LITERATURE REVIEW OF MOLECULAR METHODS FOR SIMULTANEOUS DETECTION OF PATHOGENS IN WATER
This literature search is a review of molecular technologies (qPCR, microarray, microfluidics and lab-on-a-chip) for simultaneous detection of multiple waterborne pathogens in order to understand the state of the technology. The search content focuses on: pathogen detection witho...
Development of a High Throughput Assay for Rapid and Accurate 10-Plex Detection of Citrus Pathogens
USDA-ARS?s Scientific Manuscript database
The need to reliably detect and identify multiple plant pathogens simultaneously, especially in woody perennial hosts, has led to development of new molecular diagnostic approaches. In this study, a Luminex-based system was developed that provided a robust and sensitive test for simultaneous detect...
Multiplex and label-free screening of foodborne pathogens using surface plasmon resonance imaging
USDA-ARS?s Scientific Manuscript database
In order to protect outbreaks caused by foodborne pathogens, more rapid and efficient methods are needed for pathogen screening from food samples. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for label-free screening of multiple targets simultaneously with ...
Quantitative multiplex detection of pathogen biomarkers
Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.
2016-02-09
The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.
Quantitative multiplex detection of pathogen biomarkers
Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K
2014-10-14
The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.
Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure expos...
Individual and combined effects of multiple pathogens on Pacific treefrogs.
Romansic, John M; Johnson, Pieter T J; Searle, Catherine L; Johnson, James E; Tunstall, Tate S; Han, Barbara A; Rohr, Jason R; Blaustein, Andrew R
2011-08-01
In nature, individual hosts often encounter multiple pathogens simultaneously, which can lead to additive, antagonistic, or synergistic effects on hosts. Synergistic effects on infection prevalence or severity could greatly affect host populations. However, ecologists and managers often overlook the influence of pathogen combinations on hosts. This is especially true in amphibian conservation, even though multiple pathogens coexist within amphibian populations, and several pathogens have been implicated in amphibian population declines and extinctions. Using an amphibian host, Pseudacris regilla (Pacific treefrog), we experimentally investigated interactive effects among three pathogens: the trematode Ribeiroia sp. (hereafter, Ribeiroia), the fungus Batrachochytrium dendrobatidis (hereafter, BD), and the water mold Achlya flagellata. We detected no effects of A. flagellata, but did find effects of Ribeiroia and BD that varied depending on context. Low doses of Ribeiroia caused relatively few malformations, while higher Ribeiroia doses caused numerous deformities dominated by missing and reduced limbs and limb elements. Exposure to low doses of BD accelerated larval host development, despite there being no detectable BD infections, while exposure to higher BD doses caused infection but did not alter developmental rate. Hosts exposed to both Ribeiroia and BD exhibited the highest mortality, although overall evidence of interactive effects of multiple pathogens was limited. We suggest further research on the influence of multi-pathogen assemblages on amphibians, particularly under a variety of ecological conditions and with a wider diversity of hosts and pathogens.
Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei
2016-01-01
The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128
Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei
2016-02-17
The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.
Detection of Multiple Waterborne Pathogens Using Microsequencing Arrays
Aims: A microarray was developed to simultaneously detect Cryptosporidium parvum, Cryptosporidium hominis, Enterococcus faecium, Bacillus anthracis and Francisella tularensis in water. Methods and Results: A DNA microarray was designed to contain probes that specifically dete...
Augustine, Swinburne A. J.; Simmons, Kaneatra J.; Eason, Tarsha N.; Curioso, Clarissa L.; Griffin, Shannon M.; Wade, Timothy J.; Dufour, Alfred; Fout, G. Shay; Grimm, Ann C.; Oshima, Kevin H.; Sams, Elizabeth A.; See, Mary Jean; Wymer, Larry J.
2017-01-01
Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations. PMID:28507984
NASA Astrophysics Data System (ADS)
Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David
2010-04-01
High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.
Dynamics of multiple infection and within-host competition by the anther-smut pathogen.
Hood, M E
2003-07-01
Infection of one host by multiple pathogen genotypes represents an important area of pathogen ecology and evolution that lacks a broad empirical foundation. Multiple infection of Silene latifolia by Microbotryum violaceum was studied under field and greenhouse conditions using the natural polymorphism for mating-type bias as a marker. Field transmission resulted in frequent multiple infection, and each stem of the host was infected independently. Within-host diversity of infections equaled that of nearby inoculum sources by the end of the growing season. The number of diseased stems per plant was positively correlated with multiple infection and with overwintering mortality. As a result, multiply infected plants were largely purged from the population, and there was lower within-host pathogen diversity in the second season. However, among plants with a given number of diseased stems, multiply infected plants had a lower risk of overwintering mortality. Following simultaneous and sequential inoculation, strong competitive exclusion was demonstrated, and the first infection had a significant advantage. Dynamics of multiple infection initially included components of coinfection models for virulence evolution and then components of superinfection models after systemic colonization. Furthermore, there was evidence for an advantage of genotypes with mating-type bias, which may contribute to maintenance of this polymorphism in natural populations.
[Do Multiplex PCR techniques displace classical cultures in microbiology?].
Auckenthaler, Raymond; Risch, Martin
2015-02-01
Multiplex PCR technologies progressively find their way in clinical microbiology. This technique allows the simultaneous amplification of multiple DNA targets in a single test run for the identification of pathogens up to the species level. Various pathogens of infectious diseases can be detected by a symptom-oriented approach clearly and quickly with high reliability. Essentially multiplex PCR panels are available for clarification of gastrointestinal, respiratory, sexually transmitted infections and meningitis. Today's offer from industry, university hospitals and large private laboratories of Switzerland is tabulated and commented.
Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens
USDA-ARS?s Scientific Manuscript database
Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...
Janse, Ingmar; Bok, Jasper M.; Hamidjaja, Raditijo A.; Hodemaekers, Hennie M.; van Rotterdam, Bart J.
2012-01-01
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics. PMID:22355407
Janse, Ingmar; Bok, Jasper M; Hamidjaja, Raditijo A; Hodemaekers, Hennie M; van Rotterdam, Bart J
2012-01-01
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics.
USDA-ARS?s Scientific Manuscript database
Several common root diseases routinely damage sugar beet in Nebraska and other production areas of the Central High Plains, and it is becoming more common to find fields infested simultaneously with multiple pathogens. Due to the lack of available chemicals for economic management of soilborne dise...
Key CCL viruses will be rapidly detected at low levels in water samples concentrated by a rapid HFUF or a new thin-sheet (TSM) electropositive filter adsorption-elution method and compared with the approved EPA method (1MDS VIRADEL). A unified and rapid virus concentration, n...
Wang, Chungang; Irudayaraj, Joseph
2010-01-01
Multifunctional nanoparticles possessing magnetization and near-infrared (NIR) absorption have warranted interest due to their significant applications in magnetic resonance imaging, diagnosis, bioseparation, target delivery, and NIR photothermal ablation. Herein, the site-selective assembly of magnetic nanoparticles onto the ends or ends and sides of gold nanorods with different aspect ratios (ARs) to create multifunctional nanorods decorated with varying numbers of magnetic particles is described for the first time. The resulting hybrid nanoparticles are designated as Fe(3)O(4)-Au(rod)-Fe(3)O(4) nanodumbbells and Fe(3)O(4)-Au(rod) necklacelike constructs with tunable optical and magnetic properties, respectively. These hybrid nanomaterials can be used for multiplex detection and separation because of their tunable magnetic and plasmonic functionality. More specifically, Fe(3)O(4)-Au(rod) necklacelike probes of different ARs are utilized for simultaneous optical detection based on their plasmon properties, magnetic separation, and photokilling of multiple pathogens from a single sample at one time. The combined functionalities of the synthesized probes will open up many exciting opportunities in dual imaging for targeted delivery and photothermal therapy.
Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio
2014-04-01
Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction. © 2014 John Wiley & Sons Ltd.
Matrix approach to the simultaneous detection of multiple potato pathogens by real-time PCR.
Nikitin, M M; Statsyuk, N V; Frantsuzov, P A; Dzhavakhiya, V G; Golikov, A G
2018-03-01
Create a method for highly sensitive, selective, rapid and easy-to-use detection and identification of economically significant potato pathogens, including viruses, bacteria and oomycetes, be it single pathogen, or a range of various pathogens occurring simultaneously. Test-systems for real-time PCR, operating in the unified amplification regime, have been developed for Phytophthora infestans, Pectobacterium atrosepticum, Dickeya dianthicola, Dickeya solani, Ralstonia solanacearum, Pectobacterium carotovorum, Clavibacter michiganensis subsp. sepedonicus, potato viruses Y (ordinary and necrotic forms as well as indiscriminative test system, detecting all forms), A, X, S, M, potato leaf roll virus, potato mop top virus and potato spindle tuber viroid. The test-systems (including polymerase and revertase) were immobilized and lyophilized in miniature microreactors (1·2 μl) on silicon DNA/RNA microarrays (micromatrices) to be used with a mobile AriaDNA ® amplifier. Preloaded 30-reaction micromatrices having shelf life of 3 and 6 months (for RNA- and DNA-based pathogens, respectively) at room temperature with no special conditions were successfully tested on both reference and field samples in comparison with traditional ELISA and microbiological methods, showing perfect performance and sensitivity (1 pg). The accurate, rapid and user-friendly diagnostic system in a micromatrix format may significantly contribute to pathogen screening and phytopathological studies. © 2018 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.
USDA-ARS?s Scientific Manuscript database
Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...
Wang, Hong; Li, Yanbin; Wang, Andrew; Slavik, Michael
2011-12-01
Losses caused by foodborne diseases are enormous in terms of human life, illness, medical costs, and food product recalls. Rapid detection of multiple bacterial pathogens in foods is extremely important to ensure food safety. The objective of this research was to develop a multiplex immunoassay by integrating magnetic nanobeads (MNBs) for immunoseparation with quantum dots (QDs) as fluorescent labels for rapid, sensitive, and simultaneous detection of three major pathogenic bacteria, Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes, in food products. In this research, both streptavidin-conjugated MNBs (30- and 150-nm diameter) and QDs (530-, 580-, and 620-nm emission wavelength) were separately coated with biotinylated anti-Salmonella, anti-E. coli, and anti-Listeria antibodies. The immuno-MNBs were mixed with a food sample to capture the three target bacteria. After being magnetically separated from the sample, the MNB-cell conjugates were mixed with the immuno-QDs to form the MNB-cell-QD complexes, and unattached QDs were removed. The fluorescence intensity of the MNB-cell-QD complexes was measured at wavelengths of 530, 580, and 620 nm to determine the populations of Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes, respectively. This multiplex immunoassay simultaneously detected Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes at levels as low as 20 to 50 CFU/ml in food samples in less than 2 h without enrichment. The change in fluorescence intensity was linearly correlated (R(2) > 0.96) with the logarithmic value of bacterial level in the range of 10 to 10(3) CFU/ml. More than 85% of the three target pathogens could be simultaneously separated from food samples. The multiplex immunoassay could be expanded to detect more target pathogens, depending on the availability of specific antibodies and QDs with different emission wavelengths.
Simultaneous detection of multiple lower genital tract pathogens by an impedimetric immunochip.
Chiriacò, Maria Serena; Primiceri, Elisabetta; De Feo, Francesco; Montanaro, Alessandro; Monteduro, Anna Grazia; Tinelli, Andrea; Megha, Marcella; Carati, Davide; Maruccio, Giuseppe
2016-05-15
Lower genital tract infections caused by both sexually and not-sexually transmitted pathogens in women are a key public health priority worldwide, especially in developing countries. Since standard analyses are time-consuming, appropriate therapeutic intervention is often neglected or delayed. Lab-on-chips and biosensors open new perspectives and offer innovative tools to simplify the diagnosis by medical staff, especially in countries with inadequate resources. Here we report a biosensing platform based on Electrochemical Impedance Spectroscopy (EIS) that allows multiplexed detection of Candida albicans, Streptococcus agalactiae and Chlamydia trachomatis with a single biochip, enabling a quick screening thanks to the presence of different immobilized antibodies, each specific for one of the different target pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.
Han, Zhongyi; Wei, Benzheng; Leung, Stephanie; Nachum, Ilanit Ben; Laidley, David; Li, Shuo
2018-02-15
Pathogenesis-based diagnosis is a key step to prevent and control lumbar neural foraminal stenosis (LNFS). It conducts both early diagnosis and comprehensive assessment by drawing crucial pathological links between pathogenic factors and LNFS. Automated pathogenesis-based diagnosis would simultaneously localize and grade multiple spinal organs (neural foramina, vertebrae, intervertebral discs) to diagnose LNFS and discover pathogenic factors. The automated way facilitates planning optimal therapeutic schedules and relieving clinicians from laborious workloads. However, no successful work has been achieved yet due to its extreme challenges since 1) multiple targets: each lumbar spine has at least 17 target organs, 2) multiple scales: each type of target organ has structural complexity and various scales across subjects, and 3) multiple tasks, i.e., simultaneous localization and diagnosis of all lumbar organs, are extremely difficult than individual tasks. To address these huge challenges, we propose a deep multiscale multitask learning network (DMML-Net) integrating a multiscale multi-output learning and a multitask regression learning into a fully convolutional network. 1) DMML-Net merges semantic representations to reinforce the salience of numerous target organs. 2) DMML-Net extends multiscale convolutional layers as multiple output layers to boost the scale-invariance for various organs. 3) DMML-Net joins a multitask regression module and a multitask loss module to prompt the mutual benefit between tasks. Extensive experimental results demonstrate that DMML-Net achieves high performance (0.845 mean average precision) on T1/T2-weighted MRI scans from 200 subjects. This endows our method an efficient tool for clinical LNFS diagnosis.
AquaPathogen X--A template database for tracking field isolates of aquatic pathogens
Emmenegger, Evi; Kurath, Gael
2012-01-01
AquaPathogen X is a template database for recording information on individual isolates of aquatic pathogens and is available for download from the U.S. Geological Survey (USGS) Western Fisheries Research Center (WFRC) website (http://wfrc.usgs.gov). This template database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (for example, viruses, parasites, or bacteria) from multiple aquatic animal host species (for example, fish, shellfish, or shrimp). The simultaneous cataloging of isolates from different aquatic pathogens is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and clarification of main risk factors associated with pathogen incursions into new water systems. As a template database, the data fields are empty upon download and can be modified to user specifications. For example, an application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak (fig. 1), was also developed (Emmenegger and others, 2011).
USDA-ARS?s Scientific Manuscript database
Streptavidin-coated magnetic beads were conjugated with biotinylated capture antibodies to both Escherichia coli O157:H7 and Samonella Typhimurium to form multi-pathogen capture immunomagnetic beads (IMB-M). The efficacy of these beads was investigated and compared to the use of a mixture of IMB ag...
Zhou, Qian-Jin; Wang, Lei; Chen, Jiong; Wang, Rui-Na; Shi, Yu-Hong; Li, Chang-Hong; Zhang, De-Min; Yan, Xiao-Jun; Zhang, Yan-Jun
2014-09-01
Rapid, low-cost, and user-friendly strategies are urgently needed for early disease diagnosis and timely treatment, particularly for on-site screening of pathogens in aquaculture. In this study, we successfully developed a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP), which was capable of simultaneously detecting 10 pathogenic bacteria in aquatic animals, i.e., Nocardia seriolae, Pseudomonas putida, Streptococcus iniae, Vibrio alginolyticus, Vibrio anguillarum, Vibrio fluvialis, Vibrio harveyi, Vibrio parahaemolyticus, Vibrio rotiferianus, and Vibrio vulnificus. The assay provided a nearly-automated approach, with only a single pipetting step per chip for sample dispensing. This technique could achieve limits of detection (LOD) ranging from 0.40 to 6.42pg per 1.414μL reaction in less than 30 min. The robust reproducibility was demonstrated by a little variation among duplications for each bacterium with the coefficient of variation (CV) for time to positive (Tp) value less than 0.10. The clinical sensitivity and specificity of this on-chip LAMP assay in detecting field samples were 96.2% and 93.8% by comparison with conventional microbiological methods. Compared with other well-known techniques, on-chip LAMP assay provides low sample and reagent consumption, ease-of-use, accelerated analysis, multiple bacteria and on-site detection, and high reproducibility, indicating that such a technique would be applicable for on-site detection and routine monitoring of multiple pathogens in aquaculture. Copyright © 2014 Elsevier B.V. All rights reserved.
Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water
Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; ...
2016-01-01
Water-born pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal microfluidic platform (SpinDx) for detection of bacterial pathogens using bead-based immunoassays. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by fluorescence microscopy. Our platform is fast (20 min), sensitive (10 3 CFU/mL), requires minimal sample preparation, and can detect multiple pathogens simultaneously with sensitivitymore » similar to that required by the EPA. We demonstrate detection of a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) at concentrations as low as 10 3 CFU/mL or 30 bacteria per reaction.« less
Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water
Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; Singh, Anup K.
2016-01-01
Waterborne pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal sedimentation immunoassay platform for detection of bacterial pathogens in water. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk. Beads at the distal end of the disk are imaged to quantify the fluorescence and determine the bacterial concentration. Our platform is fast (20 min), can detect as few as ∼10 bacteria with minimal sample preparation, and can detect multiple pathogens simultaneously. The platform was used to detect a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) spiked in tap and ground water samples. PMID:26858815
Callaway, T R; Edrington, T S; Nisbet, D J
2014-04-01
Pathogenic bacteria can live asymptomatically within and on cattle and can enter the food chain but also can be transmitted to humans by fecal or direct animal contact. Reducing pathogenic bacterial incidence and populations within live cattle represents an important step in improving food safety. A broad range of preslaughter intervention strategies are being developed, which can be loosely classified as 1) directly antipathogen strategies, 2) competitive enhancement strategies (that use the microbiome's competitive nature against pathogens), and 3) animal management strategies. Included within these broad categories are such diverse methods as vaccination against foodborne pathogens, probiotics and prebiotics, bacterial viruses (i.e., bacteriophages), sodium chlorate feeding, and dietary and management changes that specifically alter the microbiome. The simultaneous application of 1 or more preharvest strategies has the potential to reduce human foodborne illnesses by erecting multiple hurdles preventing entry into humans. However, economic factors that govern producer profitability must be kept in mind while improving food safety.
Xia, Yu; Li, An-Dong; Deng, Yu; Jiang, Xiao-Tao; Li, Li-Guan; Zhang, Tong
2017-01-01
Wastewater treatment plants (WWTPs) functioned as the intersection between the human society and nature environment, are receiving increasingly more attention on risk assessment of the acquisition of environmental antibiotic resistance genes (ARGs) by pathogenetic populations during treatment. However, because of the general lack of robust resistome profiling methods, genotype, and resistance phenotype is still poorly correlated in human pathogens of sewage samples. Here we applied MinION sequencing to quantify the resistance genes of multiple antibiotic resistant (MAR) coliform bacteria, a common indicator for human enteric pathogens in sewage samples. Our pipeline could deliver the results within 30 h from sample collection and the resistome quantification was consistent to that based on the Illumina platform. Additionally, the long nanopore reads not only enabled a simultaneous identification of the carrier populations of ARGs detected, but also facilitated the genome reconstruction of a representative MAR strain, from which we identified an instance of chromosomal integration of environmental resistance gene obtained by plasmid exchange with a porcine pathogen. This study demonstrated the utilization of MinION sequencing in quick monitoring and simultaneous phylogenetic tracking of environmental ARGs to address potential health risk associated with them.
Xia, Yu; Li, An-Dong; Deng, Yu; Jiang, Xiao-Tao; Li, Li-Guan; Zhang, Tong
2017-01-01
Wastewater treatment plants (WWTPs) functioned as the intersection between the human society and nature environment, are receiving increasingly more attention on risk assessment of the acquisition of environmental antibiotic resistance genes (ARGs) by pathogenetic populations during treatment. However, because of the general lack of robust resistome profiling methods, genotype, and resistance phenotype is still poorly correlated in human pathogens of sewage samples. Here we applied MinION sequencing to quantify the resistance genes of multiple antibiotic resistant (MAR) coliform bacteria, a common indicator for human enteric pathogens in sewage samples. Our pipeline could deliver the results within 30 h from sample collection and the resistome quantification was consistent to that based on the Illumina platform. Additionally, the long nanopore reads not only enabled a simultaneous identification of the carrier populations of ARGs detected, but also facilitated the genome reconstruction of a representative MAR strain, from which we identified an instance of chromosomal integration of environmental resistance gene obtained by plasmid exchange with a porcine pathogen. This study demonstrated the utilization of MinION sequencing in quick monitoring and simultaneous phylogenetic tracking of environmental ARGs to address potential health risk associated with them. PMID:29163399
Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.
van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd
2010-01-01
Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.
Neng, Jing; Li, Yina; Driscoll, Ashley J; Wilson, William C; Johnson, Patrick A
2018-06-06
A robust immunoassay based on surface-enhanced Raman scattering (SERS) has been developed to simultaneously detect trace quantities of multiple pathogenic antigens from West Nile virus, Rift Valley fever virus, and Yersinia pestis in fetal bovine serum. Antigens were detected by capture with silica-encapsulated nanotags and magnetic nanoparticles conjugated with polyclonal antibodies. The magnetic pull-down resulted in aggregation of the immune complexes, and the silica-encapsulated nanotags provided distinct spectra corresponding to each antigen captured. The limit of detection was ∼10 pg/mL in 20% fetal bovine serum, a significant improvement over previous studies in terms of sensitivity, level of multiplexing, and medium complexity. This highly sensitive multiplex immunoassay platform provides a promising method to detect various antigens directly in crude serum samples without the tedious process of sample preparation, which is desirable for on-site diagnostic testing and real-time disease monitoring.
Emmenegger, E.J.; Kentop, E.; Thompson, T.M.; Pittam, S.; Ryan, A.; Keon, D.; Carlino, J.A.; Ranson, J.; Life, R.B.; Troyer, R.M.; Garver, K.A.; Kurath, G.
2011-01-01
The AquaPathogen X database is a template for recording information on individual isolates of aquatic pathogens and is freely available for download (http://wfrc.usgs.gov). This database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (e.g. viruses, parasites and bacteria) from multiple aquatic animal host species (e.g. fish, shellfish and shrimp). The cataloguing of isolates from different aquatic pathogens simultaneously is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and elucidation of key risk factors associated with pathogen incursions into new water systems. An application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak, was also developed. Exported records for two aquatic rhabdovirus species emerging in North America were used in the implementation of two separate web-accessible databases: the Molecular Epidemiology of Aquatic Pathogens infectious haematopoietic necrosis virus (MEAP-IHNV) database (http://gis.nacse.org/ihnv/) released in 2006 and the MEAP- viral haemorrhagic septicaemia virus (http://gis.nacse.org/vhsv/) database released in 2010.
Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji
2012-12-01
Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Cabrera-Díaz, E; Martínez-Chávez, L; Sánchez-Camarena, J; Muñiz-Flores, J A; Castillo, A; Gutiérrez-González, P; Arvizu-Medrano, S M; González-Aguilar, D G; Martínez-Gonzáles, N E
2018-08-01
Simultaneous and individual enumeration of Salmonella, Shigella and Listeria monocytogenes was compared on inoculated Roma tomatoes and Serrano peppers using an Most Probable Number (MPN) technique. Samples consisting of tomatoes (4 units) or peppers (8 units) were individually inoculated with a cocktail of three strains of Salmonella, Shigella or L. monocytogenes, or by simultaneous inoculation of three strains of each pathogen, at low (1.2-1.7 log CFU/sample) and high (2.2-2.7 log CFU/sample) inocula. Samples were analyzed by an MPN technique using universal pre-enrichment (UP) broth at 35 °C for 24 ± 2 h. The UP tubes from each MPN series were transferred to enrichment and plating media following adequate conventional methods for isolating each pathogen. Data were analyzed using multifactorial analysis of variance (p < 0.05) and LSD multiple rang test. There were differences (p < 0.05) in recovery of simultaneous and individual bacteria inoculated (individual > simultaneous), type of bacteria (Salmonella > Shigella and L. monocytogenes), type of sample (UP broth > pepper and tomato), and inoculum level (high > low). The MPN technique was effective for Salmonella on both commodities. Shigella counts were higher on tomatoes compared to peppers, (p < 0.05), and for L. monocytogenes on peppers (p < 0.05). Copyright © 2018 Elsevier Ltd. All rights reserved.
Customizable PCR-microplate array for differential identification of multiple pathogens
Woubit, Abdela; Yehualaeshet, Teshome; Roberts, Sherrelle; Graham, Martha; Kim, Moonil; Samuel, Temesgen
2014-01-01
Customizable PCR-microplate arrays were developed for the rapid identification of Francisella tularensis subsp. tularensis, Salmonella Typhi, Shigella dysenteriae, Yersinia pestis, Vibrio cholerae Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Saintpaul, Francisella tularensis subsp. novicida, Vibrio parahaemolyticus, and Yersinia pseudotuberculosis. Previously, we identified highly specific primers targeting each of the pathogens above. Here, we report the development of customizable PCR-microplate arrays for simultaneous identification of the pathogens using the primers. A mixed aliquot of genomic DNA from 38 different strains was used to validate three PCR-microplate array formats. Identical PCR conditions were used to run all the samples on the three formats. Results show specific amplifications on all the three custom plates. In a preliminary test to evaluate the sensitivity of these assays in laboratory-inoculated samples, detection limits as low as 9 cfu/g/ml S. Typhimurium were obtained from beef hot dog, and 78 cfu/ml from milk. Such microplate arrays could serve as valuable tools for initial identification or secondary confirmation of these pathogens. PMID:24215700
van der Wal, Fimme J.; Achterberg, René P.; van Solt-Smits, Conny; Bergervoet, Jan H. W.; de Weerdt, Marjanne; Wisselink, Henk J.
2017-01-01
We investigated the feasibility of an assay based on target-specific primer extension, combined with a suspension array, for the multiplexed detection and typing of a veterinary pathogen in animal samples, using Streptococcus suis as a model pathogen. A procedure was established for simultaneous detection of 6 S. suis targets in pig tonsil samples (i.e., 4 genes associated with serotype 1, 2, 7, or 9, the generic S. suis glutamate dehydrogenase gene [gdh], and the gene encoding the extracellular protein factor [epf]). The procedure was set up as a combination of protocols: DNA isolation from porcine tonsils, a multiplex PCR, a multiplex target-specific primer extension, and finally a suspension array as the readout. The resulting assay was compared with a panel of conventional PCR assays. The proposed multiplex assay can correctly identify the serotype of isolates and is capable of simultaneous detection of multiple targets in porcine tonsillar samples. The assay is not as sensitive as the current conventional PCR assays, but with the correct sampling strategy, the assay can be useful for screening pig herds to establish which S. suis serotypes are circulating in a pig population. PMID:28980519
Zhang, Xiaoguang; Tsuji, Sachiko; Kitaoka, Hayato; Kobayashi, Hiroshi; Tamai, Mitsuru; Honjoh, Ken-Ichi; Miyamoto, Takahisa
2017-10-01
Detection of foodborne pathogens at very low levels is still a challenge. A custom-built multichannel surface plasmon resonance (SPR) biosensor and simultaneous enrichment broth (SEB) were used to develop a simultaneous detection method for 3 important foodborne pathogens, Escherichia coli O157:H7 (O157:H7), Salmonella enteritidis, and Listeria monocytogenes, at a very low level. These 3 foodborne pathogens at a very low level (14, 6, and 28 CFU/25 g (mL) for O157:H7, S. enteritidis, and L. monocytogenes, respectively) were inoculated in SEB and incubated at 37 ˚C for 24 h. Sample prepared from the simultaneous enrichment culture was analyzed using the multichannel SPR biosensor and sensor chip immobilized with polyclonal antibodies specific to each of the target pathogens. O157:H7, S. enteritidis, and L. monocytogenes in chicken were detected simultaneously at an inoculum dose of 14, 6, and 28 CFU/25 g, respectively. Our method using a custom-built multichannel SPR biosensor and enrichment in SEB is expected as a rapid and simultaneous detection method for low levels of O157:H7, S. enteritidis, and L. monocytogenes in food. Our method is expected as a rapid and simultaneous detection method for pathogens at very low levels. It has great potential for safety control of food and microbiological detection applications. © 2017 Institute of Food Technologists®.
Hanson, Kimberly E; Couturier, Marc Roger
2016-11-15
The development and implementation of highly multiplexed molecular diagnostic tests have allowed clinical microbiology laboratories to more rapidly and sensitively detect a variety of pathogens directly in clinical specimens. Current US Food and Drug Administration-approved multiplex panels target multiple different organisms simultaneously and can identify the most common pathogens implicated in respiratory viral, gastrointestinal, or central nervous system infections. This review summarizes the test characteristics of available assays, highlights the advantages and limitations of multiplex technology for infectious diseases, and discusses potential utilization of these new tests in clinical practice. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa
2015-01-01
In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat–drought stress as a major abiotic stress combination and, drought–pathogen and heat–pathogen as examples of abiotic–biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance. PMID:26442037
Wang, Yi; Li, Dongxun; Wang, Yan; Li, Kewei; Ye, Changyun
2016-01-19
Vibrio parahaemolyticus and Vibrio vulnificus are two marine seafood-borne pathogens causing severe illnesses in humans and aquatic animals. In this study, a recently developed novel multiple endonuclease restriction real-time loop-mediated isothermal amplification technology (MERT-LAMP) were successfully developed and evaluated for simultaneous detection of V. parahaemolyticus and V. vulnificus strains in only a single reaction. Two MERT-LAMP primer sets were designed to specifically target toxR gene of V. parahaemolyticus and rpoS gene of V. vulnificus. The MERT-LAMP reactions were conducted at 62 °C, and the positive results were produced in as short as 19 min with the genomic DNA templates extracted from the V. parahaemolyticus and V. vulnificus strains. The two target pathogens present in the same sample could be simultaneously detected and correctly differentiated based on distinct fluorescence curves in a real-time format. The sensitivity of MERT-LAMP assay was 250 fg and 125 fg DNA per reaction with genomic templates of V. parahaemolyticus and V. vulnificus strains, which was in conformity with conventional LAMP detection. Compared with PCR-based techniques, the MERT-LAMP technology was 100- and 10-fold more sensitive than that of PCR and qPCR methods. Moreover, the limit of detection of MERT-LAMP approach for V. parahaemolyticus isolates and V. vulnificus isolates detection in artificially-contaminated oyster samples was 92 CFU and 83 CFU per reaction. In conclusion, the MERT-LAMP assay presented here was a rapid, specific, and sensitive tool for the detection of V. parahaemolyticus and V. vulnificus, and could be adopted for simultaneous screening of V. parahaemolyticus and V. vulnificus in a wide variety of samples.
Wang, Yi; Wang, Yan; Luo, Lijuan; Liu, Dongxin; Luo, Xia; Xu, Yanmei; Hu, Shoukui; Niu, Lina; Xu, Jianguo; Ye, Changyun
2015-01-01
Shigella and Salmonella are frequently isolated from various food samples and can cause human gastroenteritis. Here, a novel multiple endonuclease restriction real-time loop-mediated isothermal amplification technology (MERT-LAMP) were successfully established and validated for simultaneous detection of Shigella strains and Salmonella strains in only a single reaction. Two sets of MERT-LAMP primers for 2 kinds of pathogens were designed from ipaH gene of Shigella spp. and invA gene of Salmonella spp., respectively. Under the constant condition at 63°C, the positive results were yielded in as short as 12 min with the genomic DNA extracted from the 19 Shigella strains and 14 Salmonella strains, and the target pathogens present in a sample could be simultaneously identified based on distinct fluorescence curves in real-time format. Accordingly, the multiplex detection assay significantly reduced effort, materials and reagents used, and amplification and differentiation were conducted at the same time, obviating the use of postdetection procedures. The analytical sensitivity of MERT-LAMP was found to be 62.5 and 125 fg DNA/reaction with genomic templates of Shigella strains and Salmonella strains, which was consist with normal LAMP assay, and at least 10- and 100-fold more sensitive than that of qPCR and conventional PCR approaches. The limit of detection of MERT-LAMP for Shigella strains and Salmonella strains detection in artificially contaminated milk samples was 5.8 and 6.4 CFU per vessel. In conclusion, the MERT-LAMP methodology described here demonstrated a potential and valuable means for simultaneous screening of Shigella and Salmonella in a wide variety of samples. PMID:26697000
Golden, J.P.; Verbarg, J.; Howell, P.B.; Shriver-Lake, L.C.; Ligler, F.S.
2012-01-01
A spinning magnetic trap (MagTrap) for automated sample processing was integrated with a microflow cytometer capable of simultaneously detecting multiple targets to provide an automated sample-to-answer diagnosis in 40 min. After target capture on fluorescently coded magnetic microspheres, the magnetic trap automatically concentrated the fluorescently coded microspheres, separated the captured target from the sample matrix, and exposed the bound target sequentially to biotinylated tracer molecules and streptavidin-labeled phycoerythrin. The concentrated microspheres were then hydrodynamically focused in a microflow cytometer capable of 4-color analysis (two wavelengths for microsphere identification, one for light scatter to discriminate single microspheres and one for phycoerythrin bound to the target). A three-fold decrease in sample preparation time and an improved detection limit, independent of target preconcentration, was demonstrated for detection of Escherichia coli 0157:H7 using the MagTrap as compared to manual processing. Simultaneous analysis of positive and negative controls, along with the assay reagents specific for the target, was used to obtain dose–response curves, demonstrating the potential for quantification of pathogen load in buffer and serum. PMID:22960010
Golden, J P; Verbarg, J; Howell, P B; Shriver-Lake, L C; Ligler, F S
2013-02-15
A spinning magnetic trap (MagTrap) for automated sample processing was integrated with a microflow cytometer capable of simultaneously detecting multiple targets to provide an automated sample-to-answer diagnosis in 40 min. After target capture on fluorescently coded magnetic microspheres, the magnetic trap automatically concentrated the fluorescently coded microspheres, separated the captured target from the sample matrix, and exposed the bound target sequentially to biotinylated tracer molecules and streptavidin-labeled phycoerythrin. The concentrated microspheres were then hydrodynamically focused in a microflow cytometer capable of 4-color analysis (two wavelengths for microsphere identification, one for light scatter to discriminate single microspheres and one for phycoerythrin bound to the target). A three-fold decrease in sample preparation time and an improved detection limit, independent of target preconcentration, was demonstrated for detection of Escherichia coli 0157:H7 using the MagTrap as compared to manual processing. Simultaneous analysis of positive and negative controls, along with the assay reagents specific for the target, was used to obtain dose-response curves, demonstrating the potential for quantification of pathogen load in buffer and serum. Published by Elsevier B.V.
Gray, J; Coupland, L J
2014-01-01
On 14 January 2013, the US Food and Drug Administration (FDA) announced permission for a multiplex nucleic acid test, the xTAG® Gastrointestinal Pathogen Panel (GPP) (Luminex Corporation, USA), which simultaneously detects 11 common viral, bacterial and parasitic causes of infectious gastroenteritis, to be marketed in the USA. This announcement reflects the current move towards the development and commercialization of detection technologies based on nucleic acid amplification techniques for diagnosis of syndromic infections. We discuss the limitations and advantages of nucleic acid amplification techniques and the recent advances in Conformité Européene - in-vitro diagnostic (CE-IVD)-approved multiplex real-time PCR kits for the simultaneous detection of multiple targets within the clinical diagnostics market.
Customizable PCR-microplate array for differential identification of multiple pathogens.
Woubit, Abdela; Yehualaeshet, Teshome; Roberts, Sherrelle; Graham, Martha; Kim, Moonil; Samuel, Temesgen
2013-11-01
Customizable PCR-microplate arrays were developed for the rapid identification of Salmonella Typhimurium, Salmonella Saintpaul, Salmonella Typhi, Shigella dysenteriae, Escherichia coli O157:H7, Francisella tularensis subsp. tularensis, Francisella tularensis subsp. novicida, Vibrio cholerae, Vibrio parahaemolyticus, Yersinia pestis, and Yersinia pseudotuberculosis. Previously, we identified highly specific primers targeting each of these pathogens. Here, we report the development of customizable PCR-microplate arrays for simultaneous identification of the pathogens using the primers identified. A mixed aliquot of genomic DNA from 38 strains was used to validate three PCR-microplate array formats. Identical PCR conditions were used to run all the samples on the three formats. Specific amplifications were obtained on all three custom plates. In preliminary tests performed to evaluate the sensitivity of these assays in samples inoculated in the laboratory with Salmonella Typhimurium, amplifications were obtained from 1 g of beef hot dog inoculated at as low as 9 CFU/ml or from milk inoculated at as low as 78 CFU/ml. Such microplate arrays could be valuable tools for initial identification or secondary confirmation of contamination by these pathogens.
NASA Astrophysics Data System (ADS)
Ming, Kevin
Integrating mobile-cellular devices with multiplex molecular diagnostics can potentially provide the most powerful platform for tracking, managing and preventing the transmission of infectious diseases. With over 6.9 billion subscriptions globally, handheld mobile-cellular devices can be programmed to spatially map, temporally track, and transmit information on infections over wide geographical space and boundaries. Current cell phone diagnostic technologies have poor limit of detection, dynamic range, and cannot detect multiple pathogen targets simultaneously, limiting their utility to single infections with high load. Here we combined recent advances in quantum dot barcode technology for molecular detection with smartphones to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We validated our device using a variety of synthetic genomic targets for the respiratory virus and blood-borne pathogens, and demonstrated that it could detect clinical samples after simple amplification. More importantly, we confirmed that the device is capable of detecting patients infected with a single or multiple infectious pathogens (e.g., HIV and hepatitis B) in a single test. This device advances the capacity for global surveillance of infectious diseases and has the potential to accelerate knowledge exchange-transfer of emerging or exigent disease threats with healthcare and military organizations in real-time.
Design and fabricate multi channel microfluidic mold on top of glass slide using SU-8
NASA Astrophysics Data System (ADS)
Azman, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.
2017-09-01
Microfluidic is the study of fluid in microscale. Microfluidics provides miniaturized fluidic networks for processing and analyzing liquids in the nanoliter to milliliter range. Microfluidic device comprises of some essential segments or structure that are micromixer, microchannel and microchamber. The SU-8 mold is known as the most used technique in microfluidic fabrication due to the characteristic of very gooey polymer that can be spread over a thickness. In this study, in order to reduce the fabrication cost, the development and fabrication of SU-8 mold is replace by using a glass plate instead of silicon wafer which is used in the previous research. We designed a microfluidic chip for use with an IDE sensors to conduct multiplex detection of multiple channels. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The multi-channel microfluidic chip was designed, including the fluid outlet and inlet. A multi-channel microfluidic chip was used for pathogen detection. This paper sum up the fabrication of lab SU-8 mold using glass slide.
Christensen, Douglas; Jovic, Marko
2006-05-01
This report describes a molecular biotechnology-based laboratory curriculum developed to accompany an undergraduate genetics course. During the course of a semester, students researched the pathogen, developed a research question, designed experiments, and performed transcriptional analysis of a set of genes that confer virulence to the food-borne pathogen, Listeria monocytogenes. Gene fragments were amplified via PCR and utilized in "mini-arrays," a dot-blot-based format suitable for the simultaneous transcriptional analysis of multiple genes. The project provides exposure to a wide range of molecular techniques and can be easily modified for variations in class size. Data are generated at various steps of the process, allowing for student interpretation, troubleshooting, and assessment opportunities. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.
Liebe, Sebastian; Christ, Daniela S; Ehricht, Ralf; Varrelmann, Mark
2016-01-01
Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present.
Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.
2015-01-01
CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398
Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M
2015-01-01
CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).
Li, Yingguo; Wang, Yu; Nie, Fuping; Xiao, Jinwen; Wang, Guoming; Yuan, Ling; Li, Zhengguo
2011-07-01
Porcine chlamydial infection is an enzootic infectious disease caused by multiple members of the family Chlamydiaceae (e.g. Chlamydophila abortus, Chlamydia suis, and Chlamydophila pneumoniae). Rapid and accurate differentiation of these pathogens is critical in the control and prevention of disease. The aim of the current study was to develop a nested multiplex polymerase chain reaction (nmPCR) assay to simultaneously detect the 3 chlamydial pathogens in clinical samples. In the first round of the nmPCR, 1 pair of family-specific primers were used to amplify the 1,100 base pair (bp) fragment of chlamydial ompA gene. In the second round of the nmPCR, 4 inner primers were designed for Ch. abortus, C. suis, and Ch. pneumoniae. Each pathogen produced a specific amplicon with a size of 340 bp, 526 bp, and 267 bp respectively. The assay was sensitive and specific for detecting target pathogens in both cell cultures and clinical specimens. The results, incorporated with the improved rapid DNA extraction protocol, suggest that the nmPCR could be a promising assay for differential identification of different chlamydial strains in pigs.
Xu, Yueshuang; Wang, Huan; Luan, Chengxin; Liu, Yuxiao; Chen, Baoan; Zhao, Yuanjin
2018-02-15
Rapid and sensitive diagnosing hematological infections based on the separation and detection of pathogenic bacteria in the patient's blood is a significant challenge. To address this, we herein present a new barcodes technology that can simultaneously capture and detect multiple types of pathogenic bacteria from a complex sample. The barcodes are poly (ethylene glycol) (PEG) hydrogel inverse opal particles with characteristic reflection peak codes that remain stable during bacteria capture on their surfaces. As the spherical surface of the particles has ordered porous nanostructure, the barcodes can provide not only more surface area for probe immobilization and reaction, but also a nanopatterned platform for highly efficient bioreactions. In addition, the PEG hydrogel scaffold could decrease the non-specificity adsorption by its anti-adhesive effect, and the decorated aptamer probes in the scaffolds could increase the sensitivity, reliability, and specificity of the bacteria capture and detection. Moreover, the tagged magnetic nanoparticles in the PEG scaffold could impart the barcodes with controllable movement under magnetic fields, which can be used to significantly increase the reaction speed and simplify the processing of the bioassays. Based on the describe barcodes, it was demonstrated that the bacteria could be captured and identified even at low bacterial concentrations (100 CFU mL -1 ) within 2.5h, which is effectively shortened in comparison with the "gold standard" in clinic. These features make the barcodes ideal for capturing and detecting multiple bacteria from clinical samples for hematological infection diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya
2015-08-14
The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.
Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya
2015-01-01
The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222
Manage, Dammika P; Lauzon, Jana; Atrazhev, Alexey; Morrissey, Yuen C; Edwards, Ann L; Stickel, Alexander J; Crabtree, H John; Pabbaraju, Kanti; Zahariadis, George; Yanow, Stephanie K; Pilarski, Linda M
2012-05-07
Herpes simplex virus (HSV) is one of the most prevalent viruses, with acute and recurrent infections in humans. The current gold standard for the diagnosis of HSV is viral culture which takes 2-14 days and has low sensitivity. In contrast, DNA amplification by polymerase chain reaction (PCR) can be performed within 1-2 h. We here describe a multiparameter PCR assay to simultaneously detect HSV-1 and HSV-2 DNA templates, together with integrated positive and negative controls, with product detection by melting curve analysis (MCA), in an array of semi-solid polyacrylamide gel posts. Each gel post is 0.67 μL in volume, and polymerized with all the components required for PCR. Both PCR and MCA can currently be performed in one hour and 20 min. Unprocessed genital swabs collected in universal transport medium were directly added to the reagents before or after polymerization, diffusing from atop the gel posts. The gel post platform detects HSV templates in as little as 2.5 nL of raw sample. In this study, 45 genital swab specimens were tested blindly as a preliminary validation of this platform. The concordance of PCR on gel posts with conventional PCR was 91%. The primer sequestration method introduced here (wherein different primers are placed in different sets of posts) enables the simultaneous detection of multiple pathogens for the same sample, together with positive and negative controls, on a single chip. This platform accepts unprocessed samples and is readily adaptable to detection of multiple different pathogens or biomarkers for point-of-care diagnostics.
Evaluation of a TaqMan Array Card for Detection of Central Nervous System Infections.
Onyango, Clayton O; Loparev, Vladimir; Lidechi, Shirley; Bhullar, Vinod; Schmid, D Scott; Radford, Kay; Lo, Michael K; Rota, Paul; Johnson, Barbara W; Munoz, Jorge; Oneko, Martina; Burton, Deron; Black, Carolyn M; Neatherlin, John; Montgomery, Joel M; Fields, Barry
2017-07-01
Infections of the central nervous system (CNS) are often acute, with significant morbidity and mortality. Routine diagnosis of such infections is limited in developing countries and requires modern equipment in advanced laboratories that may be unavailable to a number of patients in sub-Saharan Africa. We developed a TaqMan array card (TAC) that detects multiple pathogens simultaneously from cerebrospinal fluid. The 21-pathogen CNS multiple-pathogen TAC (CNS-TAC) assay includes two parasites ( Balamuthia mandrillaris and Acanthamoeba ), six bacterial pathogens ( Streptococcus pneumonia e, Haemophilus influenzae , Neisseria meningitidis , Mycoplasma pneumoniae , Mycobacterium tuberculosis , and Bartonella ), and 13 viruses (parechovirus, dengue virus, Nipah virus, varicella-zoster virus, mumps virus, measles virus, lyssavirus, herpes simplex viruses 1 and 2, Epstein-Barr virus, enterovirus, cytomegalovirus, and chikungunya virus). The card also includes human RNase P as a nucleic acid extraction control and an internal manufacturer control, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). This CNS-TAC assay can test up to eight samples for all 21 agents within 2.5 h following nucleic acid extraction. The assay was validated for linearity, limit of detection, sensitivity, and specificity by using either live viruses (dengue, mumps, and measles viruses) or nucleic acid material (Nipah and chikungunya viruses). Of 120 samples tested by individual real-time PCR, 35 were positive for eight different targets, whereas the CNS-TAC assay detected 37 positive samples across nine different targets. The CNS-TAC assays showed 85.6% sensitivity and 96.7% specificity. Therefore, the CNS-TAC assay may be useful for outbreak investigation and surveillance of suspected neurological disease. Copyright © 2017 American Society for Microbiology.
Pre-existing immunity against vaccine vectors – friend or foe?
Saxena, Manvendra; Van, Thi Thu Hao; Baird, Fiona J.; Coloe, Peter J.
2013-01-01
Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Salmonella and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses. PMID:23175507
Attenuation of monkeypox virus by deletion of genomic regions
Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.
2015-01-01
Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.
Attenuation of monkeypox virus by deletion of genomic regions.
Lopera, Juan G; Falendysz, Elizabeth A; Rocke, Tonie E; Osorio, Jorge E
2015-01-15
Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivo studies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji
2005-11-01
Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.
Rikkerink, Erik H A
2018-03-08
Organisms face stress from multiple sources simultaneously and require mechanisms to respond to these scenarios if they are to survive in the long term. This overview focuses on a series of key points that illustrate how disorder and post-translational changes can combine to play a critical role in orchestrating the response of organisms to the stress of a changing environment. Increasingly, protein complexes are thought of as dynamic multi-component molecular machines able to adapt through compositional, conformational and/or post-translational modifications to control their largely metabolic outputs. These metabolites then feed into cellular physiological homeostasis or the production of secondary metabolites with novel anti-microbial properties. The control of adaptations to stress operates at multiple levels including the proteome and the dynamic nature of proteomic changes suggests a parallel with the equally dynamic epigenetic changes at the level of nucleic acids. Given their properties, I propose that some disordered protein platforms specifically enable organisms to sense and react rapidly as the first line of response to change. Using examples from the highly dynamic host-pathogen and host-stress response, I illustrate by example how disordered proteins are key to fulfilling the need for multiple levels of integration of response at different time scales to create robust control points.
Dowall, Stuart D; Graham, Victoria A; Tipton, Thomas R W; Hewson, Roger
2009-08-31
Work with highly pathogenic material mandates the use of biological containment facilities, involving microbiological safety cabinets and specialist laboratory engineering structures typified by containment level 3 (CL3) and CL4 laboratories. Consequences of working in high containment are the practical difficulties associated with containing specialist assays and equipment often essential for experimental analyses. In an era of increased interest in biodefence pathogens and emerging diseases, immunological analysis has developed rapidly alongside traditional techniques in virology and molecular biology. For example, in order to maximise the use of small sample volumes, multiplexing has become a more popular and widespread approach to quantify multiple analytes simultaneously, such as cytokines and chemokines. The luminex microsphere system allows for the detection of many cytokines and chemokines in a single sample, but the detection method of using aligned lasers and fluidics means that samples often have to be analysed in low containment facilities. In order to perform cytokine analysis in materials from high containment (CL3 and CL4 laboratories), we have developed an appropriate inactivation methodology after staining steps, which although results in a reduction of median fluorescent intensity, produces statistically comparable outcomes when judged against non-inactivated samples. This methodology thus extends the use of luminex technology for material that contains highly pathogenic biological agents.
Wille, Lukas; Messmer, Monika M; Studer, Bruno; Hohmann, Pierre
2018-04-12
Root and foot diseases severely impede grain legume cultivation worldwide. Breeding lines with resistance against individual pathogens exist, but these resistances are often overcome by the interaction of multiple pathogens in field situations. Novel tools allow to decipher plant-microbiome interactions in unprecedented detail and provide insights into resistance mechanisms that consider both simultaneous attacks of various pathogens and the interplay with beneficial microbes. Although it has become clear that plant-associated microbes play a key role in plant health, a systematic picture of how and to what extend plants can shape their own detrimental or beneficial microbiome remains to be drawn. There is increasing evidence for the existence of genetic variation in the regulation of plant-microbe interactions that can be exploited by plant breeders. We propose to consider the entire plant holobiont in resistance breeding strategies in order to unravel hidden parts of complex defence mechanisms. This review summarises (i) the current knowledge of resistance against soil-borne pathogens in grain legumes, (ii) evidence for genetic variation for rhizosphere-related traits, (iii) the role of root exudation in microbe-mediated disease resistance and elaborates (iv) how these traits can be incorporated in resistance breeding programmes. This article is protected by copyright. All rights reserved.
Stokdyk, Joel P; Firnstahl, Aaron D; Spencer, Susan K; Burch, Tucker R; Borchardt, Mark A
2016-06-01
The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L(-1) assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation. Published by Elsevier Ltd.
Stokdyk, Joel P.; Firnstahl, Aaron; Spencer, Susan K.; Burch, Tucker R; Borchardt, Mark A.
2016-01-01
The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L−1 assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation.
Ken Dror, Shifra; Pavlotzky, Elsa; Barak, Mira
2016-01-01
Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT) and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP) (Savyon Diagnostics, Ashdod, IL), a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland). This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory. PMID:27447173
Zhao, Xinyan; Dong, Tao; Yang, Zhaochu; Pires, Nuno; Høivik, Nils
2012-02-07
Waterborne pathogens usually pose a global threat to animals and human beings. There has been a growing demand for convenient and sensitive tools to detect the potential emerging pathogens in water. In this study, a lab-on-a-chip (LOC) device based on the real-time immuno-NASBA (immuno-nucleic acid sequence-based amplification) assay was designed, fabricated and verified. The disposable immuno-NASBA chip is modelled on a 96-well ELISA microplate, which contains 43 reaction chambers inside the bionic channel networks. All valves are designed outside the chip and are reusable. The sample and reagent solutions were pushed into each chamber in turn, which was controlled by the valve system. Notably, the immuno-NASBA chip is completely compatible with common microplate readers in a biological laboratory, and can distinguish multiple waterborne pathogens in water samples quantitatively and simultaneously. The performance of the LOC device was demonstrated by detecting the presence of a synthetic peptide, ACTH (adrenocorticotropic hormone) and two common waterborne pathogens, Escherichia coli (E. coli) and rotavirus, in artificial samples. The results indicated that the LOC device has the potential to quantify traces of waterborne pathogens at femtomolar levels with high specificity, although the detection process was still subject to some factors, such as ribonuclease (RNase) contamination and non-specific adsorption. As an ultra-sensitive tool to quantify waterborne pathogens, the LOC device can be used to monitor water quality in the drinking water system. Furthermore, a series of compatible high-throughput LOC devices for monitoring waterborne pathogens could be derived from this prototype with the same design idea, which may render the complicated immuno-NASBA assays convenient to common users without special training.
Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds
NASA Astrophysics Data System (ADS)
Oh, Yoo Jin; Hubauer-Brenner, Michael; Gruber, Hermann J.; Cui, Yidan; Traxler, Lukas; Siligan, Christine; Park, Sungsu; Hinterdorfer, Peter
2016-09-01
Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.
xMAP Technology: Applications in Detection of Pathogens
Reslova, Nikol; Michna, Veronika; Kasny, Martin; Mikel, Pavel; Kralik, Petr
2017-01-01
xMAP technology is applicable for high-throughput, multiplex and simultaneous detection of different analytes within a single complex sample. xMAP multiplex assays are currently available in various nucleic acid and immunoassay formats, enabling simultaneous detection and typing of pathogenic viruses, bacteria, parasites and fungi and also antigen or antibody interception. As an open architecture platform, the xMAP technology is beneficial to end users and therefore it is used in various pharmaceutical, clinical and research laboratories. The main aim of this review is to summarize the latest findings and applications in the field of pathogen detection using microsphere-based multiplex assays. PMID:28179899
Gene Therapy for Infectious Diseases
Bunnell, Bruce A.; Morgan, Richard A.
1998-01-01
Gene therapy is being investigated as an alternative treatment for a wide range of infectious diseases that are not amenable to standard clinical management. Approaches to gene therapy for infectious diseases can be divided into three broad categories: (i) gene therapies based on nucleic acid moieties, including antisense DNA or RNA, RNA decoys, and catalytic RNA moieties (ribozymes); (ii) protein approaches such as transdominant negative proteins and single-chain antibodies; and (iii) immunotherapeutic approaches involving genetic vaccines or pathogen-specific lymphocytes. It is further possible that combinations of the aforementioned approaches will be used simultaneously to inhibit multiple stages of the life cycle of the infectious agent. PMID:9457428
Yang, Yu; Wang, Jing; Wen, Haiyan; Liu, Hengchuan
2012-01-01
We have developed novel Bio-Plex assays for simultaneous detection of Bacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis, and Burkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identify Bacillus anthracis, Yersinia pestis, and Brucella spp. at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detect Bacillus anthracis sterne spore and Yersinia pestis EV76 from mimic "write powder" samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples.
Nguyen, Thuy Trang; Van Giau, Vo; Vo, Tuong Kha
2016-12-01
The rapid detection of pathogens in food is becoming increasingly critical for ensuring the safety of consumers, since the majority of food-borne illnesses and deaths are caused by pathogenic bacteria. Hence, rapid, sensitive, inexpensive and convenient approaches to detect food-borne pathogenic bacteria is essential in controlling food safety. In this study, a multiplex PCR assay for the rapid and simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes was established. The invA, stx and hlyA genes specifically amplified DNA fragments of 284, 404 and 510 bp from Salmonella spp., L. monocytogenes and E. coli O157:H7, respectively. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity of the multiplex PCR were performed by testing different strains. The multiplex PCR assay was able to specifically simultaneously detect ten colony-forming unit/mL of each pathogen in artificially inoculated samples after enrichment for 12 h. The whole process took less than 24 h to complete, indicating that the assay is suitable for reliable and rapid identification of these three food-borne pathogens, which could be suitable in microbial epidemiology investigation.
Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng
2018-06-01
Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians' orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs.
Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng
2018-01-01
Abstract Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians’ orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs. PMID:29879060
Roguing with replacement in perennial crops: conditions for successful disease management.
Sisterson, Mark S; Stenger, Drake C
2013-02-01
Replacement of diseased plants with healthy plants is commonly used to manage spread of plant pathogens in perennial cropping systems. This strategy has two potential benefits. First, removing infected plants may slow pathogen spread by eliminating inoculum sources. Second, replacing infected plants with uninfected plants may offset yield losses due to disease. The extent to which these benefits are realized depends on multiple factors. In this study, sensitivity analyses of two spatially explicit simulation models were used to evaluate how assumptions concerning implementation of a plant replacement program and pathogen spread interact to affect disease suppression. In conjunction, effects of assumptions concerning yield loss associated with disease and rates of plant maturity on yields were simultaneously evaluated. The first model was used to evaluate effects of plant replacement on pathogen spread and yield on a single farm, consisting of a perennial crop monoculture. The second model evaluated effects of plant replacement on pathogen spread and yield in a 100 farm crop growing region, with all farms maintaining a monoculture of the same perennial crop. Results indicated that efficient replacement of infected plants combined with a high degree of compliance among farms effectively slowed pathogen spread, resulting in replacement of few plants and high yields. In contrast, inefficient replacement of infected plants or limited compliance among farms failed to slow pathogen spread, resulting in replacement of large numbers of plants (on farms practicing replacement) with little yield benefit. Replacement of infected plants always increased yields relative to simulations without plant replacement provided that infected plants produced no useable yield. However, if infected plants produced useable yields, inefficient removal of infected plants resulted in lower yields relative to simulations without plant replacement for perennial crops with long maturation periods in some cases.
Molecular detection of pathogens in water--the pros and cons of molecular techniques.
Girones, Rosina; Ferrús, Maria Antonia; Alonso, José Luis; Rodriguez-Manzano, Jesus; Calgua, Byron; Corrêa, Adriana de Abreu; Hundesa, Ayalkibet; Carratala, Anna; Bofill-Mas, Sílvia
2010-08-01
Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed. (c) 2010 Elsevier Ltd. All rights reserved.
Burnum-Johnson, Kristin E; Kyle, Jennifer E; Eisfeld, Amie J; Casey, Cameron P; Stratton, Kelly G; Gonzalez, Juan F; Habyarimana, Fabien; Negretti, Nicholas M; Sims, Amy C; Chauhan, Sadhana; Thackray, Larissa B; Halfmann, Peter J; Walters, Kevin B; Kim, Young-Mo; Zink, Erika M; Nicora, Carrie D; Weitz, Karl K; Webb-Robertson, Bobbie-Jo M; Nakayasu, Ernesto S; Ahmer, Brian; Konkel, Michael E; Motin, Vladimir; Baric, Ralph S; Diamond, Michael S; Kawaoka, Yoshihiro; Waters, Katrina M; Smith, Richard D; Metz, Thomas O
2017-01-26
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes.
Burnum-Johnson, Kristin E.; Kyle, Jennifer E.; Eisfeld, Amie J.; Casey, Cameron P.; Stratton, Kelly G.; Gonzalez, Juan F.; Habyarimana, Fabien; Negretti, Nicholas M.; Sims, Amy C.; Chauhan, Sadhana; Thackray, Larissa B.; Halfmann, Peter J.; Walters, Kevin B.; Kim, Young-Mo; Zink, Erika M.; Nicora, Carrie D.; Weitz, Karl K.; Webb-Robertson, Bobbie-Jo M.; Nakayasu, Ernesto S.; Ahmer, Brian; Konkel, Michael E.; Motin, Vladimir; Baric, Ralph S.; Diamond, Michael S.; Kawaoka, Yoshihiro; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.
2017-01-01
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes. PMID:28091625
NAD Acts as an Integral Regulator of Multiple Defense Layers1[OPEN
Patrit, Oriane; Tcherkez, Guillaume; Gakière, Bertrand
2016-01-01
Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea. Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens. PMID:27621425
NASA Astrophysics Data System (ADS)
Chung, Chih-Yao; Wang, Jhih-Cheng; Chuang, Han-Sheng
2017-04-01
Successful treatments against bacterial infections depend on antimicrobial susceptibility testing (AST). However, conventional AST requires more than 24 h to obtain an outcome, thereby contributing to high patient mortality. An antibiotic therapy based on experiences is therefore necessary for saving lives and escalating the emergence of multidrug-resistant pathogens. Accordingly, a fast and effective drug screen is necessary for the appropriate administration of antibiotics. The mixed pathogenic nature of infectious diseases emphasizes the need to develop an assay system for polymicrobial infections. On this basis, we present a novel technique for simultaneous and quantitative monitoring of co-cultured microorganisms by coupling optical diffusometry with bead-based immunoassays. This simple integration simultaneously achieves a rapid AST analysis for two pathogens. Triple color particles were simultaneously recorded and subsequently analyzed by functionalizing different fluorescent color particles with dissimilar pathogen-specific antibodies. Results suggested that the effect of the antibiotic, gentamicin, on co-cultured Pseudomonas aeruginosa and Staphylococcus aureus was effectively distinguished by the proposed technique. This study revealed a multiplexed and time-saving (within 2 h) platform with a small sample volume (~0.5 μL) and a low initial bacterial count (50 CFU per droplet, ~105 CFU/mL) for continuously monitoring the growth of co-cultured microorganisms. This technique provides insights into timely therapies against polymicrobial diseases in the near future.
Zilbermintz, Leeor; Leonardi, William; Jeong, Sun-Young; Sjodt, Megan; McComb, Ryan; Ho, Chi-Lee C; Retterer, Cary; Gharaibeh, Dima; Zamani, Rouzbeh; Soloveva, Veronica; Bavari, Sina; Levitin, Anastasia; West, Joel; Bradley, Kenneth A; Clubb, Robert T; Cohen, Stanley N; Gupta, Vivek; Martchenko, Mikhail
2015-08-27
A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.
Bullich, Gemma; Trujillano, Daniel; Santín, Sheila; Ossowski, Stephan; Mendizábal, Santiago; Fraga, Gloria; Madrid, Álvaro; Ariceta, Gema; Ballarín, José; Torra, Roser; Estivill, Xavier; Ars, Elisabet
2015-09-01
Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis (FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25 uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have increased disease severity.
Update in ethiopathogeny, diagnosis and treatment of the IgG4 related disease.
Martínez-Valle, Fernando; Orozco-Gálvez, Olimpia; Fernández-Codina, Andreu
2017-12-11
IgG4 related disease (IgG4-RD) is probably an autoimmune pathology of unknown etiology. Diverse interactions participate in its pathogen between the adaptive and innate immune systems, activating lymphocytes B and T which trigger the inflammatory cascade, which culminates in fibrosis of the organs and their malfunction. It can affect a multitude of organs simultaneously. The diagnosis is based on the correlation of clinical findings with anatomopathological results (lymphoplasmocitary infiltrate, storiform fibrosis, obliterative phlebitis and IgG4+plasmatic cell count) and with the presence of elevated IgG4 in serum, depending on the criteria used. Corticoids and rituximab are among the few validated treatments available. There are multiple biomarkers and treatments in development. In this review, we aim to go over the principal pathogenic and clinical characteristics of IgG4-RD, as well as its handling, in accordance with the available scientific evidence. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices
Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.; ...
2016-09-23
Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less
Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.
Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less
USDA-ARS?s Scientific Manuscript database
There are many plant pathogen-specific diagnostic assays, based on PCR and immune-detection. However, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitat...
Lehmer, Erin M; Lavengood, Kathryn; Miller, Mason; Rodgers, Jacob; Fenster, Steven D
2018-01-01
: Simultaneous infections with multiple pathogens can alter the function of the host's immune system, often resulting in additive or synergistic morbidity. We examined how coinfection with the common pathogens Sin Nombre virus (SNV) and Bartonella sp. affected aspects of the adaptive and innate immune responses of wild deer mice ( Peromyscus maniculatus). Adaptive immunity was assessed by measuring SNV antibody production; innate immunity was determined by measuring levels of C-reactive protein (CRP) in blood and the complement activity of plasma. Coinfected mice had reduced plasma complement activity and higher levels of CRP compared to mice infected with either SNV or Bartonella. However, antibody titers of deer mice infected with SNV were more than double those of coinfected mice. Plasma complement activity and CRP levels did not differ between uninfected deer mice and those infected with only Bartonella, suggesting that comorbid SNV and Bartonella infections act synergistically, altering the innate immune response. Collectively, our results indicated that the immune response of deer mice coinfected with both SNV and Bartonella differed substantially from individuals infected with only one of these pathogens. Results of our study provided unique, albeit preliminary, insight into the impacts of coinfection on immune system function in wild animal hosts and underscore the complexity of the immune pathways that exist in coinfected hosts.
Marshall, Jill; Qiao, Xuan; Baumbach, Jordan; Xie, Jingyu; Dong, Liang; Bhattacharyya, Madan K
2017-03-15
Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.
2009-01-01
Background The oomycete Aphanomyces astaci is regarded as the causative agent of crayfish plague and represents an evident hazard for European crayfish species. Native crayfish populations infected with this pathogen suffer up to 100% mortality. The existence of multiple transmission paths necessitates the development of a reliable, robust and efficient test to detect the pathogen. Currently, A. astaci is diagnosed by a PCR-based assay that suffers from cross-reactivity to other species. We developed an alternative closed-tube assay for A. astaci, which achieves robustness through simultaneous amplification of multiple functionally constrained genes. Results Two novel constitutively expressed members of the glycosyl hydrolase (GH18) gene family of chitinases were isolated from the A. astaci strain Gb04. The primary amino acid sequence of these chitinase genes, termed CHI2 and CHI3, is composed of an N-terminal signal peptide directing the post-translational transport of the protein into the extracellular space, the catalytic GH18 domain, a proline-, serine-, and threonine-rich domain and a C-terminal cysteine-rich putative chitin-binding site. The A. astaci mycelium grown in a pepton-glucose medium showed significant temporal changes in steady-state CHI2 and CHI3 mRNA amounts indicating functional constraint. Their different temporal occurrence with maxima at 48 and 24 hours of incubation for CHI2 and CHI3, respectively, is in accordance with the multifunctionality of GH18 family members. To identify A. astaci-specific primer target sites in these novel genes, we determined the partial sequence homologs in the related oomycetes A. frigidophilus, A. invadans, A. helicoides, A. laevis, A. repetans, Achlya racemosa, Leptolegnia caudata, and Saprolegnia parasitica, as well as in the relevant fungi Fusarium solani and Trichosporon cutaneum. An A. astaci-specific primer pair targeting the novel genes CHI2 and CHI3 as well as CHI1 - a third GH18 family member - was multiplexed with primers targeting the 5.8S rRNA used as an endogenous control. A species was typed unambiguously as A. astaci if two peaks were concomitantly detected by melting curve analysis (MCA). For sensitive detection of the pathogen, but also for quantification of agent levels in susceptible crayfish and carrier crayfish, a TaqMan-probe based real-time PCR (qPCR) assay was developed. It targets the same chitinase genes and allows quantification down to 25 target sequences. Conclusion The simultaneous qualitative detection of multiple sequences by qPCR/MCA represents a promising approach to detect species with elevated levels of genetic variation and/or limited available sequence information. The homogenous closed-tube format, reduced detection time, higher specificity, and the considerably reduced chance of false negative detection achieved by targeting multiple genes (CHI1, CHI2, CHI3, and the endogenous control) at least two of which are subject to high functional constraint, are the major advantages of this multiplex assay compared to other diagnostic methods. Sensitive quantification achieved with TaqMan qPCR facilitates to monitor infection status and pathogen distribution in different tissues and can help prevent disease transmission. PMID:19719847
Immune networks: multi-tasking capabilities at medium load
NASA Astrophysics Data System (ADS)
Agliari, E.; Annibale, A.; Barra, A.; Coolen, A. C. C.; Tantari, D.
2013-08-01
Associative network models featuring multi-tasking properties have been introduced recently and studied in the low-load regime, where the number P of simultaneously retrievable patterns scales with the number N of nodes as P ˜ log N. In addition to their relevance in artificial intelligence, these models are increasingly important in immunology, where stored patterns represent strategies to fight pathogens and nodes represent lymphocyte clones. They allow us to understand the crucial ability of the immune system to respond simultaneously to multiple distinct antigen invasions. Here we develop further the statistical mechanical analysis of such systems, by studying the medium-load regime, P ˜ Nδ with δ ∈ (0, 1]. We derive three main results. First, we reveal the nontrivial architecture of these networks: they exhibit a high degree of modularity and clustering, which is linked to their retrieval abilities. Second, by solving the model we demonstrate for δ < 1 the existence of large regions in the phase diagram where the network can retrieve all stored patterns simultaneously. Finally, in the high-load regime δ = 1 we find that the system behaves as a spin-glass, suggesting that finite-connectivity frameworks are required to achieve effective retrieval.
NASA Astrophysics Data System (ADS)
Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó.; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O'Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.
2016-07-01
Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.
VandenBussche, C J; Mulrooney, T J; Frazier, W R; Dakshanamurthy, S; Hurley, C K
2009-03-01
Using flow cytometry, fluorescent microscopy and examination of receptor glycosylation status, we demonstrate that an entire killer cell immunoglobulin-like receptor (KIR) locus (KIR2DS3)--assumed earlier to be surface expressed--appears to have little appreciable surface expression in transfected cells. This phenotype was noted for receptors encoded by three allelic variants including the common KIR2DS3*001 allele. Comparing the surface expression of KIR2DS3 with that of the better-studied KIR2DS1 molecule in two different cell lines, mutational analysis identified multiple polymorphic amino-acid residues that significantly alter the proportion of molecules present on the cell surface. A simultaneous substitution of five residues localized to the leader peptide (residues -18 and -7), second domain (residues 123 and 150) and transmembrane region (residue 234) was required to restore KIR2DS3 to the expression level of KIR2DS1. Corresponding simultaneous substitutions of KIR2DS1 to the KIR2DS3 residues resulted in a dramatically decreased surface expression. Molecular modeling was used to predict how these substitutions contribute to this phenotype. Alterations in receptor surface expression are likely to affect the balance of immune cell signaling impacting the characteristics of the response to pathogens or malignancy.
Thermally multiplexed polymerase chain reaction.
Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R
2015-07-01
Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnum-Johnson, Kristin E.; Kyle, Jennifer E.; Eisfeld, Amie J.
The continued emergence and spread of infectious agents is of increasing concern due to increased population growth and the associated increased livestock production to meet food demands, increased urbanization and land-use changes, and greater travel. A systems biology approach to infectious disease research can significantly advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can only take place subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivationmore » and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. Partial inactivation was observed for pathogens without exposed lipid membranes including 99.99% inactivation of community-associated methicillin-resistant Staphylococcus aureus, 99.6% and >99% inactivation of Clostridium difficile spores and vegetative cells, respectively, and 50% inactivation of adenovirus type 5. To demonstrate that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses, we highlight select proteomics, metabolomics and lipidomics data from human epithelial lung cells infected with wild-type and mutant forms of influenza H7N9. We believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen.« less
Yang, Zhiqing; Wang, Yi; Zhang, Dun
2017-12-15
A novel fast, sensitive, and specific multifunctional electrochemical platform has been proposed for simultaneous detection, elimination, and inactivation of pathogenic bacteria for the first time. The platform is constituted with three-dimensional ZnO nanorod arrays (3D-ZnO) decorated with sliver nanoparticles (AgNPs) and functionalized with vancomycin (Van). Based on the specific recognition of Van for Gram-positive bacteria, the fabricated electrochemical platform has presented high detection sensitivity to Staphylococcus aureus with a low detection limit of 330cfu/mL and adaptable bacterial-elimination efficiency (50%) at low concentrations (1000-2000cfu/mL). Moreover, the platform has shown high antibacterial activity (99.99%) arising from the synergistic germicidal effect of the composited antibacterial AgNPs and Van units. The current work could provide new strategies to construct advanced platforms for simultaneous detection, elimination, and inactivation of various pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Salmonella, Shigella, and Escherichia coli O157:H7 contaminate similar types of food and all three can cause foodborne disease. Traditional microbiological enrichment broths to detect these pathogens are different in terms of their composition, which limits the application of multi-pathogen detectio...
NAD Acts as an Integral Regulator of Multiple Defense Layers.
Pétriacq, Pierre; Ton, Jurriaan; Patrit, Oriane; Tcherkez, Guillaume; Gakière, Bertrand
2016-11-01
Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens. © 2016 American Society of Plant Biologists. All Rights Reserved.
ERIC Educational Resources Information Center
Rao, Shaila; Mallow, Lynette
2009-01-01
This study examined effectiveness of simultaneous prompting system in teaching students with cognitive impairment to automate recall of multiplication facts. A multiple probes design with multiple sets of math facts and replicated across multiple subjects was used to assess effectiveness of simultaneous prompting on recall of basic multiplication…
Next-generation sequencing for genetic testing of familial colorectal cancer syndromes.
Simbolo, Michele; Mafficini, Andrea; Agostini, Marco; Pedrazzani, Corrado; Bedin, Chiara; Urso, Emanuele D; Nitti, Donato; Turri, Giona; Scardoni, Maria; Fassan, Matteo; Scarpa, Aldo
2015-01-01
Genetic screening in families with high risk to develop colorectal cancer (CRC) prevents incurable disease and permits personalized therapeutic and follow-up strategies. The advancement of next-generation sequencing (NGS) technologies has revolutionized the throughput of DNA sequencing. A series of 16 probands for either familial adenomatous polyposis (FAP; 8 cases) or hereditary nonpolyposis colorectal cancer (HNPCC; 8 cases) were investigated for intragenic mutations in five CRC familial syndromes-associated genes (APC, MUTYH, MLH1, MSH2, MSH6) applying both a custom multigene Ion AmpliSeq NGS panel and conventional Sanger sequencing. Fourteen pathogenic variants were detected in 13/16 FAP/HNPCC probands (81.3 %); one FAP proband presented two co-existing pathogenic variants, one in APC and one in MUTYH. Thirteen of these 14 pathogenic variants were detected by both NGS and Sanger, while one MSH2 mutation (L280FfsX3) was identified only by Sanger sequencing. This is due to a limitation of the NGS approach in resolving sequences close or within homopolymeric stretches of DNA. To evaluate the performance of our NGS custom panel we assessed its capability to resolve the DNA sequences corresponding to 2225 pathogenic variants reported in the COSMIC database for APC, MUTYH, MLH1, MSH2, MSH6. Our NGS custom panel resolves the sequences where 2108 (94.7 %) of these variants occur. The remaining 117 mutations reside inside or in close proximity to homopolymer stretches; of these 27 (1.2 %) are imprecisely identified by the software but can be resolved by visual inspection of the region, while the remaining 90 variants (4.0 %) are blind spots. In summary, our custom panel would miss 4 % (90/2225) of pathogenic variants that would need a small set of Sanger sequencing reactions to be solved. The multiplex NGS approach has the advantage of analyzing multiple genes in multiple samples simultaneously, requiring only a reduced number of Sanger sequences to resolve homopolymeric DNA regions not adequately assessed by NGS. The implementation of NGS approaches in routine diagnostics of familial CRC is cost-effective and significantly reduces diagnostic turnaround times.
Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina
2012-09-07
Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
The detection and differentiation of canine respiratory pathogens using oligonucleotide microarrays.
Wang, Lih-Chiann; Kuo, Ya-Ting; Chueh, Ling-Ling; Huang, Dean; Lin, Jiunn-Horng
2017-05-01
Canine respiratory diseases are commonly seen in dogs along with co-infections with multiple respiratory pathogens, including viruses and bacteria. Virus infections in even vaccinated dogs were also reported. The clinical signs caused by different respiratory etiological agents are similar, which makes differential diagnosis imperative. An oligonucleotide microarray system was developed in this study. The wild type and vaccine strains of canine distemper virus (CDV), influenza virus, canine herpesvirus (CHV), Bordetella bronchiseptica and Mycoplasma cynos were detected and differentiated simultaneously on a microarray chip. The detection limit is 10, 10, 100, 50 and 50 copy numbers for CDV, influenza virus, CHV, B. bronchiseptica and M. cynos, respectively. The clinical test results of nasal swab samples showed that the microarray had remarkably better efficacy than the multiplex PCR-agarose gel method. The positive detection rate of microarray and agarose gel was 59.0% (n=33) and 41.1% (n=23) among the 56 samples, respectively. CDV vaccine strain and pathogen co-infections were further demonstrated by the microarray but not by the multiplex PCR-agarose gel. The oligonucleotide microarray provides a highly efficient diagnosis alternative that could be applied to clinical usage, greatly assisting in disease therapy and control. Copyright © 2017 Elsevier B.V. All rights reserved.
Developing a Salivary Antibody Multiplex Immunoassay to ...
The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to develop an immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using the Luminex xMAP solution-phase assay. Beads were coupled to antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary detection antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen coupled and control beads were then incubated with prospectively-collected human saliva samples, analyzed on a Luminex 100 platform, and the presence
Keyser, Chad A; Jensen, Birgit; Meyling, Nicolai V
2016-03-01
Crops are often prone to both insect herbivory and disease, which necessitate multiple control measures. Ideally, an efficacious biological control agent must adequately control the target organism and not be inhibited by other biological control agents when applied simultaneously. Wheat seeds infected with the plant pathogen Fusarium culmorum were treated with Metarhizium brunneum or M. flavoviride and Clonostachys rosea individually and in combination, with the expectation to control both root-feeding insects and the pathogen. Emerging roots were evaluated for disease and then placed with Tenebrio molitor larvae, which were monitored for infection. Plant disease symptoms were nearly absent for seeds treated with C. rosea, both individually and in combination with Metarhizium spp. Furthermore, roots grown from seeds treated with Metarhizium spp. caused significant levels of fungal infection in larvae when used individually or combined with C. rosea. However, cotreated seeds showed reduced virulence towards T. molitor when compared with treatments using Metarhizium spp. only. This study clearly shows that seed treatments with both the entomopathogenic fungus M. brunneum and the mycoparasitic fungus C. rosea can protect plant roots from insects and disease. The dual-treatment approach to biological control presented here is consistent with the ideals of IPM strategies. © 2015 Society of Chemical Industry.
2006 Pathogen and Toxin Concentration Systems for Water Monitoring
2012-07-24
design and construct a compact, portable automated device enabling the simultaneous concentration of protozoa , bacteria, bacterial spores, algae and...portable automated device enabling the simultaneous concentration of protozoa , bacteria, bacterial spores, algae and viruses from large volumes of various...construct a compact, portable automated device enabling the simultaneous concentration of protozoa , bacteria, bacterial spores, algae and viruses
de Wit, Mieke; Spoel, Steven H; Sanchez-Perez, Gabino F; Gommers, Charlotte M M; Pieterse, Corné M J; Voesenek, Laurentius A C J; Pierik, Ronald
2013-07-01
In dense stands of plants, such as agricultural monocultures, plants are exposed simultaneously to competition for light and other stresses such as pathogen infection. Here, we show that both salicylic acid (SA)-dependent and jasmonic acid (JA)-dependent disease resistance is inhibited by a simultaneously reduced red:far-red light ratio (R:FR), the early warning signal for plant competition. Conversely, SA- and JA-dependent induced defences did not affect shade-avoidance responses to low R:FR. Reduced pathogen resistance by low R:FR was accompanied by a strong reduction in the regulation of JA- and SA-responsive genes. The severe inhibition of SA-responsive transcription in low R:FR appeared to be brought about by the repression of SA-inducible kinases. Phosphorylation of the SA-responsive transcription co-activator NPR1, which is required for full induction of SA-responsive transcription, was indeed reduced and may thus play a role in the suppression of SA-mediated defences by low R:FR-mediated phytochrome inactivation. Our results indicate that foraging for light through the shade-avoidance response is prioritised over plant immune responses when plants are simultaneously challenged with competition and pathogen attack. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Corsi, Steven R.; Borchardt, Mark A.; Carvin, Rebecca B.; Burch, Tucker R; Spencer, Susan K.; Lutz, Michelle A.; McDermott, Colleen M.; Busse, Kimberly M.; Kleinheinz, Gregory; Feng, Xiaoping; Zhu, Jun
2016-01-01
Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65–87% for pathogenic bacteria, and 13–35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 3 × 10–5, 7 × 10–9, and 3 × 10–7 for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens.
Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O’Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.
2016-01-01
Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen. PMID:27427496
Wibawa, Hendra; Henning, Joerg; Wong, Frank; Selleck, Paul; Junaidi, Akhmad; Bingham, John; Daniels, Peter; Meers, Joanne
2011-09-07
Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI) virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1), clade 2.1.3 (80), and IDN/6/05-like viruses (3) that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA) and neuraminidase (NA) sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to chickens over the study period suggests that ducks are more likely to survive infection and they may better suit the role of long-term maintenance host for H5N1. As some viruses were isolated from dead birds, there was no clear correlation between genetic variations and pathogenicity of these viruses.
Disruption of the microbiota across multiple body sites in critically ill children.
Rogers, Matthew B; Firek, Brian; Shi, Min; Yeh, Andrew; Brower-Sinning, Rachel; Aveson, Victoria; Kohl, Brittany L; Fabio, Anthony; Carcillo, Joseph A; Morowitz, Michael J
2016-12-29
Despite intense interest in the links between the microbiome and human health, little has been written about dysbiosis among ICU patients. We characterized microbial diversity in samples from 37 children in a pediatric ICU (PICU). Standard measures of alpha and beta diversity were calculated, and results were compared with data from adult and pediatric reference datasets. Bacterial 16S rRNA gene sequences were analyzed from 71 total tongue swabs, 50 skin swabs, and 77 stool samples or rectal swabs. The mean age of the PICU patients was 2.9 years (range 1-9 years), and many were chronically ill children that had previously been hospitalized in the PICU. Relative to healthy adults and children, alpha diversity was decreased in PICU GI and tongue but not skin samples. Measures of beta diversity indicated differences in community membership at each body site between PICU, adult, and pediatric groups. Taxonomic alterations in the PICU included enrichment of gut pathogens such as Enterococcus and Staphylococcus at multiple body sites and depletion of commensals such as Faecalibacterium and Ruminococcus from GI samples. Alpha and beta diversity were unstable over time in patients followed longitudinally. We observed the frequent presence of "dominant" pathogens in PICU samples at relative abundance >50%. PICU samples were characterized by loss of site specificity, with individual taxa commonly present simultaneously at three sample sites on a single individual. Some pathogens identified by culture of tracheal aspirates were commonly observed in skin samples from the same patient. We conclude that the microbiota in critically ill children differs sharply from the microbiota of healthy children and adults. Acknowledgement of dysbiosis associated with critical illness could provide opportunities to modulate the microbiota with precision and thereby improve patient outcomes.
Gu, Haidong
2016-01-01
Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669
Poulter, James A; El-Sayed, Walid; Shore, Roger C; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J
2014-01-01
The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.
Fessehaie, Anania; De Boer, Solke H; Lévesque, C André
2003-03-01
ABSTRACT Oligonucleotides, 16 to 24 bases long, were selected from the 3' end of the 16S gene and the 16S-23S intergenic spacer regions of bacteria pathogenic on potato, including Clavibacter michiganensis subsp. sepedonicus, Ralstonia solanacearum, and the pectolytic erwinias, including Erwinia carotovora subsp. atroseptica and carotovora and E. chrysanthemi. Oligonucleotides were designed and formatted into an array by pin spotting on nylon membranes. Genomic DNA from bacterial cultures was amplified by polymerase chain reaction using conserved ribosomal primers and labeled simultaneously with digoxigenin-dUTP. Hybridization of amplicons to the array and subsequent serological detection of digoxigenin label revealed different hybridization patterns that were distinct for each species and subspecies tested. Hybridization of amplicons generally was restricted to appropriate homologous oligonucleotides and cross-hybridization with heterologous oligonucleotides was rare. Hybridization patterns were recorded as separate gray values for each hybridized spot and revealed a consistent pattern for multiple strains of each species or subspecies isolated from diverse geographical regions. In preliminary tests, bacteria could be correctly identified and detected by hybridizing to the array amplicons from mixed cultures and inoculated potato tissue.
Zou, Xiaohui; Tang, Guangpeng; Zhao, Xiang; Huang, Yan; Chen, Tao; Lei, Mingyu; Chen, Wenbing; Yang, Lei; Zhu, Wenfei; Zhuang, Li; Yang, Jing; Feng, Zhaomin; Wang, Dayan; Wang, Dingming; Shu, Yuelong
2017-03-01
Many viruses can cause respiratory diseases in humans. Although great advances have been achieved in methods of diagnosis, it remains challenging to identify pathogens in unexplained pneumonia (UP) cases. In this study, we applied next-generation sequencing (NGS) technology and a metagenomic approach to detect and characterize respiratory viruses in UP cases from Guizhou Province, China. A total of 33 oropharyngeal swabs were obtained from hospitalized UP patients and subjected to NGS. An unbiased metagenomic analysis pipeline identified 13 virus species in 16 samples. Human rhinovirus C was the virus most frequently detected and was identified in seven samples. Human measles virus, adenovirus B 55 and coxsackievirus A10 were also identified. Metagenomic sequencing also provided virus genomic sequences, which enabled genotype characterization and phylogenetic analysis. For cases of multiple infection, metagenomic sequencing afforded information regarding the quantity of each virus in the sample, which could be used to evaluate each viruses' role in the disease. Our study highlights the potential of metagenomic sequencing for pathogen identification in UP cases.
Newer diagnostic approaches to intestinal protozoa.
van Lieshout, Lisette; Verweij, Jaco J
2010-10-01
To update the reader on the latest developments in the laboratory diagnosis of intestinal protozoa. Correct identification of a diarrhoea causing pathogens is essential for the choice of treatment in an individual patient as well as to map the aetiology of diarrhoea in a variety of patient populations. Classical diagnosis of diarrhoea causing protozoa by microscopic examination of a stool sample lacks both sensitivity and specificity. Alternative diagnostic platforms are discussed. Recent literature on the diagnosis of intestinal protozoa has focused mainly on nucleic acid-based assays, in particular the specific detection of parasite DNA in stool samples using real-time PCR. In addition, the trend has been moving from single pathogen detection to a multiplex approach, allowing simultaneous identification of multiple parasites. Different combinations of targets can be used within a routine diagnostic setting, depending on the patient population, such as children, immunocompromised individuals and those who have been travelling to tropical regions. Large-scale monitoring and evaluation of control strategies become feasible due to automation and high-throughput facilities. Improved technology also has become available for differentiating protozoa subspecies, which facilitates outbreak investigations and extensive research in molecular epidemiology.
Woubit, Abdela Salah; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen
2012-01-01
The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia and Francisella include important food safety and biothreat agents causing food-related and other human illnesses worldwide. We aimed to develop rapid methods with the capability to simultaneously and differentially detect all six pathogens in one run. Our initial experiments to use previously reported sets of primers revealed non-specificity of some of the sequences when tested against a broader array of pathogens, or proved not optimal for simultaneous detection parameters. By extensive mining of the whole genome and protein databases of diverse closely and distantly related bacterial species and strains, we have identified unique genome regions, which we utilized to develop a detection platform. Twelve of the specific genomic targets we have identified to design the primers in F. tularensis ssp. tularensis, F. tularensis ssp. novicida, S. dysentriae, S. typhimurium, V. cholera, Y. pestis, and Y. pseudotuberculosis contained either hypothetical or putative proteins, the functions of which have not been clearly defined. Corresponding primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in-silico PCR against whole genome sequences of different species, sub-species, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (E.coli O157:H7 strain EDL 933, Shigella dysentriae, Salmonella typhi, Francisella tularensis ssp. tularensis, Vibrio cholera, and Yersinia pestis) and six foodborne pathogens (Salmonella typhimurium, Salmonella saintpaul, Shigella sonnei, Francisella novicida, Vibrio parahemolytica and Yersinia pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed using purified DNA showed the lowest detection limit of 640 fg DNA/µl for F. tularensis. A preliminary test done to detect Shigella organisms in a milk matrix showed that 6–60 colony forming units of the bacterium per milliliter of milk could be detected in about an hour. Therefore, we have developed a platform to simultaneously detect foodborne pathogen and biothreat agents specifically and in real-time. Such a platform could enable rapid detection or confirmation of contamination by these agents. PMID:22488053
A portable array biosensor for food safety
NASA Astrophysics Data System (ADS)
Golden, Joel P.; Ngundi, Miriam M.; Shriver-Lake, Lisa C.; Taitt, Chris R.; Ligler, Frances S.
2004-11-01
An array biosensor developed for simultaneous analysis of multiple samples has been utilized to develop assays for toxins and pathogens in a variety of foods. The biochemical component of the multi-analyte biosensor consists of a patterned array of biological recognition elements immobilized on the surface of a planar waveguide. A fluorescence assay is performed on the patterned surface, yielding an array of fluorescent spots, the locations of which are used to identify what analyte is present. Signal transduction is accomplished by means of a diode laser for fluorescence excitation, optical filters and a CCD camera for image capture. A laptop computer controls the miniaturized fluidics system and image capture. Results for four mycotoxin competition assays in buffer and food samples are presented.
Chan, Kamfai; Marras, Salvatore A E; Parveen, Nikhat
2013-12-20
The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients' blood samples. Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner.
2013-01-01
Background The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. Results In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples. Conclusion Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner. PMID:24359556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary,; Bruce, R; Stubben, Christopher J
The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.
Label-free screening of foodborne Salmonella using surface plasmon resonance imaging
USDA-ARS?s Scientific Manuscript database
Since 15 pathogens cause approximately 95% of the foodborne infections, it is desirable to develop rapid and simultaneous screening methods for these major pathogens. In this study, we developed an immunoassay for Salmonella based on surface plasmon resonance imaging (SPRi). The sensor surface modif...
USDA-ARS?s Scientific Manuscript database
The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against multiple pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whet...
Ware, A D; Jacquot, C; Tobian, A A R; Gehrie, E A; Ness, P M; Bloch, E M
2018-01-01
Transfusion-transmitted infection risk remains an enduring challenge to blood safety in Africa. A high background incidence and prevalence of the major transfusion-transmitted infections (TTIs), dependence on high-risk donors to meet demand, suboptimal testing and quality assurance collectively contribute to the increased risk. With few exceptions, donor testing is confined to serological evaluation of human immunodeficiency virus (HIV), hepatitis B and C (HBV and HCV) and syphilis. Barriers to implementation of broader molecular methods include cost, limited infrastructure and lack of technical expertise. Pathogen reduction (PR), a term used to describe a variety of methods (e.g. solvent detergent treatment or photochemical activation) that may be applied to blood following collection, offers the means to diminish the infectious potential of multiple pathogens simultaneously. This is effective against different classes of pathogen, including the major TTIs where laboratory screening is already implemented (e.g. HIV, HBV and HCV) as well pathogens that are widely endemic yet remain unaddressed (e.g. malaria, bacterial contamination). We sought to review the available and emerging PR techniques and their potential application to resource-constrained parts of Africa, focusing on the advantages and disadvantages of such technologies. PR has been slow to be adopted even in high-income countries, primarily given the high costs of use. Logistical considerations, particularly in low-resourced parts of Africa, also raise concerns about practicality. Nonetheless, PR offers a rational, innovative strategy to contend with TTIs; technologies in development may well present a viable complement or even alternative to targeted screening in the future. © 2017 International Society of Blood Transfusion.
Mathies, Richard A.; Singhal, Pankaj; Xie, Jin; Glazer, Alexander N.
2002-01-01
This invention relates to a microfabricated capillary electrophoresis chip for detecting multiple redox-active labels simultaneously using a matrix coding scheme and to a method of selectively labeling analytes for simultaneous electrochemical detection of multiple label-analyte conjugates after electrophoretic or chromatographic separation.
Walpita, P; Darougar, S
1989-07-01
The development and application of a double-label immunofluorescence method which has the potential to screen for single or dual infections from any site, in single shell vial cultures, is described. In this study, a total of 1,141 ocular specimens were inoculated in shell vials, centrifuged at 15,000 X g for 1 h, incubated at 37 degrees C for 48 h, and fixed in methanol at room temperature for 15 min. The virus inclusions were detected by staining with a double-label indirect immunofluorescence procedure using mixtures of appropriate first antibodies, followed by fluorescein- and rhodamine-conjugated second antibodies. Each specimen was also inoculated in parallel by the conventional virus isolation method. The sensitivity and specificity of the double-label shell vial procedure were comparable to those with the conventional method, and the former test took only 48 h to complete. The test offers a rapid and simple single-vial procedure which allows for individual or simultaneous detection of multiple pathogens. It results in savings in time and cost over the conventional virus isolation method and other shell vial procedures.
NASA Astrophysics Data System (ADS)
Du, Fangzhou; Keller, Jürg; Yuan, Zhiguo; Batstone, Damien J.; Freguia, Stefano; Pikaar, Ilje
2016-12-01
Sludge management is a major issue for water utilities globally. Poor digestibility and dewaterability are the main factors determining the cost for sludge management, whereas pathogen and toxic metal concentrations limit beneficial reuse. In this study, the effects of low level nitrite addition to acidified sludge to simultaneously enhance digestibility, toxic metal removal, dewaterability and pathogen reduction were investigated. Waste activated sludge (WAS) from a full-scale waste water treatment plant was treated at pH 2 with 10 mg NO2--N/L for 5 h. Biochemical methane potential tests showed an increase in the methane production of 28%, corresponding to an improvement from 247 ± 8 L CH4/kg VS to 317 ± 1 L CH4/kg VS. The enhanced removal of toxic metals further increased the methane production by another 18% to 360 ± 6 L CH4/kg VS (a total increase of 46%). The solids content of dewatered sludge increased from 14.6 ± 1.4% in the control to 18.2 ± 0.8%. A 4-log reduction for both total coliforms and E. coli was achieved. Overall, this study highlights the potential of acidification with low level nitrite addition as an effective and simple method achieving multiple improvements in terms of sludge management.
Du, Fangzhou; Keller, Jürg; Yuan, Zhiguo; Batstone, Damien J.; Freguia, Stefano; Pikaar, Ilje
2016-01-01
Sludge management is a major issue for water utilities globally. Poor digestibility and dewaterability are the main factors determining the cost for sludge management, whereas pathogen and toxic metal concentrations limit beneficial reuse. In this study, the effects of low level nitrite addition to acidified sludge to simultaneously enhance digestibility, toxic metal removal, dewaterability and pathogen reduction were investigated. Waste activated sludge (WAS) from a full-scale waste water treatment plant was treated at pH 2 with 10 mg NO2−-N/L for 5 h. Biochemical methane potential tests showed an increase in the methane production of 28%, corresponding to an improvement from 247 ± 8 L CH4/kg VS to 317 ± 1 L CH4/kg VS. The enhanced removal of toxic metals further increased the methane production by another 18% to 360 ± 6 L CH4/kg VS (a total increase of 46%). The solids content of dewatered sludge increased from 14.6 ± 1.4% in the control to 18.2 ± 0.8%. A 4-log reduction for both total coliforms and E. coli was achieved. Overall, this study highlights the potential of acidification with low level nitrite addition as an effective and simple method achieving multiple improvements in terms of sludge management. PMID:28004811
USDA-ARS?s Scientific Manuscript database
Infiltration and runoff from manured agricultural fields can result in livestock pathogens reaching groundwater and surface waters. Here, we measured the effectiveness of glass wool filters to simultaneously concentrate enteric viruses and bacteria of bovine origin from water. The recovery efficienc...
Li, Xiang; Harwood, Valerie J.; Nayak, Bina
2016-01-01
Pathogen identification and microbial source tracking (MST) to identify sources of fecal pollution improve evaluation of water quality. They contribute to improved assessment of human health risks and remediation of pollution sources. An MST microarray was used to simultaneously detect genes for multiple pathogens and indicators of fecal pollution in freshwater, marine water, sewage-contaminated freshwater and marine water, and treated wastewater. Dead-end ultrafiltration (DEUF) was used to concentrate organisms from water samples, yielding a recovery efficiency of >95% for Escherichia coli and human polyomavirus. Whole-genome amplification (WGA) increased gene copies from ultrafiltered samples and increased the sensitivity of the microarray. Viruses (adenovirus, bocavirus, hepatitis A virus, and human polyomaviruses) were detected in sewage-contaminated samples. Pathogens such as Legionella pneumophila, Shigella flexneri, and Campylobacter fetus were detected along with genes conferring resistance to aminoglycosides, beta-lactams, and tetracycline. Nonmetric dimensional analysis of MST marker genes grouped sewage-spiked freshwater and marine samples with sewage and apart from other fecal sources. The sensitivity (percent true positives) of the microarray probes for gene targets anticipated in sewage was 51 to 57% and was lower than the specificity (percent true negatives; 79 to 81%). A linear relationship between gene copies determined by quantitative PCR and microarray fluorescence was found, indicating the semiquantitative nature of the MST microarray. These results indicate that ultrafiltration coupled with WGA provides sufficient nucleic acids for detection of viruses, bacteria, protozoa, and antibiotic resistance genes by the microarray in applications ranging from beach monitoring to risk assessment. PMID:26729716
A Systematic Bayesian Integration of Epidemiological and Genetic Data
Lau, Max S. Y.; Marion, Glenn; Streftaris, George; Gibson, Gavin
2015-01-01
Genetic sequence data on pathogens have great potential to inform inference of their transmission dynamics ultimately leading to better disease control. Where genetic change and disease transmission occur on comparable timescales additional information can be inferred via the joint analysis of such genetic sequence data and epidemiological observations based on clinical symptoms and diagnostic tests. Although recently introduced approaches represent substantial progress, for computational reasons they approximate genuine joint inference of disease dynamics and genetic change in the pathogen population, capturing partially the joint epidemiological-evolutionary dynamics. Improved methods are needed to fully integrate such genetic data with epidemiological observations, for achieving a more robust inference of the transmission tree and other key epidemiological parameters such as latent periods. Here, building on current literature, a novel Bayesian framework is proposed that infers simultaneously and explicitly the transmission tree and unobserved transmitted pathogen sequences. Our framework facilitates the use of realistic likelihood functions and enables systematic and genuine joint inference of the epidemiological-evolutionary process from partially observed outbreaks. Using simulated data it is shown that this approach is able to infer accurately joint epidemiological-evolutionary dynamics, even when pathogen sequences and epidemiological data are incomplete, and when sequences are available for only a fraction of exposures. These results also characterise and quantify the value of incomplete and partial sequence data, which has important implications for sampling design, and demonstrate the abilities of the introduced method to identify multiple clusters within an outbreak. The framework is used to analyse an outbreak of foot-and-mouth disease in the UK, enhancing current understanding of its transmission dynamics and evolutionary process. PMID:26599399
Wang, Jia-Chi; Boyar, Fatih Z
2016-01-01
Chromosomal microarray analysis (CMA) has been recommended and practiced routinely in the large reference laboratories of U.S.A. as the first-tier test for the postnatal evaluation of individuals with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. Using CMA as a diagnostic tool and without a routine setting of fluorescence in situ hybridization with labeled bacterial artificial chromosome probes (BAC-FISH) in the large reference laboratories becomes a challenge in the characterization of chromosome 9 pericentric region. This region has a very complex genomic structure and contains a variety of heterochromatic and euchromatic polymorphic variants. These variants were usually studied by G-banding, C-banding and BAC-FISH analysis. Chromosomal microarray analysis (CMA) was not recommended since it may lead to false positive results. Here, we presented a cohort of four cases, in which high-resolution CMA was used as the first-tier test or simultaneously with G-banding analysis on the proband to identify pathogenic copy number variants (CNVs) in the whole genome. CMA revealed large pathogenic CNVs from chromosome 9 in 3 cases which also revealed different G-banding patterns between the two chromosome 9 homologues. Although we demonstrated that high-resolution CMA played an important role in the identification of pathogenic copy number variants in chromosome 9 pericentric regions, the lack of BAC-FISH analysis or other useful tools renders significant challenges in the characterization of chromosome 9 pericentric regions. None; it is not a clinical trial, and the cases were retrospectively collected and analyzed.
Lack of direct effects of agrochemicals on zoonotic pathogens and fecal indicator bacteria.
Staley, Zachery R; Senkbeil, Jacob K; Rohr, Jason R; Harwood, Valerie J
2012-11-01
Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect.
Contamination of water resources by pathogenic bacteria
2014-01-01
Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540
Lack of Direct Effects of Agrochemicals on Zoonotic Pathogens and Fecal Indicator Bacteria
Staley, Zachery R.; Senkbeil, Jacob K.; Rohr, Jason R.
2012-01-01
Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect. PMID:22961900
USDA-ARS?s Scientific Manuscript database
Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...
2011-01-01
Background Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI) virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. Results All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1), clade 2.1.3 (80), and IDN/6/05-like viruses (3) that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA) and neuraminidase (NA) sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. Conclusions The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to chickens over the study period suggests that ducks are more likely to survive infection and they may better suit the role of long-term maintenance host for H5N1. As some viruses were isolated from dead birds, there was no clear correlation between genetic variations and pathogenicity of these viruses. PMID:21896207
NASA Astrophysics Data System (ADS)
Kaushik, Rajni; Balasubramanian, Rajasekhar
2012-01-01
Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.
Alum, Absar; Rock, Channah; Abbaszadegan, Morteza
2014-01-01
For land application, biosolids are classified as Class A or Class B based on the levels of bacterial, viral, and helminths pathogens in residual biosolids. The current EPA methods for the detection of these groups of pathogens in biosolids include discrete steps. Therefore, a separate sample is processed independently to quantify the number of each group of the pathogens in biosolids. The aim of the study was to develop a unified method for simultaneous processing of a single biosolids sample to recover bacterial, viral, and helminths pathogens. At the first stage for developing a simultaneous method, nine eluents were compared for their efficiency to recover viruses from a 100 gm spiked biosolids sample. In the second stage, the three top performing eluents were thoroughly evaluated for the recovery of bacteria, viruses, and helminthes. For all three groups of pathogens, the glycine-based eluent provided higher recovery than the beef extract-based eluent. Additional experiments were performed to optimize performance of glycine-based eluent under various procedural factors such as, solids to eluent ratio, stir time, and centrifugation conditions. Last, the new method was directly compared with the EPA methods for the recovery of the three groups of pathogens spiked in duplicate samples of biosolids collected from different sources. For viruses, the new method yielded up to 10% higher recoveries than the EPA method. For bacteria and helminths, recoveries were 74% and 83% by the new method compared to 34% and 68% by the EPA method, respectively. The unified sample processing method significantly reduces the time required for processing biosolids samples for different groups of pathogens; it is less impacted by the intrinsic variability of samples, while providing higher yields (P = 0.05) and greater consistency than the current EPA methods.
Meeus, Ivan; Pisman, Matti; Smagghe, Guy; Piot, Niels
2018-04-01
Wild bee decline is a multi-factorial problem, yet it is crucial to understand the impact of a single driver. Hereto the interaction effects of wild bee decline with multiple natural and anthropogenic stressors need to be clear. This is also true for the driver 'pathogens', as stressor induced disturbances of natural host-pathogen dynamics can unbalance settled virulence equilibria. Invasive species, bee domestication, habitat loss, climate changes and insecticides are recognized drivers of wild bee decline, but all influence host-pathogen dynamics as well. Many wild bee pathogens have multiple hosts, which relaxes the host-density limitation of virulence evolution. In conclusion, disturbances of bee-pathogen dynamics can be compared to a game of Russian roulette. Copyright © 2018. Published by Elsevier Inc.
White, L J; Evans, N D; Lam, T J G M; Schukken, Y H; Medley, G F; Godfrey, K R; Chappell, M J
2002-01-01
A mathematical model for the transmission of two interacting classes of mastitis causing bacterial pathogens in a herd of dairy cows is presented and applied to a specific data set. The data were derived from a field trial of a specific measure used in the control of these pathogens, where half the individuals were subjected to the control and in the others the treatment was discontinued. The resultant mathematical model (eight non-linear simultaneous ordinary differential equations) therefore incorporates heterogeneity in the host as well as the infectious agent and consequently the effects of control are intrinsic in the model structure. A structural identifiability analysis of the model is presented demonstrating that the scope of the novel method used allows application to high order non-linear systems. The results of a simultaneous estimation of six unknown system parameters are presented. Previous work has only estimated a subset of these either simultaneously or individually. Therefore not only are new estimates provided for the parameters relating to the transmission and control of the classes of pathogens under study, but also information about the relationships between them. We exploit the close link between mathematical modelling, structural identifiability analysis, and parameter estimation to obtain biological insights into the system modelled.
Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L.; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H.; Snounou, Georges; Rénia, Laurent; Ng, Lisa F. P.
2014-01-01
Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens. PMID:25078474
Cho, Jae Hoon; Suh, Jeffrey D; Kim, Jin Kook; Hong, Seok-Chan; Park, Il-Ho; Lee, Heung-Man
2014-01-01
Allergy test results can differ based on the method used. The most common tests include skin-prick testing (SPT) and in vitro tests to detect allergen-specific IgE. This study was designed to assess allergy test results using SPT, individual specific IgE tests, and a multiallergen IgE assay (multiple allergen simultaneous test) in patients with chronic rhinitis and controls. One hundred forty total patients were prospectively enrolled in the study, including 100 patients with chronic rhinitis and 40 control patients without atopy. All eligible patients underwent SPT, serum analysis using individual specific IgE test, and multiple allergen simultaneous test against 10 common allergens. Allergy test results were then compared to identify correlation and interest agreement. There was an 81-97% agreement between SPT and individual specific IgE test in allergen detection and an 80-98% agreement between SPT and multiple allergen simultaneous test. Individual specific IgE test and multiple allergen simultaneous test allergy detection prevalence was generally similar to SPT in patients with chronic rhinitis. All control patients had negative SPT (0/40), but low positive results were found with both individual specific IgE test (5-12.5%) and multiple allergen simultaneous test (2.5-7.5%) to some allergens, especially cockroach, Dermatophagoides farina, and ragweed. Agreement and correlation between individual specific IgE test and multiple allergen simultaneous test were good to excellent for a majority of tested allergens. This study shows good agreement and correlation between SPT with individual specific IgE test and multiple allergen simultaneous test on a majority of the tested allergens for patients with chronic rhinitis. Comparing the two in vitro tests, individual specific IgE test agrees with SPT better than multiple allergen simultaneous test.
USDA-ARS?s Scientific Manuscript database
Introduction: The three common foodborne pathogens implicated in foodborne outbreaks are Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes. Hence, it is important to identify these pathogens in contaminated foods so that they can be eliminated from the marketplace. At present, the...
Liang, L.; Goh, S. G.; Vergara, G. G. R. V.; Fang, H. M.; Rezaeinejad, S.; Chang, S. Y.; Bayen, S.; Lee, W. A.; Sobsey, M. D.; Rose, J. B.
2014-01-01
The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions. PMID:25416765
Liang, L; Goh, S G; Vergara, G G R V; Fang, H M; Rezaeinejad, S; Chang, S Y; Bayen, S; Lee, W A; Sobsey, M D; Rose, J B; Gin, K Y H
2015-02-01
The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Conservation of NLR-triggered immunity across plant lineages.
Maekawa, Takaki; Kracher, Barbara; Vernaldi, Saskia; Ver Loren van Themaat, Emiel; Schulze-Lefert, Paul
2012-12-04
The nucleotide-binding domain and leucine-rich repeat (NLR) family of plant receptors detects pathogen-derived molecules, designated effectors, inside host cells and mediates innate immune responses to pathogenic invaders. Genetic evidence revealed species-specific coevolution of many NLRs with effectors from host-adapted pathogens, suggesting that the specificity of these NLRs is restricted to the host or closely related plant species. However, we report that an NLR immune receptor (MLA1) from monocotyledonous barley is fully functional in partially immunocompromised dicotyledonous Arabidopsis thaliana against the barley powdery mildew fungus, Blumeria graminis f. sp. hordei. This implies ~200 million years of evolutionary conservation of the underlying immune mechanism. A time-course RNA-seq analysis in transgenic Arabidopsis lines detected sustained expression of a large MLA1-dependent gene cluster. This cluster is greatly enriched in genes known to respond to the fungal cell wall-derived microbe-associated molecular pattern chitin. The MLA1-dependent sustained transcript accumulation could define a conserved function of the nuclear pool of MLA1 detected in barley and Arabidopsis. We also found that MLA1-triggered immunity was fully retained in mutant plants that are simultaneously depleted of ethylene, jasmonic acid, and salicylic acid signaling. This points to the existence of an evolutionarily conserved and phytohormone-independent MLA1-mediated resistance mechanism. This also suggests a conserved mechanism for internalization of B. graminis f. sp. hordei effectors into host cells of flowering plants. Furthermore, the deduced connectivity of the NLR to multiple branches of immune signaling pathways likely confers increased robustness against pathogen effector-mediated interception of host immune signaling and could have contributed to the evolutionary preservation of the immune mechanism.
Kujoth, Gregory C.; Sullivan, Thomas D.; Merkhofer, Richard; Lee, Taek-Jin; Wang, Huafeng; Brandhorst, Tristan; Wüthrich, Marcel
2018-01-01
ABSTRACT Blastomyces dermatitidis is a human fungal pathogen of the lung that can lead to disseminated disease in healthy and immunocompromised individuals. Genetic analysis of this fungus is hampered by the relative inefficiency of traditional recombination-based gene-targeting approaches. Here, we demonstrate the feasibility of applying CRISPR/Cas9-mediated gene editing to Blastomyces, including to simultaneously target multiple genes. We created targeting plasmid vectors expressing Cas9 and either one or two single guide RNAs and introduced these plasmids into Blastomyces via Agrobacterium gene transfer. We succeeded in disrupting several fungal genes, including PRA1 and ZRT1, which are involved in scavenging and uptake of zinc from the extracellular environment. Single-gene-targeting efficiencies varied by locus (median, 60% across four loci) but were approximately 100-fold greater than traditional methods of Blastomyces gene disruption. Simultaneous dual-gene targeting proceeded with efficiencies similar to those of single-gene-targeting frequencies for the respective targets. CRISPR/Cas9 disruption of PRA1 or ZRT1 had a variable impact on growth under zinc-limiting conditions, showing reduced growth at early time points in low-passage-number cultures and growth similar to wild-type levels by later passage. Individual impairment of PRA1 or ZRT1 resulted in a reduction of the fungal burden in a mouse model of Blastomyces infection by a factor of ~1 log (range, up to 3 logs), and combined disruption of both genes had no additional impact on the fungal burden. These results underscore the utility of CRISPR/Cas9 for efficient gene disruption in dimorphic fungi and reveal a role for zinc metabolism in Blastomyces fitness in vivo. PMID:29615501
de Castro, Sonia; Camarasa, María-José
2018-04-25
HIV infection still has a serious health and socio-economical impact and is one of the primary causes of morbidity and mortality all over the world. HIV infection and the AIDS pandemic are still matters of great concern, especially in less developed countries where the access to highly active antiretroviral therapy (HAART) is limited. Patient compliance is another serious drawback. Nowadays, HAART is the treatment of choice although it is not the panacea. Despite the fact that it suppresses viral replication at undetectable viral loads and prevents progression of HIV infection into AIDS HAART has several pitfalls, namely, long-term side-effects, drug resistance development, emergence of drug-resistant viruses, low compliance and the intolerance of some patients to these drugs. Moreover, another serious health concern is the event of co-infection with more than one pathogen at the same time (e.g. HIV and HCV, HBV, herpes viruses, etc). Currently, the multi-target drug approach has become an exciting strategy to address complex diseases and overcome drug resistance development. Such multifunctional molecules combine in their structure pharmacophores that may simultaneously interfere with multiple targets and their use may eventually be more safe and efficacious than that involving a mixture of separate molecules because of avoidance or delay of drug resistance, lower incidence of unwanted drug-drug interactions and improved compliance. In this review we focus on multifunctional molecules with dual activity against different targets of the HIV life cycle or able to block replication, not only of HIV but also of other viruses that are often co-pathogens of HIV. The different approaches are documented by selected examples. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Environmental Stress and Pathogen Dynamics in the Blue Crab Callinectes sapidus
NASA Astrophysics Data System (ADS)
Sullivan, T. J.; Neigel, J.; Gelpi, C. G.
2016-02-01
The blue crab Callinectes sapidus is an ecologically and economically valuable species along the Gulf of Mexico and Atlantic coasts of North America. Throughout its range, the blue crab encounters a diverse array of parasitic and pathogenic microorganisms that have episodic and occasionally severe impacts on population numbers and viability. This makes understanding factors that influence pathogen dynamics, such as host stress, an important priority. To explore the role of environmental stress on the susceptibility of blue crabs to pathogens we screened individuals collected during the summers of 2014 and 2015 for a number of infectious agents. We sampled three life stages (megalopae, juvenile, and adult) from multiple marsh and offshore locations in Louisiana. Duration of stressful environmental conditions at each location was quantified from hourly recordings provided by the Louisiana Coastwide Reference Monitoring System. Pathogenic microorganisms were detected in crabs from multiple locations and multiple years. Some of the variability in prevalence of infection can be explained by exposure to stressful extremes of temperature and salinity during summer months.
Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C
2017-06-01
For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4 CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Meng-Chuan; Li, Gui-Xia; Zhang, Dan; Zhou, Hang-Yu; Wang, Hao; Yang, Shuo; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun
2017-06-01
Respiratory Pathogen 13 Detection Kit (13× kit) is able to simultaneously detect 11 respiratory viruses, Mycoplasma pneumoniae (MP) and Chlamydia in a single reaction. Using 572 Nasopharyngeal aspirates collected from hospitalized children, the clinical performance of 13× kit for detecting 11 respiratory viruses was evaluated in comparison with a routinely used 2-tube multiplex reverse transcription PCR assay (2-tube assay) at provincial Centers for Disease Control and Prevention in China. The clinical performance of 13× kit for detecting MP and Chlamydia was evaluated by commercial real-time quantitative PCR (qPCR) kits or sequencing. For tested viruses, the assay concordance was 95.98% and the kappa coefficient was 0.89. All the MP and Chlamydia positive samples detected by 13× kit were confirmed as true positives. The utilization of the 13× kit in clinical settings will be helpful for doctors to assess clinical outcome according to virus type or multiple infections, and to limit the use of antibiotics. Copyright © 2017 Elsevier Inc. All rights reserved.
SPITE VERSUS CHEATS: COMPETITION AMONG SOCIAL STRATEGIES SHAPES VIRULENCE IN PSEUDOMONAS AERUGINOSA
Inglis, R Fredrik; Brown, Sam P; Buckling, Angus
2012-01-01
Social interactions have been shown to play an important role in bacterial evolution and virulence. The majority of empirical studies conducted have only considered social traits in isolation, yet numerous social traits, such as the production of spiteful bacteriocins (anticompetitor toxins) and iron-scavenging siderophores (a public good) by the opportunistic pathogen Pseudomonas aeruginosa, are frequently expressed simultaneously. Crucially, both bacteriocin production and siderophore cheating can be favored under the same competitive conditions, and we develop theory and carry out experiments to determine how the success of a bacteriocin-producing genotype is influenced by social cheating of susceptible competitors and the resultant impact on disease severity (virulence). Consistent with our theoretical predictions, we find that the spiteful genotype is favored at higher local frequencies when competing against public good cheats. Furthermore, the relationship between spite frequency and virulence is significantly altered when the spiteful genotype is competed against cheats compared with cooperators. These results confirm the ecological and evolutionary importance of considering multiple social traits simultaneously. Moreover, our results are consistent with recent theory regarding the invasion conditions for strong reciprocity (helping cooperators and harming noncooperators). PMID:23106711
Microbial forensics: fiber optic microarray subtyping of Bacillus anthracis
NASA Astrophysics Data System (ADS)
Shepard, Jason R. E.
2009-05-01
The past decade has seen increased development and subsequent adoption of rapid molecular techniques involving DNA analysis for detection of pathogenic microorganisms, also termed microbial forensics. The continued accumulation of microbial sequence information in genomic databases now better positions the field of high-throughput DNA analysis to proceed in a more manageable fashion. The potential to build off of these databases exists as technology continues to develop, which will enable more rapid, cost effective analyses. This wealth of genetic information, along with new technologies, has the potential to better address some of the current problems and solve the key issues involved in DNA analysis of pathogenic microorganisms. To this end, a high density fiber optic microarray has been employed, housing numerous DNA sequences simultaneously for detection of various pathogenic microorganisms, including Bacillus anthracis, among others. Each organism is analyzed with multiple sequences and can be sub-typed against other closely related organisms. For public health labs, real-time PCR methods have been developed as an initial preliminary screen, but culture and growth are still considered the gold standard. Technologies employing higher throughput than these standard methods are better suited to capitalize on the limitless potential garnered from the sequence information. Microarray analyses are one such format positioned to exploit this potential, and our array platform is reusable, allowing repetitive tests on a single array, providing an increase in throughput and decrease in cost, along with a certainty of detection, down to the individual strain level.
Frickmann, Hagen; Warnke, Philipp; Frey, Claudia; Schmidt, Salvatore; Janke, Christian; Erkens, Kay; Schotte, Ulrich; Köller, Thomas; Maaßen, Winfried; Podbielski, Andreas; Binder, Alfred; Hinz, Rebecca; Queyriaux, Benjamin; Wiemer, Dorothea; Schwarz, Norbert Georg; Hagen, Ralf Matthias
2015-01-01
Introduction. Since 2013, European soldiers have been deployed on the European Union Training Mission (EUTM) in Mali. From the beginning, diarrhea has been among the most “urgent” concerns. Diarrhea surveillance based on deployable real-time PCR equipment was conducted between December 2013 and August 2014. Material and Methods. In total, 53 stool samples were obtained from 51 soldiers with acute diarrhea. Multiplex PCR panels comprised enteroinvasive bacteria, diarrhea-associated Escherichia coli (EPEC, ETEC, EAEC, and EIEC), enteropathogenic viruses, and protozoa. Noroviruses were characterized by sequencing. Cultural screening for Enterobacteriaceae with extended-spectrum beta-lactamases (ESBL) with subsequent repetitive sequence-based PCR (rep-PCR) typing was performed. Clinical information was assessed. Results. Positive PCR results for diarrhea-associated pathogens were detected in 43/53 samples, comprising EPEC (n = 21), ETEC (n = 19), EAEC (n = 15), Norovirus (n = 10), Shigella spp./EIEC (n = 6), Cryptosporidium parvum (n = 3), Giardia duodenalis (n = 2), Salmonella spp. (n = 1), Astrovirus (n = 1), Rotavirus (n = 1), and Sapovirus (n = 1). ESBL-positive Enterobacteriaceae were grown from 13 out of 48 samples. Simultaneous infections with several enteropathogenic agents were observed in 23 instances. Symptoms were mild to moderate. There were hints of autochthonous transmission. Conclusions. Multiplex real-time PCR proved to be suitable for diarrhea surveillance on deployment. Etiological attribution is challenging in cases of detection of multiple pathogens. PMID:26525953
Epidemiologic evaluation of diarrhea in dogs in an animal shelter.
Sokolow, Susanne H; Rand, Courtney; Marks, Stanley L; Drazenovich, Niki L; Kather, Elizabeth J; Foley, Janet E
2005-06-01
To determine associations among infectious pathogens and diarrheal disease in dogs in an animal shelter and demonstrate the use of geographic information systems (GISs) for tracking spatial distributions of diarrheal disease within shelters. Feces from 120 dogs. Fresh fecal specimens were screened for bacteria and bacterial toxins via bacteriologic culture and ELISA, parvovirus via ELISA, canine coronavirus via nested polymerase chain reaction assay, protozoal cysts and oocysts via a direct fluorescent antibody technique, and parasite ova and larvae via microscopic examination of direct wet mounts and zinc sulfate centrifugation flotation. Salmonella enterica and Brachyspira spp were not common, whereas other pathogens such as canine coronavirus and Helicobacter spp were common among the dogs that were surveyed. Only intestinal parasites and Campylobacterjejuni infection were significant risk factors for diarrhea by univariate odds ratio analysis. Giardia lamblia was significantly underestimated by fecal flotation, compared with a direct fluorescent antibody technique. Spatial analysis of case specimens by use of GIS indicated that diarrhea was widespread throughout the entire shelter, and spatial statistical analysis revealed no evidence of spatial clustering of case specimens. This study provided an epidemiologic overview of diarrhea and interacting diarrhea-associated pathogens in a densely housed, highly predisposed shelter population of dogs. Several of the approaches used in this study, such as use of a spatial representation of case specimens and considering multiple etiologies simultaneously, were novel and illustrate an integrated approach to epidemiologic investigations in shelter populations.
Marteyn, Benoit; Gazi, Anastasia; Sansonetti, Philippe
2012-01-01
Much is known about the molecular effectors of pathogenicity of gram-negative enteric pathogens, among which Shigella can be considered a model. This is due to its capacity to recapitulate the multiple steps required for a pathogenic microbe to survive close to its mucosal target, colonize and then invade its epithelial surface, cause its inflammatory destruction and simultaneously regulate the extent of the elicited innate response to likely survive the encounter and achieve successful subsequent transmission. These various steps of the infectious process represent an array of successive environmental conditions to which the bacteria need to successfully adapt. These conditions represent the selective pressure that triggered the “arms race” in which Shigella acquired the genetic and molecular effectors of its pathogenic armory, including the regulatory hierarchies that regulate the expression and function of these effectors. They also represent cues through which Shigella achieves the temporo-spatial expression and regulation of its virulence effectors. The role of such environmental cues has recently become obvious in the case of the major virulence effector of Shigella, the type three secretion system (T3SS) and its dedicated secreted virulence effectors. It needs to be better defined for other major virulence components such as the LPS and peptidoglycan which are used as examples here, in addition to the T3SS as models of regulation as it relates to the assembly and functional regulation of complex macromolecular systems of the bacterial surface. This review also stresses the need to better define what the true and relevant environmental conditions can be at the various steps of the progression of infection. The “identity” of the pathogen differs depending whether it is cultivated under in vitro or in vivo conditions. Moreover, this “identity” may quickly change during its progression into the infected tissue. Novel concepts and relevant tools are needed to address this challenge in microbial pathogenesis. PMID:22356862
Swinscoe, Isobel; Oliver, David M; Gilburn, Andre S; Quilliam, Richard S
2018-06-19
The sustainable management of recreational beaches is essential for minimising risk of human exposure to microbial pathogens whilst simultaneously maintaining valuable ecosystem services. Decaying seaweed on public beaches is gaining recognition as a substrate for microbial contamination, and is a potentially significant reservoir for human pathogens in close proximity to beach users. Closely associated with beds of decaying seaweed are dense populations of the seaweed fly (Coelopidae), which could influence the spatio-temporal fate of seaweed-associated human pathogens within beach environments. Replicated mesocosms containing seaweed inoculated with a bioluminescent strain of the zoonotic pathogen E. coli O157:H7, were used to determine the effects of two seaweed flies, Coelopa frigida and C. pilipes, on E. coli O157:H7 survival dynamics. Multiple generations of seaweed flies and their larvae significantly enhanced persistence of E. coli O157:H7 in simulated wrack habitats, demonstrating that both female and male C. frigida flies are capable of transferring E. coli O157:H7 between individual wrack beds and into the sand. Adult fly faeces can contain significant concentrations of E. coli O157:H7, which suggests they are capable of acting as biological vectors and bridge hosts between wrack habitats and other seaweed fly populations, and facilitate the persistence and dispersal of E. coli O157:H7 in sandy beach environments. This study provides the first evidence that seaweed fly populations inhabiting natural wrack beds contaminated with the human pathogen E. coli O157:H7 have the capacity to amplify the hazard source, and therefore potential transmission risk, to beach users exposed to seaweed and sand in the intertidal zone. The risk to public health from seaweed flies and decaying wrack beds is usually limited by human avoidance behaviour; however, seaweed fly migration and nuisance inland plagues in urban areas could increase human exposure routes beyond the beach environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Incorporating disease resistance into cultivars is a primary focus of modern breeding programs. Resistance to pathogens is often introgressed from landrace or wild individuals with poor fruit quality into commercial-quality cultivars. Sites of multiple disease resistance (MDR) are regions or “hotspo...
USDA-ARS?s Scientific Manuscript database
Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains. To evaluate the genetic diversity of Lymantria dispar nucleopolyhedrovirus (LdMNPV) at the genomic level, the genomes of three isolates of...
We evaluate the influence of multiple sources of faecal indicator bacteria in recreational water bodies on potential human health risk by considering waters impacted by human and animal sources, human and non-pathogenic sources, and animal and non-pathogenic sources. We illustrat...
USDA-ARS?s Scientific Manuscript database
Shiga-toxin producing Escherichia coli (STEC) strains (“Big Six” – O26, O45, O103, O111, O121, O145, and O157) represent significant groups of pathogens responsible for foodborne diseases. The objective of this study was to develop a colorimetric optical sensing assay that can simultaneously detect ...
Bio-preservation of ground beef meat by Enterococcus faecalis CECT7121.
Sparo, M D; Confalonieri, A; Urbizu, L; Ceci, M; Bruni, S F Sánchez
2013-01-01
Meat and particularly ground beef is frequently associated with Food Poisoning episodes and breeches in Food Safety. The main goal of this research was to evaluate the bactericide effect of the probiotic Enterococcus faecalis CECT7121, against different pathogens as: Escherichia coli O157:H7, Staphylococcus aureus, Clostridium perfringens and Listeria monocytogenes, inoculated in ground beef meat. Three studies were performed to evaluate the inhibition of E. faecalis CECT7121 on ground beef meat samples inoculated with pathogens: Study I: Samples (100 g meat) were inoculated with pathogens (10(3) CFU/g)) and E. faecalis CECT7121 (10(4) CFU/g) simultaneously. Study II: Samples were inoculated with E. faecalis CECT7121 24 h before the pathogens. Study III: E. faecalis CECT7121were inoculated 24 h after pathogens. The viable counts were performed at 0, 24, 48 and 72 h post-inoculation. The simultaneous inoculation of E. faecalis CECT7121 with E. coli O157:H7 strains resulted in the absence of viable counts of bacteria at 72 h post-treatment. However, when the probiotic was added 24 h before and 24 h after the pathogen E. coli O157:H7, viable cells were not detected at 24 h and 48 h post-treatment, respectively. Consistently, neither S. aureus nor Cl. perfringens viable bacteria were detected at 48 h in whole assays when inoculated with E. faecalis CECT7121. The same trend than described before was obtained after applying the 3 models assayed for L. monocytogenes. The current assays demonstrated the bactericide activity of E. faecalis CECT7121 strain on bacterial pathogens in ground beef meat.
Laeseke, Paul F; Sampson, Lisa A; Haemmerich, Dieter; Brace, Chris L; Fine, Jason P; Frey, Tina M; Winter, Thomas C; Lee, Fred T
2005-12-01
A multiple-electrode radiofrequency (RF) system was developed based on switching between electrodes that allows for the simultaneous use of as many as three electrically independent electrodes. The purpose of this study was to determine if each multiple-electrode ablation zone is identical to an ablation zone created with conventional single-electrode mode. Nine female domestic pigs (mean weight, 90 kg) were used for this study. A prototype monopolar multiple-electrode RF ablation system was created with use of an RF generator and an electronic switching algorithm. A maximum of three electrodes can be used simultaneously by switching between electrodes at each impedance spike (30 omega greater than baseline levels). A total of 39 zones of ablation were created at open laparotomy in pig livers with use of a conventional single electrode (n = 9), two single electrodes simultaneously (n = 6 ablations; 12 ablation zones), or three single electrodes simultaneously (n = 6 ablations; 18 ablation zones). RF electrodes were spaced in separate lobes of the liver when multiple zones of coagulation were created simultaneously. Animals were euthanized after RF ablation, livers were removed, and ablation zones were sectioned and measured. Zones of coagulation created simultaneously with two or three electrodes were equivalent to ablation zones created with use of conventional single-electrode ablation. No significant differences were observed among control animals treated with a single electrode, those with two separate zones of ablation created simultaneously, and those with three simultaneously created ablation zones in terms of mean (+/-SD) minimum diameter (1.6 cm +/- 0.6, 1.6 cm +/- 0.5, and 1.7 cm +/- 0.4, respectively), maximum diameter (2.0 cm +/- 0.5, 2.3 cm +/- 0.5, 2.2 cm +/- 0.5, respectively), and volume (6.7 cm3 +/- 3.7, 7.4 cm3 +/- 3.8, and 7.8 cm3 +/- 3.9; P > .30, analysis of variance, pairwise t-test comparisons). A rapid-switching multiple-electrode RF system was able to simultaneously create as many as three separate ablation zones of equivalent size compared with single-electrode controls. This system would allow physicians to simultaneously treat multiple tumors, substantially reducing procedure time and anesthesia risk.
Highly pathogenic avian influenza A(H7N9) virus, Tennessee, USA, March 2017
USDA-ARS?s Scientific Manuscript database
In March 2017, highly pathogenic avian influenza A(H7N9) was detected at 2 poultry farms in Tennessee, USA. Surveillance data and genetic analyses indicated multiple introductions of low pathogenicity avian influenza virus before mutation to high pathogenicity and interfarm transmission. Poultry sur...
USDA-ARS?s Scientific Manuscript database
Microbial strain structure is dynamic over space and time; shifts in pathogen strain structure result in changing patterns of disease. The scale of change in space and time differs markedly among pathogens depending on multiple factors including pathogen-specific mechanisms of genetic change and the...
Detection of Biological Pathogens Using Multiple Wireless Magnetoelastic Biosensors
NASA Astrophysics Data System (ADS)
Shen, Wen
A number of recent, high-profile incidences of food-borne illness spreading through the food supply and the use of anthrax by terrorists after the September 11, 2001 attacks have demonstrated the need for new technologies that can rapidly detect the presence of biological pathogens. A bevy of biosensors show excellent detection sensitivity and specificity. However, false positive and false negative signals remain one of the primary reasons that many of these newly developed biosensors have not found application in the marketplace. The research described in this dissertation focuses on developing a free-standing magnetoelastic based bio-sensing system using a pulse method. This method allows fast detection, eliminates the bias magnetic field that is necessary in current methods, makes the system more simply and suitable for in-field detection. This system has two pairs of transformer coils, where a measurement sensor and a control sensor can be put in each pair of coils. The control sensor is used to compensate for environmental variables. The effect of pulse power on the performance of the magnetoelastic sensors in the pulse system is studied. The system is found to have excellent stability, good detection repeatability when used with multiple sensors. This research has investigated and demonstrated a multiple sensors approach. Because it will involve the simultaneous measurement of many sensors, it will significantly reduce problems encountered with false positive indications. The positioning and interference of sensors are investigated. By adding a multi-channel structure to the pulse detection system, the effect of sensor interference is minimized. The result of the repeatability test shows that the standard deviation when measuring three 1 mm magnetoelastic sensors is around 500 Hz, which is smaller than the minimum requirement for actual spores/bacteria detection. Magnetoelastic sensors immobilized with JRB7 phages and E2 phages have been used to specifically detect Bacillus anthracis spores and Salmonella typhimurium bacteria. The real-time monitoring of the detection of B. anthracis spores in a flowing system was performed using 2 mm sensors and 1 mm sensors. The detection of S. typhimurium in air has been performed using the pulse based system with both single and grouped sensors. Because grouped sensor detection involves the simultaneous measurement of many sensors, statistical evaluation shows that it can significantly reduce problems encountered with false positive indications. This method has been implemented in an investigation of a method that allows direct detection of S. typhimurium on cantaloupe surfaces. It has been demonstrated that multiple E2 phage based magnetoelastic sensors are able to detect Salmonella directly on fresh cantaloupe surfaces. Confirmation of the spore or bacteria binding to the sensor surfaces was achieved through SEM study of the sensor surfaces.
Simultaneous multiple non-crossing quantile regression estimation using kernel constraints
Liu, Yufeng; Wu, Yichao
2011-01-01
Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation. PMID:22190842
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... relating to Auction 92. A. Auction Structure i. Simultaneous Multiple-Round Auction Design 7. The Bureau proposes to auction all licenses included in Auction 92 using the Commission's standard simultaneous... competitiveness and economic efficiency of a simultaneous multiple-round auction may be enhanced if such...
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F
2011-04-01
To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F.
2011-01-01
Purpose To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Materials and Methods Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in-vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Results Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. Conclusion The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast 3D MRI data acquisition. PMID:21448967
Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain
Kim, Christina K; Yang, Samuel J; Pichamoorthy, Nandini; Young, Noah P; Kauvar, Isaac; Jennings, Joshua H; Lerner, Talia N; Berndt, Andre; Lee, Soo Yeun; Ramakrishnan, Charu; Davidson, Thomas J; Inoue, Masatoshi; Bito, Haruhiko; Deisseroth, Karl
2017-01-01
Real-time activity measurements from multiple specific cell populations and projections are likely to be important for understanding the brain as a dynamical system. Here we developed frame-projected independent-fiber photometry (FIP), which we used to record fluorescence activity signals from many brain regions simultaneously in freely behaving mice. We explored the versatility of the FIP microscope by quantifying real-time activity relationships among many brain regions during social behavior, simultaneously recording activity along multiple axonal pathways during sensory experience, performing simultaneous two-color activity recording, and applying optical perturbation tuned to elicit dynamics that match naturally occurring patterns observed during behavior. PMID:26878381
Zhang, Xinxin; Ma, Dehua; Zou, Wei; Ding, Yibing; Zhu, Chengchu; Min, Haiyan; Zhang, Bin; Wang, Wei; Chen, Baofu; Ye, Minhua; Cai, Minghui; Pan, Yanqing; Cao, Lei; Wan, Yueming; Jin, Yu; Gao, Qian; Yi, Long
2016-05-27
Primary spontaneous pneumothorax (PSP) or pulmonary cysts is one of the manifestations of Birt-Hogg-Dube syndrome (BHDS) that is caused by heterozygous mutations in FLCN gene. Most of the mutations are SNVs and small indels, and there are also approximately 10 % large intragenic deletions and duplications of the mutations. These molecular findings are generally obtained by disparate methods including Sanger sequencing and Multiple Ligation-dependent Probe Amplification in the clinical laboratory. In addition, as a genetically heterogeneous disorder, PSP may be caused by mutations in multiple genes include FBN1, COL3A1, CBS, SERPINA1 and TSC1/TSC2 genes. For differential diagnosis, these genes should also be screened which makes the diagnostic procedure more time-consuming and labor-intensive. Forty PSP patients were divided into 2 groups. Nineteen patients with different pathogenic mutations of FLCN previously identified by conventional Sanger sequencing and MLPA were included in test group, 21 random PSP patients without any genetic screening were included in blinded sample group. 7 PSP genes including FLCN, FBN1, COL3A1, CBS, SERPINA1 and TSC1/TSC2 were designed and enriched by Haloplex system, sequenced on a Miseq platform and analyzed in the 40 patients to evaluate the performance of the targeted-NGS method. We demonstrated that the full spectrum of genes associated with pneumothorax including FLCN gene mutations can be identified simultaneously in multiplexed sequence data. Noteworthy, by our in-house copy number analysis of the sequence data, we could not only detect intragenic deletions, but also determine approximate deletion junctions simultaneously. NGS based Haloplex target enrichment technology is proved to be a rapid and cost-effective screening strategy for the comprehensive molecular diagnosis of BHDS in PSP patients, as it can replace Sanger sequencing and MLPA by simultaneously detecting exonic and intronic SNVs, small indels, large intragenic deletions and determining deletion junctions in PSP-related genes.
[Occupational exposure to blood in multiple trauma care].
Wicker, S; Wutzler, S; Schachtrupp, A; Zacharowski, K; Scheller, B
2015-01-01
Trauma care personnel are at risk of occupational exposure to blood-borne pathogens. Little is known regarding compliance with standard precautions or occupational exposure to blood and body fluids among multiple trauma care personnel in Germany. Compliance rates of multiple trauma care personnel in applying standard precautions, knowledge about transmission risks of blood-borne pathogens, perceived risks of acquiring hepatitis B, hepatitis C and human immunodeficiency virus (HIV) and the personal attitude towards testing of the index patient for blood-borne pathogens after a needlestick injury were evaluated. In the context of an advanced multiple trauma training an anonymous questionnaire was administered to the participants. Almost half of the interviewees had sustained a needlestick injury within the last 12 months. Approximately three quarters of the participants were concerned about the risk of HIV and hepatitis. Trauma care personnel had insufficient knowledge of the risk of blood-borne pathogens, overestimated the risk of hepatitis C infection and underused standard precautionary measures. Although there was excellent compliance for using gloves, there was poor compliance in using double gloves (26.4 %), eye protectors (19.7 %) and face masks (15.8 %). The overwhelming majority of multiple trauma care personnel believed it is appropriate to test an index patient for blood-borne pathogens following a needlestick injury. The process of treatment in prehospital settings is less predictable than in other settings in which invasive procedures are performed. Periodic training and awareness programs for trauma care personnel are required to increase the knowledge of occupational infections and the compliance with standard precautions. The legal and ethical aspects of testing an index patient for blood-borne pathogens after a needlestick injury of a healthcare worker have to be clarified in Germany.
Ha, Jae-Won
2013-01-01
This study was conducted to investigate the efficacy of the simultaneous application of near-infrared (NIR) heating and UV irradiation for reducing populations of food-borne pathogens, including Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 in red pepper powder and to clarify the mechanisms of the lethal effect of the NIR-UV combined treatment. Also, the effect of the combination treatment on quality was determined by measuring changes in color and pungency constituents. Simultaneous NIR-UV combined treatment for 5 min achieved 3.34- and 2.78-log CFU reductions in S. Typhimurium and E. coli O157:H7, respectively, which involved 1.86- and 1.31-log CFU reductions, respectively, which were attributed to the synergistic effect. Through qualitative and quantitative analyses, damage to the cell envelope was identified as the main factor contributing to the synergistic lethal effect of NIR-UV combined treatment. Color values and capsaicin and dihydrocapsaicin content of NIR-UV simultaneously treated red pepper powder were not significantly (P > 0.05) different from those of untreated samples. These results suggest that simultaneous application of NIR and UV treatment can be effectively used to control food-borne pathogens in powdered red pepper without affecting quality. PMID:23956394
Ha, Jae-Won; Kang, Dong-Hyun
2013-11-01
This study was conducted to investigate the efficacy of the simultaneous application of near-infrared (NIR) heating and UV irradiation for reducing populations of food-borne pathogens, including Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 in red pepper powder and to clarify the mechanisms of the lethal effect of the NIR-UV combined treatment. Also, the effect of the combination treatment on quality was determined by measuring changes in color and pungency constituents. Simultaneous NIR-UV combined treatment for 5 min achieved 3.34- and 2.78-log CFU reductions in S. Typhimurium and E. coli O157:H7, respectively, which involved 1.86- and 1.31-log CFU reductions, respectively, which were attributed to the synergistic effect. Through qualitative and quantitative analyses, damage to the cell envelope was identified as the main factor contributing to the synergistic lethal effect of NIR-UV combined treatment. Color values and capsaicin and dihydrocapsaicin content of NIR-UV simultaneously treated red pepper powder were not significantly (P > 0.05) different from those of untreated samples. These results suggest that simultaneous application of NIR and UV treatment can be effectively used to control food-borne pathogens in powdered red pepper without affecting quality.
Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection
Gupta, Aarti; Dixit, Sandeep K.; Senthil-Kumar, Muthappa
2016-01-01
Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well-studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies, unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study established a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen multiplication was reduced by drought stress in combined stressed plants. Combined stressed plants also displayed reduced ROS generation and declined cell death which could be attributed to activation of effective basal defense responses. We hypothesize a model on ABA mediated gene regulation to partly explain the possible mechanistic basis for reduced in planta bacterial numbers under combined stress over individual pathogen stress. PMID:27375661
Simultaneity, Sequentiality, and Speed: Organizational Messages about Multiple-Task Completion
ERIC Educational Resources Information Center
Stephens, Keri K.; Cho, Jaehee K.; Ballard, Dawna I.
2012-01-01
Workplace norms for task completion increasingly value speed and the ability to accomplish multiple tasks at once. This study situates this popularized issue of multitasking within the context of chronemics scholarship by addressing related issues of simultaneity, sequentiality, and speed. Ultimately, we consider 2 multiple-task completion…
de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.
2017-01-01
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499
Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens
NASA Astrophysics Data System (ADS)
Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon
2016-01-01
Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.
Competition between two virulent Marek's disease virus strains in vivo.
Dunn, John R; Silva, Robert F; Lee, Lucy F; Witter, Richard L
2012-01-01
Previous studies have demonstrated the presence of multiple strains of Marek's disease virus simultaneously circulating within poultry flocks, leading to the assumption that individual birds are repeatedly exposed to a variety of virus strains in their lifetime. Virus competition within individual birds may be an important factor that influences the outcome of co-infection under field conditions, including the potential outcome of emergence or evolution of more virulent strains. A series of experiments was designed to evaluate virus competition within chickens following simultaneous challenge with two virulent serotype 1 Marek's disease virus strains, using either pathogenically similar (rMd5 and rMd5/pp38CVI) or dissimilar (JM/102W and rMd5/pp38CVI) virus pairs. Bursa of Fabricius, feather follicle epithelium, spleen, and tumour samples were collected at multiple time points to determine the frequency and distribution of each virus present using pyrosequencing, immunohistochemistry and virus isolation. In the similar pair, rMd5 appeared to have a competitive advantage over rMd5/pp38CVI, which in turn had a competitive advantage over the less virulent JM/102W in the dissimilar virus pair. Dominance of one strain over the other was not absolute for either virus pair, as the subordinate virus was rarely eliminated. Interestingly, competition between two viruses with either pair rarely ended in a draw. Further work is needed to identify factors that influence virus-specific dominance to better understand what characteristics favour emergence of one strain in chicken populations at the expense of other strains.
Cunningham, Cameron R.; Champhekar, Ameya; Tullius, Michael V.; Dillon, Barbara Jane; Zhen, Anjie; de la Fuente, Justin Rafael; Herskovitz, Jonathan; Elsaesser, Heidi; Snell, Laura M.; Wilson, Elizabeth B.; de la Torre, Juan Carlos; Kitchen, Scott G.; Horwitz, Marcus A.; Bensinger, Steven J.; Smale, Stephen T.; Brooks, David G.
2016-01-01
Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. PMID:26808628
Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E
2014-01-14
Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.
NASA Astrophysics Data System (ADS)
Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.
2017-02-01
In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.
Kodani, Maja; Mixson-Hayden, Tonya; Drobeniuc, Jan; Kamili, Saleem
2014-10-01
Five viruses have been etiologically associated with viral hepatitis. Nucleic acid testing (NAT) remains the gold standard for diagnosis of viremic stages of infection. NAT methodologies have been developed for all hepatitis viruses; however, a NAT-based assay that can simultaneously detect all five viruses is not available. We designed TaqMan card-based assays for detection of HAV RNA, HBV DNA, HCV RNA, HDV RNA and HEV RNA. The performances of individual assays were evaluated on TaqMan Array Cards (TAC) for detecting five viral genomes simultaneously. Sensitivity and specificity were determined by testing 329 NAT-tested clinical specimens. All NAT-positive samples for HCV (n = 32), HDV (n = 28) and HEV (n = 14) were also found positive in TAC (sensitivity, 100%). Forty-three of 46 HAV-NAT positive samples were also positive in TAC (sensitivity, 94%), while 36 of 39 HBV-NAT positive samples were positive (sensitivity, 92%). No false-positives were detected for HBV (n = 32), HCV (n = 36), HDV (n = 30), and HEV (n = 31) NAT-negative samples (specificity 100%), while 38 of 41 HAV-NAT negative samples were negative by TAC (specificity 93%). TAC assay was concordant with corresponding individual NATs for hepatitis A-E viral genomes and can be used for their detection simultaneously. The TAC assay has potential for use in hepatitis surveillance, for screening of donor specimens and in outbreak situations. Wider availability of TAC-ready assays may allow for customized assays, for improving acute jaundice surveillance and for other purposes for which there is need to identify multiple pathogens rapidly. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
..., 2004, now expired, entitled ``Method And Apparatus for Performing Multiple Simultaneous Manipulations..., 2006 entitled ``Method And Apparatus for Performing Multiple Simultaneous Manipulations of Biomolecules...
Beyond R0 Maximisation: On Pathogen Evolution and Environmental Dimensions.
Lion, Sébastien; Metz, Johan A J
2018-06-01
A widespread tenet is that evolution of pathogens maximises their basic reproduction ratio, R 0 . The breakdown of this principle is typically discussed as exception. Here, we argue that a radically different stance is needed, based on evolutionarily stable strategy (ESS) arguments that take account of the 'dimension of the environmental feedback loop'. The R 0 maximisation paradigm requires this feedback loop to be one-dimensional, which notably excludes pathogen diversification. By contrast, almost all realistic ecological ingredients of host-pathogen interactions (density-dependent mortality, multiple infections, limited cross-immunity, multiple transmission routes, host heterogeneity, and spatial structure) will lead to multidimensional feedbacks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pryke, Kara M.; Abraham, Jinu; Sali, Tina M.; Gall, Bryan J.; Archer, Iris; Liu, Andrew; Bambina, Shelly; Baird, Jason; Gough, Michael; Chakhtoura, Marita; Haddad, Elias K.; Kirby, Ilsa T.; Nilsen, Aaron; Streblow, Daniel N.; Hirsch, Alec J.; Smith, Jessica L.
2017-01-01
ABSTRACT The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy’s potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity. PMID:28465426
USDA-ARS?s Scientific Manuscript database
The wide array of applications using quantum dots (QDs) for detection of multiple analytes reflects the versatility of the technology. In this study, a novel immunoassay using 2 types of sensors (QDs and an enzyme) were simultaneously used for detecting multiple structurally different low-molecular...
Neonatal innate TLR-mediated responses are distinct from those of adults.
Kollmann, Tobias R; Crabtree, Juliet; Rein-Weston, Annie; Blimkie, Darren; Thommai, Francis; Wang, Xiu Yu; Lavoie, Pascal M; Furlong, Jeff; Fortuno, Edgardo S; Hajjar, Adeline M; Hawkins, Natalie R; Self, Steven G; Wilson, Christopher B
2009-12-01
The human neonate and infant are unduly susceptible to infection with a wide variety of microbes. This susceptibility is thought to reflect differences from adults in innate and adaptive immunity, but the nature of these differences is incompletely characterized. The innate immune response directs the subsequent adaptive immune response after integrating information from TLRs and other environmental sensors. We set out to provide a comprehensive analysis defining differences in response to TLR ligation between human neonates and adults. In response to most TLR ligands, neonatal innate immune cells, including monocytes and conventional and plasmacytoid dendritic cells produced less IL-12p70 and IFN-alpha (and consequently induced less IFN-gamma), moderately less TNF-alpha, but as much or even more IL-1beta, IL-6, IL-23, and IL-10 than adult cells. At the single-cell level, neonatal innate cells generally were less capable of producing multiple cytokines simultaneously, i.e., were less polyfunctional. Overall, our data suggest a robust if not enhanced capacity of the neonate vs the adult white-blood cell TLR-mediated response to support Th17- and Th2-type immunity, which promotes defense against extracellular pathogens, but a reduced capacity to support Th1-type responses, which promote defense against intracellular pathogens.
Tzean, Yuh; Shu, Po-Yao; Liou, Ruey-Fen; Tzean, Shean-Shong
2016-03-01
Polyporoid Phellinus fungi are ubiquitously present in the environment and play an important role in shaping forest ecology. Several species of Phellinus are notorious pathogens that can affect a broad variety of tree species in forest, plantation, orchard and urban habitats; however, current detection methods are overly complex and lack the sensitivity required to identify these pathogens at the species level in a timely fashion for effective infestation control. Here, we describe eight oligonucleotide microarray platforms for the simultaneous and specific detection of 17 important Phellinus species, using probes generated from the internal transcribed spacer regions unique to each species. The sensitivity, robustness and efficiency of this Phellinus microarray system was subsequently confirmed against template DNA from two key Phellinus species, as well as field samples collected from tree roots, trunks and surrounding soil. This system can provide early, specific and convenient detection of Phellinus species for forestry, arboriculture and quarantine inspection, and could potentially help to mitigate the environmental and economic impact of Phellinus-related diseases. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
USDA-ARS?s Scientific Manuscript database
Soil-borne pathogens of the Pacific Northwest decrease yields in both spring and winter wheat. Pathogens of economic importance include Fusarium culmorum, Pratylenchus neglectus, P. thornei, and Rhizoctonia solani AG8. Few options are available to growers to manage these pathogens and reduce yield l...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... issues relating to the conduct of Auction 96. A. Auction Design i. Simultaneous Multiple-Round Auction--With or Without Package Bidding 14. The Bureau proposes to conduct Auction 96 using a simultaneous... incorporate provisions for a simple form of package bidding into the simultaneous multiple-round auction. In...
Predicting effects of structural stress in a genome-reduced model bacterial metabolism
NASA Astrophysics Data System (ADS)
Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles
2012-08-01
Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.
Nicotine Inhibits Memory CTL Programming
Sun, Zhifeng; Smyth, Kendra; Garcia, Karla; Mattson, Elliot; Li, Lei; Xiao, Zhengguo
2013-01-01
Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development. PMID:23844169
NASA Astrophysics Data System (ADS)
Tracy, A. M.; Weil, E.; Harvell, C. D.
2016-02-01
Organisms in natural populations experience an onslaught of stressful conditions that may compromise their ability to fight pathogens, particularly if multiple stressors impact a host at the same time. Environmental stressors can also influence the pathogens. Despite the clear importance of environmental factors for coral host-pathogen interactions and the potential for population-level consequences, there is relatively little research to date on multiple stressors. The population of Caribbean sea fans, Gorgonia ventalina, in Parguera, Puerto Rico is a tractable system in which to study the effects of multiple stressors on two pathogens. Sea fans are dominant members of reefs that provide food and habitat for diverse reef inhabitants. In addition, there is already a foundation of research on sea fan disease and immunity. We first conducted field surveys of 15 sites to assess the effects of demographic and environmental factors on the prevalence and severity of multifocal purple spots (MFPS) and a Labyrinthulid stramenopile pathogen, as well as the host's cellular immune response to each pathogen. We complemented the field survey with a fully factorial, clonally replicated experiment on the separate and combined effects of thermal stress and copper pollution on both the host and the pathogen. Although water quality has been linked to coral disease, there are no studies investigating the role of metal or chemical pollutants, which are high at some of our study sites. Preliminary results show that the sea fan immune response to the Labyrinthulid depends on interactive effects of copper and thermal stress. The field survey identifies colony size as the main driver of MFPS. This in-depth perspective on sea fan disease speaks to the immune capabilities of cnidarians, highlights factors that modify those capabilities, and reflects the complex interaction of host, pathogens, and environment in this ecologically important coral.
Digital PCR for detection of citrus pathogens
USDA-ARS?s Scientific Manuscript database
Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...
Hokuto, Toshiki; Yasukawa, Tomoyuki; Kunikata, Ryota; Suda, Atsushi; Inoue, Kumi Y; Ino, Kosuke; Matsue, Tomokazu; Mizutani, Fumio
2016-06-01
Electrochemical imaging is an excellent technique to characterize an activity of biomaterials, such as enzymes and cells. Large scale integration-based amperometric sensor (Bio-LSI) has been developed for the simultaneous and continuous detection of the concentration distribution of redox species generated by reactions of biomolecules. In this study, the Bio-LSI system was demonstrated to be applicable for simultaneous detection of different anaytes in multiple specimens. The multiple specimens containing human immunoglobulin G (hIgG) and mouse IgG (mIgG) were introduced into each channel of the upper substrate across the antibody lines for hIgG and mIgG on the lower substrate. Hydrogen peroxide generated by the enzyme reaction of glucose oxidase captured at intersections was simultaneously detected by 400 microelectrodes of Bio-LSI chip. The oxidation current increased with increasing the concentrations of hIgG, which can be detected in the range of 0.01-1.0 µg mL(-1) . Simultaneous detection of hIgG and mIgG in multiple specimens was achieved by using line pattern of both antibodies. Therefore, the presence of different target molecules in the multiple samples would be quantitatively and simultaneously visualized as a current image by the Bio-LSI system. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enemy at the gates: traffic at the plant cell pathogen interface.
Hoefle, Caroline; Hückelhoven, Ralph
2008-12-01
The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.
Achieving sustainable plant disease management through evolutionary principles.
Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J
2014-09-01
Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.
Uptake, Results, and Outcomes of Germline Multiple-Gene Sequencing After Diagnosis of Breast Cancer.
Kurian, Allison W; Ward, Kevin C; Hamilton, Ann S; Deapen, Dennis M; Abrahamse, Paul; Bondarenko, Irina; Li, Yun; Hawley, Sarah T; Morrow, Monica; Jagsi, Reshma; Katz, Steven J
2018-05-10
Low-cost sequencing of multiple genes is increasingly available for cancer risk assessment. Little is known about uptake or outcomes of multiple-gene sequencing after breast cancer diagnosis in community practice. To examine the effect of multiple-gene sequencing on the experience and treatment outcomes for patients with breast cancer. For this population-based retrospective cohort study, patients with breast cancer diagnosed from January 2013 to December 2015 and accrued from SEER registries across Georgia and in Los Angeles, California, were surveyed (n = 5080, response rate = 70%). Responses were merged with SEER data and results of clinical genetic tests, either BRCA1 and BRCA2 (BRCA1/2) sequencing only or including additional other genes (multiple-gene sequencing), provided by 4 laboratories. Type of testing (multiple-gene sequencing vs BRCA1/2-only sequencing), test results (negative, variant of unknown significance, or pathogenic variant), patient experiences with testing (timing of testing, who discussed results), and treatment (strength of patient consideration of, and surgeon recommendation for, prophylactic mastectomy), and prophylactic mastectomy receipt. We defined a patient subgroup with higher pretest risk of carrying a pathogenic variant according to practice guidelines. Among 5026 patients (mean [SD] age, 59.9 [10.7]), 1316 (26.2%) were linked to genetic results from any laboratory. Multiple-gene sequencing increasingly replaced BRCA1/2-only testing over time: in 2013, the rate of multiple-gene sequencing was 25.6% and BRCA1/2-only testing, 74.4%;in 2015 the rate of multiple-gene sequencing was 66.5% and BRCA1/2-only testing, 33.5%. Multiple-gene sequencing was more often ordered by genetic counselors (multiple-gene sequencing, 25.5% and BRCA1/2-only testing, 15.3%) and delayed until after surgery (multiple-gene sequencing, 32.5% and BRCA1/2-only testing, 19.9%). Multiple-gene sequencing substantially increased rate of detection of any pathogenic variant (multiple-gene sequencing: higher-risk patients, 12%; average-risk patients, 4.2% and BRCA1/2-only testing: higher-risk patients, 7.8%; average-risk patients, 2.2%) and variants of uncertain significance, especially in minorities (multiple-gene sequencing: white patients, 23.7%; black patients, 44.5%; and Asian patients, 50.9% and BRCA1/2-only testing: white patients, 2.2%; black patients, 5.6%; and Asian patients, 0%). Multiple-gene sequencing was not associated with an increase in the rate of prophylactic mastectomy use, which was highest with pathogenic variants in BRCA1/2 (BRCA1/2, 79.0%; other pathogenic variant, 37.6%; variant of uncertain significance, 30.2%; negative, 35.3%). Multiple-gene sequencing rapidly replaced BRCA1/2-only testing for patients with breast cancer in the community and enabled 2-fold higher detection of clinically relevant pathogenic variants without an associated increase in prophylactic mastectomy. However, important targets for improvement in the clinical utility of multiple-gene sequencing include postsurgical delay and racial/ethnic disparity in variants of uncertain significance.
Wood, Britta A; Carver, Scott; Troyer, Ryan M; Elder, John H; VandeWoude, Sue
2013-10-31
Microsphere immunoassays (MIAs) allow rapid and accurate evaluation of multiple analytes simultaneously within a biological sample. Here we describe the development and validation of domestic cat-specific MIAs for a) the quantification of total IgG and IgA levels in plasma, and b) the detection of IgG and IgA antibodies to feline immunodeficiency virus (FIV) capsid (CA) and surface (SU) proteins, and feline CD134 in plasma. These assays were used to examine the temporal antibody response of domestic cats infected with apathogenic and pathogenic FIVs, and domestic cats infected with parental and chimeric FIVs of varying pathogenicity. The results from these studies demonstrated that a) total IgG antibodies increase over time after infection; b) α-CA and α-SU IgG antibodies are detectable between 9 and 28 days post-infection and increase over time, and these antibodies combined represent a fraction (1.8 to 21.8%) of the total IgG increase due to infection; c) measurable α-CD134 IgG antibody levels vary among individuals and over time, and are not strongly correlated with viral load; d) circulating IgA antibodies, in general, do not increase during the early stage of infection; and e) total IgG, and α-CA and α-SU IgG antibody kinetics and levels vary with FIV viral strain/pathogenicity. The MIAs described here could be used to screen domestic cats for FIV infection, and to evaluate the FIV-specific or total antibody response elicited by various FIV strains/other diseases. © 2013.
Wood, Britta A.; Carver, Scott; Troyer, Ryan M.; Elder, John H.; VandeWoude, Sue
2013-01-01
Microsphere immunoassays (MIAs) allow rapid and accurate evaluation of multiple analytes simultaneously within a biological sample. Here we describe the development and validation of domestic cat-specific MIAs for a) the quantification of total IgG and IgA levels in plasma, and b) the detection of IgG and IgA antibodies to feline immunodeficiency virus (FIV) capsid (CA) and surface (SU) proteins, and feline CD134 in plasma. These assays were used to examine the temporal antibody response of domestic cats infected with apathogenic and pathogenic FIVs, and domestic cats infected with parental and chimeric FIVs of varying pathogenicity. The results from these studies demonstrated that a) total IgG antibodies increase over time after infection; b) α-CA and α-SU IgG antibodies are detectable between 9–28 days post-infection and increase over time, and these antibodies combined represent a fraction (1.8 to 21.8%) of the total IgG increase due to infection; c) measurable α-CD134 IgG antibody levels vary among individuals and over time, and are not strongly correlated with viral load; d) circulating IgA antibodies, in general, do not increase during the early stage of infection; and e) total IgG, and α-CA and α-SU IgG antibody kinetics and levels vary with FIV viral strain/pathogenicity. The MIAs described here could be used to screen domestic cats for FIV infection, and to evaluate the FIV-specific or total antibody response elicited by various FIV strains/other diseases. PMID:23954271
Evaluating the Effects of Emission Reductions on Multiple Pollutants Simultaneously
Modeling studies over the Philadelphia metropolitan area have examined how emission control strategies might affect several types of air pollutants simultaneously. This study supports considering effects of multiple pollutants in determining optimum pollution control strategies. ...
Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data.
Hammitt, Laura L; Feikin, Daniel R; Scott, J Anthony G; Zeger, Scott L; Murdoch, David R; O'Brien, Katherine L; Deloria Knoll, Maria
2017-06-15
Despite tremendous advances in diagnostic laboratory technology, identifying the pathogen(s) causing pneumonia remains challenging because the infected lung tissue cannot usually be sampled for testing. Consequently, to obtain information about pneumonia etiology, clinicians and researchers test specimens distant to the site of infection. These tests may lack sensitivity (eg, blood culture, which is only positive in a small proportion of children with pneumonia) and/or specificity (eg, detection of pathogens in upper respiratory tract specimens, which may indicate asymptomatic carriage or a less severe syndrome, such as upper respiratory infection). While highly sensitive nucleic acid detection methods and testing of multiple specimens improve sensitivity, multiple pathogens are often detected and this adds complexity to the interpretation as the etiologic significance of results may be unclear (ie, the pneumonia may be caused by none, one, some, or all of the pathogens detected). Some of these challenges can be addressed by adjusting positivity rates to account for poor sensitivity or incorporating test results from controls without pneumonia to account for poor specificity. However, no classical analytic methods can account for measurement error (ie, sensitivity and specificity) for multiple specimen types and integrate the results of measurements for multiple pathogens to produce an accurate understanding of etiology. We describe the major analytic challenges in determining pneumonia etiology and review how the common analytical approaches (eg, descriptive, case-control, attributable fraction, latent class analysis) address some but not all challenges. We demonstrate how these limitations necessitate a new, integrated analytical approach to pneumonia etiology data. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data
Feikin, Daniel R.; Scott, J. Anthony G.; Zeger, Scott L.; Murdoch, David R.; O’Brien, Katherine L.; Deloria Knoll, Maria
2017-01-01
Abstract Despite tremendous advances in diagnostic laboratory technology, identifying the pathogen(s) causing pneumonia remains challenging because the infected lung tissue cannot usually be sampled for testing. Consequently, to obtain information about pneumonia etiology, clinicians and researchers test specimens distant to the site of infection. These tests may lack sensitivity (eg, blood culture, which is only positive in a small proportion of children with pneumonia) and/or specificity (eg, detection of pathogens in upper respiratory tract specimens, which may indicate asymptomatic carriage or a less severe syndrome, such as upper respiratory infection). While highly sensitive nucleic acid detection methods and testing of multiple specimens improve sensitivity, multiple pathogens are often detected and this adds complexity to the interpretation as the etiologic significance of results may be unclear (ie, the pneumonia may be caused by none, one, some, or all of the pathogens detected). Some of these challenges can be addressed by adjusting positivity rates to account for poor sensitivity or incorporating test results from controls without pneumonia to account for poor specificity. However, no classical analytic methods can account for measurement error (ie, sensitivity and specificity) for multiple specimen types and integrate the results of measurements for multiple pathogens to produce an accurate understanding of etiology. We describe the major analytic challenges in determining pneumonia etiology and review how the common analytical approaches (eg, descriptive, case-control, attributable fraction, latent class analysis) address some but not all challenges. We demonstrate how these limitations necessitate a new, integrated analytical approach to pneumonia etiology data. PMID:28575372
L.M. Hanks; J.A. Mongold-Diers; T.H. Atkinson; M.K. Fierke; M.D. Ginzel; E.E. Graham; T.M. Poland; A.B. Richards; M.L. Richardson; J.G. Millar
2018-01-01
Pheromone components of cerambycid beetles are often conserved, with a given compound serving as a pheromone component for multiple related species, including species native to different continents. Consequently, a single synthesized compound may attract multiple species to a trap simultaneously. Furthermore, our previous research in east-central Illinois had...
Gray, Brian; Hall, Pamela; Gresham, Hattie
2013-01-01
Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery. PMID:23598501
NASA Astrophysics Data System (ADS)
Marshall, Jonathan A.
1992-12-01
A simple self-organizing neural network model, called an EXIN network, that learns to process sensory information in a context-sensitive manner, is described. EXIN networks develop efficient representation structures for higher-level visual tasks such as segmentation, grouping, transparency, depth perception, and size perception. Exposure to a perceptual environment during a developmental period serves to configure the network to perform appropriate organization of sensory data. A new anti-Hebbian inhibitory learning rule permits superposition of multiple simultaneous neural activations (multiple winners), while maintaining contextual consistency constraints, instead of forcing winner-take-all pattern classifications. The activations can represent multiple patterns simultaneously and can represent uncertainty. The network performs parallel parsing, credit attribution, and simultaneous constraint satisfaction. EXIN networks can learn to represent multiple oriented edges even where they intersect and can learn to represent multiple transparently overlaid surfaces defined by stereo or motion cues. In the case of stereo transparency, the inhibitory learning implements both a uniqueness constraint and permits coactivation of cells representing multiple disparities at the same image location. Thus two or more disparities can be active simultaneously without interference. This behavior is analogous to that of Prazdny's stereo vision algorithm, with the bonus that each binocular point is assigned a unique disparity. In a large implementation, such a NN would also be able to represent effectively the disparities of a cloud of points at random depths, like human observers, and unlike Prazdny's method
Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman
2016-01-01
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...
Better dual-task processing in simultaneous interpreters
Strobach, Tilo; Becker, Maxi; Schubert, Torsten; Kühn, Simone
2015-01-01
Simultaneous interpreting (SI) is a highly complex activity and requires the performance and coordination of multiple, simultaneous tasks: analysis and understanding of the discourse in a first language, reformulating linguistic material, storing of intermediate processing steps, and language production in a second language among others. It is, however, an open issue whether persons with experience in SI possess superior skills in coordination of multiple tasks and whether they are able to transfer these skills to lab-based dual-task situations. Within the present study, we set out to explore whether interpreting experience is associated with related higher-order executive functioning in the context of dual-task situations of the Psychological Refractory Period (PRP) type. In this PRP situation, we found faster reactions times in participants with experience in simultaneous interpretation in contrast to control participants without such experience. Thus, simultaneous interpreters possess superior skills in coordination of multiple tasks in lab-based dual-task situations. PMID:26528232
Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.
Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun
2016-11-01
The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.
Srijan, Apichai; Ruekit, Sirigade; Snesrud, Erik; Maybank, Rosslyn; Serichantalergs, Oralak; Kormanee, Rosarin; Sukhchat, Prawet; Sriyabhaya, Jossin; Hinkle, Mary; Crawford, John M.; McGann, Patrick; Swierczewski, Brett E.
2018-01-01
Multidrug-resistant Klebsiella pneumoniae strains are one of the most prevalent causes of nosocomial infections and pose an increasingly dangerous public health threat. The lack of remaining treatment options has resulted in the utilization of older drug classes, including colistin. As a drug of last resort, the discovery of plasmid-mediated colistin resistance by mcr-1 denotes the potential development of pandrug-resistant bacterial pathogens. To address the emergence of the mcr-1 gene, 118 gram-negative Enterobacteriaceae isolated from clinical samples collected at Queen Sirikit Naval Hospital in Chonburi, Thailand were screened for colistin resistance using automated antimicrobial susceptibility testing and conventional PCR screening. Two K. pneumoniae strains, QS17-0029 and QS17-0161, were positive for mcr-1, and both isolates were sequenced to closure using short- and long-read whole-genome sequencing. QS17-0029 carried 16 antibiotic resistance genes in addition to mcr-1, including 2 carbapenemases, blaNDM-1 and blaOXA-232. QS17-0161 carried 13 antibiotic resistance genes in addition to mcr-1, including the extended-spectrum β-lactamase blaCTX-M-55. Both isolates carried multiple plasmids, but mcr-1 was located alone on highly similar 33.9 Kb IncX4 plasmids in both isolates. The IncX4 plasmid shared considerable homology to other mcr-1-containing IncX4 plasmids. This is the first report of a clinical K. pneumoniae strain from Thailand carrying mcr-1 as well as the first strain to simultaneously carry mcr-1 and multiple carbapenemase genes (QS17-0029). The identification and characterization of these isolates serves to highlight the urgent need for continued surveillance and intervention in Southeast Asia, where extensively drug-resistant pathogens are being increasingly identified in hospital-associated infections. PMID:29688801
Srijan, Apichai; Margulieux, Katie R; Ruekit, Sirigade; Snesrud, Erik; Maybank, Rosslyn; Serichantalergs, Oralak; Kormanee, Rosarin; Sukhchat, Prawet; Sriyabhaya, Jossin; Hinkle, Mary; Crawford, John M; McGann, Patrick; Swierczewski, Brett E
2018-05-01
Multidrug-resistant Klebsiella pneumoniae strains are one of the most prevalent causes of nosocomial infections and pose an increasingly dangerous public health threat. The lack of remaining treatment options has resulted in the utilization of older drug classes, including colistin. As a drug of last resort, the discovery of plasmid-mediated colistin resistance by mcr-1 denotes the potential development of pandrug-resistant bacterial pathogens. To address the emergence of the mcr-1 gene, 118 gram-negative Enterobacteriaceae isolated from clinical samples collected at Queen Sirikit Naval Hospital in Chonburi, Thailand were screened for colistin resistance using automated antimicrobial susceptibility testing and conventional PCR screening. Two K. pneumoniae strains, QS17-0029 and QS17-0161, were positive for mcr-1, and both isolates were sequenced to closure using short- and long-read whole-genome sequencing. QS17-0029 carried 16 antibiotic resistance genes in addition to mcr-1, including 2 carbapenemases, bla NDM-1 and bla OXA-232 . QS17-0161 carried 13 antibiotic resistance genes in addition to mcr-1, including the extended-spectrum β-lactamase bla CTX-M-55 . Both isolates carried multiple plasmids, but mcr-1 was located alone on highly similar 33.9 Kb IncX4 plasmids in both isolates. The IncX4 plasmid shared considerable homology to other mcr-1-containing IncX4 plasmids. This is the first report of a clinical K. pneumoniae strain from Thailand carrying mcr-1 as well as the first strain to simultaneously carry mcr-1 and multiple carbapenemase genes (QS17-0029). The identification and characterization of these isolates serves to highlight the urgent need for continued surveillance and intervention in Southeast Asia, where extensively drug-resistant pathogens are being increasingly identified in hospital-associated infections.
Lee, Lian N; Bolinger, Beatrice; Banki, Zoltan; de Lara, Catherine; Highton, Andrew J; Colston, Julia M; Hutchings, Claire; Klenerman, Paul
2017-12-01
The efficacies of many new T cell vaccines rely on generating large populations of long-lived pathogen-specific effector memory CD8 T cells. However, it is now increasingly recognized that prior infection history impacts on the host immune response. Additionally, the order in which these infections are acquired could have a major effect. Exploiting the ability to generate large sustained effector memory (i.e. inflationary) T cell populations from murine cytomegalovirus (MCMV) and human Adenovirus-subtype (AdHu5) 5-beta-galactosidase (Ad-lacZ) vector, the impact of new infections on pre-existing memory and the capacity of the host's memory compartment to accommodate multiple inflationary populations from unrelated pathogens was investigated in a murine model. Simultaneous and sequential infections, first with MCMV followed by Ad-lacZ, generated inflationary populations towards both viruses with similar kinetics and magnitude to mono-infected groups. However, in Ad-lacZ immune mice, subsequent acute MCMV infection led to a rapid decline of the pre-existing Ad-LacZ-specific inflating population, associated with bystander activation of Fas-dependent apoptotic pathways. However, responses were maintained long-term and boosting with Ad-lacZ led to rapid re-expansion of the inflating population. These data indicate firstly that multiple specificities of inflating memory cells can be acquired at different times and stably co-exist. Some acute infections may also deplete pre-existing memory populations, thus revealing the importance of the order of infection acquisition. Importantly, immunization with an AdHu5 vector did not alter the size of the pre-existing memory. These phenomena are relevant to the development of adenoviral vectors as novel vaccination strategies for diverse infections and cancers. (241 words).
Bolinger, Beatrice; de Lara, Catherine; Hutchings, Claire
2017-01-01
The efficacies of many new T cell vaccines rely on generating large populations of long-lived pathogen-specific effector memory CD8 T cells. However, it is now increasingly recognized that prior infection history impacts on the host immune response. Additionally, the order in which these infections are acquired could have a major effect. Exploiting the ability to generate large sustained effector memory (i.e. inflationary) T cell populations from murine cytomegalovirus (MCMV) and human Adenovirus-subtype (AdHu5) 5-beta-galactosidase (Ad-lacZ) vector, the impact of new infections on pre-existing memory and the capacity of the host’s memory compartment to accommodate multiple inflationary populations from unrelated pathogens was investigated in a murine model. Simultaneous and sequential infections, first with MCMV followed by Ad-lacZ, generated inflationary populations towards both viruses with similar kinetics and magnitude to mono-infected groups. However, in Ad-lacZ immune mice, subsequent acute MCMV infection led to a rapid decline of the pre-existing Ad-LacZ-specific inflating population, associated with bystander activation of Fas-dependent apoptotic pathways. However, responses were maintained long-term and boosting with Ad-lacZ led to rapid re-expansion of the inflating population. These data indicate firstly that multiple specificities of inflating memory cells can be acquired at different times and stably co-exist. Some acute infections may also deplete pre-existing memory populations, thus revealing the importance of the order of infection acquisition. Importantly, immunization with an AdHu5 vector did not alter the size of the pre-existing memory. These phenomena are relevant to the development of adenoviral vectors as novel vaccination strategies for diverse infections and cancers. (241 words) PMID:29281733
Wille, Michelle; Avril, Alexis; Tolf, Conny; Schager, Anna; Larsson, Sara; Borg, Olivia; Olsen, Björn; Waldenström, Jonas
2015-01-01
Multiple infections, or simultaneous infection of a host with multiple parasites, are the rule rather than the exception. Interactions between co-occurring pathogens in a population may be mutualistic, competitive or facilitative. For some pathogen combinations, these interrelated effects will have epidemiological consequences; however this is as yet poorly incorporated into practical disease ecology. For example, screening of Mallards for influenza A viruses (IAV) have repeatedly revealed high prevalence and large subtype diversity in the Northern Hemisphere. Other studies have identified avian paramyxovirus type 1 (APMV-1) and coronaviruses (CoVs) in Mallards, but without making inferences on the larger viral assemblage. In this study we followed 144 wild Mallards across an autumn season in a natural stopover site and constructed infection histories of IAV, APMV-1 and CoV. There was a high prevalence of IAV, comprising of 27 subtype combinations, while APMV-1 had a comparatively low prevalence (with a peak of 2%) and limited strain variation, similar to previous findings. Avian CoVs were common, with prevalence up to 12%, and sequence analysis identified different putative genetic lineages. An investigation of the dynamics of co-infections revealed a synergistic effect between CoV and IAV, whereby CoV prevalence was higher given that the birds were co-infected with IAV. There were no interactive effects between IAV and APMV-1. Disease dynamics are the result of an interplay between parasites, host immune responses, and resources; and is imperative that we begin to include all factors to better understand infectious disease risk. Copyright © 2014 Elsevier B.V. All rights reserved.
Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping
2014-03-18
A highly sensitive and specific multiplex method for the simultaneous detection of three pathogenic bacteria was fabricated using multicolor upconversion nanoparticles (UCNPs) as luminescence labels coupled with aptamers as the molecular recognition elements. Multicolor UCNPs were synthesized via doping with various rare-earth ions to obtain well-separated emission peaks. The aptamer sequences were selected using the systematic evolution of ligands by exponential enrichment (SELEX) strategy for Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium. When applied in this method, aptamers can be used for the specific recognition of the bacteria from complex mixtures, including those found in real food matrixes. Aptamers and multicolor UCNPs were employed to selectively capture and simultaneously quantify the three target bacteria on the basis of the independent peaks. Under optimal conditions, the correlation between the concentration of three bacteria and the luminescence signal was found to be linear from 50-10(6) cfu mL(-1). Improved by the magnetic separation and concentration effect of Fe3O4 magnetic nanoparticles, the limits of detection of the developed method were found to be 25, 10, and 15 cfu mL(-1) for S. aureus, V. parahemolyticus, and S. typhimurium, respectively. The capability of the bioassay in real food samples was also investigated, and the results were consistent with experimental results obtained from plate-counting methods. This proposed method for the detection of various pathogenic bacteria based on multicolor UCNPs has great potential in the application of food safety and multiplex nanosensors.
Glass wool filters for concentrating waterborne viruses and agricultural zoonotic pathogens
USDA-ARS?s Scientific Manuscript database
The key first step in evaluating pathogen levels in suspected contaminated water is concentration. Concentration methods tend to be specific for a particular pathogen group or genus, for example viruses or Cryptosporidium, requiring multiple methods if the sampling program is targeting more than on...
Outer membrane vesicles as platform vaccine technology
Stork, Michiel; van der Ley, Peter
2015-01-01
Abstract Outer membrane vesicles (OMVs) are released spontaneously during growth by many Gram‐negative bacteria. They present a range of surface antigens in a native conformation and have natural properties like immunogenicity, self‐adjuvation and uptake by immune cells which make them attractive for application as vaccines against pathogenic bacteria. In particular with Neisseria meningitidis, they have been investigated extensively and an OMV‐containing meningococcal vaccine has recently been approved by regulatory agencies. Genetic engineering of the OMV‐producing bacteria can be used to improve and expand their usefulness as vaccines. Recent work on meningitis B vaccines shows that OMVs can be modified, such as for lipopolysaccharide reactogenicity, to yield an OMV product that is safe and effective. The overexpression of crucial antigens or simultaneous expression of multiple antigenic variants as well as the expression of heterologous antigens enable expansion of their range of applications. In addition, modifications may increase the yield of OMV production and can be combined with specific production processes to obtain high amounts of well‐defined, stable and uniform OMV particle vaccine products. Further improvement can facilitate the development of OMVs as platform vaccine product for multiple applications. PMID:26912077
A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid
Hoysted, Grace A.; Lilley, Catherine J.; Field, Katie J.; Dickinson, Michael; Hartley, Sue E.; Urwin, Peter E.
2017-01-01
Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L.) host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida), and a phloem-sucking herbivore (Myzus persicae). The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA) increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests. PMID:29209337
Genealogies of rapidly adapting populations
Neher, Richard A.; Hallatschek, Oskar
2013-01-01
The genetic diversity of a species is shaped by its recent evolutionary history and can be used to infer demographic events or selective sweeps. Most inference methods are based on the null hypothesis that natural selection is a weak or infrequent evolutionary force. However, many species, particularly pathogens, are under continuous pressure to adapt in response to changing environments. A statistical framework for inference from diversity data of such populations is currently lacking. Towards this goal, we explore the properties of genealogies in a model of continual adaptation in asexual populations. We show that lineages trace back to a small pool of highly fit ancestors, in which almost simultaneous coalescence of more than two lineages frequently occurs. Whereas such multiple mergers are unlikely under the neutral coalescent, they create a unique genetic footprint in adapting populations. The site frequency spectrum of derived neutral alleles, for example, is nonmonotonic and has a peak at high frequencies, whereas Tajima’s D becomes more and more negative with increasing sample size. Because multiple merger coalescents emerge in many models of rapid adaptation, we argue that they should be considered as a null model for adapting populations. PMID:23269838
Anyanful, Akwasi; Easley, Kirk A.; Benian, Guy M.; Kalman, Daniel
2010-01-01
SUMMARY Caenorhabditis elegans exhibit avoidance behavior when presented with diverse bacterial pathogens. We hypothesized that exposure to pathogens might not only cause worms to move away but also simultaneously activate pathways that promote resistance to the pathogen. We show that brief exposure to the virulent or avirulent strains of the bacterial pathogen enteropathogenic E. coli (EPEC) “conditions” or “immunizes” C. elegans to survive a subsequent exposure that would otherwise prove lethal. Conditioning requires dopaminergic neurons. Conditioning also requires the p38 MAP Kinase pathway, which regulates innate immunity, and the insulin/IGFR pathway, which regulates lifespan. Our findings suggest that the molecular pathways that regulate innate immunity and lifespan and provide protection may, in nature, be regulated or “conditioned” by exposure to pathogens, and perhaps allow survival in noxious environments. PMID:19454349
Pathogens and host immunity in the ancient human oral cavity
Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico
2014-01-01
Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188
NASA Astrophysics Data System (ADS)
Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo
2018-02-01
In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.
Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches
Hawley, Dana M; Sydenstricker, Keila V; Kollias, George V; Dhondt, André A
2005-01-01
Evidence is accumulating that genetic variation within individual hosts can influence their susceptibility to pathogens. However, there have been few opportunities to experimentally test this relationship, particularly within outbred populations of non-domestic vertebrates. We performed a standardized pathogen challenge in house finches (Carpodacus mexicanus) to test whether multilocus heterozygosity across 12 microsatellite loci predicts resistance to a recently emerged strain of the bacterial pathogen, Mycoplasma gallisepticum (MG). We simultaneously tested whether the relationship between heterozygosity and pathogen susceptibility is mediated by differences in cell-mediated or humoral immunocompetence. We inoculated 40 house finches with MG under identical conditions and assayed both humoral and cell-mediated components of the immune response. Heterozygous house finches developed less severe disease when infected with MG, and they mounted stronger cell-mediated immune responses to phytohaemagglutinin. Differences in cell-mediated immunocompetence may, therefore, partly explain why more heterozygous house finches show greater resistance to MG. Overall, our results underscore the importance of multilocus heterozygosity for individual pathogen resistance and immunity. PMID:17148199
USDA-ARS?s Scientific Manuscript database
R. solani is an economically important soilborne basidiomycetous pathogen of worldwide distribution and it is known to attack at least 188 species of higher plants, including crops, vegetables, ornamentals, forest trees and turfgrasses. The pathogenic isolates may belong to multiple genera and speci...
Quantification of Protozoa and Viruses from Small Water Volumes
Bonilla, J. Alfredo; Bonilla, Tonya D.; Abdelzaher, Amir M.; Scott, Troy M.; Lukasik, Jerzy; Solo-Gabriele, Helena M.; Palmer, Carol J.
2015-01-01
Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The goals of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation—IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels. PMID:26114244
Quantification of Protozoa and Viruses from Small Water Volumes.
Bonilla, J Alfredo; Bonilla, Tonya D; Abdelzaher, Amir M; Scott, Troy M; Lukasik, Jerzy; Solo-Gabriele, Helena M; Palmer, Carol J
2015-06-24
Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The aims of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation-IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels.
Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.
Gulbudak, Hayriye; Cannataro, Vincent L; Tuncer, Necibe; Martcheva, Maia
2017-02-01
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host's immune system influences the pathogen's transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence-transmission trade-offs and evolution in vector-borne pathogen-host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the [Formula: see text] maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen [Formula: see text], but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.
NASA Astrophysics Data System (ADS)
Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.
2011-06-01
Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.
Simultaneous Exposure to Multiple Air Pollutants Influences Alveolar Epithelial Cell Ion Transport
Purpose. Air pollution sources generally release multiple pollutants simultaneously and yet, research has historically focused on the source-to-health linkages of individual air pollutants. We recently showed that exposure of alveolar epithelial cells to a combination of particul...
Diaz, Maureen H.; Waller, Jessica L.; Napoliello, Rebecca A.; Islam, Md. Shahidul; Wolff, Bernard J.; Burken, Daniel J.; Holden, Rhiannon L.; Srinivasan, Velusamy; Arvay, Melissa; McGee, Lesley; Oberste, M. Steven; Whitney, Cynthia G.; Schrag, Stephanie J.; Winchell, Jonas M.; Saha, Samir K.
2013-01-01
Identification of etiology remains a significant challenge in the diagnosis of infectious diseases, particularly in resource-poor settings. Viral, bacterial, and fungal pathogens, as well as parasites, play a role for many syndromes, and optimizing a single diagnostic system to detect a range of pathogens is challenging. The TaqMan Array Card (TAC) is a multiple-pathogen detection method that has previously been identified as a valuable technique for determining etiology of infections and holds promise for expanded use in clinical microbiology laboratories and surveillance studies. We selected TAC for use in the Aetiology of Neonatal Infection in South Asia (ANISA) study for identifying etiologies of severe disease in neonates in Bangladesh, India, and Pakistan. Here we report optimization of TAC to improve pathogen detection and overcome technical challenges associated with use of this technology in a large-scale surveillance study. Specifically, we increased the number of assay replicates, implemented a more robust RT-qPCR enzyme formulation, and adopted a more efficient method for extraction of total nucleic acid from blood specimens. We also report the development and analytical validation of ten new assays for use in the ANISA study. Based on these data, we revised the study-specific TACs for detection of 22 pathogens in NP/OP swabs and 12 pathogens in blood specimens as well as two control reactions (internal positive control and human nucleic acid control) for each specimen type. The cumulative improvements realized through these optimization studies will benefit ANISA and perhaps other studies utilizing multiple-pathogen detection approaches. These lessons may also contribute to the expansion of TAC technology to the clinical setting. PMID:23805203
Point detection of bacterial and viral pathogens using oral samples
NASA Astrophysics Data System (ADS)
Malamud, Daniel
2008-04-01
Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.
Rottstock, Tanja; Joshi, Jasmin; Kummer, Volker; Fischer, Markus
2014-07-01
Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.
Saichek, Nicholas R; Cox, Christopher R; Kim, Seungki; Harrington, Peter B; Stambach, Nicholas R; Voorhees, Kent J
2016-04-23
The Staphylococcus genus is composed of 44 species, with S. aureus being the most pathogenic. Isolates of S. aureus are generally susceptible to β-lactam antibiotics, but extensive use of this class of drugs has led to increasing emergence of resistant strains. Increased occurrence of coagulase-negative staphylococci as well as S. aureus infections, some with resistance to multiple classes of antibiotics, has driven the necessity for innovative options for treatment and infection control. Despite these increasing needs, current methods still only possess species-level capabilities and require secondary testing to determine antibiotic resistance. This study describes the use of metal oxide laser ionization mass spectrometry fatty acid (FA) profiling as a rapid, simultaneous Staphylococcus identification and antibiotic resistance determination method. Principal component analysis was used to classify 50 Staphyloccocus isolates. Leave-one-spectrum-out cross-validation indicated 100 % correct assignment at the species and strain level. Fuzzy rule building expert system classification and self-optimizing partial least squares discriminant analysis, with more rigorous evaluations, also consistently achieved greater than 94 and 84 % accuracy, respectively. Preliminary analysis differentiating MRSA from MSSA demonstrated the feasibility of simultaneous determination of strain identification and antibiotic resistance. The utility of CeO2-MOLI MS FA profiling coupled with multivariate statistical analysis for performing strain-level differentiation of various Staphylococcus species proved to be a fast and reliable tool for identification. The simultaneous strain-level detection and antibiotic resistance determination achieved with this method should greatly improve outcomes and reduce clinical costs for therapeutic management and infection control.
Mauck, Kerry E.; Pulido, Hannier; De Moraes, Consuelo M.; Stephenson, Andrew G.; Mescher, Mark C.
2013-01-01
Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and hence pathogen acquisition by) cucumber beetles. PMID:24155951
The Impacts of Multiple Simultaneous Climate Variations
2016-12-01
MULTIPLE SIMULTANEOUS CLIMATE VARIATIONS by Richard E. Ilczuk Jr. December 2016 Thesis Advisor: Tom Murphree Co-Advisor: Megan Hutchins......13. ABSTRACT (maximum 200 words) Climate variations—such as El Niño–La Niña (ENLN), the Madden–Julian Oscillation (MJO), and the Arctic
Naik, Onkar A; Shashidhar, Ravindranath; Rath, Devashish; Bandekar, Jayant R; Rath, Archana
2018-03-01
Marine fish species were analyzed for culturable and total metagenomic microbial diversity, antibiotic resistance (AR) pattern, and horizontal gene transfer in culturable microorganisms. We observed a high AR microbial load of 3 to 4 log CFU g -1 . Many fish pathogens like Providencia, Staphylococcus, Klebsiella pneumoniae, Enterobacter, Vagococcus, and Aeromonas veronii were isolated. Photobacterium and Vibrio were two major fish and human pathogens which were identified in the fish metagenome. Other pathogens that were identified were Shewanella, Acinetobacter, Psychrobacter, and Flavobacterium. Most of these pathogens were resistant to multiple antibiotics such as erythromycin, kanamycin, neomycin, streptomycin, penicillin, cefotaxime, bacitracin, rifampicin, trimethoprim, ciprofloxacin, and doxycycline with a high multiple antibiotic resistance index of 0.54-0.77. The fish microflora showed high prevalence of AR genes like bla TEM , Class I integron, tetA, aph(3')-IIIa, ermB, aadA, and sul1. Nineteen of 26 AR isolates harbored Class I integrons showing high co-resistance to trimethoprim, kanamycin, doxycycline, and cefotaxime. Mobile R-plasmids from 6 of the 12 AR pathogens were transferred to recipient E. coli after conjugation. The transconjugants harbored the same R-plasmid carrying bla CTX-M , dfr1, tetA, bla TEM , and cat genes. This study confirms that fish is a potential carrier of AR pathogens which can enter the human gut via food chain. To the best of our knowledge, this is the first study in the Indian subcontinent reporting a direct evidence of spread of AR pathogens to humans from specific marine fish consumption.
Figueroa, Melania; Upadhyaya, Narayana M; Sperschneider, Jana; Park, Robert F; Szabo, Les J; Steffenson, Brian; Ellis, Jeff G; Dodds, Peter N
2016-01-01
The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes.
Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016-17.
Fusaro, Alice; Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero
2017-09-01
In winter 2016-17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events.
Private E-Mail Requests and the Diffusion of Responsibility.
ERIC Educational Resources Information Center
Barron, Greg; Yechiam, Eldad
2002-01-01
Discussion of e-mail technology and requesting information from multiple sources simultaneously focuses on an experiment demonstrating that addressing e-mails simultaneously to multiple recipients may actually reduce the number of helpful responses. Discusses diffusion of responsibility and implications for the application of social cueing theory…
Decoy receptor 3 analogous supplement protects steatotic rat liver from ischemia-reperfusion injury.
Li, Tzu-Hao; Liu, Chih-Wei; Lee, Pei-Chang; Huang, Chia-Chang; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Yang, Ying-Ying; Hsieh, Shie-Liang; Lin, Han-Chieh; Tsai, Chang-Youh
2017-07-01
For steatotic livers, pharmacological approaches to minimize the hepatic neutrophil and macrophage infiltration, and cytokine and chemokine release in ischemia-reperfusion (IR) injury are still limited. Tumor necrosis factor (TNF)-α superfamily-stimulated pathogenic cascades and M1 macrophage/Kupffer cells (KC) polarization from Th1 cytokines are important in the pathogenesis of IR liver injury with hepatic steatosis (HS). Conversely, anti-inflammatory M2 macrophages produce Th2 cytokine (interleukin-4), which reciprocally enhances M2 polarization. Toll-like receptor 4-activated KCs can release proinflammatory mediators, skew M1 polarization and escalate liver IR injury. Decoy receptor 3 (DcR 3 ) could be potential agents simultaneously blocking the IR liver injury-related pathogenic changes and extend the survival of steatotic graft. Rats were fed with methionine and choline-deficient high-fat diet (MCD HFD) for 6 weeks to induce HS. Preliminary experiments with HS group and IR group were conducted, and either immunoglobulin G Fc protein or DcR3 analogue was treated for 14 days in all groups to evaluate the severity. In the Zucker rat-focused experiments, various serum and hepatic substances, M1 polarization, and hepatic microcirculation were assessed. We found that serum/hepatic DcR 3 levels were lower in nonalcoholic fatty liver disease patients with HS. DcR 3 a protected Zucker rats with HS from IR liver injury. The beneficial effects of DcR 3 a supplement were mediated by inhibiting hepatic M1 polarization of KCs, decreasing serum/hepatic TNFα, nitric oxide, nitrotyrosine, soluble TNF-like cytokine 1A, Fas ligand, and interferon-γ levels, neutrophil infiltration, and improving hepatic microcirculatory failure among rats with IR-injured steatotic livers. Additionally, downregulated hepatic TNF-like cytokine 1A/Fas-ligand and toll-like receptor 4/nuclear factor-κB signals were found to mediate the DcR 3 a-related protective effects of steatotic livers from IR injury. Using multimodal in vivo and in vitro approaches, we found that DcR 3 a analogue was a potential agent to protect steatotic liver against IR injury by simultaneous blockade of the multiple IR injury-related pathogenic changes. Copyright © 2017. Published by Elsevier Taiwan LLC.
Shin, Hwa Hui; Seo, Jeong Hyun; Kim, Chang Sup; Hwang, Byeong Hee; Cha, Hyung Joon
2016-05-15
Life-threatening diarrheal cholera is usually caused by water or food contaminated with cholera toxin-producing Vibrio cholerae. For the prevention and surveillance of cholera, it is crucial to rapidly and precisely detect and identify the etiological causes, such as V. cholerae and/or its toxin. In the present work, we propose the use of a hybrid double biomolecular marker (DBM) microarray containing 16S rRNA-based DNA capture probe to genotypically identify V. cholerae and GM1 pentasaccharide capture probe to phenotypically detect cholera toxin. We employed a simple sample preparation method to directly obtain genomic DNA and secreted cholera toxin as target materials from bacterial cells. By utilizing the constructed DBM microarray and prepared samples, V. cholerae and cholera toxin were detected successfully, selectively, and simultaneously; the DBM microarray was able to analyze the pathogenicity of the identified V. cholerae regardless of whether the bacteria produces toxin. Therefore, our proposed DBM microarray is a new effective platform for identifying bacteria and analyzing bacterial pathogenicity simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.
PHYLOSCANNER: Inferring Transmission from Within- and Between-Host Pathogen Genetic Diversity
Hall, Matthew; Ratmann, Oliver; Bonsall, David; Golubchik, Tanya; de Cesare, Mariateresa; Gall, Astrid; Cornelissen, Marion; Fraser, Christophe
2018-01-01
Abstract A central feature of pathogen genomics is that different infectious particles (virions and bacterial cells) within an infected individual may be genetically distinct, with patterns of relatedness among infectious particles being the result of both within-host evolution and transmission from one host to the next. Here, we present a new software tool, phyloscanner, which analyses pathogen diversity from multiple infected hosts. phyloscanner provides unprecedented resolution into the transmission process, allowing inference of the direction of transmission from sequence data alone. Multiply infected individuals are also identified, as they harbor subpopulations of infectious particles that are not connected by within-host evolution, except where recombinant types emerge. Low-level contamination is flagged and removed. We illustrate phyloscanner on both viral and bacterial pathogens, namely HIV-1 sequenced on Illumina and Roche 454 platforms, HCV sequenced with the Oxford Nanopore MinION platform, and Streptococcus pneumoniae with sequences from multiple colonies per individual. phyloscanner is available from https://github.com/BDI-pathogens/phyloscanner. PMID:29186559
Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging
USDA-ARS?s Scientific Manuscript database
The potential of Raman chemical imaging for simultaneously detecting multiple adulterants in milk powder was investigated. Potential chemical adulterants, including ammonium sulfate, dicyandiamide, melamine, and urea, were mixed together into skim dry milk in the concentration range of 0.1–5.0% for ...
ERIC Educational Resources Information Center
Rao, Shaila; Kane, Martha T.
2009-01-01
This study assessed effectiveness of simultaneous prompting procedure in teaching two middle school students with cognitive impairment decimal subtraction using regrouping. A multiple baseline, multiple probe design replicated across subjects successfully taught two students with cognitive impairment at middle school level decimal subtraction…
MacLean, Allyson M.; Orlovskis, Zigmunds; Kowitwanich, Krissana; Zdziarska, Anna M.; Angenent, Gerco C.; Immink, Richard G. H.; Hogenhout, Saskia A.
2014-01-01
Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants). PMID:24714165
Bacillus cereus and related species.
Drobniewski, F A
1993-10-01
Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required.
Weber, Stefanie; Büscher, Anja K; Hagmann, Henning; Liebau, Max C; Heberle, Christian; Ludwig, Michael; Rath, Sabine; Alberer, Martin; Beissert, Antje; Zenker, Martin; Hoyer, Peter F; Konrad, Martin; Klein, Hanns-Georg; Hoefele, Julia
2016-01-01
Steroid-resistant nephrotic syndrome (SRNS) is a severe cause of progressive renal disease. Genetic forms of SRNS can present with autosomal recessive or autosomal dominant inheritance. Recent studies have identified mutations in multiple podocyte genes responsible for SRNS. Improved sequencing methods (next-generation sequencing, NGS) now promise rapid mutational testing of SRNS genes. In the present study, a simultaneous screening of ten SRNS genes in 37 SRNS patients was performed by NGS. In 38 % of the patients, causative mutations in one SRNS gene were found. In 22 % of the patients, in addition to these mutations, a secondary variant in a different gene was identified. This high incidence of accumulating sequence variants was unexpected but, although they might have modifier effects, the pathogenic potential of these additional sequence variants seems unclear so far. The example of molecular diagnostics by NGS in SRNS patients shows that these new sequencing technologies might provide further insight into molecular pathogenicity in genetic disorders but will also generate results, which will be difficult to interpret and complicate genetic counseling. Although NGS promises more frequent identification of disease-causing mutations, the identification of causative mutations, the interpretation of incidental findings and possible pitfalls might pose problems, which hopefully will decrease by further experience and elucidation of molecular interactions.
Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016–17
Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero
2017-01-01
In winter 2016–17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events. PMID:28661831
Cultivation of pathogenic Treponema pallidum in vitro.
Horváth, I; Duncan, W P; Bullard, J C
1981-01-01
Treponema pallidum was discovered relatively late and was not cultured in vitro. Both the delineation of T. pallidum biology and the eradication of syphilis suggest the necessity of cultivation in vitro. An attempt has been made with an improved medium to cultivate pathogenic T. pallidum Budapest strain in vitro. Only in the first passage, evidence of in vitro multiplication of T. pallidum has been established by (i) macroscopic observation, (ii) darkfield examination, (iii) electron microscopic examination, (iv) optical densities, (v) tritium labelled thymidine incorporation, and (vi) the pathogenicity off the cultured organisms was evidenced by rabbit challenge. Explanation of the oxygen utilization of T. pallidum suspension is discussed. Unidentified formations were observed on electron micrographs from the 96 h cultures. They may belong to the multiplication forms of treponemes. Further experiments are needed for their identification and for expansion of the multiplication of T. pallidum beyond the first passage.
Particle size affects Brassica seed meal-induced pathogen suppression of Rhizoctonia solani AG-5
USDA-ARS?s Scientific Manuscript database
R. solani AG-5 is a component of the pathogen complex that incites apple replant disease, and is suppressed via multiple mechanisms in response to B. juncea seed meal (SM) amendment. Allyl isothiocyanate (AITC) functions in suppression of this pathogen during the initial 24 h period post-seed meal a...
2007-09-30
the behavioral ecology of marine mammals by simultaneously tracking multiple vocalizing individuals in space and time. OBJECTIVES The ...goal is to contribute to the behavioral ecology of marine mammals by simultaneously tracking multiple vocalizing individuals in space and time. 15...OA Graduate Traineeship for E-M Nosal) LONG-TERM GOALS The goal of our research is to develop systems that use a widely spaced hydrophone array
Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M; Showmaker, Kurt C; Smith, Leif; Peterson, Daniel G; Lu, Shien
2016-06-01
Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14 genome as well as Burkholderia species genome show considerable diversity. Multiple antimicrobial agent biosynthesis genes were identified in the genome of plant growth-promoting species of Burkholderia. In addition, by comparing to nonpathogenic Burkholderia species, pathogenic Burkholderia species have more characterized homologs of the gene loci known to contribute to pathogenicity and virulence to plant and animals. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Hegde, Shivanand; Hegde, Shrilakshmi; Zimmermann, Martina; Flöck, Martina; Spergser, Joachim; Rosengarten, Renate
2015-01-01
Mycoplasmas possess complex pathogenicity determinants that are largely unknown at the molecular level. Mycoplasma agalactiae serves as a useful model to study the molecular basis of mycoplasma pathogenicity. The generation and in vivo screening of a transposon mutant library of M. agalactiae were employed to unravel its host colonization factors. Tn4001mod mutants were sequenced using a novel sequencing method, and functionally heterogeneous pools containing 15 to 19 selected mutants were screened simultaneously through two successive cycles of sheep intramammary infections. A PCR-based negative selection method was employed to identify mutants that failed to colonize the udders and draining lymph nodes in the animals. A total of 14 different mutants found to be absent from ≥95% of samples were identified and subsequently verified via a second round of stringent confirmatory screening where 100% absence was considered attenuation. Using this criterion, seven mutants with insertions in genes MAG1050, MAG2540, MAG3390, uhpT, eutD, adhT, and MAG4460 were not recovered from any of the infected animals. Among the attenuated mutants, many contain disruptions in hypothetical genes, implying their previously unknown role in M. agalactiae pathogenicity. These data indicate the putative role of functionally different genes, including hypothetical ones, in the pathogenesis of M. agalactiae. Defining the precise functions of the identified genes is anticipated to increase our understanding of M. agalactiae infections and to develop successful intervention strategies against it. PMID:25916984
Li, Yongxin; Li, Yuanqian; Zheng, Bo; Qu, Lingli; Li, Can
2009-06-08
A rapid and sensitive method based on microchip capillary electrophoresis with condition optimization of genetic algorithm-support vector regression (GA-SVR) was developed and applied to simultaneous analysis of multiplex PCR products of four foodborne pathogenic bacteria. Four pairs of oligonucleotide primers were designed to exclusively amplify the targeted gene of Vibrio parahemolyticus, Salmonella, Escherichia coli (E. coli) O157:H7, Shigella and the quadruplex PCR parameters were optimized. At the same time, GA-SVR was employed to optimize the separation conditions of DNA fragments in microchip capillary electrophoresis. The proposed method was applied to simultaneously detect the multiplex PCR products of four foodborne pathogenic bacteria under the optimal conditions within 8 min. The levels of detection were as low as 1.2 x 10(2) CFU mL(-1) of Vibrio parahemolyticus, 2.9 x 10(2) CFU mL(-1) of Salmonella, 8.7 x 10(1) CFU mL(-1) of E. coli O157:H7 and 5.2 x 10(1) CFU mL(-1) of Shigella, respectively. The relative standard deviation of migration time was in the range of 0.74-2.09%. The results demonstrated that the good resolution and less analytical time were achieved due to the application of the multivariate strategy. This study offers an efficient alternative to routine foodborne pathogenic bacteria detection in a fast, reliable, and sensitive way.
Wang, Zheng; Malanoski, Anthony P; Lin, Baochuan; Kidd, Carolyn; Long, Nina C; Blaney, Kate M; Thach, Dzung C; Tibbetts, Clark; Stenger, David A
2008-01-01
Background Febrile respiratory illness (FRI) has a high impact on public health and global economics and poses a difficult challenge for differential diagnosis. A particular issue is the detection of genetically diverse pathogens, i.e. human rhinoviruses (HRV) and enteroviruses (HEV) which are frequent causes of FRI. Resequencing Pathogen Microarray technology has demonstrated potential for differential diagnosis of several respiratory pathogens simultaneously, but a high confidence design method to select probes for genetically diverse viruses is lacking. Results Using HRV and HEV as test cases, we assess a general design strategy for detecting and serotyping genetically diverse viruses. A minimal number of probe sequences (26 for HRV and 13 for HEV), which were potentially capable of detecting all serotypes of HRV and HEV, were determined and implemented on the Resequencing Pathogen Microarray RPM-Flu v.30/31 (Tessarae RPM-Flu). The specificities of designed probes were validated using 34 HRV and 28 HEV strains. All strains were successfully detected and identified at least to species level. 33 HRV strains and 16 HEV strains could be further differentiated to serotype level. Conclusion This study provides a fundamental evaluation of simultaneous detection and differential identification of genetically diverse RNA viruses with a minimal number of prototype sequences. The results demonstrated that the newly designed RPM-Flu v.30/31 can provide comprehensive and specific analysis of HRV and HEV samples which implicates that this design strategy will be applicable for other genetically diverse viruses. PMID:19046445
Plant-pathogen interactions: what microarray tells about it?
Lodha, T D; Basak, J
2012-01-01
Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.
Mirrored pyramidal wells for simultaneous multiple vantage point microscopy.
Seale, K T; Reiserer, R S; Markov, D A; Ges, I A; Wright, C; Janetopoulos, C; Wikswo, J P
2008-10-01
We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling.
Zhou, Haibo; Liu, Junlai; Zhou, Changyang; Gao, Ni; Rao, Zhiping; Li, He; Hu, Xinde; Li, Changlin; Yao, Xuan; Shen, Xiaowen; Sun, Yidi; Wei, Yu; Liu, Fei; Ying, Wenqin; Zhang, Junming; Tang, Cheng; Zhang, Xu; Xu, Huatai; Shi, Linyu; Cheng, Leping; Huang, Pengyu; Yang, Hui
2018-03-01
Despite rapid progresses in the genome-editing field, in vivo simultaneous overexpression of multiple genes remains challenging. We generated a transgenic mouse using an improved dCas9 system that enables simultaneous and precise in vivo transcriptional activation of multiple genes and long noncoding RNAs in the nervous system. As proof of concept, we were able to use targeted activation of endogenous neurogenic genes in these transgenic mice to directly and efficiently convert astrocytes into functional neurons in vivo. This system provides a flexible and rapid screening platform for studying complex gene networks and gain-of-function phenotypes in the mammalian brain.
Klapwijk, Maartje J; Hopkins, Anna J M; Eriksson, Louise; Pettersson, Maria; Schroeder, Martin; Lindelöw, Åke; Rönnberg, Jonas; Keskitalo, E Carina H; Kenis, Marc
2016-02-01
Intensifying global trade will result in increased numbers of plant pest and pathogen species inadvertently being transported along with cargo. This paper examines current mechanisms for prevention and management of potential introductions of forest insect pests and pathogens in the European Union (EU). Current European legislation has not been found sufficient in preventing invasion, establishment and spread of pest and pathogen species within the EU. Costs associated with future invasions are difficult to estimate but past invasions have led to negative economic impacts in the invaded country. The challenge is combining free trade and free movement of products (within the EU) with protection against invasive pests and pathogens. Public awareness may mobilise the public for prevention and detection of potential invasions and, simultaneously, increase support for eradication and control measures. We recommend focus on commodities in addition to pathways, an approach within the EU using a centralised response unit and, critically, to engage the general public in the battle against establishment and spread of these harmful pests and pathogens.
Garrido-Bailón, Encarna; Higes, Mariano; Martínez-Salvador, Amparo; Antúnez, Karina; Botías, Cristina; Meana, Aránzazu; Prieto, Lourdes; Martín-Hernández, Raquel
2013-01-01
The microorganisms Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius are the three most important pathogens that affect honeybee brood. The aim of the present study was to evaluate the prevalence of these pathogens in honeybee colonies and to elucidate their role in the honeybee colony losses in Spain. In order to get it, a multiplex polymerase chain reaction (PCR) assay was developed to simultaneously amplify the16S ribosomal ribonucleic acid (rRNA) gene of P. larvae and M. plutonius, and the 5.8S rRNA gene of A. apis. The multiplex PCR assay provides a quick and specific tool that successfully detected the three infectious pathogens (P. larvae, M. plutonius and A. apis) in brood and adult honeybee samples without the need for microbiological culture. This technique was then used to evaluate the prevalence of these pathogens in Spanish honeybee colonies in 2006 and 2007, revealing our results a low prevalence of these pathogens in most of the geographic areas studied. PMID:23919248
Siciliano, Ilenia; Amaral Carneiro, Greice; Spadaro, Davide; Garibaldi, Angelo; Gullino, Maria Lodovica
2015-09-23
Fusarium fujikuroi, the causal agent of bakanae disease, is the main seedborne pathogen on rice. To understand the basis of rice resistance, a quantitative method to simultaneously detect phytohormones and phytoalexins was developed by using HPLC-MS/MS. With this method dynamic profiles and possible interactions of defense-related phytohormones and phytoalexins were investigated on two rice cultivars, inoculated or not with F. fujikuroi. In the resistant cultivar Selenio, the presence of pathogen induced high production of phytoalexins, mainly sakuranetin, and symptoms of bakanae were not observed. On the contrary, in the susceptible genotype Dorella, the pathogen induced the production of gibberellin and abscisic acid and inhibited jasmonic acid production, phytoalexins were very low, and bakanae symptoms were observed. The results suggested that a wide range of secondary metabolites are involved in plant defense against pathogens and phytoalexin synthesis could be an important factor for rice resistance against bakanae disease.
Out, Astrid A; van Minderhout, Ivonne J H M; van der Stoep, Nienke; van Bommel, Lysette S R; Kluijt, Irma; Aalfs, Cora; Voorendt, Marsha; Vossen, Rolf H A M; Nielsen, Maartje; Vasen, Hans F A; Morreau, Hans; Devilee, Peter; Tops, Carli M J; Hes, Frederik J
2015-06-01
Familial adenomatous polyposis is most frequently caused by pathogenic variants in either the APC gene or the MUTYH gene. The detection rate of pathogenic variants depends on the severity of the phenotype and sensitivity of the screening method, including sensitivity for mosaic variants. For 171 patients with multiple colorectal polyps without previously detectable pathogenic variant, APC was reanalyzed in leukocyte DNA by one uniform technique: high-resolution melting (HRM) analysis. Serial dilution of heterozygous DNA resulted in a lowest detectable allelic fraction of 6% for the majority of variants. HRM analysis and subsequent sequencing detected pathogenic fully heterozygous APC variants in 10 (6%) of the patients and pathogenic mosaic variants in 2 (1%). All these variants were previously missed by various conventional scanning methods. In parallel, HRM APC scanning was applied to DNA isolated from polyp tissue of two additional patients with apparently sporadic polyposis and without detectable pathogenic APC variant in leukocyte DNA. In both patients a pathogenic mosaic APC variant was present in multiple polyps. The detection of pathogenic APC variants in 7% of the patients, including mosaics, illustrates the usefulness of a complete APC gene reanalysis of previously tested patients, by a supplementary scanning method. HRM is a sensitive and fast pre-screening method for reliable detection of heterozygous and mosaic variants, which can be applied to leukocyte and polyp derived DNA.
Szczałuba, Krzysztof; Nowakowska, Beata; Sobecka, Katarzyna; Smyk, Marta; Castaneda, Jennifer; Klapecki, Jakub; Kutkowska-Kaźmierczak, Anna; Śmigiel, Robert; Bocian, Ewa; Radkowski, Marek; Demkow, Urszula
2016-01-01
Major congenital anomalies are detectable in 2-3 % of the newborn population. Some of their genetic causes are attributable to copy number variations identified by array comparative genomic hybridization (aCGH). The value of aCGH screening as a first-tier test in children with multiple congenital anomalies has been studied and consensus adopted. However, array resolution has not been agreed upon, specifically in the newborn or infant population. Moreover, most array studies have been focused on mixed populations of intellectual disability/developmental delay with or without multiple congenital anomalies, making it difficult to assess the value of microarrays in newborns. The aim of the study was to determine the optimal quality and clinical sensitivity of high-resolution array comparative genomic hybridization in neonates with multiple congenital anomalies. We investigated a group of 54 newborns with multiple congenital anomalies defined as two or more birth defects from more than one organ system. Cytogenetic studies were performed using OGT CytoSure 8 × 60 K microarray. We found ten rearrangements in ten newborns. Of these, one recurrent syndromic microduplication was observed, whereas all other changes were unique. Six rearrangements were definitely pathogenic, including one submicroscopic and five that could be seen on routine karyotype analysis. Four other copy number variants were likely pathogenic. The candidate genes that may explain the phenotype were discussed. In conclusion, high-resolution array comparative hybridization can be applied successfully in newborns with multiple congenital anomalies as the method detects a significant number of pathogenic changes, resulting in early diagnoses. We hypothesize that small changes previously considered benign or even inherited rearrangements should be classified as potentially pathogenic at least until a subsequent clinical assessment would exclude a developmental delay or dysmorphism.
In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections.
Ellison, Mitchell A; McMahon, Michael B; Bonde, Morris R; Palmer, Cristi L; Luster, Douglas G
2016-01-01
Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.
Physiology and immunology of mucosal barriers in catfish (Ictalurus spp.)
USDA-ARS?s Scientific Manuscript database
The mucosal barriers of catfish (Ictalurus spp.) constitute the first line of defense against pathogen invasion while simultaneously carrying out a diverse array of other critical physiological processes, including nutrient adsorption, osmoregulation, waste excretion, and environmental sensing. Catf...
Structured plant metabolomics for the simultaneous exploration of multiple factors.
Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan
2016-11-17
Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor-metabolite crosstalk. However, unravelling all factor-metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset.
Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce
2013-10-07
Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.
Zuo, Peng; Dominguez, Delfina C.; Ye, Bang-Ce
2014-01-01
Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL−1. We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step ‘turn on’ pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens. PMID:23929394
Epidemiology of nontuberculous mycobacteria, an emerging environmental pathogen
Nontuberculous mycobacteria (NTM) is an environmentally transmitted pathogen primarily associated with water and soil exposure. It is increasingly recognized in the developed world and may manifest as infection or colonization of multiple anatomic sites. Nontuberculous mycobacter...
Blanco, Guillermo; Lemus, Jesús A.
2010-01-01
There is increasing concern about the impact of veterinary drugs and livestock pathogens as factors damaging wildlife health, especially of threatened avian scavengers feeding upon medicated livestock carcasses. We conducted a comprehensive study of failed eggs and dead nestlings in bearded vultures (Gypaetus barbatus) to attempt to elucidate the proximate causes of breeding failure behind the recent decline in productivity in the Spanish Pyrenees. We found high concentrations of multiple veterinary drugs, primarily fluoroquinolones, in most failed eggs and nestlings, associated with multiple internal organ damage and livestock pathogens causing disease, especially septicaemia by swine pathogens and infectious bursal disease. The combined impact of drugs and disease as stochastic factors may result in potentially devastating effects exacerbating an already high risk of extinction and should be considered in current conservation programs for bearded vultures and other scavenger species, especially in regards to dangerous veterinary drugs and highly pathogenic poultry viruses. PMID:21152405
Qu, Xiangmeng; Li, Min; Zhang, Hongbo; Lin, Chenglie; Wang, Fei; Xiao, Mingshu; Zhou, Yi; Shi, Jiye; Aldalbahi, Ali; Pei, Hao; Chen, Hong; Li, Li
2017-09-20
The development of a real-time continuous analytical platform for the pathogen detection is of great scientific importance for achieving better disease control and prevention. In this work, we report a rapid and recyclable microfluidic bioassay system constructed from oligonucleotide arrays for selective and sensitive continuous identification of DNA targets of fungal pathogens. We employ the thermal denaturation method to effectively regenerate the oligonucleotide arrays for multiple sample detection, which could considerably reduce the screening effort and costs. The combination of thermal denaturation and laser-induced fluorescence detection technique enables real-time continuous identification of multiple samples (<10 min per sample). As a proof of concept, we have demonstrated that two DNA targets of fungal pathogens (Botrytis cinerea and Didymella bryoniae) can be sequentially analyzed using our rapid microfluidic bioassay system, which provides a new paradigm in the design of microfluidic bioassay system and will be valuable for chemical and biomedical analysis.
Global and local environmental changes as drivers of Buruli ulcer emergence.
Combe, Marine; Velvin, Camilla Jensen; Morris, Aaron; Garchitorena, Andres; Carolan, Kevin; Sanhueza, Daniel; Roche, Benjamin; Couppié, Pierre; Guégan, Jean-François; Gozlan, Rodolphe Elie
2017-04-26
Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.
Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybrid microfluidic biochip.
Dou, Maowei; Sanjay, Sharma T; Dominguez, Delfina C; Liu, Peng; Xu, Feng; Li, XiuJun
2017-01-15
Neisseria meningitidis (N. meningitidis), Streptococcus pneumoniae (S. pneumoniae), and Haemophilus influenzae type b (Hib) are three most common pathogens accounting for most bacterial meningitis, a serious global infectious disease with high fatality, especially in developing nations. Because the treatment and antibiotics differ among each type, the identification of the exact bacteria causing the disease is vital. Herein, we report a polymer/paper hybrid microfluidic biochip integrated with loop-mediated isothermal amplification (LAMP) for multiplexed instrument-free diagnosis of these three major types of bacterial meningitis, with high sensitivity and specificity. Results can be visually observed by the naked eye or imaged by a smartphone camera under a portable UV light source. Without using any specialized laboratory instrument, the limits of detection of a few DNA copies per LAMP zone for N. meningitidis, S. pneumoniae and Hib were achieved within 1h. In addition, these three types of microorganisms spiked in artificial cerebrospinal fluid (ACSF) were directly detected simultaneously, avoiding cumbersome sample preparation procedures in conventional methods. Compared with the paper-free non-hybrid microfluidic biochip over a period of three months, the hybrid microfluidic biochip was found to have a much longer shelf life. Hence, this rapid, instrument-free and highly sensitive microfluidic approach has great potential for point-of-care (POC) diagnosis of multiple infectious diseases simultaneously, especially in resource-limited settings. Copyright © 2016 Elsevier B.V. All rights reserved.
Gerc, Amy J.; Diepold, Andreas; Trunk, Katharina; Porter, Michael; Rickman, Colin; Armitage, Judith P.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.
2015-01-01
Summary The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches. PMID:26387948
NASA Astrophysics Data System (ADS)
Li, Jinghe; Song, Linping; Liu, Qing Huo
2016-02-01
A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.
Modeling influenza-like illnesses through composite compartmental models
NASA Astrophysics Data System (ADS)
Levy, Nir; , Michael, Iv; Yom-Tov, Elad
2018-03-01
Epidemiological models for the spread of pathogens in a population are usually only able to describe a single pathogen. This makes their application unrealistic in cases where multiple pathogens with similar symptoms are spreading concurrently within the same population. Here we describe a method which makes possible the application of multiple single-strain models under minimal conditions. As such, our method provides a bridge between theoretical models of epidemiology and data-driven approaches for modeling of influenza and other similar viruses. Our model extends the Susceptible-Infected-Recovered model to higher dimensions, allowing the modeling of a population infected by multiple viruses. We further provide a method, based on an overcomplete dictionary of feasible realizations of SIR solutions, to blindly partition the time series representing the number of infected people in a population into individual components, each representing the effect of a single pathogen. We demonstrate the applicability of our proposed method on five years of seasonal influenza-like illness (ILI) rates, estimated from Twitter data. We demonstrate that our method describes, on average, 44% of the variance in the ILI time series. The individual infectious components derived from our model are matched to known viral profiles in the populations, which we demonstrate matches that of independently collected epidemiological data. We further show that the basic reproductive numbers (R 0) of the matched components are in range known for these pathogens. Our results suggest that the proposed method can be applied to other pathogens and geographies, providing a simple method for estimating the parameters of epidemics in a population.
James, Erica; Freund, Megan; Booth, Angela; Duncan, Mitch J; Johnson, Natalie; Short, Camille E; Wolfenden, Luke; Stacey, Fiona G; Kay-Lambkin, Frances; Vandelanotte, Corneel
2016-08-01
Growing evidence points to the benefits of addressing multiple health behaviors rather than single behaviors. This review evaluates the relative effectiveness of simultaneous and sequentially delivered multiple health behavior change (MHBC) interventions. Secondary aims were to identify: a) the most effective spacing of sequentially delivered components; b) differences in efficacy of MHBC interventions for adoption/cessation behaviors and lifestyle/addictive behaviors, and; c) differences in trial retention between simultaneously and sequentially delivered interventions. MHBC intervention trials published up to October 2015 were identified through a systematic search. Eligible trials were randomised controlled trials that directly compared simultaneous and sequential delivery of a MHBC intervention. A narrative synthesis was undertaken. Six trials met the inclusion criteria and across these trials the behaviors targeted were smoking, diet, physical activity, and alcohol consumption. Three trials reported a difference in intervention effect between a sequential and simultaneous approach in at least one behavioral outcome. Of these, two trials favoured a sequential approach on smoking. One trial favoured a simultaneous approach on fat intake. There was no difference in retention between sequential and simultaneous approaches. There is limited evidence regarding the relative effectiveness of sequential and simultaneous approaches. Given only three of the six trials observed a difference in intervention effectiveness for one health behavior outcome, and the relatively consistent finding that the sequential and simultaneous approaches were more effective than a usual/minimal care control condition, it appears that both approaches should be considered equally efficacious. PROSPERO registration number: CRD42015027876. Copyright © 2016 Elsevier Inc. All rights reserved.
Automated simultaneous multiple feature classification of MTI data
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.
2002-08-01
Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.
Koh, Kwang Kon; Han, Seung Hwan; Oh, Pyung Chun; Shin, Eak Kyun; Quon, Michael J.
2010-01-01
Large clinical trials demonstrate that control of blood pressure or hyperlipidemia reduces risk for cardiovascular events by ~30%. Factors that may further reduce remaining risk are not definitively established. One potential target is atherosclerosis, a crucial feature in the pathogenesis of cardiovascular diseases whose development is determined by multiple mechanism including complex interactions between endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin–angiotensin–aldosterone system may contribute to development of atherosclerosis. Therefore, one appealing strategy for prevention or treatment of atherosclerosis may be to simultaneously address several risk factors with combination therapies that target multiple pathogenic mechanisms. Combination therapy with statins, peroxisome proliferators-activated receptor agonists, and rennin–angiotensin–aldosterone system blockers demonstrate additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors. Additive beneficial effects of combined therapy are mediated by both distinct and interrelated mechanisms, consistent with both pre-clinical and clinical investigations. Thus, combination therapy may be an important concept in developing more effective strategies to treat and prevent atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance. PMID:19800624
Stomata Prioritize Their Responses to Multiple Biotic and Abiotic Signal Inputs
Chen, Peilei; Qiu, Muqing; Jiang, Kun; Wang, Genxuan
2014-01-01
Stomata are microscopic pores in leaf epidermis that regulate gas exchange between plants and the environment. Being natural openings on the leaf surface, stomata also serve as ports for the invasion of foliar pathogenic bacteria. Each stomatal pore is enclosed by a pair of guard cells that are able to sense a wide spectrum of biotic and abiotic stresses and respond by precisely adjusting the pore width. However, it is not clear whether stomatal responses to simultaneously imposed biotic and abiotic signals are mutually dependent on each other. Here we show that a genetically engineered Escherichia coli strain DH5α could trigger stomatal closure in Vicia faba, an innate immune response that might depend on NADPH oxidase-mediated ROS burst. DH5α-induced stomatal closure could be abolished or disguised under certain environmental conditions like low [CO2], darkness, and drought, etc. Foliar spraying of high concentrations of ABA could reduce stomatal aperture in high humidity-treated faba bean plants. Consistently, the aggressive multiplication of DH5α bacteria in Vicia faba leaves under high humidity could be alleviated by exogenous application of ABA. Our data suggest that a successful colonization of bacteria on the leaf surface is correlated with stomatal aperture regulation by a specific set of environmental factors. PMID:25003527
Yang, Liju; Li, Yanbin
2006-03-01
In this study, we explored the use of semiconductor quantum dots (QDs) as fluorescence labels in immunoassays for simultaneous detection of two species of foodborne pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium. QDs with different sizes can be excited with a single wavelength of light, resulting in different emission peaks that can be measured simultaneously. Highly fluorescent semiconductor quantum dots with different emission wavelengths (525 nm and 705 nm) were conjugated to anti-E. coli O157 and anti-Salmonella antibodies, respectively. Target bacteria were separated from samples by using specific antibody coated magnetic beads. The bead-cell complexes reacted with QD-antibody conjugates to form bead-cell-QD complexes. Fluorescent microscopic images of QD labeled E. coli and Salmonella cells demonstrated that QD-antibody conjugates could evenly and completely attach to the surface of bacterial cells, indicating that the conjugated QD molecules still retain their effective fluorescence, while the conjugated antibody molecules remain active and are able to recognize their specific target bacteria in a complex mixture. The intensities of fluorescence emission peaks at 525 nm and 705 nm of the final complexes were measured for quantitative detection of E. coli O157:H7 and S. Typhimurium simultaneously. The fluorescence intensity (FI) as a function of cell number (N) was found for Salmonella and E. coli, respectively. The regression models can be expressed as: FI = 60.6 log N- 250.9 with R(2) = 0.97 for S. Typhimurium, and FI = 77.8 log N- 245.2 with R(2) = 0.91 for E. coli O157:H7 in the range of cell numbers from 10(4) to 10(7) cfu ml(-1). The detection limit of this method was 10(4) cfu ml(-1). The detection could be completed within 2 hours. The principle of this method could be extended to detect multiple species of bacteria (3-4 species) simultaneously, depending on the availability of each type of QD-antibody conjugates with a unique emission peak and the antibody coated magnetic beads specific to each species of bacteria.
Latha, C.; Anu, C. J.; Ajaykumar, V. J.; Sunil, B.
2017-01-01
Aim: The objective of the study was to investigate the occurrence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using the multiplex polymerase chain reaction (PCR) method. Materials and Methods: The assay combined an enrichment step in tryptic soy broth with yeast extract formulated for the simultaneous growth of target pathogens, DNA isolation and multiplex PCR. A total of 1134 samples including beef (n=349), chicken (n=325), pork (n=310), chevon (n=50), and meat products (n=100) were collected from different parts of Kerala, India. All the samples were subjected to multiplex PCR analysis and culture-based detection for the four pathogens in parallel. Results: Overall occurrence of L. monocytogenes was 0.08 % by cultural method. However, no L. monocytogenes was obtained by multiplex PCR method. Yersinia enterocolitica was obtained from beef and pork samples. A high prevalence of S. aureus (46.7%) was found in all types of meat samples tested. None of the samples was positive for S. Typhimurium. Conclusion: Multiplex PCR assay used in this study can detect more than one pathogen simultaneously by amplifying more than one target gene in a single reaction, which can save time and labor cost. PMID:28919685
ERIC Educational Resources Information Center
Chen, Chi-hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-01-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories…
Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach
F. Briggs; B. Lakshminarayanan; L. Neal; X.Z. Fern; R. Raich; S.F. Hadley; A.S. Hadley; M.G. Betts
2012-01-01
Although field-collected recordings typically contain multiple simultaneously vocalizing birds of different species, acoustic species classification in this setting has received little study so far. This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning...
ERIC Educational Resources Information Center
Anderson, Joan L.
2006-01-01
Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…
Mirrored pyramidal wells for simultaneous multiple vantage point microscopy
Seale, K.T.; Reiserer, R.S.; Markov, D.A.; Ges, I.A.; Wright, C.; Janetopoulos, C.; Wikswo, J.P.
2013-01-01
Summary We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling. PMID:19017196
Luo, Si-Wei; Liang, Zhi; Wu, Jia-Rui
2017-01-01
Quantitatively detecting correlations of multiple protein-protein interactions (PPIs) in vivo is a big challenge. Here we introduce a novel method, termed Protein-interactome Footprinting (PiF), to simultaneously measure multiple PPIs in one cell. The principle of PiF is that each target physical PPI in the interactome is simultaneously transcoded into a specific DNA sequence based on dimerization of the target proteins fused with DNA-binding domains. The interaction intensity of each target protein is quantified as the copy number of the specific DNA sequences bound by each fusion protein dimers. Using PiF, we quantitatively reveal dynamic patterns of PPIs and their correlation network in E. coli two-component systems. PMID:28338015
Bliem, Rupert; Schauer, Sonja; Plicka, Helga; Obwaller, Adelheid; Sommer, Regina; Steinrigl, Adolf; Alam, Munirul; Reischer, Georg H.; Farnleitner, Andreas H.
2015-01-01
Vibrio cholerae is a severe human pathogen and a frequent member of aquatic ecosystems. Quantification of V. cholerae in environmental water samples is therefore fundamental for ecological studies and health risk assessment. Beside time-consuming cultivation techniques, quantitative PCR (qPCR) has the potential to provide reliable quantitative data and offers the opportunity to quantify multiple targets simultaneously. A novel triplex qPCR strategy was developed in order to simultaneously quantify toxigenic and nontoxigenic V. cholerae in environmental water samples. To obtain quality-controlled PCR results, an internal amplification control was included. The qPCR assay was specific, highly sensitive, and quantitative across the tested 5-log dynamic range down to a method detection limit of 5 copies per reaction. Repeatability and reproducibility were high for all three tested target genes. For environmental application, global DNA recovery (GR) rates were assessed for drinking water, river water, and water from different lakes. GR rates ranged from 1.6% to 76.4% and were dependent on the environmental background. Uncorrected and GR-corrected V. cholerae abundances were determined in two lakes with extremely high turbidity. Uncorrected abundances ranged from 4.6 × 102 to 2.3 × 104 cell equivalents liter−1, whereas GR-corrected abundances ranged from 4.7 × 103 to 1.6 × 106 cell equivalents liter−1. GR-corrected qPCR results were in good agreement with an independent cell-based direct detection method but were up to 1.6 log higher than cultivation-based abundances. We recommend the newly developed triplex qPCR strategy as a powerful tool to simultaneously quantify toxigenic and nontoxigenic V. cholerae in various aquatic environments for ecological studies as well as for risk assessment programs. PMID:25724966
Morales-Cruz, Abraham; Allenbeck, Gabrielle; Figueroa-Balderas, Rosa; Ashworth, Vanessa E; Lawrence, Daniel P; Travadon, Renaud; Smith, Rhonda J; Baumgartner, Kendra; Rolshausen, Philippe E; Cantu, Dario
2018-02-01
Grapevines, like other perennial crops, are affected by so-called 'trunk diseases', which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existence of different GTP species in complex and dynamic microbial communities complicates the study of the molecular mechanisms underlying disease development, especially under vineyard conditions. The objective of this study was to develop and optimize a community-level transcriptomics (i.e. metatranscriptomics) approach that could monitor simultaneously the virulence activities of multiple GTPs in planta. The availability of annotated genomes for the most relevant co-infecting GTPs in diseased grapevine wood provided the unprecedented opportunity to generate a multi-species reference for the mapping and quantification of DNA and RNA sequencing reads. We first evaluated popular sequence read mappers using permutations of multiple simulated datasets. Alignment parameters of the selected mapper were optimized to increase the specificity and sensitivity for its application to metagenomics and metatranscriptomics analyses. Initial testing on grapevine wood experimentally inoculated with individual GTPs confirmed the validity of the method. Using naturally infected field samples expressing a variety of trunk disease symptoms, we show that our approach provides quantitative assessments of species composition, as well as genome-wide transcriptional profiling of potential virulence factors, namely cell wall degradation, secondary metabolism and nutrient uptake for all co-infecting GTPs. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR
Tang, Zhou-Rui; Li, Kai; Zhou, Yu-Xun; Xiao, Zhen-Xian; Xiao, Jun-Hua; Huang, Rui; Gu, Guo-Hao
2012-01-01
AIM: To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. METHODS: Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested. RESULTS: cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex. CONCLUSION: The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well. PMID:22294830
Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR.
Tang, Zhou-Rui; Li, Kai; Zhou, Yu-Xun; Xiao, Zhen-Xian; Xiao, Jun-Hua; Huang, Rui; Gu, Guo-Hao
2012-01-21
To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested. cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex. The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well.
Pointright: a system to redirect mouse and keyboard control among multiple machines
Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA
2008-09-30
The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.
Spatial variation in disease resistance: from molecules to metapopulations
Laine, Anna-Liisa; Burdon, Jeremy J.; Dodds, Peter N.; Thrall, Peter H.
2010-01-01
Summary Variation in disease resistance is a widespread phenomenon in wild plant-pathogen associations. Here, we review current literature on natural plant-pathogen associations to determine how diversity in disease resistance is distributed at different hierarchical levels – within host individuals, within host populations, among host populations at the metapopulation scale and at larger regional scales. We find diversity in resistance across all spatial scales examined. Furthermore, variability seems to be the best counter-defence of plants against their rapidly evolving pathogens. We find that higher diversity of resistance phenotypes also results in higher levels of resistance at the population level. Overall, we find that wild plant populations are more likely to be susceptible than resistant to their pathogens. However, the degree of resistance differs strikingly depending on the origin of the pathogen strains used in experimental inoculation studies. Plant populations are on average 16% more resistant to allopatric pathogen strains than they are to strains that occur within the same population (48 % vs. 32 % respectively). Pathogen dispersal mode affects levels of resistance in natural plant populations with lowest levels detected for hosts of airborne pathogens and highest for waterborne pathogens. Detailed analysis of two model systems, Linum marginale infected by Melampsora lini, and Plantago lanceolata infected by Podosphaera plantaginis, show that the amount of variation in disease resistance declines towards higher spatial scales as we move from individual hosts to metapopulations, but evaluation of multiple spatial scales is needed to fully capture the structure of disease resistance. Synthesis: Variation in disease resistance is ubiquitous in wild plant-pathogen associations. While the debate over whether the resistance structure of plant populations is determined by pathogen-imposed selection versus non-adaptive processes remains unresolved, we do report examples of pathogen-imposed selection on host resistance. Here we highlight the importance of measuring resistance across multiple spatial scales, and of using sympatric strains when looking for signs of coevolution in wild plant-pathogen interactions. PMID:21243068
Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis
Elliott, Christina; Lindner, Maren; Arthur, Ariel; Brennan, Kathryn; Jarius, Sven; Hussey, John; Chan, Andrew; Stroet, Anke; Olsson, Tomas; Willison, Hugh; Barnett, Susan C.; Meinl, Edgar
2012-01-01
Pathological and clinical studies implicate antibody-dependent mechanisms in the immunopathogenesis of multiple sclerosis. We tested this hypothesis directly by investigating the ability of patient-derived immunoglobulins to mediate demyelination and axonal injury in vitro. Using a myelinating culture system, we developed a sensitive and reproducible bioassay to detect and quantify these effects and applied this to investigate the pathogenic potential of immunoglobulin G preparations obtained from patients with multiple sclerosis (n = 37), other neurological diseases (n = 10) and healthy control donors (n = 13). This identified complement-dependent demyelinating immunoglobulin G responses in approximately 30% of patients with multiple sclerosis, which in two cases was accompanied by significant complement-dependent antibody mediated axonal loss. No pathogenic immunoglobulin G responses were detected in patients with other neurological disease or healthy controls, indicating that the presence of these demyelinating/axopathic autoantibodies is specific for a subset of patients with multiple sclerosis. Immunofluorescence microscopy revealed immunoglobulin G preparations with demyelinating activity contained antibodies that specifically decorated the surface of myelinating oligodendrocytes and their contiguous myelin sheaths. No other binding was observed indicating that the response is restricted to autoantigens expressed by terminally differentiated myelinating oligodendrocytes. In conclusion, our study identifies axopathic and/or demyelinating autoantibody responses in a subset of patients with multiple sclerosis. This observation underlines the mechanistic heterogeneity of multiple sclerosis and provides a rational explanation why some patients benefit from antibody depleting treatments. PMID:22561643
Chondrodysplasia with multiple dislocations: comprehensive study of a series of 30 cases.
Ranza, E; Huber, C; Levin, N; Baujat, G; Bole-Feysot, C; Nitschke, P; Masson, C; Alanay, Y; Al-Gazali, L; Bitoun, P; Boute, O; Campeau, P; Coubes, C; McEntagart, M; Elcioglu, N; Faivre, L; Gezdirici, A; Johnson, D; Mihci, E; Nur, B G; Perrin, L; Quelin, C; Terhal, P; Tuysuz, B; Cormier-Daire, V
2017-06-01
The group of chondrodysplasia with multiple dislocations includes several entities, characterized by short stature, dislocation of large joints, hand and/or vertebral anomalies. Other features, such as epiphyseal or metaphyseal changes, cleft palate, intellectual disability are also often part of the phenotype. In addition, several conditions with overlapping features are related to this group and broaden the spectrum. The majority of these disorders have been linked to pathogenic variants in genes encoding proteins implicated in the synthesis or sulfation of proteoglycans (PG). In a series of 30 patients with multiple dislocations, we have performed exome sequencing and subsequent targeted analysis of 15 genes, implicated in chondrodysplasia with multiple dislocations, and related conditions. We have identified causative pathogenic variants in 60% of patients (18/30); when a clinical diagnosis was suspected, this was molecularly confirmed in 53% of cases. Forty percent of patients remain without molecular etiology. Pathogenic variants in genes implicated in PG synthesis are of major importance in chondrodysplasia with multiple dislocations and related conditions. The combination of hand features, growth failure severity, radiological aspects of long bones and of vertebrae allowed discrimination among the different conditions. We propose key diagnostic clues to the clinician. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Predation on multiple trophic levels shapes the evolution of pathogen virulence.
Friman, Ville-Petri; Lindstedt, Carita; Hiltunen, Teppo; Laakso, Jouni; Mappes, Johanna
2009-08-25
The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions.
Lee, Shin-Young; Kim, Mi-Ju; Kim, Hyun-Joong; Jeong, KwangCheol Casey; Kim, Hae-Yeong
2018-02-28
A one-step multiplex reverse transcription PCR (RT-PCR) method comprising six primer sets (for the detection of norovirus GI and GII, hepatitis A virus, rotavirus, and astrovirus) was developed to simultaneously detect four kinds of pathogenic viruses. The size of the PCR products for norovirus GI and GII, hepatitis A virus (VP3/VP1 and P2A regions), rotavirus, and astrovirus were 330, 164, 244, 198, 629, and 449 bp, respectively. The RT-PCR with the six primer sets showed specificity for the pathogenic viruses. The detection limit of the developed multiplex RT-PCR, as evaluated using serially diluted viral RNAs, was comparable to that of one-step single RT-PCR. Moreover, this multiplex RT-PCR was evaluated using food samples such as water, oysters, lettuce, and vegetable product. These food samples were artificially spiked with the four kinds of viruses in diverse combinations, and the spiked viruses in all food samples were detected successfully.
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots.
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M; Ichimura, Taro
2016-07-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery.
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M.; Ichimura, Taro
2016-01-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684
Wyrsch, Ethan R; Roy Chowdhury, Piklu; Chapman, Toni A; Charles, Ian G; Hammond, Jeffrey M; Djordjevic, Steven P
2016-01-01
Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.
Adapting High-Throughput Screening Methods and Assays for Biocontainment Laboratories
Tigabu, Bersabeh; White, E. Lucile; Bostwick, Robert; Tower, Nichole; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W.; Noah, James W.
2015-01-01
Abstract High-throughput screening (HTS) has been integrated into the drug discovery process, and multiple assay formats have been widely used in many different disease areas but with limited focus on infectious agents. In recent years, there has been an increase in the number of HTS campaigns using infectious wild-type pathogens rather than surrogates or biochemical pathogen-derived targets. Concurrently, enhanced emerging pathogen surveillance and increased human mobility have resulted in an increase in the emergence and dissemination of infectious human pathogens with serious public health, economic, and social implications at global levels. Adapting the HTS drug discovery process to biocontainment laboratories to develop new drugs for these previously uncharacterized and highly pathogenic agents is now feasible, but HTS at higher biosafety levels (BSL) presents a number of unique challenges. HTS has been conducted with multiple bacterial and viral pathogens at both BSL-2 and BSL-3, and pilot screens have recently been extended to BSL-4 environments for both Nipah and Ebola viruses. These recent successful efforts demonstrate that HTS can be safely conducted at the highest levels of biological containment. This review outlines the specific issues that must be considered in the execution of an HTS drug discovery program for high-containment pathogens. We present an overview of the requirements for HTS in high-level biocontainment laboratories. PMID:25710545
Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming
2013-07-17
A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Hegde, Shivanand; Hegde, Shrilakshmi; Zimmermann, Martina; Flöck, Martina; Spergser, Joachim; Rosengarten, Renate; Chopra-Dewasthaly, Rohini
2015-07-01
Mycoplasmas possess complex pathogenicity determinants that are largely unknown at the molecular level. Mycoplasma agalactiae serves as a useful model to study the molecular basis of mycoplasma pathogenicity. The generation and in vivo screening of a transposon mutant library of M. agalactiae were employed to unravel its host colonization factors. Tn4001mod mutants were sequenced using a novel sequencing method, and functionally heterogeneous pools containing 15 to 19 selected mutants were screened simultaneously through two successive cycles of sheep intramammary infections. A PCR-based negative selection method was employed to identify mutants that failed to colonize the udders and draining lymph nodes in the animals. A total of 14 different mutants found to be absent from ≥ 95% of samples were identified and subsequently verified via a second round of stringent confirmatory screening where 100% absence was considered attenuation. Using this criterion, seven mutants with insertions in genes MAG1050, MAG2540, MAG3390, uhpT, eutD, adhT, and MAG4460 were not recovered from any of the infected animals. Among the attenuated mutants, many contain disruptions in hypothetical genes, implying their previously unknown role in M. agalactiae pathogenicity. These data indicate the putative role of functionally different genes, including hypothetical ones, in the pathogenesis of M. agalactiae. Defining the precise functions of the identified genes is anticipated to increase our understanding of M. agalactiae infections and to develop successful intervention strategies against it. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Paoletta, Martina Soledad; López Arias, Ludmila; de la Fournière, Sofía; Guillemi, Eliana Carolina; Luciani, Carlos; Sarmiento, Néstor Fabián; Mosqueda, Juan; Farber, Marisa Diana; Wilkowsky, Silvina Elizabeth
2018-02-01
Vector-borne hemoparasitic infections are a major problem that affects livestock industries worldwide, particularly in tropical and subtropical regions. In this work, a reverse line blot (RLB) hybridization assay was developed for the simultaneous detection and identification of Anaplasma, Babesia and bovine trypanosomes, encompassing in this way the most relevant hemoparasites that affect cattle. A total of 186 bovine blood samples collected from two different ecoepidemiological regions of northeast Argentina, with and without tick control, were analyzed with this new RLB. High diversity of parasites, such as Babesia bovis, B. bigemina, Anaplasma marginale and three different Trypanosoma species, was found. High rates of coinfections were also detected, and significant differences were observed not only in the prevalence of parasites but also in the level of coinfections between the two analyzed areas. Regarding the Trypanosoma genus, we provide molecular evidence of the presence of T. vivax and T. theileri for the first time in Argentina. Besides, since the RLB is a prospective tool, it allowed the identification of a yet unknown bovine trypanosome which could not be assigned to any of the bovine species known so far. In the present study we provide new insights on the prevalence of several pathogens that directly impact on livestock production in Argentina. The RLB assay developed here allows to identify simultaneously numerous pathogenic species which can also be easily expanded to detect other blood borne pathogens. These characteristics make the RLB hybridization assay an essential tool for epidemiological survey of all vector-borne pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.
Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui
2014-12-01
Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Buerstmayr, Maria; Matiasch, Lydia; Mascher, Fabio; Vida, Gyula; Ittu, Marianna; Robert, Olivier; Holdgate, Sarah; Flath, Kerstin; Neumayer, Anton; Buerstmayr, Hermann
2014-09-01
We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL. The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.
PLEXdb: Gene expression resources for plants and plant pathogens
USDA-ARS?s Scientific Manuscript database
PLEXdb (Plant Expression Database), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facili...
Scatter characterization and correction for simultaneous multiple small-animal PET imaging.
Prasad, Rameshwar; Zaidi, Habib
2014-04-01
The rapid growth and usage of small-animal positron emission tomography (PET) in molecular imaging research has led to increased demand on PET scanner's time. One potential solution to increase throughput is to scan multiple rodents simultaneously. However, this is achieved at the expense of deterioration of image quality and loss of quantitative accuracy owing to enhanced effects of photon attenuation and Compton scattering. The purpose of this work is, first, to characterize the magnitude and spatial distribution of the scatter component in small-animal PET imaging when scanning single and multiple rodents simultaneously and, second, to assess the relevance and evaluate the performance of scatter correction under similar conditions. The LabPET™-8 scanner was modelled as realistically as possible using Geant4 Application for Tomographic Emission Monte Carlo simulation platform. Monte Carlo simulations allow the separation of unscattered and scattered coincidences and as such enable detailed assessment of the scatter component and its origin. Simple shape-based and more realistic voxel-based phantoms were used to simulate single and multiple PET imaging studies. The modelled scatter component using the single-scatter simulation technique was compared to Monte Carlo simulation results. PET images were also corrected for attenuation and the combined effect of attenuation and scatter on single and multiple small-animal PET imaging evaluated in terms of image quality and quantitative accuracy. A good agreement was observed between calculated and Monte Carlo simulated scatter profiles for single- and multiple-subject imaging. In the LabPET™-8 scanner, the detector covering material (kovar) contributed the maximum amount of scatter events while the scatter contribution due to lead shielding is negligible. The out-of field-of-view (FOV) scatter fraction (SF) is 1.70, 0.76, and 0.11% for lower energy thresholds of 250, 350, and 400 keV, respectively. The increase in SF ranged between 25 and 64% when imaging multiple subjects (three to five) of different size simultaneously in comparison to imaging a single subject. The spill-over ratio (SOR) increases with increasing the number of subjects in the FOV. Scatter correction improved the SOR for both water and air cold compartments of single and multiple imaging studies. The recovery coefficients for different body parts of the mouse whole-body and rat whole-body anatomical models were improved for multiple imaging studies following scatter correction. The magnitude and spatial distribution of the scatter component in small-animal PET imaging of single and multiple subjects simultaneously were characterized, and its impact was evaluated in different situations. Scatter correction improves PET image quality and quantitative accuracy for single rat and simultaneous multiple mice and rat imaging studies, whereas its impact is insignificant in single mouse imaging.
Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita
2016-01-01
Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523
Multiple infections of rodents with zoonotic pathogens in Austria.
Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G
2014-07-01
Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.
Multiple Infections of Rodents with Zoonotic Pathogens in Austria
Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald
2014-01-01
Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID:24915446
Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.
Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán
2015-09-24
Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.
Schlachter, Samantha; Chan, Kamfai; Marras, Salvatore A E; Parveen, Nikhat
2017-01-01
Real-time PCR assays have recently been implemented in diagnostics for many bacterial pathogens, allowing rapid and accurate detection, which ultimately results in improved clinical intervention. Here, we describe a sensitive method of detection for three common tick-borne pathogens Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti since coinfections with these pathogens have started occurring with increasing frequency over the last several years in both North America and Europe. A shared geographic region, the same tick vectors, and similar transmission cycle all favor simultaneous transmission of these three tick-borne pathogens. Furthermore, early symptoms of the diseases are often similar and somewhat nonspecific leading to poor clinical identification. The multiplex real-time PCR assay we describe here utilizes gene-specific primers, molecular beacon probes tagged with different fluorophores, and optimized PCR conditions to detect even small amounts of specific pathogen DNA without interference. Application of this detection method will offer better diagnostics for acute and persistent infection compared to the two-tier serological tests that are currently approved in North America and Europe, which do not necessarily detect active infection.
Wild, insectivorous bats might be carriers of Campylobacter spp.
Hazeleger, Wilma C; Jacobs-Reitsma, Wilma F; Lina, Peter H C; de Boer, Albert G; Bosch, Thijs; van Hoek, Angela H A M; Beumer, Rijkelt R
2018-01-01
The transmission cycles of the foodborne pathogens Campylobacter and Salmonella are not fully elucidated. Knowledge of these cycles may help reduce the transmission of these pathogens to humans. The presence of campylobacters and salmonellas was examined in 631 fresh fecal samples of wild insectivorous bats using a specially developed method for the simultaneous isolation of low numbers of these pathogens in small-sized fecal samples (≤ 0.1 g). Salmonella was not detected in the feces samples, but thermotolerant campylobacters were confirmed in 3% (n = 17) of the bats examined and these pathogens were found in six different bat species, at different sites, in different ecosystems during the whole flying season of bats. Molecular typing of the 17 isolated strains indicated C. jejuni (n = 9), C. coli (n = 7) and C. lari (n = 1), including genotypes also found in humans, wildlife, environmental samples and poultry. Six strains showed unique sequence types. This study shows that insectivorous bats are not only carriers of viral pathogens, but they can also be relevant for the transmission of bacterial pathogens. Bats should be considered as carriers and potential transmitters of Campylobacter and, where possible, contact between bats (bat feces) and food or feed should be avoided.
Janse, Ingmar; Hamidjaja, Raditijo A; Bok, Jasper M; van Rotterdam, Bart J
2010-12-08
Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum.
2010-01-01
Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837
Optimal strategies for the surveillance and control of forest pathogens: A case study with oak wilt
Tetsuya Horie; Robert G. Haight; Frances R. Homans; Robert C. Venette
2013-01-01
Cost-effective strategies are needed to find and remove diseased trees in forests damaged by pathogens. We develop a model of cost-minimizing surveillance and control of forest pathogens across multiple sites where there is uncertainty about the extent of the infestation in each site and when the goal is to minimize the expected number of new infections. We allow for a...
Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua
2017-01-01
Recent advancements in diffuse speckle contrast analysis (DSCA) have opened the path for noninvasive acquisition of deep tissue microvasculature blood flow. In fact, in addition to blood flow index αDB, the variations of tissue optical absorption μa, reduced scattering coefficients μs′, as well as coherence factor β can modulate temporal fluctuations of speckle patterns. In this study, we use multi-distance and multi-exposure DSCA (MDME-DSCA) to simultaneously extract multiple parameters such as μa, μs′, αDB, and β. The validity of MDME-DSCA has been validated by the simulated data and phantoms experiments. Moreover, as a comparison, the results also show that it is impractical to simultaneously obtain multiple parameters by multi-exposure DSCA (ME-DSCA). PMID:29082083
Chen, Feng; Hu, Zhe-Yi; Laizure, S Casey; Hudson, Joanna Q
2017-03-01
Optimal dosing of antibiotics in critically ill patients is complicated by the development of resistant organisms requiring treatment with multiple antibiotics and alterations in systemic exposure due to diseases and extracorporeal drug removal. Developing guidelines for optimal antibiotic dosing is an important therapeutic goal requiring robust analytical methods to simultaneously measure multiple antibiotics. An LC-MS/MS assay using protein precipitation for cleanup followed by a 6-min gradient separation was developed to simultaneously determine five antibiotics in human plasma. The precision and accuracy were within the 15% acceptance range. The formic acid concentration was an important determinant of signal intensity, peak shape and matrix effects. The method was designed to be simple and successfully applied to a clinical pharmacokinetic study.
Geographic setting influences Great Lakes beach microbiological water quality
Haack, Sheridan K.; Fogarty, Lisa R.; Stelzer, Erin A.; Fuller, Lori M.; Brennan, Angela K.; Isaacs, Natasha M.; Johnson, Heather E.
2013-01-01
Understanding of factors that influence Escherichia coli (EC) and enterococci (ENT) concentrations, pathogen occurrence, and microbial sources at Great Lakes beaches comes largely from individual beach studies. Using 12 representative beaches, we tested enrichment cultures from 273 beach water and 22 tributary samples for EC, ENT, and genes indicating the bacterial pathogens Shiga-toxin producing E. coli (STEC), Shigella spp., Salmonella spp, Campylobacter jejuni/coli, and methicillin-resistant Staphylococcus aureus, and 108–145 samples for Bacteroides human, ruminant, and gull source-marker genes. EC/ENT temporal patterns, general Bacteroides concentration, and pathogen types and occurrence were regionally consistent (up to 40 km), but beach catchment variables (drains/creeks, impervious surface, urban land cover) influenced exceedances of EC/ENT standards and detections of Salmonella and STEC. Pathogen detections were more numerous when the EC/ENT Beach Action Value (but not when the Geometric Mean and Statistical Threshold Value) was exceeded. EC, ENT, and pathogens were not necessarily influenced by the same variables. Multiple Bacteroides sources, varying by date, occurred at every beach. Study of multiple beaches in different geographic settings provided new insights on the contrasting influences of regional and local variables, and a broader-scale perspective, on significance of EC/ENT exceedances, bacterial sources, and pathogen occurrence.
Phaeocryptopus gaeumannii is a widespread foliar parasite of Douglas-fir. Although normally innocuous, the fungus also causes the defoliating disease Swiss needle cast in heavily infected needles. The extent of P. gaeumannii colonization in Douglas-fir foliage was estimated wit...
Optimized MOL-PCR for Characterization of Microbial Pathogens.
Wuyts, Véronique; Roosens, Nancy H C; Bertrand, Sophie; Marchal, Kathleen; De Keersmaecker, Sigrid C J
2016-01-06
Characterization of microbial pathogens is necessary for surveillance, outbreak detection, and tracing of outbreak sources. This unit describes a multiplex oligonucleotide ligation-PCR (MOL-PCR) optimized for characterization of microbial pathogens. With MOL-PCR, different types of markers, like unique sequences, single-nucleotide polymorphisms (SNPs) and indels, can be simultaneously analyzed in one assay. This assay consists of a multiplex ligation for detection of the markers, a singleplex PCR for signal amplification, and hybridization to MagPlex-TAG beads for readout on a Luminex platform after fluorescent staining. The current protocol describes the MOL-PCR, as well as methods for DNA isolation, probe design, and data interpretation and it is based on an optimized MOL-PCR assay for subtyping of Salmonella Typhimurium. Copyright © 2016 John Wiley & Sons, Inc.
Thermal inactivation of enzymes and pathogens in biosamples for MS analysis.
Ahnoff, Martin; Cazares, Lisa H; Sköld, Karl
2015-01-01
Protein denaturation is the common basis for enzyme inactivation and inactivation of pathogens, necessary for preservation and safe handling of biosamples for downstream analysis. While heat-stabilization technology has been used in proteomic and peptidomic research since its introduction in 2009, the advantages of using the technique for simultaneous pathogen inactivation have only recently been addressed. The time required for enzyme inactivation by heat (≈1 min) is short compared with chemical treatments, and inactivation is irreversible in contrast to freezing. Heat stabilization thus facilitates mass spectrometric studies of biomolecules with a fast conversion rate, and expands the chemical space of potential biomarkers to include more short-lived entities, such as phosphorylated proteins, in tissue samples as well as whole-blood (dried blood sample) samples.
Simple method for assembly of CRISPR synergistic activation mediator gRNA expression array.
Vad-Nielsen, Johan; Nielsen, Anders Lade; Luo, Yonglun
2018-05-20
When studying complex interconnected regulatory networks, effective methods for simultaneously manipulating multiple genes expression are paramount. Previously, we have developed a simple method for generation of an all-in-one CRISPR gRNA expression array. We here present a Golden Gate Assembly-based system of synergistic activation mediator (SAM) compatible CRISPR/dCas9 gRNA expression array for the simultaneous activation of multiple genes. Using this system, we demonstrated the simultaneous activation of the transcription factors, TWIST, SNAIL, SLUG, and ZEB1 a human breast cancer cell line. Copyright © 2018 Elsevier B.V. All rights reserved.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2008-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Bae, Chungyun; Kim, Su-min; Lee, Dong Ju; Choi, Doil
2013-01-01
Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense. PMID:23696830
Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus
USDA-ARS?s Scientific Manuscript database
Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...
ENGINEERING ASPECTS OF WATERBORNE DISEASE INVESTIGATIONS
As part of a disease outbreak investigation involving drinking water, an engineering investigation may be necessary to determine how or why the pathogen of concern was able to get to the consumer. In many of the US outbreaks, the survival of the pathogen was dependent on multiple...
Etiology of community acquired pneumonia among children in India: prospective, cohort study
Mathew, Joseph L.; Singhi, Sunit; Ray, Pallab; Hagel, Eva; Saghafian–Hedengren, Shanie; Bansal, Arun; Ygberg, Sofia; Sodhi, Kushaljit Singh; Kumar, B V Ravi; Nilsson, Anna
2015-01-01
Background Childhood community acquired pneumonia (CAP) is a significant problem in developing countries, and confirmation of microbial etiology is important for individual, as well as public health. However, there is paucity of data from a large cohort, examining multiple biological specimens for diverse pathogens (bacteria and viruses). The Community Acquired Pneumonia Etiology Study (CAPES) was designed to address this knowledge gap. Methods We enrolled children with CAP (based on WHO IMCI criteria of tachypnea with cough or breathing difficulty) over 24 consecutive months, and recorded presenting symptoms, risk factors, clinical signs, and chest radiography. We performed blood and nasopharyngeal aspirate (NPA) bacterial cultures, and serology (Mycoplasma pneumoniae, Chlamydophila pneumoniae). We also performed multiplex PCR for 25 bacterial/viral species in a subgroup representing 20% of the cohort. Children requiring endotracheal intubation underwent culture and PCR of bronchoalveolar lavage (BAL) specimens. Findings We enrolled 2345 children. NPA and blood cultures yielded bacteria in only 322 (13.7%) and 49 (2.1%) children respectively. In NPA, Streptococcus pneumoniae (79.1%) predominated, followed by Haemophilus influenzae (9.6%) and Staphylococcus aureus (6.8%). In blood, S. aureus (30.6%) dominated, followed by S. pneumoniae (20.4%) and Klebsiella pneumoniae (12.2%). M. pneumoniae and C. pneumoniae serology were positive in 4.3% and 1.1% respectively. Multiplex PCR in 428 NPA specimens identified organisms in 422 (98.6%); of these 352 (82.2%) had multiple organisms and only 70 (16.4%) had a single organism viz. S. pneumoniae: 35 (50%), Cytomegalovirus (CMV): 13 (18.6%), Respiratory Syncytial Virus (RSV): 9 (12.9%), other viruses: 6 (8.7%), S. aureus: 5 (7.1%), and H. influenzae: 2 (2.9%). BAL PCR (n = 30) identified single pathogens in 10 (S. pneumoniae–3, CMV–3, S. aureus–2, H. influenzae–2) and multiple pathogens in 18 children. There were 108 (4.6%) deaths. The pattern of pathogens identified did not correlate with pneumonia severity or mortality. Conclusions The majority of children with CAP have multiple pathogens (bacteria and viruses). S. pneumoniae and S. aureus predominate in NPA and blood respectively. CMV and RSV were the dominant respiratory viruses in NPA and BAL. The presence of multiple pathogens, especially organisms associated with nasopharyngeal carriage, precludes confirmation of a causal relationship in most cases. PMID:26528392
[Use of multiple locus variable number tandem repeats analysis for the Brucella systematization].
Kulakov, Iu K; Kovalev, D A; Misetova, E N; Golovneva, S I; Liapustina, L V; Zheludkov, M M
2012-01-01
The methods of molecular-genetic differentiation to strain level acquire increasing significance in the current system of struggle with brucellosis. MLVA (multiple locus variable number tandem repeats analysis) was selected for molecular-genetic differentiation to strain level and simultaneous establishment of the genetic relationship of investigated Brucella strains. The goal of this work was MLVA typing of three pathogenic Brucella species strains with the analysis of stability of chosen loci, discrimination power and concordance to conventional phenotypic methods of the Brucella differentiation for use in systematization of brucellosis causing agents. Twenty six Brucella strains representing reference (n = 15), vaccine (n = 2) and field strains of three pathogenic Brucella species were tested: B. melitensis (n = 3), B. abortus (n = 2), B. suis (n = 2), and isolates (n = 2) with unidentified taxonomic position using MLVA with 9 pairs primers on known variable loci of Brucella genome. The analysis of the stability of chosen loci, discrimination power on Hunter-Gaston discrimination index (HGDI) and consistency to phenotypic methods of identification was performed. MLVA was confirmed for the results of phenotypic methods of identification, stability of the chosen loci in majority reference, and vaccine strains with a high index of variability HGDI 0.9969 for all loci. A dendrogram was plotted on the basis of MLVA data on distributed Brucella strains in related clusters according to its taxonomic species and biovar positions and construction of 25 genotypes. B. melitensis strains formed cluster related to the reference strain of B. melitensis 63/9 biovar 2. Australian isolates of Brucella 83-4 and Brucella 83-6 isolated from rodents formed a cluster distant from other strains of Brucella. MLVA is a promising method for differentiation of Brucella strains with known and unresolved taxonomic status for their systematization and creation of MLVA genotype catalogue that will promote qualitative improvement of brucellosis surveillance system in Russia.
Nguyen, Phuong Dung T; Pike, Sharon; Wang, Jianying; Nepal Poudel, Arati; Heinz, Robert; Schultz, Jack C; Koo, Abraham J; Mitchum, Melissa G; Appel, Heidi M; Gassmann, Walter
2016-05-01
Plants have developed diverse mechanisms to fine tune defence responses to different types of enemy. Cross-regulation between signalling pathways may allow the prioritization of one response over another. Previously, we identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent effector-triggered immunity against the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4. The use of multiple stresses is a powerful tool to further define gene function. Here, we examined whether SRFR1 also impacts resistance to a herbivorous insect in leaves and to a cyst nematode in roots. Interestingly, srfr1-1 plants showed increased resistance to herbivory by the beet army worm Spodoptera exigua and to parasitism by the cyst nematode Heterodera schachtii compared with the corresponding wild-type Arabidopsis accession RLD. Using quantitative real-time PCR (qRT-PCR) to measure the transcript levels of salicylic acid (SA) and jasmonate/ethylene (JA/ET) pathway genes, we found that enhanced resistance of srfr1-1 plants to S. exigua correlated with specific upregulation of the MYC2 branch of the JA pathway concurrent with suppression of the SA pathway. In contrast, the greater susceptibility of RLD was accompanied by simultaneously increased transcript levels of SA, JA and JA/ET signalling pathway genes. Surprisingly, mutation of either SRFR1 or EDS1 increased resistance to H. schachtii, indicating that the concurrent presence of both wild-type genes promotes susceptibility. This finding suggests a novel form of resistance in Arabidopsis to the biotrophic pathogen H. schachtii or a root-specific regulation of the SA pathway by EDS1, and places SRFR1 at an intersection between multiple defence pathways. © 2015 THE AUTHORS MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.
Ziveri, Jason; Tros, Fabiola; Guerrera, Ida Chiara; Chhuon, Cerina; Audry, Mathilde; Dupuis, Marion; Barel, Monique; Korniotis, Sarantis; Fillatreau, Simon; Gales, Lara; Cahoreau, Edern; Charbit, Alain
2017-10-11
The enzyme fructose-bisphosphate aldolase occupies a central position in glycolysis and gluconeogenesis pathways. Beyond its housekeeping role in metabolism, fructose-bisphosphate aldolase has been involved in additional functions and is considered as a potential target for drug development against pathogenic bacteria. Here, we address the role of fructose-bisphosphate aldolase in the bacterial pathogen Francisella novicida. We demonstrate that fructose-bisphosphate aldolase is important for bacterial multiplication in macrophages in the presence of gluconeogenic substrates. In addition, we unravel a direct role of this metabolic enzyme in transcription regulation of genes katG and rpoA, encoding catalase and an RNA polymerase subunit, respectively. We propose a model in which fructose-bisphosphate aldolase participates in the control of host redox homeostasis and the inflammatory immune response.The enzyme fructose-bisphosphate aldolase (FBA) plays central roles in glycolysis and gluconeogenesis. Here, Ziveri et al. show that FBA of the pathogen Francisella novicida acts, in addition, as a transcriptional regulator and is important for bacterial multiplication in macrophages.
2014-01-01
Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948
BeeDoctor, a Versatile MLPA-Based Diagnostic Tool for Screening Bee Viruses
De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R.; Wenseleers, Tom; Mueller, Matthias Y.; Moritz, Robin F. A.; de Graaf, Dirk C.
2012-01-01
The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called “BeeDoctor”, was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. “BeeDoctor” is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. “BeeDoctor” was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the “BeeDoctor”, virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies. PMID:23144717
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Balmaseda, Angel; Harris, Eva; DeRisi, Joseph L.
2012-01-01
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness. PMID:22347512
BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses.
De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R; Wenseleers, Tom; Mueller, Matthias Y; Moritz, Robin F A; de Graaf, Dirk C
2012-01-01
The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.
Shan, Zhongguo; Zhu, Kexin; Peng, Hui; Chen, Bei; Liu, Jie; Chen, Fangyi; Ma, Xiaowan; Wang, Shuping; Qiao, Kun; Wang, Kejian
2016-01-01
SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain. PMID:27493644
Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Li, Zhaohui; Liu, Misha
Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeledmore » single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.« less
Multiplication of VHS virus in insect cells.
Lorenzen, N; Olesen, N J
1995-01-01
Viral haemorrhagic septicaemia virus (VHSV) belongs to the rhabdovirus family and is a major pathogen in farmed rainbow trout. An insect cell culture traditionally used for production of recombinant proteins was found to be susceptible to VHS virus. At pH 6.2, VHSV multiplication induced formation of large syncytia similar to those obtained by baculovirus-induced expression of recombinant VHSV glycoprotein. The VHSV G protein produced in insect cells was smaller than G protein derived from fish cells. VHS virus produced in insect cells was still pathogenic to rainbow trout after 2 cell culture passages.
Competition between yogurt probiotics and periodontal pathogens in vitro.
Zhu, Yunwo; Xiao, Liying; Shen, Da; Hao, Yuqing
2010-09-01
To investigate the competition between probiotics in bio-yogurt and periodontal pathogens in vitro. The antimicrobial activity of bio-yogurt was studied by agar diffusion assays, using eight species of putative periodontal pathogens and a 'protective bacteria' as indicator strains. Four probiotic bacterial species (Lactobacillus bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, and Bifidobacterium) were isolated from yogurt and used to rate the competitive exclusion between probiotics and periodontal pathogens. Fresh yogurt inhibited all the periodontal pathogens included in this work, showing inhibition zones ranging from 9.3 (standard deviation 0.6) mm to 17.3 (standard deviation 1.7) mm, whereas heat-treated yogurt showed lower antimicrobial activity. In addition, neither fresh yogurt nor heat-treated yogurt inhibited the 'protective bacteria', Streptococcus sanguinis. The competition between yogurt probiotics and periodontal pathogens depended on the sequence of inoculation. When probiotics were inoculated first, Bifidobacterium inhibited Porphyromonas gingivalis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas circumdentaria, and Prevotella nigrescens; L. acidophilus inhibited P. gingivalis, A. actinomycetemcomitans, P. circumdentaria, P. nigrescens, and Peptostreptococcus anaerobius; L. bulgaricus inhibited P. gingivalis, A. actinomycetemcomitans, and P. nigrescens; and S. thermophilus inhibited P. gingivalis, F. nucleatum, and P. nigrescens. However, their antimicrobial properties were reduced when both species (probiotics and periodontal pathogens) were inoculated simultaneously. When periodontal pathogens were inoculated first, Prevotella intermedia inhibited Bifidobacterium and S. thermophilus. The results demonstrated that bio-yogurt and the probiotics that it contains are capable of inhibiting specific periodontal pathogens but have no effect on the periodontal protective bacteria.
Intervention of Phytohormone Pathways by Pathogen Effectors[OPEN
Kazan, Kemal; Lyons, Rebecca
2014-01-01
The constant struggle between plants and microbes has driven the evolution of multiple defense strategies in the host as well as offense strategies in the pathogen. To defend themselves from pathogen attack, plants often rely on elaborate signaling networks regulated by phytohormones. In turn, pathogens have adopted innovative strategies to manipulate phytohormone-regulated defenses. Tactics frequently employed by plant pathogens involve hijacking, evading, or disrupting hormone signaling pathways and/or crosstalk. As reviewed here, this is achieved mechanistically via pathogen-derived molecules known as effectors, which target phytohormone receptors, transcriptional activators and repressors, and other components of phytohormone signaling in the host plant. Herbivores and sap-sucking insects employ obligate pathogens such as viruses, phytoplasma, or symbiotic bacteria to intervene with phytohormone-regulated defenses. Overall, an improved understanding of phytohormone intervention strategies employed by pests and pathogens during their interactions with plants will ultimately lead to the development of new crop protection strategies. PMID:24920334
Fatty Acid Methyl Ester (FAME) analyses for characterization and detection of grapevine pathogens
USDA-ARS?s Scientific Manuscript database
Grapevines can become infected by a variety of devastating pathogens, including the bacterium Xylella fastidiosa and canker fungi. Multiple strains of Xylella fastidiosa exist, each causing different diseases on various hosts. Although sequence-based genotyping can assist in distinguishing these str...
The Evolution of Foodborne Pathogens
NASA Astrophysics Data System (ADS)
Abu-Ali, Galeb S.; Manning, Shannon D.
Despite continuous advances in food safety and disease surveillance, control, and prevention, foodborne bacterial infections remain a major public health concern. Because foodborne pathogens are commonly exposed to multiple environmental stressors, such as low pH and antibiotics, most have evolved specific mechanisms to facilitate survival in adverse environments.
Microbiome studies in the biological control of plant pathogens
USDA-ARS?s Scientific Manuscript database
Biological control of plant pathogens, although it has been a successful alternative that has allowed to select microorganisms for the generation of bioproducts and to understand multiple biological mechanisms, cannot be considered as a strategy defined only from the selection of a range of cultiva...
A leitmotif of contemporary mycology has challenges and benefits for plant pathologists
USDA-ARS?s Scientific Manuscript database
Multiple traditional species names for plant pathogenic fungi have been supplemented with new names that delimit formerly cryptic species. In other instances, isolates within a species are clearly differentiated by both phylogeny and distinctive pathogenic traits and are assigned sub-specific design...
Sgarlata, Carmelo; Raymond, Kenneth N
2016-07-05
The entropic and enthalpic driving forces for encapsulation versus sequential exterior guest binding to the [Ga4L6](12-) supramolecular host in solution are very different, which significantly complicates the determination of these thermodynamic parameters. The simultaneous use of complementary techniques, such as NMR, UV-vis, and isothermal titration calorimetry, enables the disentanglement of such multiple host-guest interactions. Indeed, data collected by each technique measure different components of the host-guest equilibria and together provide a complete picture of the solution thermodynamics. Unfortunately, commercially available programs do not allow for global analysis of different physical observables. We thus resorted to a novel procedure for the simultaneous refinement of multiple parameters (ΔG°, ΔH°, and ΔS°) by treating different observables through a weighted nonlinear least-squares analysis of a constrained model. The refinement procedure is discussed for the multiple binding of the Et4N(+) guest, but it is broadly applicable to the deconvolution of other intricate host-guest equilibria.
A simple mathematical method to estimate ammonia emission from in-house windrowing of poultry litter
USDA-ARS?s Scientific Manuscript database
In house windrowing between flocks is an emerging sanitary management practice to partially disinfect the built-up litter in broiler houses. Windrowing litter results in high litter temperatures that can reduce the risk of transmitting pathogens to next flock. Simultaneously, this practice may also ...
Simultaneous laurel wilt disease biology and resistance research
Jason A. Smith; Randy C. Ploetz
2012-01-01
Laurel wilt (LW) is a devastating, emerging disease of native and non-native members of the Lauraceae family in the southeastern United States. Currently, the fungal pathogen (Raffaelea lauricola) and its vector (Xyleborus glabratus) are found in Alabama, Florida, Georgia, Mississippi, and North and South Carolina. The wilt is...
Moser, Lindsey A.; Ramirez-Carvajal, Lisbeth; Puri, Vinita; Pauszek, Steven J.; Matthews, Krystal; Dilley, Kari A.; Mullan, Clancy; McGraw, Jennifer; Khayat, Michael; Beeri, Karen; Yee, Anthony; Dugan, Vivien; Heise, Mark T.; Frieman, Matthew B.; Rodriguez, Luis L.; Bernard, Kristen A.; Wentworth, David E.
2016-01-01
ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories. PMID:27822536
Zhong, Yan; Xu, Xiao-Quan; Pan, Xiang-Long; Zhang, Wei; Xu, Hai; Yuan, Mei; Kong, Ling-Yan; Pu, Xue-Hui; Chen, Liang; Yu, Tong-Fu
2017-09-01
To evaluate the safety and efficacy of the hook wire system in the simultaneous localizations for multiple pulmonary nodules (PNs) before video-assisted thoracoscopic surgery (VATS), and to clarify the risk factors for pneumothorax associated with the localization procedure. Between January 2010 and February 2016, 67 patients (147 nodules, Group A) underwent simultaneous localizations for multiple PNs using a hook wire system. The demographic, localization procedure-related information and the occurrence rate of pneumothorax were assessed and compared with a control group (349 patients, 349 nodules, Group B). Multivariate logistic regression analyses were used to determine the risk factors for pneumothorax during the localization procedure. All the 147 nodules were successfully localized. Four (2.7%) hook wires dislodged before VATS procedure, but all these four lesions were successfully resected according to the insertion route of hook wire. Pathological diagnoses were acquired for all 147 nodules. Compared with Group B, Group A demonstrated significantly longer procedure time (p < 0.001) and higher occurrence rate of pneumothorax (p = 0.019). Multivariate logistic regression analysis indicated that position change during localization procedure (OR 2.675, p = 0.021) and the nodules located in the ipsilateral lung (OR 9.404, p < 0.001) were independent risk factors for pneumothorax. Simultaneous localizations for multiple PNs using a hook wire system before VATS procedure were safe and effective. Compared with localization for single PN, simultaneous localizations for multiple PNs were prone to the occurrence of pneumothorax. Position change during localization procedure and the nodules located in the ipsilateral lung were independent risk factors for pneumothorax.
Cheng, Timothy H T; Gorman, Maggie; Martin, Lynn; Barclay, Ella; Casey, Graham; Saunders, Brian; Thomas, Huw; Clark, Sue; Tomlinson, Ian
2015-02-01
The presence of multiple (5-100) colorectal adenomas suggests an inherited predisposition, but the genetic aetiology of this phenotype is undetermined if patients test negative for Mendelian polyposis syndromes such as familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP). We investigated whether 18 common colorectal cancer (CRC) predisposition single-nucleotide polymorphisms (SNPs) could help to explain some cases with multiple adenomas who phenocopied FAP or MAP, but had no pathogenic APC or MUTYH variant. No multiple adenoma case had an outlying number of CRC SNP risk alleles, but multiple adenoma patients did have a significantly higher number of risk alleles than population controls (P=5.7 × 10(-7)). The association was stronger in those with ≥10 adenomas. The CRC SNPs accounted for 4.3% of the variation in multiple adenoma risk, with three SNPs (rs6983267, rs10795668, rs3802842) explaining 3.0% of the variation. In FAP patients, the CRC risk score did not differ significantly from the controls, as we expected given the overwhelming effect of pathogenic germline APC variants on the phenotype of these cases. More unexpectedly, we found no evidence that the CRC SNPs act as modifier genes for the number of colorectal adenomas in FAP patients. In conclusion, common colorectal tumour risk alleles contribute to the development of multiple adenomas in patients without pathogenic germline APC or MUTYH variants. This phenotype may have 'polygenic' or monogenic origins. The risk of CRC in relatives of multiple adenoma cases is probably much lower for cases with polygenic disease, and this should be taken into account when counselling such patients.
Metzgar, David; Myers, Christopher A.; Russell, Kevin L.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Vo, Scott; Swayne, David E.; Thomas, Colleen; Stenger, David A.; Lin, Baochuan; Malanoski, Anthony P.; Wang, Zheng; Blaney, Kate M.; Long, Nina C.; Schnur, Joel M.; Saad, Magdi D.; Borsuk, Lisa A.; Lichanska, Agnieszka M.; Lorence, Matthew C.; Weslowski, Brian; Schafer, Klaus O.; Tibbetts, Clark
2010-01-01
For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents. PMID:20140251
Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark
2010-02-03
For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents.
Zhang, D F; Zhang, Q Q; Li, A H
2014-11-01
Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This mPCR assay provides a rapid, specific and sensitive tool for the detection or identification of common fish pathogenic bacteria in aquaculture practice. © 2014 The Society for Applied Microbiology.
WANG, Lih-Chiann; HUANG, Dean; CHEN, Hui-Wen
2016-01-01
The H6N1 avian influenza virus has circulated in Taiwan for more than 40 years. The sporadic activity of low pathogenic H5N2 virus has been noted since 2003, and highly pathogenic H5N2 avian influenza virus has been detected since 2008. Ressortant viruses between H6N1 and H5N2 viruses have become established and enzootic in chickens throughout Taiwan. Outbreaks caused by Novel highly pathogenic H5 avian influenza viruses whose HA genes were closely related to that of the H5N8 virus isolated from ducks in Korea in 2014 were isolated from outbreaks in Taiwan since early 2015. The avian influenza virus infection status is becoming much more complicated in chickens in Taiwan. This necessitates a rapid and simple approach to detect and differentiate the viruses that prevail. H6N1, H5N2 and novel H5 viruses were simultaneously subtyped and pathotyped in this study using reverse transcription loop-mediated isothermal amplification and microarray, with detection limits of 10°, 101 and 10° viral copy numbers, respectively. The microarray signals were read by the naked eye with no expensive equipment needed. The method developed in this study could greatly improve avian influenza virus surveillance efficiency. PMID:27086860
Development of a real-time radon monitoring system for simultaneous measurements in multiple sites
NASA Astrophysics Data System (ADS)
Yamamoto, S.; Yamasoto, K.; Iida, T.
1999-12-01
A real-time radon monitoring system that can simultaneously measure radon concentrations in multiple sites was developed and tested. The system consists of maximum of four radon detectors, optical fiber cables and a data acquisition personal computer. The radon detector uses a plastic scintillation counter that collects radon daughters in the chamber electrostatically. The applied voltage on the photocathode for the photomultiplier tube (PMT) acts as an electrode for radon daughters. The thickness of the plastic scintillator was thin, 50 /spl mu/m, so as to minimize the background counts due to the environmental gamma rays or beta particles. The energy discriminated signals from the radon detectors are fed to the data acquisition personal computer via optical fiber cables. The system made it possible to measure the radon concentrations in multiple sites simultaneously.
Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei
2016-08-16
The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.
Oechslin, Corinne P; Heutschi, Daniel; Lenz, Nicole; Tischhauser, Werner; Péter, Olivier; Rais, Olivier; Beuret, Christian M; Leib, Stephen L; Bankoul, Sergei; Ackermann-Gäumann, Rahel
2017-11-09
Throughout Europe, Ixodes ricinus transmits numerous pathogens. Its widespread distribution is not limited to rural but also includes urbanized areas. To date, comprehensive data on pathogen carrier rates of I. ricinus ticks in urban areas of Switzerland is lacking. Ixodes ricinus ticks sampled at 18 (sub-) urban collection sites throughout Switzerland showed carrier rates of 0% for tick-borne encephalitis virus, 18.0% for Borrelia burgdorferi (sensu lato), 2.5% for Borrelia miyamotoi, 13.5% for Rickettsia spp., 1.4% for Anaplasma phagocytophilum, 6.2% for "Candidatus Neoehrlichia mikurensis", and 0.8% for Babesia venatorum (Babesia sp., EU1). Site-specific prevalence at collection sites with n > 45 ticks (n = 9) significantly differed for B. burgdorferi (s.l.), Rickettsia spp., and "Ca. N. mikurensis", but were not related to the habitat type. Three hundred fifty eight out of 1078 I. ricinus ticks (33.2%) tested positive for at least one pathogen. Thereof, about 20% (71/358) were carrying two or three different potentially disease-causing agents. Using next generation sequencing, we could detect true pathogens, tick symbionts and organisms of environmental or human origin in ten selected samples. Our data document the presence of pathogens in the (sub-) urban I. ricinus tick population in Switzerland, with carrier rates as high as those in rural regions. Carriage of multiple pathogens was repeatedly observed, demonstrating the risk of acquiring multiple infections as a consequence of a tick bite.
Wyrsch, Ethan R.; Roy Chowdhury, Piklu; Chapman, Toni A.; Charles, Ian G.; Hammond, Jeffrey M.; Djordjevic, Steven P.
2016-01-01
Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance. PMID:27379026
How direct competition shapes coexistence and vaccine effects in multi-strain pathogen systems.
Gjini, Erida; Valente, Carina; Sá-Leão, Raquel; Gomes, M Gabriela M
2016-01-07
We describe an integrated modeling framework for understanding strain coexistence in polymorphic pathogen systems. Previous studies have debated the utility of neutral formulations and focused on cross-immunity between strains as a major stabilizing mechanism. Here we convey that direct competition for colonization mediates stable coexistence only when competitive abilities amongst pathogen clones satisfy certain pairwise asymmetries. We illustrate our ideas with nested SIS models of single and dual colonization, applied to polymorphic pneumococcal bacteria. By fitting the models to cross-sectional prevalence data from Portugal (before and after the introduction of a seven-valent pneumococcal conjugate vaccine), we are able to not only statistically compare neutral and non-neutral epidemiological formulations, but also estimate vaccine efficacy, transmission and competition parameters simultaneously. Our study highlights that the response of polymorphic pathogen populations to interventions holds crucial information about strain interactions, which can be extracted by suitable nested modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lin, Baochuan; Malanoski, Anthony P.; Wang, Zheng; Blaney, Kate M.; Long, Nina C.; Meador, Carolyn E.; Metzgar, David; Myers, Christopher A.; Yingst, Samuel L.; Monteville, Marshall R.; Saad, Magdi D.; Schnur, Joel M.; Tibbetts, Clark; Stenger, David A.
2009-01-01
Zoonotic microbes have historically been, and continue to emerge as, threats to human health. The recent outbreaks of highly pathogenic avian influenza virus in bird populations and the appearance of some human infections have increased the concern of a possible new influenza pandemic, which highlights the need for broad-spectrum detection methods for rapidly identifying the spread or outbreak of all variants of avian influenza virus. In this study, we demonstrate that high-density resequencing pathogen microarrays (RPM) can be such a tool. The results from 37 influenza virus isolates show that the RPM platform is an effective means for detecting and subtyping influenza virus, while simultaneously providing sequence information for strain resolution, pathogenicity, and drug resistance without additional analysis. This study establishes that the RPM platform is a broad-spectrum pathogen detection and surveillance tool for monitoring the circulation of prevalent influenza viruses in the poultry industry and in wild birds or incidental exposures and infections in humans. PMID:19279171
Turner, Lucy M; Alsterberg, Christian; Turner, Andrew D; Girisha, S K; Rai, Ashwin; Havenhand, Jonathan N; Venugopal, M N; Karunasagar, Indrani; Godhe, Anna
2016-08-31
There is growing evidence that climate change will increase the prevalence of toxic algae and harmful bacteria, which can accumulate in marine bivalves. However, we know little about any possible interactions between exposure to these microorganisms and the effects of climate change on bivalve health, or about how this may affect the bivalve toxin-pathogen load. In mesocosm experiments, mussels, Perna viridis, were subjected to simulated climate change (warming and/or hyposalinity) and exposed to harmful bacteria and/or toxin-producing dinoflagellates. We found significant interactions between climate change and these microbes on metabolic and/or immunobiological function and toxin-pathogen load in mussels. Surprisingly, however, these effects were virtually eliminated when mussels were exposed to both harmful microorganisms simultaneously. This study is the first to examine the effects of climate change on determining mussel toxin-pathogen load in an ecologically relevant, multi-trophic context. The results may have considerable implications for seafood safety.
[Modern concepts of etiology, pathogenesis and treatment approaches to endo-perio lesions].
Grudianov, A I; Makeeva, M K; Piatgorskaia, N V
2013-01-01
A combination ofperiodontitis and pulp or periapical tissues inflammation in one tooth is known as endo-periodontal lesions. Such kind of lesion is serious problem of modern dentistry. It was found that pathogenic microflora of periodontal pocket and root canal of tooth with eno-perio lesion is almost the equal and consist of anaerobic microorganisms. Pathogenic effects have not only microorganisms but also their life products. Apical foramen, lateral and additional canals are physiological ways for pathogens migration. Inflammatory processes in these structures complicate each other. Lack of information among dentists about treatment possibilities of endo-perio lesions is a main reasons of extraction such kind of teeth. Simultaneous elimination of pathogens both from periodontal pocket and root canal is a key factor for effective treatment. Periodontal status is main factor for prognosis of tooth with endo-perio lesion, because of it treatment of endo-perio lesions should consist of two stages: infection elimination and regeneration of tooth-supported structures.
USDA-ARS?s Scientific Manuscript database
Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and inc...
Perspectives of Spatial Scale in a Wildland Forest Epidemic
W.W. Dillon; S.E. Haas; D.M. Rizzo; R.K. Meentemeyer
2014-01-01
The challenge of observing interactions between plant pathogens, their hosts, and environmental heterogeneity across multiple spatial scales commonly limits our ability to understand and manage wildland forest epidemics. Using the forest pathogen Phytophthora ramorum as a case study, we established 20 multiscale field sites to analyze how host-...
Tybur, Joshua M; Merriman, Leslie A; Hooper, Ann E Caldwell; McDonald, Melissa M; Navarrete, Carlos David
2010-10-26
Previous research suggests that several individual and cultural level attitudes, cognitions, and societal structures may have evolved to mitigate the pathogen threats posed by intergroup interactions. It has been suggested that these anti-pathogen defenses are at the root of conservative political ideology. Here, we test a hypothesis that political conservatism functions as a pathogen-avoidance strategy. Across three studies, we consistently find no relationship between sensitivity to pathogen disgust and multiple measures of political conservatism. These results are contrasted with theoretical perspectives suggesting a relationship between conservatism and pathogen avoidance, and with previous findings of a relationship between conservatism and disgust sensitivity.
Huang, Lin; Zheng, Lei; Chen, Yinji; Xue, Feng; Cheng, Lin; Adeloju, Samuel B; Chen, Wei
2015-04-15
Since the introduction of genetically modified organisms (GMOs), there has been on-going and continuous concern and debates on the commercialization of products derived from GMOs. There is an urgent need for development of highly efficient analytical methods for rapid and high throughput screening of GMOs components, as required for appropriate labeling of GMO-derived foods, as well as for on-site inspection and import/export quarantine. In this study, we describe, for the first time, a multi-labeling based electrochemical biosensor for simultaneous detection of multiple DNA components of GMO products on the same sensing interface. Two-round signal amplification was applied by using both an exonuclease enzyme catalytic reaction and gold nanoparticle-based bio-barcode related strategies, respectively. Simultaneous multiple detections of different DNA components of GMOs were successfully achieved with satisfied sensitivity using this electrochemical biosensor. Furthermore, the robustness and effectiveness of the proposed approach was successfully demonstrated by application to various GMO products, including locally obtained and confirmed commercial GMO seeds and transgenetic plants. The proposed electrochemical biosensor demonstrated unique merits that promise to gain more interest in its use for rapid and on-site simultaneous multiple screening of different components of GMO products. Copyright © 2014 Elsevier B.V. All rights reserved.
High content screening in neurodegenerative diseases.
Jain, Shushant; van Kesteren, Ronald E; Heutink, Peter
2012-01-06
The functional annotation of genomes, construction of molecular networks and novel drug target identification, are important challenges that need to be addressed as a matter of great urgency. Multiple complementary 'omics' approaches have provided clues as to the genetic risk factors and pathogenic mechanisms underlying numerous neurodegenerative diseases, but most findings still require functional validation. For example, a recent genome wide association study for Parkinson's Disease (PD), identified many new loci as risk factors for the disease, but the underlying causative variant(s) or pathogenic mechanism is not known. As each associated region can contain several genes, the functional evaluation of each of the genes on phenotypes associated with the disease, using traditional cell biology techniques would take too long. There is also a need to understand the molecular networks that link genetic mutations to the phenotypes they cause. It is expected that disease phenotypes are the result of multiple interactions that have been disrupted. Reconstruction of these networks using traditional molecular methods would be time consuming. Moreover, network predictions from independent studies of individual components, the reductionism approach, will probably underestimate the network complexity. This underestimation could, in part, explain the low success rate of drug approval due to undesirable or toxic side effects. Gaining a network perspective of disease related pathways using HT/HC cellular screening approaches, and identifying key nodes within these pathways, could lead to the identification of targets that are more suited for therapeutic intervention. High-throughput screening (HTS) is an ideal methodology to address these issues. but traditional methods were one dimensional whole-well cell assays, that used simplistic readouts for complex biological processes. They were unable to simultaneously quantify the many phenotypes observed in neurodegenerative diseases such as axonal transport deficits or alterations in morphology properties. This approach could not be used to investigate the dynamic nature of cellular processes or pathogenic events that occur in a subset of cells. To quantify such features one has to move to multi-dimensional phenotypes termed high-content screening (HCS). HCS is the cell-based quantification of several processes simultaneously, which provides a more detailed representation of the cellular response to various perturbations compared to HTS. HCS has many advantages over HTS, but conducting a high-throughput (HT)-high-content (HC) screen in neuronal models is problematic due to high cost, environmental variation and human error. In order to detect cellular responses on a 'phenomics' scale using HC imaging one has to reduce variation and error, while increasing sensitivity and reproducibility. Herein we describe a method to accurately and reliably conduct shRNA screens using automated cell culturing and HC imaging in neuronal cellular models. We describe how we have used this methodology to identify modulators for one particular protein, DJ1, which when mutated causes autosomal recessive parkinsonism. Combining the versatility of HC imaging with HT methods, it is possible to accurately quantify a plethora of phenotypes. This could subsequently be utilized to advance our understanding of the genome, the pathways involved in disease pathogenesis as well as identify potential therapeutic targets. Copyright © 2012 Creative Commons Attribution License
De Niz, Mariana; Stanway, Rebecca R; Wacker, Rahel; Keller, Derya; Heussler, Volker T
2016-04-21
Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Lertsethtakarn, Paphavee; Nakjarung, Kaewkanya; Silapong, Sasikorn; Neesanant, Pimmnapar; Sakpaisal, Pimmada; Bodhidatta, Ladaporn; Liu, Jie; Houpt, Eric; Velasco, John Mark; Macareo, Louis R; Swierczewski, Brett E; Mason, Carl J
2016-11-01
Military personnel are vulnerable to diarrhea. Diarrheal disease is common when deployed for operations or exercise in developing countries. Although diarrheal disease is transient, cumulative time lost and medical asset can have a significant impact on military operations. Currently, diagnostics of diarrheal etiology typically relies on a mixture of conventional bacteriology, enzyme-linked immunosorbent assay, and polymerase chain reaction (PCR)-based methods including real-time PCR. These methods, however, can be time and labor intensive, although the identification of diarrheal etiology needs to be informative and rapid for treatment and prevention. Real-time PCR has been increasingly used to identify pathogens. Real-time PCR panels of common diarrheal pathogens have been developed, but several diarrheal pathogens are not included in the panel. An expanded and customizable panel to detect diarrhea etiology has been developed employing TaqMan Array Card (TAC) technology. TAC performs 384 real-time PCR reactions simultaneously. As currently configured for diarrheal disease by the University of Virginia, a maximum of 8 samples can be tested simultaneously with approximately 48 target pathogens per sample including bacteria, fungi, helminths, protozoan parasites, and viruses. TAC diarrheal disease panels have been successfully applied to detect pathogens in acute diarrheal stool samples from young children in several international multicenter diarrhea studies. In this study, TAC was applied to stool samples collected under an approved human use protocol from military personnel with acute diarrhea participating in the annual joint military exercise, Balikatan, between the Republic of the Philippines and the United States in 2014. Several established pathogen-specific real-time PCR detection assays were also performed in parallel for comparative purposes. TAC was applied to 7 stool samples. Campylobacter spp. was the most common diarrheal disease pathogen detected. Results from TAC matched 5 out of 6 pathogen specific real-time PCR assays. TAC required a total of 5-6 hours to complete all the procedures from nucleic acid extraction and data analysis, whereas a minimum of 18 hours and 4 hours are required for conventional bacteriology and enzyme-linked immunosorbent assay, respectively, per pathogen. With TAC, pathogen load can be estimated from the amount of nucleic acid present for each pathogen, which can be analyzed further to better determine pathogen attribution and to compare pathogen load between case and control samples. Unfortunately, such correlative analysis was not possible because of the limited sample size available in this study. A larger sample size is needed for further evaluation of TAC on a specific population set, including military personnel. Regardless, TAC was found to be a useful and functional diagnostic platform that is less time-consuming, easy to use with high reproducibility, and costs less per sample compared to the current typically employed methods. The successful application of TAC in acute diarrhea stool samples from a US military population in the Philippines demonstrates its versatility as a potential candidate for a next-generation diagnostics platform. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
The trans-kingdom identification of negative regulators of pathogen hypervirulence.
Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E
2016-01-01
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. © FEMS 2015.
Establishing versus preserving impressions: Predicting success in the multiple audience problem.
Nichols, Austin Lee; Cottrell, Catherine A
2015-12-01
People sometimes seek to convey discrepant impressions of themselves to different audiences simultaneously. Research suggests people are generally successful in this "multiple audience problem." Adding to previous research, the current research sought to examine factors that may limit this success by measuring social anxiety and placing participants into situations requiring them to either establish or preserve multiple impressions simultaneously. In general, participants were more successful when preserving previously conveyed impressions than when establishing impressions for the first time. In contrast, social anxiety did not affect multiple audience success. In all, this research offers valuable insight into potential challenges that people face in many social situations. © 2015 International Union of Psychological Science.
Deretzi, Georgia; Kountouras, Jannis; Grigoriadis, Nikolaos; Zavos, Christos; Chatzigeorgiou, Stavros; Koutlas, Evangelos; Tsiptsios, Iakovos
2009-11-01
The human central nervous system (CNS) is targeted by different pathogens which, apart from pathogens' intranasal inoculation or trafficking into the brain through infected blood cells, may use a distinct pathway to bypass the blood-brain barrier by using the gastrointestinal tract (GIT) retrograde axonal transport through sensory or motor fibres. The recent findings regarding the enteric nervous system (often called the "little brain") similarities with CNS and GIT axonal transport of infections resulting in CNS neuroinflammation are mainly reviewed in this article. We herein propose that the GIT is the vulnerable area through which pathogens (such as Helicobacter pylori) may influence the brain and induce multiple sclerosis pathologies, mainly via the fast axonal transport by the afferent neurones connecting the GIT to brain.
Lee, Nari; Kwon, Kyung Yoon; Oh, Su Kyung; Chang, Hyun-Joo; Chun, Hyang Sook; Choi, Sung-Wook
2014-07-01
A multiplex polymerase chain reaction (PCR) assay was developed for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in various Korean ready-to-eat foods. The six specific primer pairs for multiplex PCR were selected based on the O157 antigen (rfbE) gene of E. coli O157:H7, the DNA gyrase subunit B (gyrB) gene of B. cereus, the toxin regulatory protein (toxR) gene of V. parahaemolyticus, the invasion protein A (invA) gene of Salmonella spp., the hemolysin (hly) gene of L. monocytogenes, and the thermonuclease (nuc) gene of S. aureus. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity assays for multiplex primer pairs were investigated by testing different strains. When this multiplex PCR assay was applied to evaluate the validity of detecting six foodborne pathogens in artificially inoculated several ready-to-eat food samples, the assay was able to specifically simultaneously detect as few as 1 colony-forming unit/mL of each pathogen after enrichment for 12 h. Their presence in naturally contaminated samples also indicates that the developed multiplex PCR assay is an effective and informative supplement for practical use.
Del Prete, Raffaele; Di Taranto, Anna Maria; Lipsi, Maria Rosaria; Natalicchio, Maria Iole; Antonetti, Raffaele; Miragliotta, Giuseppe
2009-04-01
The lack of rapidity and the low sensitivity and specificity of traditional laboratory methods limits their usefulness in the laboratory diagnosis of viral central nervous system (CNS) infections. This study describes the use of a commercially available multiplex polymerase chain reaction (mPCR)-based reverse hybridization assay (RHA) for the simultaneous detection of the genomes of 8 viruses and Toxoplasma gondii in cerebrospinal fluids (CSF) from 181 patients suspected of having viral meningitis. Twenty-two/181 (12.15%) CSF samples resulted positive by mPCR. Eighteen/22 were positive for 1 viral pathogen, whereas a dual infection was detected in 4/22 samples. Epstein-Barr virus (EBV) was the most commonly detected virus (6/22), followed by herpes simplex virus type-1 (HSV-1) (5/22) and -2 (HSV-2) (4/22). Cytomegalovirus (CMV), human herpesvirus-6 (HHV-6), and Epstein-Barr virus (EBV) were detected in 1 specimen each. Two CSF samples were co-infected by HSV-1/HSV-2, 1 sample by HHV-6/T. gondii, and 1 sample by EBV/EV, respectively. Our data support the usefulness of mPCR as a rapid molecular method for the simultaneous detection of major viral pathogens and T. gondii in aseptic meningitis also to allow the earlier application of specific antiviral therapy.
Multiple feature extraction by using simultaneous wavelet transforms
NASA Astrophysics Data System (ADS)
Mazzaferri, Javier; Ledesma, Silvia; Iemmi, Claudio
2003-07-01
We propose here a method to optically perform multiple feature extraction by using wavelet transforms. The method is based on obtaining the optical correlation by means of a Vander Lugt architecture, where the scene and the filter are displayed on spatial light modulators (SLMs). Multiple phase filters containing the information about the features that we are interested in extracting are designed and then displayed on an SLM working in phase mostly mode. We have designed filters to simultaneously detect edges and corners or different characteristic frequencies contained in the input scene. Simulated and experimental results are shown.
Wafer hotspot prevention using etch aware OPC correction
NASA Astrophysics Data System (ADS)
Hamouda, Ayman; Power, Dave; Salama, Mohamed; Chen, Ao
2016-03-01
As technology development advances into deep-sub-wavelength nodes, multiple patterning is becoming more essential to achieve the technology shrink requirements. Recently, Optical Proximity Correction (OPC) technology has proposed simultaneous correction of multiple mask-patterns to enable multiple patterning awareness during OPC correction. This is essential to prevent inter-layer hot-spots during the final pattern transfer. In state-of-art literature, multi-layer awareness is achieved using simultaneous resist-contour simulations to predict and correct for hot-spots during mask generation. However, this approach assumes a uniform etch shrink response for all patterns independent of their proximity, which isn't sufficient for the full prevention of inter-exposure hot-spot, for example different color space violations post etch or via coverage/enclosure post etch. In this paper, we explain the need to include the etch component during multiple patterning OPC. We also introduce a novel approach for Etch-aware simultaneous Multiple-patterning OPC, where we calibrate and verify a lumped model that includes the combined resist and etch responses. Adding this extra simulation condition during OPC is suitable for full chip processing from a computation intensity point of view. Also, using this model during OPC to predict and correct inter-exposures hot-spots is similar to previously proposed multiple-patterning OPC, yet our proposed approach more accurately corrects post-etch defects too.
Information extraction during simultaneous motion processing.
Rideaux, Reuben; Edwards, Mark
2014-02-01
When confronted with multiple moving objects the visual system can process them in two stages: an initial stage in which a limited number of signals are processed in parallel (i.e. simultaneously) followed by a sequential stage. We previously demonstrated that during the simultaneous stage, observers could discriminate between presentations containing up to 5 vs. 6 spatially localized motion signals (Edwards & Rideaux, 2013). Here we investigate what information is actually extracted during the simultaneous stage and whether the simultaneous limit varies with the detail of information extracted. This was achieved by measuring the ability of observers to extract varied information from low detail, i.e. the number of signals presented, to high detail, i.e. the actual directions present and the direction of a specific element, during the simultaneous stage. The results indicate that the resolution of simultaneous processing varies as a function of the information which is extracted, i.e. as the information extraction becomes more detailed, from the number of moving elements to the direction of a specific element, the capacity to process multiple signals is reduced. Thus, when assigning a capacity to simultaneous motion processing, this must be qualified by designating the degree of information extraction. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf
2015-12-14
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Adase, Christopher A.; Borkowski, Andrew W.; Zhang, Ling-juan; Williams, Michael R.; Sato, Emi; Sanford, James A.
2016-01-01
A critical function for skin is that when damaged it must simultaneously identify the nature of the injury, repair barrier function, and limit the intrusion of pathogenic organisms. These needs are carried out through the detection of damage-associated molecular patterns (DAMPs) and a response that includes secretion of cytokines, chemokines, growth factors, and antimicrobial peptides (AMPs). In this study, we analyzed how non-coding double-stranded RNA (dsRNAs) act as a DAMP in the skin and how the human cathelicidin AMP LL-37 might influence growth factor production in response to this DAMP. dsRNA alone significantly increased the expression of multiple growth factors in keratinocytes, endothelial cells, and fibroblasts. Furthermore, RNA sequencing transcriptome analysis found that multiple growth factors increase when cells are exposed to both LL-37 and dsRNA, a condition that mimics normal wounding. Quantitative PCR and/or ELISA validated that growth factors expressed by keratinocytes in these conditions included, but were not limited to, basic fibroblast growth factor (FGF2), heparin-binding EGF-like growth factor (HBEGF), vascular endothelial growth factor C (VEGFC), betacellulin (BTC), EGF, epiregulin (EREG), and other members of the transforming growth factor β superfamily. These results identify a novel role for DAMPs and AMPs in the stimulation of repair and highlight the complex interactions involved in the wound environment. PMID:27048655
Statistical technique for analysing functional connectivity of multiple spike trains.
Masud, Mohammad Shahed; Borisyuk, Roman
2011-03-15
A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains. Copyright © 2011 Elsevier B.V. All rights reserved.
Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing.
Ye, Lin; Zhang, Tong
2011-09-01
This study applied 454 high-throughput pyrosequencing to analyze potentially pathogenic bacteria in activated sludge from 14 municipal wastewater treatment plants (WWTPs) across four countries (China, U.S., Canada, and Singapore), plus the influent and effluent of one of the 14 WWTPs. A total of 370,870 16S rRNA gene sequences with average length of 207 bps were obtained and all of them were assigned to corresponding taxonomic ranks by using RDP classifier and MEGAN. It was found that the most abundant potentially pathogenic bacteria in the WWTPs were affiliated with the genera of Aeromonas and Clostridium. Aeromonas veronii, Aeromonas hydrophila, and Clostridium perfringens were species most similar to the potentially pathogenic bacteria found in this study. Some sequences highly similar (>99%) to Corynebacterium diphtheriae were found in the influent and activated sludge samples from a saline WWTP. Overall, the percentage of the sequences closely related (>99%) to known pathogenic bacteria sequences was about 0.16% of the total sequences. Additionally, a platform-independent Java application (BAND) was developed for graphical visualization of the data of microbial abundance generated by high-throughput pyrosequencing. The approach demonstrated in this study could examine most of the potentially pathogenic bacteria simultaneously instead of one-by-one detection by other methods.
Enguita, Francisco J.; Costa, Marina C.; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José; Leitão, Ana Lúcia
2016-01-01
Fungal invasive infections are an increasing health problem. The intrinsic complexity of pathogenic fungi and the unmet clinical need for new and more effective treatments requires a detailed knowledge of the infection process. During infection, fungal pathogens are able to trigger a specific transcriptional program in their host cells. The detailed knowledge of this transcriptional program will allow for a better understanding of the infection process and consequently will help in the future design of more efficient therapeutic strategies. Simultaneous transcriptomic studies of pathogen and host by high-throughput sequencing (dual RNA-seq) is an unbiased protocol to understand the intricate regulatory networks underlying the infectious process. This protocol is starting to be applied to the study of the interactions between fungal pathogens and their hosts. To date, our knowledge of the molecular basis of infection for fungal pathogens is still very limited, and the putative role of regulatory players such as non-coding RNAs or epigenetic factors remains elusive. The wider application of high-throughput transcriptomics in the near future will help to understand the fungal mechanisms for colonization and survival, as well as to characterize the molecular responses of the host cell against a fungal infection. PMID:29376924
Molecular Signatures of Nicotinoid-Pathogen Synergy in the Termite Gut
Sen, Ruchira; Raychoudhury, Rhitoban; Cai, Yunpeng; Sun, Yijun; Lietze, Verena-Ulrike; Peterson, Brittany F.; Scharf, Michael E.; Boucias, Drion G.
2015-01-01
Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae), bacteria (Serratia marcescens) or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes) exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies. PMID:25837376
Opposing effects of allogrooming on disease transmission in ant societies
Theis, Fabian J.; Ugelvig, Line V.; Marr, Carsten; Cremer, Sylvia
2015-01-01
To prevent epidemics, insect societies have evolved collective disease defences that are highly effective at curing exposed individuals and limiting disease transmission to healthy group members. Grooming is an important sanitary behaviour—either performed towards oneself (self-grooming) or towards others (allogrooming)—to remove infectious agents from the body surface of exposed individuals, but at the risk of disease contraction by the groomer. We use garden ants (Lasius neglectus) and the fungal pathogen Metarhizium as a model system to study how pathogen presence affects self-grooming and allogrooming between exposed and healthy individuals. We develop an epidemiological SIS model to explore how experimentally observed grooming patterns affect disease spread within the colony, thereby providing a direct link between the expression and direction of sanitary behaviours, and their effects on colony-level epidemiology. We find that fungus-exposed ants increase self-grooming, while simultaneously decreasing allogrooming. This behavioural modulation seems universally adaptive and is predicted to contain disease spread in a great variety of host–pathogen systems. In contrast, allogrooming directed towards pathogen-exposed individuals might both increase and decrease disease risk. Our model reveals that the effect of allogrooming depends on the balance between pathogen infectiousness and efficiency of social host defences, which are likely to vary across host–pathogen systems. PMID:25870394
Lu, Ding; McDowell, Julia Z.; Davis, George M.; Spear, Robert C.; Remais, Justin V.
2012-01-01
Environmental models, often applied to questions on the fate and transport of chemical hazards, have recently become important in tracing certain environmental pathogens to their upstream sources of contamination. These tools, such as first order decay models applied to contaminants in surface waters, offer promise for quantifying the fate and transport of pathogens with multiple environmental stages and/or multiple hosts, in addition to those pathogens whose environmental stages are entirely waterborne. Here we consider the fate and transport capabilities of the human schistosome Schistosoma japonicum, which exhibits two waterborne stages and is carried by an amphibious intermediate snail host. We present experimentally-derived dispersal estimates for the intermediate snail host and fate and transport estimates for the passive downstream diffusion of cercariae, the waterborne, human-infective parasite stage. Using a one dimensional advective transport model exhibiting first-order decay, we simulate the added spatial reach and relative increase in cercarial concentrations that dispersing snail hosts contribute to downstream sites. Simulation results suggest that snail dispersal can substantially increase the concentrations of cercariae reaching downstream locations, relative to no snail dispersal, effectively putting otherwise isolated downstream sites at increased risk of exposure to cercariae from upstream sources. The models developed here can be applied to other infectious diseases with multiple life-stages and hosts, and have important implications for targeted ecological control of disease spread. PMID:23162675
Hargreaves, Katherine R.; Flores, Cesar O.; Lawley, Trevor D.
2014-01-01
ABSTRACT Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. PMID:25161187
Parallel independent evolution of pathogenicity within the genus Yersinia
Reuter, Sandra; Connor, Thomas R.; Barquist, Lars; Walker, Danielle; Feltwell, Theresa; Harris, Simon R.; Fookes, Maria; Hall, Miquette E.; Petty, Nicola K.; Fuchs, Thilo M.; Corander, Jukka; Dufour, Muriel; Ringwood, Tamara; Savin, Cyril; Bouchier, Christiane; Martin, Liliane; Miettinen, Minna; Shubin, Mikhail; Riehm, Julia M.; Laukkanen-Ninios, Riikka; Sihvonen, Leila M.; Siitonen, Anja; Skurnik, Mikael; Falcão, Juliana Pfrimer; Fukushima, Hiroshi; Scholz, Holger C.; Prentice, Michael B.; Wren, Brendan W.; Parkhill, Julian; Carniel, Elisabeth; Achtman, Mark; McNally, Alan; Thomson, Nicholas R.
2014-01-01
The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens. PMID:24753568
Pathogen prevalence and abundance in honey bee colonies involved in almond pollination.
Cavigli, Ian; Daughenbaugh, Katie F; Martin, Madison; Lerch, Michael; Banner, Katie; Garcia, Emma; Brutscher, Laura M; Flenniken, Michelle L
Honey bees are important pollinators of agricultural crops. Since 2006, US beekeepers have experienced high annual honey bee colony losses, which may be attributed to multiple abiotic and biotic factors, including pathogens. However, the relative importance of these factors has not been fully elucidated. To identify the most prevalent pathogens and investigate the relationship between colony strength and health, we assessed pathogen occurrence, prevalence, and abundance in Western US honey bee colonies involved in almond pollination. The most prevalent pathogens were Black queen cell virus (BQCV), Lake Sinai virus 2 (LSV2), Sacbrood virus (SBV), Nosema ceranae , and trypanosomatids. Our results indicated that pathogen prevalence and abundance were associated with both sampling date and beekeeping operation, that prevalence was highest in honey bee samples obtained immediately after almond pollination, and that weak colonies had a greater mean pathogen prevalence than strong colonies.
Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens.
Doublet, Vincent; Poeschl, Yvonne; Gogol-Döring, Andreas; Alaux, Cédric; Annoscia, Desiderato; Aurori, Christian; Barribeau, Seth M; Bedoya-Reina, Oscar C; Brown, Mark J F; Bull, James C; Flenniken, Michelle L; Galbraith, David A; Genersch, Elke; Gisder, Sebastian; Grosse, Ivo; Holt, Holly L; Hultmark, Dan; Lattorff, H Michael G; Le Conte, Yves; Manfredini, Fabio; McMahon, Dino P; Moritz, Robin F A; Nazzi, Francesco; Niño, Elina L; Nowick, Katja; van Rij, Ronald P; Paxton, Robert J; Grozinger, Christina M
2017-03-02
Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
New nonlinear control algorithms for multiple robot arms
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Bejczy, A. K.; Yun, X.
1988-01-01
Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.
Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A
2017-08-16
Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.
Anis, Eman; Hawkins, Ian K; Ilha, Marcia R S; Woldemeskel, Moges W; Saliki, Jeremiah T; Wilkes, Rebecca P
2018-07-01
The laboratory diagnosis of infectious diseases, especially those caused by mixed infections, is challenging. Routinely, it requires submission of multiple samples to separate laboratories. Advances in next-generation sequencing (NGS) have provided the opportunity for development of a comprehensive method to identify infectious agents. This study describes the use of target-specific primers for PCR-mediated amplification with the NGS technology in which pathogen genomic regions of interest are enriched and selectively sequenced from clinical samples. In the study, 198 primers were designed to target 43 common bovine and small-ruminant bacterial, fungal, viral, and parasitic pathogens, and a bioinformatics tool was specifically constructed for the detection of targeted pathogens. The primers were confirmed to detect the intended pathogens by testing reference strains and isolates. The method was then validated using 60 clinical samples (including tissues, feces, and milk) that were also tested with other routine diagnostic techniques. The detection limits of the targeted NGS method were evaluated using 10 representative pathogens that were also tested by quantitative PCR (qPCR), and the NGS method was able to detect the organisms from samples with qPCR threshold cycle ( C T ) values in the 30s. The method was successful for the detection of multiple pathogens in the clinical samples, including some additional pathogens missed by the routine techniques because the specific tests needed for the particular organisms were not performed. The results demonstrate the feasibility of the approach and indicate that it is possible to incorporate NGS as a diagnostic tool in a cost-effective manner into a veterinary diagnostic laboratory. Copyright © 2018 Anis et al.
NASA Astrophysics Data System (ADS)
Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.
2015-03-01
The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.
A PCR procedure for the detection of Giardia intestinalis cysts and Escherichia coli in lettuce.
Ramirez-Martinez, M L; Olmos-Ortiz, L M; Barajas-Mendiola, M A; Giono Cerezo, S; Avila, E E; Cuellar-Mata, P
2015-06-01
Giardia intestinalis is a pathogen associated with foodborne outbreaks and Escherichia coli is commonly used as a marker of faecal contamination. Implementation of routine identification methods of G. intestinalis is difficult for the analysis of vegetables and the microbiological detection of E. coli requires several days. This study proposes a PCR-based assay for the detection of E. coli and G. intestinalis cysts using crude DNA isolated from artificially contaminated lettuce. The G. intestinalis and E. coli PCR assays targeted the β-giardin and uidA genes, respectively, and were 100% specific. Forty lettuces from local markets were analysed by both PCR and light microscopy and no cysts were detected, the calculated detection limit was 20 cysts per gram of lettuce; however, by PCR, E. coli was detected in eight of ten randomly selected samples of lettuce. These data highlight the need to validate procedures for routine quality assurance. These PCR-based assays can be employed as alternative methods for the detection of G. intestinalis and E. coli and have the potential to allow for the automation and simultaneous detection of protozoa and bacterial pathogens in multiple samples. Significance and impact of the study: There are few studies for Giardia intestinalis detection in food because methods for its identification are difficult for routine implementation. Here, we developed a PCR-based method as an alternative to the direct observation of cysts in lettuce by light microscopy. Additionally, Escherichia coli was detected by PCR and the sanitary quality of lettuce was evaluated using molecular and standard microbiological methods. Using PCR, the detection probability of Giardia cysts inoculated onto samples of lettuce was improved compared to light microscopy, with the advantage of easy automation. These methods may be employed to perform timely and affordable detection of foodborne pathogens. © 2015 The Society for Applied Microbiology.
Davis, Tyler; Love, Bradley C.; Preston, Alison R.
2012-01-01
Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and adjust their representations to support behavior in future encounters. Many techniques that are available to understand the neural basis of category learning assume that the multiple processes that subserve it can be neatly separated between different trials of an experiment. Model-based functional magnetic resonance imaging offers a promising tool to separate multiple, simultaneously occurring processes and bring the analysis of neuroimaging data more in line with category learning’s dynamic and multifaceted nature. We use model-based imaging to explore the neural basis of recognition and entropy signals in the medial temporal lobe and striatum that are engaged while participants learn to categorize novel stimuli. Consistent with theories suggesting a role for the anterior hippocampus and ventral striatum in motivated learning in response to uncertainty, we find that activation in both regions correlates with a model-based measure of entropy. Simultaneously, separate subregions of the hippocampus and striatum exhibit activation correlated with a model-based recognition strength measure. Our results suggest that model-based analyses are exceptionally useful for extracting information about cognitive processes from neuroimaging data. Models provide a basis for identifying the multiple neural processes that contribute to behavior, and neuroimaging data can provide a powerful test bed for constraining and testing model predictions. PMID:22746951
USDA-ARS?s Scientific Manuscript database
In an effort to improve microbial food safety, we are studying the antimicrobial activities of different classes of natural compounds including plant essential oils, apple, grape, olive, and tea extracts, bioactive components, and seashell-derived chitosans against multiple foodborne pathogens in cu...
USDA-ARS?s Scientific Manuscript database
Enterohaemorrhagic E. coli 0157 is a zoonotic pathogen for which colonisation of cattle and virulence in humans is associated with the expression of multiple horizontally acquired genes, the majority present in active or cryptic prophages. Our understanding of the evolution and phylogeny of E. coli ...
Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto
2013-01-01
The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557
Host–Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants
Abdullah, Araz S.; Moffat, Caroline S.; Lopez-Ruiz, Francisco J.; Gibberd, Mark R.; Hamblin, John; Zerihun, Ayalsew
2017-01-01
Studies of plant–pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing on the dynamics of host-multi-pathogen interactions and the implications for host susceptibility/resistance. In co-infection systems, pathogen interactions include: (i) Competition, in which competing pathogens develop physical barriers or utilize toxins to exclude competitors from resource-dense niches; (ii) Cooperation, whereby pathogens beneficially interact, by providing mutual biochemical signals essential for pathogenesis, or through functional complementation via the exchange of resources necessary for survival; (iii) Coexistence, whereby pathogens can stably coexist through niche specialization. Furthermore, hosts are also able to, actively or passively, modulate niche competition through defense responses that target at least one pathogen. Typically, however, virulent pathogens subvert host defenses to facilitate infection, and responses elicited by one pathogen may be modified in the presence of another pathogen. Evidence also exists, albeit rare, of pathogens incorporating foreign genes that broaden niche adaptation and improve virulence. Throughout this review, we draw upon examples of co-infection systems from a range of pathogen types and identify outstanding questions for future innovation in disease control strategies. PMID:29118773
Science & Technology Review January/February 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bearinger, J P
2009-11-30
This month's issue has the following articles: (1) Innovative Materials Rise to the Radiation Challenge - Commentary by Bruce Warner; (2) The Hunt for Better Radiation Detection - New materials will help radiation detectors pick up weak signals and accurately identify illicit radioactive sources; (3) Time-Critical Technology Identifies Deadly Bloodborne Pathogens - A portable device can simultaneously distinguish up to five bloodborne pathogens in just minutes; (4) Defending Computer Networks against Attack - A Laboratory effort takes a new approach to detecting increasingly sophisticated cyber attacks; and (5) Imaging Cargo's Inner Secrets - Livermore-University of California collaborators are modeling amore » new radiographic technique for identifying nuclear materials concealed inside cargo containers.« less
Zhang, Lixin; Zheng, Xianlin; Deng, Wei; Lu, Yiqing; Lechevallier, Severine; Ye, Zhiqiang; Goldys, Ewa M; Dawes, Judith M; Piper, James A; Yuan, Jingli; Verelst, Marc; Jin, Dayong
2014-10-13
Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y₂O₂S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment.
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Zheng, Xianlin; Deng, Wei; Lu, Yiqing; Lechevallier, Severine; Ye, Zhiqiang; Goldys, Ewa M.; Dawes, Judith M.; Piper, James A.; Yuan, Jingli; Verelst, Marc; Jin, Dayong
2014-10-01
Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y2O2S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment.
Pérez-Areales, Francisco Javier; Betari, Nibal; Viayna, Antonio; Pont, Caterina; Espargaró, Alba; Bartolini, Manuela; De Simone, Angela; Rinaldi Alvarenga, José Fernando; Pérez, Belén; Sabate, Raimon; Lamuela-Raventós, Rosa Maria; Andrisano, Vincenza; Luque, Francisco Javier; Muñoz-Torrero, Diego
2017-06-01
Simultaneous modulation of several key targets of the pathological network of Alzheimer's disease (AD) is being increasingly pursued as a promising option to fill the critical gap of efficacious drugs against this condition. A short series of compounds purported to hit multiple targets of relevance in AD has been designed, on the basis of their distinct basicities estimated from high-level quantum mechanical computations, synthesized, and subjected to assays of inhibition of cholinesterases, BACE-1, and Aβ42 and tau aggregation, of antioxidant activity, and of brain permeation. Using, as a template, a lead rhein-huprine hybrid with an interesting multitarget profile, we have developed second-generation compounds, designed by the modification of the huprine aromatic ring. Replacement by [1,8]-naphthyridine or thieno[3,2-e]pyridine systems resulted in decreased, although still potent, acetylcholinesterase or BACE-1 inhibitory activities, which are more balanced relative to their Aβ42 and tau antiaggregating and antioxidant activities. Second-generation naphthyridine- and thienopyridine-based rhein-huprine hybrids emerge as interesting brain permeable compounds that hit several crucial pathogenic factors of AD.
Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq.
Jaitin, Diego Adhemar; Weiner, Assaf; Yofe, Ido; Lara-Astiaso, David; Keren-Shaul, Hadas; David, Eyal; Salame, Tomer Meir; Tanay, Amos; van Oudenaarden, Alexander; Amit, Ido
2016-12-15
In multicellular organisms, dedicated regulatory circuits control cell type diversity and responses. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. Here, we present CRISP-seq, an integrated method for massively parallel single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-pooled screens. We show that profiling the genomic perturbation and transcriptome in the same cell enables us to simultaneously elucidate the function of multiple factors and their interactions. We applied CRISP-seq to probe regulatory circuits of innate immunity. By sampling tens of thousands of perturbed cells in vitro and in mice, we identified interactions and redundancies between developmental and signaling-dependent factors. These include opposing effects of Cebpb and Irf8 in regulating the monocyte/macrophage versus dendritic cell lineages and differential functions for Rela and Stat1/2 in monocyte versus dendritic cell responses to pathogens. This study establishes CRISP-seq as a broadly applicable, comprehensive, and unbiased approach for elucidating mammalian regulatory circuits. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Fastener Starter; Multifunctional Deployment Hinges Rigidified by Ultraviolet; Temperature-Controlled Clamping and Releasing Mechanism; Long-Range Emergency Preemption of Traffic Lights; High-Efficiency Microwave Power Amplifier; Improvements of ModalMax High-Fidelity Piezoelectric Audio Device; Alumina or Semiconductor Ribbon Waveguides at 30 to 1,000 GHz; HEMT Frequency Doubler with Output at 300 GHz; Single-Chip FPGA Azimuth Pre-Filter for SAR; Autonomous Navigation by a Mobile Robot; Software Would Largely Automate Design of Kalman Filter; Predicting Flows of Rarefied Gases; Centralized Planning for Multiple Exploratory Robots; Electronic Router; Piezo-Operated Shutter Mechanism Moves 1.5 cm; Two SMA-Actuated Miniature Mechanisms; Vortobots; Ultrasonic/Sonic Jackhammer; Removing Pathogens Using Nano-Ceramic-Fiber Filters; Satellite-Derived Management Zones; Digital Equivalent Data System for XRF Labeling of Objects; Identifying Objects via Encased X-Ray-Fluorescent Materials - the Bar Code Inside; Vacuum Attachment for XRF Scanner; Simultaneous Conoscopic Holography and Raman Spectroscopy; Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP; Vibrating Optical Fibers to Make Laser Speckle Disappear; Adaptive Filtering Using Recurrent Neural Networks; and Applying Standard Interfaces to a Process-Control Language.
Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables.
Yang, Qingxiang; Ren, Siwei; Niu, Tianqi; Guo, Yuhui; Qi, Shiyue; Han, Xinkuan; Liu, Dong; Pan, Feng
2014-01-01
Veterinary manure is an important pollution reservoir of antibiotics and antibiotic-resistant bacteria (ARB). However, little is known of the distribution of ARB in plant endophytic bacteria and the number/types of ARB in chicken manure. In this study, 454-pyrosequencing was used to investigate the distribution and composition of ARBs in chicken manure and fertilized vegetables. The prevalence of ARB in the samples of the chicken manure compost recovered from farms on which amoxicillin, kanamycin, gentamicin, and cephalexin were used was 20.91-65.9% for ARBs and 8.24-20.63% simultaneously resistant to two or more antibiotics (multiple antibiotic resistant bacteria (MARB)). Antibiotic-resistant endophytic bacteria were widely detected in celery, pakchoi, and cucumber with the highest rate of resistance to cephalexin. The pyrosequencing indicated that the chicken manure dominantly harbored Firmicutes, Bacteroidetes, Synergistetes, and Proteobacteria and that Bacteroidetes was significantly enhanced in farms utilizing antibiotics. In the total cultivable colonies, 62.58-89.43% ARBs and 95.29% MARB were clustered in Bacteroidetes with the dominant species (Myroides ordoratimimus and Spningobacterium spp., respectively) related to human clinical opportunistic pathogens.
Davidson, Irit; Raibshtein, I; Al-Touri, A
2013-06-01
The worldwide distribution of chicken anemia virus (CAV) and Marek's disease virus (MDV) is well documented. In addition to their economic significance in single- or dual-virus infections, the two viruses can often accompany various other pathogens and affect poultry health either directly, by causing tumors, anemia, and delayed growth, or indirectly, by aggravating other diseases, as a result of their immunosuppressive effects. After a decade of employing the molecular diagnosis of those viruses, which replaced conventional virus isolation, we present the development of a real-time multiplex PCR for the simultaneous detection of both viruses. The real-time PCRs for MDV and for CAV alone are more sensitive than the respective end-point PCRs. In addition, the multiplex real-time shows a similar sensitivity when compared to the single real-time PCR for each virus. The newly developed real-time multiplex PCR is of importance in terms of the diagnosis and detection of low copies of each virus, MDV and CAV in single- and in multiple-virus infections, and its applicability will be further evaluated.
A high-throughput semi-automated preparation for filtered synaptoneurosomes.
Murphy, Kathryn M; Balsor, Justin; Beshara, Simon; Siu, Caitlin; Pinto, Joshua G A
2014-09-30
Synaptoneurosomes have become an important tool for studying synaptic proteins. The filtered synaptoneurosomes preparation originally developed by Hollingsworth et al. (1985) is widely used and is an easy method to prepare synaptoneurosomes. The hand processing steps in that preparation, however, are labor intensive and have become a bottleneck for current proteomic studies using synaptoneurosomes. For this reason, we developed new steps for tissue homogenization and filtration that transform the preparation of synaptoneurosomes to a high-throughput, semi-automated process. We implemented a standardized protocol with easy to follow steps for homogenizing multiple samples simultaneously using a FastPrep tissue homogenizer (MP Biomedicals, LLC) and then filtering all of the samples in centrifugal filter units (EMD Millipore, Corp). The new steps dramatically reduce the time to prepare synaptoneurosomes from hours to minutes, increase sample recovery, and nearly double enrichment for synaptic proteins. These steps are also compatible with biosafety requirements for working with pathogen infected brain tissue. The new high-throughput semi-automated steps to prepare synaptoneurosomes are timely technical advances for studies of low abundance synaptic proteins in valuable tissue samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Anti-Immune Strategies of Pathogenic Fungi
Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.
2016-01-01
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220
van der Kooij, Dick
2013-01-01
The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter−1 than in water with AOC levels below 5 μg C liter−1. Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens. PMID:23160134
van der Wielen, Paul W J J; van der Kooij, Dick
2013-02-01
The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter(-1) than in water with AOC levels below 5 μg C liter(-1). Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.
The trans-kingdom identification of negative regulators of pathogen hypervirulence
Brown, Neil A.; Urban, Martin; Hammond-Kosack, Kim E.
2015-01-01
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen–host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. PMID:26468211
Deciphering the landscape of host barriers to Listeria monocytogenes infection.
Zhang, Ting; Abel, Sören; Abel Zur Wiesch, Pia; Sasabe, Jumpei; Davis, Brigid M; Higgins, Darren E; Waldor, Matthew K
2017-06-13
Listeria monocytogenes is a common food-borne pathogen that can disseminate from the intestine and infect multiple organs. Here, we used sequence tag-based analysis of microbial populations (STAMP) to investigate L monocytogenes population dynamics during infection. We created a genetically barcoded library of murinized L monocytogenes and then used deep sequencing to track the pathogen's dissemination routes and quantify its founding population ( N b ) sizes in different organs. We found that the pathogen disseminates from the gastrointestinal tract to distal sites through multiple independent routes and that N b sizes vary greatly among tissues, indicative of diverse host barriers to infection. Unexpectedly, comparative analyses of sequence tags revealed that fecally excreted organisms are largely derived from the very small number of L. monocytogenes cells that colonize the gallbladder. Immune depletion studies suggest that distinct innate immune cells restrict the pathogen's capacity to establish replicative niches in the spleen and liver. Finally, studies in germ-free mice suggest that the microbiota plays a critical role in the development of the splenic, but not the hepatic, barriers that prevent L. monocytogenes from seeding these organs. Collectively, these observations illustrate the potency of the STAMP approach to decipher the impact of host factors on population dynamics of pathogens during infection.
Han, Il; Congeevaram, Shankar; Park, Joonhong
2009-01-01
In this study, we microbiologically evaluated antibiotic resistance and pathogenicity in livestock (swine) manure as well as its biologically stabilized products. One of new livestock manure stabilization techniques is ATAD (Autothermal Thermophilic Aerobic Digestion). Because of its high operation temperature (60-65 degrees C), it has been speculated to have effective microbial risk control in livestock manure. This hypothesis was tested by evaluating microbial risk in ATAD-treated swine manure. Antibiotic resistance, multiple antibiotic resistance (MAR), and pathogenicity were microbiologically examined for swine manure as well as its conventionally stabilized (anaerobically fermented) and ATAD-stabilized products. In the swine manure and its conventionally stabilized product, antibiotic resistant (tetracycline-, kanamycine-, ampicillin-, and rifampicin-resistant) bacteria and the pathogen indicator bacteria were detected. Furthermore, approximately 2-5% of the Staphylococcus and Salmonella colonies from their selective culture media were found to exhibit a MAR-phenotypes, suggesting a serious level of microbe induced health risk. In contrast, after the swine manure was stabilized with a pilot-scale ATAD treatment for 3 days at 60-65 degrees C, antibiotic resistant bacteria, pathogen indicator bacteria, and MAR-exhibiting pathogens were all undetected. These findings support the improved control of microbial risk in livestock wastes by ATAD treatment.
Commensal or pathogen – a challenge to fulfil Koch’s Postulates
Hess, M.
2017-01-01
ABSTRACT 1. Infectious diseases have a large impact on poultry health and economics. Elucidating the pathogenesis of a certain disease is crucial to implement control strategies. 2. Multiplication of a pathogen and its characterisation in vitro are basic requirements to perform experimental studies. However, passaging of the pathogen in vitro can influence the pathogenicity, a process targeted for live vaccine development, but limits the reproduction of clinical signs. 3. Numerous factors can influence the outcome of experimental infections with some importance on the pathogen, application route and host as exemplarily outlined for Histomonas meleagridis, Gallibacterium anatis and fowl aviadenoviruses (FAdVs). 4. In future, more comprehensive and detailed settings are needed to obtain as much information as possible from animal experiments. Processing of samples with modern diagnostic tools provides the option to closely monitor the host–pathogen interaction. PMID:27724044
Climate warming and disease risks for terrestrial and marine biota
Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D.
2002-01-01
Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño–Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.
Climate Warming and Disease Risks for Terrestrial and Marine Biota
NASA Astrophysics Data System (ADS)
Harvell, C. Drew; Mitchell, Charles E.; Ward, Jessica R.; Altizer, Sonia; Dobson, Andrew P.; Ostfeld, Richard S.; Samuel, Michael D.
2002-06-01
Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.
Localization Performance of Multiple Vibrotactile Cues on Both Arms.
Wang, Dangxiao; Peng, Cong; Afzal, Naqash; Li, Weiang; Wu, Dong; Zhang, Yuru
2018-01-01
To present information using vibrotactile stimuli in wearable devices, it is fundamental to understand human performance of localizing vibrotactile cues across the skin surface. In this paper, we studied human ability to identify locations of multiple vibrotactile cues activated simultaneously on both arms. Two haptic bands were mounted in proximity to the elbow and shoulder joints on each arm, and two vibrotactile motors were mounted on each band to provide vibration cues to the dorsal and palmar side of the arm. The localization performance under four conditions were compared, with the number of the simultaneously activated cues varying from one to four in each condition. Experimental results illustrate that the rate of correct localization decreases linearly with the increase in the number of activated cues. It was 27.8 percent for three activated cues, and became even lower for four activated cues. An analysis of the correct rate and error patterns show that the layout of vibrotactile cues can have significant effects on the localization performance of multiple vibrotactile cues. These findings might provide guidelines for using vibrotactile cues to guide the simultaneous motion of multiple joints on both arms.
Sato, Hiromi
2017-01-01
Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways including endothelial barrier damage and inflammation, potentially leading to vascular hyperpermeability and severe illness in vivo. This work provides new insights into the pathophysiological mechanisms of Leptospira infection. PMID:28750011
Sato, Hiromi; Coburn, Jenifer
2017-07-01
Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways including endothelial barrier damage and inflammation, potentially leading to vascular hyperpermeability and severe illness in vivo. This work provides new insights into the pathophysiological mechanisms of Leptospira infection.
ERIC Educational Resources Information Center
Davis, Tyler; Love, Bradley C.; Preston, Alison R.
2012-01-01
Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... licenses included in Auction 89 using the Commission's standard simultaneous multiple-round auction format... sequential bidding rounds. The initial bidding schedule will be announced in a public notice to be released.... For Auction 89, the Bureau proposes to employ a simultaneous stopping rule approach. A simultaneous...
Kuan, Da-Han; Wang, I-Shun; Lin, Jiun-Rue; Yang, Chao-Han; Huang, Chi-Hsien; Lin, Yen-Hung; Lin, Chih-Ting; Huang, Nien-Tsu
2016-08-02
The hemoglobin-A1c test, measuring the ratio of glycated hemoglobin (HbA1c) to hemoglobin (Hb) levels, has been a standard assay in diabetes diagnosis that removes the day-to-day glucose level variation. Currently, the HbA1c test is restricted to hospitals and central laboratories due to the laborious, time-consuming whole blood processing and bulky instruments. In this paper, we have developed a microfluidic device integrating dual CMOS polysilicon nanowire sensors (MINS) for on-chip whole blood processing and simultaneous detection of multiple analytes. The micromachined polymethylmethacrylate (PMMA) microfluidic device consisted of a serpentine microchannel with multiple dam structures designed for non-lysed cells or debris trapping, uniform plasma/buffer mixing and dilution. The CMOS-fabricated polysilicon nanowire sensors integrated with the microfluidic device were designed for the simultaneous, label-free electrical detection of multiple analytes. Our study first measured the Hb and HbA1c levels in 11 clinical samples via these nanowire sensors. The results were compared with those of standard Hb and HbA1c measurement methods (Hb: the sodium lauryl sulfate hemoglobin detection method; HbA1c: cation-exchange high-performance liquid chromatography) and showed comparable outcomes. Finally, we successfully demonstrated the efficacy of the MINS device's on-chip whole blood processing followed by simultaneous Hb and HbA1c measurement in a clinical sample. Compared to current Hb and HbA1c sensing instruments, the MINS platform is compact and can simultaneously detect two analytes with only 5 μL of whole blood, which corresponds to a 300-fold blood volume reduction. The total assay time, including the in situ sample processing and analyte detection, was just 30 minutes. Based on its on-chip whole blood processing and simultaneous multiple analyte detection functionalities with a lower sample volume requirement and shorter process time, the MINS device can be effectively applied to real-time diabetes diagnostics and monitoring in point-of-care settings.
Two is better than one: advances in pathogen-boosted immunotherapy and adoptive T-cell therapy.
Xin, Gang; Schauder, David M; Zander, Ryan; Cui, Weiguo
2017-09-01
The recent tremendous successes in clinical trials take cancer immunotherapy into a new era and have attracted major attention from both academia and industry. Among the variety of immunotherapy strategies developed to boost patients' own immune systems to fight against malignant cells, the pathogen-based and adoptive cell transfer therapies have shown the most promise for treating multiple types of cancer. Pathogen-based therapies could either break the immune tolerance to enhance the effectiveness of cancer vaccines or directly infect and kill cancer cells. Adoptive cell transfer can induce a strong durable antitumor response, with recent advances including engineering dual specificity into T cells to recognize multiple antigens and improving the metabolic fitness of transferred cells. In this review, we focus on the recent prospects in these two areas and summarize some ongoing studies that represent potential advancements for anticancer immunotherapy, including testing combinations of these two strategies.
Widespread occurrence of honey bee pathogens in solitary bees.
Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C
2014-10-01
Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fisher, Christopher M.; Paton, Chad; Pearson, D. Graham; Sarkar, Chiranjeeb; Luo, Yan; Tersmette, Daniel B.; Chacko, Thomas
2017-12-01
A robust platform to view and integrate multiple data sets collected simultaneously is required to realize the utility and potential of the Laser Ablation Split-Stream (LASS) method. This capability, until now, has been unavailable and practitioners have had to laboriously process each data set separately, making it challenging to take full advantage of the benefits of LASS. We describe a new program for handling multiple mass spectrometric data sets collected simultaneously, designed specifically for the LASS technique, by which a laser aerosol is been split into two or more separate "streams" to be measured on separate mass spectrometers. New features within Iolite (https://iolite-software.com) enable the capability of loading, synchronizing, viewing, and reducing two or more data sets acquired simultaneously, as multiple DRSs (data reduction schemes) can be run concurrently. While this version of Iolite accommodates any combination of simultaneously collected mass spectrometer data, we demonstrate the utility using case studies where U-Pb and Lu-Hf isotope composition of zircon, and U-Pb and Sm-Nd isotope composition of monazite were analyzed simultaneously, in crystals showing complex isotopic zonation. These studies demonstrate the importance of being able to view and integrate simultaneously acquired data sets, especially for samples with complicated zoning and decoupled isotope systematics, in order to extract accurate and geologically meaningful isotopic and compositional data. This contribution provides instructions and examples for handling simultaneously collected laser ablation data. An instructional video is also provided. The updated Iolite software will help to fully develop the applications of both LASS and multi-instrument mass spectrometric measurement capabilities.
Crotta, Matteo; Rizzi, Rita; Varisco, Giorgio; Daminelli, Paolo; Cunico, Elena Cosciani; Luini, Mario; Graber, Hans Ulrich; Paterlini, Franco; Guitian, Javier
2016-03-01
Quantitative microbial risk assessment (QMRA) models are extensively applied to inform management of a broad range of food safety risks. Inevitably, QMRA modeling involves an element of simplification of the biological process of interest. Two features that are frequently simplified or disregarded are the pathogenicity of multiple strains of a single pathogen and consumer behavior at the household level. In this study, we developed a QMRA model with a multiple-strain approach and a consumer phase module (CPM) based on uncertainty distributions fitted from field data. We modeled exposure to staphylococcal enterotoxin A in raw milk in Lombardy; a specific enterotoxin production module was thus included. The model is adaptable and could be used to assess the risk related to other pathogens in raw milk as well as other staphylococcal enterotoxins. The multiplestrain approach, implemented as a multinomial process, allowed the inclusion of variability and uncertainty with regard to pathogenicity at the bacterial level. Data from 301 questionnaires submitted to raw milk consumers were used to obtain uncertainty distributions for the CPM. The distributions were modeled to be easily updatable with further data or evidence. The sources of uncertainty due to the multiple-strain approach and the CPM were identified, and their impact on the output was assessed by comparing specific scenarios to the baseline. When the distributions reflecting the uncertainty in consumer behavior were fixed to the 95th percentile, the risk of exposure increased up to 160 times. This reflects the importance of taking into consideration the diversity of consumers' habits at the household level and the impact that the lack of knowledge about variables in the CPM can have on the final QMRA estimates. The multiple-strain approach lends itself to use in other food matrices besides raw milk and allows the model to better capture the complexity of the real world and to be capable of geographical specificity.
Public health interventions for epidemics: implications for multiple infection waves.
Wessel, Lindsay; Hua, Yi; Wu, Jianhong; Moghadas, Seyed M
2011-02-25
Epidemics with multiple infection waves have been documented for some human diseases, most notably during past influenza pandemics. While pathogen evolution, co-infection, and behavioural changes have been proposed as possible mechanisms for the occurrence of subsequent outbreaks, the effect of public health interventions remains undetermined. We develop mean-field and stochastic epidemiological models for disease transmission, and perform simulations to show how control measures, such as drug treatment and isolation of ill individuals, can influence the epidemic profile and generate sequences of infection waves with different characteristics. We demonstrate the impact of parameters representing the effectiveness and adverse consequences of intervention measures, such as treatment and emergence of drug resistance, on the spread of a pathogen in the population. If pathogen resistant strains evolve under drug pressure, multiple outbreaks are possible with variability in their characteristics, magnitude, and timing. In this context, the level of drug use and isolation capacity play an important role in the occurrence of subsequent outbreaks. Our simulations for influenza infection as a case study indicate that the intensive use of these interventions during the early stages of the epidemic could delay the spread of disease, but it may also result in later infection waves with possibly larger magnitudes. The findings highlight the importance of intervention parameters in the process of public health decision-making, and in evaluating control measures when facing substantial uncertainty regarding the epidemiological characteristics of an emerging infectious pathogen. Critical factors that influence population health including evolutionary responses of the pathogen under the pressure of different intervention measures during an epidemic should be considered for the design of effective strategies that address short-term targets compatible with long-term disease outcomes.
Sinha, Ranjita; Gupta, Aarti; Senthil-Kumar, Muthappa
2017-01-01
Chickpea (Cicer arietinum); the second largest legume grown worldwide is prone to drought and various pathogen infections. These drought and pathogen stresses often occur concurrently in the field conditions. However, the molecular events in response to that are largely unknown. The present study examines the transcriptome dynamics in chickpea plants exposed to a combination of water-deficit stress and Ralstonia solanacearum infection. R. solanacearum is a potential wilt disease causing pathogen in chickpea. Drought stressed chickpea plants were infected with this pathogen and the plants were allowed to experience progressive drought with 2 and 4 days of R. solanacearum infection called short duration stress (SD stresses) and long duration stress (LD stresses), respectively. Our study showed that R. solanacearum multiplication decreased under SD-combined stress compared to SD-pathogen but there was no significant change in LD-combined stress compared to LD-pathogen. The microarray analysis during these conditions showed that 821 and 1039 differentially expressed genes (DEGs) were unique to SD- and LD-combined stresses, respectively, when compared with individual stress conditions. Three and fifteen genes were common among all the SD-stress treatments and LD-stress treatments, respectively. Genes involved in secondary cell wall biosynthesis, alkaloid biosynthesis, defense related proteins, and osmo-protectants were up-regulated during combined stress. The expression of genes involved in lignin and cellulose biosynthesis were specifically up-regulated in SD-combined, LD-combined, and LD-pathogen stress. A close transcriptomic association of LD-pathogen stress with SD-combined stress was observed in this study which indicates that R. solanacearum infection also exerts drought stress along with pathogen stress thus mimics combined stress effect. Furthermore the expression profiling of candidate genes using real-time quantitative PCR validated the microarray data. The study showed that down-regulation of defense-related genes during LD-combined stress resulted in an increased bacterial multiplication as compared to SD-combined stress. Overall, our study highlights a sub-set of DEGs uniquely expressed in response to combined stress, which serve as potential candidates for further functional characterization to delineate the molecular response of the plant to concurrent drought-pathogen stress. PMID:28382041
Kohno, Tadasu; Mun, Mingyon; Yoshiya, Tomoharu
2014-01-01
Myelolipoma in the mediastinum is an extremely rare entity. In this report, we present the case of a 79-year-old asymptomatic man who had three bilateral paravertebral mediastinal tumors. The three tumors were resected simultaneously using bilateral three-port video-assisted thoracoscopic surgery (VATS). There has been no evidence of recurrence within four years after the operation. Multiple bilateral mediastinal myelolipomas are extremely rare. There are no reports in the English literature of multiple bilateral thoracic myelolipomas that were resected simultaneously using bilateral VATS. We also present characteristic features of myelolipomas, which are helpful for diagnosis. PMID:24782978
Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.
Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He
2017-08-09
Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.
Xie, Xin-Hui; He, Yi-Xin; Yao, Xin-Sheng; Li, Zi-Rong; Lee, Kwong-Man; He, Wei; Leung, Kwok-Sui; Qin, Ling
2009-01-01
Intravascular-thrombosis and extravascular-lipid-deposit are the two key pathogenic events considered to interrupt intraosseous blood supply during development of steroid-associated osteonecrosis (ON). However, there are no clinically employed agents capable of simultaneously targeting these two key pathogenic events. The present experimental study demonstrated that constitutional flavonoid glycosides derived from herb Epimedium (EF, composed of seven flavonoid compounds with common stem nuclear) exerted dose-dependent effect on inhibition of both thrombosis and lipid-deposition and accordingly reducing incidence of steroid-associated ON in rabbits, which was not via direct action by themselves rather by their common metabolite on potential cellular targets involved in the two pathogenic pathways. The underlying mechanism could be explained by counteracting endothelium injury and excessive adipogenesis. These findings encourage designing clinical trials to investigate potential of EF in prevention of steroid-associated ON. PMID:19641620
Wang, Zhenzhen; Chen, Zhaowei; Gao, Nan; Ren, Jinsong; Qu, Xiaogang
2015-10-07
Herein, for the first time, we presented a simple and general approach by using personal glucose meters (PGM) for portable and ultrasensitive detection of microbial pathogens. Upon addition of pathogenic bacteria, glucoamylase-quaternized magnetic nanoparticles (GA-QMNPS) conjugates were disrupted by the competitive multivalent interactions between bacteria and QMNPS, resulting in the release of GA. After magnetic separation, the free GA could catalyze the hydrolysis of amylose into glucose for quantitative readout by PGM. In such way, PGM was transmuted into a bacterial detection device and extremely low detection limits down to 20 cells mL(-1) was achieved. More importantly, QMNPS could inhibit the growth of the bacteria and destroy its cellular structure, which enabled bacteria detection and inhibition simultaneously. The simplicity, portability, sensitivity and low cost of presented work make it attractive for clinical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Gen; Du, Xusheng; Zhou, Defang; Li, Chengui; Huang, Libo; Zheng, Qiankun; Cheng, Ziqiang
2018-05-25
Macrococcus caseolyticus is generally considered to be a non-pathogenic bacterium that does not cause human or animal diseases. However, recently, a strain of M. caseolyticus (SDLY strain) that causes high mortality rates was isolated from commercial broiler chickens in China. The main pathological changes caused by SDLY included caseous exudation in cranial cavities, inflammatory infiltration, haemorrhages and multifocal necrosis in various organs. The whole genome of the SDLY strain was sequenced and was compared with that of the non-pathogenic JCSC5402 strain of M. caseolyticus. The results showed that the SDLY strain harboured a large quantity of mutations, antibiotic resistance genes and numerous insertions and deletions of virulence genes. In particular, among the inserted genes, there is a cluster of eight connected genes associated with the synthesis of capsular polysaccharide. This cluster encodes a transferase and capsular polysaccharide synthase, promotes the formation of capsules and causes changes in pathogenicity. Electron microscopy revealed a distinct capsule surrounding the SDLY strain. The pathogenicity test showed that the SDLY strain could cause significant clinical symptoms and pathological changes in both SPF chickens and mice. In addition, these clinical symptoms and pathological changes were the same as those observed in field cases. Furthermore, the anti-microbial susceptibility test demonstrated that the SDLY strain exhibits multiple-antibiotic resistance. The emergence of pathogenic M. caseolyticus indicates that more attention should be paid to the effects of this micro-organism on both poultry and public health. © 2018 Blackwell Verlag GmbH.
Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens
Bosseboeuf, Adrien; Feron, Delphine; Tallet, Anne; Rossi, Cédric; Charlier, Cathy; Garderet, Laurent; Caillot, Denis; Moreau, Philippe; Cardó-Vila, Marina; Pasqualini, Renata; Nelson, Alfreda Destea; Wilson, Bridget S.; Perreault, Hélène; Piver, Eric; Weigel, Pierre; Harb, Jean; Bigot-Corbel, Edith; Hermouet, Sylvie
2017-01-01
Subsets of mature B cell neoplasms are linked to infection with intracellular pathogens such as Epstein-Barr virus (EBV), hepatitis C virus (HCV), or Helicobacter pylori. However, the association between infection and the immunoglobulin-secreting (Ig-secreting) B proliferative disorders remains largely unresolved. We investigated whether the monoclonal IgG (mc IgG) produced by patients diagnosed with monoclonal gammopathy of undetermined significance (MGUS) or multiple myeloma (MM) targets infectious pathogens. Antigen specificity of purified mc IgG from a large patient cohort (n = 244) was determined using a multiplex infectious-antigen array (MIAA), which screens for reactivity to purified antigens or lysates from 9 pathogens. Purified mc IgG from 23.4% of patients (57 of 244) specifically recognized 1 pathogen in the MIAA. EBV was the most frequent target (15.6%), with 36 of 38 mc IgGs recognizing EBV nuclear antigen-1 (EBNA-1). MM patients with EBNA-1–specific mc IgG (14.0%) showed substantially greater bone marrow plasma cell infiltration and higher β2-microglobulin and inflammation/infection–linked cytokine levels compared with other smoldering myeloma/MM patients. Five other pathogens were the targets of mc IgG: herpes virus simplex-1 (2.9%), varicella zoster virus (1.6%), cytomegalovirus (0.8%), hepatitis C virus (1.2%), and H. pylori (1.2%). We conclude that a dysregulated immune response to infection may underlie disease onset and/or progression of MGUS and MM for subsets of patients. PMID:28978808
Meena, Ram Prasnna; Baranwal, V K
2016-09-01
Citrus trees harbor a large number of viral and bacterial pathogens. Citrus yellow vein clearing virus (CYVCV), Indian citrus ringspot virus (ICRSV), Citrus yellow mosaic virus (CYMV), Citrus tristeza virus (CTV) and a bacterium, Candidatus Liberibacter asiaticus (CLa) associated with huanglongbing (HLB) disease, the most prevalent pathogens in citrus orchards of different regions in India and are responsible for debilitating citriculture. For detection of these viral and bacterial pathogens a quick, sensitive and cost effective detection method is required. With this objective a multiplex polymerase chain reaction (mPCR) assay was developed for simultaneous detection of four viruses and a bacterium in citrus. Several sets of primers were designed for each virus based on the retrieved reference sequences from the GenBank. A primer pair published previously was used for greening bacterium. Each pair of primers was evaluated for their sensitivity and differentiation by simplex and mPCR. The constant amplified products were identified on the basis of molecular size in mPCR and were compared with standard PCR. The amplicons were cloned and results were confirmed with sequencing analysis. The mPCR assay was validated using naturally infected field samples for one or more citrus viruses and the huanglongbing bacterium. The mPCR assay developed here will aid in the production of virus free planting materials and rapid indexing for certification of citrus budwood programme. Copyright © 2016 Elsevier B.V. All rights reserved.
Kawase, Jun; Etoh, Yoshiki; Ikeda, Tetsuya; Yamaguchi, Keiji; Watahiki, Masanori; Shima, Tomoko; Kameyama, Mitsuhiro; Horikawa, Kazumi; Fukushima, Hiroshi; Goto, Ryoichi; Shirabe, Komei
2016-05-20
Here, we developed a new version of our original screening system (Rapid Foodborne Bacterial Screening 24; RFBS24), which can simultaneously detect 24 genes of foodborne pathogens in fecal DNA samples. This new version (RFBS24 ver. 5) detected all known stx2 subtypes, enterotoxigenic Escherichia coli (STh genotype), and Vibrio parahaemolyticus (trh2), which were not detected by the original RFBS24 assay. The detection limits of RFBS24 ver. 5 were approximately 5.6 × 10(-2)-5.6 × 10(-5) (ng DNA)/reaction, significantly lower (10- to 100-fold) than those of the original RFBS24 for the 22 target genes analyzed here. We also tested the new assay on fecal DNA samples from patients infected with Salmonella, Campylobacter, or enterohemorrhagic E. coli. The number of bacterial target genes detected by RFBS24 ver. 5 was greater than that detected by RFBS24. RFBS24 ver. 5 combined with an Ultra Clean Fecal DNA Isolation Kit showed adequate performance (sensitivity and specificity 89% and 100%, respectively, for Salmonella spp. and 100% and 83%, respectively, for Campylobacter jejuni) in terms of rapid detection of a causative pathogen during foodborne-illness outbreaks. Thus, RFBS24 ver. 5 is more useful than the previous assay system for detection of foodborne pathogens and offers quick simultaneous analysis of many targets and thus facilitates rapid dissemination of information to public health officials.
Simultaneous fits in ISIS on the example of GRO J1008-57
NASA Astrophysics Data System (ADS)
Kühnel, Matthias; Müller, Sebastian; Kreykenbohm, Ingo; Schwarm, Fritz-Walter; Grossberger, Christoph; Dauser, Thomas; Pottschmidt, Katja; Ferrigno, Carlo; Rothschild, Richard E.; Klochkov, Dmitry; Staubert, Rüdiger; Wilms, Joern
2015-04-01
Parallel computing and steadily increasing computation speed have led to a new tool for analyzing multiple datasets and datatypes: fitting several datasets simultaneously. With this technique, physically connected parameters of individual data can be treated as a single parameter by implementing this connection into the fit directly. We discuss the terminology, implementation, and possible issues of simultaneous fits based on the X-ray data analysis tool Interactive Spectral Interpretation System (ISIS). While all data modeling tools in X-ray astronomy allow in principle fitting data from multiple data sets individually, the syntax used in these tools is not often well suited for this task. Applying simultaneous fits to the transient X-ray binary GRO J1008-57, we find that the spectral shape is only dependent on X-ray flux. We determine time independent parameters such as, e.g., the folding energy E_fold, with unprecedented precision.
Edelman, Bradley J; Meng, Jianjun; Gulachek, Nicholas; Cline, Christopher C; He, Bin
2018-05-01
EEG-based brain-computer interface (BCI) technology creates non-biological pathways for conveying a user's mental intent solely through noninvasively measured neural signals. While optimizing the performance of a single task has long been the focus of BCI research, in order to translate this technology into everyday life, realistic situations, in which multiple tasks are performed simultaneously, must be investigated. In this paper, we explore the concept of cognitive flexibility, or multitasking, within the BCI framework by utilizing a 2-D cursor control task, using sensorimotor rhythms (SMRs), and a four-target visual attention task, using steady-state visual evoked potentials (SSVEPs), both individually and simultaneously. We found no significant difference between the accuracy of the tasks when executing them alone (SMR-57.9% ± 15.4% and SSVEP-59.0% ± 14.2%) and simultaneously (SMR-54.9% ± 17.2% and SSVEP-57.5% ± 15.4%). These modest decreases in performance were supported by similar, non-significant changes in the electrophysiology of the SSVEP and SMR signals. In this sense, we report that multiple BCI tasks can be performed simultaneously without a significant deterioration in performance; this finding will help drive these systems toward realistic daily use in which a user's cognition will need to be involved in multiple tasks at once.
Chatterjee, Tanaya; Chatterjee, Barun K; Majumdar, Dipanwita; Chakrabarti, Pinak
2015-02-01
An alternative to conventional antibiotics is needed to fight against emerging multiple drug resistant pathogenic bacteria. In this endeavor, the effect of silver nanoparticle (Ag-NP) has been studied quantitatively on two common pathogenic bacteria Escherichia coli and Staphylococcus aureus, and the growth curves were modeled. The effect of Ag-NP on bacterial growth kinetics was studied by measuring the optical density, and was fitted by non-linear regression using the Logistic and modified Gompertz models. Scanning Electron Microscopy and fluorescence microscopy were used to study the morphological changes of the bacterial cells. Generation of reactive oxygen species for Ag-NP treated cells were measured by fluorescence emission spectra. The modified Gompertz model, incorporating cell death, fits the observed data better than the Logistic model. With increasing concentration of Ag-NP, the growth kinetics of both bacteria shows a decline in growth rate with simultaneous enhancement of death rate constants. The duration of the lag phase was found to increase with Ag-NP concentration. SEM showed morphological changes, while fluorescence microscopy using DAPI showed compaction of DNA for Ag-NP-treated bacterial cells. E. coli was found to be more susceptible to Ag-NP as compared to S. aureus. The modified Gompertz model, using a death term, was found to be useful in explaining the non-monotonic nature of the growth curve. The modified Gompertz model derived here is of general nature and can be used to study any microbial growth kinetics under the influence of antimicrobial agents. Copyright © 2014 Elsevier B.V. All rights reserved.
Publishing FAIR Data: An Exemplar Methodology Utilizing PHI-Base.
Rodríguez-Iglesias, Alejandro; Rodríguez-González, Alejandro; Irvine, Alistair G; Sesma, Ane; Urban, Martin; Hammond-Kosack, Kim E; Wilkinson, Mark D
2016-01-01
Pathogen-Host interaction data is core to our understanding of disease processes and their molecular/genetic bases. Facile access to such core data is particularly important for the plant sciences, where individual genetic and phenotypic observations have the added complexity of being dispersed over a wide diversity of plant species vs. the relatively fewer host species of interest to biomedical researchers. Recently, an international initiative interested in scholarly data publishing proposed that all scientific data should be "FAIR"-Findable, Accessible, Interoperable, and Reusable. In this work, we describe the process of migrating a database of notable relevance to the plant sciences-the Pathogen-Host Interaction Database (PHI-base)-to a form that conforms to each of the FAIR Principles. We discuss the technical and architectural decisions, and the migration pathway, including observations of the difficulty and/or fidelity of each step. We examine how multiple FAIR principles can be addressed simultaneously through careful design decisions, including making data FAIR for both humans and machines with minimal duplication of effort. We note how FAIR data publishing involves more than data reformatting, requiring features beyond those exhibited by most life science Semantic Web or Linked Data resources. We explore the value-added by completing this FAIR data transformation, and then test the result through integrative questions that could not easily be asked over traditional Web-based data resources. Finally, we demonstrate the utility of providing explicit and reliable access to provenance information, which we argue enhances citation rates by encouraging and facilitating transparent scholarly reuse of these valuable data holdings.
Publishing FAIR Data: An Exemplar Methodology Utilizing PHI-Base
Rodríguez-Iglesias, Alejandro; Rodríguez-González, Alejandro; Irvine, Alistair G.; Sesma, Ane; Urban, Martin; Hammond-Kosack, Kim E.; Wilkinson, Mark D.
2016-01-01
Pathogen-Host interaction data is core to our understanding of disease processes and their molecular/genetic bases. Facile access to such core data is particularly important for the plant sciences, where individual genetic and phenotypic observations have the added complexity of being dispersed over a wide diversity of plant species vs. the relatively fewer host species of interest to biomedical researchers. Recently, an international initiative interested in scholarly data publishing proposed that all scientific data should be “FAIR”—Findable, Accessible, Interoperable, and Reusable. In this work, we describe the process of migrating a database of notable relevance to the plant sciences—the Pathogen-Host Interaction Database (PHI-base)—to a form that conforms to each of the FAIR Principles. We discuss the technical and architectural decisions, and the migration pathway, including observations of the difficulty and/or fidelity of each step. We examine how multiple FAIR principles can be addressed simultaneously through careful design decisions, including making data FAIR for both humans and machines with minimal duplication of effort. We note how FAIR data publishing involves more than data reformatting, requiring features beyond those exhibited by most life science Semantic Web or Linked Data resources. We explore the value-added by completing this FAIR data transformation, and then test the result through integrative questions that could not easily be asked over traditional Web-based data resources. Finally, we demonstrate the utility of providing explicit and reliable access to provenance information, which we argue enhances citation rates by encouraging and facilitating transparent scholarly reuse of these valuable data holdings. PMID:27433158
Experimental Transmission of Frog Virus 3-Like Ranavirus in Juvenile Chelonians at Two Temperatures.
Allender, Matthew C; Barthel, Ashley C; Rayl, Jeremy M; Terio, Karen A
2018-06-07
The pathogenicity of frog virus 3 (FV3)-like ranavirus varies in adult chelonian species at different environmental temperatures, but differences in pathogenicity at different temperatures has yet to be determined in juveniles. Our objective was to determine the susceptibility to FV3-like ranavirus in four species of juvenile chelonians: red-eared sliders (RES; Trachemys scripta elegans), Mississippi map turtles ( Graptemys pseudogeographica kohnii), false map turtles (FMT; Graptemys pseudogeographica), and eastern river cooters ( Pseudemys concinna concinna) at two environmental temperatures. Two simultaneous trials ( n=8 treatment and n=4 controls of each species) were conducted in separate temperature-controlled rooms with animals maintained at 22 C or 27 C. All of the inoculated animals of each species at each temperature died, but no mortality was observed in control animals. Median survival times varied between 8 d and 11 d, based on species and temperature, with RES in the 27 C trial surviving the shortest time and the FMT in the 22 C trial surviving the longest. Combining all species, turtles in the 27 C trial survived for fewer days than those housed at 22 C, despite all turtles in both trials having similar viral copies detected in postmortem tissues. Lesions in inoculated turtles resembled those noted in natural and experimental FV3-like ranavirus infections and included vasculitis, thrombosis, hemorrhage in multiple organs, renal tubular necrosis, and hepatic necrosis. Myositis was not present in any juvenile, infected turtles in this study. This study confirmed that juvenile chelonians have a high susceptibility to ranaviral disease.
Anık, Ahmet; Çatlı, Gönül; Abacı, Ayhan; Sarı, Erkan; Yeşilkaya, Ediz; Korkmaz, Hüseyin Anıl; Demir, Korcan; Altıncık, Ayça; Tuhan, Hale Ünver; Kızıldağ, Sefa; Özkan, Behzat; Ceylaner, Serdar; Böber, Ece
2015-11-01
To perform molecular analysis of pediatric maturity onset diabetes of the young (MODY) patients by next-generation sequencing, which enables simultaneous analysis of multiple genes in a single test, to determine the genetic etiology of a group of Turkish children clinically diagnosed as MODY, and to assess genotype-phenotype relationship. Forty-two children diagnosed with MODY and their parents were enrolled in the study. Clinical and laboratory characteristics of the patients at the time of diagnosis were obtained from hospital records. Molecular analyses of GCK, HNF1A, HNF4A, HNF1B, PDX1, NEUROD1, KLF11, CEL, PAX4, INS, and BLK genes were performed on genomic DNA by using next-generation sequencing. Pathogenicity for novel mutations was assessed by bioinformatics prediction software programs and segregation analyses. A mutation in MODY genes was identified in 12 (29%) of the cases. GCK mutations were detected in eight cases, and HNF1B, HNF1A, PDX1, and BLK mutations in the others. We identified five novel missense mutations - three in GCK (p.Val338Met, p.Cys252Ser, and p.Val86Ala), one in HNF1A (p.Cys241Ter), and one in PDX1 (p.Gly55Asp), which we believe to be pathogenic. The results of this study showed that mutations in the GCK gene are the leading cause of MODY in our population. Moreover, genetic diagnosis could be made in 29% of Turkish patients, and five novel mutations were identified.
Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A(H5N1) viruses in ferrets
USDA-ARS?s Scientific Manuscript database
Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A (H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, num...
USDA-ARS?s Scientific Manuscript database
Pythium spp. and Pratylenchus penetrans are significant components of the diverse pathogen complex that incites apple replant disease in Washington state. The structure of the Pythium population differs among orchard soils but is composed of multiple pathogenic species. Studies were conducted to d...
Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans.
Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K
2011-09-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.
USDA-ARS?s Scientific Manuscript database
Fungal plant pathogens secrete effector molecules to establish disease on their hosts, while plants in turn utilize immune receptors to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and V. alb...
Joao A. N. Filipe; Richard C. Cobb; Ross K. Meentemeyer; Christopher A. Lee; Yana S. Valachovic; Alex R. Cook; David M. Rizzo; Christopher A. Gilligan
2012-01-01
Exotic pathogens and pests threaten ecosystem service, biodiversity, and crop security globally. If an invasive agent can disperse asymptomatically over long distances, multiple spatial and temporal scales interplay, making identification of effective strategies to regulate, monitor, and control disease extremely difficult. The management of outbreaks is also...
Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S
2017-03-31
The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.
Chloramination has been shown to promote nitrifying bacteria and 30 to 63% of utility plants using secondary chloramine disinfection experience nitrification episodes. Although nitrifying bacteria are not considered human pathogens, nitrification can affect drinking water qualit...
Phytophthora ramorum + P. kernoviae = international biosecurity failure
Clive Brasier
2008-01-01
For a scientist, my title may seem a little sensationalist in tone. This is deliberate - to draw attention to my issue. And here?s the issue. About six years ago the previously unknown invasive pathogen P. ramorum sp. nov. was found spreading on trees and shrubs in North America and Europe. Almost simultaneously in the U.K. we found another...
Nosocomial Transmission and Genetic Diversity of Rhinovirus in a Neonatal Intensive Care Unit.
Marcone, Débora Natalia; Carballal, Guadalupe; Irañeta, Mariela; Rubies, Yamile; Vidaurreta, Santiago M; Echavarría, Marcela
2018-02-01
Rhinoviruses were detected as sole pathogens in 6 preterm infants who developed severe respiratory infections while hospitalized in a neonatal intensive care unit. We confirmed 2 nosocomial rhinovirus transmission episodes and describe the genetic diversity of rhinovirus strains that circulated simultaneously during a winter season. Copyright © 2017 Elsevier Inc. All rights reserved.
Leah S. Bauer; Deborah L. Miller; Joseph V. Maddox; Michael L. McManus
1998-01-01
Simultaneous and sequential per os inoculations of gypsy moth larvae with the Lymantria dispar nuclear polyhedrosis virus (LdNPV) and a Nosema sp. from Portugal demonstrated that the interaction of two pathogens during coinfection was variable, ranging from synergistic to antagonistic. Susceptibility of gypsy...
Sensitivity of Mycobacterium bovis to common beef processing interventions
USDA-ARS?s Scientific Manuscript database
Introduction. Cattle infected with Mycobacterium bovis, the causative agent of bovine tuberculosis and a relevant zoonosis to humans, may be sent to slaughter before diagnosis of infection because of slow multiplication of the pathogen. Purpose. This study evaluates multiple processing interventi...
The DDN (Defense Data Network) Course,
1986-04-01
devices will share the same node-to-node channels. * Simultaneous availability of source and destination is not required. * Speed and code conversion can...address multiple addresses simultaneously 3) Disadvantages of Message Switching Systems Not suited to real time or interactive use * Long and highly...transmission b) Unlike message switching, packet switching requires the -. simultaneous availability of source and destination. 64 -4 ) ..xa...e s
Multiple rare opportunistic and pathogenic fungi in persistent foot skin infection.
Chan, Giek Far; Sinniah, Sivaranjini; Idris, Tengku Idzzan Nadzirah Tengku; Puad, Mohamad Safwan Ahmad; Abd Rahman, Ahmad Zuhairi
2013-03-01
Persistent superficial skin infection caused by multiple fungi is rarely reported. Recently, a number of fungi, both opportunistic and persistent in nature were isolated from the foot skin of a 24-year old male in Malaysia. The fungi were identified as Candida parapsilosis, Rhodotorula mucilaginosa, Phoma spp., Debaryomyces hansenii, Acremonium spp., Aureobasidium pullulans and Aspergillus spp., This is the first report on these opportunistic strains were co-isolated from a healthy individual who suffered from persistent foot skin infection which was diagnosed as athlete's foot for more than 12 years. Among the isolated fungi, C. parapsilosis has been an increasingly common cause of skin infections. R. mucilaginosa and D. hansenii were rarely reported in cases of skin infection. A. pullulans, an emerging fungal pathogen was also being isolated in this case. Interestingly, it was noted that C. parapsilosis, R. mucilaginosa, D. hansenii and A. pullulans are among the common halophiles and this suggests the association of halotolerant fungi in causing persistent superficial skin infection. This discovery will shed light on future research to explore on effective treatment for inhibition of pathogenic halophiles as well as to understand the interaction of multiple fungi in the progress of skin infection.
Blackwell, Karen Dyer; Oliver, James D
2008-04-01
While numerous studies have characterized the distribution and/or ecology of various pathogenic Vibrio spp., here we have simultaneously examined several estuarine sites for Vibrio vulnificus, V. cholerae, and V. parahaemolyticus. For a one year period, waters and sediment were monitored for the presence of these three pathogens at six different sites on the east coast of North Carolina in the United States. All three pathogens, identified using colony hybridization and PCR methods, occurred in these estuarine environments, although V. cholerae occurred only infrequently and at very low levels. Seventeen chemical, physical, and biological parameters were investigated, including salinity, water temperature, turbidity, dissolved oxygen, levels of various inorganic nutrients and dissolved organic carbon, as well as total vibrios, total coliforms, and E. coli. We found each of the Vibrio spp. in water and sediment to correlate to several of these environmental measurements, with water temperature and total Vibrio levels correlating highly (P<0.0001) with occurrence of the three pathogens. Thus, these two parameters may represent simple assays for characterizing the potential public health hazard of estuarine waters.
Whalen, M C; Innes, R W; Bent, A F; Staskawicz, B J
1991-01-01
To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.
Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H
2013-01-01
Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964
Goyal, Megha; Chaudhuri, Tapan K
2015-07-01
Folding of aggregation prone recombinant proteins through co-expression of chaperonin GroEL and GroES has been a popular practice in the effort to optimize preparation of functional protein in Escherichia coli. Considering the demand for functional recombinant protein products, it is desirable to apply the chaperone assisted protein folding strategy for enhancing the yield of properly folded protein. Toward the same direction, it is also worth attempting folding of multiple recombinant proteins simultaneously over-expressed in E. coli through the assistance of co-expressed GroEL-ES. The genesis of this thinking was originated from the fact that cellular GroEL and GroES assist in the folding of several endogenous proteins expressed in the bacterial cell. Here we present the experimental findings from our study on co-expressed GroEL-GroES assisted folding of simultaneously over-expressed proteins maltodextrin glucosidase (MalZ) and yeast mitochondrial aconitase (mAco). Both proteins mentioned here are relatively larger and aggregation prone, mostly form inclusion bodies, and undergo GroEL-ES assisted folding in E. coli cells during over-expression. It has been reported that the relative yield of properly folded functional forms of MalZ and mAco with the exogenous GroEL-ES assistance were comparable with the results when these proteins were overexpressed alone. This observation is quite promising and highlights the fact that GroEL and GroES can assist in the folding of multiple substrate proteins simultaneously when over-expressed in E. coli. This method might be a potential tool for enhanced production of multiple functional recombinant proteins simultaneously in E. coli. Copyright © 2015 Elsevier Ltd. All rights reserved.
Passive radio frequency peak power multiplier
Farkas, Zoltan D.; Wilson, Perry B.
1977-01-01
Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
Church, George M.; Esvelt, Kevin; Mali, Prashant
2017-03-07
Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.
ERIC Educational Resources Information Center
Cartwright, Kelly B.
2002-01-01
A reading-specific multiple classification task was designed that required children to classify printed words along phonological and semantic dimensions simultaneously. Reading-specific multiple classification skill made a unique contribution to children's reading comprehension over contributions made by age, domain-general multiple classification…
ERIC Educational Resources Information Center
Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.
2010-01-01
Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…
NASA Astrophysics Data System (ADS)
Jonrinaldi; Rahman, T.; Henmaidi; Wirdianto, E.; Zhang, D. Z.
2018-03-01
This paper proposed a mathematical model for multiple items Economic Production and Order Quantity (EPQ/EOQ) with considering continuous and discrete demand simultaneously in a system consisting of a vendor and multiple buyers. This model is used to investigate the optimal production lot size of the vendor and the number of shipments policy of orders to multiple buyers. The model considers the multiple buyers’ holding cost as well as transportation cost, which minimize the total production and inventory costs of the system. The continuous demand from any other customers can be fulfilled anytime by the vendor while the discrete demand from multiple buyers can be fulfilled by the vendor using the multiple delivery policy with a number of shipments of items in the production cycle time. A mathematical model is developed to illustrate the system based on EPQ and EOQ model. Solution procedures are proposed to solve the model using a Mixed Integer Non Linear Programming (MINLP) and algorithm methods. Then, the numerical example is provided to illustrate the system and results are discussed.
Method and apparatus for the simultaneous display and correlation of independently generated images
Vaitekunas, Jeffrey J.; Roberts, Ronald A.
1991-01-01
An apparatus and method for location by location correlation of multiple images from Non-Destructive Evaluation (NDE) and other sources. Multiple images of a material specimen are displayed on one or more monitors of an interactive graphics system. Specimen landmarks are located in each image and mapping functions from a reference image to each other image are calcuated using the landmark locations. A location selected by positioning a cursor in the reference image is mapped to the other images and location identifiers are simultaneously displayed in those images. Movement of the cursor in the reference image causes simultaneous movement of the location identifiers in the other images to positions corresponding to the location of the reference image cursor.
Ruiz-Espinosa, H; Amador-Espejo, G G; Barcenas-Pozos, M E; Angulo-Guerrero, J O; Garcia, H S; Welti-Chanes, J
2013-02-01
Multiple-pass ultrahigh pressure homogenization (UHPH) was used for reducing microbial population of both indigenous spoilage microflora in whole raw milk and a baroresistant pathogen (Staphylococcus aureus) inoculated in whole sterile milk to define pasteurization-like processing conditions. Response surface methodology was followed and multiple response optimization of UHPH operating pressure (OP) (100, 175, 250 MPa) and number of passes (N) (1-5) was conducted through overlaid contour plot analysis. Increasing OP and N had a significant effect (P < 0·05) on microbial reduction of both spoilage microflora and Staph. aureus in milk. Optimized UHPH processes (five 202-MPa passes; four 232-MPa passes) defined a region where a 5-log(10) reduction of total bacterial count of milk and a baroresistant pathogen are attainable, as a requisite parameter for establishing an alternative method of pasteurization. Multiple-pass UHPH optimized conditions might help in producing safe milk without the detrimental effects associated with thermal pasteurization. © 2012 The Society for Applied Microbiology.
Droplet microfluidics for amplification-free genetic detection of single cells.
Rane, Tushar D; Zec, Helena C; Puleo, Chris; Lee, Abraham P; Wang, Tza-Huei
2012-09-21
In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.
Spreading of multiple epidemics with cross immunization.
Uekermann, Florian; Sneppen, Kim
2012-09-01
Pathogen-host relationships are the result of an ongoing coevolutionary race where the immune system of the host attempts to eliminate the pathogen, while the successful pathogen mutates to become invisible for the host's immune system. We here propose a minimal pathogen-host evolution model that takes into account cross immunization and allows for evolution of a spatially heterogeneous immune status of a population of hosts. With only the mutation rate as a determining parameter, the model allows us to produce an evolutionary tree of diseases which is highly branched, but hardly ever splits into separate long-lived trunks. Side branches remain short lived and seldom diverge to the extent of losing all cross immunizations.
The Role of TLR2 in Infection and Immunity
Oliveira-Nascimento, Laura; Massari, Paola; Wetzler, Lee M.
2012-01-01
Toll-like receptors (TLRs) are recognition molecules for multiple pathogens, including bacteria, viruses, fungi, and parasites. TLR2 forms heterodimers with TLR1 and TLR6, which is the initial step in a cascade of events leading to significant innate immune responses, development of adaptive immunity to pathogens and protection from immune sequelae related to infection with these pathogens. This review will discuss the current status of TLR2 mediated immune responses by recognition of pathogen-associated molecular patterns (PAMPS) on these organisms. We will emphasize both canonical and non-canonical responses to TLR2 ligands with emphasis on whether the inflammation induced by these responses contributes to the disease state or to protection from diseases. PMID:22566960
Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites.
Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam; Rafati, Sima
2017-07-01
Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite proliferation and required for infection in mice. ARG activity can be used as one of the main marker of the disease severity.
Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites
Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam
2017-01-01
Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite proliferation and required for infection in mice. ARG activity can be used as one of the main marker of the disease severity. PMID:28708893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...
2017-02-17
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham
2017-10-17
Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.
Chen, Chi-Hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-08-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership than English, were able to learn words and form object categories when trained with the same type of structures. The results indicate that both groups of learners successfully extracted multiple levels of co-occurrence and used them to learn words and object categories simultaneously. However, marked individual differences in performance were also found, suggesting possible interference and competition in processing the two concurrent streams of regularities. Copyright © 2016 Cognitive Science Society, Inc.
Cohen, Stephen P; Liu, Hongxia; Argueso, Cristiana T; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie; Leach, Jan E
2017-01-01
Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic acid is an important node for cross-talk between plant transcriptional response pathways to high temperature stress and pathogen attack. Genes in this pathway represent an important focus for future study to determine how plants evolved to deal with simultaneous abiotic and biotic stresses.
Argueso, Cristiana T.; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie
2017-01-01
Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic acid is an important node for cross-talk between plant transcriptional response pathways to high temperature stress and pathogen attack. Genes in this pathway represent an important focus for future study to determine how plants evolved to deal with simultaneous abiotic and biotic stresses. PMID:29107972
FY11 Report on Metagenome Analysis using Pathogen Marker Libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea N.; Allen, Jonathan E.; McLoughlin, Kevin S.
2011-06-02
A method, sequence library, and software suite was invented to rapidly assess whether any member of a pre-specified list of threat organisms or their near neighbors is present in a metagenome. The system was designed to handle mega- to giga-bases of FASTA-formatted raw sequence reads from short or long read next generation sequencing platforms. The approach is to pre-calculate a viral and a bacterial "Pathogen Marker Library" (PML) containing sub-sequences specific to pathogens or their near neighbors. A list of expected matches comparing every bacterial or viral genome against the PML sequences is also pre-calculated. To analyze a metagenome, readsmore » are compared to the PML, and observed PML-metagenome matches are compared to the expected PML-genome matches, and the ratio of observed relative to expected matches is reported. In other words, a 3-way comparison among the PML, metagenome, and existing genome sequences is used to quickly assess which (if any) species included in the PML is likely to be present in the metagenome, based on available sequence data. Our tests showed that the species with the most PML matches correctly indicated the organism sequenced for empirical metagenomes consisting of a cultured, relatively pure isolate. These runs completed in 1 minute to 3 hours on 12 CPU (1 thread/CPU), depending on the metagenome and PML. Using more threads on the same number of CPU resulted in speed improvements roughly proportional to the number of threads. Simulations indicated that detection sensitivity depends on both sequencing coverage levels for a species and the size of the PML: species were correctly detected even at ~0.003x coverage by the large PMLs, and at ~0.03x coverage by the smaller PMLs. Matches to true positive species were 3-4 orders of magnitude higher than to false positives. Simulations with short reads (36 nt and ~260 nt) showed that species were usually detected for metagenome coverage above 0.005x and coverage in the PML above 0.05x, and detection probability appears to be a function of both coverages. Multiple species could be detected simultaneously in a simulated low-coverage, complex metagenome, and the largest PML gave no false negative species and no false positive genera. The presence of multiple species was predicted in a complex metagenome from a human gut microbiome with 1.9 GB of short reads (75 nt); the species predicted were reasonable gut flora and no biothreat agents were detected, showing the feasibility of PML analysis of empirical complex metagenomes.« less
Assembling evidence for identifying reservoirs of infection
Viana, Mafalda; Mancy, Rebecca; Biek, Roman; Cleaveland, Sarah; Cross, Paul C.; Lloyd-Smith, James O.; Haydon, Daniel T.
2014-01-01
Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems. PMID:24726345
Assembling evidence for identifying reservoirs of infection
Mafalda, Viana; Rebecca, Mancy; Roman, Biek; Sarah, Cleaveland; Cross, Paul C.; James O, Lloyd-Smith; Daniel T, Haydon
2014-01-01
Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems.
Multiple outcomes are often measured on each experimental unit in toxicology experiments. These multiple observations typically imply the existence of correlation between endpoints, and a statistical analysis that incorporates it may result in improved inference. When both disc...
Barry, Kevin C; Ingolia, Nicholas T; Vance, Russell E
2017-01-01
The inducible innate immune response to infection requires a concerted process of gene expression that is regulated at multiple levels. Most global analyses of the innate immune response have focused on transcription induced by defined immunostimulatory ligands, such as lipopolysaccharide. However, the response to pathogens involves additional complexity, as pathogens interfere with virtually every step of gene expression. How cells respond to pathogen-mediated disruption of gene expression to nevertheless initiate protective responses remains unclear. We previously discovered that a pathogen-mediated blockade of host protein synthesis provokes the production of specific pro-inflammatory cytokines. It remains unclear how these cytokines are produced despite the global pathogen-induced block of translation. We addressed this question by using parallel RNAseq and ribosome profiling to characterize the response of macrophages to infection with the intracellular bacterial pathogen Legionella pneumophila. Our results reveal that mRNA superinduction is required for the inducible immune response to a bacterial pathogen. DOI: http://dx.doi.org/10.7554/eLife.22707.001 PMID:28383283
USDA-ARS?s Scientific Manuscript database
The Asian-origin H5N1 A/goose/Guangdong/1/1996 (Gs/GD) lineage of high pathogenicity avian influenza viruses (HPAIV) has become widespread across four continents, affecting poultry, wild birds and humans. H5N1 HPAIV has evolved into multiple hemagglutinin (HA) genetic clades and reassorting with dif...
Mixed Infections and their Control
1983-04-29
endocarditis , bactereF.,;a, and closed-space infections , such as brain or lung abscesses that cavnot be surgically drained. Combination therapy should not be...Systemic infection is a common complication of multiple injury despite the availability of potent and specific antibiotics. 2 Infections following...trauma are due to opportunistic pathogens that . originate from endogenous nr exogenous sources. These pathogens, often present as mixed infections
Baker, Lorina G.; Specht, Charles A.; Lodge, Jennifer K.
2011-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host. PMID:21784998
Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto
2013-12-01
The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Baroncelli, Riccardo; Zapparata, Antonio; Sarrocco, Sabrina; Sukno, Serenella A.; Lane, Charles R.; Thon, Michael R.; Vannacci, Giovanni; Holub, Eric; Sreenivasaprasad, Surapareddy
2015-01-01
Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production. PMID:26086351
Mills, Freya; Petterson, Susan; Norman, Guy
2018-01-01
Public health benefits are often a key political driver of urban sanitation investment in developing countries, however, pathogen flows are rarely taken systematically into account in sanitation investment choices. While several tools and approaches on sanitation and health risks have recently been developed, this research identified gaps in their ability to predict faecal pathogen flows, to relate exposure risks to the existing sanitation services, and to compare expected impacts of improvements. This paper outlines a conceptual approach that links faecal waste discharge patterns with potential pathogen exposure pathways to quantitatively compare urban sanitation improvement options. An illustrative application of the approach is presented, using a spreadsheet-based model to compare the relative effect on disability-adjusted life years of six sanitation improvement options for a hypothetical urban situation. The approach includes consideration of the persistence or removal of different pathogen classes in different environments; recognition of multiple interconnected sludge and effluent pathways, and of multiple potential sites for exposure; and use of quantitative microbial risk assessment to support prediction of relative health risks for each option. This research provides a step forward in applying current knowledge to better consider public health, alongside environmental and other objectives, in urban sanitation decision making. Further empirical research in specific locations is now required to refine the approach and address data gaps. PMID:29360775
McAdam, Paul R; Vander Broek, Charles W; Lindsay, Diane S J; Ward, Melissa J; Hanson, Mary F; Gillies, Michael; Watson, Mick; Stevens, Joanne M; Edwards, Giles F; Fitzgerald, J Ross
2014-01-01
Legionnaires' disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires' disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates. Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila. Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires' disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections.