-making to self-management to reporting to the doctor, and (4) patients often notice that physicians trust technologically measured data such as lab reports over patients’ self-tracked data. Conclusions Developers of consumer health information technologies for data tracking (such as diet and exercise apps or blood glucose logs) often assume patients have unlimited enthusiasm for tracking their own health data via technology. However, our findings potentially explain relatively low adoption of consumer HIT, as they suggest that patients with multiple chronic illnesses consider it work to track their own data, that the data can be emotionally charged, and that they may perceive that providers do not welcome it. Similar themes have been found in some individual chronic diseases but appeared more complex because patients often encountered “illness work” connected to multiple diseases simultaneously and frequently faced additional challenges from aging or difficult comorbidities such as chronic pain, depression, and anxiety. We suggest that to make a public health impact, consumer HIT developers should engage creatively with these pragmatic and emotional issues to reach an audience that is broader than technologically sophisticated early adopters. Novel technologies are likely to be successful only if they clearly reduce patient inconvenience and burden, helping them to accomplish their “illness work” more efficiently and effectively. PMID:26290186
NASA Astrophysics Data System (ADS)
Zittersteijn, M.; Vananti, A.; Schildknecht, T.; Dolado Perez, J. C.; Martinot, V.
2016-11-01
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). The MTT problem quickly becomes an NP-hard combinatorial optimization problem. This means that the effort required to solve the MTT problem increases exponentially with the number of tracked objects. In an attempt to find an approximate solution of sufficient quality, several Population-Based Meta-Heuristic (PBMH) algorithms are implemented and tested on simulated optical measurements. These first results show that one of the tested algorithms, namely the Elitist Genetic Algorithm (EGA), consistently displays the desired behavior of finding good approximate solutions before reaching the optimum. The results further suggest that the algorithm possesses a polynomial time complexity, as the computation times are consistent with a polynomial model. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the association and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.
Modeling the lateral load distribution for multiple concrete crossties and fastening systems.
DOT National Transportation Integrated Search
2017-01-31
The objective of this project was to further investigate the performance of concrete crosstie and : fastening system under vertical and lateral wheel load using finite element analysis, and explore : possible improvement for current track design stan...
Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu
2016-01-01
In this paper, the problem of object caging and transporting is considered for multiple mobile robots. With the consideration of minimizing the number of robots and decreasing the rotation of the object, the proper points are calculated and assigned to the multiple mobile robots to allow them to form a symmetric caging formation. The caging formation guarantees that all of the Euclidean distances between any two adjacent robots are smaller than the minimal width of the polygonal object so that the object cannot escape. In order to avoid collision among robots, the parameter of the robots radius is utilized to design the caging formation, and the A⁎ algorithm is used so that mobile robots can move to the proper points. In order to avoid obstacles, the robots and the object are regarded as a rigid body to apply artificial potential field method. The fuzzy sliding mode control method is applied for tracking control of the nonholonomic mobile robots. Finally, the simulation and experimental results show that multiple mobile robots are able to cage and transport the polygonal object to the goal position, avoiding obstacles. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Tracking moving identities: after attending the right location, the identity does not come for free.
Pinto, Yaïr; Scholte, H Steven; Lamme, V A F
2012-01-01
Although tracking identical moving objects has been studied since the 1980's, only recently the study into tracking moving objects with distinct identities has started (referred to as Multiple Identity Tracking, MIT). So far, only behavioral studies into MIT have been undertaken. These studies have left a fundamental question regarding MIT unanswered, is MIT a one-stage or a two-stage process? According to the one-stage model, after a location has been attended, the identity is released without effort. However, according to the two-stage model, there are two effortful stages in MIT, attending to a location, and attending to the identity of the object at that location. In the current study we investigated this question by measuring brain activity in response to tracking familiar and unfamiliar targets. Familiarity is known to automate effortful processes, so if attention to identify the object is needed, this should become easier. However, if no such attention is needed, familiarity can only affect other processes (such as memory for the target set). Our results revealed that on unfamiliar trials neural activity was higher in both attentional networks, and visual identification networks. These results suggest that familiarity in MIT automates attentional identification processes, thus suggesting that attentional identification is needed in MIT. This then would imply that MIT is essentially a two-stage process, since after attending the location, the identity does not seem to come for free.
Intraoperative visualization and assessment of electromagnetic tracking error
NASA Astrophysics Data System (ADS)
Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor
2015-03-01
Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.
Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin
2017-01-01
The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches. PMID:28937629
Yang, Ehwa; Gwak, Jeonghwan; Jeon, Moongu
2017-01-01
Due to the reasonably acceptable performance of state-of-the-art object detectors, tracking-by-detection is a standard strategy for visual multi-object tracking (MOT). In particular, online MOT is more demanding due to its diverse applications in time-critical situations. A main issue of realizing online MOT is how to associate noisy object detection results on a new frame with previously being tracked objects. In this work, we propose a multi-object tracker method called CRF-boosting which utilizes a hybrid data association method based on online hybrid boosting facilitated by a conditional random field (CRF) for establishing online MOT. For data association, learned CRF is used to generate reliable low-level tracklets and then these are used as the input of the hybrid boosting. To do so, while existing data association methods based on boosting algorithms have the necessity of training data having ground truth information to improve robustness, CRF-boosting ensures sufficient robustness without such information due to the synergetic cascaded learning procedure. Further, a hierarchical feature association framework is adopted to further improve MOT accuracy. From experimental results on public datasets, we could conclude that the benefit of proposed hybrid approach compared to the other competitive MOT systems is noticeable. PMID:28304366
Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.
Montagnini, Anna; Spering, Miriam; Masson, Guillaume S
2006-12-01
Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Barhen, Jacob; Glover, Charles Wayne
2012-01-01
Multi-sensor networks may face resource limitations in a dynamically evolving multiple target tracking scenario. It is necessary to task the sensors efficiently so that the overall system performance is maximized within the system constraints. The central sensor resource manager may control the sensors to meet objective functions that are formulated to meet system goals such as minimization of track loss, maximization of probability of target detection, and minimization of track error. This paper discusses the variety of techniques that may be utilized to optimize sensor performance for either near term gain or future reward over a longer time horizon.
Objective assessment of operator performance during ultrasound-guided procedures.
Tabriz, David M; Street, Mandie; Pilgram, Thomas K; Duncan, James R
2011-09-01
Simulation permits objective assessment of operator performance in a controlled and safe environment. Image-guided procedures often require accurate needle placement, and we designed a system to monitor how ultrasound guidance is used to monitor needle advancement toward a target. The results were correlated with other estimates of operator skill. The simulator consisted of a tissue phantom, ultrasound unit, and electromagnetic tracking system. Operators were asked to guide a needle toward a visible point target. Performance was video-recorded and synchronized with the electromagnetic tracking data. A series of algorithms based on motor control theory and human information processing were used to convert raw tracking data into different performance indices. Scoring algorithms converted the tracking data into efficiency, quality, task difficulty, and targeting scores that were aggregated to create performance indices. After initial feasibility testing, a standardized assessment was developed. Operators (N = 12) with a broad spectrum of skill and experience were enrolled and tested. Overall scores were based on performance during ten simulated procedures. Prior clinical experience was used to independently estimate operator skill. When summed, the performance indices correlated well with estimated skill. Operators with minimal or no prior experience scored markedly lower than experienced operators. The overall score tended to increase according to operator's clinical experience. Operator experience was linked to decreased variation in multiple aspects of performance. The aggregated results of multiple trials provided the best correlation between estimated skill and performance. A metric for the operator's ability to maintain the needle aimed at the target discriminated between operators with different levels of experience. This study used a highly focused task model, standardized assessment, and objective data analysis to assess performance during simulated ultrasound-guided needle placement. The performance indices were closely related to operator experience.
Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.
Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J
2017-03-03
We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.
Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods
Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J.
2017-01-01
We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter. PMID:28273796
Multiple-hypothesis multiple-model line tracking
NASA Astrophysics Data System (ADS)
Pace, Donald W.; Owen, Mark W.; Cox, Henry
2000-07-01
Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.
Robust multiperson detection and tracking for mobile service and social robots.
Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou
2012-10-01
This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.
The company objects keep: Linking referents together during cross-situational word learning.
Zettersten, Martin; Wojcik, Erica; Benitez, Viridiana L; Saffran, Jenny
2018-04-01
Learning the meanings of words involves not only linking individual words to referents but also building a network of connections among entities in the world, concepts, and words. Previous studies reveal that infants and adults track the statistical co-occurrence of labels and objects across multiple ambiguous training instances to learn words. However, it is less clear whether, given distributional or attentional cues, learners also encode associations amongst the novel objects. We investigated the consequences of two types of cues that highlighted object-object links in a cross-situational word learning task: distributional structure - how frequently the referents of novel words occurred together - and visual context - whether the referents were seen on matching backgrounds. Across three experiments, we found that in addition to learning novel words, adults formed connections between frequently co-occurring objects. These findings indicate that learners exploit statistical regularities to form multiple types of associations during word learning.
Vision-based algorithms for near-host object detection and multilane sensing
NASA Astrophysics Data System (ADS)
Kenue, Surender K.
1995-01-01
Vision-based sensing can be used for lane sensing, adaptive cruise control, collision warning, and driver performance monitoring functions of intelligent vehicles. Current computer vision algorithms are not robust for handling multiple vehicles in highway scenarios. Several new algorithms are proposed for multi-lane sensing, near-host object detection, vehicle cut-in situations, and specifying regions of interest for object tracking. These algorithms were tested successfully on more than 6000 images taken from real-highway scenes under different daytime lighting conditions.
Image sequence analysis workstation for multipoint motion analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-08-01
This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.
Observational Word Learning: Beyond Propose-But-Verify and Associative Bean Counting.
Roembke, Tanja; McMurray, Bob
2016-04-01
Learning new words is difficult. In any naming situation, there are multiple possible interpretations of a novel word. Recent approaches suggest that learners may solve this problem by tracking co-occurrence statistics between words and referents across multiple naming situations (e.g. Yu & Smith, 2007), overcoming the ambiguity in any one situation. Yet, there remains debate around the underlying mechanisms. We conducted two experiments in which learners acquired eight word-object mappings using cross-situational statistics while eye-movements were tracked. These addressed four unresolved questions regarding the learning mechanism. First, eye-movements during learning showed evidence that listeners maintain multiple hypotheses for a given word and bring them all to bear in the moment of naming. Second, trial-by-trial analyses of accuracy suggested that listeners accumulate continuous statistics about word/object mappings, over and above prior hypotheses they have about a word. Third, consistent, probabilistic context can impede learning, as false associations between words and highly co-occurring referents are formed. Finally, a number of factors not previously considered in prior analysis impact observational word learning: knowledge of the foils, spatial consistency of the target object, and the number of trials between presentations of the same word. This evidence suggests that observational word learning may derive from a combination of gradual statistical or associative learning mechanisms and more rapid real-time processes such as competition, mutual exclusivity and even inference or hypothesis testing.
Player-Tracking Technology: Half-Full or Half-Empty Glass?
Buchheit, Martin; Simpson, Ben Michael
2017-04-01
With the ongoing development of microtechnology, player tracking has become one of the most important components of load monitoring in team sports. The 3 main objectives of player tracking are better understanding of practice (provide an objective, a posteriori evaluation of external load and locomotor demands of any given session or match), optimization of training-load patterns at the team level, and decision making on individual players' training programs to improve performance and prevent injuries (eg, top-up training vs unloading sequences, return to play progression). This paper discusses the basics of a simple tracking approach and the need to integrate multiple systems. The limitations of some of the most used variables in the field (including metabolic-power measures) are debated, and innovative and potentially new powerful variables are presented. The foundations of a successful player-monitoring system are probably laid on the pitch first, in the way practitioners collect their own tracking data, given the limitations of each variable, and how they report and use all this information, rather than in the technology and the variables per se. Overall, the decision to use any tracking technology or new variable should always be considered with a cost/benefit approach (ie, cost, ease of use, portability, manpower/ability to affect the training program).
Wahn, Basil; König, Peter
2015-01-01
Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.
Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.
Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang
2016-09-27
Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.
Method for Statically Checking an Object-oriented Computer Program Module
NASA Technical Reports Server (NTRS)
Bierhoff, Kevin M. (Inventor); Aldrich, Jonathan (Inventor)
2012-01-01
A method for statically checking an object-oriented computer program module includes the step of identifying objects within a computer program module, at least one of the objects having a plurality of references thereto, possibly from multiple clients. A discipline of permissions is imposed on the objects identified within the computer program module. The permissions enable tracking, from among a discrete set of changeable states, a subset of states each object might be in. A determination is made regarding whether the imposed permissions are violated by a potential reference to any of the identified objects. The results of the determination are output to a user.
Uncued Low SNR Detection with Likelihood from Image Multi Bernoulli Filter
NASA Astrophysics Data System (ADS)
Murphy, T.; Holzinger, M.
2016-09-01
Both SSA and SDA necessitate uncued, partially informed detection and orbit determination efforts for small space objects which often produce only low strength electro-optical signatures. General frame to frame detection and tracking of objects includes methods such as moving target indicator, multiple hypothesis testing, direct track-before-detect methods, and random finite set based multiobject tracking. This paper will apply the multi-Bernoilli filter to low signal-to-noise ratio (SNR), uncued detection of space objects for space domain awareness applications. The primary novel innovation in this paper is a detailed analysis of the existing state-of-the-art likelihood functions and a likelihood function, based on a binary hypothesis, previously proposed by the authors. The algorithm is tested on electro-optical imagery obtained from a variety of sensors at Georgia Tech, including the GT-SORT 0.5m Raven-class telescope, and a twenty degree field of view high frame rate CMOS sensor. In particular, a data set of an extended pass of the Hitomi Astro-H satellite approximately 3 days after loss of communication and potential break up is examined.
Object tracking based on harmony search: comparative study
NASA Astrophysics Data System (ADS)
Gao, Ming-Liang; He, Xiao-Hai; Luo, Dai-Sheng; Yu, Yan-Mei
2012-10-01
Visual tracking can be treated as an optimization problem. A new meta-heuristic optimal algorithm, Harmony Search (HS), was first applied to perform visual tracking by Fourie et al. As the authors point out, many subjects are still required in ongoing research. Our work is a continuation of Fourie's study, with four prominent improved variations of HS, namely Improved Harmony Search (IHS), Global-best Harmony Search (GHS), Self-adaptive Harmony Search (SHS) and Differential Harmony Search (DHS) adopted into the tracking system. Their performances are tested and analyzed on multiple challenging video sequences. Experimental results show that IHS is best, with DHS ranking second among the four improved trackers when the iteration number is small. However, the differences between all four reduced gradually, along with the increasing number of iterations.
Suppression of Story Character Goals during Reading
ERIC Educational Resources Information Center
Linderholm, Tracy; Gernsbacher, Morton Ann; van den Broek, Paul; Neninde, Lana; Robertson, Rachel R. W.; Sundermier, Brian
2004-01-01
The objective of this study was to determine how readers process narrative texts when the main character has multiple, and changing, goals. Readers must keep track of such goals to understand the causal relations between text events, an important process for comprehension. The structure building framework theory of reading proposes that readers…
NASA Technical Reports Server (NTRS)
Rickman, Doug; Shire, J.; Qualters, J.; Mitchell, K.; Pollard, S.; Rao, R.; Kajumba, N.; Quattrochi, D.; Estes, M., Jr.; Meyer, P.;
2009-01-01
Objectives. To provide an overview of four environmental public health surveillance projects developed by CDC and its partners for the Health and Environment Linked for Information Exchange, Atlanta (HELIX-Atlanta) and to illustrate common issues and challenges encountered in developing an environmental public health tracking system. Methods. HELIX-Atlanta, initiated in October 2003 to develop data linkage and analysis methods that can be used by the National Environmental Public Health Tracking Network (Tracking Network), conducted four projects. We highlight the projects' work, assess attainment of the HELIX-Atlanta goals and discuss three surveillance attributes. Results. Among the major challenges was the complexity of analytic issues which required multidiscipline teams with technical expertise. This expertise and the data resided across multiple organizations. Conclusions:Establishing formal procedures for sharing data, defining data analysis standards and automating analyses, and committing staff with appropriate expertise is needed to support wide implementation of environmental public health tracking.
Li, Jia; Xia, Changqun; Chen, Xiaowu
2017-10-12
Image-based salient object detection (SOD) has been extensively studied in past decades. However, video-based SOD is much less explored due to the lack of large-scale video datasets within which salient objects are unambiguously defined and annotated. Toward this end, this paper proposes a video-based SOD dataset that consists of 200 videos. In constructing the dataset, we manually annotate all objects and regions over 7,650 uniformly sampled keyframes and collect the eye-tracking data of 23 subjects who free-view all videos. From the user data, we find that salient objects in a video can be defined as objects that consistently pop-out throughout the video, and objects with such attributes can be unambiguously annotated by combining manually annotated object/region masks with eye-tracking data of multiple subjects. To the best of our knowledge, it is currently the largest dataset for videobased salient object detection. Based on this dataset, this paper proposes an unsupervised baseline approach for video-based SOD by using saliencyguided stacked autoencoders. In the proposed approach, multiple spatiotemporal saliency cues are first extracted at the pixel, superpixel and object levels. With these saliency cues, stacked autoencoders are constructed in an unsupervised manner that automatically infers a saliency score for each pixel by progressively encoding the high-dimensional saliency cues gathered from the pixel and its spatiotemporal neighbors. In experiments, the proposed unsupervised approach is compared with 31 state-of-the-art models on the proposed dataset and outperforms 30 of them, including 19 imagebased classic (unsupervised or non-deep learning) models, six image-based deep learning models, and five video-based unsupervised models. Moreover, benchmarking results show that the proposed dataset is very challenging and has the potential to boost the development of video-based SOD.
Object instance recognition using motion cues and instance specific appearance models
NASA Astrophysics Data System (ADS)
Schumann, Arne
2014-03-01
In this paper we present an object instance retrieval approach. The baseline approach consists of a pool of image features which are computed on the bounding boxes of a query object track and compared to a database of tracks in order to find additional appearances of the same object instance. We improve over this simple baseline approach in multiple ways: 1) we include motion cues to achieve improved robustness to viewpoint and rotation changes, 2) we include operator feedback to iteratively re-rank the resulting retrieval lists and 3) we use operator feedback and location constraints to train classifiers and learn an instance specific appearance model. We use these classifiers to further improve the retrieval results. The approach is evaluated on two popular public datasets for two different applications. We evaluate person re-identification on the CAVIAR shopping mall surveillance dataset and vehicle instance recognition on the VIVID aerial dataset and achieve significant improvements over our baseline results.
Considerations for multiple hypothesis correlation on tactical platforms
NASA Astrophysics Data System (ADS)
Thomas, Alan M.; Turpen, James E.
2013-05-01
Tactical platforms benefit greatly from the fusion of tracks from multiple sources in terms of increased situation awareness. As a necessary precursor to this track fusion, track-to-track association, or correlation, must first be performed. The related measurement-to-track fusion problem has been well studied with multiple hypothesis tracking and multiple frame assignment methods showing the most success. The track-to-track problem differs from this one in that measurements themselves are not available but rather track state update reports from the measuring sensors. Multiple hypothesis, multiple frame correlation systems have previously been considered; however, their practical implementation under the constraints imposed by tactical platforms is daunting. The situation is further exacerbated by the inconvenient nature of reports from legacy sensor systems on bandwidth- limited communications networks. In this paper, consideration is given to the special difficulties encountered when attempting the correlation of tracks from legacy sensors on tactical aircraft. Those difficulties include the following: covariance information from reporting sensors is frequently absent or incomplete; system latencies can create temporal uncertainty in data; and computational processing is severely limited by hardware and architecture. Moreover, consideration is given to practical solutions for dealing with these problems in a multiple hypothesis correlator.
Motion and Structure Estimation of Manoeuvring Objects in Multiple- Camera Image Sequences
1992-11-01
and Speckert [23], Gennery [24], Hallman [25], Legters and Young [26], Stuller and Krishnamurthy [27], Wu et al. [381, Matthies, Kanade, and Szeliski...26] G.R. Legters , T.Y. Young, "A mathematical model for computer image track- ing," IEEE Transactions on Pattern Analysis and Machine Intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oppel, Fred J.; Hart, Brian E.; Whitford, Gregg Douglas
2016-08-25
This package contains modules that model sensors in Umbra. There is a mix of modalities for both accumulating and tracking energy sensors: seismic, magnetic, and radiation. Some modules fuss information from multiple sensor types. Sensor devices (e.g., seismic sensors), detect objects such as people and vehicles that have sensor properties attached (e.g., seismic properties).
The effect of occlusion therapy on motion perception deficits in amblyopia.
Giaschi, Deborah; Chapman, Christine; Meier, Kimberly; Narasimhan, Sathyasri; Regan, David
2015-09-01
There is growing evidence for deficits in motion perception in amblyopia, but these are rarely assessed clinically. In this prospective study we examined the effect of occlusion therapy on motion-defined form perception and multiple-object tracking. Participants included children (3-10years old) with unilateral anisometropic and/or strabismic amblyopia who were currently undergoing occlusion therapy and age-matched control children with normal vision. At the start of the study, deficits in motion-defined form perception were present in at least one eye in 69% of the children with amblyopia. These deficits were still present at the end of the study in 55% of the amblyopia group. For multiple-object tracking, deficits were present initially in 64% and finally in 55% of the children with amblyopia, even after completion of occlusion therapy. Many of these deficits persisted in spite of an improvement in amblyopic eye visual acuity in response to occlusion therapy. The prevalence of motion perception deficits in amblyopia as well as their resistance to occlusion therapy, support the need for new approaches to amblyopia treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor
NASA Astrophysics Data System (ADS)
Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony
2015-03-01
Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.
A system for learning statistical motion patterns.
Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve
2006-09-01
Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.
The contributions of visual and central attention to visual working memory.
Souza, Alessandra S; Oberauer, Klaus
2017-10-01
We investigated the role of two kinds of attention-visual and central attention-for the maintenance of visual representations in working memory (WM). In Experiment 1 we directed attention to individual items in WM by presenting cues during the retention interval of a continuous delayed-estimation task, and instructing participants to think of the cued items. Attending to items improved recall commensurate with the frequency with which items were attended (0, 1, or 2 times). Experiments 1 and 3 further tested which kind of attention-visual or central-was involved in WM maintenance. We assessed the dual-task costs of two types of distractor tasks, one tapping sustained visual attention and one tapping central attention. Only the central attention task yielded substantial dual-task costs, implying that central attention substantially contributes to maintenance of visual information in WM. Experiment 2 confirmed that the visual-attention distractor task was demanding enough to disrupt performance in a task relying on visual attention. We combined the visual-attention and the central-attention distractor tasks with a multiple object tracking (MOT) task. Distracting visual attention, but not central attention, impaired MOT performance. Jointly, the three experiments provide a double dissociation between visual and central attention, and between visual WM and visual object tracking: Whereas tracking multiple targets across the visual filed depends on visual attention, visual WM depends mostly on central attention.
Passive RFID Rotation Dimension Reduction via Aggregation
NASA Astrophysics Data System (ADS)
Matthews, Eric
Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag's similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%.
Saying What You're Looking For: Linguistics Meets Video Search.
Barrett, Daniel Paul; Barbu, Andrei; Siddharth, N; Siskind, Jeffrey Mark
2016-10-01
We present an approach to searching large video corpora for clips which depict a natural-language query in the form of a sentence. Compositional semantics is used to encode subtle meaning differences lost in other approaches, such as the difference between two sentences which have identical words but entirely different meaning: The person rode the horse versus The horse rode the person. Given a sentential query and a natural-language parser, we produce a score indicating how well a video clip depicts that sentence for each clip in a corpus and return a ranked list of clips. Two fundamental problems are addressed simultaneously: detecting and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable, our approach uses the sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are described by the sentential query. While most earlier work was limited to single-word queries which correspond to either verbs or nouns, we search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs. We demonstrate this approach by searching for 2,627 naturally elicited sentential queries in 10 Hollywood movies.
Lineage mapper: A versatile cell and particle tracker
NASA Astrophysics Data System (ADS)
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary
2016-11-01
The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.
Enhancing cognition with video games: a multiple game training study.
Oei, Adam C; Patterson, Michael D
2013-01-01
Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.
2007-12-31
Wisconsin-Madison) for 2? ol !> o "S \\ % M 31 Statement of Objectives The original objectives of the proposal were as follows: 1. Obtain high-quality...performed multiple PEEM experiments on wear tracks on carbon-based films and polysilicon micro-electro mechanical systems (MEMS) devices, a comprehensive... polysilicon MEMS device known as the "nanotractor", and studies of the structure and composition of UNCD, ta-C, and nanocrystalline diamond (NCD) films. They
Robust object matching for persistent tracking with heterogeneous features.
Guo, Yanlin; Hsu, Steve; Sawhney, Harpreet S; Kumar, Rakesh; Shan, Ying
2007-05-01
This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.
Enumeration versus Multiple Object Tracking: The Case of Action Video Game Players
ERIC Educational Resources Information Center
Green, C. S.; Bavelier, D.
2006-01-01
Here, we demonstrate that action video game play enhances subjects' ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop…
ERIC Educational Resources Information Center
Beaton, Elliott A.; Stoddard, Joel; Lai, Song; Lackey, John; Shi, Jianrong; Ross, Judith L.; Simon, Tony J.
2010-01-01
Turner syndrome is associated with spatial and numerical cognitive impairments. We hypothesized that these nonverbal cognitive impairments result from limits in spatial and temporal processing, particularly as it affects attention. To examine spatiotemporal attention in girls with Turner syndrome versus typically developing controls, we used a…
Hamahashi, Shugo; Onami, Shuichi; Kitano, Hiroaki
2005-01-01
Background The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages. Results We developed a system that automates the detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. Local image entropy is used to produce regions of the images that have the image texture of the nucleus. From these regions, those that actually detect nuclei are manually selected at the first and last time points of the image set, and an object-tracking algorithm then selects regions that detect nuclei in between the first and last time points. The use of local image entropy makes the system applicable to multiple image sets without the need to change its parameter values. The use of an object-tracking algorithm enables the system to detect nuclei in the process of cell division. The system detected nuclei with high sensitivity and specificity from the one- to 24-cell stages. Conclusion A combination of local image entropy and an object-tracking algorithm enabled highly objective and productive detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. The system will facilitate genomic and computational analyses of C. elegans embryos. PMID:15910690
Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water.
Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu
2016-01-01
Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time.
Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water
Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu
2016-01-01
Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time. PMID:27128096
Optimal Appearance Model for Visual Tracking
Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao
2016-01-01
Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639
NASA Astrophysics Data System (ADS)
Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Li, Rong; Li, Jun-Sheng; Li, Hui-Ling
2015-01-01
The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV 4He, 290 A MeV 12C, 400 A MeV 12C, 400 A MeV 20Ne and 500 A MeV 56Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets.
Applications of amorphous track models in radiation biology
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Nikjoo, H.; Goodhead, D. T.; Wilson, J. W. (Principal Investigator)
1999-01-01
The average or amorphous track model uses the response of a system to gamma-rays and the radial distribution of dose about an ion's path to describe survival and other cellular endpoints from proton, heavy ion, and neutron irradiation. This model has been used for over 30 years to successfully fit many radiobiology data sets. We review several extensions of this approach that address objections to the original model, and consider applications of interest in radiobiology and space radiation risk assessment. In the light of present views of important cellular targets, the role of target size as manifested through the relative contributions from ion-kill (intra-track) and gamma-kill (inter-track) remains a critical question in understanding the success of the amorphous track model. Several variations of the amorphous model are discussed, including ones that consider the radial distribution of event-sizes rather than average electron dose, damage clusters rather than multiple targets, and a role for repair or damage processing.
An automated data exploitation system for airborne sensors
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2014-06-01
Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.
The Role of Visual Working Memory in Attentive Tracking of Unique Objects
ERIC Educational Resources Information Center
Makovski, Tal; Jiang, Yuhong V.
2009-01-01
When tracking moving objects in space humans usually attend to the objects' spatial locations and update this information over time. To what extent do surface features assist attentive tracking? In this study we asked participants to track identical or uniquely colored objects. Tracking was enhanced when objects were unique in color. The benefit…
Improving the Flight Path Marker Symbol on Rotorcraft Synthetic Vision Displays
NASA Technical Reports Server (NTRS)
Szoboszlay, Zoltan P.; Hardy, Gordon H.; Welsh, Terence M.
2004-01-01
Two potential improvements to the flight path marker symbol were evaluated on a panel-mounted, synthetic vision, primary flight display in a rotorcraft simulation. One concept took advantage of the fact that synthetic vision systems have terrain height information available ahead of the aircraft. For this first concept, predicted altitude and ground track information was added to the flight path marker. In the second concept, multiple copies of the flight path marker were displayed at 3, 4, and 5 second prediction times as compared to a single prediction time of 3 seconds. Objective and subjective data were collected for eight rotorcraft pilots. The first concept produced significant improvements in pilot attitude control, ground track control, workload ratings, and preference ratings. The second concept did not produce significant differences in the objective or subjective measures.
Super-resolution imaging applied to moving object tracking
NASA Astrophysics Data System (ADS)
Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi
2017-10-01
Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.
Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery
Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng
2016-01-01
Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness. PMID:27023564
Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery.
Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng
2016-03-26
Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.
Multiple-object tracking as a tool for parametrically modulating memory reactivation
Poppenk, J.; Norman, K.A.
2017-01-01
Converging evidence supports the “non-monotonic plasticity” hypothesis that although complete retrieval may strengthen memories, partial retrieval weakens them. Yet, the classic experimental paradigms used to study effects of partial retrieval are not ideally suited to doing so, because they lack the parametric control needed to ensure that the memory is activated to the appropriate degree (i.e., that there is some retrieval, but not enough to cause memory strengthening). Here we present a novel procedure designed to accommodate this need. After participants learned a list of word-scene associates, they completed a cued mental visualization task that was combined with a multiple-object tracking (MOT) procedure, which we selected for its ability to interfere with mental visualization in a parametrically adjustable way (by varying the number of MOT targets). We also used fMRI data to successfully train an “associative recall” classifier for use in this task: this classifier revealed greater memory reactivation during trials in which associative memories were cued while participants tracked one, rather than five MOT targets. However, the classifier was insensitive to task difficulty when recall was not taking place, suggesting it had indeed tracked memory reactivation rather than task difficulty per se. Consistent with the classifier findings, participants’ introspective ratings of visualization vividness were modulated by MOT task difficulty. In addition, we observed reduced classifier output and slowing of responses in a post-reactivation memory test, consistent with the hypothesis that partial reactivation, induced by MOT, weakened memory. These results serve as a “proof of concept” that MOT can be used to parametrically modulate memory retrieval – a property that may prove useful in future investigation of partial retrieval effects, e.g., in closed-loop experiments. PMID:28387587
Object tracking with stereo vision
NASA Technical Reports Server (NTRS)
Huber, Eric
1994-01-01
A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking.
A novel framework for objective detection and tracking of TC center from noisy satellite imagery
NASA Astrophysics Data System (ADS)
Johnson, Bibin; Thomas, Sachin; Rani, J. Sheeba
2018-07-01
This paper proposes a novel framework for automatically determining and tracking the center of a tropical cyclone (TC) during its entire life-cycle from the Thermal infrared (TIR) channel data of the geostationary satellite. The proposed method handles meteorological images with noise, missing or partial information due to the seasonal variability and lack of significant spatial or vortex features. To retrieve the cyclone center from these circumstances, a synergistic approach based on objective measures and Numerical Weather Prediction (NWP) model is being proposed. This method employs a spatial gradient scheme to process missing and noisy frames or a spatio-temporal gradient scheme for image sequences that are continuous and contain less noise. The initial estimate of the TC center from the missing imagery is corrected by exploiting a NWP model based post-processing scheme. The validity of the framework is tested on Infrared images of different cyclones obtained from various Geostationary satellites such as the Meteosat-7, INSAT- 3 D , Kalpana-1 etc. The computed track is compared with the actual track data obtained from Joint Typhoon Warning Center (JTWC), and it shows a reduction of mean track error by 11 % as compared to the other state of the art methods in the presence of missing and noisy frames. The proposed method is also successfully tested for simultaneous retrieval of the TC center from images containing multiple non-overlapping cyclones.
Adaptive object tracking via both positive and negative models matching
NASA Astrophysics Data System (ADS)
Li, Shaomei; Gao, Chao; Wang, Yawen
2015-03-01
To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as abinary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm can not only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.
Improved Visual Cognition through Stroboscopic Training
Appelbaum, L. Gregory; Schroeder, Julia E.; Cain, Matthew S.; Mitroff, Stephen R.
2011-01-01
Humans have a remarkable capacity to learn and adapt, but surprisingly little research has demonstrated generalized learning in which new skills and strategies can be used flexibly across a range of tasks and contexts. In the present work we examined whether generalized learning could result from visual–motor training under stroboscopic visual conditions. Individuals were assigned to either an experimental condition that trained with stroboscopic eyewear or to a control condition that underwent identical training with non-stroboscopic eyewear. The training consisted of multiple sessions of athletic activities during which participants performed simple drills such as throwing and catching. To determine if training led to generalized benefits, we used computerized measures to assess perceptual and cognitive abilities on a variety of tasks before and after training. Computer-based assessments included measures of visual sensitivity (central and peripheral motion coherence thresholds), transient spatial attention (a useful field of view – dual task paradigm), and sustained attention (multiple-object tracking). Results revealed that stroboscopic training led to significantly greater re-test improvement in central visual field motion sensitivity and transient attention abilities. No training benefits were observed for peripheral motion sensitivity or peripheral transient attention abilities, nor were benefits seen for sustained attention during multiple-object tracking. These findings suggest that stroboscopic training can effectively improve some, but not all aspects of visual perception and attention. PMID:22059078
Distributed sensor management for space situational awareness via a negotiation game
NASA Astrophysics Data System (ADS)
Jia, Bin; Shen, Dan; Pham, Khanh; Blasch, Erik; Chen, Genshe
2015-05-01
Space situational awareness (SSA) is critical to many space missions serving weather analysis, communications, and navigation. However, the number of sensors used in space situational awareness is limited which hinders collision avoidance prediction, debris assessment, and efficient routing. Hence, it is critical to use such sensor resources efficiently. In addition, it is desired to develop the SSA sensor management algorithm in a distributed manner. In this paper, a distributed sensor management approach using the negotiation game (NG-DSM) is proposed for the SSA. Specifically, the proposed negotiation game is played by each sensor and its neighboring sensors. The bargaining strategies are developed for each sensor based on negotiating for accurately tracking desired targets (e.g., satellite, debris, etc.) . The proposed NG-DSM method is tested in a scenario which includes eight space objects and three different sensor modalities which include a space based optical sensor, a ground radar, or a ground Electro-Optic sensor. The geometric relation between the sensor, the Sun, and the space object is also considered. The simulation results demonstrate the effectiveness of the proposed NG-DSM sensor management methods, which facilitates an application of multiple-sensor multiple-target tracking for space situational awareness.
Alvarez, George A.; Cavanagh, Patrick
2014-01-01
It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651
Upside-down: Perceived space affects object-based attention.
Papenmeier, Frank; Meyerhoff, Hauke S; Brockhoff, Alisa; Jahn, Georg; Huff, Markus
2017-07-01
Object-based attention influences the subjective metrics of surrounding space. However, does perceived space influence object-based attention, as well? We used an attentive tracking task that required sustained object-based attention while objects moved within a tracking space. We manipulated perceived space through the availability of depth cues and varied the orientation of the tracking space. When rich depth cues were available (appearance of a voluminous tracking space), the upside-down orientation of the tracking space (objects appeared to move high on a ceiling) caused a pronounced impairment of tracking performance compared with an upright orientation of the tracking space (objects appeared to move on a floor plane). In contrast, this was not the case when reduced depth cues were available (appearance of a flat tracking space). With a preregistered second experiment, we showed that those effects were driven by scene-based depth cues and not object-based depth cues. We conclude that perceived space affects object-based attention and that object-based attention and perceived space are closely interlinked. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A Class of Prediction-Correction Methods for Time-Varying Convex Optimization
NASA Astrophysics Data System (ADS)
Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro
2016-09-01
This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.
Zhu, Wei; Wang, Wei; Yuan, Gannan
2016-06-01
In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).
Multi-Object Tracking with Correlation Filter for Autonomous Vehicle.
Zhao, Dawei; Fu, Hao; Xiao, Liang; Wu, Tao; Dai, Bin
2018-06-22
Multi-object tracking is a crucial problem for autonomous vehicle. Most state-of-the-art approaches adopt the tracking-by-detection strategy, which is a two-step procedure consisting of the detection module and the tracking module. In this paper, we improve both steps. We improve the detection module by incorporating the temporal information, which is beneficial for detecting small objects. For the tracking module, we propose a novel compressed deep Convolutional Neural Network (CNN) feature based Correlation Filter tracker. By carefully integrating these two modules, the proposed multi-object tracking approach has the ability of re-identification (ReID) once the tracked object gets lost. Extensive experiments were performed on the KITTI and MOT2015 tracking benchmarks. Results indicate that our approach outperforms most state-of-the-art tracking approaches.
Automated target recognition and tracking using an optical pattern recognition neural network
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
1991-01-01
The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.
Ancker, Jessica S; Witteman, Holly O; Hafeez, Baria; Provencher, Thierry; Van de Graaf, Mary; Wei, Esther
2015-08-19
Consumer health information technologies (HIT) that encourage self-tracking, such as diet and fitness tracking apps and disease journals, are attracting widespread interest among technology-oriented consumers (such as "quantified self" advocates), entrepreneurs, and the health care industry. Such electronic technologies could potentially benefit the growing population of patients with multiple chronic conditions (MCC). However, MCC is predominantly a condition of the elderly and disproportionately affects the less affluent, so it also seems possible that the barriers to use of consumer HIT would be particularly severe for this patient population. Our aim was to explore the perspectives of individuals with MCC using a semistructured interview study. Our research questions were (1) How do individuals with MCC track their own health and medical data? and (2) How do patients and providers perceive and use patient-tracked data? We used semistructured interviews with patients with multiple chronic diseases and providers with experience caring for such patients, as well as participation in a diabetes education group to triangulate emerging themes. Data were analyzed using grounded theory and thematic analysis. Recruitment and analysis took place iteratively until thematic saturation was reached. Interviews were conducted with 22 patients and 7 health care providers. The patients had an average of 3.5 chronic conditions, including type 2 diabetes, heart disease, chronic pain, and depression, and had regular relationships with an average of 5 providers. Four major themes arose from the interviews: (1) tracking this data feels like work for many patients, (2) personal medical data for individuals with chronic conditions are not simply objective facts, but instead provoke strong positive and negative emotions, value judgments, and diverse interpretations, (3) patients track for different purposes, ranging from sense-making to self-management to reporting to the doctor, and (4) patients often notice that physicians trust technologically measured data such as lab reports over patients' self-tracked data. Developers of consumer health information technologies for data tracking (such as diet and exercise apps or blood glucose logs) often assume patients have unlimited enthusiasm for tracking their own health data via technology. However, our findings potentially explain relatively low adoption of consumer HIT, as they suggest that patients with multiple chronic illnesses consider it work to track their own data, that the data can be emotionally charged, and that they may perceive that providers do not welcome it. Similar themes have been found in some individual chronic diseases but appeared more complex because patients often encountered "illness work" connected to multiple diseases simultaneously and frequently faced additional challenges from aging or difficult comorbidities such as chronic pain, depression, and anxiety. We suggest that to make a public health impact, consumer HIT developers should engage creatively with these pragmatic and emotional issues to reach an audience that is broader than technologically sophisticated early adopters. Novel technologies are likely to be successful only if they clearly reduce patient inconvenience and burden, helping them to accomplish their "illness work" more efficiently and effectively.
Space Debris Measurements using the Advanced Modular Incoherent Scatter Radar
NASA Astrophysics Data System (ADS)
Nicolls, M.
The Advanced Modular Incoherent Scatter Radar (AMISR) is a modular, mobile UHF phased-array radar facility developed and used for scientific studies of the ionosphere. The radars are completely remotely operated and allow for pulse-to-pulse beam steering over the field-of-view. A satellite and debris tracking capability fully interleaved with scientific operations has been developed, and the AMISR systems are now used to routinely observe LEO space debris, with the ability to simultaneously track and detect multiple objects. The system makes use of wide-bandwidth radar pulses and coherent processing to detect objects as small as 5-10 cm in size through LEO, achieving a range resolution better than 20 meters for LEO targets. The interleaved operations allow for ionospheric effects on UHF space debris measurements, such as dispersion, to be assessed. The radar architecture, interleaved operations, and impact of space weather on the measurements will be discussed.
Human-like object tracking and gaze estimation with PKD android
Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K; Bugnariu, Nicoleta L.; Popa, Dan O.
2018-01-01
As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans. PMID:29416193
Human-like object tracking and gaze estimation with PKD android
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.
2016-05-01
As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.
Multisensor data fusion for integrated maritime surveillance
NASA Astrophysics Data System (ADS)
Premji, A.; Ponsford, A. M.
1995-01-01
A prototype Integrated Coastal Surveillance system has been developed on Canada's East Coast to provide effective surveillance out to and beyond the 200 nautical mile Exclusive Economic Zone. The system has been designed to protect Canada's natural resources, and to monitor and control the coastline for smuggling, drug trafficking, and similar illegal activity. This paper describes the Multiple Sensor - Multiple Target data fusion system that has been developed. The fusion processor has been developed around the celebrated Multiple Hypothesis Tracking algorithm which accommodates multiple targets, new targets, false alarms, and missed detections. This processor performs four major functions: plot-to-track association to form individual radar tracks; fusion of radar tracks with secondary sensor reports; track identification and tagging using secondary reports; and track level fusion to form common tracks. Radar data from coherent and non-coherent radars has been used to evaluate the performance of the processor. This paper presents preliminary results.
USDA-ARS?s Scientific Manuscript database
A novel technique named multiple-particle tracking (MPT) was used to investigate the micro-structural heterogeneities of Z-trim, a zero calorie cellulosic fiber biopolymer produced from corn hulls. The Multiple-Particle Tracking (MPT) method was used in this study, which was originally described by ...
Online two-stage association method for robust multiple people tracking
NASA Astrophysics Data System (ADS)
Lv, Jingqin; Fang, Jiangxiong; Yang, Jie
2011-07-01
Robust multiple people tracking is very important for many applications. It is a challenging problem due to occlusion and interaction in crowded scenarios. This paper proposes an online two-stage association method for robust multiple people tracking. In the first stage, short tracklets generated by linking people detection responses grow longer by particle filter based tracking, with detection confidence embedded into the observation model. And, an examining scheme runs at each frame for the reliability of tracking. In the second stage, multiple people tracking is achieved by linking tracklets to generate trajectories. An online tracklet association method is proposed to solve the linking problem, which allows applications in time-critical scenarios. This method is evaluated on the popular CAVIAR dataset. The experimental results show that our two-stage method is robust.
,
2011-01-01
Landsat satellites capture images of Earth from space-and have since 1972! These images provide a long-term record of natural and human-induced changes on the global landscape. Comparing images from multiple years reveals slow and subtle changes as well as rapid and devastating ones. Landsat images are available over the Internet at no charge. Using the free software MultiSpec, students can track changes to the landscape over time-just like remote sensing scientists do! The objective of the Tracking Change Over Time lesson plan is to get students excited about studying the changing Earth. Intended for students in grades 5-8, the lesson plan is flexible and may be used as a student self-guided tutorial or as a teacher-led class lesson. Enhance students' learning of geography, map reading, earth science, and problem solving by seeing landscape changes from space.
Precise Orbit Determination for LEO Spacecraft Using GNSS Tracking Data from Multiple Antennas
NASA Technical Reports Server (NTRS)
Kuang, Da; Bertiger, William; Desai, Shailen; Haines, Bruce
2010-01-01
To support various applications, certain Earth-orbiting spacecrafts (e.g., SRTM, COSMIC) use multiple GNSS antennas to provide tracking data for precise orbit determination (POD). POD using GNSS tracking data from multiple antennas poses some special technical issues compared to the typical single-antenna approach. In this paper, we investigate some of these issues using both real and simulated data. Recommendations are provided for POD with multiple GNSS antennas and for antenna configuration design. The observability of satellite position with multiple antennas data is compared against single antenna case. The impact of differential clock (line biases) and line-of-sight (up, along-track, and cross-track) on kinematic and reduced-dynamic POD is evaluated. The accuracy of monitoring the stability of the spacecraft structure by simultaneously performing POD of the spacecraft and relative positioning of the multiple antennas is also investigated.
Visual object recognition and tracking
NASA Technical Reports Server (NTRS)
Chang, Chu-Yin (Inventor); English, James D. (Inventor); Tardella, Neil M. (Inventor)
2010-01-01
This invention describes a method for identifying and tracking an object from two-dimensional data pictorially representing said object by an object-tracking system through processing said two-dimensional data using at least one tracker-identifier belonging to the object-tracking system for providing an output signal containing: a) a type of the object, and/or b) a position or an orientation of the object in three-dimensions, and/or c) an articulation or a shape change of said object in said three dimensions.
ERIC Educational Resources Information Center
Arend, Anna M.; Zimmer, Hubert D.
2012-01-01
In this training study, we aimed to selectively train participants' filtering mechanisms to enhance visual working memory (WM) efficiency. The highly restricted nature of visual WM capacity renders efficient filtering mechanisms crucial for its successful functioning. Filtering efficiency in visual WM can be measured via the lateralized change…
Neural basis for dynamic updating of object representation in visual working memory.
Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun
2010-02-15
In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.
Multiple Drosophila Tracking System with Heading Direction
Sirigrivatanawong, Pudith; Arai, Shogo; Thoma, Vladimiros; Hashimoto, Koichi
2017-01-01
Machine vision systems have been widely used for image analysis, especially that which is beyond human ability. In biology, studies of behavior help scientists to understand the relationship between sensory stimuli and animal responses. This typically requires the analysis and quantification of animal locomotion. In our work, we focus on the analysis of the locomotion of the fruit fly Drosophila melanogaster, a widely used model organism in biological research. Our system consists of two components: fly detection and tracking. Our system provides the ability to extract a group of flies as the objects of concern and furthermore determines the heading direction of each fly. As each fly moves, the system states are refined with a Kalman filter to obtain the optimal estimation. For the tracking step, combining information such as position and heading direction with assignment algorithms gives a successful tracking result. The use of heading direction increases the system efficiency when dealing with identity loss and flies swapping situations. The system can also operate with a variety of videos with different light intensities. PMID:28067800
Cutler, David M.; Rosen, Allison B.
2013-01-01
Objectives. We used data from multiple national health surveys to systematically track the health of the US adult population. Methods. We estimated trends in quality-adjusted life expectancy (QALE) from 1987 to 2008 by using national mortality data combined with data on symptoms and impairments from the National Medical Expenditure Survey (1987), National Health Interview Survey (1987, 1994–1995, 1996), Medical Expenditure Panel Survey (1992, 1996, 2000–2008), National Nursing Home Survey (1985, 1995, and 1999), and Medicare Current Beneficiary Survey (1992, 1994–2008). We decomposed QALE into changes in life expectancy, impairments, symptoms, and smoking and body mass index. Results. Years of QALE increased overall and for all demographic groups—men, women, Whites, and Blacks—despite being slowed by increases in obesity and a rising prevalence of some symptoms and impairments. Overall QALE gains were large: 2.4 years at age 25 years and 1.7 years at age 65 years. Conclusions. Understanding and consistently tracking the drivers of QALE change is central to informed policymaking. Harmonizing data from multiple national surveys is an important step in building this infrastructure. PMID:24028235
Object acquisition and tracking for space-based surveillance
NASA Astrophysics Data System (ADS)
1991-11-01
This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase 1) and N00014-89-C-0015 (Phase 2). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processing into time dependent, object dependent, and data dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.
Object acquisition and tracking for space-based surveillance. Final report, Dec 88-May 90
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-11-27
This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase I) and N00014-89-C-0015 (Phase II). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processingmore » into time dependent, object-dependent, and data-dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.« less
Beyond Tracking: Multiple Pathways to College, Career, and Civic Participation
ERIC Educational Resources Information Center
Oakes, Jeannie, Ed.; Saunders, Marisa, Ed.
2008-01-01
"Beyond Tracking" responds to the a sobering assessment of American high schools by delineating and promoting an innovative and well-defined notion of multiple pathways. The book's authors clearly distinguish their use of the term "multiple pathways" from any updated version of the tracking system that marked so many American high schools during…
Neural plasticity associated with recently versus often heard objects.
Bourquin, Nathalie M-P; Spierer, Lucas; Murray, Micah M; Clarke, Stephanie
2012-09-01
In natural settings the same sound source is often heard repeatedly, with variations in spectro-temporal and spatial characteristics. We investigated how such repetitions influence sound representations and in particular how auditory cortices keep track of recently vs. often heard objects. A set of 40 environmental sounds was presented twice, i.e. as prime and as repeat, while subjects categorized the corresponding sound sources as living vs. non-living. Electrical neuroimaging analyses were applied to auditory evoked potentials (AEPs) comparing primes vs. repeats (effect of presentation) and the four experimental sections. Dynamic analysis of distributed source estimations revealed i) a significant main effect of presentation within the left temporal convexity at 164-215 ms post-stimulus onset; and ii) a significant main effect of section in the right temporo-parietal junction at 166-213 ms. A 3-way repeated measures ANOVA (hemisphere×presentation×section) applied to neural activity of the above clusters during the common time window confirmed the specificity of the left hemisphere for the effect of presentation, but not that of the right hemisphere for the effect of section. In conclusion, spatio-temporal dynamics of neural activity encode the temporal history of exposure to sound objects. Rapidly occurring plastic changes within the semantic representations of the left hemisphere keep track of objects heard a few seconds before, independent of the more general sound exposure history. Progressively occurring and more long-lasting plastic changes occurring predominantly within right hemispheric networks, which are known to code for perceptual, semantic and spatial aspects of sound objects, keep track of multiple exposures. Copyright © 2012 Elsevier Inc. All rights reserved.
Reliability of a single objective measure in assessing sleepiness.
Sunwoo, Bernie Y; Jackson, Nicholas; Maislin, Greg; Gurubhagavatula, Indira; George, Charles F; Pack, Allan I
2012-01-01
To evaluate reliability of single objective tests in assessing sleepiness. Subjects who completed polysomnography underwent a 4-nap multiple sleep latency test (MSLT) the following day. Prior to each nap opportunity on MSLT, subjects performed the psychomotor vigilance test (PVT) and divided attention driving task (DADT). Results of single versus multiple test administrations were compared using the intraclass correlation coefficient (ICC) and adjusted for test administration order effects to explore time of day effects. Measures were explored as continuous and binary (i.e., impaired or not impaired). Community-based sample evaluated at a tertiary, university-based sleep center. 372 adult commercial vehicle operators oversampled for increased obstructive sleep apnea risk. N/A. AS CONTINUOUS MEASURES, ICC WERE AS FOLLOWS: MSLT 0.45, PVT median response time 0.69, PVT number of lapses 0.51, 10-min DADT tracking error 0.87, 20-min DADT tracking error 0.90. Based on binary outcomes, ICC were: MSLT 0.63, PVT number of lapses 0.85, 10-min DADT 0.95, 20-min DADT 0.96. Statistically significant time of day effects were seen in both the MSLT and PVT but not the DADT. Correlation between ESS and different objective tests was strongest for MSLT, range [-0.270 to -0.195] and persisted across all time points. Single DADT and PVT administrations are reliable measures of sleepiness. A single MSLT administration can reasonably discriminate individuals with MSL < 8 minutes. These results support the use of a single administration of some objective tests of sleepiness when performed under controlled conditions in routine clinical care.
Brain activation of semantic category-based grouping in multiple identity tracking task
Wei, Liuqing; Lyu, Chuang; Hu, Siyuan; Li, Zhen
2017-01-01
Using Multiple Identity Tracking task and the functional magnetic resonance imaging (fMRI) technology, the present study aimed to isolate and visualize the functional anatomy of neural systems involved in the semantic category-based grouping process. Three experiment conditions were selected and compared: the category-based targets grouping (TG) condition, the targets-distractors grouping (TDG) condition and the homogenous condition. In the TG condition, observers could utilize the categorical distinction between targets and distractors, to construct a uniform presentation of targets, that is, to form a group of the targets to facilitate tracking. In the TDG condition, half the targets and half the distractors belonged to the same category. Observers had to inhibit the grouping of targets and distractors in one category to complete tracking. In the homogenous condition, where targets and distractors consisted of the same objects, no grouping could be formed. The “TG-Homogenous” contrast (p<0.01) revealed the activation of the left fusiform and the pars triangularis of inferior frontal gyrus (IFG). The “TG-TDG” contrast only revealed the activation of the left anterior cingulate gyrus (ACC). The fusiform and IFG pars triangularis might participate in the representation of semantic knowledge, IFG pars triangularis might relate intensely with the classification of semantic categories. The ACC might be responsible for the initiation and maintenance of grouping representation. PMID:28505166
Computer-aided target tracking in motion analysis studies
NASA Astrophysics Data System (ADS)
Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.
1990-08-01
Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.
Tracking Multiple People Online and in Real Time
2015-12-21
NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 21-12-2015 Approved for public release; distribution is unlimited. Tracking multiple people ...online and in real time We cast the problem of tracking several people as a graph partitioning problem that takes the form of an NP-hard binary...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Duke University 2200 West Main Street Suite 710 Durham, NC 27705 -4010 ABSTRACT Tracking multiple
NASA Astrophysics Data System (ADS)
Ladd, D.; Reeves, R.; Rumi, E.; Trethewey, M.; Fortescue, M.; Appleby, G.; Wilkinson, M.; Sherwood, R.; Ash, A.; Cooper, C.; Rayfield, P.
The Science and Technology Facilities Council (STFC), Control Loop Concepts Limited (CL2), Natural Environment Research Council (NERC) and Defence Science and Technology Laboratory (DSTL), have recently participated in a campaign of satellite observations, with both radar and optical sensors, in order to demonstrate an initial network concept that enhances the value of coordinated observations. STFC and CL2 have developed a Space Surveillance and Tracking (SST) server/client architecture to slave one sensor to another. The concept was originated to enable the Chilbolton radar (an S-band radar on a 25 m diameter fully-steerable dish antenna called CASTR – Chilbolton Advanced Satellite Tracking Radar) which does not have an auto-track function to follow an object based on position data streamed from another cueing sensor. The original motivation for this was to enable tracking during re-entry of ATV-5, a highly manoeuvrable ISS re-supply vessel. The architecture has been designed to be extensible and allows the interface of both optical and radar sensors which may be geographically separated. Connectivity between the sensors is TCP/IP over the internet. The data transferred between the sensors is translated into an Earth centred frame of reference to accommodate the difference in location, and time-stamping and filtering are applied to cope with latency. The server can accept connections from multiple clients, and the operator can switch between the different clients. This architecture is inherently robust and will enable graceful degradation should parts of the system be unavailable. A demonstration was conducted in 2016 whereby a small telescope connected to an agile mount (an EO tracker known as COATS - Chilbolton Optical Advanced Tracking System) located 50m away from the radar at Chilbolton, autonomously tracked several objects and fed the look angle data into a client. CASTR, slaved to COATS through the server followed and successfully detected the objects. In 2017, the baseline was extended to 135 km by developing a client for the SLR (satellite laser ranger) telescope at the Space Geodesy Facility, Herstmonceux. Trials have already demonstrated that CASTR can accurately track the object using the position data being fed from the SLR.
Störmer, Viola S; Alvarez, George A; Cavanagh, Patrick
2014-08-27
It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. Copyright © 2014 the authors 0270-6474/14/3311526-08$15.00/0.
Gundogdu, Erhan; Ozkan, Huseyin; Alatan, A Aydin
2017-11-01
Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [of complexity O(D) ] based on a large ensemble of CFB trackers. The ensemble [of size O(2 D ) ] is organized over a binary tree (depth D ), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.
Image-based topology for sensor gridlocking and association
NASA Astrophysics Data System (ADS)
Stanek, Clay J.; Javidi, Bahram; Yanni, Philip
2002-07-01
Correlation engines have been evolving since the implementation of radar. In modern sensor fusion architectures, correlation and gridlock filtering are required to produce common, continuous, and unambiguous tracks of all objects in the surveillance area. The objective is to provide a unified picture of the theatre or area of interest to battlefield decision makers, ultimately enabling them to make better inferences for future action and eliminate fratricide by reducing ambiguities. Here, correlation refers to association, which in this context is track-to-track association. A related process, gridlock filtering or gridlocking, refers to the reduction in navigation errors and sensor misalignment errors so that one sensor's track data can be accurately transformed into another sensor's coordinate system. As platforms gain multiple sensors, the correlation and gridlocking of tracks become significantly more difficult. Much of the existing correlation technology revolves around various interpretations of the generalized Bayesian decision rule: choose the action that minimizes conditional risk. One implementation of this principle equates the risk minimization statement to the comparison of ratios of a priori probability distributions to thresholds. The binary decision problem phrased in terms of likelihood ratios is also known as the famed Neyman-Pearson hypothesis test. Using another restatement of the principle for a symmetric loss function, risk minimization leads to a decision that maximizes the a posteriori probability distribution. Even for deterministic decision rules, situations can arise in correlation where there are ambiguities. For these situations, a common algorithm used is a sparse assignment technique such as the Munkres or JVC algorithm. Furthermore, associated tracks may be combined with the hope of reducing the positional uncertainty of a target or object identified by an existing track from the information of several fused/correlated tracks. Gridlocking is typically accomplished with some type of least-squares algorithm, such as the Kalman filtering technique, which attempts to locate the best bias error vector estimate from a set of correlated/fused track pairs. Here, we will introduce a new approach to this longstanding problem by adapting many of the familiar concepts from pattern recognition, ones certainly familiar to target recognition applications. Furthermore, we will show how this technique can lend itself to specialized processing, such as that available through an optical or hybrid correlator.
Enhancing Cognition with Video Games: A Multiple Game Training Study
Oei, Adam C.; Patterson, Michael D.
2013-01-01
Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504
Dye-enhanced visualization of rat whiskers for behavioral studies.
Rigosa, Jacopo; Lucantonio, Alessandro; Noselli, Giovanni; Fassihi, Arash; Zorzin, Erik; Manzino, Fabrizio; Pulecchi, Francesca; Diamond, Mathew E
2017-06-14
Visualization and tracking of the facial whiskers is required in an increasing number of rodent studies. Although many approaches have been employed, only high-speed videography has proven adequate for measuring whisker motion and deformation during interaction with an object. However, whisker visualization and tracking is challenging for multiple reasons, primary among them the low contrast of the whisker against its background. Here, we demonstrate a fluorescent dye method suitable for visualization of one or more rat whiskers. The process makes the dyed whisker(s) easily visible against a dark background. The coloring does not influence the behavioral performance of rats trained on a vibrissal vibrotactile discrimination task, nor does it affect the whiskers' mechanical properties.
Learned filters for object detection in multi-object visual tracking
NASA Astrophysics Data System (ADS)
Stamatescu, Victor; Wong, Sebastien; McDonnell, Mark D.; Kearney, David
2016-05-01
We investigate the application of learned convolutional filters in multi-object visual tracking. The filters were learned in both a supervised and unsupervised manner from image data using artificial neural networks. This work follows recent results in the field of machine learning that demonstrate the use learned filters for enhanced object detection and classification. Here we employ a track-before-detect approach to multi-object tracking, where tracking guides the detection process. The object detection provides a probabilistic input image calculated by selecting from features obtained using banks of generative or discriminative learned filters. We present a systematic evaluation of these convolutional filters using a real-world data set that examines their performance as generic object detectors.
Wu; Thompson
2000-09-01
The track foundation is preloaded by multiple wheel loads due to the train weight and, as the pad and ballast are nonlinear, their stiffness depends upon the preload in them. Due to the influence of these resilient components of the track, the track vibration is affected by the wheel loads. It is also affected by the wheel/rail interactions. In this article the preloads in the pad and ballast are calculated by considering the nonlinear properties of the track foundation, and thus the preloaded pad and ballast stiffnesses are determined. The vibration properties are explored for the track under multiple wheel loads and multiple wheel/rail interactions by comparing the results from different track models with and without these effects. It is found that the point receptance of the track is reduced and the vibration decay rate is enhanced at low frequencies due to the wheel loads. The effects of the wheel/rail interactions are most significant for frequencies 400-2000 Hz. Because of the wheel/rail interactions, the point receptance fluctuates and the vibration decay is enhanced in the regions around the wheels.
NASA Astrophysics Data System (ADS)
Gad, Mohamed A.; Elshehaly, Mai H.; Gračanin, Denis; Elmongui, Hicham G.
2018-02-01
This research presents a novel Trajectory-based Tracking Analyst (TTA) that can track and link spatiotemporally variable data from multiple sources. The proposed technique uses trajectory information to determine the positions of time-enabled and spatially variable scatter data at any given time through a combination of along trajectory adjustment and spatial interpolation. The TTA is applied in this research to track large spatiotemporal data of volcanic eruptions (acquired using multi-sensors) in the unsteady flow field of the atmosphere. The TTA enables tracking injections into the atmospheric flow field, the reconstruction of the spatiotemporally variable data at any desired time, and the spatiotemporal join of attribute data from multiple sources. In addition, we were able to create a smooth animation of the volcanic ash plume at interactive rates. The initial results indicate that the TTA can be applied to a wide range of multiple-source data.
ATDRS payload technology R & D
NASA Technical Reports Server (NTRS)
Anzic, G.; Connolly, D. J.; Fujikawa, G.; Andro, M.; Kunath, R. R.; Sharp, G. R.
1990-01-01
Four technology development tasks were chosen to reduce (or at least better understand) the technology risks associated with proposed approaches to Advanced Tracking and Data Relay Satellite (ATDRS). The four tasks relate to a Tri-Band Antenna feed system, a Digital Beamforming System for the S Band Multiple-Access System (SMA), an SMA Phased Array Antenna, and a Configuration Thermal/Mechanical Analysis task. The objective, approach, and status of each are discussed.
ATDRS payload technology research and development
NASA Technical Reports Server (NTRS)
Anzic, G.; Connolly, D. J.; Fujikawa, G.; Andro, M.; Kunath, R. R.; Sharp, G. R.
1990-01-01
Four technology development tasks were chosen to reduce (or at least better understand) the technology risks associated with proposed approaches to Advanced Tracking and Data Relay Satellite (ATDRS). The four tasks relate to a Tri-Band Antenna feed system, a Digital Beamforming System for the S Band Multiple Access System (SMA), an SMA Phased Array Antenna, and a Configuration Thermal/Mechanical Analysis task. The objective, approach, and status of each are discussed.
ATDRS payload technology R & D
NASA Astrophysics Data System (ADS)
Anzic, G.; Connolly, D. J.; Fujikawa, G.; Andro, M.; Kunath, R. R.; Sharp, G. R.
Four technology development tasks were chosen to reduce (or at least better understand) the technology risks associated with proposed approaches to Advanced Tracking and Data Relay Satellite (ATDRS). The four tasks relate to a Tri-Band Antenna feed system, a Digital Beamforming System for the S Band Multiple-Access System (SMA), an SMA Phased Array Antenna, and a Configuration Thermal/Mechanical Analysis task. The objective, approach, and status of each are discussed.
Automated Tracking of Motion and Body Weight for Objective Monitoring of Rats in Colony Housing
Brenneis, Christian; Westhof, Andreas; Holschbach, Jeannine; Michaelis, Martin; Guehring, Hans; Kleinschmidt-Doerr, Kerstin
2017-01-01
Living together in large social communities within an enriched environment stimulates self-motivated activity in rats. We developed a modular housing system in which a single unit can accommodate as many as 48 rats and contains multiple functional areas. This rat colony cage further allowed us to remotely measure body weight and to continuously measure movement, including jumping and stair walking between areas. Compared with pair-housed, age-, strain-, and weight-matched rats in conventional cages, the colony-housed rats exhibited higher body mass indices, had more exploratory behavior, and were more cooperative during handling. Continuous activity tracking revealed that the amount of spontaneous locomotion, such as jumping between levels and running through the staircase, fell after surgery, blood sampling, injections, and behavioral tests to a similar extent regardless of the specific intervention. Data from the automated system allowed us to identify individual rats with significant differences (>2 SD) from other cohoused rats; these rats showed potential health problems, as verified using conventional health scoring. Thus, our rat colony cage permits social interaction and provides a variety of functional areas, thereby perhaps improving animal wellbeing. Furthermore, automated online tracking enabled continuous quantification of spontaneous motion, potentially providing objective measures of animal behavior in various disease models and reducing the need for experimental manipulation. Finally, health monitoring of individual rats was facilitated in an objective manner. PMID:28905711
Long-term scale adaptive tracking with kernel correlation filters
NASA Astrophysics Data System (ADS)
Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui
2018-04-01
Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.
Implementation of an object oriented track reconstruction model into multiple LHC experiments*
NASA Astrophysics Data System (ADS)
Gaines, Irwin; Gonzalez, Saul; Qian, Sijin
2001-10-01
An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.
Awareness-based game-theoretic space resource management
NASA Astrophysics Data System (ADS)
Chen, Genshe; Chen, Huimin; Pham, Khanh; Blasch, Erik; Cruz, Jose B., Jr.
2009-05-01
Over recent decades, the space environment becomes more complex with a significant increase in space debris and a greater density of spacecraft, which poses great difficulties to efficient and reliable space operations. In this paper we present a Hierarchical Sensor Management (HSM) method to space operations by (a) accommodating awareness modeling and updating and (b) collaborative search and tracking space objects. The basic approach is described as follows. Firstly, partition the relevant region of interest into district cells. Second, initialize and model the dynamics of each cell with awareness and object covariance according to prior information. Secondly, explicitly assign sensing resources to objects with user specified requirements. Note that when an object has intelligent response to the sensing event, the sensor assigned to observe an intelligent object may switch from time-to-time between a strong, active signal mode and a passive mode to maximize the total amount of information to be obtained over a multi-step time horizon and avoid risks. Thirdly, if all explicitly specified requirements are satisfied and there are still more sensing resources available, we assign the additional sensing resources to objects without explicitly specified requirements via an information based approach. Finally, sensor scheduling is applied to each sensor-object or sensor-cell pair according to the object type. We demonstrate our method with realistic space resources management scenario using NASA's General Mission Analysis Tool (GMAT) for space object search and track with multiple space borne observers.
A Comparative Analysis of Three Monocular Passive Ranging Methods on Real Infrared Sequences
NASA Astrophysics Data System (ADS)
Bondžulić, Boban P.; Mitrović, Srđan T.; Barbarić, Žarko P.; Andrić, Milenko S.
2013-09-01
Three monocular passive ranging methods are analyzed and tested on the real infrared sequences. The first method exploits scale changes of an object in successive frames, while other two use Beer-Lambert's Law. Ranging methods are evaluated by comparing with simultaneously obtained reference data at the test site. Research is addressed on scenarios where multiple sensor views or active measurements are not possible. The results show that these methods for range estimation can provide the fidelity required for object tracking. Maximum values of relative distance estimation errors in near-ideal conditions are less than 8%.
Liu, Hua; Wu, Wen
2017-01-01
For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF). PMID:28608843
Liu, Hua; Wu, Wen
2017-06-13
For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).
Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach
Tian, Yuan; Guan, Tao; Wang, Cheng
2010-01-01
To produce a realistic augmentation in Augmented Reality, the correct relative positions of real objects and virtual objects are very important. In this paper, we propose a novel real-time occlusion handling method based on an object tracking approach. Our method is divided into three steps: selection of the occluding object, object tracking and occlusion handling. The user selects the occluding object using an interactive segmentation method. The contour of the selected object is then tracked in the subsequent frames in real-time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the unprocessed augmented image to produce a new synthesized image in which the relative position between the real and virtual object is correct. The proposed method has several advantages. First, it is robust and stable, since it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have similar colors. Second, it is fast, since the real object can be tracked in real-time. Last, a smoothing technique provides seamless merging between the augmented and virtual object. Several experiments are provided to validate the performance of the proposed method. PMID:22319278
NASA Astrophysics Data System (ADS)
Ryu, Inkeon; Kim, Daekeun
2018-04-01
A typical selective plane illumination microscopy (SPIM) image size is basically limited by the field of view, which is a characteristic of the objective lens. If an image larger than the imaging area of the sample is to be obtained, image stitching, which combines step-scanned images into a single panoramic image, is required. However, accurately registering the step-scanned images is very difficult because the SPIM system uses a customized sample mount where uncertainties for the translational and the rotational motions exist. In this paper, an image registration technique based on multiple fluorescent microsphere tracking is proposed in the view of quantifying the constellations and measuring the distances between at least two fluorescent microspheres embedded in the sample. Image stitching results are demonstrated for optically cleared large tissue with various staining methods. Compensation for the effect of the sample rotation that occurs during the translational motion in the sample mount is also discussed.
Multi-viewer tracking integral imaging system and its viewing zone analysis.
Park, Gilbae; Jung, Jae-Hyun; Hong, Keehoon; Kim, Yunhee; Kim, Young-Hoon; Min, Sung-Wook; Lee, Byoungho
2009-09-28
We propose a multi-viewer tracking integral imaging system for viewing angle and viewing zone improvement. In the tracking integral imaging system, the pickup angles in each elemental lens in the lens array are decided by the positions of viewers, which means the elemental image can be made for each viewer to provide wider viewing angle and larger viewing zone. Our tracking integral imaging system is implemented with an infrared camera and infrared light emitting diodes which can track the viewers' exact positions robustly. For multiple viewers to watch integrated three-dimensional images in the tracking integral imaging system, it is needed to formulate the relationship between the multiple viewers' positions and the elemental images. We analyzed the relationship and the conditions for the multiple viewers, and verified them by the implementation of two-viewer tracking integral imaging system.
Object tracking using plenoptic image sequences
NASA Astrophysics Data System (ADS)
Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung
2017-05-01
Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.
New method for finding multiple meaningful trajectories
NASA Astrophysics Data System (ADS)
Bao, Zhonghao; Flachs, Gerald M.; Jordan, Jay B.
1995-07-01
Mathematical foundations and algorithms for efficiently finding multiple meaningful trajectories (FMMT) in a sequence of digital images are presented. A meaningful trajectory is motion created by a sentient being or by a device under the control of a sentient being. It is smooth and predictable over short time intervals. A meaningful trajectory can suddenly appear or disappear in sequence images. The development of the FMMT is based on these assumptions. A finite state machine in the FMMT is used to model the trajectories under the conditions of occlusions and false targets. Each possible trajectory is associated with an initial state of a finite state machine. When two frames of data are available, a linear predictor is used to predict the locations of all possible trajectories. All trajectories within a certain error bound are moved to a monitoring trajectory state. When trajectories attain three consecutive good predictions, they are moved to a valid trajectory state and considered to be locked into a tracking mode. If an object is occluded while in the valid trajectory state, the predicted position is used to continue to track; however, the confidence in the trajectory is lowered. If the trajectory confidence falls below a lower limit, the trajectory is terminated. Results are presented that illustrate the FMMT applied to track multiple munitions fired from a missile in a sequence of images. Accurate trajectories are determined even in poor images where the probabilities of miss and false alarm are very high.
An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft
NASA Technical Reports Server (NTRS)
Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.
2010-01-01
The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.
Ding, Yu; Li, Chunqiang
2016-01-01
Nanoscale particle tracking in three dimensions is crucial to directly observe dynamics of molecules and nanoparticles in living cells. Here we present a three-dimensional particle tracking method based on temporally focused two-photon excitation. Multiple particles are imaged at 30 frames/s in volume up to 180 × 180 × 100 µm3. The spatial localization precision can reach 50 nm. We demonstrate its capability of tracking fast swimming microbes at speed of ~200 µm/s. Two-photon dual-color tracking is achieved by simultaneously exciting two kinds of fluorescent beads at 800 nm to demonstrate its potential in molecular interaction studies. Our method provides a simple wide-field fluorescence imaging approach for deep multiple-particle tracking. PMID:27867724
Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments
NASA Astrophysics Data System (ADS)
Pretto, N.; Poiesi, F.
2017-11-01
We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.
2017-01-01
This technical report details the results of an uncontrolled study of EyeGuide Focus, a 10-second concussion management tool which relies on eye tracking to determine the potential impairment of visual attention, an indicator often of mild traumatic brain injury (mTBI). Essentially, people who can visually keep steady and accurate attention on a moving object in their environment likely suffer from no impairment. However, if after a potential mTBI event, subjects cannot keep attention on a moving object in a normal way as demonstrated on their previous healthy baseline tests. This may indicate possible neurological impairment. Now deployed at multiple locations across the United States, Focus (EyeGuide, Lubbock, Texas, United States) to date, has recorded more than 4,000 test scores. Our data analysis of these results shows the promise of Focus as a low-cost, ocular-based impairment test for assessing potential neurological impairment caused by mTBI in subjects ages eight and older. PMID:28630809
Kelly, Michael
2017-05-15
This technical report details the results of an uncontrolled study of EyeGuide Focus, a 10-second concussion management tool which relies on eye tracking to determine the potential impairment of visual attention, an indicator often of mild traumatic brain injury (mTBI). Essentially, people who can visually keep steady and accurate attention on a moving object in their environment likely suffer from no impairment. However, if after a potential mTBI event, subjects cannot keep attention on a moving object in a normal way as demonstrated on their previous healthy baseline tests. This may indicate possible neurological impairment. Now deployed at multiple locations across the United States, Focus (EyeGuide, Lubbock, Texas, United States) to date, has recorded more than 4,000 test scores. Our data analysis of these results shows the promise of Focus as a low-cost, ocular-based impairment test for assessing potential neurological impairment caused by mTBI in subjects ages eight and older.
Holmes, Charles B.; Sikazwe, Izukanji; Raelly, Roselyne; Freeman, Bethany; Wambulawae, Inonge; Silwizya, Geoffrey; Topp, Stephanie; Chilengi, Roma; Henostroza, German; Kapambwe, Sharon; Simbeye, Darius; Sibajene, Sheila; Chi, Harmony; Godfrey, Katy; Chi, Benjamin; Moore, Carolyn Bolton
2014-01-01
Multiple funding sources provide research and program implementation organizations a broader base of funding and facilitate synergy, but also entail challenges that include varying stakeholder expectations, unaligned grant cycles, and highly variable reporting requirements. Strong governance and strategic planning are essential to ensure alignment of goals and agendas. Systems to track budgets and outputs as well as procurement and human resources are required. A major goal is to transition leadership and operations to local ownership. This article details successful approaches used by the newly independent non-governmental organization, the Centre for Infectious Disease Research in Zambia (CIDRZ). PMID:24321983
Holmes, Charles B; Sikazwe, Izukanji; Raelly, Roselyne L; Freeman, Bethany L; Wambulawae, Inonge; Silwizya, Geoffrey; Topp, Stephanie M; Chilengi, Roma; Henostroza, German; Kapambwe, Sharon; Simbeye, Darius; Sibajene, Sheila; Chi, Harmony; Godfrey, Katy; Chi, Benjamin; Moore, Carolyn Bolton
2014-01-01
Multiple funding sources provide research and program implementation organizations a broader base of funding and facilitate synergy, but also entail challenges that include varying stakeholder expectations, unaligned grant cycles, and highly variable reporting requirements. Strong governance and strategic planning are essential to ensure alignment of goals and agendas. Systems to track budgets and outputs, as well as procurement and human resources are required. A major goal of funders is to transition leadership and operations to local ownership. This article details successful approaches used by the newly independent nongovernmental organization, the Centre for Infectious Disease Research in Zambia.
Adaptive learning compressive tracking based on Markov location prediction
NASA Astrophysics Data System (ADS)
Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan
2017-03-01
Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.
An Integrative Account of Constraints on Cross-Situational Learning
Yurovsky, Daniel; Frank, Michael C.
2015-01-01
Word-object co-occurrence statistics are a powerful information source for vocabulary learning, but there is considerable debate about how learners actually use them. While some theories hold that learners accumulate graded, statistical evidence about multiple referents for each word, others suggest that they track only a single candidate referent. In two large-scale experiments, we show that neither account is sufficient: Cross-situational learning involves elements of both. Further, the empirical data are captured by a computational model that formalizes how memory and attention interact with co-occurrence tracking. Together, the data and model unify opposing positions in a complex debate and underscore the value of understanding the interaction between computational and algorithmic levels of explanation. PMID:26302052
Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip
2015-07-01
Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological datamore » can be incorporated by means of data fusion of the two sensors' output data. (authors)« less
NASA Technical Reports Server (NTRS)
Agurok, Llya
2013-01-01
The Hyperspectral Imager-Tracker (HIT) is a technique for visualization and tracking of low-contrast, fast-moving objects. The HIT architecture is based on an innovative and only recently developed concept in imaging optics. This innovative architecture will give the Light Prescriptions Innovators (LPI) HIT the possibility of simultaneously collecting the spectral band images (hyperspectral cube), IR images, and to operate with high-light-gathering power and high magnification for multiple fast- moving objects. Adaptive Spectral Filtering algorithms will efficiently increase the contrast of low-contrast scenes. The most hazardous parts of a space mission are the first stage of a launch and the last 10 kilometers of the landing trajectory. In general, a close watch on spacecraft operation is required at distances up to 70 km. Tracking at such distances is usually associated with the use of radar, but its milliradian angular resolution translates to 100- m spatial resolution at 70-km distance. With sufficient power, radar can track a spacecraft as a whole object, but will not provide detail in the case of an accident, particularly for small debris in the onemeter range, which can only be achieved optically. It will be important to track the debris, which could disintegrate further into more debris, all the way to the ground. Such fragmentation could cause ballistic predictions, based on observations using high-resolution but narrow-field optics for only the first few seconds of the event, to be inaccurate. No optical imager architecture exists to satisfy NASA requirements. The HIT was developed for space vehicle tracking, in-flight inspection, and in the case of an accident, a detailed recording of the event. The system is a combination of five subsystems: (1) a roving fovea telescope with a wide 30 field of regard; (2) narrow, high-resolution fovea field optics; (3) a Coude optics system for telescope output beam stabilization; (4) a hyperspectral-mutispectral imaging assembly; and (5) image analysis software with effective adaptive spectral filtering algorithm for real-time contrast enhancement.
H2LIFT: global navigation simulation ship tracking and WMD detection in the maritime domain
NASA Astrophysics Data System (ADS)
Wyffels, Kevin
2007-04-01
This paper presents initial results for a tracking simulation of multiple maritime vehicles for use in a data fusion program detecting Weapons of Mass Destruction (WMD). This simulation supports a fusion algorithm (H2LIFT) for collecting and analyzing data providing a heuristic analysis tool for detecting weapons of mass destruction in the maritime domain. Tools required to develop a navigational simulation fitting a set of project objectives are introduced for integration into the H2LIFT algorithm. Emphasis is placed on the specific requirements of the H2LIFT project, however the basic equations, algorithms, and methodologies can be used as tools in a variety of scenario simulations. Discussion will be focused on track modeling (e.g. position tracking of ships), navigational techniques, WMD detection, and simulation of these models using Matlab and Simulink. Initial results provide absolute ship position data for a given multi-ship maritime scenario with random generation of a given ship containing a WMD. Required coordinate systems, conversions between coordinate systems, Earth modeling techniques, and navigational conventions and techniques are introduced for development of the simulations.
Bodala, Indu P; Abbasi, Nida I; Yu Sun; Bezerianos, Anastasios; Al-Nashash, Hasan; Thakor, Nitish V
2017-07-01
Eye tracking offers a practical solution for monitoring cognitive performance in real world tasks. However, eye tracking in dynamic environments is difficult due to high spatial and temporal variation of stimuli, needing further and thorough investigation. In this paper, we study the possibility of developing a novel computer vision assisted eye tracking analysis by using fixations. Eye movement data is obtained from a long duration naturalistic driving experiment. Source invariant feature transform (SIFT) algorithm was implemented using VLFeat toolbox to identify multiple areas of interest (AOIs). A new measure called `fixation score' was defined to understand the dynamics of fixation position between the target AOI and the non target AOIs. Fixation score is maximum when the subjects focus on the target AOI and diminishes when they gaze at the non-target AOIs. Statistically significant negative correlation was found between fixation score and reaction time data (r =-0.2253 and p<;0.05). This implies that with vigilance decrement, the fixation score decreases due to visual attention shifting away from the target objects resulting in an increase in the reaction time.
Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua
2013-12-01
This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
MULTIPLE PROJECTIONS SYSTEM (MPS): USER'S MANUAL VERSION 2.0
The document is a user's manual for Multiple Projections System (MPS) Version 2.0, based on the 3% reasonable further progress (RFP) tracking system that was developed in FY92/FY93. The 3% RFP tracking system is a Windows application, and enhancements to convert the 3% RFP track...
Qin, Lei; Snoussi, Hichem; Abdallah, Fahed
2014-01-01
We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883
Howard, Christina J; Rollings, Victoria; Hardie, Amy
2017-06-01
In tasks where people monitor moving objects, such the multiple object tracking task (MOT), observers attempt to keep track of targets as they move amongst distracters. The literature is mixed as to whether observers make use of motion information to facilitate performance. We sought to address this by two means: first by superimposing arrows on objects which varied in their informativeness about motion direction and second by asking observers to attend to motion direction. Using a position monitoring task, we calculated mean error magnitudes as a measure of the precision with which target positions are represented. We also calculated perceptual lags versus extrapolated reports, which are the times at which positions of targets best match position reports. We find that the presence of motion information in the form of superimposed arrows made no difference to position report precision nor perceptual lag. However, when we explicitly instructed observers to attend to motion, we saw facilitatory effects on position reports and in some cases reports that best matched extrapolated rather than lagging positions for small set sizes. The results indicate that attention to changing positions does not automatically recruit attention to motion, showing a dissociation between sustained attention to changing positions and attention to motion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liang, Zhibing; Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.
Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms. PMID:29444144
Calibration of asynchronous smart phone cameras from moving objects
NASA Astrophysics Data System (ADS)
Hagen, Oksana; Istenič, Klemen; Bharti, Vibhav; Dhali, Maruf Ahmed; Barmaimon, Daniel; Houssineau, Jérémie; Clark, Daniel
2015-04-01
Calibrating multiple cameras is a fundamental prerequisite for many Computer Vision applications. Typically this involves using a pair of identical synchronized industrial or high-end consumer cameras. This paper considers an application on a pair of low-cost portable cameras with different parameters that are found in smart phones. This paper addresses the issues of acquisition, detection of moving objects, dynamic camera registration and tracking of arbitrary number of targets. The acquisition of data is performed using two standard smart phone cameras and later processed using detections of moving objects in the scene. The registration of cameras onto the same world reference frame is performed using a recently developed method for camera calibration using a disparity space parameterisation and the single-cluster PHD filter.
Hardware accelerator design for tracking in smart camera
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil
2011-10-01
Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.
NASA Astrophysics Data System (ADS)
Frosini, Mikael; Bernard, Denis
2017-09-01
We revisit the precision of the measurement of track parameters (position, angle) with optimal methods in the presence of detector resolution, multiple scattering and zero magnetic field. We then obtain an optimal estimator of the track momentum by a Bayesian analysis of the filtering innovations of a series of Kalman filters applied to the track. This work could pave the way to the development of autonomous high-performance gas time-projection chambers (TPC) or silicon wafer γ-ray space telescopes and be a powerful guide in the optimization of the design of the multi-kilo-ton liquid argon TPCs that are under development for neutrino studies.
Data Fusion for a Vision-Radiological System for Source Tracking and Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas; Koppal, Sanjeev
2015-07-01
A multidisciplinary approach to allow the tracking of the movement of radioactive sources by fusing data from multiple radiological and visual sensors is under development. The goal is to improve the ability to detect, locate, track and identify nuclear/radiological threats. The key concept is that such widely available visual and depth sensors can impact radiological detection, since the intensity fall-off in the count rate can be correlated to movement in three dimensions. To enable this, we pose an important question; what is the right combination of sensing modalities and vision algorithms that can best compliment a radiological sensor, for themore » purpose of detection and tracking of radioactive material? Similarly what is the best radiation detection methods and unfolding algorithms suited for data fusion with tracking data? Data fusion of multi-sensor data for radiation detection have seen some interesting developments lately. Significant examples include intelligent radiation sensor systems (IRSS), which are based on larger numbers of distributed similar or identical radiation sensors coupled with position data for network capable to detect and locate radiation source. Other developments are gamma-ray imaging systems based on Compton scatter in segmented detector arrays. Similar developments using coded apertures or scatter cameras for neutrons have recently occurred. The main limitation of such systems is not so much in their capability but rather in their complexity and cost which is prohibitive for large scale deployment. Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development on two separate calibration algorithms for characterizing the fused sensor system. The deviation from a simple inverse square-root fall-off of radiation intensity is explored and accounted for. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked. Infrared, laser or stereoscopic vision sensors are all options for computer-vision implementation depending on interior vs exterior deployment, resolution desired and other factors. Similarly the radiation sensors will be focused on gamma-ray or neutron detection due to the long travel length and ability to penetrate even moderate shielding. There is a significant difference between the vision sensors and radiation sensors in the way the 'source' or signals are generated. A vision sensor needs an external light-source to illuminate the object and then detects the re-emitted illumination (or lack thereof). However, for a radiation detector, the radioactive material is the source itself. The only exception to this is the field of active interrogations where radiation is beamed into a material to entice new/additional radiation emission beyond what the material would emit spontaneously. The aspect of the nuclear material being the source itself means that all other objects in the environment are 'illuminated' or irradiated by the source. Most radiation will readily penetrate regular material, scatter in new directions or be absorbed. Thus if a radiation source is located near a larger object that object will in turn scatter some radiation that was initially emitted in a direction other than the direction of the radiation detector, this can add to the count rate that is observed. The effect of these scatter is a deviation from the traditional distance dependence of the radiation signal and is a key challenge that needs a combined system calibration solution and algorithms. Thus both an algebraic approach as well as a statistical approach have been developed and independently evaluated to investigate the sensitivity to this deviation from the simplified radiation fall-off as a function of distance. The resulting calibrated system algorithms are used and demonstrated in various laboratory scenarios, and later in realistic tracking scenarios. The selection and testing of radiological and computer-vision sensors for the additional specific scenarios will be the subject of ongoing and future work. (authors)« less
Li, Miao; Li, Jun; Zhou, Yiyu
2015-12-08
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.
Li, Miao; Li, Jun; Zhou, Yiyu
2015-01-01
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234
Corbin-Berrigan, Laurie-Ann; Kowalski, Kristina; Faubert, Jocelyn; Christie, Brian; Gagnon, Isabelle
2018-05-02
As mild traumatic brain injury (mTBI) affects hundreds of thousands of children and their families each year, investigation of potential mTBI assessments and treatments is an important research target. Three-dimensional multiple object tracking (3D-MOT), where an individual must allocate attention to moving objects within 3D space, is one potentially promising assessment and treatment tool. To date, no research has looked at 3D-MOT in a pediatric mTBI population. Thus, the aim of this study was to examine 3D-MOT learning in children and youth with and without mTBI. Thirty-four participants (mean age=14.69±2.46 years), with and without mTBI, underwent six visits of 3D-MOT. A two-way repeated-measures analysis of variance (ANOVA) showed a significant time effect, a nonsignificant group effect, and a nonsignificant group-by-time interaction on absolute speed thresholds. In contrast, significant group and time effects and a significant group-by-time interaction on normalized speed thresholds were found. Individuals with mTBI showed smaller training gains at visit 2 than healthy controls, but the groups did not differ on the remaining visits. Although youth can significantly improve their 3D-MOT performance following mTBI, similar to noninjured individuals, they show slower speed of processing in the first few training sessions. This preliminary work suggests that using a 3D-MOT paradigm to train visual perception after mTBI may be beneficial for both stimulating recovery and informing return to activity decisions.
A coarse-to-fine kernel matching approach for mean-shift based visual tracking
NASA Astrophysics Data System (ADS)
Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.
2009-03-01
Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.
NASA Astrophysics Data System (ADS)
Fujimoto, K.; Yanagisawa, T.; Uetsuhara, M.
Automated detection and tracking of faint objects in optical, or bearing-only, sensor imagery is a topic of immense interest in space surveillance. Robust methods in this realm will lead to better space situational awareness (SSA) while reducing the cost of sensors and optics. They are especially relevant in the search for high area-to-mass ratio (HAMR) objects, as their apparent brightness can change significantly over time. A track-before-detect (TBD) approach has been shown to be suitable for faint, low signal-to-noise ratio (SNR) images of resident space objects (RSOs). TBD does not rely upon the extraction of feature points within the image based on some thresholding criteria, but rather directly takes as input the intensity information from the image file. Not only is all of the available information from the image used, TBD avoids the computational intractability of the conventional feature-based line detection (i.e., "string of pearls") approach to track detection for low SNR data. Implementation of TBD rooted in finite set statistics (FISST) theory has been proposed recently by Vo, et al. Compared to other TBD methods applied so far to SSA, such as the stacking method or multi-pass multi-period denoising, the FISST approach is statistically rigorous and has been shown to be more computationally efficient, thus paving the path toward on-line processing. In this paper, we intend to apply a multi-Bernoulli filter to actual CCD imagery of RSOs. The multi-Bernoulli filter can explicitly account for the birth and death of multiple targets in a measurement arc. TBD is achieved via a sequential Monte Carlo implementation. Preliminary results with simulated single-target data indicate that a Bernoulli filter can successfully track and detect objects with measurement SNR as low as 2.4. Although the advent of fast-cadence scientific CMOS sensors have made the automation of faint object detection a realistic goal, it is nonetheless a difficult goal, as measurements arcs in space surveillance are often both short and sparse. FISST methodologies have been applied to the general problem of SSA by many authors, but they generally focus on tracking scenarios with long arcs or assume that line detection is tractable. We will instead focus this work on estimating sensor-level kinematics of RSOs for low SNR too-short arc observations. Once said estimate is made available, track association and simultaneous initial orbit determination may be achieved via any number of proposed solutions to the too-short arc problem, such as those incorporating the admissible region. We show that the benefit of combining FISST-based TBD with too-short arc association goes both ways; i.e., the former provides consistent statistics regarding bearing-only measurements, whereas the latter makes better use of the precise dynamical models nominally applicable to RSOs in orbit determination.
Tracker: Image-Processing and Object-Tracking System Developed
NASA Technical Reports Server (NTRS)
Klimek, Robert B.; Wright, Theodore W.
1999-01-01
Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in extracting numerical instrumentation data that are embedded in images. All the results are saved in files for further data reduction and graphing. There are currently three Tracking Systems (workstations) operating near the laboratories and offices of Lewis Microgravity Science Division researchers. These systems are used independently by students, scientists, and university-based principal investigators. The researchers bring their tapes or films to the workstation and perform the tracking analysis. The resultant data files generated by the tracking process can then be analyzed on the spot, although most of the time researchers prefer to transfer them via the network to their offices for further analysis or plotting. In addition, many researchers have installed Tracker on computers in their office for desktop analysis of digital image sequences, which can be digitized by the Tracking System or some other means. Tracker has not only provided a capability to efficiently and automatically analyze large volumes of data, saving many hours of tedious work, but has also provided new capabilities to extract valuable information and phenomena that was heretofore undetected and unexploited.
Correlation and 3D-tracking of objects by pointing sensors
Griesmeyer, J. Michael
2017-04-04
A method and system for tracking at least one object using a plurality of pointing sensors and a tracking system are disclosed herein. In a general embodiment, the tracking system is configured to receive a series of observation data relative to the at least one object over a time base for each of the plurality of pointing sensors. The observation data may include sensor position data, pointing vector data and observation error data. The tracking system may further determine a triangulation point using a magnitude of a shortest line connecting a line of sight value from each of the series of observation data from each of the plurality of sensors to the at least one object, and perform correlation processing on the observation data and triangulation point to determine if at least two of the plurality of sensors are tracking the same object. Observation data may also be branched, associated and pruned using new incoming observation data.
Radar Data Processing Using a Distributed Computational System
1992-06-01
objects to processors must reduce Toc (N) (i.e., the time to compute on 85 N nodes) [Ref. 28]. Time spent communicating can represent a degradation of...de Sistemas e Computaq&o, s/ data. [9] Vilhena R. "IntroduqAo aos Algoritmos para Processamento de Marcaq6es e DistAncias", Escola Naval - Notas de...Aula - Automaq&o de Sistemas Navais, s/ data. (101 Averbuch A., Itzikcwitz S., and Kapon T. "Parallel Implementation of Multiple Model Tracking
NeuroManager: a workflow analysis based simulation management engine for computational neuroscience
Stockton, David B.; Santamaria, Fidel
2015-01-01
We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project. PMID:26528175
NeuroManager: a workflow analysis based simulation management engine for computational neuroscience.
Stockton, David B; Santamaria, Fidel
2015-01-01
We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.
Sensor Compromise Detection in Multiple-Target Tracking Systems
Doucette, Emily A.; Curtis, Jess W.
2018-01-01
Tracking multiple targets using a single estimator is a problem that is commonly approached within a trusted framework. There are many weaknesses that an adversary can exploit if it gains control over the sensors. Because the number of targets that the estimator has to track is not known with anticipation, an adversary could cause a loss of information or a degradation in the tracking precision. Other concerns include the introduction of false targets, which would result in a waste of computational and material resources, depending on the application. In this work, we study the problem of detecting compromised or faulty sensors in a multiple-target tracker, starting with the single-sensor case and then considering the multiple-sensor scenario. We propose an algorithm to detect a variety of attacks in the multiple-sensor case, via the application of finite set statistics (FISST), one-class classifiers and hypothesis testing using nonparametric techniques. PMID:29466314
CMOS imager for pointing and tracking applications
NASA Technical Reports Server (NTRS)
Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)
2006-01-01
Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.
Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions
NASA Astrophysics Data System (ADS)
Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.
2005-03-01
The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.
Multi-Complementary Model for Long-Term Tracking
Zhang, Deng; Zhang, Junchang; Xia, Chenyang
2018-01-01
In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170
Tag-to-Tag Interference Suppression Technique Based on Time Division for RFID.
Khadka, Grishma; Hwang, Suk-Seung
2017-01-01
Radio-frequency identification (RFID) is a tracking technology that enables immediate automatic object identification and rapid data sharing for a wide variety of modern applications using radio waves for data transmission from a tag to a reader. RFID is already well established in technical areas, and many companies have developed corresponding standards and measurement techniques. In the construction industry, effective monitoring of materials and equipment is an important task, and RFID helps to improve monitoring and controlling capabilities, in addition to enabling automation for construction projects. However, on construction sites, there are many tagged objects and multiple RFID tags that may interfere with each other's communications. This reduces the reliability and efficiency of the RFID system. In this paper, we propose an anti-collision algorithm for communication between multiple tags and a reader. In order to suppress interference signals from multiple neighboring tags, the proposed algorithm employs the time-division (TD) technique, where tags in the interrogation zone are assigned a specific time slot so that at every instance in time, a reader communicates with tags using the specific time slot. We present representative computer simulation examples to illustrate the performance of the proposed anti-collision technique for multiple RFID tags.
Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheriyadat, Anil M.
Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less
Li, Zhijun; Su, Chun-Yi
2013-09-01
In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.
Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio
2014-01-01
The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots.
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M; Ichimura, Taro
2016-07-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery.
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M.; Ichimura, Taro
2016-01-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684
A visual tracking method based on deep learning without online model updating
NASA Astrophysics Data System (ADS)
Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei
2018-02-01
The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.
Multi-static MIMO along track interferometry (ATI)
NASA Astrophysics Data System (ADS)
Knight, Chad; Deming, Ross; Gunther, Jake
2016-05-01
Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.
Semantic-based surveillance video retrieval.
Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve
2007-04-01
Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.
NASA Astrophysics Data System (ADS)
Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter
2014-10-01
Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.
The research on the mean shift algorithm for target tracking
NASA Astrophysics Data System (ADS)
CAO, Honghong
2017-06-01
The traditional mean shift algorithm for target tracking is effective and high real-time, but there still are some shortcomings. The traditional mean shift algorithm is easy to fall into local optimum in the tracking process, the effectiveness of the method is weak when the object is moving fast. And the size of the tracking window never changes, the method will fail when the size of the moving object changes, as a result, we come up with a new method. We use particle swarm optimization algorithm to optimize the mean shift algorithm for target tracking, Meanwhile, SIFT (scale-invariant feature transform) and affine transformation make the size of tracking window adaptive. At last, we evaluate the method by comparing experiments. Experimental result indicates that the proposed method can effectively track the object and the size of the tracking window changes.
Ego-Motion and Tracking for Continuous Object Learning: A Brief Survey
2017-09-01
ARL-TR-8167• SEP 2017 US Army Research Laboratory Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey by Jason Owens and Philip...SEP 2017 US Army Research Laboratory Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey by Jason Owens and Philip OsteenVehicle...
Multiple-target tracking implementation in the ebCMOS camera system: the LUSIPHER prototype
NASA Astrophysics Data System (ADS)
Doan, Quang Tuyen; Barbier, Remi; Dominjon, Agnes; Cajgfinger, Thomas; Guerin, Cyrille
2012-06-01
The domain of the low light imaging systems progresses very fast, thanks to detection and electronic multiplication technology evolution, such as the emCCD (electron multiplying CCD) or the ebCMOS (electron bombarded CMOS). We present an ebCMOS camera system that is able to track every 2 ms more than 2000 targets with a mean number of photons per target lower than two. The point light sources (targets) are spots generated by a microlens array (Shack-Hartmann) used in adaptive optics. The Multiple-Target-Tracking designed and implemented on a rugged workstation is described. The results and the performances of the system on the identification and tracking are presented and discussed.
2015-10-02
ratio or physical layout than the training sample, or new vs old bananas . For our system, this is similar the multimodal case mentioned above; however...different modes. Foods with multiple “types” such as green, yellow, and brown bananas are seamlessly handled as well. Secondly, with hundreds or thousands...Recognition and Classification of Food Grains, Fruits and Flowers Using Machine Vision. INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 5(4), 2009. [155] T. E
Estimating the number of people in crowded scenes
NASA Astrophysics Data System (ADS)
Kim, Minjin; Kim, Wonjun; Kim, Changick
2011-01-01
This paper presents a method to estimate the number of people in crowded scenes without using explicit object segmentation or tracking. The proposed method consists of three steps as follows: (1) extracting space-time interest points using eigenvalues of the local spatio-temporal gradient matrix, (2) generating crowd regions based on space-time interest points, and (3) estimating the crowd density based on the multiple regression. In experimental results, the efficiency and robustness of our proposed method are demonstrated by using PETS 2009 dataset.
A review of vision-based motion analysis in sport.
Barris, Sian; Button, Chris
2008-01-01
Efforts at player motion tracking have traditionally involved a range of data collection techniques from live observation to post-event video analysis where player movement patterns are manually recorded and categorized to determine performance effectiveness. Due to the considerable time required to manually collect and analyse such data, research has tended to focus only on small numbers of players within predefined playing areas. Whilst notational analysis is a convenient, practical and typically inexpensive technique, the validity and reliability of the process can vary depending on a number of factors, including how many observers are used, their experience, and the quality of their viewing perspective. Undoubtedly the application of automated tracking technology to team sports has been hampered because of inadequate video and computational facilities available at sports venues. However, the complex nature of movement inherent to many physical activities also represents a significant hurdle to overcome. Athletes tend to exhibit quick and agile movements, with many unpredictable changes in direction and also frequent collisions with other players. Each of these characteristics of player behaviour violate the assumptions of smooth movement on which computer tracking algorithms are typically based. Systems such as TRAKUS, SoccerMan, TRAKPERFORMANCE, Pfinder and Prozone all provide extrinsic feedback information to coaches and athletes. However, commercial tracking systems still require a fair amount of operator intervention to process the data after capture and are often limited by the restricted capture environments that can be used and the necessity for individuals to wear tracking devices. Whilst some online tracking systems alleviate the requirements of manual tracking, to our knowledge a completely automated system suitable for sports performance is not yet commercially available. Automatic motion tracking has been used successfully in other domains outside of elite sport performance, notably for surveillance in the military and security industry where automatic recognition of moving objects is achievable because identification of the objects is not necessary. The current challenge is to obtain appropriate video sequences that can robustly identify and label people over time, in a cluttered environment containing multiple interacting people. This problem is often compounded by the quality of video capture, the relative size and occlusion frequency of people, and also changes in illumination. Potential applications of an automated motion detection system are offered, such as: planning tactics and strategies; measuring team organisation; providing meaningful kinematic feedback; and objective measures of intervention effectiveness in team sports, which could benefit coaches, players, and sports scientists.
Lateral charge transport from heavy-ion tracks in integrated circuit chips
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.
1988-01-01
A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.
Enhanced online convolutional neural networks for object tracking
NASA Astrophysics Data System (ADS)
Zhang, Dengzhuo; Gao, Yun; Zhou, Hao; Li, Tianwen
2018-04-01
In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.
TrackPlot Enhancements: Support for Multiple Animal Tracks and Gyros
2015-09-30
visualization and kinematic analysis of marine animal movements derived from archival tag data. Tags are supported that have sensors for pressure, acceleration...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TrackPlot Enhancements: Support for Multiple Animal ...in combination with accelerometer and magnetometer data. 2) the extraction and frequency analysis of accelerations and rotation in animal
Three-dimensional tracking and imaging laser scanner for space operations
NASA Astrophysics Data System (ADS)
Laurin, Denis G.; Beraldin, J. A.; Blais, Francois; Rioux, Marc; Cournoyer, Luc
1999-05-01
This paper presents the development of a laser range scanner (LARS) as a three-dimensional sensor for space applications. The scanner is a versatile system capable of doing surface imaging, target ranging and tracking. It is capable of short range (0.5 m to 20 m) and long range (20 m to 10 km) sensing using triangulation and time-of-flight (TOF) methods respectively. At short range (1 m), the resolution is sub-millimeter and drops gradually with distance (2 cm at 10 m). For long range, the TOF provides a constant resolution of plus or minus 3 cm, independent of range. The LARS could complement the existing Canadian Space Vision System (CSVS) for robotic manipulation. As an active vision system, the LARS is immune to sunlight and adverse lighting; this is a major advantage over the CSVS, as outlined in this paper. The LARS could also replace existing radar systems used for rendezvous and docking. There are clear advantages of an optical system over a microwave radar in terms of size, mass, power and precision. Equipped with two high-speed galvanometers, the laser can be steered to address any point in a 30 degree X 30 degree field of view. The scanning can be continuous (raster scan, Lissajous) or direct (random). This gives the scanner the ability to register high-resolution 3D images of range and intensity (up to 4000 X 4000 pixels) and to perform point target tracking as well as object recognition and geometrical tracking. The imaging capability of the scanner using an eye-safe laser is demonstrated. An efficient fiber laser delivers 60 mW of CW or 3 (mu) J pulses at 20 kHz for TOF operation. Implementation of search and track of multiple targets is also demonstrated. For a single target, refresh rates up to 137 Hz is possible. Considerations for space qualification of the scanner are discussed. Typical space operations, such as docking, object attitude tracking, and inspections are described.
Adaptive particle filter for robust visual tracking
NASA Astrophysics Data System (ADS)
Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai
2009-10-01
Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.
Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.
Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko
2012-10-29
This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.
Memory-Based Multiagent Coevolution Modeling for Robust Moving Object Tracking
Wang, Yanjiang; Qi, Yujuan; Li, Yongping
2013-01-01
The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods. PMID:23843739
Memory-based multiagent coevolution modeling for robust moving object tracking.
Wang, Yanjiang; Qi, Yujuan; Li, Yongping
2013-01-01
The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods.
An experimental comparison of online object-tracking algorithms
NASA Astrophysics Data System (ADS)
Wang, Qing; Chen, Feng; Xu, Wenli; Yang, Ming-Hsuan
2011-09-01
This paper reviews and evaluates several state-of-the-art online object tracking algorithms. Notwithstanding decades of efforts, object tracking remains a challenging problem due to factors such as illumination, pose, scale, deformation, motion blur, noise, and occlusion. To account for appearance change, most recent tracking algorithms focus on robust object representations and effective state prediction. In this paper, we analyze the components of each tracking method and identify their key roles in dealing with specific challenges, thereby shedding light on how to choose and design algorithms for different situations. We compare state-of-the-art online tracking methods including the IVT,1 VRT,2 FragT,3 BoostT,4 SemiT,5 BeSemiT,6 L1T,7 MILT,8 VTD9 and TLD10 algorithms on numerous challenging sequences, and evaluate them with different performance metrics. The qualitative and quantitative comparative results demonstrate the strength and weakness of these algorithms.
Lagrangian 3D tracking of fluorescent microscopic objects in motion
NASA Astrophysics Data System (ADS)
Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.
2017-05-01
We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.
Lagrangian 3D tracking of fluorescent microscopic objects in motion.
Darnige, T; Figueroa-Morales, N; Bohec, P; Lindner, A; Clément, E
2017-05-01
We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.
Snapshot 3D tracking of insulin granules in live cells
NASA Astrophysics Data System (ADS)
Wang, Xiaolei; Huang, Xiang; Gdor, Itay; Daddysman, Matthew; Yi, Hannah; Selewa, Alan; Haunold, Theresa; Hereld, Mark; Scherer, Norbert F.
2018-02-01
Rapid and accurate volumetric imaging remains a challenge, yet has the potential to enhance understanding of cell function. We developed and used a multifocal microscope (MFM) for 3D snapshot imaging to allow 3D tracking of insulin granules labeled with mCherry in MIN6 cells. MFM employs a special diffractive optical element (DOE) to simultaneously image multiple focal planes. This simultaneous acquisition of information determines the 3D location of single objects at a speed only limited by the array detector's frame rate. We validated the accuracy of MFM imaging/tracking with fluorescence beads; the 3D positions and trajectories of single fluorescence beads can be determined accurately over a wide range of spatial and temporal scales. The 3D positions and trajectories of single insulin granules in a 3.2um deep volume were determined with imaging processing that combines 3D decovolution, shift correction, and finally tracking using the Imaris software package. We find that the motion of the granules is superdiffusive, but less so in 3D than 2D for cells grown on coverslip surfaces, suggesting an anisotropy in the cytoskeleton (e.g. microtubules and action).
Dørum, Erlend S; Alnæs, Dag; Kaufmann, Tobias; Richard, Geneviève; Lund, Martina J; Tønnesen, Siren; Sneve, Markus H; Mathiesen, Nina C; Rustan, Øyvind G; Gjertsen, Øivind; Vatn, Sigurd; Fure, Brynjar; Andreassen, Ole A; Nordvik, Jan Egil; Westlye, Lars T
2016-11-01
Multiple object tracking (MOT) is a powerful paradigm for measuring sustained attention. Although previous fMRI studies have delineated the brain activation patterns associated with tracking and documented reduced tracking performance in aging, age-related effects on brain activation during MOT have not been characterized. In particular, it is unclear if the task-related activation of different brain networks is correlated, and also if this coordination between activations within brain networks shows differential effects of age. We obtained fMRI data during MOT at two load conditions from a group of younger ( n = 25, mean age = 24.4 ± 5.1 years) and older ( n = 21, mean age = 64.7 ± 7.4 years) healthy adults. Using a combination of voxel-wise and independent component analysis, we investigated age-related differences in the brain network activation. In order to explore to which degree activation of the various brain networks reflect unique and common mechanisms, we assessed the correlations between the brain networks' activations. Behavioral performance revealed an age-related reduction in MOT accuracy. Voxel and brain network level analyses converged on decreased load-dependent activations of the dorsal attention network (DAN) and decreased load-dependent deactivations of the default mode networks (DMN) in the old group. Lastly, we found stronger correlations in the task-related activations within DAN and within DMN components for younger adults, and stronger correlations between DAN and DMN components for older adults. Using MOT as means for measuring attentional performance, we have demonstrated an age-related attentional decline. Network-level analysis revealed age-related alterations in network recruitment consisting of diminished activations of DAN and diminished deactivations of DMN in older relative to younger adults. We found stronger correlations within DMN and within DAN components for younger adults and stronger correlations between DAN and DMN components for older adults, indicating age-related alterations in the coordinated network-level activation during attentional processing.
The role of "rescue saccades" in tracking objects through occlusions.
Zelinsky, Gregory J; Todor, Andrei
2010-12-29
We hypothesize that our ability to track objects through occlusions is mediated by timely assistance from gaze in the form of "rescue saccades"-eye movements to tracked objects that are in danger of being lost due to impending occlusion. Observers tracked 2-4 target sharks (out of 9) for 20 s as they swam through a rendered 3D underwater scene. Targets were either allowed to enter into occlusions (occlusion trials) or not (no occlusion trials). Tracking accuracy with 2-3 targets was ≥ 92% regardless of target occlusion but dropped to 74% on occlusion trials with four targets (no occlusion trials remained accurate; 83%). This pattern was mirrored in the frequency of rescue saccades. Rescue saccades accompanied approximatlely 50% of the Track 2-3 target occlusions, but only 34% of the Track 4 occlusions. Their frequency also decreased with increasing distance between a target and the nearest other object, suggesting that it is the potential for target confusion that summons a rescue saccade, not occlusion itself. These findings provide evidence for a tracking system that monitors for events that might cause track loss (e.g., occlusions) and requests help from the oculomotor system to resolve these momentary crises. As the number of crises increase with the number of targets, some requests for help go unsatisfied, resulting in degraded tracking.
The impact of attentional, linguistic, and visual features during object naming
Clarke, Alasdair D. F.; Coco, Moreno I.; Keller, Frank
2013-01-01
Object detection and identification are fundamental to human vision, and there is mounting evidence that objects guide the allocation of visual attention. However, the role of objects in tasks involving multiple modalities is less clear. To address this question, we investigate object naming, a task in which participants have to verbally identify objects they see in photorealistic scenes. We report an eye-tracking study that investigates which features (attentional, visual, and linguistic) influence object naming. We find that the amount of visual attention directed toward an object, its position and saliency, along with linguistic factors such as word frequency, animacy, and semantic proximity, significantly influence whether the object will be named or not. We then ask how features from different modalities are combined during naming, and find significant interactions between saliency and position, saliency and linguistic features, and attention and position. We conclude that when the cognitive system performs tasks such as object naming, it uses input from one modality to constraint or enhance the processing of other modalities, rather than processing each input modality independently. PMID:24379792
NASA Astrophysics Data System (ADS)
Zittersteijn, Michiel; Schildknecht, Thomas; Vananti, Alessandro; Dolado Perez, Juan Carlos; Martinot, Vincent
2016-07-01
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention. This problem is also known as the Multiple Target Tracking (MTT) problem. The complexity of the MTT problem is defined by its dimension S. Current research tends to focus on the S = 2 MTT problem. The reason for this is that for S = 2 the problem has a P-complexity. However, with S = 2 the decision to associate a set of observations is based on the minimum amount of information, in ambiguous situations (e.g. satellite clusters) this will lead to incorrect associations. The S > 2 MTT problem is an NP-hard combinatorial optimization problem. In previous work an Elitist Genetic Algorithm (EGA) was proposed as a method to approximately solve this problem. It was shown that the EGA is able to find a good approximate solution with a polynomial time complexity. The EGA relies on solving the Lambert problem in order to perform the necessary orbit determinations. This means that the algorithm is restricted to orbits that are described by Keplerian motion. The work presented in this paper focuses on the impact that this restriction has on the algorithm performance.
Fast object reconstruction in block-based compressive low-light-level imaging
NASA Astrophysics Data System (ADS)
Ke, Jun; Sui, Dong; Wei, Ping
2014-11-01
In this paper we propose a simply yet effective and efficient method for long-term object tracking. Different from traditional visual tracking method which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion problem. To summarize, our algorithm can be roughly decomposed in a initialization stage and a tracking stage. In the initialization stage, an offline classifier is trained to get the object appearance information in category level. When the video stream is coming, the pre-trained offline classifier is used for detecting the potential target and initializing the tracking stage. In the tracking stage, it consists of three parts which are online tracking part, offline tracking part and confidence judgment part. Online tracking part captures the specific target appearance information while detection part localizes the object based on the pre-trained offline classifier. Since there is no data dependence between online tracking and offline detection, these two parts are running in parallel to significantly improve the processing speed. A confidence selection mechanism is proposed to optimize the object location. Besides, we also propose a simple mechanism to judge the absence of the object. If the target is lost, the pre-trained offline classifier is utilized to re-initialize the whole algorithm as long as the target is re-located. During experiment, we evaluate our method on several challenging video sequences and demonstrate competitive results.
Kernelized correlation tracking with long-term motion cues
NASA Astrophysics Data System (ADS)
Lv, Yunqiu; Liu, Kai; Cheng, Fei
2018-04-01
Robust object tracking is a challenging task in computer vision due to interruptions such as deformation, fast motion and especially, occlusion of tracked object. When occlusions occur, image data will be unreliable and is insufficient for the tracker to depict the object of interest. Therefore, most trackers are prone to fail under occlusion. In this paper, an occlusion judgement and handling method based on segmentation of the target is proposed. If the target is occluded, the speed and direction of it must be different from the objects occluding it. Hence, the value of motion features are emphasized. Considering the efficiency and robustness of Kernelized Correlation Filter Tracking (KCF), it is adopted as a pre-tracker to obtain a predicted position of the target. By analyzing long-term motion cues of objects around this position, the tracked object is labelled. Hence, occlusion could be detected easily. Experimental results suggest that our tracker achieves a favorable performance and effectively handles occlusion and drifting problems.
Multiple Learning Tracks: For Training Multinational Managers
ERIC Educational Resources Information Center
Harvey, Michael G.; Kerin, Roger A.
1977-01-01
The problem of identifying and training college students to be effective multinational marketing managers is investigated in three parts: (1) Identification of multinational manager attributes, (2) selection of multinational managers, and (3) multiple "track" training programs. (TA)
Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall
NASA Astrophysics Data System (ADS)
Bouma, Henri; Baan, Jan; Landsmeer, Sander; Kruszynski, Chris; van Antwerpen, Gert; Dijk, Judith
2013-05-01
The capability to track individuals in CCTV cameras is important for e.g. surveillance applications at large areas such as train stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras. In this paper, we present a system for real-time tracking and fast interactive retrieval of persons in video streams from multiple static surveillance cameras. This system is demonstrated in a shopping mall, where the cameras are positioned without overlapping fields-of-view and have different lighting conditions. The results show that the system allows an operator to find the origin or destination of a person more efficiently. The misses are reduced with 37%, which is a significant improvement.
Nonlinear Motion Tracking by Deep Learning Architecture
NASA Astrophysics Data System (ADS)
Verma, Arnav; Samaiya, Devesh; Gupta, Karunesh K.
2018-03-01
In the world of Artificial Intelligence, object motion tracking is one of the major problems. The extensive research is being carried out to track people in crowd. This paper presents a unique technique for nonlinear motion tracking in the absence of prior knowledge of nature of nonlinear path that the object being tracked may follow. We achieve this by first obtaining the centroid of the object and then using the centroid as the current example for a recurrent neural network trained using real-time recurrent learning. We have tweaked the standard algorithm slightly and have accumulated the gradient for few previous iterations instead of using just the current iteration as is the norm. We show that for a single object, such a recurrent neural network is highly capable of approximating the nonlinearity of its path.
NASA Astrophysics Data System (ADS)
Joly, Alain; Jorgensen, Dave; Shapiro, Melvyn A.; Thorpe, Alan; Bessemoulin, Pierre; Browning, Keith A.; Cammas, Jean-Pierre; Chalon, Jean-Pierre; Clough, Sidney A.; Emanuel, Kerry A.; Eymard, Laurence; Gall, Robert; Hildebrand, Peter H.; Langland, Rolf H.; Lemaître, Yvon; Lynch, Peter; Moore, James A.; Persson, P. Ola G.; Snyder, Chris; Wakimoto, Roger M.
1997-09-01
The Fronts and Atlantic Storm-Track Experiment (FASTEX) will address the life cycle of cyclones evolving over the North Atlantic Ocean in January and February 1997. The objectives of FASTEX are to improve the forecasts of end-of-storm-track cyclogenesis (primarily in the eastern Atlantic but with applicability to the Pacific) in the range 24 to 72 h, to enable the testing of theoretical ideas on cyclone formation and development, and to document the vertical and the mesoscale structure of cloud systems in mature cyclones and their relation to the dynamics. The observing system includes ships that will remain in the vicinity of the main baroclinic zone in the central Atlantic Ocean, jet aircraft that will fly and drop sondes off the east coast of North America or over the central Atlantic Ocean, turboprop aircraft that will survey mature cyclones off Ireland with dropsondes, and airborne Doppler radars, including ASTRAIA/ELDORA. Radiosounding frequency around the North Atlantic basin will be increased, as well as the number of drifting buoys. These facilities will be activated during multiple-day intensive observing periods in order to observe the same meteorological systems at several stages of their life cycle. A central archive will be developed in quasi-real time in Toulouse, France, thus allowing data to be made widely available to the scientific community.
NASA Technical Reports Server (NTRS)
Phillips, Veronica J.
2017-01-01
STI is for a fact sheet on the Space Object Query Tool being created by the MDC. When planning launches, NASA must first factor in the tens of thousands of objects already in orbit around the Earth. The number of human-made objects, including nonfunctional spacecraft, abandoned launch vehicle stages, mission-related debris and fragmentation debris orbiting Earth has grown steadily since Sputnik 1 was launched in 1957. Currently, the U.S. Department of Defenses Joint Space Operations Center, or JSpOC, tracks over 15,000 distinct objects and provides data for more than 40,000 objects via its Space-Track program, found at space-track.org.
A data fusion approach for track monitoring from multiple in-service trains
NASA Astrophysics Data System (ADS)
Lederman, George; Chen, Siheng; Garrett, James H.; Kovačević, Jelena; Noh, Hae Young; Bielak, Jacobo
2017-10-01
We present a data fusion approach for enabling data-driven rail-infrastructure monitoring from multiple in-service trains. A number of researchers have proposed using vibration data collected from in-service trains as a low-cost method to monitor track geometry. The majority of this work has focused on developing novel features to extract information about the tracks from data produced by individual sensors on individual trains. We extend this work by presenting a technique to combine extracted features from multiple passes over the tracks from multiple sensors aboard multiple vehicles. There are a number of challenges in combining multiple data sources, like different relative position coordinates depending on the location of the sensor within the train. Furthermore, as the number of sensors increases, the likelihood that some will malfunction also increases. We use a two-step approach that first minimizes position offset errors through data alignment, then fuses the data with a novel adaptive Kalman filter that weights data according to its estimated reliability. We show the efficacy of this approach both through simulations and on a data-set collected from two instrumented trains operating over a one-year period. Combining data from numerous in-service trains allows for more continuous and more reliable data-driven monitoring than analyzing data from any one train alone; as the number of instrumented trains increases, the proposed fusion approach could facilitate track monitoring of entire rail-networks.
Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.
Quesada, Luis; León, Alejandro J
2012-10-01
Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.
An object detection and tracking system for unmanned surface vehicles
NASA Astrophysics Data System (ADS)
Yang, Jian; Xiao, Yang; Fang, Zhiwen; Zhang, Naiwen; Wang, Li; Li, Tao
2017-10-01
Object detection and tracking are critical parts of unmanned surface vehicles(USV) to achieve automatic obstacle avoidance. Off-the-shelf object detection methods have achieved impressive accuracy in public datasets, though they still meet bottlenecks in practice, such as high time consumption and low detection quality. In this paper, we propose a novel system for USV, which is able to locate the object more accurately while being fast and stable simultaneously. Firstly, we employ Faster R-CNN to acquire several initial raw bounding boxes. Secondly, the image is segmented to a few superpixels. For each initial box, the superpixels inside will be grouped into a whole according to a combination strategy, and a new box is thereafter generated as the circumscribed bounding box of the final superpixel. Thirdly, we utilize KCF to track these objects after several frames, Faster-RCNN is again used to re-detect objects inside tracked boxes to prevent tracking failure as well as remove empty boxes. Finally, we utilize Faster R-CNN to detect objects in the next image, and refine object boxes by repeating the second module of our system. The experimental results demonstrate that our system is fast, robust and accurate, which can be applied to USV in practice.
D Tracking Based Augmented Reality for Cultural Heritage Data Management
NASA Astrophysics Data System (ADS)
Battini, C.; Landi, G.
2015-02-01
The development of contactless documentation techniques is allowing researchers to collect high volumes of three-dimensional data in a short time but with high levels of accuracy. The digitalisation of cultural heritage opens up the possibility of using image processing and analysis, and computer graphics techniques, to preserve this heritage for future generations; augmenting it with additional information or with new possibilities for its enjoyment and use. The collection of precise datasets about cultural heritage status is crucial for its interpretation, its conservation and during the restoration processes. The application of digital-imaging solutions for various feature extraction, image data-analysis techniques, and three-dimensional reconstruction of ancient artworks, allows the creation of multidimensional models that can incorporate information coming from heterogeneous data sets, research results and historical sources. Real objects can be scanned and reconstructed virtually, with high levels of data accuracy and resolution. Real-time visualisation software and hardware is rapidly evolving and complex three-dimensional models can be interactively visualised and explored on applications developed for mobile devices. This paper will show how a 3D reconstruction of an object, with multiple layers of information, can be stored and visualised through a mobile application that will allow interaction with a physical object for its study and analysis, using 3D Tracking based Augmented Reality techniques.
Automatic cable artifact removal for cardiac C-arm CT imaging
NASA Astrophysics Data System (ADS)
Haase, C.; Schäfer, D.; Kim, M.; Chen, S. J.; Carroll, J.; Eshuis, P.; Dössel, O.; Grass, M.
2014-03-01
Cardiac C-arm computed tomography (CT) imaging using interventional C-arm systems can be applied in various areas of interventional cardiology ranging from structural heart disease and electrophysiology interventions to valve procedures in hybrid operating rooms. In contrast to conventional CT systems, the reconstruction field of view (FOV) of C-arm systems is limited to a region of interest in cone-beam (along the patient axis) and fan-beam (in the transaxial plane) direction. Hence, highly X-ray opaque objects (e.g. cables from the interventional setup) outside the reconstruction field of view, yield streak artifacts in the reconstruction volume. To decrease the impact of these streaks a cable tracking approach on the 2D projection sequences with subsequent interpolation is applied. The proposed approach uses the fact that the projected position of objects outside the reconstruction volume depends strongly on the projection perspective. By tracking candidate points over multiple projections only objects outside the reconstruction volume are segmented in the projections. The method is quantitatively evaluated based on 30 simulated CT data sets. The 3D root mean square deviation to a reference image could be reduced for all cases by an average of 50 % (min 16 %, max 76 %). Image quality improvement is shown for clinical whole heart data sets acquired on an interventional C-arm system.
Multi-object detection and tracking technology based on hexagonal opto-electronic detector
NASA Astrophysics Data System (ADS)
Song, Yong; Hao, Qun; Li, Xiang
2008-02-01
A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.
Method and apparatus for imaging through 3-dimensional tracking of protons
NASA Technical Reports Server (NTRS)
Ryan, James M. (Inventor); Macri, John R. (Inventor); McConnell, Mark L. (Inventor)
2001-01-01
A method and apparatus for creating density images of an object through the 3-dimensional tracking of protons that have passed through the object are provided. More specifically, the 3-dimensional tracking of the protons is accomplished by gathering and analyzing images of the ionization tracks of the protons in a closely packed stack of scintillating fibers.
Visual tracking using objectness-bounding box regression and correlation filters
NASA Astrophysics Data System (ADS)
Mbelwa, Jimmy T.; Zhao, Qingjie; Lu, Yao; Wang, Fasheng; Mbise, Mercy
2018-03-01
Visual tracking is a fundamental problem in computer vision with extensive application domains in surveillance and intelligent systems. Recently, correlation filter-based tracking methods have shown a great achievement in terms of robustness, accuracy, and speed. However, such methods have a problem of dealing with fast motion (FM), motion blur (MB), illumination variation (IV), and drifting caused by occlusion (OCC). To solve this problem, a tracking method that integrates objectness-bounding box regression (O-BBR) model and a scheme based on kernelized correlation filter (KCF) is proposed. The scheme based on KCF is used to improve the tracking performance of FM and MB. For handling drift problem caused by OCC and IV, we propose objectness proposals trained in bounding box regression as prior knowledge to provide candidates and background suppression. Finally, scheme KCF as a base tracker and O-BBR are fused to obtain a state of a target object. Extensive experimental comparisons of the developed tracking method with other state-of-the-art trackers are performed on some of the challenging video sequences. Experimental comparison results show that our proposed tracking method outperforms other state-of-the-art tracking methods in terms of effectiveness, accuracy, and robustness.
The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery.
Swan, Melanie
2013-06-01
A key contemporary trend emerging in big data science is the quantified self (QS)-individuals engaged in the self-tracking of any kind of biological, physical, behavioral, or environmental information as n=1 individuals or in groups. There are opportunities for big data scientists to develop new models to support QS data collection, integration, and analysis, and also to lead in defining open-access database resources and privacy standards for how personal data is used. Next-generation QS applications could include tools for rendering QS data meaningful in behavior change, establishing baselines and variability in objective metrics, applying new kinds of pattern recognition techniques, and aggregating multiple self-tracking data streams from wearable electronics, biosensors, mobile phones, genomic data, and cloud-based services. The long-term vision of QS activity is that of a systemic monitoring approach where an individual's continuous personal information climate provides real-time performance optimization suggestions. There are some potential limitations related to QS activity-barriers to widespread adoption and a critique regarding scientific soundness-but these may be overcome. One interesting aspect of QS activity is that it is fundamentally a quantitative and qualitative phenomenon since it includes both the collection of objective metrics data and the subjective experience of the impact of these data. Some of this dynamic is being explored as the quantified self is becoming the qualified self in two new ways: by applying QS methods to the tracking of qualitative phenomena such as mood, and by understanding that QS data collection is just the first step in creating qualitative feedback loops for behavior change. In the long-term future, the quantified self may become additionally transformed into the extended exoself as data quantification and self-tracking enable the development of new sense capabilities that are not possible with ordinary senses. The individual body becomes a more knowable, calculable, and administrable object through QS activity, and individuals have an increasingly intimate relationship with data as it mediates the experience of reality.
Real-Time Radar-Based Tracking and State Estimation of Multiple Non-Conformant Aircraft
NASA Technical Reports Server (NTRS)
Cook, Brandon; Arnett, Timothy; Macmann, Owen; Kumar, Manish
2017-01-01
In this study, a novel solution for automated tracking of multiple unknown aircraft is proposed. Many current methods use transponders to self-report state information and augment track identification. While conformant aircraft typically report transponder information to alert surrounding aircraft of its state, vehicles may exist in the airspace that are non-compliant and need to be accurately tracked using alternative methods. In this study, a multi-agent tracking solution is presented that solely utilizes primary surveillance radar data to estimate aircraft state information. Main research challenges include state estimation, track management, data association, and establishing persistent track validity. In an effort to realize these challenges, techniques such as Maximum a Posteriori estimation, Kalman filtering, degree of membership data association, and Nearest Neighbor Spanning Tree clustering are implemented for this application.
Final Technical Report for EE0006091: H2Pump Hydrogen Recycling System Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, Rhonda
The objective of this project is to demonstrate the product readiness and to quantify the benefits and customer value proposition of H2Pump’s Hydrogen Recycling System (HRS-100™) by installing and analyzing the operation of multiple prototype 100-kg per day systems in real world customer locations. The data gathered will be used to measure reliability, demonstrate the value proposition to customers, and validate our business model. H2Pump will install, track and report multiple field demonstration systems in industrial heat treating and semi-conductor applications. The customer demonstrations will be used to develop case studies and showcase the benefits of the technology to drivemore » market adoption.« less
An object tracking method based on guided filter for night fusion image
NASA Astrophysics Data System (ADS)
Qian, Xiaoyan; Wang, Yuedong; Han, Lei
2016-01-01
Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking with guided image filter for accurate and robust night fusion image tracking. Firstly, frame difference is applied to produce the coarse target, which helps to generate observation models. Under the restriction of these models and local source image, guided filter generates sufficient and accurate foreground target. Then accurate boundaries of the target can be extracted from detection results. Finally timely updating for observation models help to avoid tracking shift. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-art methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon
2016-06-28
An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.
Visual object tracking by correlation filters and online learning
NASA Astrophysics Data System (ADS)
Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei
2018-06-01
Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.
Laser-Based Pedestrian Tracking in Outdoor Environments by Multiple Mobile Robots
Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko
2012-01-01
This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures. PMID:23202171
Localization and tracking of moving objects in two-dimensional space by echolocation.
Matsuo, Ikuo
2013-02-01
Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. Experimental evidence indicates that bats are capable of locating static objects with a range accuracy of less than 1 μs. A previously introduced model estimates ranges of multiple, static objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low signal-to-noise ratio (SNR). The range accuracy was dependent not only on the SNR but also the Doppler shift, which was dependent on the movements. However, it was unclear whether this model could estimate the moving object range at each timepoint. In this study, echoes were measured from the rotating pole at two receiving points by intermittently emitting LFM sounds. The model was shown to localize moving objects in two-dimensional space by accurately estimating the object's range at each timepoint.
A-Track: Detecting Moving Objects in FITS images
NASA Astrophysics Data System (ADS)
Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.
2017-04-01
A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.
Like a rolling stone: naturalistic visual kinematics facilitate tracking eye movements.
Souto, David; Kerzel, Dirk
2013-02-06
Newtonian physics constrains object kinematics in the real world. We asked whether eye movements towards tracked objects depend on their compliance with those constraints. In particular, the force of gravity constrains round objects to roll on the ground with a particular rotational and translational motion. We measured tracking eye movements towards rolling objects. We found that objects with rotational and translational motion that was congruent with an object rolling on the ground elicited faster tracking eye movements during pursuit initiation than incongruent stimuli. Relative to a condition without rotational component, we compared objects with this motion with a condition in which there was no rotational component, we essentially obtained benefits of congruence, and, to a lesser extent, costs from incongruence. Anticipatory pursuit responses showed no congruence effect, suggesting that the effect is based on visually-driven predictions, not on velocity storage. We suggest that the eye movement system incorporates information about object kinematics acquired by a lifetime of experience with visual stimuli obeying the laws of Newtonian physics.
Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory
NASA Astrophysics Data System (ADS)
Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.
The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue of approximately 100 geostationary objects.
Maximum entropy perception-action space: a Bayesian model of eye movement selection
NASA Astrophysics Data System (ADS)
Colas, Francis; Bessière, Pierre; Girard, Benoît
2011-03-01
In this article, we investigate the issue of the selection of eye movements in a free-eye Multiple Object Tracking task. We propose a Bayesian model of retinotopic maps with a complex logarithmic mapping. This model is structured in two parts: a representation of the visual scene, and a decision model based on the representation. We compare different decision models based on different features of the representation and we show that taking into account uncertainty helps predict the eye movements of subjects recorded in a psychophysics experiment. Finally, based on experimental data, we postulate that the complex logarithmic mapping has a functional relevance, as the density of objects in this space in more uniform than expected. This may indicate that the representation space and control strategies are such that the object density is of maximum entropy.
Orbital State Uncertainty Realism
NASA Astrophysics Data System (ADS)
Horwood, J.; Poore, A. B.
2012-09-01
Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten times as long* as the latter. The filter correction step also furnishes a statistically rigorous *prediction error* which appears in the likelihood ratios for scoring the association of one report or observation to another. Thus, the new filter can be used to support multi-target tracking within a general multiple hypothesis tracking framework. Additionally, the new distribution admits a distance metric which extends the classical Mahalanobis distance (chi^2 statistic). This metric provides a test for statistical significance and facilitates single-frame data association methods with the potential to easily extend the covariance-based track association algorithm of Hill, Sabol, and Alfriend. The filtering, data fusion, and association methods using the new class of orbital state PDFs are shown to be mathematically tractable and operationally viable.
Multiple hypothesis tracking for the cyber domain
NASA Astrophysics Data System (ADS)
Schwoegler, Stefan; Blackman, Sam; Holsopple, Jared; Hirsch, Michael J.
2011-09-01
This paper discusses how methods used for conventional multiple hypothesis tracking (MHT) can be extended to domain-agnostic tracking of entities from non-kinematic constraints such as those imposed by cyber attacks in a potentially dense false alarm background. MHT is widely recognized as the premier method to avoid corrupting tracks with spurious data in the kinematic domain but it has not been extensively applied to other problem domains. The traditional approach is to tightly couple track maintenance (prediction, gating, filtering, probabilistic pruning, and target confirmation) with hypothesis management (clustering, incompatibility maintenance, hypothesis formation, and Nassociation pruning). However, by separating the domain specific track maintenance portion from the domain agnostic hypothesis management piece, we can begin to apply the wealth of knowledge gained from ground and air tracking solutions to the cyber (and other) domains. These realizations led to the creation of Raytheon's Multiple Hypothesis Extensible Tracking Architecture (MHETA). In this paper, we showcase MHETA for the cyber domain, plugging in a well established method, CUBRC's INFormation Engine for Real-time Decision making, (INFERD), for the association portion of the MHT. The result is a CyberMHT. We demonstrate the power of MHETA-INFERD using simulated data. Using metrics from both the tracking and cyber domains, we show that while no tracker is perfect, by applying MHETA-INFERD, advanced nonkinematic tracks can be captured in an automated way, perform better than non-MHT approaches, and decrease analyst response time to cyber threats.
Using eye-tracking technology for communication in Rett syndrome: perceptions of impact.
Vessoyan, Kelli; Steckle, Gill; Easton, Barb; Nichols, Megan; Mok Siu, Victoria; McDougall, Janette
2018-04-27
Studies have investigated the use of eye-tracking technology to assess cognition in individuals with Rett syndrome, but few have looked at this access method for communication for this group. Loss of speech, decreased hand use, and severe motor apraxia significantly impact functional communication for this population. Eye gaze is one modality that may be used successfully by individuals with Rett syndrome. This multiple case study explored whether using eye-tracking technology, with ongoing support from a team of augmentative and alternative communication (AAC) therapists, could help four participants with Rett syndrome meet individualized communication goals. Two secondary objectives were to examine parents' perspectives on (a) the psychosocial impact of their child's use of the technology, and (b) satisfaction with using the technology. All four participants were rated by the treating therapists to have made improvement on their goals. According to both quantitative findings and descriptive information, eye-tracking technology was viewed by parents as contributing to participants' improved psychosocial functioning. Parents reported being highly satisfied with both the device and the clinical services received. This study provides initial evidence that eye-tracking may be perceived as a worthwhile and potentially satisfactory technology to support individuals with Rett syndrome in communicating. Future, more rigorous research that addresses the limitations of a case study design is required to substantiate study findings.
A mathematical model for computer image tracking.
Legters, G R; Young, T Y
1982-06-01
A mathematical model using an operator formulation for a moving object in a sequence of images is presented. Time-varying translation and rotation operators are derived to describe the motion. A variational estimation algorithm is developed to track the dynamic parameters of the operators. The occlusion problem is alleviated by using a predictive Kalman filter to keep the tracking on course during severe occlusion. The tracking algorithm (variational estimation in conjunction with Kalman filter) is implemented to track moving objects with occasional occlusion in computer-simulated binary images.
NASA Astrophysics Data System (ADS)
Miyachi, Yukiya; Arakawa, Mototaka; Kanai, Hiroshi
2018-07-01
In our studies on ultrasonic elasticity assessment, minute change in the thickness of the arterial wall was measured by the phased-tracking method. However, most images in carotid artery examinations contain multiple-reflection noise, making it difficult to evaluate arterial wall elasticity precisely. In the present study, a modified phased-tracking method using the pulse inversion method was examined to reduce the influence of the multiple-reflection noise. Moreover, aliasing in the harmonic components was corrected by the fundamental components. The conventional and proposed methods were applied to a pulsated tube phantom mimicking the arterial wall. For the conventional method, the elasticity was 298 kPa without multiple-reflection noise and 353 kPa with multiple-reflection noise on the posterior wall. That of the proposed method was 302 kPa without multiple-reflection noise and 297 kPa with multiple-reflection noise on the posterior wall. Therefore, the proposed method was very robust against multiple-reflection noise.
Electrically tunable lens speeds up 3D orbital tracking
Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico
2015-01-01
3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037
NASA Technical Reports Server (NTRS)
Martin, C. F.; Oh, I. H.
1979-01-01
Range rate tracking of GEOS 3 through the ATS 6 satellite was used, along with ground tracking of GEOS 3, to estimate the geocentric gravitational constant (GM). Using multiple half day arcs, a GM of 398600.52 + or - 0.12 cu km/sq sec was estimated using the GEM 10 gravity model, based on speed of light of 299792.458 km/sec. Tracking station coordinates were simultaneously adjusted, leaving geopotential model error as the dominant error source. Baselines between the adjusted NASA laser sites show better than 15 cm agreement with multiple short arc GEOS 3 solutions.
OpenCV and TYZX : video surveillance for tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jim; Spencer, Andrew; Chu, Eric
2008-08-01
As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processingmore » solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.« less
Robust Kernel-Based Object Tracking with Multiple Kernel Centers
2009-07-09
orientation and scale estimation, which will be added in Section 4. 1017 where gji ,l represents g(‖ rl(y j)−xi h0 ‖2) for short. Note that y j cancels out...ρ(zj)]g j i,l hj ∑N i=1 ∑L l=1 w j i,lg j i,l (47) where, vji,l = (xi − yj)T ∂∆rl(φ j) ∂φ (48) sji,l = (xi − yj)T (xi − rl(zj)) (49) and gji ,l
Low Complexity Track Initialization and Fusion for Multi-Modal Sensor Networks
2012-11-08
feature was demonstrated via the simulations. Aerospace 2011work further documents our investigation of multiple target tracking filters in...bounds that determine how well a sensor network can resolve and localize multiple targets as a function of the operating parameters such as sensor...probability density (PHD) filter for binary measurements using proximity sensors. 15. SUBJECT TERMS proximity sensors, PHD filter, multiple
Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen
2017-01-01
An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
NASA Astrophysics Data System (ADS)
Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang
2018-01-01
Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.
Long-term object tracking combined offline with online learning
NASA Astrophysics Data System (ADS)
Hu, Mengjie; Wei, Zhenzhong; Zhang, Guangjun
2016-04-01
We propose a simple yet effective method for long-term object tracking. Different from the traditional visual tracking method, which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion. To summarize, our algorithm can be roughly decomposed into an initialization stage and a tracking stage. In the initialization stage, an offline detector is trained to get the object appearance information at the category level, which is used for detecting the potential target and initializing the tracking stage. The tracking stage consists of three modules: the online tracking module, detection module, and decision module. A pretrained detector is used for maintaining drift of the online tracker, while the online tracker is used for filtering out false positive detections. A confidence selection mechanism is proposed to optimize the object location based on the online tracker and detection. If the target is lost, the pretrained detector is utilized to reinitialize the whole algorithm when the target is relocated. During experiments, we evaluate our method on several challenging video sequences, and it demonstrates huge improvement compared with detection and online tracking only.
Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.
Saiki, Jun; Miyatsuji, Hirofumi
2009-03-23
Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.
Improved semi-supervised online boosting for object tracking
NASA Astrophysics Data System (ADS)
Li, Yicui; Qi, Lin; Tan, Shukun
2016-10-01
The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.
Mark Tracking: Position/orientation measurements using 4-circle mark and its tracking experiments
NASA Technical Reports Server (NTRS)
Kanda, Shinji; Okabayashi, Keijyu; Maruyama, Tsugito; Uchiyama, Takashi
1994-01-01
Future space robots require position and orientation tracking with visual feedback control to track and capture floating objects and satellites. We developed a four-circle mark that is useful for this purpose. With this mark, four geometric center positions as feature points can be extracted from the mark by simple image processing. We also developed a position and orientation measurement method that uses the four feature points in our mark. The mark gave good enough image measurement accuracy to let space robots approach and contact objects. A visual feedback control system using this mark enabled a robot arm to track a target object accurately. The control system was able to tolerate a time delay of 2 seconds.
Compressed multi-block local binary pattern for object tracking
NASA Astrophysics Data System (ADS)
Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao
2018-04-01
Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.
Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects
2014-09-01
based laser systems can be limited by the effects of tumbling, extremely accurate Doppler measurement is possible using a doublet coherent laser ...Doublet pulse coherent laser radar for tracking of resident space objects Narasimha S. Prasad *1 , Van Rudd 2 , Scott Shald 2 , Stephan...Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Phenomenal permanence and the development of predictive tracking in infancy.
Bertenthal, Bennett I; Longo, Matthew R; Kenny, Sarah
2007-01-01
The perceived spatiotemporal continuity of objects depends on the way they appear and disappear as they move in the spatial layout. This study investigated whether infants' predictive tracking of a briefly occluded object is sensitive to the manner by which the object disappears and reappears. Five-, 7-, and 9-month-old infants were shown a ball rolling across a visual scene and briefly disappearing via kinetic occlusion, instantaneous disappearance, implosion, or virtual occlusion. Three different measures converged to show that predictive tracking increased with age and that infants were most likely to anticipate the reappearance of the ball following kinetic occlusion. These results suggest that infants' knowledge of the permanence and nonpermanence of objects is embodied in their predictive tracking.
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit
NASA Astrophysics Data System (ADS)
Kozlinskiy, Alexandr
2017-08-01
The Mu3e experiment is designed to search for the lepton flavor violating decay μ+ → e+e+e-. The aim of the experiment is to reach a branching ratio sensitivity of 10-16. In a first phase the experiment will be performed at an existing beam line at the Paul-Scherrer Institute (Switzerland) providing 108 muons per second, which will allow to reach a sensitivity of 2 · 10-15. The muons with a momentum of about 28 MeV/c are stopped and decay at rest on a target. The decay products (positrons and electrons) with energies below 53MeV are measured by a tracking detector consisting of two double layers of 50 μm thin silicon pixel sensors. The high granularity of the pixel detector with a pixel size of 80 μm × 80 μm allows for a precise track reconstruction in the high multiplicity environment of the Mu3e experiment, reaching 100 tracks per reconstruction frame of 50 ns in the final phase of the experiment. To deal with such high rates and combinatorics, the Mu3e track reconstruction uses a novel fit algorithm that in the simplest case takes into account only the multiple scattering, which allows for a fast online tracking on a GPU based filter farm. An implementation of the 3-dimensional multiple scattering fit based on hit triplets is described. The extension of the fit that takes into account energy losses and pixel size is used for offline track reconstruction. The algorithm and performance of the offline track reconstruction based on a full Geant4 simulation of the Mu3e detector are presented.
Automated recognition and tracking of aerosol threat plumes with an IR camera pod
NASA Astrophysics Data System (ADS)
Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan
2012-06-01
Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.
NASA Astrophysics Data System (ADS)
Ho, Tzung-Hsien; Trisno, Sugianto; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.
2004-02-01
Free space, dynamic, optical wireless communications will require topology control for optimization of network performance. Such networks may need to be configured for bi- or multiple-connectedness, reliability and quality-of-service. Topology control involves the introduction of new links and/or nodes into the network to achieve such performance objectives through autonomous reconfiguration as well as precise pointing, acquisition, tracking, and steering of laser beams. Reconfiguration may be required because of link degradation resulting from obscuration or node loss. As a result, the optical transceivers may need to be re-directed to new or existing nodes within the network and tracked on moving nodes. The redirection of transceivers may require operation over a whole sphere, so that small-angle beam steering techniques cannot be applied. In this context, we are studying the performance of optical wireless links using lightweight, bi-static transceivers mounted on high-performance stepping motor driven stages. These motors provide an angular resolution of 0.00072 degree at up to 80,000 steps per second. This paper focuses on the performance characteristics of these agile transceivers for pointing, acquisition, and tracking (PAT), including the influence of acceleration/deceleration time, motor angular speed, and angular re-adjustment, on latency and packet loss in small free space optical (FSO) wireless test networks.
Detection, Identification, Location, and Remote Sensing Using SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton, Richard J.; Kennedy, Timothy F.; Williams, Robert M.; Fink, Patrick W.; Ngo, Phong H.
2009-01-01
The Electromagnetic Systems Branch (EV4) of the Avionic Systems Division at NASA Johnson Space Center in Houston, TX is studying the utility of surface acoustic wave (SAW) radiofrequency identification (RFID) tags for multiple wireless applications including detection, identification, tracking, and remote sensing of objects on the lunar surface, monitoring of environmental test facilities, structural shape and health monitoring, and nondestructive test and evaluation of assets. For all of these applications, it is anticipated that the system utilized to interrogate the SAW RFID tags may need to operate at fairly long range and in the presence of considerable multipath and multiple-access interference. Towards that end, EV4 is developing a prototype SAW RFID wireless interrogation system for use in such environments called the Passive Adaptive RFID Sensor Equipment (PARSED) system. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In this paper, we will consider the application of the PARSEQ system to the problem of simultaneous detection, identification, localization, and temperature estimation for multiple objects. We will summarize the overall design of the PARSEQ system and present a detailed description of the design and performance of the signal detection and estimation algorithms incorporated in the system. The system is currently configured only to measure temperature (jointly with range and tag ID), but future versions will be revised to measure parameters other than temperature as SAW tags capable of interfacing with external sensors become available. It is anticipated that the estimation of arbitrary parameters measured using SAW-based sensors will be based on techniques very similar to the joint range and temperature estimation techniques described in this paper.
Dosso, Stan E; Wilmut, Michael J; Nielsen, Peter L
2010-07-01
This paper applies Bayesian source tracking in an uncertain environment to Mediterranean Sea data, and investigates the resulting tracks and track uncertainties as a function of data information content (number of data time-segments, number of frequencies, and signal-to-noise ratio) and of prior information (environmental uncertainties and source-velocity constraints). To track low-level sources, acoustic data recorded for multiple time segments (corresponding to multiple source positions along the track) are inverted simultaneously. Environmental uncertainty is addressed by including unknown water-column and seabed properties as nuisance parameters in an augmented inversion. Two approaches are considered: Focalization-tracking maximizes the posterior probability density (PPD) over the unknown source and environmental parameters. Marginalization-tracking integrates the PPD over environmental parameters to obtain a sequence of joint marginal probability distributions over source coordinates, from which the most-probable track and track uncertainties can be extracted. Both approaches apply track constraints on the maximum allowable vertical and radial source velocity. The two approaches are applied for towed-source acoustic data recorded at a vertical line array at a shallow-water test site in the Mediterranean Sea where previous geoacoustic studies have been carried out.
Multiradar tracking for theater missile defense
NASA Astrophysics Data System (ADS)
Sviestins, Egils
1995-09-01
A prototype system for tracking tactical ballistic missiles using multiple radars has been developed. The tracking is based on measurement level fusion (`true' multi-radar) tracking. Strobes from passive sensors can also be used. We describe various features of the system with some emphasis on the filtering technique. This is based on the Interacting Multiple Model framework where the states are Free Flight, Drag, Boost, and Auxiliary. Measurement error modeling includes the signal to noise ratio dependence; outliers and miscorrelations are handled in the same way. The launch point is calculated within one minute from the detection of the missile. The impact point, and its uncertainty region, is calculated continually by extrapolating the track state vector using the equations of planetary motion.
CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.
Bray, Mark-Anthony; Carpenter, Anne E
2015-11-04
Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.
Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu
2016-06-23
Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.
Real-time Human Activity Recognition
NASA Astrophysics Data System (ADS)
Albukhary, N.; Mustafah, Y. M.
2017-11-01
The traditional Closed-circuit Television (CCTV) system requires human to monitor the CCTV for 24/7 which is inefficient and costly. Therefore, there’s a need for a system which can recognize human activity effectively in real-time. This paper concentrates on recognizing simple activity such as walking, running, sitting, standing and landing by using image processing techniques. Firstly, object detection is done by using background subtraction to detect moving object. Then, object tracking and object classification are constructed so that different person can be differentiated by using feature detection. Geometrical attributes of tracked object, which are centroid and aspect ratio of identified tracked are manipulated so that simple activity can be detected.
Detection and Tracking of Moving Objects with Real-Time Onboard Vision System
NASA Astrophysics Data System (ADS)
Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.
2017-05-01
Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.
Yi, Faliu; Lee, Jieun; Moon, Inkyu
2014-05-01
The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.
NASA Astrophysics Data System (ADS)
Bouaynaya, N.; Schonfeld, Dan
2005-03-01
Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.
Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter
NASA Astrophysics Data System (ADS)
Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio
2012-01-01
Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.
Deterministic object tracking using Gaussian ringlet and directional edge features
NASA Astrophysics Data System (ADS)
Krieger, Evan W.; Sidike, Paheding; Aspiras, Theus; Asari, Vijayan K.
2017-10-01
Challenges currently existing for intensity-based histogram feature tracking methods in wide area motion imagery (WAMI) data include object structural information distortions, background variations, and object scale change. These issues are caused by different pavement or ground types and from changing the sensor or altitude. All of these challenges need to be overcome in order to have a robust object tracker, while attaining a computation time appropriate for real-time processing. To achieve this, we present a novel method, Directional Ringlet Intensity Feature Transform (DRIFT), which employs Kirsch kernel filtering for edge features and a ringlet feature mapping for rotational invariance. The method also includes an automatic scale change component to obtain accurate object boundaries and improvements for lowering computation times. We evaluated the DRIFT algorithm on two challenging WAMI datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness and efficiency. Additional evaluations on general tracking video sequences are performed using the Visual Tracker Benchmark and Visual Object Tracking 2014 databases to demonstrate the algorithms ability with additional challenges in long complex sequences including scale change. Experimental results show that the proposed approach yields competitive results compared to state-of-the-art object tracking methods on the testing datasets.
Robust multiperson tracking from a mobile platform.
Ess, Andreas; Leibe, Bastian; Schindler, Konrad; van Gool, Luc
2009-10-01
In this paper, we address the problem of multiperson tracking in busy pedestrian zones using a stereo rig mounted on a mobile platform. The complexity of the problem calls for an integrated solution that extracts as much visual information as possible and combines it through cognitive feedback cycles. We propose such an approach, which jointly estimates camera position, stereo depth, object detection, and tracking. The interplay between those components is represented by a graphical model. Since the model has to incorporate object-object interactions and temporal links to past frames, direct inference is intractable. We, therefore, propose a two-stage procedure: for each frame, we first solve a simplified version of the model (disregarding interactions and temporal continuity) to estimate the scene geometry and an overcomplete set of object detections. Conditioned on these results, we then address object interactions, tracking, and prediction in a second step. The approach is experimentally evaluated on several long and difficult video sequences from busy inner-city locations. Our results show that the proposed integration makes it possible to deliver robust tracking performance in scenes of realistic complexity.
Infrared tag and track technique
Partin, Judy K.; Stone, Mark L.; Slater, John; Davidson, James R.
2007-12-04
A method of covertly tagging an object for later tracking includes providing a material capable of at least one of being applied to the object and being included in the object, which material includes deuterium; and performing at least one of applying the material to the object and including the material in the object in a manner in which in the appearance of the object is not changed, to the naked eye.
Decentralized asset management for collaborative sensing
NASA Astrophysics Data System (ADS)
Malhotra, Raj P.; Pribilski, Michael J.; Toole, Patrick A.; Agate, Craig
2017-05-01
There has been increased impetus to leverage Small Unmanned Aerial Systems (SUAS) for collaborative sensing applications in which many platforms work together to provide critical situation awareness in dynamic environments. Such applications require critical sensor observations to be made at the right place and time to facilitate the detection, tracking, and classification of ground-based objects. This further requires rapid response to real-world events and the balancing of multiple, competing mission objectives. In this context, human operators become overwhelmed with management of many platforms. Further, current automated planning paradigms tend to be centralized and don't scale up well to many collaborating platforms. We introduce a decentralized approach based upon information-theory and distributed fusion which enable us to scale up to large numbers of collaborating Small Unmanned Aerial Systems (SUAS) platforms. This is exercised against a military application involving the autonomous detection, tracking, and classification of critical mobile targets. We further show that, based upon monte-carlo simulation results, our decentralized approach out-performs more static management strategies employed by human operators and achieves similar results to a centralized approach while being scalable and robust to degradation of communication. Finally, we describe the limitations of our approach and future directions for our research.
NASA Astrophysics Data System (ADS)
Radzicki, Vincent R.; Boutte, David; Taylor, Paul; Lee, Hua
2017-05-01
Radar based detection of human targets behind walls or in dense urban environments is an important technical challenge with many practical applications in security, defense, and disaster recovery. Radar reflections from a human can be orders of magnitude weaker than those from objects encountered in urban settings such as walls, cars, or possibly rubble after a disaster. Furthermore, these objects can act as secondary reflectors and produce multipath returns from a person. To mitigate these issues, processing of radar return data needs to be optimized for recognizing human motion features such as walking, running, or breathing. This paper presents a theoretical analysis on the modulation effects human motion has on the radar waveform and how high levels of multipath can distort these motion effects. From this analysis, an algorithm is designed and optimized for tracking human motion in heavily clutter environments. The tracking results will be used as the fundamental detection/classification tool to discriminate human targets from others by identifying human motion traits such as predictable walking patterns and periodicity in breathing rates. The theoretical formulations will be tested against simulation and measured data collected using a low power, portable see-through-the-wall radar system that could be practically deployed in real-world scenarios. Lastly, the performance of the algorithm is evaluated in a series of experiments where both a single person and multiple people are moving in an indoor, cluttered environment.
Tracking target objects orbiting earth using satellite-based telescopes
De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J
2014-10-14
A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.
Eye movements during spoken word recognition in Russian children.
Sekerina, Irina A; Brooks, Patricia J
2007-09-01
This study explores incremental processing in spoken word recognition in Russian 5- and 6-year-olds and adults using free-viewing eye-tracking. Participants viewed scenes containing pictures of four familiar objects and clicked on a target embedded in a spoken instruction. In the cohort condition, two object names shared identical three-phoneme onsets. In the noncohort condition, all object names had unique onsets. Coarse-grain analyses of eye movements indicated that adults produced looks to the competitor on significantly more cohort trials than on noncohort trials, whereas children surprisingly failed to demonstrate cohort competition due to widespread exploratory eye movements across conditions. Fine-grain analyses, in contrast, showed a similar time course of eye movements across children and adults, but with cohort competition lingering more than 1s longer in children. The dissociation between coarse-grain and fine-grain eye movements indicates a need to consider multiple behavioral measures in making developmental comparisons in language processing.
NASA Astrophysics Data System (ADS)
Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen
2017-06-01
Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.
Vater, Christian; Kredel, Ralf; Hossner, Ernst-Joachim
2017-05-01
In the current study, dual-task performance is examined with multiple-object tracking as a primary task and target-change detection as a secondary task. The to-be-detected target changes in conditions of either change type (form vs. motion; Experiment 1) or change salience (stop vs. slowdown; Experiment 2), with changes occurring at either near (5°-10°) or far (15°-20°) eccentricities (Experiments 1 and 2). The aim of the study was to test whether changes can be detected solely with peripheral vision. By controlling for saccades and computing gaze distances, we could show that participants used peripheral vision to monitor the targets and, additionally, to perceive changes at both near and far eccentricities. Noticeably, gaze behavior was not affected by the actual target change. Detection rates as well as response times generally varied as a function of change condition and eccentricity, with faster detections for motion changes and near changes. However, in contrast to the effects found for motion changes, sharp declines in detection rates and increased response times were observed for form changes as a function of the eccentricities. This result can be ascribed to properties of the visual system, namely to the limited spatial acuity in the periphery and the comparably receptive motion sensitivity of peripheral vision. These findings show that peripheral vision is functional for simultaneous target monitoring and target-change detection as saccadic information suppression can be avoided and covert attention can be optimally distributed to all targets. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Moving object detection and tracking in videos through turbulent medium
NASA Astrophysics Data System (ADS)
Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G.
2016-06-01
This paper addresses the problem of identifying and tracking moving objects in a video sequence having a time-varying background. This is a fundamental task in many computer vision applications, though a very challenging one because of turbulence that causes blurring and spatiotemporal movements of the background images. Our proposed approach involves two major steps. First, a moving object detection algorithm that deals with the detection of real motions by separating the turbulence-induced motions using a two-level thresholding technique is used. In the second step, a feature-based generalized regression neural network is applied to track the detected objects throughout the frames in the video sequence. The proposed approach uses the centroid and area features of the moving objects and creates the reference regions instantly by selecting the objects within a circle. Simulation experiments are carried out on several turbulence-degraded video sequences and comparisons with an earlier method confirms that the proposed approach provides a more effective tracking of the targets.
FBK Optical Data Association in a Multi-Hypothesis Framework with Maneuvers
NASA Astrophysics Data System (ADS)
Faber, W. R.; Hussein, I. I.; Kent, J. T.; Bhattacharjee, S. Jah, M. K.
In Space Situational Awareness (SSA), one may encounter scenarios where the measurements received at a certain time do not correlate to a known Resident Space Object (RSO). Without information that uniquely assigns the measurement to a particular RSO there can be no certainty on the identity of the object. It could be that the measurement was produced by clutter or perhaps a newly birthed RSO. It is also a possibility that the measurement came from a previously known object that maneuvered away from its predicted location. Typically, tracking methods tend to associate uncorrelated measurements to new objects and wait for more information to determine the true RSO population. This can lead to the loss of object custody. The goal of this paper is to utilize a multiple hypothesis framework coupled with some knowledge of RSO maneuvers that allows the user to maintain object custody in scenarios with uncorrelated optical measurement returns. This is achieved by fitting a Fisher-Bingham-Kent type distribution to the hypothesized maneuvers for accurate data association using directional discriminant analysis.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck
2015-01-01
Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336
Chandir, Subhash; Dharma, Vijay Kumar; Siddiqi, Danya Arif; Khan, Aamir Javed
2017-09-05
Despite multiple rounds of immunization campaigns, it has not been possible to achieve optimum immunization coverage for poliovirus in Pakistan. Supplementary activities to improve coverage of immunization, such as door-to-door campaigns are constrained by several factors including inaccurate hand-drawn maps and a lack of means to objectively monitor field teams in real time, resulting in suboptimal vaccine coverage during campaigns. Global System for Mobile Communications (GSM) - based tracking of mobile subscriber identity modules (SIMs) of vaccinators provides a low-cost solution to identify missed areas and ensure effective immunization coverage. We conducted a pilot study to investigate the feasibility of using GSM technology to track vaccinators through observing indicators including acceptability, ease of implementation, costs and scalability as well as the likelihood of ownership by District Health Officials. The real-time location of the field teams was displayed on a GSM tracking web dashboard accessible by supervisors and managers for effective monitoring of workforce attendance including 'time in-time out', and discerning if all target areas - specifically remote and high-risk locations - had been reached. Direct access to this information by supervisors eliminated the possibility of data fudging and inaccurate reporting by workers regarding their mobility. The tracking cost per vaccinator was USD 0.26/month. Our study shows that GSM-based tracking is potentially a cost-efficient approach, results in better monitoring and accountability, is scalable and provides the potential for improved geographic coverage of health services. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distributed Tracking in Distributed Sensor Networks
1988-05-26
Glocal Track 6-17 6-12: Case II: Initial Glocal Track 6-18 6-13: Local Tracking Results with Multiple Model Approach 6-19 6-14: Model Probability History...3480.0- 2290.0e iee. onee -5800 -4600.8 -3400.8 -2208.8 -1886 X (Mi) Figure 6-11: Case 1: Initial Glocal Track 6-17 460. 420. 38 . 3488.9 1st 3498.9
Tricarico, Christopher; Peters, Robert; Som, Avik; Javaherian, Kavon
2017-01-01
Background Medication adherence remains a difficult problem to both assess and improve in patients. It is a multifactorial problem that goes beyond the commonly cited reason of forgetfulness. To date, eHealth (also known as mHealth and telehealth) interventions to improve medication adherence have largely been successful in improving adherence. However, interventions to date have used time- and cost-intensive strategies or focused solely on medication reminding, leaving much room for improvement in using a modality as flexible as eHealth. Objective Our objective was to develop and implement a fully automated short message service (SMS)-based medication adherence system, EpxMedTracking, that reminds patients to take their medications, explores reasons for missed doses, and alerts providers to help address problems of medication adherence in real time. Methods EpxMedTracking is a fully automated bidirectional SMS-based messaging system with provider involvement that was developed and implemented through Epharmix, Inc. Researchers analyzed 11 weeks of de-identified data from patients cared for by multiple provider groups in routine community practice for feasibility and functionality. Patients included were those in the care of a provider purchasing the EpxMedTracking tool from Epharmix and were enrolled from a clinic by their providers. The primary outcomes assessed were the rate of engagement with the system, reasons for missing doses, and self-reported medication adherence. Results Of the 25 patients studied over the 11 weeks, 3 never responded and subsequently opted out or were deleted by their provider. No other patients opted out or were deleted during the study period. Across the 11 weeks of the study period, the overall weekly engagement rate was 85.9%. There were 109 total reported missed doses including “I forgot” at 33 events (30.3%), “I felt better” at 29 events (26.6%), “out of meds” at 20 events (18.4%), “I felt sick” at 19 events (17.4%), and “other” at 3 events (2.8%). We also noted an increase in self-reported medication adherence in patients using the EpxMedTracking system. Conclusions EpxMedTracking is an effective tool for tracking self-reported medication adherence over time. It uniquely identifies actionable reasons for missing doses for subsequent provider intervention in real time based on patient feedback. Patients enrolled on EpxMedTracking also self-report higher rates of medication adherence over time while on the system. PMID:28506954
Another Way of Tracking Moving Objects Using Short Video Clips
ERIC Educational Resources Information Center
Vera, Francisco; Romanque, Cristian
2009-01-01
Physics teachers have long employed video clips to study moving objects in their classrooms and instructional labs. A number of approaches exist, both free and commercial, for tracking the coordinates of a point using video. The main characteristics of the method described in this paper are: it is simple to use; coordinates can be tracked using…
Lukasczyk, Jonas; Weber, Gunther; Maciejewski, Ross; ...
2017-06-01
Tracking graphs are a well established tool in topological analysis to visualize the evolution of components and their properties over time, i.e., when components appear, disappear, merge, and split. However, tracking graphs are limited to a single level threshold and the graphs may vary substantially even under small changes to the threshold. To examine the evolution of features for varying levels, users have to compare multiple tracking graphs without a direct visual link between them. We propose a novel, interactive, nested graph visualization based on the fact that the tracked superlevel set components for different levels are related to eachmore » other through their nesting hierarchy. This approach allows us to set multiple tracking graphs in context to each other and enables users to effectively follow the evolution of components for different levels simultaneously. We show the effectiveness of our approach on datasets from finite pointset methods, computational fluid dynamics, and cosmology simulations.« less
Tracking with occlusions via graph cuts.
Papadakis, Nicolas; Bugeau, Aurélie
2011-01-01
This work presents a new method for tracking and segmenting along time-interacting objects within an image sequence. One major contribution of the paper is the formalization of the notion of visible and occluded parts. For each object, we aim at tracking these two parts. Assuming that the velocity of each object is driven by a dynamical law, predictions can be used to guide the successive estimations. Separating these predicted areas into good and bad parts with respect to the final segmentation and representing the objects with their visible and occluded parts permit handling partial and complete occlusions. To achieve this tracking, a label is assigned to each object and an energy function representing the multilabel problem is minimized via a graph cuts optimization. This energy contains terms based on image intensities which enable segmenting and regularizing the visible parts of the objects. It also includes terms dedicated to the management of the occluded and disappearing areas, which are defined on the areas of prediction of the objects. The results on several challenging sequences prove the strength of the proposed approach.
NASA Astrophysics Data System (ADS)
Koch, Wolfgang
1996-05-01
Sensor data processing in a dense target/dense clutter environment is inevitably confronted with data association conflicts which correspond with the multiple hypothesis character of many modern approaches (MHT: multiple hypothesis tracking). In this paper we analyze the efficiency of retrodictive techniques that generalize standard fixed interval smoothing to MHT applications. 'Delayed estimation' based on retrodiction provides uniquely interpretable and accurate trajectories from ambiguous MHT output if a certain time delay is tolerated. In a Bayesian framework the theoretical background of retrodiction and its intimate relation to Bayesian MHT is sketched. By a simulated example with two closely-spaced targets, relatively low detection probabilities, and rather high false return densities, we demonstrate the benefits of retrodiction and quantitatively discuss the achievable track accuracies and the time delays involved for typical radar parameters.
Robust Feedback Zoom Tracking for Digital Video Surveillance
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388
USDA-ARS?s Scientific Manuscript database
A novel technique named multiple-particle tracking (MPT) was used to investigate the micro-structural heterogeneities of Z-trim, a zero calorie cellulosic fiber biopolymer produced from corn hulls. The principle of MPT technique is to monitor the thermally driven motion of inert micro-spheres, which...
Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis
ERIC Educational Resources Information Center
Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying
2012-01-01
This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…
ERIC Educational Resources Information Center
Warlop, Nele P.; Achten, Eric; Fieremans, Els; Debruyne, Jan; Vingerhoets, Guy
2009-01-01
This study investigated the relation between cerebral damage related to multiple sclerosis (MS) and cognitive decline as determined by two classical mental tracking tests. Cerebral damage in 15 relapsing-remitting MS patients was measured by diffusion tensor imaging (DTI). Fractional anisotropy, longitudinal and transverse diffusivity were defined…
NASA Astrophysics Data System (ADS)
Laurenzis, Martin; Hengy, Sebastien; Hommes, Alexander; Kloeppel, Frank; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Naz, Pierre; Christnacher, Frank
2017-05-01
Small unmanned aerial vehicles (UAV) flying at low altitude are becoming more and more a serious threat in civilian and military scenarios. In recent past, numerous incidents have been reported where small UAV were flying in security areas leading to serious danger to public safety or privacy. The detection and tracking of small UAV is a widely discussed topic. Especially, small UAV flying at low altitude in urban environment or near background structures and the detection of multiple UAV at the same time is challenging. Field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude with state of the art detection technologies. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small frequency modulated continuous wave (FMCW) RADAR systems and optical sensors. While acoustics, RADAR and LiDAR were applied to monitor a wide azimuthal area (360°) and to simultaneously track multiple UAV, optical sensors were used for sequential identification with a very narrow field of view.
Interactive object modelling based on piecewise planar surface patches.
Prankl, Johann; Zillich, Michael; Vincze, Markus
2013-06-01
Detecting elements such as planes in 3D is essential to describe objects for applications such as robotics and augmented reality. While plane estimation is well studied, table-top scenes exhibit a large number of planes and methods often lock onto a dominant plane or do not estimate 3D object structure but only homographies of individual planes. In this paper we introduce MDL to the problem of incrementally detecting multiple planar patches in a scene using tracked interest points in image sequences. Planar patches are reconstructed and stored in a keyframe-based graph structure. In case different motions occur, separate object hypotheses are modelled from currently visible patches and patches seen in previous frames. We evaluate our approach on a standard data set published by the Visual Geometry Group at the University of Oxford [24] and on our own data set containing table-top scenes. Results indicate that our approach significantly improves over the state-of-the-art algorithms.
The Extrastriate Body Area Computes Desired Goal States during Action Planning123
2016-01-01
Abstract How do object perception and action interact at a neural level? Here we test the hypothesis that perceptual features, processed by the ventral visuoperceptual stream, are used as priors by the dorsal visuomotor stream to specify goal-directed grasping actions. We present three main findings, which were obtained by combining time-resolved transcranial magnetic stimulation and kinematic tracking of grasp-and-rotate object manipulations, in a group of healthy human participants (N = 22). First, the extrastriate body area (EBA), in the ventral stream, provides an initial structure to motor plans, based on current and desired states of a grasped object and of the grasping hand. Second, the contributions of EBA are earlier in time than those of a caudal intraparietal region known to specify the action plan. Third, the contributions of EBA are particularly important when desired and current object configurations differ, and multiple courses of actions are possible. These findings specify the temporal and functional characteristics for a mechanism that integrates perceptual processing with motor planning. PMID:27066535
Interactive object modelling based on piecewise planar surface patches☆
Prankl, Johann; Zillich, Michael; Vincze, Markus
2013-01-01
Detecting elements such as planes in 3D is essential to describe objects for applications such as robotics and augmented reality. While plane estimation is well studied, table-top scenes exhibit a large number of planes and methods often lock onto a dominant plane or do not estimate 3D object structure but only homographies of individual planes. In this paper we introduce MDL to the problem of incrementally detecting multiple planar patches in a scene using tracked interest points in image sequences. Planar patches are reconstructed and stored in a keyframe-based graph structure. In case different motions occur, separate object hypotheses are modelled from currently visible patches and patches seen in previous frames. We evaluate our approach on a standard data set published by the Visual Geometry Group at the University of Oxford [24] and on our own data set containing table-top scenes. Results indicate that our approach significantly improves over the state-of-the-art algorithms. PMID:24511219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X; Lin, J; Diwanji, T
2014-06-01
Purpose: Recently, template matching has been shown to be able to track tumor motion on cine-MRI images. However, artifacts such as deformation, rotation, and/or out-of-plane movement could seriously degrade the performance of this technique. In this work, we demonstrate the utility of multiple templates derived from different phases of tumor motion in reducing the negative effects of artifacts and improving the accuracy of template matching methods. Methods: Data from 2 patients with large tumors and significant tumor deformation were analyzed from a group of 12 patients from an earlier study. Cine-MRI (200 frames) imaging was performed while the patients weremore » instructed to breathe normally. Ground truth tumor position was established on each frame manually by a radiation oncologist. Tumor positions were also automatically determined using template matching with either single or multiple (5) templates. The tracking errors, defined as the absolute differences in tumor positions determined by the manual and automated methods, when using either single or multiple templates were compared in both the AP and SI directions, respectively. Results: Using multiple templates reduced the tracking error of template matching. In the SI direction where the tumor movement and deformation were significant, the mean tracking error decreased from 1.94 mm to 0.91 mm (Patient 1) and from 6.61 mm to 2.06 mm (Patient 2). In the AP direction where the tumor movement was small, the reduction of the mean tracking error was significant in Patient 1 (from 3.36 mm to 1.04 mm), but not in Patient 2 ( from 3.86 mm to 3.80 mm). Conclusion: This study shows the effectiveness of using multiple templates in improving the performance of template matching when artifacts like large tumor deformation or out-of-plane motion exists. Accurate tumor tracking capabilities can be integrated with MRI guided radiation therapy systems. This work was supported in part by grants from NIH/NCI CA 124766 and Varian Medical Systems, Palo Alto, CA.« less
Real-Time Detection and Tracking of Multiple People in Laser Scan Frames
NASA Astrophysics Data System (ADS)
Cui, J.; Song, X.; Zhao, H.; Zha, H.; Shibasaki, R.
This chapter presents an approach to detect and track multiple people ro bustly in real time using laser scan frames. The detection and tracking of people in real time is a problem that arises in a variety of different contexts. Examples in clude intelligent surveillance for security purposes, scene analysis for service robot, and crowd behavior analysis for human behavior study. Over the last several years, an increasing number of laser-based people-tracking systems have been developed in both mobile robotics platforms and fixed platforms using one or multiple laser scanners. It has been proved that processing on laser scanner data makes the tracker much faster and more robust than a vision-only based one in complex situations. In this chapter, we present a novel robust tracker to detect and track multiple people in a crowded and open area in real time. First, raw data are obtained that measures two legs for each people at a height of 16 cm from horizontal ground with multiple registered laser scanners. A stable feature is extracted using accumulated distribu tion of successive laser frames. In this way, the noise that generates split and merged measurements is smoothed well, and the pattern of rhythmic swinging legs is uti lized to extract each leg. Second, a probabilistic tracking model is presented, and then a sequential inference process using a Bayesian rule is described. A sequential inference process is difficult to compute analytically, so two strategies are presented to simplify the computation. In the case of independent tracking, the Kalman fil ter is used with a more efficient measurement likelihood model based on a region coherency property. Finally, to deal with trajectory fragments we present a concise approach to fuse just a little visual information from synchronized video camera to laser data. Evaluation with real data shows that the proposed method is robust and effective. It achieves a significant improvement compared with existing laser-based trackers.
Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation.
Gao, Shan; Ye, Qixiang; Xing, Junliang; Kuijper, Arjan; Han, Zhenjun; Jiao, Jianbin; Ji, Xiangyang
2017-12-01
Tracking multiple persons is a challenging task when persons move in groups and occlude each other. Existing group-based methods have extensively investigated how to make group division more accurately in a tracking-by-detection framework; however, few of them quantify the group dynamics from the perspective of targets' spatial topology or consider the group in a dynamic view. Inspired by the sociological properties of pedestrians, we propose a novel socio-topology model with a topology-energy function to factor the group dynamics of moving persons and groups. In this model, minimizing the topology-energy-variance in a two-level energy form is expected to produce smooth topology transitions, stable group tracking, and accurate target association. To search for the strong minimum in energy variation, we design the discrete group-tracklet jump moves embedded in the gradient descent method, which ensures that the moves reduce the energy variation of group and trajectory alternately in the varying topology dimension. Experimental results on both RGB and RGB-D data sets show the superiority of our proposed model for multiple person tracking in crowd scenes.
NASA Astrophysics Data System (ADS)
Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan
2016-09-01
The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.
The PMHT: solutions for some of its problems
NASA Astrophysics Data System (ADS)
Wieneke, Monika; Koch, Wolfgang
2007-09-01
Tracking multiple targets in a cluttered environment is a challenging task. Probabilistic Multiple Hypothesis Tracking (PMHT) is an efficient approach for dealing with it. Essentially PMHT is based on the method of Expectation-Maximization for handling with association conflicts. Linearity in the number of targets and measurements is the main motivation for a further development and extension of this methodology. Unfortunately, compared with the Probabilistic Data Association Filter (PDAF), PMHT has not yet shown its superiority in terms of track-lost statistics. Furthermore, the problem of track extraction and deletion is apparently not yet satisfactorily solved within this framework. Four properties of PMHT are responsible for its problems in track maintenance: Non-Adaptivity, Hospitality, Narcissism and Local Maxima. 1, 2 In this work we present a solution for each of them and derive an improved PMHT by integrating the solutions into the PMHT formalism. The new PMHT is evaluated by Monte-Carlo simulations. A sequential Likelihood-Ratio (LR) test for track extraction has been developed and already integrated into the framework of traditional Bayesian Multiple Hypothesis Tracking. 3 As a multi-scan approach, also the PMHT methodology has the potential for track extraction. In this paper an analogous integration of a sequential LR test into the PMHT framework is proposed. We present an LR formula for track extraction and deletion using the PMHT update formulae. As PMHT provides all required ingredients for a sequential LR calculation, the LR is thus a by-product of the PMHT iteration process. Therefore the resulting update formula for the sequential LR test affords the development of Track-Before-Detect algorithms for PMHT. The approach is illustrated by a simple example.
Automated tracking, segmentation and trajectory classification of pelvic organs on dynamic MRI.
Nekooeimehr, Iman; Lai-Yuen, Susana; Bao, Paul; Weitzenfeld, Alfredo; Hart, Stuart
2016-08-01
Pelvic organ prolapse is a major health problem in women where pelvic floor organs (bladder, uterus, small bowel, and rectum) fall from their normal position and bulge into the vagina. Dynamic Magnetic Resonance Imaging (DMRI) is presently used to analyze the organs' movements from rest to maximum strain providing complementary support for diagnosis. However, there is currently no automated or quantitative approach to measure the movement of the pelvic organs and their correlation with the severity of prolapse. In this paper, a two-stage method is presented to automatically track and segment pelvic organs on DMRI followed by a multiple-object trajectory classification method to improve the diagnosis of pelvic organ prolapse. Organs are first tracked using particle filters and K-means clustering with prior information. Then, they are segmented using the convex hull of the cluster of particles. Finally, the trajectories of the pelvic organs are modeled using a new Coupled Switched Hidden Markov Model (CSHMM) to classify the severity of pelvic organ prolapse. The tracking and segmentation results are validated using Dice Similarity Index (DSI) whereas the classification results are compared with two manual clinical measurements. Results demonstrate that the presented method is able to automatically track and segment pelvic organs with a DSI above 82% for 26 out of 46 cases and DSI above 75% for all 46 tested cases. The accuracy of the trajectory classification model is also better than current manual measurements.
Farris, Dominic James; Lichtwark, Glen A
2016-05-01
Dynamic measurements of human muscle fascicle length from sequences of B-mode ultrasound images have become increasingly prevalent in biomedical research. Manual digitisation of these images is time consuming and algorithms for automating the process have been developed. Here we present a freely available software implementation of a previously validated algorithm for semi-automated tracking of muscle fascicle length in dynamic ultrasound image recordings, "UltraTrack". UltraTrack implements an affine extension to an optic flow algorithm to track movement of the muscle fascicle end-points throughout dynamically recorded sequences of images. The underlying algorithm has been previously described and its reliability tested, but here we present the software implementation with features for: tracking multiple fascicles in multiple muscles simultaneously; correcting temporal drift in measurements; manually adjusting tracking results; saving and re-loading of tracking results and loading a range of file formats. Two example runs of the software are presented detailing the tracking of fascicles from several lower limb muscles during a squatting and walking activity. We have presented a software implementation of a validated fascicle-tracking algorithm and made the source code and standalone versions freely available for download. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Real-time model-based vision system for object acquisition and tracking
NASA Technical Reports Server (NTRS)
Wilcox, Brian; Gennery, Donald B.; Bon, Bruce; Litwin, Todd
1987-01-01
A machine vision system is described which is designed to acquire and track polyhedral objects moving and rotating in space by means of two or more cameras, programmable image-processing hardware, and a general-purpose computer for high-level functions. The image-processing hardware is capable of performing a large variety of operations on images and on image-like arrays of data. Acquisition utilizes image locations and velocities of the features extracted by the image-processing hardware to determine the three-dimensional position, orientation, velocity, and angular velocity of the object. Tracking correlates edges detected in the current image with edge locations predicted from an internal model of the object and its motion, continually updating velocity information to predict where edges should appear in future frames. With some 10 frames processed per second, real-time tracking is possible.
The ‘when’ parietal pathway explored by lesion studies
Battelli, Lorella; Walsh, Vincent; Pascual-Leone, Alvaro; Cavanagh, Patrick
2016-01-01
Summary The perception of events in space and time is at the root of our interactions with the environment. The precision with which we perceive visual events in time enables us to act upon objects with great accuracy and the loss of such functions, due to brain lesions can be catastrophic. We outline a visual timing mechanism that deals with the trajectory of an object’s existence across time, a critical function when keeping track of multiple objects that temporally overlap or occur sequentially. Recent evidence suggests these functions are served by an extended network of areas which we call the ‘when’ pathway. Here we show that the when pathway is distinct from and interacts with, the well established ‘where’ and ‘what’ pathways. PMID:18708141
Color image processing and object tracking workstation
NASA Technical Reports Server (NTRS)
Klimek, Robert B.; Paulick, Michael J.
1992-01-01
A system is described for automatic and semiautomatic tracking of objects on film or video tape which was developed to meet the needs of the microgravity combustion and fluid science experiments at NASA Lewis. The system consists of individual hardware parts working under computer control to achieve a high degree of automation. The most important hardware parts include 16 mm film projector, a lens system, a video camera, an S-VHS tapedeck, a frame grabber, and some storage and output devices. Both the projector and tapedeck have a computer interface enabling remote control. Tracking software was developed to control the overall operation. In the automatic mode, the main tracking program controls the projector or the tapedeck frame incrementation, grabs a frame, processes it, locates the edge of the objects being tracked, and stores the coordinates in a file. This process is performed repeatedly until the last frame is reached. Three representative applications are described. These applications represent typical uses and include tracking the propagation of a flame front, tracking the movement of a liquid-gas interface with extremely poor visibility, and characterizing a diffusion flame according to color and shape.
Renewal of the Attentive Sensing Project
2006-02-07
decisions about target presence or absence, is denoted track before detect . We have investigated joint tracking and detection in the context of the foveal...computationally tractable bounds. 4 Task 2: Sensor Configuration for Tracking and Track Before Detect Task 2 consisted of investigation of attentive...strategy to multiple targets and to track before detect sensors. To apply principles developed in the context of foveal sensors to more immediately
Automated Recognition of 3D Features in GPIR Images
NASA Technical Reports Server (NTRS)
Park, Han; Stough, Timothy; Fijany, Amir
2007-01-01
A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.
Next Generation Waste Tracking: Linking Legacy Systems with Modern Networking Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Randy M.; Resseguie, David R.; Shankar, Mallikarjun
2010-01-01
This report describes results from a preliminary analysis to satisfy the Department of Energy (DOE) objective to ensure the safe, secure, efficient packaging and transportation of materials both hazardous and non hazardous [1, 2]. The DOE Office of Environmental Management (OEM) through Oak Ridge National Laboratory (ORNL) has embarked on a project to further this objective. OEM and ORNL have agreed to develop, demonstrate and make available modern day cost effective technologies for characterization, identification, tracking, monitoring and disposal of radioactive waste when transported by, or between, motor, air, rail, and water modes. During the past 8 years ORNL hasmore » investigated and deployed Web 2.0 compliant sensors into the transportation segment of the supply chain. ORNL has recently demonstrated operational experience with DOE Oak Ridge Operations Office (ORO) and others in national test beds and applications within this domain of the supply chain. Furthermore, in addition to DOE, these hazardous materials supply chain partners included Federal and State enforcement agencies, international ports, and commercial sector shipping operations in a hazardous/radioactive materials tracking and monitoring program called IntelligentFreight. IntelligentFreight is an ORNL initiative encompassing 5 years of research effort associated with the supply chain. The ongoing ORNL SmartFreight programs include RadSTraM [3], GRadSTraM , Trusted Corridors, SensorPedia [4], SensorNet, Southeastern Transportation Corridor Pilot (SETCP) and Trade Data Exchange [5]. The integration of multiple technologies aimed at safer more secure conveyance has been investigated with the core research question being focused on testing distinctly different distributed supply chain information sharing systems. ORNL with support from ORO have demonstrated capabilities when transporting Environmental Management (EM) waste materials for disposal over an onsite haul road. ORNL has unified the operations of existing legacy hazardous, radioactive and related informational databases and systems using emerging Web 2.0 technologies. These capabilities were used to interoperate ORNL s waste generating, packaging, transportation and disposal with other DOE ORO waste management contractors. Importantly, the DOE EM objectives were accomplished in a cost effective manner without altering existing information systems. A path forward is to demonstrate and share these technologies with DOE EM, contractors and stakeholders. This approach will not alter existing DOE assets, i.e. Automated Traffic Management Systems (ATMS), Transportation Tracking and Communications System (TRANSCOM), the Argonne National Laboratory (ANL) demonstrated package tracking system, etc« less
Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase
Lu, Kelin; Zhou, Rui
2016-01-01
A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883
Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase.
Lu, Kelin; Zhou, Rui
2016-08-15
A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications.
Robust leader-follower formation tracking control of multiple underactuated surface vessels
NASA Astrophysics Data System (ADS)
Peng, Zhou-hua; Wang, Dan; Lan, Wei-yao; Sun, Gang
2012-09-01
This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined relative to the leader. A robust adaptive target tracking law is proposed by using neural network and backstepping techniques. The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces, nonlinear damping, unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning. Based on Lyapunov analysis, the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the control strategy.
Multiple hypothesis tracking for cluttered biological image sequences.
Chenouard, Nicolas; Bloch, Isabelle; Olivo-Marin, Jean-Christophe
2013-11-01
In this paper, we present a method for simultaneously tracking thousands of targets in biological image sequences, which is of major importance in modern biology. The complexity and inherent randomness of the problem lead us to propose a unified probabilistic framework for tracking biological particles in microscope images. The framework includes realistic models of particle motion and existence and of fluorescence image features. For the track extraction process per se, the very cluttered conditions motivate the adoption of a multiframe approach that enforces tracking decision robustness to poor imaging conditions and to random target movements. We tackle the large-scale nature of the problem by adapting the multiple hypothesis tracking algorithm to the proposed framework, resulting in a method with a favorable tradeoff between the model complexity and the computational cost of the tracking procedure. When compared to the state-of-the-art tracking techniques for bioimaging, the proposed algorithm is shown to be the only method providing high-quality results despite the critically poor imaging conditions and the dense target presence. We thus demonstrate the benefits of advanced Bayesian tracking techniques for the accurate computational modeling of dynamical biological processes, which is promising for further developments in this domain.
Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo
2018-03-07
In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.
Kalal, Zdenek; Mikolajczyk, Krystian; Matas, Jiri
2012-07-01
This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of "experts": (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.
Attentional load inhibits vection.
Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji
2011-07-01
In this study, we examined the effects of cognitive task performance on the induction of vection. We hypothesized that, if vection requires attentional resources, performing cognitive tasks requiring attention should inhibit or weaken it. Experiment 1 tested the effects on vection of simultaneously performing a rapid serial visual presentation (RSVP) task. The results revealed that the RSVP task affected the subjective strength of vection. Experiment 2 tested the effects of a multiple-object-tracking (MOT) task on vection. Simultaneous performance of the MOT task decreased the duration and subjective strength of vection. Taken together, these findings suggest that vection induction requires attentional resources.
Automated Historical and Real-Time Cyclone Discovery With Multimodal Remote Satellite Measurements
NASA Astrophysics Data System (ADS)
Ho, S.; Talukder, A.; Liu, T.; Tang, W.; Bingham, A.
2008-12-01
Existing cyclone detection and tracking solutions involve extensive manual analysis of modeled-data and field campaign data by teams of experts. We have developed a novel automated global cyclone detection and tracking system by assimilating and sharing information from multiple remote satellites. This unprecedented solution of combining multiple remote satellite measurements in an autonomous manner allows leveraging off the strengths of each individual satellite. Use of multiple satellite data sources also results in significantly improved temporal tracking accuracy for cyclones. Our solution involves an automated feature extraction and machine learning technique based on an ensemble classifier and Kalman filter for cyclone detection and tracking from multiple heterogeneous satellite data sources. Our feature-based methodology that focuses on automated cyclone discovery is fundamentally different from, and actually complements, the well-known Dvorak technique for cyclone intensity estimation (that often relies on manual detection of cyclonic regions) from field and remote data. Our solution currently employs the QuikSCAT wind measurement and the merged level 3 TRMM precipitation data for automated cyclone discovery. Assimilation of other types of remote measurements is ongoing and planned in the near future. Experimental results of our automated solution on historical cyclone datasets demonstrate the superior performance of our automated approach compared to previous work. Performance of our detection solution compares favorably against the list of cyclones occurring in North Atlantic Ocean for the 2005 calendar year reported by the National Hurricane Center (NHC) in our initial analysis. We have also demonstrated the robustness of our cyclone tracking methodology in other regions over the world by using multiple heterogeneous satellite data for detection and tracking of three arbitrary historical cyclones in other regions. Our cyclone detection and tracking methodology can be applied to (i) historical data to support Earth scientists in climate modeling, cyclonic-climate interactions, and obtain a better understanding of the cause and effects of cyclone (e.g. cyclo-genesis), and (ii) automatic cyclone discovery in near real-time using streaming satellite to support and improve the planning of global cyclone field campaigns. Additional satellite data from GOES and other orbiting satellites can be easily assimilated and integrated into our automated cyclone detection and tracking module to improve the temporal tracking accuracy of cyclones down to ½ hr and reduce the incidence of false alarms.
Short- and medium-range 3D sensing for space applications
NASA Astrophysics Data System (ADS)
Beraldin, J. A.; Blais, Francois; Rioux, Marc; Cournoyer, Luc; Laurin, Denis G.; MacLean, Steve G.
1997-07-01
This paper focuses on the characteristics and performance of a laser range scanner (LARS) with short and medium range 3D sensing capabilities for space applications. This versatile laser range scanner is a precision measurement tool intended to complement the current Canadian Space Vision System (CSVS). Together, these vision systems are intended to be used during the construction of the International Space Station (ISS). Integration of the LARS to the CSVS will allow 3D surveying of a robotic work-site, identification of known objects from registered range and intensity images, and object detection and tracking relative to the orbiter and ISS. The data supplied by the improved CSVS will be invaluable in Orbiter rendez-vous and in assisting the Orbiter/ISS Remote Manipulator System operators. The major advantages of the LARS over conventional video-based imaging are its ability to operate with sunlight shining directly into the scanner and its immunity to spurious reflections and shadows which occur frequently in space. Because the LARS is equipped with two high-speed galvanometers to steer the laser beam, any spatial location within the field of view of the camera can be addressed. This level of versatility enables the LARS to operate in two basic scan pattern modes: (1) variable scan resolution mode and (2) raster scan mode. In the variable resolution mode, the LARS can search and track targets and geometrical features on objects located within a field of view of 30 degrees X 30 degrees and with corresponding range from about 0.5 m to 2000 m. This flexibility allows implementations of practical search and track strategies based on the use of Lissajous patterns for multiple targets. The tracking mode can reach a refresh rate of up to 137 Hz. The raster mode is used primarily for the measurement of registered range and intensity information of large stationary objects. It allows among other things: target-based measurements, feature-based measurements, and, image-based measurements like differential inspection in 3D space and surface reflectance monitoring. The digitizing and modeling of human subjects, cargo payloads, and environments are also possible with the LARS. A number of examples illustrating the many capabilities of the LARS are presented in this paper.
Multi-object tracking of human spermatozoa
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen
2008-03-01
We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.
Tracking and people counting using Particle Filter Method
NASA Astrophysics Data System (ADS)
Sulistyaningrum, D. R.; Setiyono, B.; Rizky, M. S.
2018-03-01
In recent years, technology has developed quite rapidly, especially in the field of object tracking. Moreover, if the object under study is a person and the number of people a lot. The purpose of this research is to apply Particle Filter method for tracking and counting people in certain area. Tracking people will be rather difficult if there are some obstacles, one of which is occlusion. The stages of tracking and people counting scheme in this study include pre-processing, segmentation using Gaussian Mixture Model (GMM), tracking using particle filter, and counting based on centroid. The Particle Filter method uses the estimated motion included in the model used. The test results show that the tracking and people counting can be done well with an average accuracy of 89.33% and 77.33% respectively from six videos test data. In the process of tracking people, the results are good if there is partial occlusion and no occlusion
2015-03-27
i.e., temporarily focusing on one object instead of wide area survey) or SOI collection on high interest objects (e.g., unidentified objects ...The Air Force Institute of Technology has spent the last seven years conducting research on orbit identification and object characterization of space... objects through the use of commercial-off-the-shelf hardware systems controlled via custom software routines, referred to simply as TeleTrak. Year
Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System †
Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei
2017-01-01
Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event. PMID:28556802
Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System.
Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei
2017-05-30
Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event.
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.
1991-01-01
Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.
Ye, Tao; Zhou, Fuqiang
2015-04-10
When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.
Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning
2012-01-17
The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.
Contrast, contours and the confusion effect in dazzle camouflage.
Hogan, Benedict G; Scott-Samuel, Nicholas E; Cuthill, Innes C
2016-07-01
'Motion dazzle camouflage' is the name for the putative effects of highly conspicuous, often repetitive or complex, patterns on parameters important in prey capture, such as the perception of speed, direction and identity. Research into motion dazzle camouflage is increasing our understanding of the interactions between visual tracking, the confusion effect and defensive coloration. However, there is a paucity of research into the effects of contrast on motion dazzle camouflage: is maximal contrast a prerequisite for effectiveness? If not, this has important implications for our recognition of the phenotype and understanding of the function and mechanisms of potential motion dazzle camouflage patterns. Here we tested human participants' ability to track one moving target among many identical distractors with surface patterns designed to test the influence of these factors. In line with previous evidence, we found that targets with stripes parallel to the object direction of motion were hardest to track. However, reduction in contrast did not significantly influence this result. This finding may bring into question the utility of current definitions of motion dazzle camouflage, and means that some animal patterns, such as aposematic or mimetic stripes, may have previously unrecognized multiple functions.
Automated Cloud Observation for Ground Telescope Optimization
NASA Astrophysics Data System (ADS)
Lane, B.; Jeffries, M. W., Jr.; Therien, W.; Nguyen, H.
As the number of man-made objects placed in space each year increases with advancements in commercial, academic and industry, the number of objects required to be detected, tracked, and characterized continues to grow at an exponential rate. Commercial companies, such as ExoAnalytic Solutions, have deployed ground based sensors to maintain track custody of these objects. For the ExoAnalytic Global Telescope Network (EGTN), observation of such objects are collected at the rate of over 10 million unique observations per month (as of September 2017). Currently, the EGTN does not optimally collect data on nights with significant cloud levels. However, a majority of these nights prove to be partially cloudy providing clear portions in the sky for EGTN sensors to observe. It proves useful for a telescope to utilize these clear areas to continue resident space object (RSO) observation. By dynamically updating the tasking with the varying cloud positions, the number of observations could potentially increase dramatically due to increased persistence, cadence, and revisit. This paper will discuss the recent algorithms being implemented within the EGTN, including the motivation, need, and general design. The use of automated image processing as well as various edge detection methods, including Canny, Sobel, and Marching Squares, on real-time large FOV images of the sky enhance the tasking and scheduling of a ground based telescope is discussed in Section 2. Implementations of these algorithms on single and expanding to multiple telescopes, will be explored. Results of applying these algorithms to the EGTN in real-time and comparison to non-optimized EGTN tasking is presented in Section 3. Finally, in Section 4 we explore future work in applying these throughout the EGTN as well as other optical telescopes.
Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site
NASA Astrophysics Data System (ADS)
Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.
2009-04-01
South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and at least three other unnamed morphotypes are known . A total of 52 clutches containing 390 dinosaur eggs occur in several stratigraphic formations including seven dinosaur egg localities. The other fossils including turtles, crocodiles, fishes, wood fossil, plants, trace fossils and microfossils have also been discovered. The occurrences of Korean dinosaurs in diverse stratigraphic formations and sedimentological setting and in diverse sizes and morphotypes provide an opportunity to study the palaeoecologic and palaeoenvironmental conditions of the sites of the Late Cretaceous dinosaurs. Korea could serve as a global vertebrate ichnological standard for Cretaceous terrestrial sequences, and allow correlation with Japanese marine sequences to the east and classic Chinese sites to the west. The region plays a pivotal role in helping us understand vertebrate evolution and paleoecology on the margins of the Asian continent during the Cretaceous.
Real-time visual tracking of less textured three-dimensional objects on mobile platforms
NASA Astrophysics Data System (ADS)
Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il
2012-12-01
Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.
Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles
Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen
2013-01-01
In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717
Creating objective and measurable postgraduate year 1 residency graduation requirements.
Starosta, Kaitlin; Davis, Susan L; Kenney, Rachel M; Peters, Michael; To, Long; Kalus, James S
2017-03-15
The process of developing objective and measurable postgraduate year 1 (PGY1) residency graduation requirements and a progress tracking system is described. The PGY1 residency accreditation standard requires that programs establish criteria that must be met by residents for successful completion of the program (i.e., graduation requirements), which should presumably be aligned with helping residents to achieve the purpose of residency training. In addition, programs must track a resident's progress toward fulfillment of residency goals and objectives. Defining graduation requirements and establishing the process for tracking residents' progress are left up to the discretion of the residency program. To help standardize resident performance assessments, leaders of an academic medical center-based PGY1 residency program developed graduation requirement criteria that are objective, measurable, and linked back to residency goals and objectives. A system for tracking resident progress relative to quarterly progress targets was instituted. Leaders also developed a focused, on-the-spot skills assessment termed "the Thunderdome," which was designed for objective evaluation of direct patient care skills. Quarterly data on residents' progress are used to update and customize each resident's training plan. Implementation of this system allowed seamless linkage of the training plan, the progress tracking system, and the specified graduation requirement criteria. PGY1 residency requirements that are objective, that are measurable, and that attempt to identify what skills the resident must demonstrate in order to graduate from the program were developed for use in our residency program. A system for tracking the residents' progress by comparing residents' performance to predetermined quarterly benchmarks was developed. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Real-time moving objects detection and tracking from airborne infrared camera
NASA Astrophysics Data System (ADS)
Zingoni, Andrea; Diani, Marco; Corsini, Giovanni
2017-10-01
Detecting and tracking moving objects in real-time from an airborne infrared (IR) camera offers interesting possibilities in video surveillance, remote sensing and computer vision applications, such as monitoring large areas simultaneously, quickly changing the point of view on the scene and pursuing objects of interest. To fully exploit such a potential, versatile solutions are needed, but, in the literature, the majority of them works only under specific conditions about the considered scenario, the characteristics of the moving objects or the aircraft movements. In order to overcome these limitations, we propose a novel approach to the problem, based on the use of a cheap inertial navigation system (INS), mounted on the aircraft. To exploit jointly the information contained in the acquired video sequence and the data provided by the INS, a specific detection and tracking algorithm has been developed. It consists of three main stages performed iteratively on each acquired frame. The detection stage, in which a coarse detection map is computed, using a local statistic both fast to calculate and robust to noise and self-deletion of the targeted objects. The registration stage, in which the position of the detected objects is coherently reported on a common reference frame, by exploiting the INS data. The tracking stage, in which the steady objects are rejected, the moving objects are tracked, and an estimation of their future position is computed, to be used in the subsequent iteration. The algorithm has been tested on a large dataset of simulated IR video sequences, recreating different environments and different movements of the aircraft. Promising results have been obtained, both in terms of detection and false alarm rate, and in terms of accuracy in the estimation of position and velocity of the objects. In addition, for each frame, the detection and tracking map has been generated by the algorithm, before the acquisition of the subsequent frame, proving its capability to work in real-time.
Sarlegna, Fabrice R; Baud-Bovy, Gabriel; Danion, Frédéric
2010-08-01
When we manipulate an object, grip force is adjusted in anticipation of the mechanical consequences of hand motion (i.e., load force) to prevent the object from slipping. This predictive behavior is assumed to rely on an internal representation of the object dynamic properties, which would be elaborated via visual information before the object is grasped and via somatosensory feedback once the object is grasped. Here we examined this view by investigating the effect of delayed visual feedback during dextrous object manipulation. Adult participants manually tracked a sinusoidal target by oscillating a handheld object whose current position was displayed as a cursor on a screen along with the visual target. A delay was introduced between actual object displacement and cursor motion. This delay was linearly increased (from 0 to 300 ms) and decreased within 2-min trials. As previously reported, delayed visual feedback altered performance in manual tracking. Importantly, although the physical properties of the object remained unchanged, delayed visual feedback altered the timing of grip force relative to load force by about 50 ms. Additional experiments showed that this effect was not due to task complexity nor to manual tracking. A model inspired by the behavior of mass-spring systems suggests that delayed visual feedback may have biased the representation of object dynamics. Overall, our findings support the idea that visual feedback of object motion can influence the predictive control of grip force even when the object is grasped.
An Imaging And Graphics Workstation For Image Sequence Analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-01-01
This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.
A Framework for Assessing the Value of Investments in Nonclinical Prevention
Roehrig, Charles; Russo, Pamela
2015-01-01
We present a high-level framework to show the process by which an investment in primary prevention produces value. We define primary prevention broadly to include investments in any of the determinants of health. Although it builds on previously developed frameworks, ours incorporates several additional features. It distinguishes direct and upstream determinants of health, a distinction that can help identify, describe, and track the impact of a policy or program on health and health care costs. It recognizes multiple dimensions of value, including the need to establish the nonhealth value of investments whose objectives are not limited to improvements in health (and whose costs should not be attributed solely to the health benefits). Finally, it emphasizes the need to describe value from the perspectives of the multiple stakeholders that can influence such investments. PMID:26652216
A Framework for Assessing the Value of Investments in Nonclinical Prevention.
Miller, George; Roehrig, Charles; Russo, Pamela
2015-12-10
We present a high-level framework to show the process by which an investment in primary prevention produces value. We define primary prevention broadly to include investments in any of the determinants of health. Although it builds on previously developed frameworks, ours incorporates several additional features. It distinguishes direct and upstream determinants of health, a distinction that can help identify, describe, and track the impact of a policy or program on health and health care costs. It recognizes multiple dimensions of value, including the need to establish the nonhealth value of investments whose objectives are not limited to improvements in health (and whose costs should not be attributed solely to the health benefits). Finally, it emphasizes the need to describe value from the perspectives of the multiple stakeholders that can influence such investments.
IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiswell, S.
2010-01-15
The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located closemore » to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a number of potential wind power locations have been contested on the basis of radar line of site. Radar line of site is dependent on local topography, and varies with atmospheric refractive index which is affected by weather and geographic conditions.« less
AN/FSY-3 Space Fence System Support of Conjunction Assessment
NASA Astrophysics Data System (ADS)
Koltiska, M.; Du, H.; Prochoda, D.; Kelly, K.
2016-09-01
The Space Fence System is a ground-based space surveillance radar system designed to detect and track all objects in Low Earth Orbit the size of a softball or larger. The system detects many objects that are not currently in the catalog of satellites and space debris that is maintained by the US Air Force. In addition, it will also be capable of tracking many of the deep space objects in the catalog. By providing daily updates of the orbits of these new objects along with updates of most of the objects in the catalog, it will enhance Space Situational Awareness and significantly improve our ability to predict close approaches, aka conjunctions, of objects in space. With this additional capacity for tracking objects in space the Space Surveillance Network has significantly more resources for monitoring orbital debris, especially for debris that could collide with active satellites and other debris.
A distributed database view of network tracking systems
NASA Astrophysics Data System (ADS)
Yosinski, Jason; Paffenroth, Randy
2008-04-01
In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.
Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking
NASA Astrophysics Data System (ADS)
Lindgren, Erik
2014-12-01
This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects. The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1% false detection rates at high detection rates and less than 0.1 mm of positioning errors for more than 90% of the pores. A comparison between experimental results of the presented algorithm and a computerized tomography reference measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in 5-mm-thick Ti-6242.
Key Performance Indicators in the Evaluation of the Quality of Radiation Safety Programs.
Schultz, Cheryl Culver; Shaffer, Sheila; Fink-Bennett, Darlene; Winokur, Kay
2016-08-01
Beaumont is a multiple hospital health care system with a centralized radiation safety department. The health system operates under a broad scope Nuclear Regulatory Commission license but also maintains several other limited use NRC licenses in off-site facilities and clinics. The hospital-based program is expansive including diagnostic radiology and nuclear medicine (molecular imaging), interventional radiology, a comprehensive cardiovascular program, multiple forms of radiation therapy (low dose rate brachytherapy, high dose rate brachytherapy, external beam radiotherapy, and gamma knife), and the Research Institute (including basic bench top, human and animal). Each year, in the annual report, data is analyzed and then tracked and trended. While any summary report will, by nature, include items such as the number of pieces of equipment, inspections performed, staff monitored and educated and other similar parameters, not all include an objective review of the quality and effectiveness of the program. Through objective numerical data Beaumont adopted seven key performance indicators. The assertion made is that key performance indicators can be used to establish benchmarks for evaluation and comparison of the effectiveness and quality of radiation safety programs. Based on over a decade of data collection, and adoption of key performance indicators, this paper demonstrates one way to establish objective benchmarking for radiation safety programs in the health care environment.
Large scale tracking algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett
2015-01-01
Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For highermore » resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.« less
Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2009-01-01
In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.
Niu, Ben; Li, Lu
2018-06-01
This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.
Western North Pacific Tropical Cyclone Model Tracks in Present and Future Climates
NASA Astrophysics Data System (ADS)
Nakamura, Jennifer; Camargo, Suzana J.; Sobel, Adam H.; Henderson, Naomi; Emanuel, Kerry A.; Kumar, Arun; LaRow, Timothy E.; Murakami, Hiroyuki; Roberts, Malcolm J.; Scoccimarro, Enrico; Vidale, Pier Luigi; Wang, Hui; Wehner, Michael F.; Zhao, Ming
2017-09-01
Western North Pacific tropical cyclone (TC) model tracks are analyzed in two large multimodel ensembles, spanning a large variety of models and multiple future climate scenarios. Two methodologies are used to synthesize the properties of TC tracks in this large data set: cluster analysis and mass moment ellipses. First, the models' TC tracks are compared to observed TC tracks' characteristics, and a subset of the models is chosen for analysis, based on the tracks' similarity to observations and sample size. Potential changes in track types in a warming climate are identified by comparing the kernel smoothed probability distributions of various track variables in historical and future scenarios using a Kolmogorov-Smirnov significance test. Two track changes are identified. The first is a statistically significant increase in the north-south expansion, which can also be viewed as a poleward shift, as TC tracks are prevented from expanding equatorward due to the weak Coriolis force near the equator. The second change is an eastward shift in the storm tracks that occur near the central Pacific in one of the multimodel ensembles, indicating a possible increase in the occurrence of storms near Hawaii in a warming climate. The dependence of the results on which model and future scenario are considered emphasizes the necessity of including multiple models and scenarios when considering future changes in TC characteristics.
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association
Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-01-01
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems. PMID:29113085
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association.
Liu, Yu; Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-11-05
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets' state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems.
Robust Target Tracking with Multi-Static Sensors under Insufficient TDOA Information.
Shin, Hyunhak; Ku, Bonhwa; Nelson, Jill K; Ko, Hanseok
2018-05-08
This paper focuses on underwater target tracking based on a multi-static sonar network composed of passive sonobuoys and an active ping. In the multi-static sonar network, the location of the target can be estimated using TDOA (Time Difference of Arrival) measurements. However, since the sensor network may obtain insufficient and inaccurate TDOA measurements due to ambient noise and other harsh underwater conditions, target tracking performance can be significantly degraded. We propose a robust target tracking algorithm designed to operate in such a scenario. First, track management with track splitting is applied to reduce performance degradation caused by insufficient measurements. Second, a target location is estimated by a fusion of multiple TDOA measurements using a Gaussian Mixture Model (GMM). In addition, the target trajectory is refined by conducting a stack-based data association method based on multiple-frames measurements in order to more accurately estimate target trajectory. The effectiveness of the proposed method is verified through simulations.
A Multiple-Track Nursing Sequence: Supplement to Research Report No. 1.
ERIC Educational Resources Information Center
Gilpatrick, Eleanor
Following a survey of 2,361 practical nurses in New York City municipal hospitals in 1968, a specific multiple-track nursing sequence was developed to meet manpower shortages and upgrade licensed practical nurses (LPN's) to registered nurses (RN's) and nurse's aides (NA's) to LPN's. The two models designed were for use in New York City but it is…
Monocular Stereo Measurement Using High-Speed Catadioptric Tracking
Hu, Shaopeng; Matsumoto, Yuji; Takaki, Takeshi; Ishii, Idaku
2017-01-01
This paper presents a novel concept of real-time catadioptric stereo tracking using a single ultrafast mirror-drive pan-tilt active vision system that can simultaneously switch between hundreds of different views in a second. By accelerating video-shooting, computation, and actuation at the millisecond-granularity level for time-division multithreaded processing in ultrafast gaze control, the active vision system can function virtually as two or more tracking cameras with different views. It enables a single active vision system to act as virtual left and right pan-tilt cameras that can simultaneously shoot a pair of stereo images for the same object to be observed at arbitrary viewpoints by switching the direction of the mirrors of the active vision system frame by frame. We developed a monocular galvano-mirror-based stereo tracking system that can switch between 500 different views in a second, and it functions as a catadioptric active stereo with left and right pan-tilt tracking cameras that can virtually capture 8-bit color 512×512 images each operating at 250 fps to mechanically track a fast-moving object with a sufficient parallax for accurate 3D measurement. Several tracking experiments for moving objects in 3D space are described to demonstrate the performance of our monocular stereo tracking system. PMID:28792483
Siamese convolutional networks for tracking the spine motion
NASA Astrophysics Data System (ADS)
Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong
2017-09-01
Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.
Tracks detection from high-orbit space objects
NASA Astrophysics Data System (ADS)
Shumilov, Yu. P.; Vygon, V. G.; Grishin, E. A.; Konoplev, A. O.; Semichev, O. P.; Shargorodskii, V. D.
2017-05-01
The paper presents studies results of a complex algorithm for the detection of highly orbital space objects. Before the implementation of the algorithm, a series of frames with weak tracks of space objects, which can be discrete, is recorded. The algorithm includes pre-processing, classical for astronomy, consistent filtering of each frame and its threshold processing, shear transformation, median filtering of the transformed series of frames, repeated threshold processing and detection decision making. Modeling of space objects weak tracks on of the night starry sky real frames obtained in the regime of a stationary telescope was carried out. It is shown that the permeability of an optoelectronic device has increased by almost 2m.
Phenomenal Permanence and the Development of Predictive Tracking in Infancy
ERIC Educational Resources Information Center
Bertenthal, Bennett I.; Longo, Matthew R.; Kenny, Sarah
2007-01-01
The perceived spatiotemporal continuity of objects depends on the way they appear and disappear as they move in the spatial layout. This study investigated whether infants' predictive tracking of a briefly occluded object is sensitive to the manner by which the object disappears and reappears. Five-, 7-, and 9-month-old infants were shown a ball…
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong
2017-06-02
Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.
Statistical and sampling issues when using multiple particle tracking
NASA Astrophysics Data System (ADS)
Savin, Thierry; Doyle, Patrick S.
2007-08-01
Video microscopy can be used to simultaneously track several microparticles embedded in a complex material. The trajectories are used to extract a sample of displacements at random locations in the material. From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate structural and/or mechanical properties of the assessed material. However, the sampling of measured displacements in heterogeneous systems is singular because the volume of observation with video microscopy is finite. By carefully characterizing the sampling design in the experimental output of the multiple particle tracking technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experimental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple particle tracking output sample of observations is essential in order to provide accurate unbiased measurements.
Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju
2014-03-21
A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated.
Color Image Processing and Object Tracking System
NASA Technical Reports Server (NTRS)
Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.
1996-01-01
This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.
Moving Particles Through a Finite Element Mesh
Peskin, Adele P.; Hardin, Gary R.
1998-01-01
We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377