Zhu, Lingyun; Li, Lianjie; Meng, Chunyan
2014-12-01
There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.
Multiple regression for physiological data analysis: the problem of multicollinearity.
Slinker, B K; Glantz, S A
1985-07-01
Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.
Monitoring of physiological parameters from multiple patients using wireless sensor network.
Yuce, Mehmet R; Ng, Peng Choong; Khan, Jamil Y
2008-10-01
This paper presents a wireless sensor network system that has the capability to monitor physiological parameters from multiple patient bodies. The system uses the Medical Implant Communication Service band between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.
Advancements in noncontact, multiparameter physiological measurements using a webcam.
Poh, Ming-Zher; McDuff, Daniel J; Picard, Rosalind W
2011-01-01
We present a simple, low-cost method for measuring multiple physiological parameters using a basic webcam. By applying independent component analysis on the color channels in video recordings, we extracted the blood volume pulse from the facial regions. Heart rate (HR), respiratory rate, and HR variability (HRV, an index for cardiac autonomic activity) were subsequently quantified and compared to corresponding measurements using Food and Drug Administration-approved sensors. High degrees of agreement were achieved between the measurements across all physiological parameters. This technology has significant potential for advancing personal health care and telemedicine.
Effect of considering the initial parameters on accuracy of experimental studies conclusions
NASA Astrophysics Data System (ADS)
Zagulova, D.; Nesterenko, A.; Kapilevich, L.; Popova, J.
2015-11-01
The presented paper contains the evidences of the necessity to take into account the initial level of physiological parameters while conducting the biomedical research; it is exemplified by certain indicators of cardiorespiratory system. The analysis is based on the employment of data obtained via the multiple surveys of medical and pharmaceutical college students. There has been revealed a negative correlation of changes of the studied parameters of cardiorespiratory system in the repeated measurements compared to their initial level. It is assumed that the dependence of the changes of physiological parameters from the baseline can be caused by the biorhythmic changes inherent for all body systems.
Noninvasive optical monitoring multiple physiological parameters response to cytokine storm
NASA Astrophysics Data System (ADS)
Li, Zebin; Li, Ting
2018-02-01
Cancer and other disease originated by immune or genetic problems have become a main cause of death. Gene/cell therapy is a highlighted potential method for the treatment of these diseases. However, during the treatment, it always causes cytokine storm, which probably trigger acute respiratory distress syndrome and multiple organ failure. Here we developed a point-of-care device for noninvasive monitoring cytokine storm induced multiple physiological parameters simultaneously. Oxy-hemoglobin, deoxy-hemoglobin, water concentration and deep-tissue/tumor temperature variations were simultaneously measured by extended near infrared spectroscopy. Detection algorithms of symptoms such as shock, edema, deep-tissue fever and tissue fibrosis were developed and included. Based on these measurements, modeling of patient tolerance and cytokine storm intensity were carried out. This custom device was tested on patients experiencing cytokine storm in intensive care unit. The preliminary data indicated the potential of our device in popular and milestone gene/cell therapy, especially, chimeric antigen receptor T-cell immunotherapy (CAR-T).
The use of information theory for the evaluation of biomarkers of aging and physiological age.
Blokh, David; Stambler, Ilia
2017-04-01
The present work explores the application of information theoretical measures, such as entropy and normalized mutual information, for research of biomarkers of aging. The use of information theory affords unique methodological advantages for the study of aging processes, as it allows evaluating non-linear relations between biological parameters, providing the precise quantitative strength of those relations, both for individual and multiple parameters, showing cumulative or synergistic effect. Here we illustrate those capabilities utilizing a dataset on heart disease, including diagnostic parameters routinely available to physicians. The use of information-theoretical methods, utilizing normalized mutual information, revealed the exact amount of information that various diagnostic parameters or their combinations contained about the persons' age. Based on those exact informative values for the correlation of measured parameters with age, we constructed a diagnostic rule (a decision tree) to evaluate physiological age, as compared to chronological age. The present data illustrated that younger subjects suffering from heart disease showed characteristics of people of higher age (higher physiological age). Utilizing information-theoretical measures, with additional data, it may be possible to create further clinically applicable information-theory-based markers and models for the evaluation of physiological age, its relation to age-related diseases and its potential modifications by therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.
Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano
2014-01-01
This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours. PMID:25133593
[A wireless mobile monitoring system based on bluetooth technology].
Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming
2006-09-01
This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.
Effect of local and global geomagnetic activity on human cardiovascular homeostasis.
Dimitrova, Svetla; Stoilova, Irina; Yanev, Toni; Cholakov, Ilia
2004-02-01
The authors investigated the effects of local and planetary geomagnetic activity on human physiology. They collected data in Sofia, Bulgaria, from a group of 86 volunteers during the periods of the autumnal and vernal equinoxes. They used the factors local/planetary geomagnetic activity, day of measurement, gender, and medication use to apply a four-factor multiple analysis of variance. They also used a post hoc analysis to establish the statistical significance of the differences between the average values of the measured physiological parameters in the separate factor levels. In addition, the authors performed correlation analysis between the physiological parameters examined and geophysical factors. The results revealed that geomagnetic changes had a statistically significant influence on arterial blood pressure. Participants expressed this reaction with weak local geomagnetic changes and when major and severe global geomagnetic storms took place.
NASA SMART Probe: Breast Cancer Application
NASA Technical Reports Server (NTRS)
Mah, Robert W.; Norvig, Peter (Technical Monitor)
2000-01-01
There is evidence in breast cancer and other malignancies that the physiologic environment within a tumor correlates with clinical outcome. We are developing a unique percutaneous Smart Probe to be used at the time of needle biopsy of the breast. The Smart Probe will simultaneously measure multiple physiologic parameters within a breast tumor. Direct and indirect measurements of tissue oxygen levels, blood flow, pH, and tissue fluid pressure will be analyzed in real-time. These parameters will be interpreted individually and collectively by innovative neural network techniques using advanced intelligent software. The goals are 1) develop a pecutaneous Smart Probe with multiple sensor modalities and applying advanced Information Technologies to provide real time diagnostic information of the tissue at tip of the probe, 2) test the percutaneous Smart Probe in women with benign and malignant breast masses who will be undergoing surgical biopsy, 3) correlate probe sensor data with benign and malignant status of breast masses, 4) determine whether the probe can detect physiologic differences within a breast tumor, and its margins, and in adjacent normal breast tissue, 5) correlate probe sensor data with known prognostic factors for breast caner, including tumor size, tumor grade, axillary lymph node metastases, estrogen receptor and progesterone receptor status.
Physiological Parameter Response to Variation of Mental Workload.
Marinescu, Adrian Cornelius; Sharples, Sarah; Ritchie, Alastair Campbell; Sánchez López, Tomas; McDowell, Michael; Morvan, Hervé P
2018-02-01
To examine the relationship between experienced mental workload and physiological response by noninvasive monitoring of physiological parameters. Previous studies have examined how individual physiological measures respond to changes in mental demand and subjective reports of workload. This study explores the response of multiple physiological parameters and quantifies their added value when estimating the level of demand. The study presented was conducted in laboratory conditions and required participants to perform a visual-motor task that imposed varying levels of demand. The data collected consisted of physiological measurements (heart interbeat intervals, breathing rate, pupil diameter, facial thermography), subjective ratings of workload (Instantaneous Self-Assessment Workload Scale [ISA] and NASA-Task Load Index), and the performance. Facial thermography and pupil diameter were demonstrated to be good candidates for noninvasive workload measurements: For seven out of 10 participants, pupil diameter showed a strong correlation ( R values between .61 and .79 at a significance value of .01) with mean ISA normalized values. Facial thermography measures added on average 47.7% to the amount of variability in task performance explained by a regression model. As with the ISA ratings, the relationship between the physiological measures and performance showed strong interparticipant differences, with some individuals demonstrating a much stronger relationship between workload and performance measures than others. The results presented in this paper demonstrate that physiological and pupil diameter can be used for noninvasive real-time measurement of workload. The methods presented in this article, with current technological capabilities, are better suited for workplaces where the person is seated, offering the possibility of being applied to pilots and air traffic controllers.
Dynamical analysis of uterine cell electrical activity model.
Rihana, S; Santos, J; Mondie, S; Marque, C
2006-01-01
The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.
A wireless body measurement system to study fatigue in multiple sclerosis.
Yu, Fei; Bilberg, Arne; Stenager, Egon; Rabotti, Chiara; Zhang, Bin; Mischi, Massimo
2012-12-01
Fatigue is reported as the most common symptom by patients with multiple sclerosis (MS). The physiological and functional parameters related to fatigue in MS patients are currently not well established. A new wearable wireless body measurement system, named Fatigue Monitoring System (FAMOS), was developed to study fatigue in MS. It can continuously measure electrocardiogram, body-skin temperature, electromyogram and motions of feet. The goal of this study is to test the ability of distinguishing fatigued MS patients from healthy subjects by the use of FAMOS. This paper presents the realization of the measurement system including the design of both hardware and dedicated signal processing algorithms. Twenty-six participants including 17 MS patients with fatigue and 9 sex- and age-matched healthy controls were included in the study for continuous 24 h monitoring. The preliminary results show significant differences between fatigued MS patients and healthy controls. In conclusion, the FAMOS enables continuous data acquisition and estimation of multiple physiological and functional parameters. It provides a new, flexible and objective approach to study fatigue in MS, which can distinguish between fatigued MS patients and healthy controls. The usability and reliability of the FAMOS should however be further improved and validated through larger clinical trials.
Physiological Parameter Response to Variation of Mental Workload
Marinescu, Adrian Cornelius; Sharples, Sarah; Ritchie, Alastair Campbell; Sánchez López, Tomas; McDowell, Michael; Morvan, Hervé P.
2017-01-01
Objective: To examine the relationship between experienced mental workload and physiological response by noninvasive monitoring of physiological parameters. Background: Previous studies have examined how individual physiological measures respond to changes in mental demand and subjective reports of workload. This study explores the response of multiple physiological parameters and quantifies their added value when estimating the level of demand. Method: The study presented was conducted in laboratory conditions and required participants to perform a visual-motor task that imposed varying levels of demand. The data collected consisted of physiological measurements (heart interbeat intervals, breathing rate, pupil diameter, facial thermography), subjective ratings of workload (Instantaneous Self-Assessment Workload Scale [ISA] and NASA-Task Load Index), and the performance. Results: Facial thermography and pupil diameter were demonstrated to be good candidates for noninvasive workload measurements: For seven out of 10 participants, pupil diameter showed a strong correlation (R values between .61 and .79 at a significance value of .01) with mean ISA normalized values. Facial thermography measures added on average 47.7% to the amount of variability in task performance explained by a regression model. As with the ISA ratings, the relationship between the physiological measures and performance showed strong interparticipant differences, with some individuals demonstrating a much stronger relationship between workload and performance measures than others. Conclusion: The results presented in this paper demonstrate that physiological and pupil diameter can be used for noninvasive real-time measurement of workload. Application: The methods presented in this article, with current technological capabilities, are better suited for workplaces where the person is seated, offering the possibility of being applied to pilots and air traffic controllers. PMID:28965433
A Multi-Scale Sampling Strategy for Detecting Physiologically Significant Signals in AVIRIS Imagery
NASA Technical Reports Server (NTRS)
Gamon, John A.; Lee, Lai-Fun; Qiu, Hong-Lie; Davis, Stephen; Roberts, Dar A.; Ustin, Susan L.
1998-01-01
Models of photosynthetic production at ecosystem and global scales require multiple input parameters specifying physical and physiological surface features. While certain physical parameters (e.g., absorbed photosynthetically active radiation) can be derived from current satellite sensors, other physiologically relevant measures (e.g., vegetation type, water status, carboxylation capacity, or photosynthetic light-use efficiency), are not generally directly available from current satellite sensors at the appropriate geographic scale. Consequently, many model parameters must be assumed or derived from independent sources, often at an inappropriate scale. An abundance of ecophysiological studies at the leaf and canopy scales suggests strong physiological control of vegetation-atmosphere CO2 and water vapor fluxes, particularly in evergreen vegetation subjected to diurnal or seasonal stresses. For example hot, dry conditions can lead to stomatal closure, and associated "downregulation" of photosynthetic biochemical processes, a phenomenon often manifested as a "midday photosynthetic depression". A recent study with the revised simple biosphere (SiB2) model demonstrated that photosynthetic downregulation can significantly impact global climate. However, at the global scale, the exact significance of downregulation remains unclear, largely because appropriate physiological measures are generally unavailable at this scale. Clearly, there is a need to develop reliable ways of extracting physiologically relevant information from remote sensing. Narrow-band spectrometers offer many opportunities for deriving physiological parameters needed for ecosystem and global scale photosynthetic models. Experimental studies on the ground at the leaf- to stand-scale have indicated that several narrow-band features can be used to detect plant physiological status. One physiological signal is caused by xanthophyll cycle pigment activity, and is often expressed as the Photochemical Reflectance Index (PRI). Because the xanthophyll cycle pigments are photoregulatory pigments closely linked to photosynthetic function, this index can be used to derive relative photosynthetic rates. An additional signal with physiological significance is the 970 nm water absorption band, which provides a measure of liquid water content. This feature has been quantified both using a simple 2-band ratio (900/970 nm, here referred to as the "Water Band Index" or WBI;), and using the "continuum removal" method. Current atmospheric correction methods for AVIRIS imagery also obtain quantitative expressions of surface liquid water absorption based on the 970 nm water band and may be comparable to ground-based estimates of water content using this feature. However, physiological interpretations of both the PRI and the WBI are best understood at the leaf and canopy scales, where complications of atmospheric interference and complex stand and landscape features can be minimized, and where experimental manipulations can be readily applied. Currently it is not known whether these physiological indices can be used to derive meaningful physiological information from AVIRIS imagery. In addition to the problem of atmospheric interference, another challenge is that any simple physiological index can be confounded by multiple factors unrelated to physiology, and this problem can become more severe at progressively larger spatial scales. For example, previous work has suggested that both the PRI and the WBI, are strongly correlated with other optical measures of canopy structure (e.g., the Normalized Difference Vegetation Index or green vegetation fraction), indicating a confounding effect of structure on physiological signals at the larger, landscape scale. Furthermore, the normal operating mode of most imaging spectrometers does not allow simultaneous, ground truthing at a level of detail needed for physiological sampling. Additionally, manipulative experiments of physiology are difficult to apply at a geographic scale suitable for comparison with remote imagery, which often works at spatial scales that are several orders of magnitude larger than those typically used for physiological studies. These limitations require the consideration of alternative approaches to validating physiological information derived from AVIRIS data. In this report, we present a multi-scale sampling approach to detecting physiologically significant signals in narrow-band spectra. This approach explores the multi-dimensional data space provided by narrow-band spectrometry, and combines AVIRIS imagery at a large scale, with ground spectral sampling at an intermediate scale, and detailed ecophysiological measurements at a fine scale, to examine seasonally and spatially changing relationships between multiple structural and physiological variables. Examples of this approach are provided by simultaneous sampling of the Normalized Difference Vegetation Index (NDVI), an index of fractional PAR interception and green vegetation cover, the Water Band Index (WBI, an index of liquid water absorption, and the Photochemical Reflectance Index (PRI, an index of xanthophyll cycle pigment activity and photosynthetic light-use efficiency. By directly linking changing optical properties sampled on the ground with measurable physiological states, we hope to develop a basis for interpreting similar signals in AVIRIS imagery.
Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava
2015-01-01
Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212
Typlt, Marei; Englitz, Bernhard; Sonntag, Mandy; Dehmel, Susanne; Kopp-Scheinpflug, Cornelia; Ruebsamen, Rudolf
2012-01-01
Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies. PMID:22253838
Feasibility of Rapid Multitracer PET Tumor Imaging
NASA Astrophysics Data System (ADS)
Kadrmas, D. J.; Rust, T. C.
2005-10-01
Positron emission tomography (PET) can characterize different aspects of tumor physiology using various tracers. PET scans are usually performed using only one tracer since there is no explicit signal for distinguishing multiple tracers. We tested the feasibility of rapidly imaging multiple PET tracers using dynamic imaging techniques, where the signals from each tracer are separated based upon differences in tracer half-life, kinetics, and distribution. Time-activity curve populations for FDG, acetate, ATSM, and PTSM were simulated using appropriate compartment models, and noisy dual-tracer curves were computed by shifting and adding the single-tracer curves. Single-tracer components were then estimated from dual-tracer data using two methods: principal component analysis (PCA)-based fits of single-tracer components to multitracer data, and parallel multitracer compartment models estimating single-tracer rate parameters from multitracer time-activity curves. The PCA analysis found that there is information content present for separating multitracer data, and that tracer separability depends upon tracer kinetics, injection order and timing. Multitracer compartment modeling recovered rate parameters for individual tracers with good accuracy but somewhat higher statistical uncertainty than single-tracer results when the injection delay was >10 min. These approaches to processing rapid multitracer PET data may potentially provide a new tool for characterizing multiple aspects of tumor physiology in vivo.
Compact continuum brain model for human electroencephalogram
NASA Astrophysics Data System (ADS)
Kim, J. W.; Shin, H.-B.; Robinson, P. A.
2007-12-01
A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.
Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments
Antoine, Elizabeth E.; Vlachos, Pavlos P.; Rylander, Marissa N.
2015-01-01
Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications. PMID:25822731
Recent advancement in biosensors technology for animal and livestock health management.
Neethirajan, Suresh; Tuteja, Satish K; Huang, Sheng-Tung; Kelton, David
2017-12-15
The term biosensors encompasses devices that have the potential to quantify physiological, immunological and behavioural responses of livestock and multiple animal species. Novel biosensing methodologies offer highly specialised monitoring devices for the specific measurement of individual and multiple parameters covering an animal's physiology as well as monitoring of an animal's environment. These devices are not only highly specific and sensitive for the parameters being analysed, but they are also reliable and easy to use, and can accelerate the monitoring process. Novel biosensors in livestock management provide significant benefits and applications in disease detection and isolation, health monitoring and detection of reproductive cycles, as well as monitoring physiological wellbeing of the animal via analysis of the animal's environment. With the development of integrated systems and the Internet of Things, the continuously monitoring devices are expected to become affordable. The data generated from integrated livestock monitoring is anticipated to assist farmers and the agricultural industry to improve animal productivity in the future. The data is expected to reduce the impact of the livestock industry on the environment, while at the same time driving the new wave towards the improvements of viable farming techniques. This review focusses on the emerging technological advancements in monitoring of livestock health for detailed, precise information on productivity, as well as physiology and well-being. Biosensors will contribute to the 4th revolution in agriculture by incorporating innovative technologies into cost-effective diagnostic methods that can mitigate the potentially catastrophic effects of infectious outbreaks in farmed animals. Copyright © 2017 Elsevier B.V. All rights reserved.
Treadmill Exercise Within LBNP as an Integrated Coutermeasure to Microgravity
NASA Technical Reports Server (NTRS)
Lee, Stuart; Hargens, A. R.; Schneider, S. M.; Watenpaugh, D. E.
2010-01-01
An integrated exercise countermeasure for microgravity is needed to protect multiple physiologic systems and save crew time. Such a countermeasure should protect orthostatic tolerance, upright ambulatory capability (including sprinting), aerobic capacity, muscle strength/endurance, and other physiologic parameters relevant to human performance. We developed a novel physiologic countermeasure, treadmill exercise within LBNP, for preventing cardiovascular and musculoskeletal deconditioning associated with prolonged bed rest and spaceflight. We evaluated 40 min of daily LBNP treadmill exercise by a battery of physiologic parameters relevant to maintaining exercise performance and health of both women and men during bed-rest (simulated microgravity) studies lasting from 5 to 60 days. For 30 day studies, we employed identical twins with one twin as the control and the other twin as the exerciser to improve comparative power. During the WISE 60-day HDT study, the treadmill exercise within LBNP was performed 3-4 days each week and resistive exercise was performed 2-3 days each week. Our treadmill within LBNP protocol maintained plasma volume and sprint speed (30 day HDT bed-rest studies of identical twins), orthostatic tolerance to a degree, upright exercise capacity, muscle strength and endurance, and some bone parameters during 30 day (twin studies) and 60 day (WISE-2005) bed-rest simulations of microgravity. When combining treadmill exercise within LBNP and resistive exercise (WISE), cardiac mass increased significantly in the exercise (EX) group during bed rest relative to controls (CON). Upright peak VO2, and knee extensor strength and endurance decreased significantly in CON subjects; but these parameters were preserved in the EX group. In the 60 day WISE study, each LBNP exercise session was followed immediately by 10 minutes of static LBNP, and the last such session occurred three days before the end of bed rest. Still, orthostatic tolerance was better maintained in the EX group than in the CON group. Therefore, these collective peer-reviewed results document that our treadmill exercise within LBNP countermeasure safely and efficiently protects multiple physiologic systems in women and men during bed-rest studies of up to 60 days. Supported by NASA grants NNJ04HF71G and NAG 9-1425, NIH grant GCRC M01 RR00827 and by WISE support from ESA, NASA, CSA, and CNES.
Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs
McFarland, James M.; Cui, Yuwei; Butts, Daniel A.
2013-01-01
The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185
A Holistic approach to assess older adults' wellness using e-health technologies.
Thompson, Hilaire J; Demiris, George; Rue, Tessa; Shatil, Evelyn; Wilamowska, Katarzyna; Zaslavsky, Oleg; Reeder, Blaine
2011-12-01
To date, methodologies are lacking that address a holistic assessment of wellness in older adults. Technology applications may provide a platform for such an assessment, but have not been validated. We set out to demonstrate whether e-health applications could support the assessment of older adults' wellness in community-dwelling older adults. Twenty-seven residents of independent retirement community were followed over 8 weeks. Subjects engaged in the use of diverse technologies to assess cognitive performance, physiological and functional variables, as well as psychometric components of wellness. Data were integrated from various e-health sources into one study database. Correlations were assessed between different parameters, and hierarchical cluster analysis was used to explore the validity of the wellness model. We found strong associations across multiple parameters of wellness within the conceptual model, including cognitive, functional, and physical. However, spirituality did not correlate with any other parameter studied in contrast to prior studies of older adults. Participants expressed overall positive attitudes toward the e-health tools and the holistic approach to the assessment of wellness, without expressing any privacy concerns. Parameters were highly correlated across multiple domains of wellness. Important clusters were noted to be formed across cognitive and physiological domains, giving further evidence of need for an integrated approach to the assessment of wellness. This finding warrants further replication in larger and more diverse samples of older adults to standardize and deploy these technologies across population groups.
Karmakar, Chandan; Udhayakumar, Radhagayathri K; Li, Peng; Venkatesh, Svetha; Palaniswami, Marimuthu
2017-01-01
Distribution entropy ( DistEn ) is a recently developed measure of complexity that is used to analyse heart rate variability (HRV) data. Its calculation requires two input parameters-the embedding dimension m , and the number of bins M which replaces the tolerance parameter r that is used by the existing approximation entropy ( ApEn ) and sample entropy ( SampEn ) measures. The performance of DistEn can also be affected by the data length N . In our previous studies, we have analyzed stability and performance of DistEn with respect to one parameter ( m or M ) or combination of two parameters ( N and M ). However, impact of varying all the three input parameters on DistEn is not yet studied. Since DistEn is predominantly aimed at analysing short length heart rate variability (HRV) signal, it is important to comprehensively study the stability, consistency and performance of the measure using multiple case studies. In this study, we examined the impact of changing input parameters on DistEn for synthetic and physiological signals. We also compared the variations of DistEn and performance in distinguishing physiological (Elderly from Young) and pathological (Healthy from Arrhythmia) conditions with ApEn and SampEn . The results showed that DistEn values are minimally affected by the variations of input parameters compared to ApEn and SampEn. DistEn also showed the most consistent and the best performance in differentiating physiological and pathological conditions with various of input parameters among reported complexity measures. In conclusion, DistEn is found to be the best measure for analysing short length HRV time series.
Karmakar, Chandan; Udhayakumar, Radhagayathri K.; Li, Peng; Venkatesh, Svetha; Palaniswami, Marimuthu
2017-01-01
Distribution entropy (DistEn) is a recently developed measure of complexity that is used to analyse heart rate variability (HRV) data. Its calculation requires two input parameters—the embedding dimension m, and the number of bins M which replaces the tolerance parameter r that is used by the existing approximation entropy (ApEn) and sample entropy (SampEn) measures. The performance of DistEn can also be affected by the data length N. In our previous studies, we have analyzed stability and performance of DistEn with respect to one parameter (m or M) or combination of two parameters (N and M). However, impact of varying all the three input parameters on DistEn is not yet studied. Since DistEn is predominantly aimed at analysing short length heart rate variability (HRV) signal, it is important to comprehensively study the stability, consistency and performance of the measure using multiple case studies. In this study, we examined the impact of changing input parameters on DistEn for synthetic and physiological signals. We also compared the variations of DistEn and performance in distinguishing physiological (Elderly from Young) and pathological (Healthy from Arrhythmia) conditions with ApEn and SampEn. The results showed that DistEn values are minimally affected by the variations of input parameters compared to ApEn and SampEn. DistEn also showed the most consistent and the best performance in differentiating physiological and pathological conditions with various of input parameters among reported complexity measures. In conclusion, DistEn is found to be the best measure for analysing short length HRV time series. PMID:28979215
Physiological parameters monitoring of fire-fighters by means of a wearable wireless sensor system
NASA Astrophysics Data System (ADS)
Stelios, M.; Mitilineos, Stelios A.; Chatzistamatis, Panagiotis; Vassiliadis, Savvas; Primentas, Antonios; Kogias, Dimitris; Michailidis, Emmanouel T.; Rangoussi, Maria; Kurşun Bahadir, Senem; Atalay, Özgür; Kalaoğlu, Fatma; Sağlam, Yusuf
2016-03-01
Physiological parameter monitoring may be useful in many different groups of the population, such as infants, elderly people, athletes, soldiers, drivers, fire-fighters, police etc. This can provide a variety of information ranging from health status to operational readiness. In this article, we focus on the case of first responders and specifically fire-fighters. Firefighters can benefit from a physiological monitoring system that is used to extract multiple indications such as the present position, the possible life risk level, the stress level etc. This work presents a wearable wireless sensor network node, based on low cost, commercial-off- the-self (COTS) electronic modules, which can be easily attached on a standard fire-fighters’ uniform. Due to the low frequency wired interface between the selected electronic components, the proposed solution can be used as a basis for a textile system where all wired connections will be implemented by means of conductive yarn routing in the textile structure, while some of the standard sensors can be replaced by textile ones. System architecture is described in detail, while indicative samples of acquired signals are also presented.
Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards.
Muñoz, Martha M; Langham, Gary M; Brandley, Matthew C; Rosauer, Dan F; Williams, Stephen E; Moritz, Craig
2016-11-01
There is pressing urgency to understand how tropical ectotherms can behaviorally and physiologically respond to climate warming. We examine how basking behavior and thermal environment interact to influence evolutionary variation in thermal physiology of multiple species of lygosomine rainforest skinks from the Wet Tropics of northeastern Queensland, Australia (AWT). These tropical lizards are behaviorally specialized to exploit canopy or sun, and are distributed across marked thermal clines in the AWT. Using phylogenetic analyses, we demonstrate that physiological parameters are either associated with changes in local thermal habitat or to basking behavior, but not both. Cold tolerance, the optimal sprint speed, and performance breadth are primarily influenced by local thermal environment. Specifically, montane lizards are more cool tolerant, have broader performance breadths, and higher optimum sprinting temperatures than their lowland counterparts. Heat tolerance, in contrast, is strongly affected by basking behavior: there are two evolutionary optima, with basking species having considerably higher heat tolerance than shade skinks, with no effect of elevation. These distinct responses among traits indicate the multiple selective pressures and constraints that shape the evolution of thermal performance. We discuss how behavior and physiology interact to shape organisms' vulnerability and potential resilience to climate change. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Rtibi, Kais; Selmi, Slimen; Grami, Dhekra; Amri, Mohamed; Sebai, Hichem; Marzouki, Lamjed
2018-06-01
The phytochemical composition and the effect of the green and ripe Opuntia ficus-indica juice on some gastrointestinal (GI) physiological parameters such as stomach emptying and small-intestinal motility and permeability were determined in rats administered multiple concentrations of the prickly pear juice (5, 10, and 20 mL kg -1 , b.w., p.o.). Other separate groups of rats were received, respectively; sodium chloride (0.9%, b.w., p.o.), clonidine (α- 2 -adrenergic agonist, 1 mg kg -1 , b.w., i.p.), yohimbine (α- 2 -adrenergic antagonist, 2 mg kg -1 , b.w., i.p.), and loperamide (5 mg kg -1 , b.w., p.o.). In vivo reverse effect of juice on GI physiological parameters was investigated using a charcoal meal test, phenol-red colorimetric method, loperamide-induced acute constipation, and castor oil-caused small-bowel hypersecretion. However, the opposite in vitro influence of juice on intestinal permeability homeostasis was assessed by the Ussing chamber system. Mature prickly pear juice administration stimulated significantly and dose dependently the GI transit (GIT; 8-26%) and gastric emptying (0.9-11%) in a rat model. Conversely, the immature prickly pear juice reduced gastric emptying (7-23%), GIT (10-28%), and diarrhea (59-88%). Moreover, the standard drugs have produced their antagonistic effects on GI physiological functions. The permeability of the isolated perfused rat small-intestine has a paradoxical response flowing prickly pear juices administration at diverse doses and maturity grade. Most importantly, the quantitative phytochemical analyses of both juices showed a different composition depending on the degree of maturity. In conclusion, the prickly pear juice at two distinct phases of maturity has different phytochemical characteristics and opposite effects on GI physiological actions in rat.
Puddu, Paolo Emilio; Somrak, Maja; Bonfiglio, Silvio; Luštrek, Mitja
2018-01-01
This paper addresses patient-reported outcomes (PROs) and telemonitoring in congestive heart failure (CHF), both increasingly important topics. The interest in CHF trials is shifting from hard end-points such as hospitalization and mortality, to softer end-points such health-related quality of life. However, the relation of these softer end-points to objective parameters is not well studied. Telemonitoring is suitable for collecting both patient-reported outcomes and objective parameters. Most telemonitoring studies, however, do not take full advantage of the available sensor technology and intelligent data analysis. The Chiron clinical observational study was performed among 24 CHF patients (17 men and 7 women, age 62.9 ± 9.4 years, 15 NYHA class II and 9 class III, 10 of ishaemic, aetiology, 6 dilated, 2 valvular, and 6 of multiple aetiologies or cardiomyopathy) in Italy and UK. A large number of physiological and ambient parameters were collected by wearable and other devices, together with PROs describing how well the patients felt, over 1,086 days of observation. The resulting data were mined for relations between the objective parameters and the PROs. The objective parameters (humidity, ambient temperature, blood pressure, SpO2, and sweeting intensity) could predict the PROs with accuracies up to 86% and AUC up to 0.83, making this the first report providing evidence for ambient and physiological parameters to be objectively related to PROs in CHF patients. We also analyzed the relations in the predictive models, gaining some insights into what affects the feeling of health, which was also generally not attempted in previous investigations. The paper strongly points to the possibility of using PROs as primary end-points in future trials. PMID:29494601
Mlakar, Miha; Puddu, Paolo Emilio; Somrak, Maja; Bonfiglio, Silvio; Luštrek, Mitja
2018-01-01
This paper addresses patient-reported outcomes (PROs) and telemonitoring in congestive heart failure (CHF), both increasingly important topics. The interest in CHF trials is shifting from hard end-points such as hospitalization and mortality, to softer end-points such health-related quality of life. However, the relation of these softer end-points to objective parameters is not well studied. Telemonitoring is suitable for collecting both patient-reported outcomes and objective parameters. Most telemonitoring studies, however, do not take full advantage of the available sensor technology and intelligent data analysis. The Chiron clinical observational study was performed among 24 CHF patients (17 men and 7 women, age 62.9 ± 9.4 years, 15 NYHA class II and 9 class III, 10 of ishaemic, aetiology, 6 dilated, 2 valvular, and 6 of multiple aetiologies or cardiomyopathy) in Italy and UK. A large number of physiological and ambient parameters were collected by wearable and other devices, together with PROs describing how well the patients felt, over 1,086 days of observation. The resulting data were mined for relations between the objective parameters and the PROs. The objective parameters (humidity, ambient temperature, blood pressure, SpO2, and sweeting intensity) could predict the PROs with accuracies up to 86% and AUC up to 0.83, making this the first report providing evidence for ambient and physiological parameters to be objectively related to PROs in CHF patients. We also analyzed the relations in the predictive models, gaining some insights into what affects the feeling of health, which was also generally not attempted in previous investigations. The paper strongly points to the possibility of using PROs as primary end-points in future trials.
Relationship of aerobic and anaerobic parameters with 400 m front crawl swimming performance
Kalva-Filho, CA; Campos, EZ; Andrade, VL; Silva, ASR; Zagatto, AM; Lima, MCS
2015-01-01
The aims of the present study were to investigate the relationship of aerobic and anaerobic parameters with 400 m performance, and establish which variable better explains long distance performance in swimming. Twenty-two swimmers (19.1±1.5 years, height 173.9±10.0 cm, body mass 71.2±10.2 kg; 76.6±5.3% of 400 m world record) underwent a lactate minimum test to determine lactate minimum speed (LMS) (i.e., aerobic capacity index). Moreover, the swimmers performed a 400 m maximal effort to determine mean speed (S400m), peak oxygen uptake (V.O2PEAK) and total anaerobic contribution (CANA). The CANA was assumed as the sum of alactic and lactic contributions. Physiological parameters of 400 m were determined using the backward extrapolation technique (V.O2PEAK and alactic contributions of CANA) and blood lactate concentration analysis (lactic anaerobic contributions of CANA). The Pearson correlation test and backward multiple regression analysis were used to verify the possible correlations between the physiological indices (predictor factors) and S400m (independent variable) (p < 0.05). Values are presented as mean ± standard deviation. Significant correlations were observed between S400m (1.4±0.1 m·s-1) and LMS (1.3±0.1 m·s-1; r = 0.80), V.O2PEAK (4.5±3.9 L·min-1; r = 0.72) and CANA (4.7±1.5 L·O2; r= 0.44). The best model constructed using multiple regression analysis demonstrated that LMS and V.O2PEAK explained 85% of the 400 m performance variance. When backward multiple regression analysis was performed, CANA lost significance. Thus, the results demonstrated that both aerobic parameters (capacity and power) can be used to predict 400 m swimming performance. PMID:28479663
Dias E Silva, Tairon Pannunzio; Costa Torreão, Jacira Neves da; Torreão Marques, Carlo Aldrovandi; de Araújo, Marcos Jácome; Bezerra, Leílson Rocha; Kumar Dhanasekaran, Dinesh; Sejian, Veerasamy
2016-07-01
This study was conducted to evaluate the effect of multiple stress factors (thermal, nutritional and pregnancy type) on two different native track breeds of ewes as reflected by their adaptive capability under semi-arid environment. The multiple stressor experiment was conducted in twenty-four ewes (12 Santa Inês and 12 Morada Nova ewes). Both heat stress and pregnancy stress was common to all four groups. However, the animals were divided into further two groups within each breed on the basis of nutrition regimen. According the groupings were: Group 1 (Six Santa Ines ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 2 (Six Santa Ines ewes; heat stress; nutrition at 1.5% BW; twin pregnancy); groups Group 3 (Six Morada Nova ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 4 (Six Morada Nova ewes; heat stress; nutrition at 1.5% BW; twin pregnancy). All the animals in the experiment were pregnant. Heat stress was induced by exposing all animals to summer heat stress in outside environment while the nutritional regimen followed was at 0.5% and 1.5% level of body weight (BW) respectively in each breed. The experiment was conducted in a completely randomized design with two breeds, two nutritional treatments and two pregnancy types, 10 repetitions for physiological parameters and six for blood parameters, with repeated measures over time. Physiological parameters (respiratory rate, pulse rate and rectal temperature) were measured with the animals at rest in the morning and afternoon, 0600-0700 and 1300-1400h, respectively, every seven days. Blood samples were collected every 14d for determination of serum glucose, triglycerides, cholesterol, urea and creatinine. We found interaction effect between breed and pregnancy type on respiratory rate and rectal temperature with greater values in Santa Inês ewes than Morada Nova ewes. However, there was no significant fixed effect of pregnancy type and supplementation level on physiological responses of breeds. Environmental factor (period of the day) had influenced the physiological responses of ewes during all gestational period. Santa Inês ewes had greater serum glucose concentration at 105d and 120d of gestation compared to the Morada Nova ewes. Morada Nova ewes had greater concentrations of triglycerides, urea at 120d, 150d and also greater cholesterol at 105d, 135d and 150d of gestation compared with Santa Inês ewes. The present result indicates that thermal condition was most important factor that modified the physiological responses of ewes in a semi-arid tropical environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chrysanthemum cutting productivity and rooting ability are improved by grafting.
Zhang, Jing; Chen, Sumei; Liu, Ruixia; Jiang, Jiafu; Chen, Fadi; Fang, Weimin
2013-01-01
Chrysanthemum has been commercially propagated by rooting of cuttings, whereas the quality will decline over multiple collections from a single plant. Therefore, we compared the vigour, rooting ability, and some physiological parameters between cuttings harvested from nongrafted "Jinba" (non-grafted cuttings) with those collected from grafted "Jinba" plants onto Artemisia scoparia as a rootstock (grafted cuttings). The yield, length, node number, stem diameter, fresh weight, and dry weight of the grafted cuttings were superior to the non-grafted cuttings. Also grafted cuttings "Jinba" rooted 1 day earlier, but showing enhanced rooting quality including number, length, diameter, and dry weight of roots, where compared to the non-grafted. The physiological parameters that indicated contents of soluble protein, peroxidase activity, soluble sugar, and starch, ratios of soluble sugar/nitrogen ratio, and carbohydrate/nitrogen (C/N), as well as contents of indole-3-acetic acid (IAA) and abscisic acid (ABA), and IAA/ABA ratio were significantly increased in the grafted cuttings. This suggested their important parts in mediating rooting ability. Results from this study showed that grafting improved productivity and rooting ability related to an altered physiology, which provide a means to meet the increasing demand.
Immunity's fourth dimension: approaching the circadian-immune connection.
Arjona, Alvaro; Silver, Adam C; Walker, Wendy E; Fikrig, Erol
2012-12-01
The circadian system ensures the generation and maintenance of self-sustained ~24-h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here, we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Physiology-Based Modeling May Predict Surgical Treatment Outcome for Obstructive Sleep Apnea
Li, Yanru; Ye, Jingying; Han, Demin; Cao, Xin; Ding, Xiu; Zhang, Yuhuan; Xu, Wen; Orr, Jeremy; Jen, Rachel; Sands, Scott; Malhotra, Atul; Owens, Robert
2017-01-01
Study Objectives: To test whether the integration of both anatomical and nonanatomical parameters (ventilatory control, arousal threshold, muscle responsiveness) in a physiology-based model will improve the ability to predict outcomes after upper airway surgery for obstructive sleep apnea (OSA). Methods: In 31 patients who underwent upper airway surgery for OSA, loop gain and arousal threshold were calculated from preoperative polysomnography (PSG). Three models were compared: (1) a multiple regression based on an extensive list of PSG parameters alone; (2) a multivariate regression using PSG parameters plus PSG-derived estimates of loop gain, arousal threshold, and other trait surrogates; (3) a physiological model incorporating selected variables as surrogates of anatomical and nonanatomical traits important for OSA pathogenesis. Results: Although preoperative loop gain was positively correlated with postoperative apnea-hypopnea index (AHI) (P = .008) and arousal threshold was negatively correlated (P = .011), in both model 1 and 2, the only significant variable was preoperative AHI, which explained 42% of the variance in postoperative AHI. In contrast, the physiological model (model 3), which included AHIREM (anatomy term), fraction of events that were hypopnea (arousal term), the ratio of AHIREM and AHINREM (muscle responsiveness term), loop gain, and central/mixed apnea index (control of breathing terms), was able to explain 61% of the variance in postoperative AHI. Conclusions: Although loop gain and arousal threshold are associated with residual AHI after surgery, only preoperative AHI was predictive using multivariate regression modeling. Instead, incorporating selected surrogates of physiological traits on the basis of OSA pathophysiology created a model that has more association with actual residual AHI. Commentary: A commentary on this article appears in this issue on page 1023. Clinical Trial Registration: ClinicalTrials.Gov; Title: The Impact of Sleep Apnea Treatment on Physiology Traits in Chinese Patients With Obstructive Sleep Apnea; Identifier: NCT02696629; URL: https://clinicaltrials.gov/show/NCT02696629 Citation: Li Y, Ye J, Han D, Cao X, Ding X, Zhang Y, Xu W, Orr J, Jen R, Sands S, Malhotra A, Owens R. Physiology-based modeling may predict surgical treatment outcome for obstructive sleep apnea. J Clin Sleep Med. 2017;13(9):1029–1037. PMID:28818154
Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.
2017-01-01
Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201
Cherubini, Andrea; Caligiuri, Maria Eugenia; Péran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco
2015-01-01
This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2* relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. These findings highlight the importance of a combined evaluation of multimodal biomarkers for the study of aging and point to a number of novel applications for the method described.
Stages of physical dependence in New Zealand smokers: Prevalence and correlates.
Walton, Darren; Newcombe, Rhiannon; Li, Judy; Tu, Danny; DiFranza, Joseph R
2016-12-01
Physically dependent smokers experience symptoms of wanting, craving or needing to smoke when too much time has passed since the last cigarette. There is interest in whether wanting, craving and needing represent variations in the intensity of a single physiological parameter or whether multiple physiological processes may be involved in the developmental progression of physical dependence. Our aim was to determine how a population of cigarette smokers is distributed across the wanting, craving and needing stages of physical dependence. A nationwide survey of 2594 New Zealanders aged 15years and over was conducted in 2014. The stage of physical dependence was assessed using the Levels of Physical Dependence measure. Ordinal logistic regression analysis was used to assess relations between physical dependence and other variables. Among 590 current smokers (weighted 16.2% of the sample), 22.3% had no physical dependence, 23.5% were in the Wanting stage, 14.4% in the Craving stage, and 39.8% in the Needing stage. The stage of physical dependence was predicted by daily cigarette consumption, and the time to first cigarette, but not by age, gender, ethnicity or socioeconomic status. Fewer individuals were in the craving stage than either the wanting or needing stages. The resulting inverted U-shaped curve with concentrations at either extreme is difficult to explain as a variation of a single biological parameter. The data support an interpretation that progression through the stages of wanting, craving and needing may involve more than one physiological process. Physical dependence to tobacco develops through a characteristic sequence of wanting, craving and needing which correspond to changes in addiction pathways in the brain. It is important to neuroscience research to determine if the development of physical dependence involves changes in a single brain process, or multiple processes. Our data suggests that more than one physiologic process is involved in the progression of physical dependence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singh, Omkar; Sunkaria, Ramesh Kumar
2017-12-01
This paper presents a novel technique to identify heartbeats in multimodal data using electrocardiogram (ECG) and arterial blood pressure (ABP) signals. Multiple physiological signals such as ECG, ABP, and Respiration are often recorded in parallel from the activity of heart. These signals generally possess related information as they are generated by the same physical system. The ECG and ABP correspond to the same phenomenon of contraction and relaxation activity of heart. Multiple signals acquired from various sensors are generally processed independently, thus discarding the information from other measurements. In the estimation of heart rate and heart rate variability, the R peaks are generally identified from ECG signal. Efficient detection of R-peaks in electrocardiogram (ECG) is a key component in the estimation of clinically relevant parameters from ECG. However, when the signal is severely affected by undesired artifacts, this becomes a challenging task. Sometimes in clinical environment, other physiological signals reflecting the cardiac activity such as ABP signal are also acquired simultaneously. Under the availability of such multimodal signals, the accuracy of R peak detection methods can be improved using sensor-fusion techniques. In the proposed method, the sample entropy (SampEn) is used as a metric for assessing the noise content in the physiological signal and the R peaks in ECG and the systolic peaks in ABP signals are fused together to enhance the efficiency of heartbeat detection. The proposed method was evaluated on the 100 records from the computing in cardiology challenge 2014 training data set. The performance parameters are: sensitivity (Se) and positive predictivity (PPV). The unimodal R peaks detector achieved: Se gross = 99.40%, PPV gross = 99.29%, Se average = 99.37%, PPV average = 99.29%. Similarly unimodal BP delineator achieved Se gross = 99.93%, PPV gross = 99.99%, Se average = 99.93%, PPV average = 99.99% whereas, the proposed multimodal beat detector achieved: Se gross = 99.65%, PPV gross = 99.91%, Se average = 99.68%, PPV average = 99.91%.
Dallmann, André; Ince, Ibrahim; Meyer, Michaela; Willmann, Stefan; Eissing, Thomas; Hempel, Georg
2017-11-01
In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues. The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues. A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility. The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions. The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.
Guiding Principles for a Pediatric Neurology ICU (neuroPICU) Bedside Multimodal Monitor
Eldar, Yonina C.; Gopher, Daniel; Gottlieb, Amihai; Lammfromm, Rotem; Mangat, Halinder S; Peleg, Nimrod; Pon, Steven; Rozenberg, Igal; Schiff, Nicholas D; Stark, David E; Yan, Peter; Pratt, Hillel; Kosofsky, Barry E
2016-01-01
Summary Background Physicians caring for children with serious acute neurologic disease must process overwhelming amounts of physiological and medical information. Strategies to optimize real time display of this information are understudied. Objectives Our goal was to engage clinical and engineering experts to develop guiding principles for creating a pediatric neurology intensive care unit (neuroPICU) monitor that integrates and displays data from multiple sources in an intuitive and informative manner. Methods To accomplish this goal, an international group of physicians and engineers communicated regularly for one year. We integrated findings from clinical observations, interviews, a survey, signal processing, and visualization exercises to develop a concept for a neuroPICU display. Results Key conclusions from our efforts include: (1) A neuroPICU display should support (a) rapid review of retrospective time series (i.e. cardiac, pulmonary, and neurologic physiology data), (b) rapidly modifiable formats for viewing that data according to the specialty of the reviewer, and (c) communication of the degree of risk of clinical decline. (2) Specialized visualizations of physiologic parameters can highlight abnormalities in multivariable temporal data. Examples include 3-D stacked spider plots and color coded time series plots. (3) Visual summaries of EEG with spectral tools (i.e. hemispheric asymmetry and median power) can highlight seizures via patient-specific “fingerprints.” (4) Intuitive displays should emphasize subsets of physiology and processed EEG data to provide a rapid gestalt of the current status and medical stability of a patient. Conclusions A well-designed neuroPICU display must present multiple datasets in dynamic, flexible, and informative views to accommodate clinicians from multiple disciplines in a variety of clinical scenarios. PMID:27437048
Grinspan, Zachary M; Eldar, Yonina C; Gopher, Daniel; Gottlieb, Amihai; Lammfromm, Rotem; Mangat, Halinder S; Peleg, Nimrod; Pon, Steven; Rozenberg, Igal; Schiff, Nicholas D; Stark, David E; Yan, Peter; Pratt, Hillel; Kosofsky, Barry E
2016-01-01
Physicians caring for children with serious acute neurologic disease must process overwhelming amounts of physiological and medical information. Strategies to optimize real time display of this information are understudied. Our goal was to engage clinical and engineering experts to develop guiding principles for creating a pediatric neurology intensive care unit (neuroPICU) monitor that integrates and displays data from multiple sources in an intuitive and informative manner. To accomplish this goal, an international group of physicians and engineers communicated regularly for one year. We integrated findings from clinical observations, interviews, a survey, signal processing, and visualization exercises to develop a concept for a neuroPICU display. Key conclusions from our efforts include: (1) A neuroPICU display should support (a) rapid review of retrospective time series (i.e. cardiac, pulmonary, and neurologic physiology data), (b) rapidly modifiable formats for viewing that data according to the specialty of the reviewer, and (c) communication of the degree of risk of clinical decline. (2) Specialized visualizations of physiologic parameters can highlight abnormalities in multivariable temporal data. Examples include 3-D stacked spider plots and color coded time series plots. (3) Visual summaries of EEG with spectral tools (i.e. hemispheric asymmetry and median power) can highlight seizures via patient-specific "fingerprints." (4) Intuitive displays should emphasize subsets of physiology and processed EEG data to provide a rapid gestalt of the current status and medical stability of a patient. A well-designed neuroPICU display must present multiple datasets in dynamic, flexible, and informative views to accommodate clinicians from multiple disciplines in a variety of clinical scenarios.
NASA Astrophysics Data System (ADS)
Chen, Lisa Y.; Tee, Benjamin C.-K.; Chortos, Alex L.; Schwartz, Gregor; Tse, Victor; J. Lipomi, Darren; Wong, H.-S. Philip; McConnell, Michael V.; Bao, Zhenan
2014-10-01
Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.
Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan
2014-10-06
Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.
Physiological monitoring and analysis of a manned stratospheric balloon test program.
Garbino, Alejandro; Blue, Rebecca S; Pattarini, James M; Law, Jennifer; Clark, Jonathan B
2014-02-01
The Red Bull Stratos Project consisted of incremental high altitude parachute jumps [maximum altitude 127,852 ft (38,969 m)] from a pressurized capsule suspended from a stratospheric helium-filled balloon. A physiological monitoring system was worn by the parachutist to provide operational medical and acceleration data and to record a unique set of data in a supersonic environment. Various physiological parameters, including heart rate (HR), respiratory rate (RR), skin temperature, and triaxial acceleration, were collected during the ascent, high altitude float, free fall, and parachute opening and descent stages of multiple low- and high altitude jumps. Physiologic data were synchronized with global positioning system (GPS) and audiovisual data for a comprehensive understanding of the environmental stressors experienced. HR reached maximum during capsule egress and remained elevated throughout free fall and landing. RR reached its maximum during free fall. Temperature data were unreliable and did not provide useful results. The highest accelerations parameters were recorded during parachute opening and during landing. During each high altitude jump, immediately after capsule egress, the parachutist experienced a few seconds of microgravity during which some instability occurred. Control was regained as the parachutist entered denser atmosphere. The high altitude environment resulted in extremely high vertical speeds due to little air resistance in comparison to lower altitude jumps with similar equipment. The risk for tumbling was highest at initial step-off. Physiological responses included elevated HR and RR throughout critical phases of free fall. The monitoring unit performed well despite the austere environment and extreme human performance activities.
Physiological Parameters Database for PBPK Modeling (External Review Draft)
EPA released for public comment a physiological parameters database (created using Microsoft ACCESS) intended to be used in PBPK modeling. The database contains physiological parameter values for humans from early childhood through senescence. It also contains similar data for an...
Jo, Young Goun; Choi, Hyun Jung; Kim, Jung Chul; Cho, Young Nan; Kang, Jeong Hwa; Jin, Hye Mi; Kee, Seung Jung; Park, Yong Wook
2017-05-01
Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play important roles in autoimmunity, infectious diseases and cancers. However, little is known about the roles of these invariant T cells in multiple trauma. The purposes of this study were to examine MAIT and NKT cell levels in patients with multiple trauma and to investigate potential relationships between these cell levels and clinical parameters. The study cohort was composed of 14 patients with multiple trauma and 22 non-injured healthy controls (HCs). Circulating MAIT and NKT cell levels in the peripheral blood were measured by flow cytometry. The severity of injury was categorised according to the scoring systems, such as Acute Physiology and Chronic Health Evaluation (APACHE) II score, Simplified Acute Physiology Score (SAPS) II, and Injury Severity Score (ISS). Circulating MAIT and NKT cell numbers were significantly lower in multiple trauma patients than in HCs. Linear regression analysis showed that circulating MAIT cell numbers were significantly correlated with age, APACHE II, SAPS II, ISS category, hemoglobin, and platelet count. NKT cell numbers in the peripheral blood were found to be significantly correlated with APACHE II, SAPS II, and ISS category. This study shows numerical deficiencies of circulating MAIT cells and NKT cells in multiple trauma. In addition, these invariant T cell deficiencies were found to be associated with disease severity. These findings provide important information for predicting the prognosis of multiple trauma. © 2017 The Korean Academy of Medical Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole
2013-12-15
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of cardiotoxicity is possible in a high-throughput format. • The assay shows benefits of automated data integration across multiple parameters. • Quantitative assessment of concentration–response is possible using iPSCs. • Multi-parametric screening allows for cardiotoxicity risk assessment.« less
Environmental photobioreactor array (EPBRA) systems and apparatus related thereto
Kramer, David; Zegarac, Robert; Lucker, Ben F.; Hall, Christopher; Abernathy, Casey; Carpenter, Joel; Cruz, Jeffrey
2017-11-14
A system is described herein that comprises one or more modular environmental photobioreactor arrays, each array containing two or more photobioreactors, wherein the system is adapted to monitor each of the photobioreactors and/or modulate the conditions with each of the photobioreactors. The photobioreactors are also adapted for measurement of multiple physiological parameters of a biomass contained therein. Various methods for selecting and characterizing biomass are also provided. In one embodiment, the biomass is algae.
Multiscale power analysis for heart rate variability
NASA Astrophysics Data System (ADS)
Zeng, Peng; Liu, Hongxing; Ni, Huangjing; Zhou, Jing; Xia, Lan; Ning, Xinbao
2015-06-01
We first introduce multiscale power (MSP) method to assess the power distribution of physiological signals on multiple time scales. Simulation on synthetic data and experiments on heart rate variability (HRV) are tested to support the approach. Results show that both physical and psychological changes influence power distribution significantly. A quantitative parameter, termed power difference (PD), is introduced to evaluate the degree of power distribution alteration. We find that dynamical correlation of HRV will be destroyed completely when PD>0.7.
Physiological basis for noninvasive skin cancer diagnosis using diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Yao; Markey, Mia K.; Tunnell, James W.
2017-02-01
Diffuse reflectance spectroscopy offers a noninvasive, fast, and low-cost alternative to visual screening and biopsy for skin cancer diagnosis. We have previously acquired reflectance spectra from 137 lesions in 76 patients and determined the capability of spectral diagnosis using principal component analysis (PCA). However, it is not well elucidated why spectral analysis enables tissue classification. To provide the physiological basis, we used the Monte Carlo look-up table (MCLUT) model to extract physiological parameters from those clinical data. The MCLUT model results in the following physiological parameters: oxygen saturation, hemoglobin concentration, melanin concentration, vessel radius, and scattering parameters. Physiological parameters show that cancerous skin tissue has lower scattering and larger vessel radii, compared to normal tissue. These results demonstrate the potential of diffuse reflectance spectroscopy for detection of early precancerous changes in tissue. In the future, a diagnostic algorithm that combines these physiological parameters could be enable non-invasive diagnosis of skin cancer.
Antoch, Marina P; Wrobel, Michelle; Kuropatwinski, Karen K; Gitlin, Ilya; Leonova, Katerina I; Toshkov, Ilia; Gleiberman, Anatoli S; Hutson, Alan D; Chernova, Olga B; Gudkov, Andrei V
2017-03-19
The development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a frailty index (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters. Here we report a development of a quantitative non-invasive procedure to estimate biological age of an individual animal by creating physiological frailty index (PFI). We demonstrated the dynamics of PFI increase during chronological aging of male and female NIH Swiss mice. We also demonstrated acceleration of growth of PFI in animals placed on a high fat diet, reflecting aging acceleration by obesity and provide a tool for its quantitative assessment. Additionally, we showed that PFI could reveal anti-aging effect of mTOR inhibitor rapatar (bioavailable formulation of rapamycin) prior to registration of its effects on longevity. PFI revealed substantial sex-related differences in normal chronological aging and in the efficacy of detrimental (high fat diet) or beneficial (rapatar) aging modulatory factors. Together, these data introduce PFI as a reliable, non-invasive, quantitative tool suitable for testing potential anti-aging pharmaceuticals in pre-clinical studies.
NASA Astrophysics Data System (ADS)
Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro
2018-06-01
Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.
Methodology for quantitative rapid multi-tracer PET tumor characterizations.
Kadrmas, Dan J; Hoffman, John M
2013-10-04
Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted.
Methodology for Quantitative Rapid Multi-Tracer PET Tumor Characterizations
Kadrmas, Dan J.; Hoffman, John M.
2013-01-01
Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted. PMID:24312149
A wireless modular multi-modal multi-node patch platform for robust biosignal monitoring.
Pantelopoulos, Alexandros; Saldivar, Enrique; Roham, Masoud
2011-01-01
In this paper a wireless modular, multi-modal, multi-node patch platform is described. The platform comprises low-cost semi-disposable patch design aiming at unobtrusive ambulatory monitoring of multiple physiological parameters. Owing to its modular design it can be interfaced with various low-power RF communication and data storage technologies, while the data fusion of multi-modal and multi-node features facilitates measurement of several biosignals from multiple on-body locations for robust feature extraction. Preliminary results of the patch platform are presented which illustrate the capability to extract respiration rate from three different independent metrics, which combined together can give a more robust estimate of the actual respiratory rate.
Physiologic Dysfunction Scores and Cognitive Function Test Performance in United States Adults
Kobrosly, Roni W; Seplaki, Christopher L; Jones, Courtney M; van Wijngaarden, Edwin
2013-01-01
Objective To investigate the relationship between a measure of cumulative physiologic dysfunction and specific domains of cognitive function. Methods We examined a summary score measuring physiological dysfunction, a multisystem measure of the body’s ability to effectively adapt to physical and psychological demands, in relation to cognitive function deficits in a population of 4511 adults aged 20 to 59 who participated in the third National Health and Nutrition Examination Survey (1988–1994). Measures of cognitive function comprised three domains: working memory, visuomotor speed, and perceptual-motor speed. ‘Physiologic dysfunction’ scores summarizing measures of cardiovascular, immunologic, kidney, and liver function were explored. We used multiple linear regression models to estimate associations between cognitive function measures and physiological dysfunction scores, adjusting for socioeconomic factors, test conditions, and self-reported health factors. Results We noted a dose-response relationship between physiologic dysfunction and working memory (coefficient = 0.207, 95% CI = (0.066, 0.348), p < 0.0001) that persisted after adjustment for all covariates (p = 0.03). We did not observe any significant relationships between dysfunction scores and visuomotor (p = 0.37) or perceptual-motor ability (p = 0.33). Conclusions Our findings suggest that multisystem physiologic dysfunction is associated with working memory. Future longitudinal studies are needed to clarify the underlying mechanisms and explore the persistency of this association into later life. We suggest that such studies should incorporate physiologic data, neuroendocrine parameters, and a wide range of specific cognitive domains. PMID:22155941
Pinghung Wei; Raj, Milan; Yung-Yu Hsu; Morey, Briana; DePetrillo, Paolo; McGrane, Bryan; Xianyan Wang; Lin, Monica; Keen, Bryan; Papakyrikos, Cole; Lowe, Jared; Ghaffari, Roozbeh
2014-01-01
In this paper, we present a stretchable wearable system capable of i) measuring multiple physiological parameters and ii) transmitting data via radio frequency to a smart phone. The electrical architecture consists of ultra thin sensors (<; 20 μm thick) and a conformal network of associated active and passive electronics in a mesh-like geometry that can mechanically couple with the curvilinear surfaces of the human body. Spring-like metal interconnects between individual chips on board the device allow the system to accommodate strains approaching ~30% A representative example of a smart patch that measures movement and electromyography (EMG) signals highlights the utility of this new class of medical skin-mounted system in monitoring a broad range of neuromuscular and cardiovascular diseases.
Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A
2014-09-01
Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.
The development of a tele-monitoring system for physiological parameters based on the B/S model.
Shuicai, Wu; Peijie, Jiang; Chunlan, Yang; Haomin, Li; Yanping, Bai
2010-01-01
The development of a new physiological multi-parameter remote monitoring system is based on the B/S model. The system consists of a server monitoring center, Internet network and PC-based multi-parameter monitors. Using the B/S model, the clients can browse web pages via the server monitoring center and download and install ActiveX controls. The physiological multi-parameters are collected, displayed and remotely transmitted. The experimental results show that the system is stable, reliable and operates in real time. The system is suitable for use in physiological multi-parameter remote monitoring for family and community healthcare. Copyright © 2010 Elsevier Ltd. All rights reserved.
Multifractality of cerebral blood flow
NASA Astrophysics Data System (ADS)
West, Bruce J.; Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz
2003-02-01
Scale invariance, the property relating time series across multiple scales, has provided a new perspective of physiological phenomena and their underlying control systems. The traditional “signal plus noise” paradigm of the engineer was first replaced with a model in which biological time series have a fractal structure in time (Fractal Physiology, Oxford University Press, Oxford, 1994). This new paradigm was subsequently shown to be overly restrictive when certain physiological signals were found to be characterized by more than one scaling parameter and therefore to belong to a class of more complex processes known as multifractals (Fractals, Plenum Press, New York, 1988). Here we demonstrate that in addition to heart rate (Nature 399 (1999) 461) and human gait (Phys. Rev. E, submitted for publication), the nonlinear control system for cerebral blood flow (CBF) (Phys. Rev. Lett., submitted for publication; Phys. Rev. E 59 (1999) 3492) is multifractal. We also find that this multifractality is greatly reduced for subjects with “serious” migraine and we present a simple model for the underlying control process to describe this effect.
Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation
De Vos, Dirk; Dzhurakhalov, Abdiravuf; Stijven, Sean; Klosiewicz, Przemyslaw; Beemster, Gerrit T. S.; Broeckhove, Jan
2017-01-01
Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io. PMID:28523006
Physiological adjustments to stress measures following massage therapy: a review of the literature.
Moraska, Albert; Pollini, Robin A; Boulanger, Karen; Brooks, Marissa Z; Teitlebaum, Lesley
2010-12-01
Use of massage therapy by the general public has increased substantially in recent years. In light of the popularity of massage therapy for stress reduction, a comprehensive review of the peer-reviewed literature is important to summarize the effectiveness of this modality on stress-reactive physiological measures. On-line databases were searched for articles relevant to both massage therapy and stress. Articles were included in this review if (i) the massage therapy account consisted of manipulation of soft tissues and was conducted by a trained therapist, and (ii) a dependent measure to evaluate physiological stress was reported. Hormonal and physical parameters are reviewed. A total of 25 studies met all inclusion criteria. A majority of studies employed a 20-30 min massage administered twice-weekly over 5 weeks with evaluations conducted pre-post an individual session (single treatment) or following a series of sessions (multiple treatments). Single treatment reductions in salivary cortisol and heart rate were consistently noted. A sustained reduction for these measures was not supported in the literature, although the single-treatment effect was repeatable within a study. To date, the research data is insufficient to make definitive statements regarding the multiple treatment effect of massage therapy on urinary cortisol or catecholamines, but some evidence for a positive effect on diastolic blood pressure has been documented. While significant improvement has been demonstrated following massage therapy, the general research body on this topic lacks the necessary scientific rigor to provide a definitive understanding of the effect massage therapy has on many physiological variables associated with stress.
Physiological Adjustments to Stress Measures Following Massage Therapy: A Review of the Literature
Pollini, Robin A.; Boulanger, Karen; Brooks, Marissa Z.; Teitlebaum, Lesley
2010-01-01
Use of massage therapy by the general public has increased substantially in recent years. In light of the popularity of massage therapy for stress reduction, a comprehensive review of the peer-reviewed literature is important to summarize the effectiveness of this modality on stress-reactive physiological measures. On-line databases were searched for articles relevant to both massage therapy and stress. Articles were included in this review if (i) the massage therapy account consisted of manipulation of soft tissues and was conducted by a trained therapist, and (ii) a dependent measure to evaluate physiological stress was reported. Hormonal and physical parameters are reviewed. A total of 25 studies met all inclusion criteria. A majority of studies employed a 20–30 min massage administered twice-weekly over 5 weeks with evaluations conducted pre-post an individual session (single treatment) or following a series of sessions (multiple treatments). Single treatment reductions in salivary cortisol and heart rate were consistently noted. A sustained reduction for these measures was not supported in the literature, although the single-treatment effect was repeatable within a study. To date, the research data is insufficient to make definitive statements regarding the multiple treatment effect of massage therapy on urinary cortisol or catecholamines, but some evidence for a positive effect on diastolic blood pressure has been documented. While significant improvement has been demonstrated following massage therapy, the general research body on this topic lacks the necessary scientific rigor to provide a definitive understanding of the effect massage therapy has on many physiological variables associated with stress. PMID:18955340
NASA Astrophysics Data System (ADS)
Smith, Katharine A.; Schlag, Zachary; North, Elizabeth W.
2018-07-01
Coupled three-dimensional circulation and biogeochemical models predict changes in water properties that can be used to define fish habitat, including physiologically important parameters such as temperature, salinity, and dissolved oxygen. However, methods for calculating the volume of habitat defined by the intersection of multiple water properties are not well established for coupled three-dimensional models. The objectives of this research were to examine multiple methods for calculating habitat volume from three-dimensional model predictions, select the most robust approach, and provide an example application of the technique. Three methods were assessed: the "Step," "Ruled Surface", and "Pentahedron" methods, the latter of which was developed as part of this research. Results indicate that the analytical Pentahedron method is exact, computationally efficient, and preserves continuity in water properties between adjacent grid cells. As an example application, the Pentahedron method was implemented within the Habitat Volume Model (HabVol) using output from a circulation model with an Arakawa C-grid and physiological tolerances of juvenile striped bass (Morone saxatilis). This application demonstrates that the analytical Pentahedron method can be successfully applied to calculate habitat volume using output from coupled three-dimensional circulation and biogeochemical models, and it indicates that the Pentahedron method has wide application to aquatic and marine systems for which these models exist and physiological tolerances of organisms are known.
Sungkarat, Somporn; Boripuntakul, Sirinun; Chattipakorn, Nipon; Watcharasaksilp, Kanokwan; Lord, Stephen R
2017-04-01
To examine whether combined center- and home-based Tai Chi training can improve cognitive ability and reduce physiological fall risk in older adults with amnestic mild cognitive impairment (a-MCI). Randomized controlled trial. Chiang Mai, Thailand. Adults aged 60 and older who met Petersen's criteria for multiple-domain a-MCI (N = 66). Three weeks center-based and 12 weeks home-based Tai Chi (50 minutes per session, 3 times per week). Cognitive tests, including Logical Memory (LM) delayed recall, Block Design, Digit Span forward and backward, and Trail-Making Test Part B-A (TMT B-A), and fall risk index using the Physiological Profile Assessment (PPA). At the end of the trial, performance on LM, Block Design, and TMT B-A were significantly better for the Tai Chi group than the control group after adjusting for baseline test performance. The Tai Chi group also had significantly better composite PPA score and PPA parameter scores: knee extension strength, reaction time, postural sway, and lower limb proprioception. Combined center- and home-based Tai Chi training three times per week for 15 weeks significantly improved cognitive function and moderately reduced physiological fall risk in older adults with multiple-domain a-MCI. Tai Chi may be particularly beneficial to older adults with this condition. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Basketball Performance Is Related to Maturity and Relative Age in Elite Adolescent Players.
Torres-Unda, Jon; Zarrazquin, Idoia; Gravina, Leyre; Zubero, Jaime; Seco, Jesús; Gil, Susana M; Gil, Javier; Irazusta, Jon
2016-05-01
During a national championship, the anthropometric, physiological, and maturation characteristics of 13- to 14-year-old players of elite basketball teams and their association with sport performance were analyzed. Body parameters (weight, height, skinfold thicknesses, and lengths) were measured and physiological capacities assessed by sprint (20 m) and jump tests (i.e., countermovement jump with arm swing). Chronological age (CA) and maturity offset (years from age at peak height velocity; YAPHV) were calculated, and then predicted age at peak height velocity, as the difference between CA and YAPHV. Game performance was assessed with point averages and the performance index rating (PIR). The birth-date distribution of players was biased, those born early in the selection year outnumbering those born later. Anthropometric analysis indicated that players who performed better had longer body lengths. Physiological testing showed that semi-finalists had better sprint performance than quarter-finalists and those players with greater jump capacity scored more points. Early maturation and advanced maturity status were also associated with better PIR and scored points per game. Multiple blockwise regression analysis showed that, among the factors analyzed, YAPHV was the best predictor of basketball performance. In conclusion, around puberty, physical and physiological parameters associated with maturity and CA are important in determining the success of elite basketball players. Consequently, boys who are born in the second half of the year and/or late maturing tend to be marginalized or totally excluded, and not given the chance to play under equal conditions; their careers may then be held back by the relative disadvantage associated with inexperience.
Beaudouin, Rémy; Micallef, Sandrine; Brochot, Céline
2010-06-01
Physiologically based pharmacokinetic (PBPK) models have proven to be successful in integrating and evaluating the influence of age- or gender-dependent changes with respect to the pharmacokinetics of xenobiotics throughout entire lifetimes. Nevertheless, for an effective application of toxicokinetic modelling to chemical risk assessment, a PBPK model has to be detailed enough to include all the multiple tissues that could be targeted by the various xenobiotics present in the environment. For this reason, we developed a PBPK model based on a detailed compartmentalization of the human body and parameterized with new relationships describing the time evolution of physiological and anatomical parameters. To take into account the impact of human variability on the predicted toxicokinetics, we defined probability distributions for key parameters related to the xenobiotics absorption, distribution, metabolism and excretion. The model predictability was evaluated by a direct comparison between computational predictions and experimental data for the internal concentrations of two chemicals (1,3-butadiene and 2,3,7,8-tetrachlorodibenzo-p-dioxin). A good agreement between predictions and observed data was achieved for different scenarios of exposure (e.g., acute or chronic exposure and different populations). Our results support that the general stochastic PBPK model can be a valuable computational support in the area of chemical risk analysis. (c)2010 Elsevier Inc. All rights reserved.
Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.
2017-01-01
Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892
Ephus: Multipurpose Data Acquisition Software for Neuroscience Experiments
Suter, Benjamin A.; O'Connor, Timothy; Iyer, Vijay; Petreanu, Leopoldo T.; Hooks, Bryan M.; Kiritani, Taro; Svoboda, Karel; Shepherd, Gordon M. G.
2010-01-01
Physiological measurements in neuroscience experiments often involve complex stimulus paradigms and multiple data channels. Ephus (http://www.ephus.org) is an open-source software package designed for general-purpose data acquisition and instrument control. Ephus operates as a collection of modular programs, including an ephys program for standard whole-cell recording with single or multiple electrodes in typical electrophysiological experiments, and a mapper program for synaptic circuit mapping experiments involving laser scanning photostimulation based on glutamate uncaging or channelrhodopsin-2 excitation. Custom user functions allow user-extensibility at multiple levels, including on-line analysis and closed-loop experiments, where experimental parameters can be changed based on recently acquired data, such as during in vivo behavioral experiments. Ephus is compatible with a variety of data acquisition and imaging hardware. This paper describes the main features and modules of Ephus and their use in representative experimental applications. PMID:21960959
An integrative perspective of the anaerobic threshold.
Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Knechtle, Beat; Nikolaidis, Pantelis Theodoros; Alves, Polissandro Mortoza; Simões, Herbert Gustavo
2017-12-14
The concept of anaerobic threshold (AT) was introduced during the nineteen sixties. Since then, several methods to identify the anaerobic threshold (AT) have been studied and suggested as novel 'thresholds' based upon the variable used for its detection (i.e. lactate threshold, ventilatory threshold, glucose threshold). These different techniques have brought some confusion about how we should name this parameter, for instance, anaerobic threshold or the physiological measure used (i.e. lactate, ventilation). On the other hand, the modernization of scientific methods and apparatus to detect AT, as well as the body of literature formed in the past decades, could provide a more cohesive understanding over the AT and the multiple physiological systems involved. Thus, the purpose of this review was to provide an integrative perspective of the methods to determine AT. Copyright © 2017 Elsevier Inc. All rights reserved.
Abbaszadeh, Yaser; Allahbakhshian, Atefeh; Seyyedrasooli, Alehe; Sarbakhsh, Parvin; Goljarian, Sakineh; Safaei, Naser
2018-05-01
This study aimed to investigate the effect of foot reflexology on anxiety and physiological parameters in patients after CABG surgery. This was a single-blind, three-arm, parallel-group, randomized controlled trial with three groups of 40 male patients undergoing CABG. Participants were placed in three groups, named intervention, placebo, and control. Physiological parameters were measured including systolic and diastolic blood pressure, mean arterial pressure, heart rate, respiratory rate, percutaneous oxygen saturation, and anxiety of participants. Results showed a statistically significant difference between intervention and control groups in terms of the level of anxiety (p < 0.05). Also, results showed a statistically significant effect on all physiological parameters except heart rate (p < 0.05). This study indicated that foot reflexology may be used by nurses as an adjunct to standard ICU care to reduce anxiety and stabilize physiological parameters such as systolic, diastolic, mean arterial pressure, and heart rate. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Miao, Changyun; Shi, Boya; Li, Hongqiang
2008-12-01
A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.
DUK OH, Sang
2014-01-01
Abstract Background The purpose of this study was to determine whether a 45 bp insertion/deletion (I/D) polymorphism in human uncoupling protein 2 (hUCP2) gene was associated with changes in several cardiovascular risk and physical fitness factors in response to combined exercise during 12 weeks in Korean middle-aged women. The changes in physiological parameters after combined exercise during 12 weeks were compared between each genotype subgroups of hUCP2 gene to clarify the inter-individual differences in exercised-induced changes according to genetic predisposition. Methods A total of 185 women aged over 40 years living in Seoul, Korea were participated in this study, and analyzed before and after 12 weeks on combined exercise including aerobic exercise and strength training for body composition, hemodynamic parameters, physical fitness and metabolic variables. A 45 bp I/D polymorphism in hUCP2 gene was genotyped by polymerase chain reaction (PCR) amplification and agarose gel electrophoresis method. Results Combined exercise program during 12 weeks indicated the significant health-promoting effects for our participants on multiple body composition, hemodynamic parameters, physical fitness factors and metabolic parameters, respectively. With respect to a 45 bp I/D polymorphism in hUCP2 gene, this polymorphism was significantly associated with baseline %body fat of our participants (P <.05). Moreover, this polymorphism was significantly associated with the changes in %body fat and serum triglyceride(TG) level after combined exercise program during 12 weeks(P <.05). Conclusion Our data suggest that a 45 bp I/D polymorphism in hUCP2 gene may at least in part contribute to the inter-individual differences on the changes in some clinical and metabolic parameters following combined exercise in middle-aged women. PMID:25909061
The effects of environment on Arctica islandica shell formation and architecture
NASA Astrophysics Data System (ADS)
Milano, Stefania; Nehrke, Gernot; Wanamaker, Alan D., Jr.; Ballesta-Artero, Irene; Brey, Thomas; Schöne, Bernd R.
2017-03-01
Mollusks record valuable information in their hard parts that reflect ambient environmental conditions. For this reason, shells can serve as excellent archives to reconstruct past climate and environmental variability. However, animal physiology and biomineralization, which are often poorly understood, can make the decoding of environmental signals a challenging task. Many of the routinely used shell-based proxies are sensitive to multiple different environmental and physiological variables. Therefore, the identification and interpretation of individual environmental signals (e.g., water temperature) often is particularly difficult. Additional proxies not influenced by multiple environmental variables or animal physiology would be a great asset in the field of paleoclimatology. The aim of this study is to investigate the potential use of structural properties of Arctica islandica shells as an environmental proxy. A total of 11 specimens were analyzed to study if changes of the microstructural organization of this marine bivalve are related to environmental conditions. In order to limit the interference of multiple parameters, the samples were cultured under controlled conditions. Three specimens presented here were grown at two different water temperatures (10 and 15 °C) for multiple weeks and exposed only to ambient food conditions. An additional eight specimens were reared under three different dietary regimes. Shell material was analyzed with two techniques; (1) confocal Raman microscopy (CRM) was used to quantify changes of the orientation of microstructural units and pigment distribution, and (2) scanning electron microscopy (SEM) was used to detect changes in microstructural organization. Our results indicate that A. islandica microstructure is not sensitive to changes in the food source and, likely, shell pigment are not altered by diet. However, seawater temperature had a statistically significant effect on the orientation of the biomineral. Although additional work is required, the results presented here suggest that the crystallographic orientation of biomineral units of A. islandica may serve as an alternative and independent proxy for seawater temperature.
NASA Astrophysics Data System (ADS)
Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan
2015-04-01
Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the photosynthesis process owing to a better estimation of the Rubisco enzyme kinematics. Finally, to evaluate the effects of the crop-specific parameterizations on the ABL dynamics, we perform a series of semi-idealized land-atmosphere coupled simulations by hypothesizing three cropland configurations. These numerical experiments reveal different heat and moisture budgets of the ABL that clearly impact the evolution of the boundary layer when using the crop-specific physiological properties.
Using Infrared Thermography to Assess Emotional Responses to Infants
ERIC Educational Resources Information Center
Esposito, Gianluca; Nakazawa, Jun; Ogawa, Shota; Stival, Rita; Putnick, Diane L.; Bornstein, Marc H.
2015-01-01
Adult-infant interactions operate simultaneously across multiple domains and at multiple levels -- from physiology to behaviour. Unpackaging and understanding them, therefore, involve analysis of multiple data streams. In this study, we tested physiological responses and cognitive preferences for infant and adult faces in adult females and males.…
Smart Vest: wearable multi-parameter remote physiological monitoring system.
Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C
2008-05-01
The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.
NASA Technical Reports Server (NTRS)
Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.
2016-01-01
The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and intracranial pressure had dominant impact on the peak strains in the ONH and retro-laminar optic nerve, respectively; optic nerve and lamina cribrosa stiffness were also important. This investigation illustrates the ability of LHSPRCC to identify the most influential physiological parameters, which must therefore be well-characterized to produce the most accurate numerical results.
Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug-Drug Interactions.
de Kanter, Ruben; Sidharta, Patricia N; Delahaye, Stéphane; Gnerre, Carmela; Segrestaa, Jerome; Buchmann, Stephan; Kohl, Christopher; Treiber, Alexander
2016-03-01
Macitentan is a novel dual endothelin receptor antagonist for the treatment of pulmonary arterial hypertension (PAH). It is metabolized by cytochrome P450 (CYP) enzymes, mainly CYP3A4, to its active metabolite ACT-132577. A physiological-based pharmacokinetic (PBPK) model was developed by combining observations from clinical studies and physicochemical parameters as well as absorption, distribution, metabolism and excretion parameters determined in vitro. The model predicted the observed pharmacokinetics of macitentan and its active metabolite ACT-132577 after single and multiple dosing. It performed well in recovering the observed effect of the CYP3A4 inhibitors ketoconazole and cyclosporine, and the CYP3A4 inducer rifampicin, as well as in predicting interactions with S-warfarin and sildenafil. The model was robust enough to allow prospective predictions of macitentan-drug combinations not studied, including an alternative dosing regimen of ketoconazole and nine other CYP3A4-interacting drugs. Among these were the HIV drugs ritonavir and saquinavir, which were included because HIV infection is a known risk factor for the development of PAH. This example of the application of PBPK modeling to predict drug-drug interactions was used to support the labeling of macitentan (Opsumit).
Kinematic Characterization of Left Ventricular Chamber Stiffness and Relaxation
NASA Astrophysics Data System (ADS)
Mossahebi, Sina
Heart failure is the most common cause of hospitalization today, and diastolic heart failure accounts for 40-50% of cases. Therefore, it is critical to identify diastolic dysfunction at a subclinical stage so that appropriate therapy can be administered before ventricular function is further, and perhaps irreversibly impaired. Basic concepts in physics such as kinematic modeling provide a unique method with which to characterize cardiovascular physiology, specifically diastolic function (DF). The advantage of an approach that is standard in physics, such as the kinematic modeling is its causal formulation that functions in contrast to correlative approaches traditionally utilized in the life sciences. Our research group has pioneered theoretical and experimental quantitative analysis of DF in humans, using both non-invasive (echocardiography, cardiac MRI) and invasive (simultaneous catheterization-echocardiography) methods. Our group developed and validated the Parametrized Diastolic Filling (PDF) formalism which is motivated by basic physiologic principles (LV is a mechanical suction pump at the mitral valve opening) that obey Newton's Laws. PDF formalism is a kinematic model of filling employing an equation of motion, the solution of which accurately predicts all E-wave contours in accordance with the rules of damped harmonic oscillatory motion. The equation's lumped parameters---ventricular stiffness, ventricular viscoelasticity/relaxation and ventricular load---are obtained by solving the 'inverse problem'. The parameters' physiologic significance and clinical utility have been repeatedly demonstrated in multiple clinical settings. In this work we apply our kinematic modeling approach to better understand how the heart works as it fills in order to advance the relationship between physiology and mathematical modeling. Through the use of this modeling, we thereby define and validate novel, causal indexes of diastolic function such as early rapid filling energy, diastatic stiffness, and relaxation and stiffness components of E-wave deceleration time.
Prediction of human core body temperature using non-invasive measurement methods.
Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel
2014-01-01
The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.
Differences Between Gait on Stairs and Flat Surfaces in Relation to Fall Risk and Future Falls.
Wang, Kejia; Delbaere, Kim; Brodie, Matthew A D; Lovell, Nigel H; Kark, Lauren; Lord, Stephen R; Redmond, Stephen J
2017-11-01
We used body-worn inertial sensors to quantify differences in semi-free-living gait between stairs and on normal flat ground in older adults, and investigated the utility of assessing gait on these terrains for predicting the occurrence of multiple falls. Eighty-two community-dwelling older adults wore two inertial sensors, on the lower back and the right ankle, during several bouts of walking on flat surfaces and up and down stairs, in between rests and activities of daily living. Derived from the vertical acceleration at the lower back, step rate was calculated from the signal's fundamental frequency. Step rate variability was the width of this fundamental frequency peak from the signal's power spectral density. Movement vigor was calculated at both body locations from the signal variance. Partial Spearman correlations between gait parameters and physiological fall risk factors (components from the Physiological Profile Assessment) were calculated while controlling for age and gender. Overall, anteroposterior vigor at the lower back in stair descent was lower in subjects with longer reaction times. Older adults walked more slowly on stairs, but they were not significantly slower on flat surfaces. Using logistic regression, faster step rate in stair descent was associated with multiple prospective falls over 12 months. No significant associations were shown from gait parameters derived during walking upstairs or on flat surfaces. These results suggest that stair descent gait may provide more insight into fall risk than regular walking and stair ascent, and that further sensor-based investigation into unsupervised gait on different terrains would be valuable.
Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds.
Fröhlich, Eleonore; Mercuri, Annalisa; Wu, Shengqian; Salar-Behzadi, Sharareh
2016-01-01
Modern strategies in drug development employ in silico techniques in the design of compounds as well as estimations of pharmacokinetics, pharmacodynamics and toxicity parameters. The quality of the results depends on software algorithm, data library and input data. Compared to simulations of absorption, distribution, metabolism, excretion, and toxicity of oral drug compounds, relatively few studies report predictions of pharmacokinetics and pharmacodynamics of inhaled substances. For calculation of the drug concentration at the absorption site, the pulmonary epithelium, physiological parameters such as lung surface and distribution volume (lung lining fluid) have to be known. These parameters can only be determined by invasive techniques and by postmortem studies. Very different values have been reported in the literature. This review addresses the state of software programs for simulation of orally inhaled substances and focuses on problems in the determination of particle deposition, lung surface and of lung lining fluid. The different surface areas for deposition and for drug absorption are difficult to include directly into the simulations. As drug levels are influenced by multiple parameters the role of single parameters in the simulations cannot be identified easily.
Pavlíková, Zuzana; Holá, Dana; Vlasáková, Blanka; Procházka, Tomáš
2017-01-01
Background and aims Understanding the consequences of polyploidization is a major step towards assessing the importance of this mode of speciation. Most previous studies comparing different cytotypes, however, did so only within a single environment and considered only one group of traits. To take a step further, we need to explore multiple environments and a wide range of traits. The aim of this study was to assess response of diploid and autotetraploid individuals of Knautia arvensis (Dipsacaceae) to two stress conditions, shade or drought. Methods We studied eleven photosynthetic, morphological and fitness parameters of the plants over three years in a common garden under ambient conditions and two types of stress. Key results The results indicate strong differences in performance and physiology between cytotypes in ambient conditions. Interestingly, higher fitness in diploids contrasted with more efficient photosynthesis in tetraploids in ambient conditions. However, stress, especially drought, strongly reduced fitness and disrupted function of the photosystems in both cytotypes reducing the between cytotype differences. The results indicate that drought stress reduced function of the photosynthetic processes in both cytotypes but particularly in tetraploids, while fitness reduction was stronger in diploids. Conclusions The photosynthesis related traits show higher plasticity in polyploids as theoretically expected, while the fitness related traits show higher plasticity in diploids especially in response to drought. This suggests that between cytotype comparisons need to consider multiple traits and multiple environments to understand the breath of possible responses of different cytotypes to stress. They also show that integrating results based on different traits is not straightforward and call for better mechanistic understanding of the relationships between species photosynthetic activity and fitness. Still, considering multiple environments and multiple species traits is crucial for understanding the drivers of niche differentiation between cytotypes in future studies. PMID:29190749
Pavlíková, Zuzana; Holá, Dana; Vlasáková, Blanka; Procházka, Tomáš; Münzbergová, Zuzana
2017-01-01
Understanding the consequences of polyploidization is a major step towards assessing the importance of this mode of speciation. Most previous studies comparing different cytotypes, however, did so only within a single environment and considered only one group of traits. To take a step further, we need to explore multiple environments and a wide range of traits. The aim of this study was to assess response of diploid and autotetraploid individuals of Knautia arvensis (Dipsacaceae) to two stress conditions, shade or drought. We studied eleven photosynthetic, morphological and fitness parameters of the plants over three years in a common garden under ambient conditions and two types of stress. The results indicate strong differences in performance and physiology between cytotypes in ambient conditions. Interestingly, higher fitness in diploids contrasted with more efficient photosynthesis in tetraploids in ambient conditions. However, stress, especially drought, strongly reduced fitness and disrupted function of the photosystems in both cytotypes reducing the between cytotype differences. The results indicate that drought stress reduced function of the photosynthetic processes in both cytotypes but particularly in tetraploids, while fitness reduction was stronger in diploids. The photosynthesis related traits show higher plasticity in polyploids as theoretically expected, while the fitness related traits show higher plasticity in diploids especially in response to drought. This suggests that between cytotype comparisons need to consider multiple traits and multiple environments to understand the breath of possible responses of different cytotypes to stress. They also show that integrating results based on different traits is not straightforward and call for better mechanistic understanding of the relationships between species photosynthetic activity and fitness. Still, considering multiple environments and multiple species traits is crucial for understanding the drivers of niche differentiation between cytotypes in future studies.
A wireless medical monitoring over a heterogeneous sensor network.
Yuce, Mehmet R; Ng, Peng Choong; Lee, Chin K; Khan, Jamil Y; Liu, Wentai
2007-01-01
This paper presents a heterogeneous sensor network system that has the capability to monitor physiological parameters from multiple patient bodies by means of different communication standards. The system uses the recently opened medical band called MICS (Medical Implant Communication Service) between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested by incorporating temperature and pulse rate sensors on nodes. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.
Deori, Parag; Sarma, Kushal Konwar; Nath, Parsha Jyoti; Singh, Chandan Kumar; Nath, Rita
2017-05-01
Aim of the study was to evaluate the effect of isoflurane anesthesia on physiological parameters, assessment of anesthetic qualities, and economy of use of isoflurane in domestic chickens ( Gallus domesticus ). In this study, 18 apparently healthy adult domestic chickens were selected randomly and divided into three groups. The birds were anesthetized by masked induction with isoflurane at a dose rate of 3.5%, 4%, and 5% and were maintained with 1.5%, 2%, and 2.5% isoflurane with oxygen by endotracheal intubation in Groups I, II, and III, respectively. Physiological parameters, viz., cloacal temperature, heart rate, and respiration rate were recorded at 0, 5, 10, 20, 30, 40, 50, and 60 min. The quality of anesthesia was assessed on the basis of induction time, induction behavior, quality of sedation, production of analgesia, degree of muscle relaxation, palpebral reflex, recovery time, and recovery behavior. The economy of anesthesia was calculated in terms of quantity of isoflurane utilized during 60 min of study. Statistical analysis was performed by analysis of variance, Duncan's multiple range tests. There was significant decrease (p<0.01) in physiological parameters such as in cloacal temperature, heart rate and respiration rate in the birds of all the groups from 0 to 60 min. The induction time was 5.83±0.33, 2.37±0.18, and 0.87±0.15 min, respectively, in Groups I, II, and III. Induction behavior was smooth in Group III, whereas mildly stormy in Group II and I. Quality of sedation was excellent in Group III, better in Group II as compared to Group I. Analgesia was moderate in Group III whereas poor in Group II and I. Degree of muscle relaxation was excellent in Group III, whereas good in Group I and II. Palpebral reflexes were absent in all the groups. Recovery time was 15.33±0.84, 18.83±0.94, and 26.50±0.85 in Groups I, II, and III respectively. Recovery behavior was smooth in birds of all the groups. The cost of the anesthesia was 158.22±1.04, 194.27±0.66, and 236.84±0.60 Indian National Rupee in Groups I, II, and III, respectively. Quantity of anesthesia utilized in each group was 7.62±0.05, 9.35±0.03, and 11.41±0.03 ml in Groups I, II, and III, respectively. The use of isoflurane at different concentration produces different level of physiological changes, quality of anesthesia and economy without causing any deleterious effect on the birds. The physiological parameters observed in this study can serve as reference values for the wild and endangered birds.
Zhang, Y T; Frank, C B; Rangayyan, R M; Bell, G D
1992-09-01
Analysis of vibration signals emitted by the knee joint has the potential for the development of a noninvasive procedure for the diagnosis and monitoring of knee pathology. In order to obtain as much information as possible from the power density spectrum of the knee vibration signal, it is necessary to identify the physiological factors (or physiologically relevant parameters) that shape the spectrum. This paper presents a mathematical model for knee vibration signals, in particular the physiological patello-femoral pulse (PFP) train produced by slow knee movement. It demonstrates through the mathematical model that the repetition rate of the physiological PFP train introduces repeated peaks in the power spectrum, and that it affects the spectrum mainly at low frequencies. The theoretical results also show that the spectral peaks at multiples of the PFP repetition rate become more evident when the variance of the interpulse interval (IPI) is small, and that these spectral peaks shift toward higher frequencies with increasing PFP repetition rates. To evaluate the mathematical model, a simulation algorithm was developed, which generates PFP signals with adjustable repetition rate and IPI variance. Signals generated by simulation were seen to possess representative spectral characteristics typically observed in physiological PFP signals. This simulation procedure allows an interactive examination of several factors which affect the PFP train spectrum. Finally, in vivo measurements of physiological PFP signals of normal volunteers are presented. Results of simulations and analysis of signals recorded from human subjects support the mathematical model's prediction that the IPI statistics play a very significant role in determining the low-end power spectrum of the physiological PFP signal.(ABSTRACT TRUNCATED AT 250 WORDS)
Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning
2016-01-01
Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.
Reconstruction of an input function from a dynamic PET water image using multiple tissue curves
NASA Astrophysics Data System (ADS)
Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro
2016-08-01
Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with {{\\text{H}}2} 15O or C15O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic {{\\text{H}}2} 15O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n = 29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around <8% and the calculated CBF values showed a tight correlation (r = 0.97). The simulation showed that errors associated with the assumed parameters were <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through {{\\text{H}}2} 15O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies.
Hydrogel tissue construct-based high-content compound screening.
Lam, Vy; Wakatsuki, Tetsuro
2011-01-01
Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)-based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds--rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)--for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.
Kenouche, S; Perrier, M; Bertin, N; Larionova, J; Ayadi, A; Zanca, M; Long, J; Bezzi, N; Stein, P C; Guari, Y; Cieslak, M; Godin, C; Goze-Bac, C
2014-12-01
Nondestructive studies of physiological processes in agronomic products require increasingly higher spatial and temporal resolutions. Nuclear Magnetic Resonance (NMR) imaging is a non-invasive technique providing physiological and morphological information on biological tissues. The aim of this study was to design a robust and accurate quantitative measurement method based on NMR imaging combined with contrast agent (CA) for mapping and quantifying water transport in growing cherry tomato fruits. A multiple flip-angle Spoiled Gradient Echo (SGE) imaging sequence was used to evaluate the intrinsic parameters maps M0 and T1 of the fruit tissues. Water transport and paths flow were monitored using Gd(3+)/[Fe(CN)6](3-)/D-mannitol nanoparticles as a tracer. This dynamic study was carried out using a compartmental modeling. The CA was preferentially accumulated in the surrounding tissues of columella and in the seed envelopes. The total quantities and the average volume flow of water estimated are: 198 mg, 1.76 mm(3)/h for the columella and 326 mg, 2.91 mm(3)/h for the seed envelopes. We demonstrate in this paper that the NMR imaging technique coupled with efficient and biocompatible CA in physiological medium has the potential to become a major tool in plant physiology research. Copyright © 2014 Elsevier Inc. All rights reserved.
Misalignment with the external light environment drives metabolic and cardiac dysfunction.
West, Alexander C; Smith, Laura; Ray, David W; Loudon, Andrew S I; Brown, Timothy M; Bechtold, David A
2017-09-12
Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.
Suriyo, Tawit; Pholphana, Nanthanit; Ungtrakul, Teerapat; Rangkadilok, Nuchanart; Panomvana, Duangchit; Thiantanawat, Apinya; Pongpun, Wanwisa; Satayavivad, Jutamaad
2017-06-01
Andrographis paniculata has been widely used in Scandinavian and Asian counties for the treatment of the common cold, fever, and noninfectious diarrhea. The present study was carried out to investigate the physiological effects of short-term multiple dose administration of a standardized A. paniculata capsule used for treatment of the common cold and uncomplicated upper respiratory tract infections, including blood pressure, electrocardiogram, blood chemistry, hematological profiles, urinalysis, and blood coagulation in healthy Thai subjects. Twenty healthy subjects (10 males and 10 females) received 12 capsules per day orally of 4.2 g of a standardized A. paniculata crude powder (4 capsules of 1.4 g of A. paniculata , 3 times per day, 8 h intervals) for 3 consecutive days. The results showed that all of the measured clinical parameters were found to be within normal ranges for a healthy person. However, modulation of some parameters was observed after the third day of treatment, for example, inductions of white blood cells and absolute neutrophil count in the blood, a reduction of plasma alkaline phosphatase, and an induction of urine pH. A rapid and transient reduction in blood pressure was observed at 30 min after capsule administration, resulting in a significant reduction of mean systolic blood pressure. There were no serious adverse events observed in the subjects during the treatment period. In conclusion, this study suggests that multiple oral dosing of A. paniculata at the normal therapeutic dose for the common cold and uncomplicated upper respiratory tract infections modulates various clinical parameters within normal ranges for a healthy person. Georg Thieme Verlag KG Stuttgart · New York.
Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development.
Wijewardana, Chathurika; Henry, W Brien; Gao, Wei; Reddy, K Raja
2016-07-01
Crop growth and development are highly responsive to global climate change components such as elevated carbon dioxide (CO2), drought, and ultraviolet-B (UV-B) radiation. Plant tolerance to these environmental stresses comprises its genetic potential, physiological changes, metabolism, and signaling pathways. An inclusive understanding of morphological, physiological, and biochemical responses to these abiotic stresses is imperative for the development of stress tolerant varieties for future environments. The objectives of this study were to characterize the changes in vegetative and physiological traits in maize hybrids in their response to multiple environmental factors of (CO2) [400 and 750μmolmol(-1) (+(CO2)], irrigation treatments based evapotranspiration (ET) [100 and 50% (-ET)], and UV-B radiation [0 and 10kJm(-2)d(-1) (+UV-B)] and to identify the multiple stress tolerant hybrids aid in mitigating projected climate change for shaping future agriculture. Six maize hybrids (P1498, DKC 65-81, N75H-GTA, P1319, DKC 66-97, and N77P-3111) with known drought tolerance variability were grown in eight sunlit, controlled environment chambers in which control treatment consisted of 400μmolmol(-1) [CO2], 100% ET-based irrigation, and 0kJ UV-B. Plants grown at +UV-B alone or combination with 50% ET produced shorter plants and smaller leaf area while elevated CO2 treatments ameliorated the damaging effects of drought and higher UV-B levels on maize hybrids. Plant height, leaf area, total dry matter chlorophyll, carotenoids, and net photosynthesis measured were increased in response to CO2 enrichment. Total stress response index (TSRI) for each hybrid, developed from the cumulative sum of response indices of vegetative and physiological parameters, varied among the maize hybrids. The hybrids were classified as tolerant (P1498), intermediate (DKC 65-81, N75H-GTA, N77P-3111) and sensitive (P1319 and DKC 66-97) to multiple environmental stresses. The positive correlation between TSRI and vegetative and physiological index developed in this study demonstrates that a combination of vegetative and physiological traits is an effective screening tool to identify germplasm best suited to cope with future changing climates. Furthermore, the tolerant hybrids identified in this study indicate that the possibility of cultivar selection for enhanced agronomic performance and stability in a water limited environment with higher UV-B, anticipated to occur in future climates. Copyright © 2016 Elsevier B.V. All rights reserved.
Duñabeitia, Iratxe; Arrieta, Haritz; Torres-Unda, Jon; Gil, Javier; Santos-Concejero, Jordan; Gil, Susana M; Irazusta, Jon; Bidaurrazaga-Letona, Iraia
2018-05-26
This study compared the effects of a capacitive-resistive electric transfer therapy (Tecar) and passive rest on physiological and biomechanical parameters in recreational runners when performed shortly after an exhausting training session. Randomized controlled crossover trial. University biomechanical research laboratory. Fourteen trained male runners MAIN OUTCOME MEASURES: Physiological (running economy, oxygen uptake, respiratory exchange ratio, ventilation, heart rate, blood lactate concentration) and biomechanical (step length; stride angle, height, frequency, and contact time; swing time; contact phase; support phase; push-off phase) parameters were measured during two incremental treadmill running tests performed two days apart after an exhaustive training session. When running at 14 km/h and 16 km/h, the Tecar treatment group presented greater increases in stride length (p < 0.001), angle (p < 0.05) and height (p < 0.001) between the first and second tests than the control group and, accordingly, greater decreases in stride frequency (p < 0.05). Physiological parameters were similar between groups. The present study suggests that a Tecar therapy intervention enhances biomechanical parameters in recreational runners after an exhaustive training session more than passive rest, generating a more efficient running pattern without affecting selected physiological parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Adeniyi, Olasupo Stephen; Ogli, Sunday Adakole; Ojabo, Cecelia Omaile; Musa, Danladi Ibrahim
2013-01-01
Background: This study was carried out to assess the relationship between thevarious assessment parameters, viz. continuous assessment (CA), multiple choice questions (MCQ), essay, practical, oral with the overall performance in the first professional examination in Physiology. Materials and Methods: The results of all 244 students that sat for the examination over 4 years were used. The CA, MCQ, essay, practical, oral and overall performance scores were obtained. All the scores were rounded up to 100% to give each parameter equal weighting. Results: Analysis showed that the average overall performance was 50.8 ± 5.3. The best average performance was in practical (55.5 ± 9.1), while the least was in MCQ (44.1 ± 7.8). In the study, 81.1% of students passed orals, 80.3% passed practical, 72.5% passed CA, 58.6% passed essay, 22.5% passed MCQ and 71.7% of students passed on the overall performance. All assessment parameters significantly correlated with overall performance. Continuous assessment had the best correlation (r = 0.801, P = 0.000), while oral had the least correlation (r = 0.277, P = 0.000) with overall performance. Essay was the best predictor of overall performance (β = 0.421, P = 000), followed by MCQ (β = 0.356, P = 000), while practical was the least predictor of performance (β = 0.162, P = 000). Conclusion: We suggest that the department should uphold the principle of continuous assessment and more effort be made in the design of MCQ so that performance can improve. PMID:24403705
Individual Colorimetric Observer Model
Asano, Yuta; Fairchild, Mark D.; Blondé, Laurent
2016-01-01
This study proposes a vision model for individual colorimetric observers. The proposed model can be beneficial in many color-critical applications such as color grading and soft proofing to assess ranges of color matches instead of a single average match. We extended the CIE 2006 physiological observer by adding eight additional physiological parameters to model individual color-normal observers. These eight parameters control lens pigment density, macular pigment density, optical densities of L-, M-, and S-cone photopigments, and λmax shifts of L-, M-, and S-cone photopigments. By identifying the variability of each physiological parameter, the model can simulate color matching functions among color-normal populations using Monte Carlo simulation. The variabilities of the eight parameters were identified through two steps. In the first step, extensive reviews of past studies were performed for each of the eight physiological parameters. In the second step, the obtained variabilities were scaled to fit a color matching dataset. The model was validated using three different datasets: traditional color matching, applied color matching, and Rayleigh matches. PMID:26862905
The physiological determinants of drug-induced lysosomal stress resistance
Woldemichael, Tehetina; Rosania, Gus R.
2017-01-01
Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs. PMID:29117253
Kuo, Yin-Ming; Henry, Ryan A; Andrews, Andrew J
2016-01-01
Multiple substrate enzymes present a particular challenge when it comes to understanding their activity in a complex system. Although a single target may be easy to model, it does not always present an accurate representation of what that enzyme will do in the presence of multiple substrates simultaneously. Therefore, there is a need to find better ways to both study these enzymes in complicated systems, as well as accurately describe the interactions through kinetic parameters. This review looks at different methods for studying multiple substrate enzymes, as well as explores options on how to most accurately describe an enzyme's activity within these multi-substrate systems. Identifying and defining this enzymatic activity should help clear the way to using in vitro systems to accurately predicting the behavior of multi-substrate enzymes in vivo. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015. Published by Elsevier B.V.
Lin, Ying Ling; Guerguerian, Anne-Marie; Tomasi, Jessica; Laussen, Peter; Trbovich, Patricia
2017-08-14
Intensive care clinicians use several sources of data in order to inform decision-making. We set out to evaluate a new interactive data integration platform called T3™ made available for pediatric intensive care. Three primary functions are supported: tracking of physiologic signals, displaying trajectory, and triggering decisions, by highlighting data or estimating risk of patient instability. We designed a human factors study to identify interface usability issues, to measure ease of use, and to describe interface features that may enable or hinder clinical tasks. Twenty-two participants, consisting of bedside intensive care physicians, nurses, and respiratory therapists, tested the T3™ interface in a simulation laboratory setting. Twenty tasks were performed with a true-to-setting, fully functional, prototype, populated with physiological and therapeutic intervention patient data. Primary data visualization was time series and secondary visualizations were: 1) shading out-of-target values, 2) mini-trends with exaggerated maxima and minima (sparklines), and 3) bar graph of a 16-parameter indicator. Task completion was video recorded and assessed using a use error rating scale. Usability issues were classified in the context of task and type of clinician. A severity rating scale was used to rate potential clinical impact of usability issues. Time series supported tracking a single parameter but partially supported determining patient trajectory using multiple parameters. Visual pattern overload was observed with multiple parameter data streams. Automated data processing using shading and sparklines was often ignored but the 16-parameter data reduction algorithm, displayed as a persistent bar graph, was visually intuitive. However, by selecting or automatically processing data, triggering aids distorted the raw data that clinicians use regularly. Consequently, clinicians could not rely on new data representations because they did not know how they were established or derived. Usability issues, observed through contextual use, provided directions for tangible design improvements of data integration software that may lessen use errors and promote safe use. Data-driven decision making can benefit from iterative interface redesign involving clinician-users in simulated environments. This study is a first step in understanding how software can support clinicians' decision making with integrated continuous monitoring data. Importantly, testing of similar platforms by all the different disciplines who may become clinician users is a fundamental step necessary to understand the impact on clinical outcomes of decision aids.
What must be the accuracy and target of optical sensor systems for patient monitoring?
NASA Astrophysics Data System (ADS)
Frank, Klaus H.; Kessler, Manfred D.
2002-06-01
Although the treatment in the intensive care unit has improved in recent years enabling greater surgical engagements and improving patients survival rate, no adequate monitoring is available in imminent severe pathological cases. Otherwise such kind of monitoring is necessary for early or prophylactic treatment in order to avoid or reduce the severity of the disease and protect the patient from sepsis or multiple organ failure. In these cases the common monitoring is limited, because clinical physiological and laboratory parameters indicate either the situation of macro-circulation or late disturbances of microcirculation, which arise previously on sub-cellular level. Optical sensor systems enable to reveal early variations in local capillary flow. The correlation between clinical parameters and changes in condition of oxygenation as a function of capillary flow disturbances is meaningful for the further treatment. The target should be to develop a predictive parameter, which is useful for detection and follow-up of changes in circulation.
Species differences in hematological values of captive cranes, geese, raptors, and quail
Gee, G.F.; Carpenter, J.W.; Hensler, G.L.
1981-01-01
Hematological and serum chemical constituents of blood were determined for 12 species, including 7 endangered species, of cranes, geese, raptors, and quail in captivity at the Patuxent Wildlife Research Center. Means, standard deviations, analysis of variance by species and sex, and a series of multiple comparisons of means were derived for each parameter investigated. Differences among some species means were observed in all blood parameters except gamma-glutamyl transpeptidase. Although sampled during the reproductively quiescent period, an influence of sex was noted in red blood cell count, hemoglobin, albumin, glucose, cholesterol, serum glutamic oxaloacetic transaminase, Ca, and P. Our data and values reported in literature indicate that most hematological parameters vary among species and, in some cases, according to methods used to determine them. Therefore, baseline data for captive and wild birds should be established by using standard methods, and should be made available to aid others for use in assessing physiological and pathological conditions of these species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.
Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO 2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range betweenmore » 18.7-23.7, 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m 2m -2) compared to Y1&2 cohorts (LAI 0.67 m 2m -2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.« less
Kagan, Leonid; Gershkovich, Pavel; Wasan, Kishor M; Mager, Donald E
2011-06-01
The time course of tissue distribution of amphotericin B (AmB) has not been sufficiently characterized despite its therapeutic importance and an apparent disconnect between plasma pharmacokinetics and clinical outcomes. The goals of this work were to develop and evaluate a physiologically based pharmacokinetic (PBPK) model to characterize the disposition properties of AmB administered as deoxycholate formulation in healthy rats and to examine the utility of the PBPK model for interspecies scaling of AmB pharmacokinetics. AmB plasma and tissue concentration-time data, following single and multiple intravenous administration of Fungizone® to rats, from several publications were combined for construction of the model. Physiological parameters were fixed to literature values. Various structural models for single organs were evaluated, and the whole-body PBPK model included liver, spleen, kidney, lung, heart, gastrointestinal tract, plasma, and remainder compartments. The final model resulted in a good simultaneous description of both single and multiple dose data sets. Incorporation of three subcompartments for spleen and kidney tissues was required for capturing a prolonged half-life in these organs. The predictive performance of the final PBPK model was assessed by evaluating its utility in predicting pharmacokinetics of AmB in mice and humans. Clearance and permeability-surface area terms were scaled with body weight. The model demonstrated good predictions of plasma AmB concentration-time profiles for both species. This modeling framework represents an important basis that may be further utilized for characterization of formulation- and disease-related factors in AmB pharmacokinetics and pharmacodynamics.
Co-existence of multiple trade-off currencies shapes evolutionary outcomes
Isaksson, Caroline; Salguero-Gómez, Roberto
2017-01-01
Evolutionary studies often assume that energy is the primary resource (i.e. “currency”) at the heart of the survival-reproduction trade-off, despite recent evidence to the contrary. The evolutionary consequences of having a single trade-off currency versus multiple competing currencies are unknown. Using simulations, we modeled the evolution of either a single physiological currency between reproduction and survival, or of multiple such currencies. For a wide array of model specifications varying functional forms and strengths of the trade-offs, we show that the presence of multiple currencies (e.g. nutrients, time) generally results in the evolution of higher lifetime reproductive success through partial circumvention of such trade-offs. Evolution of the underlying physiology is also more highly contingent with multiple currencies. These results challenge the paradigm of a single survival-reproduction trade-off as central to life history evolution, suggesting greater roles for physiological constraints and contingency, and implying potential selection for evolution of multiple trade-off currencies. PMID:29216275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.
2008-03-01
We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and comparemore » predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.« less
den Besten, Heidy M. W.; Mataragas, Marios; Moezelaar, Roy; Abee, Tjakko; Zwietering, Marcel H.
2006-01-01
The food-borne pathogen Bacillus cereus can acquire enhanced thermal resistance through multiple mechanisms. Two Bacillus cereus strains, ATCC 10987 and ATCC 14579, were used to quantify the effects of salt stress and physiological state on thermotolerance. Cultures were exposed to increasing concentrations of sodium chloride for 30 min, after which their thermotolerance was assessed at 50°C. Linear and nonlinear microbial survival models, which cover a wide range of known inactivation curvatures for vegetative cells, were fitted to the inactivation data and evaluated. Based on statistical indices and model characteristics, biphasic models with a shoulder were selected and used for quantification. Each model parameter reflected a survival characteristic, and both models were flexible, allowing a reduction of parameters when certain phenomena were not present. Both strains showed enhanced thermotolerance after preexposure to (non)lethal salt stress conditions in the exponential phase. The maximum adaptive stress response due to salt preexposure demonstrated for exponential-phase cells was comparable to the effect of physiological state on thermotolerance in both strains. However, the adaptive salt stress response was less pronounced for transition- and stationary-phase cells. The distinct tailing of strain ATCC 10987 was attributed to the presence of a subpopulation of spores. The existence of a stable heat-resistant subpopulation of vegetative cells could not be demonstrated for either of the strains. Quantification of the adaptive stress response might be instrumental in understanding adaptation mechanisms and will allow the food industry to develop more accurate and reliable stress-integrated predictive modeling to optimize minimal processing conditions. PMID:16957208
[Effects of hypnosis in dental care].
Jugé, Charlène; Tubert-Jeannin, Stéphanie
2013-04-01
Hypnosis is widely used in medicine and dentistry, but many practitioners still consider it as a mysterious technique. Thus, a systematic review was conducted to assess the effects of hypnosis during dental treatment. A literature search was conducted on PubMed (1981-2012) to retrieve references, written in French or English, reporting controlled clinical studies that have evaluated any type of hypnosis. The quality of included studies was assessed by evaluating randomisation, blindness and drop-outs. The effects of hypnosis on anxiety, physiological parameters, patients' behaviour or pain were analysed descriptively. The electronic search retrieved 556 references. Nine studies, generally characterized by low methodological quality, were selected. Results indicated that hypnosis has significant positive effects on anxiety, pain, behaviour and physiological parameters when it is compared with no treatment. When hypnosis is compared with other psychological treatment such as cognitive behavioral therapy (CBT), the effects on anxiety and behaviour are almost identical with an advantage for CBT. Individualized hypnosis brings more benefits than standardized hypnosis with audio recordings. This review demonstrated the effectiveness of hypnosis but the poor quality of the clinical studies and the multiplicity of evaluation outcomes limit the level of evidence. It is therefore necessary to conduct further clinical studies to confirm the effects of hypnosis during dental treatments. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds
Fröhlich, Eleonore; Mercuri, Annalisa; Wu, Shengqian; Salar-Behzadi, Sharareh
2016-01-01
Modern strategies in drug development employ in silico techniques in the design of compounds as well as estimations of pharmacokinetics, pharmacodynamics and toxicity parameters. The quality of the results depends on software algorithm, data library and input data. Compared to simulations of absorption, distribution, metabolism, excretion, and toxicity of oral drug compounds, relatively few studies report predictions of pharmacokinetics and pharmacodynamics of inhaled substances. For calculation of the drug concentration at the absorption site, the pulmonary epithelium, physiological parameters such as lung surface and distribution volume (lung lining fluid) have to be known. These parameters can only be determined by invasive techniques and by postmortem studies. Very different values have been reported in the literature. This review addresses the state of software programs for simulation of orally inhaled substances and focuses on problems in the determination of particle deposition, lung surface and of lung lining fluid. The different surface areas for deposition and for drug absorption are difficult to include directly into the simulations. As drug levels are influenced by multiple parameters the role of single parameters in the simulations cannot be identified easily. PMID:27445817
Reichelt, Wieland N; Haas, Florian; Sagmeister, Patrick; Herwig, Christoph
2017-01-01
Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between setups. Although substantial effort is invested to control technological parameters, usually the only true constant parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process parameters, the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a workflow of data life cycle management with special focus on physiology. Information processing condenses the data into physiological variables, while information mining condenses the variables further into physiological descriptors. This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity. Targeting transferability, we demonstrate this workflow using an industrially relevant Escherichia coli process for recombinant protein production and substantiate the following three points: (1) The postinduction phase is independent in terms of productivity and physiology from the preinduction variables specific growth rate and biomass at induction. (2) The specific substrate uptake rate during induction phase was found to significantly impact the maximum specific product titer. (3) The time point of maximum specific titer can be predicted by an easy accessible physiological variable: while the maximum specific titers were reached at different time points (19.8 ± 7.6 h), those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 ± 0.3 g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and illustrates potential benefits. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:261-270, 2017. © 2016 American Institute of Chemical Engineers.
Yan, Yonggang; Ma, Xiang; Yao, Lifeng; Ouyang, Jianfei
2015-01-01
Non-contact and remote measurements of vital physical signals are important for reliable and comfortable physiological self-assessment. We presented a novel optical imaging-based method to measure the vital physical signals. Using a digital camera and ambient light, the cardiovascular pulse waves were extracted better from human color facial videos correctly. And the vital physiological parameters like heart rate were measured using a proposed signal-weighted analysis method. The measured HRs consistent with those measured simultaneously with reference technologies (r=0.94, p<0.001 for HR). The results show that the imaging-based method is suitable for measuring the physiological parameters, and provide a reliable and comfortable measurement mode. The study lays a physical foundation for measuring multi-physiological parameters of human noninvasively.
Gaetan, Sophie; Dousset, Erick; Marqueste, Tanguy; Bringoux, Lionel; Bourdin, Christophe; Vercher, Jean-Louis; Besson, Patricia
2015-12-01
Helicopter pilots are involved in a complex multitask activity, implying overuse of cognitive resources, which may result in piloting task impairment or in decision-making failure. Studies usually investigate this phenomenon in well-controlled, poorly ecological situations by focusing on the correlation between physiological values and either cognitive workload or emotional state. This study aimed at jointly exploring workload induced by a realistic simulated helicopter flight mission and emotional state, as well as physiological markers. The experiment took place in the helicopter full flight dynamic simulator. Six participants had to fly on two missions. Workload level, skin conductance, RMS-EMG, and emotional state were assessed. Joint analysis of psychological and physiological parameters associated with workload estimation revealed particular dynamics in each of three profiles. 1) Expert pilots showed a slight increase of measured physiological parameters associated with the increase in difficulty level. Workload estimates never reached the highest level and the emotional state for this profile only referred to positive emotions with low emotional intensity. 2) Non-Expert pilots showed increasing physiological values as the perceived workload increased. However, their emotional state referred to either positive or negative emotions, with a greater variability in emotional intensity. 3) Intermediate pilots were similar to Expert pilots regarding emotional states and similar to Non-Expert pilots regarding physiological patterns. Overall, high interindividual variability of these results highlight the complex link between physiological and psychological parameters with workload, and question whether physiology alone could predict a pilot's inability to make the right decision at the right time.
A three-dimensional virtual environment for modeling mechanical cardiopulmonary interactions.
Kaye, J M; Primiano, F P; Metaxas, D N
1998-06-01
We have developed a real-time computer system for modeling mechanical physiological behavior in an interactive, 3-D virtual environment. Such an environment can be used to facilitate exploration of cardiopulmonary physiology, particularly in situations that are difficult to reproduce clinically. We integrate 3-D deformable body dynamics with new, formal models of (scalar) cardiorespiratory physiology, associating the scalar physiological variables and parameters with the corresponding 3-D anatomy. Our framework enables us to drive a high-dimensional system (the 3-D anatomical models) from one with fewer parameters (the scalar physiological models) because of the nature of the domain and our intended application. Our approach is amenable to modeling patient-specific circumstances in two ways. First, using CT scan data, we apply semi-automatic methods for extracting and reconstructing the anatomy to use in our simulations. Second, our scalar physiological models are defined in terms of clinically measurable, patient-specific parameters. This paper describes our approach, problems we have encountered and a sample of results showing normal breathing and acute effects of pneumothoraces.
Waltz, Xavier; Baillot, Michelle; Connes, Philippe; Bocage, Bruno; Renaudeau, David
2014-01-01
Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1) to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2) to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24 °C (D-7 to D-1). Then, at D0, temperature was progressively increased until 32 °C and maintained during one week (D1 to D7). We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate), hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.
A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth
Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai
2017-01-01
State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production. PMID:28848565
A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.
Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai
2017-01-01
State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production.
Non-lethal control of the cariogenic potential of an agent-based model for dental plaque.
Head, David A; Marsh, Phil D; Devine, Deirdre A
2014-01-01
Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments.
Ebadi, Abbas; Kavei, Parastoo; Moradian, Seyyed Tayyeb; Saeid, Yaser
2015-08-01
The aim of this study was to investigate the efficacy of foot reflexology on physiological parameters and mechanical ventilation weaning time in patients undergoing open-heart surgery. This was a double blind three-group randomized controlled trial. Totally, 96 patients were recruited and randomly allocated to the experimental, placebo, and the control groups. Study groups respectively received foot reflexology, simple surface touching, and the routine care of the study setting. Physiological parameters (pulse rate, respiratory rate, systolic and diastolic blood pressures, mean arterial pressure, percutaneous oxygen saturation) and weaning time were measured. The study groups did not differ significantly in terms of physiological parameters (P value > 0.05). However, the length of weaning time in the experimental group was significantly shorter than the placebo and the control groups (P value < 0.05). The study findings demonstrated the efficiency of foot reflexology in shortening the length of weaning time. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Landowska, A.; Karpienko, K.; Wróbel, M.; Jedrzejewska-Szczerska, M.
2014-11-01
In this article the procedure of selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children is proposed. Authors designed and conducted an experiment in which a group of 30 health volunteers (16 females and 14 males) were examined. Under controlled conditions people were exposed to a stressful situation caused by the picture or sound (1kHz constant sound, which was gradually silenced and finished with a shot sound). For each of volunteers, a set of physiological parameters were recorded, including: skin conductance, heart rate, peripheral temperature, respiration rate and electromyography. The selected characteristics were measured in different locations in order to choose the most suitable one for the designed therapy supporting system. The bio-statistical analysis allowed us to discern the proper physiological parameters that are most associated to changes due to emotional state of a patient, such as: skin conductance, temperatures and respiration rate. This allowed us to design optoelectronic sensors network for supporting behavioral therapy of children with autism.
Bahrami, Tahereh; Rejeh, Nahid; Heravi-Karimooi, Majideh; Vaismoradi, Mojtaba; Tadrisi, Seyed Davood; Sieloff, Christina
2017-12-01
This study aimed to investigate the effect of aromatherapy massage on anxiety, depression, and physiologic parameters in older patients with acute coronary syndrome. This randomized controlled trial was conducted on 90 older women with acute coronary syndrome. The participants were randomly assigned into the intervention and control groups (n = 45). The intervention group received reflexology with lavender essential oil, but the control group only received routine care. Physiologic parameters, the levels of anxiety and depression in the hospital were evaluated using a checklist and the Hospital's Anxiety and Depression Scale, respectively, before and immediately after the intervention. Significant differences in the levels of anxiety and depression were reported between the groups after the intervention. The analysis of physiological parameters revealed a statistically significant reduction (P < .05) in systolic blood pressure, diastolic blood pressure, mean arterial pressure, and heart rate. However, no significant difference was observed in the respiratory rate. Aromatherapy massage can be considered by clinical nurses an efficient therapy for alleviating psychological and physiological responses among older women suffering from acute coronary syndrome. © 2017 John Wiley & Sons Australia, Ltd.
NASA Technical Reports Server (NTRS)
Leonard, J. I.; Furukawa, S.; Vannordstrand, P. C.
1975-01-01
The use of automated, analytical techniques to aid medical support teams is suggested. Recommendations are presented for characterizing crew health in terms of: (1) wholebody function including physiological, psychological and performance factors; (2) a combination of critical performance indexes which consist of multiple factors of measurable parameters; (3) specific responses to low noise level stress tests; and (4) probabilities of future performance based on present and periodic examination of past performance. A concept is proposed for a computerized real time biomedical monitoring and health care system that would have the capability to integrate monitored data, detect off-nominal conditions based on current knowledge of spaceflight responses, predict future health status, and assist in diagnosis and alternative therapies. Mathematical models could play an important role in this approach, especially when operating in a real time mode. Recommendations are presented to update the present health monitoring systems in terms of recent advances in computer technology and biomedical monitoring systems.
Implementation of body area networks based on MICS/WMTS medical bands for healthcare systems.
Yuce, Mehmet R; Ho, Chee Keong
2008-01-01
A multi-hoping sensor network system has been implemented to monitor physiological parameters from multiple patient bodies by means of medical communication standards MICS (Medical Implant Communication Service) and WMTS (Wireless Medical Telemetry Service). Unlike the other medical sensor networks (they usually use 2.4 GHz ISM band), we used the two medical standards occupying the frequency bands that are mainly assigned to medical applications. The prototype system uses the MICS band (402-405 MHz) between the sensor nodes and a remote central control unit (CCU). And WMTS frequencies (608-614MHz) are used between the CCUs and the remote base stations allowing for a much larger range acting as an intermediate node. The sensor nodes in the prototype can measure up to four body signals (i.e. 4-channel) where one is dedicated to a continuous physiological signal such as ECC/EEG. The system includes firmware and software designs that can provide a long distance data transfer through the internet or a mobile network.
Micropropagation of Prunus species relevant to cherry fruit production.
Druart, Philippe
2013-01-01
Cherry tree micropropagation is limited to the production of healthy cultivars of Prunus avium and Prunus cerasus, and their rootstocks; mainly the dwarfing ones. By using meristem-tip (0.1 mm long) or healthy shoot tips/nodes, four successive steps are needed to obtain whole plants capable of growing in the nursery: multiplication by axillary branching, shoot elongation, rooting, and plantlet acclimation. Along this process, several parameters have to be adjusted for each phase of the culture, including media composition, environmental culture conditions and plant handling. These parameters vary depending on genotypic response and specific vulnerability to physiological disorders such as hyperhydricity, apex necrosis, unstable propagation, and rooting rates. Based on a 40 year-long experience of study and application of culture conditions to large-scale plant production, this document summarizes the main problems (variability of the propagation rate, hyperhydricity, apex necrosis, plant re-growth) and solutions encountered to solve them, with means validated on many mericlones.
Implant for in-vivo parameter monitoring, processing and transmitting
Ericson, Milton N [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Smith, Stephen F [London, TN; Hylton, James O [Clinton, TN
2009-11-24
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Magnesium degradation as determined by artificial neural networks.
Willumeit, Regine; Feyerabend, Frank; Huber, Norbert
2013-11-01
Magnesium degradation under physiological conditions is a highly complex process in which temperature, the use of cell culture growth medium and the presence of CO2, O2 and proteins can influence the corrosion rate and the composition of the resulting corrosion layer. Due to the complexity of this process it is almost impossible to predict the parameters that are most important and whether some parameters have a synergistic effect on the corrosion rate. Artificial neural networks are a mathematical tool that can be used to approximate and analyse non-linear problems with multiple inputs. In this work we present the first analysis of corrosion data obtained using this method, which reveals that CO2 and the composition of the buffer system play a crucial role in the corrosion of magnesium, whereas O2, proteins and temperature play a less prominent role. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra
2017-10-23
Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.
The effect of music on preprocedure anxiety in Hong Kong Chinese day patients.
Lee, David; Henderson, Amanda; Shum, David
2004-03-01
To identify the effect of music on preprocedure anxiety levels of Hong Kong Chinese patients undergoing day procedures in a local community based hospital. Pre and post-test quasi experimental design with non-random assignment. A total of 113 participants were assigned to the control group or intervention group depending on the day of their procedure. Participants' anxiety levels were measured objectively by comparing their vital signs and subjectively by the Spielberger State Trait Anxiety Scale. Participants' physiological parameters (blood pressure, pulse and respiration) and State Trait Anxiety Scale were measured at two time periods. The control group undertook the usual relaxing activities provided in the waiting room compared with the intervention group who listened to music of their own choice in reclining chairs while waiting for the procedure. The physiological parameters for both the control and intervention groups dropped significantly during the waiting period, however, only the intervention group had a significant reduction in reported anxiety levels. These results suggest that providing self-selected music to day procedure patients in the preprocedure period assists in the reduction of physiological parameters and anxiety, yet, a relaxing environment can assist in the reduction of physiological parameters. The administration of self-selected music to day procedure patients in the preprocedure period can be effective in the reduction of physiological parameters and anxiety.
Aramli, M S; Kalbassi, M R; Gharibi, M R
2015-02-01
In this study, we investigated the effects of multiple collections of sperm on the endangered Persian sturgeon, Acipenser persicus, in terms of a number of sperm functional parameters (percentage of motile spermatozoa, total time period of motility and sperm concentration) as well as on the ionic composition, protein concentration and osmolality of seminal plasma. Semen samples were collected from 12 induced male fish in three experimental groups that had been injected intramuscularly with LHRH-A2, at dosages of 5 μg/kg body weight, at a number of time regimes: at 12 h, 17 h and 24 h after spawning induction (1); at 24, 29 and 34 h after spawning induction (2); and at 36, 41 and 46 h after spawning induction (3). The percentage of motile spermatozoa and the period of sperm motility decreased significantly (p < 0.05) after the second and third collections. The concentration of spermatozoa decreased after the third collection, but this decline was not significant. No significant effect of multiple collections on protein concentration and ionic content (with exception of the Cl(-) ion) of seminal plasma was observed. In all experimental groups, a moderate impact of sequential collection on the osmolality (p < 0.05) of seminal plasma was observed. This study provides new data on the effects of multiple collections on spermatological characteristics in the Persian sturgeon. Our results confirm that sequential stripping after the third collections has a negative effect on a number of functional parameters associated with sperm. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Morel, Agnieszka; Rywaniak, Joanna; Bijak, Michał; Miller, Elżbieta; Niwald, Marta; Saluk, Joanna
2017-06-01
The epidemiological studies confirm an increased risk of cardiovascular disease in multiple sclerosis, especially prothrombotic events directly associated with abnormal platelet activity. The aim of our study was to investigate the level of blood platelet activation in the circulation of patients with chronic phase of multiple sclerosis (SP MS) and their reactivity in response to typical platelets' physiological agonists. We examined 85 SP MS patients diagnosed according to the revised McDonald's criteria and 50 healthy volunteers as a control group. The platelet activation and reactivity were assessed using flow cytometry analysis of the following: P-selectin expression (CD62P), activation of GP IIb/IIIa complex (PAC-1 binding), and formation of platelet microparticles (PMPs) and platelet aggregates (PA) in agonist-stimulated (ADP, collagen) and unstimulated whole blood samples. Furthermore, we measured the level of soluble P-selectin (sP-selectin) in plasma using ELISA method, to evaluate the in vivo level of platelet activation, both in healthy and SP MS subjects. We found a statistically significant increase in P-selectin expression, GP IIb/IIIa activation, and formation of PMPs and PA, as well as in unstimulated and agonist-stimulated (ADP, collagen) platelets in whole blood samples from patients with SP MS in comparison to the control group. We also determined the higher sP-selectin level in plasma of SP MS subjects than in the control group. Based on the obtained results, we might conclude that during the course of SP MS platelets are chronically activated and display hyperreactivity to physiological agonists, such as ADP or collagen.
Relationship of Physiological Parameters and Achievement in Wheelchair Athletics.
ERIC Educational Resources Information Center
Hurst, Judith A.
The relationship between achievement in track and field events (60, 100, 200, 400 meter runs and shotput, discus, and javelin throws) and selected physiological parameters (grip strength, body fat, vital lung capacity, and cardiovascular efficiency) of 20 wheelchair athletes was investigated. Results of track and field events were obtained from…
The purpose of this report is to develop a database of physiological parameters needed for understanding and evaluating performance of the APEX and SHEDS exposure/intake dose rate model used by the Environmental Protection Agency (EPA) as part of its regulatory activities. The A...
Sex-Based Differences in Physiology: What Should We Teach in the Medical Curriculum?
ERIC Educational Resources Information Center
Blair, Martha L.
2007-01-01
An abundance of recent research indicates that there are multiple differences between males and females both in normal physiology and in the pathophysiology of disease. The Refresher Course on Gender Differences in Physiology, sponsored by the American Physiological Society Education Committee at the 2006 Experimental Biology Meeting in San…
Measuring dynamic kidney function in an undergraduate physiology laboratory.
Medler, Scott; Harrington, Frederick
2013-12-01
Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.
Multiple Choice Questions Can Be Designed or Revised to Challenge Learners' Critical Thinking
ERIC Educational Resources Information Center
Tractenberg, Rochelle E.; Gushta, Matthew M.; Mulroney, Susan E.; Weissinger, Peggy A.
2013-01-01
Multiple choice (MC) questions from a graduate physiology course were evaluated by cognitive-psychology (but not physiology) experts, and analyzed statistically, in order to test the independence of content expertise and cognitive complexity ratings of MC items. Integration of higher order thinking into MC exams is important, but widely known to…
A mobile care system with alert mechanism.
Lee, Ren-Guey; Chen, Kuei-Chien; Hsiao, Chun-Chieh; Tseng, Chwan-Lu
2007-09-01
Hypertension and arrhythmia are chronic diseases, which can be effectively prevented and controlled only if the physiological parameters of the patient are constantly monitored, along with the full support of the health education and professional medical care. In this paper, a role-based intelligent mobile care system with alert mechanism in chronic care environment is proposed and implemented. The roles in our system include patients, physicians, nurses, and healthcare providers. Each of the roles represents a person that uses a mobile device such as a mobile phone to communicate with the server setup in the care center such that he or she can go around without restrictions. For commercial mobile phones with Bluetooth communication capability attached to chronic patients, we have developed physiological signal recognition algorithms that were implemented and built-in in the mobile phone without affecting its original communication functions. It is thus possible to integrate several front-end mobile care devices with Bluetooth communication capability to extract patients' various physiological parameters [such as blood pressure, pulse, saturation of haemoglobin (SpO2), and electrocardiogram (ECG)], to monitor multiple physiological signals without space limit, and to upload important or abnormal physiological information to healthcare center for storage and analysis or transmit the information to physicians and healthcare providers for further processing. Thus, the physiological signal extraction devices only have to deal with signal extraction and wireless transmission. Since they do not have to do signal processing, their form factor can be further reduced to reach the goal of microminiaturization and power saving. An alert management mechanism has been included in back-end healthcare center to initiate various strategies for automatic emergency alerts after receiving emergency messages or after automatically recognizing emergency messages. Within the time intervals in system setting, according to the medical history of a specific patient, our prototype system can inform various healthcare providers in sequence to provide healthcare service with their reply to ensure the accuracy of alert information and the completeness of early warning notification to further improve the healthcare quality. In the end, with the testing results and performance evaluation of our implemented system prototype, we conclude that it is possible to set up a complete intelligent healt care chain with mobile monitoring and healthcare service via the assistance of our system.
NASA Astrophysics Data System (ADS)
Wiesmann, William P.; Pranger, L. Alex; Bogucki, Mary S.
1998-05-01
Remote monitoring of physiologic data from individual high- risk workers distributed over time and space is a considerable challenge. This is often due to an inadequate capability to accurately integrate large amounts of data into usable information in real time. In this report, we have used the vertical and horizontal organization of the 'fireground' as a framework to design a distributed network of sensors. In this system, sensor output is linked through a hierarchical object oriented programing process to accurately interpret physiological data, incorporate these data into a synchronous model and relay processed data, trends and predictions to members of the fire incident command structure. There are several unique aspects to this approach. The first includes a process to account for variability in vital parameter values for each individual's normal physiologic response by including an adaptive network in each data process. This information is used by the model in an iterative process to baseline a 'normal' physiologic response to a given stress for each individual and to detect deviations that indicate dysfunction or a significant insult. The second unique capability of the system orders the information for each user including the subject, local company officers, medical personnel and the incident commanders. Information can be retrieved and used for training exercises and after action analysis. Finally this system can easily be adapted to existing communication and processing links along with incorporating the best parts of current models through the use of object oriented programming techniques. These modern software techniques are well suited to handling multiple data processes independently over time in a distributed network.
Suzuki, Misaki; Tse, Susanna; Hirai, Midori; Kurebayashi, Yoichi
2017-05-09
Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3 -oxopropanenitrile) is an oral Janus kinase inhibitor that is approved in countries including Japan and the United States for the treatment of rheumatoid arthritis, and is being developed across the globe for the treatment of inflammatory diseases. In the present study, a physiologically-based pharmacokinetic model was applied to compare the pharmacokinetics of tofacitinib in Japanese and Caucasians to assess the potential impact of ethnicity on the dosing regimen in the two populations. Simulated plasma concentration profiles and pharmacokinetic parameters, i.e. maximum concentration and area under plasma concentration-time curve, in Japanese and Caucasian populations after single or multiple doses of 1 to 30 mg tofacitinib were in agreement with clinically observed data. The similarity in simulated exposure between Japanese and Caucasian populations supports the currently approved dosing regimen in Japan and the United States, where there is no recommendation for dose adjustment according to race. Simulated results for single (1 to 100 mg) or multiple doses (5 mg twice daily) of tofacitinib in extensive and poor metabolizers of CYP2C19, an enzyme which has been shown to contribute in part to tofacitinib elimination and is known to exhibit higher frequency in Japanese compared to Caucasians, were also in support of no recommendation for dose adjustment in CYP2C19 poor metabolizers. This study demonstrated a successful application of physiologically-based pharmacokinetic modeling in evaluating ethnic sensitivity in pharmacokinetics at early stages of development, presenting its potential value as an efficient and scientific method for optimal dose setting in the Japanese population.
SUZUKI, MISAKI; TSE, SUSANNA; HIRAI, MIDORI; KUREBAYASHI, YOICHI
2016-01-01
Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3 -oxopropanenitrile) is an oral Janus kinase inhibitor that is approved in countries including Japan and the United States for the treatment of rheumatoid arthritis, and is being developed across the globe for the treatment of inflammatory diseases. In the present study, a physiologically-based pharmacokinetic model was applied to compare the pharmacokinetics of tofacitinib in Japanese and Caucasians to assess the potential impact of ethnicity on the dosing regimen in the two populations. Simulated plasma concentration profiles and pharmacokinetic parameters, i.e. maximum concentration and area under plasma concentration-time curve, in Japanese and Caucasian populations after single or multiple doses of 1 to 30 mg tofacitinib were in agreement with clinically observed data. The similarity in simulated exposure between Japanese and Caucasian populations supports the currently approved dosing regimen in Japan and the United States, where there is no recommendation for dose adjustment according to race. Simulated results for single (1 to 100 mg) or multiple doses (5 mg twice daily) of tofacitinib in extensive and poor metabolizers of CYP2C19, an enzyme which has been shown to contribute in part to tofacitinib elimination and is known to exhibit higher frequency in Japanese compared to Caucasians, were also in support of no recommendation for dose adjustment in CYP2C19 poor metabolizers. This study demonstrated a successful application of physiologically-based pharmacokinetic modeling in evaluating ethnic sensitivity in pharmacokinetics at early stages of development, presenting its potential value as an efficient and scientific method for optimal dose setting in the Japanese population. PMID:28490712
Physiological impacts of elevated carbon dioxide and ocean acidification on fish.
Heuer, Rachael M; Grosell, Martin
2014-11-01
Most fish studied to date efficiently compensate for a hypercapnic acid-base disturbance; however, many recent studies examining the effects of ocean acidification on fish have documented impacts at CO2 levels predicted to occur before the end of this century. Notable impacts on neurosensory and behavioral endpoints, otolith growth, mitochondrial function, and metabolic rate demonstrate an unexpected sensitivity to current-day and near-future CO2 levels. Most explanations for these effects seem to center on increases in Pco2 and HCO3- that occur in the body during pH compensation for acid-base balance; however, few studies have measured these parameters at environmentally relevant CO2 levels or directly related them to reported negative endpoints. This compensatory response is well documented, but noted variation in dynamic regulation of acid-base transport pathways across species, exposure levels, and exposure duration suggests that multiple strategies may be utilized to cope with hypercapnia. Understanding this regulation and changes in ion gradients in extracellular and intracellular compartments during CO2 exposure could provide a basis for predicting sensitivity and explaining interspecies variation. Based on analysis of the existing literature, the present review presents a clear message that ocean acidification may cause significant effects on fish across multiple physiological systems, suggesting that pH compensation does not necessarily confer tolerance as downstream consequences and tradeoffs occur. It remains difficult to assess if acclimation responses during abrupt CO2 exposures will translate to fitness impacts over longer timescales. Nonetheless, identifying mechanisms and processes that may be subject to selective pressure could be one of many important components of assessing adaptive capacity. Copyright © 2014 the American Physiological Society.
Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.; ...
2015-01-01
Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO 2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range betweenmore » 18.7-23.7, 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m 2m -2) compared to Y1&2 cohorts (LAI 0.67 m 2m -2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.« less
NASA Technical Reports Server (NTRS)
Pace, N.
1973-01-01
Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.
Pape, Hans-Christoph; Lefering, Rolf; Butcher, Nerida; Peitzman, Andrew; Leenen, Luke; Marzi, Ingo; Lichte, Philip; Josten, Christoph; Bouillon, Bertil; Schmucker, Uli; Stahel, Philip; Giannoudis, Peter; Balogh, Zsolt
2014-11-01
The nomenclature for patients with multiple injuries with high mortality rates is highly variable, and there is a lack of a uniform definition of the term polytrauma. A consensus process was therefore initiated by a panel of international experts with the goal of assessing an improved, database-supported definition for the polytraumatized patient. The consensus process involved the following: RESULTS: A total of 28,211 patients in the trauma registry met the inclusion criteria. The mean (SD) age of the study cohort was 42.9 (20.2) years (72% males, 28% females). The mean (SD) ISS was 30.5 (12.2), with an overall mortality rate of 18.7% (n = 5,277) and an incidence of 3% of penetrating injuries (n = 886). Five independent physiologic variables were identified, and their individual cutoff values were calculated based on a set mortality rate of 30%: hypotension (systolic blood pressure ≤ 90 mm Hg), level of consciousness (Glasgow Coma Scale [GCS] score ≤ 8), acidosis (base excess ≤ -6.0), coagulopathy (international normalized ratio ≥ 1.4/partial thromboplastin time ≥ 40 seconds), and age (≥70 years). Based on several consensus meetings and a database analysis, the expert panel proposes the following parameters for a definition of "polytrauma": significant injuries of three or more points in two or more different anatomic AIS regions in conjunction with one or more additional variables from the five physiologic parameters. Further validation of this proposal should occur, favorably by mutivariate analyses of these parameters in a separate data set.
Effects of dietary history on energy metabolism and physiological parameters in C57BL/6J mice.
Hoevenaars, Femke P M; Keijer, Jaap; Swarts, Hans J; Snaas-Alders, Sophie; Bekkenkamp-Grovenstein, Melissa; van Schothorst, Evert M
2013-05-01
Understanding body weight regulation is essential to fight obesity. Mouse studies, using different types of diets, showed conflicting results in terms of body weight persistence after changing from an ad libitum high-fat diet to an ad libitum low-fat diet. In this study, we questioned specifically whether the energy content of the diet has a lasting effect on energy balance and body weight, using multiple switches and two purified diets with a different fat-to-sugar ratio, but otherwise identical ingredients. Young-adult obesity-prone male C57BL/6J mice were fed single or double switches of semi-purified diets with either 10 energy % (en%) fat (LF) or 40en% fat (HF), with starch replaced by fat, while protein content remained equal. After none, one or two dietary changes, energy metabolism was assessed at 5, 14 and 19 weeks. We observed no systematic continuous compensation in diet and energy intake when returning to LF after HF consumption. Body weight, white adipose tissue mass and histology, serum metabolic parameters, energy expenditure and substrate usage all significantly reflected the current diet intake, independent of dietary changes. This contrasts with studies that used diets with different ingredients and showed persistent effects of dietary history on body weight, suggesting diet-dependent metabolic set points. We conclude that body weight and metabolic parameters 'settle', based on current energetic input and output. This study also highlights the importance of considering the choice of diet in physiological and metabolic intervention studies.
2015-01-01
Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831
Barton, Hugh A; Chiu, Weihsueh A; Setzer, R Woodrow; Andersen, Melvin E; Bailer, A John; Bois, Frédéric Y; Dewoskin, Robert S; Hays, Sean; Johanson, Gunnar; Jones, Nancy; Loizou, George; Macphail, Robert C; Portier, Christopher J; Spendiff, Martin; Tan, Yu-Mei
2007-10-01
Physiologically based pharmacokinetic (PBPK) models are used in mode-of-action based risk and safety assessments to estimate internal dosimetry in animals and humans. When used in risk assessment, these models can provide a basis for extrapolating between species, doses, and exposure routes or for justifying nondefault values for uncertainty factors. Characterization of uncertainty and variability is increasingly recognized as important for risk assessment; this represents a continuing challenge for both PBPK modelers and users. Current practices show significant progress in specifying deterministic biological models and nondeterministic (often statistical) models, estimating parameters using diverse data sets from multiple sources, using them to make predictions, and characterizing uncertainty and variability of model parameters and predictions. The International Workshop on Uncertainty and Variability in PBPK Models, held 31 Oct-2 Nov 2006, identified the state-of-the-science, needed changes in practice and implementation, and research priorities. For the short term, these include (1) multidisciplinary teams to integrate deterministic and nondeterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through improved documentation of model structure(s), parameter values, sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include (1) theoretical and practical methodological improvements for nondeterministic/statistical modeling; (2) better methods for evaluating alternative model structures; (3) peer-reviewed databases of parameters and covariates, and their distributions; (4) expanded coverage of PBPK models across chemicals with different properties; and (5) training and reference materials, such as cases studies, bibliographies/glossaries, model repositories, and enhanced software. The multidisciplinary dialogue initiated by this Workshop will foster the collaboration, research, data collection, and training necessary to make characterizing uncertainty and variability a standard practice in PBPK modeling and risk assessment.
Lee, Peter; Yan, Ping; Ewart, Paul; Kohl, Peter
2012-01-01
Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electro-physiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart. PMID:22886365
Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert
2016-08-01
Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.
Network feedback regulates motor output across a range of modulatory neuron activity.
Spencer, Robert M; Blitz, Dawn M
2016-06-01
Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. Copyright © 2016 the American Physiological Society.
Heart rate reactivity associated to positive and negative food and non-food visual stimuli.
Kuoppa, Pekka; Tarvainen, Mika P; Karhunen, Leila; Narvainen, Johanna
2016-08-01
Using food as a stimuli is known to cause multiple psychophysiological reactions. Heart rate variability (HRV) is common tool for assessing physiological reactions in autonomic nervous system. However, the findings in HRV related to food stimuli have not been consistent. In this paper the quick changes in HRV related to positive and negative food and non-food visual stimuli are investigated. Electrocardiogram (ECG) was measured from 18 healthy females while being stimulated with the pictures. Subjects also filled Three-Factor Eating Questionnaire to determine their eating behavior. The inter-beat-interval time series and the HRV parameters were extracted from the ECG. The quick change in HRV parameters were studied by calculating the change from baseline value (10 s window before stimulus) to value after the onset of the stimulus (10 s window during stimulus). The paired t-test showed significant difference between positive and negative food pictures but not between positive and negative non-food pictures. All the HRV parameters decreased for positive food pictures while they stayed the same or increased a little for negative food pictures. The eating behavior characteristic cognitive restraint was negatively correlated with HRV parameters that describe decreasing of heart rate.
The Comparison of Some Physical and Physiological Parameters of Footballers
ERIC Educational Resources Information Center
Ekinci, Ezgi Samar; Beyleroglu, Malik; Ulukan, Hasan; Konuklar, Ercan; Gürkan, Alper Cenk; Erbay, Adem
2016-01-01
In this study, it's to aim for comparison of some physical and physiological parameters of footballers at "The Erenler Sport Team" and "Didim Municipality Sport Team". Thirty volunteers sportsman from each two teams joined to this research. It measured the values of age, weight, length, flexibility, balance, power of left-right…
Physiological Information Database (PID)
EPA has developed a physiological information database (created using Microsoft ACCESS) intended to be used in PBPK modeling. The database contains physiological parameter values for humans from early childhood through senescence as well as similar data for laboratory animal spec...
Drilling force and temperature of bone under dry and physiological drilling conditions
NASA Astrophysics Data System (ADS)
Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong
2014-11-01
Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.
Greenslade, Jaimi H; Beamish, Daniel; Parsonage, William; Hawkins, Tracey; Schluter, Jessica; Dalton, Emily; Parker, Kate; Than, Martin; Hammett, Christopher; Lamanna, Arvin; Cullen, Louise
2016-01-01
The investigators of this study sought to examine whether abnormal physiological parameters are associated with increased risk for acute coronary syndrome (ACS) in patients presenting to the emergency department (ED) with chest pain. We used prospectively collected data on adult patients presenting with suspected ACS in 2 EDs in Australia and New Zealand. Trained research nurses collected physiological data including temperature, respiratory rate, heart rate, and systolic blood pressure (SBP) on presentation to the ED. The primary endpoint was ACS within 30 days of presentation, as adjudicated by cardiologists using standardized guidelines. The prognostic utility of physiological parameters for ACS was examined using risk ratios. Acute coronary syndrome was diagnosed in 384 of the 1951 patients (20%) recruited. Compared with patients whose SBP was between 100 and 140 mm Hg, patients with an SBP of lower than 100 mm Hg or higher than 140 mm Hg were 1.4 times (95% confidence interval, 1.2-1.7) more likely to have ACS. Similarly, compared with patients whose temperature was between 36.5°C and 37.5°C, patients with temperature of lower than 36.5°C or higher than 37.5°C were 1.4 times (95% confidence interval, 1.1-1.6) more likely to have ACS. Heart rate and respiratory rate were not predictors of ACS. Patients with abnormal temperature or SBP were slightly more likely to have ACS, but such risk was of too small a magnitude to be useful in clinical decision making. Other physiological parameters (heart rate and respiratory rate) had no prognostic value. The use of physiological parameters cannot reliably confirm or rule out ACS.
ERIC Educational Resources Information Center
Kibble, Jonathan D.; Johnson, Teresa
2011-01-01
The purpose of this study was to evaluate whether multiple-choice item difficulty could be predicted either by a subjective judgment by the question author or by applying a learning taxonomy to the items. Eight physiology faculty members teaching an upper-level undergraduate human physiology course consented to participate in the study. The…
Gunderson, Alex R; Armstrong, Eric J; Stillman, Jonathon H
2016-01-01
Abiotic conditions (e.g., temperature and pH) fluctuate through time in most marine environments, sometimes passing intensity thresholds that induce physiological stress. Depending on habitat and season, the peak intensity of different abiotic stressors can occur in or out of phase with one another. Thus, some organisms are exposed to multiple stressors simultaneously, whereas others experience them sequentially. Understanding these physicochemical dynamics is critical because how organisms respond to multiple stressors depends on the magnitude and relative timing of each stressor. Here, we first discuss broad patterns of covariation between stressors in marine systems at various temporal scales. We then describe how these dynamics will influence physiological responses to multi-stressor exposures. Finally, we summarize how multi-stressor effects are currently assessed. We find that multi-stressor experiments have rarely incorporated naturalistic physicochemical variation into their designs, and emphasize the importance of doing so to make ecologically relevant inferences about physiological responses to global change.
Deo, Guru; Itagi R, Kumar; Thaiyar M, Srinivasan; Kuldeep, Kushwah K
2015-01-01
Mindfulness along with breathing is a well-established meditation technique. Breathing is an exquisite tool for exploring subtle awareness of mind and life itself. This study aimed at measuring changes in the different parameters of electrophotonic imaging (EPI) in anapanasati meditators. To carry out this study, 51 subjects comprising 32 males and 19 females of age 18 years and above (mean age 45.64 ± 14.43) were recruited voluntarily with informed consent attending Karnataka Dhyana Mahachakra-1 at Pyramid Valley International, Bengaluru, India. The design was a single group pre- post and data collected by EPI device before and after 5 days of intensive meditation. Results show significant changes in EPI parameter integral area with filter (physiological) in both right and left side, which reflects the availability of high functional energy reserve in meditators. The researchers observed similar trends without filter (psycho-physiological) indicating high reserves of energy at psycho-physiological level also. Activation coefficient, another parameter of EPI, reduced showing more relaxed state than earlier, possibly due to parasympathetic dominance. Integral entropy decreased in the case of psycho-physiological parameters left-side without filter, which indicates less disorder after meditation, but these changes were not significant. The study showed a reversed change in integral entropy in the right side without filter; however, the values on both sides with filter increased, which indicates disorder. The study suggests that EPI can be used in the recording functional physiological and psychophysiological status of meditators at a subtle level.
Kodera, Sachiko; Gomez-Tames, Jose; Hirata, Akimasa; Masuda, Hiroshi; Arima, Takuji; Watanabe, Soichi
2017-01-01
The rapid development of wireless technology has led to widespread concerns regarding adverse human health effects caused by exposure to electromagnetic fields. Temperature elevation in biological bodies is an important factor that can adversely affect health. A thermophysiological model is desired to quantify microwave (MW) induced temperature elevations. In this study, parameters related to thermophysiological responses for MW exposures were estimated using an electromagnetic-thermodynamics simulation technique. To the authors’ knowledge, this is the first study in which parameters related to regional cerebral blood flow in a rat model were extracted at a high degree of accuracy through experimental measurements for localized MW exposure at frequencies exceeding 6 GHz. The findings indicate that the improved modeling parameters yield computed results that match well with the measured quantities during and after exposure in rats. It is expected that the computational model will be helpful in estimating the temperature elevation in the rat brain at multiple observation points (that are difficult to measure simultaneously) and in explaining the physiological changes in the local cortex region. PMID:28358345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.
The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the developmentmore » and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.« less
Bach, Lennart T; Mackinder, Luke C M; Schulz, Kai G; Wheeler, Glen; Schroeder, Declan C; Brownlee, Colin; Riebesell, Ulf
2013-07-01
Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2 . However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2 , bicarbonate, carbonate and protons) on the physiological responses to elevated CO2 . Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2 . Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Using Infrared Thermography to Assess Emotional Responses to Infants.
Esposito, Gianluca; Nakazawa, Jun; Ogawa, Shota; Stival, Rita; Putnick, Diane L; Bornstein, Marc H
2015-01-01
Adult-infant interactions operate simultaneously across multiple domains and at multiple levels - from physiology to behavior. Unpackaging and understanding them, therefore, involves analysis of multiple data streams. In this study, we tested physiological responses and cognitive preferences for infant and adult faces in adult females and males. Infrared thermography was used to assess facial temperature changes as a measure of emotional valence, and we used a behavioral rating system to assess adults' expressed preferences. We found greater physiological activation in response to infant stimuli in females than males. As for cognitive preferences, we found greater responses to adult stimuli than to infant stimuli, both in males and females. The results are discuss in light of the Life History Theory. Finally, we discuss the importance of integrating the two data streams on our conclusions.
Andrew D. Richardson; David Y. Hollinger; David Y. Hollinger
2005-01-01
Whether the goal is to fill gaps in the flux record, or to extract physiological parameters from eddy covariance data, researchers are frequently interested in fitting simple models of ecosystem physiology to measured data. Presently, there is no consensus on the best models to use, or the ideal optimization criteria. We demonstrate that, given our estimates of the...
A mathematical model of physiological processes and its application to the study of aging
NASA Technical Reports Server (NTRS)
Hibbs, A. R.; Walford, R. L.
1989-01-01
The behavior of a physiological system which, after displacement, returns by homeostatic mechanisms to its original condition can be described by a simple differential equation in which the "recovery time" is a parameter. Two such systems, which influence one another, can be linked mathematically by the use of "coupling" or "feedback" coefficients. These concepts are the basis for many mathematical models of physiological behavior, and we describe the general nature of such models. Next, we introduce the concept of a "fatal limit" for the displacement of a physiological system, and show how measures of such limits can be included in mathematical models. We show how the numerical values of such limits depend on the values of other system parameters, i.e., recovery times and coupling coefficients, and suggest ways of measuring all these parameters experimentally, for example by monitoring changes induced by X-irradiation. Next, we discuss age-related changes in these parameters, and show how the parameters of mortality statistics, such as the famous Gompertz parameters, can be derived from experimentally measurable changes. Concepts of onset-of-aging, critical or fatal limits, equilibrium value (homeostasis), recovery times and coupling constants are involved. Illustrations are given using published data from mouse and rat populations. We believe that this method of deriving survival patterns from model that is experimentally testable is unique.
Cellular Immunosenescence in Adult Male Crickets, Gryllus assimilis
USDA-ARS?s Scientific Manuscript database
Ecological immunity studies in invertebrates, particularly insects, have generated new insights into trade-offs between immune functions and other physiological parameters. These studies document physiologically-directed reallocations of immune costs to other high-cost areas of physiology. Immunos...
Microbial dormancy improves development and experimental validation of ecosystem model
Wang, Gangsheng; Jagadamma, Sindhu; Mayes, Melanie; ...
2014-07-11
Climate feedbacks from soils can result from environmental change followed by response of plant and microbial communities, and/or associated changes in nutrient cycling. Explicit consideration of microbial life history traits and functions may be necessary to predict climate feedbacks due to changes in the physiology and community composition of microbes and their associated effect on carbon cycling. Here, we enhanced the Microbial-Enzyme-mediated Decomposition (MEND) model by incorporating microbial dormancy and the ability to track multiple isotopes of carbon. We tested two versions of MEND, i.e., MEND with dormancy and MEND without dormancy, against long-term (270 d) lab incubations of fourmore » soils with isotopically-labeled substrates. MEND without dormancy adequately fitted multiple observations (total and 14C respiration, and dissolved organic carbon), but at the cost of significantly underestimating the total microbial biomass. The MEND with dormancy improved estimates of microbial biomass by 20 71% over the MEND without dormancy. We observed large differences for two fitted model parameters, the specific maintenance and growth rates for active microbes, depending on whether dormancy was considered. Together our model extrapolations of the incubation study show that long-term soil incubations with observations in multiple carbon pools are necessary to estimate both decomposition and microbial parameters. These efforts should provide essential support to future field- and global-scale simulations and enable more confident predictions of feedbacks between environmental change and carbon cycling.« less
Consequences of not treating children with laron syndrome (primary growth hormone insensitivity).
Laron, Z
2001-01-01
The follow-up of a large cohort of patients with Laron syndrome (LS) from infancy to adult age has enabled us to determine the effects of long-term insulin-like growth factor-I (IGF-I) deficiency on auxological, biochemical, physiological and psychological parameters. We found that early and continuous IGF-I deficiency (the anabolic effector of growth hormone) causes dwarfism, acromicria, organomicria, marked obesity, insulin resistance, retardation of skeletal maturation and osteoporosis, as well as muscular and central nervous tissue underdevelopment, and a series of biochemical changes including hypercholesterolemia. These multiple pathologies impair the quality of life of these patients. It is concluded that patients with LS need IGF-I replacement treatment throughout life.
Lätt, Evelin; Jürimäe, Jaak; Haljaste, Kaja; Cicchella, Antonio; Purge, Priit; Jürimäe, Toivo
2009-02-01
The aim of the study was to examine the development of specific physical, physiological, and biomechanical parameters in 29 young male swimmers for whom measurements were made three times for two consecutive years. During the 400-m front-crawl swimming, the energy cost of swimming, and stroking parameters were assessed. Peak oxygen consumption (VO2 peak) was assessed by means of the backward-extrapolation technique recording VO2 during the first 20 sec. of recovery period after a maximal trial of 400-m distance. Swimming performance at different points of physical maturity was mainly related to the increases in body height and arm-span values from physical parameters, improvement in sport-specific VO2 peak value from physiological characteristics, and improvement in stroke indices on biomechanical parameters. In addition, biomechanical factors characterised best the 400-m swimming performance followed by physical and physiological factors during the 2-yr. study period for the young male swimmers.
[Physical rehabilitation in multiple sclerosis: general principles and high-tech approaches].
Peresedova, A V; Chernikova, L A; Zavalishin, I A
2013-01-01
In a chronic and disabling disease like multiple sclerosis, rehabilitation programs are of major importance for the preservation of physical, physiological, social and professional functioning and improvement of quality of life. Currently, it is generally assumed that physical activity is an important component of non-pharmacological rehabilitation in multiple sclerosis. Properly organized exercise is a safe and efficient way to induce improvements in a number of physiological functions. A multidisciplinary rehabilitative approach should be recommended. The main recommendations for the use of exercise for patients with multiple sclerosis have been listed. An important aspect of the modern physical rehabilitation in multiple sclerosis is the usage of high-tech methods. The published results of robot-assisted training to improve the hand function and walking impairment have been represented. An important trend in the rehabilitation of patients with multiple sclerosis is the reduction of postural disorders through training balance coordination. The role of transcranial magnetic stimulation in spasticity reducing is being investigated. The use of telemedicine capabilities is quite promising. Due to the fact that the decline in physical activity can lead to the deterioration of many aspects of physiological functions and, ultimately, to mobility decrease, further research of the role of physical rehabilitation as an important therapeutic approach in preventing the progression of disability in multiple sclerosis is required.
Nonlinear dynamics applied to the study of cardiovascular effects of stress
NASA Astrophysics Data System (ADS)
Anishchenko, T. G.; Igosheva, N. B.
1998-03-01
We study cardiovascular responses to emotional stresses in humans and rats using traditional physiological parameters and methods of nonlinear dynamics. We found that emotional stress results in significant changes of chaos degree of ECG and blood pressure signals, estimated using a normalized entropy. We demonstrate that the normalized entropy is a more sensitive indicator of the stress-induced changes in cardiovascular systems compared with traditional physiological parameters Using the normalized entropy we discovered the significant individual differences in cardiovascular stress-reactivity that was impossible to obtain by traditional physiological methods.
Pilot Workload Measurement and Experience on Supersonic Cruise Aircraft
NASA Technical Reports Server (NTRS)
Rezek, T. W.
1978-01-01
Aircraft parameters and physiological parameters most indicative of crew workload were investigated. Recommendations were used to form the basis for a continuing study in which variations of the interval between heart beats are used as a measure of nonphysical workload. Preliminary results are presented and current efforts in further defining this physiological measure are outlined.
USDA-ARS?s Scientific Manuscript database
To evaluate the effects infectious bovine rhinotracheitis virus (IBRV) has on immunological and physiological parameters of cattle; 12 Angus crossbred steers (228.82 ± 22.15 kg) were randomly assigned to either a Control group or an IBRV challenged group. Prior to the challenge, steers were fitted w...
ERIC Educational Resources Information Center
Lima, Mariely; Silva, Karine; Magalhaes, Ana; Amaral, Isabel; Pestana, Helena; de Sousa, Liliana
2012-01-01
Background: Sensory assessment of individuals with profound intellectual and multiple disabilities (PIMD) can be difficult for several reasons, including the idiosyncratic reactions that these individuals exhibit to environmental stimuli. This case report presents a combination of behavioural and physiological measurements aimed at providing an…
Functional Task Test: Data Review
NASA Technical Reports Server (NTRS)
Cromwell, Ronita
2014-01-01
After space flight there are changes in multiple physiological systems including: Cardiovascular function; Sensorimotor function; and Muscle function. How do changes in these physiological system impact astronaut functional performance?
A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL FOR LAKE TROUT (SALVELINUS NAMAYCUSH)
A physiologically based toxicokinetic (PB-TK) model for fish, incorporating chemical exchange at the gill and accumulation in five tissue compartments, was used to examine the effect of natural variability in physiological, morphological, and physico-chemical parameters on model ...
Climbing fibers predict movement kinematics and performance errors.
Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J
2017-09-01
Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each parameter. In contrast with the view that CSs carry feedback signals, the CSs are predominantly predictive of upcoming position errors and kinematics. Therefore, climbing fibers carry multiple and predictive signals for online motor control. Copyright © 2017 the American Physiological Society.
Physiological spacecraft environment data documentation
NASA Technical Reports Server (NTRS)
1977-01-01
The physiological limits of exposure to environmental parameters encountered during space flight was documented. The environmental limits which have been previously established were described in terms of acceptable physiological changes. The process of coordinating data and assembling the completed data book is described in this report.
NASA Technical Reports Server (NTRS)
Pfannenstiel, P.; Ottenbacher, M.; Inniss, A.; Ware, D.; Anderson, K.; Stranges, S.; Keith, K.; Cromwell, R.; Neigut. J.; Powell, D.
2012-01-01
The UTMB/NASA Flight Analog Research Unit is an inpatient unit with a bionutrition kitchen and unique testing areas for studying subjects subjected to 6 degree head-down complete bed rest for prolonged periods as an analog for zero gravity. Bed rest allows study of physiological changes and performance of functional tasks representative of critical interplanetary mission operations and measures of the efficacy of countermeasures designed to protect against the resulting deleterious effects. METHODS/STUDY POPULATION: Subjects are healthy adults 24-55 years old; 60 75 in tall; body mass index 18.5-30; and bone mineral density normal by DXA scan. Over 100 subjects have been studied in 7 campaigns since 2004. The iRAT countermeasure combines high intensity interval aerobic exercises on alternating days with continuous aerobic exercise. Resistance exercise is performed 3 days per week. Subjects are tested on an integrated suite of functional and interdisciplinary physiological tests before and after 70 days of total bed rest. RESULTS/ANTICIPATED RESULTS: It is anticipated that post-bed rest functional performance will be predicted by a weighted combination of sensorimotor, cardiovascular and muscle physiological factors. Control subjects who do not participate in the exercise countermeasure will have significantly greater decreases in these parameters. DISCUSSION/SIGNIFICANCE OF IMPACT: Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity, leading to disruption in the ability to perform functional tasks after reintroduction to a gravitational environment. Current flight exercise countermeasures are not fully protective of cardiovascular, muscle and bone health. There is a need to refine and optimize countermeasures to mitigate health risks associated with long-term space missions.
Özer, Nadiye; Karaman Özlü, Zeynep; Arslan, Sevban; Günes, Nezihat
2013-03-01
The aim of this study was to investigate the effect of listening to personal choice of music on self-report of pain intensity and the physiologic parameters in patients who have undergone open heart surgery. The study design was quasiexperimental. Patients were selected through convenience sampling in the Cardiovascular Surgery Intensive Care Unit at a university hospital. The study was conducted with a total of 87 patients who underwent open heart surgery: 44 in the music group, 43 in the control group, ages between 18 and 78 years. Through pretest-posttest design, postoperative first-day data were collected. First, physiologic parameters (blood pressure, heart rate, oxygen saturation, and respiratory rate) were recorded and a unidimensional verbal pain intensity scale applied to all participants. Later, the control group had a rest in their beds while the music group listened to their choice of music for 30 minutes. Physiologic data were then collected and the pain intensity scale applied once more. In the music group, there was a statistically significant increase in oxygen saturation (p = .001) and a lower pain score (p = .001) than in the control group. There was no difference between the groups in the other physiologic parameters. Results of this research provide evidence to support the use of music. Music might be a simple, safe, and effective method of reducing potentially harmful physiologic responses arising from pain in patients after open heart surgery. Copyright © 2013 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
Effect of anapanasati meditation technique through electrophotonic imaging parameters: A pilot study
Deo, Guru; Itagi R, Kumar; Thaiyar M, Srinivasan; Kuldeep, Kushwah K
2015-01-01
Background: Mindfulness along with breathing is a well-established meditation technique. Breathing is an exquisite tool for exploring subtle awareness of mind and life itself. Aim: This study aimed at measuring changes in the different parameters of electrophotonic imaging (EPI) in anapanasati meditators. Materials and Methods: To carry out this study, 51 subjects comprising 32 males and 19 females of age 18 years and above (mean age 45.64 ± 14.43) were recruited voluntarily with informed consent attending Karnataka Dhyana Mahachakra-1 at Pyramid Valley International, Bengaluru, India. The design was a single group pre- post and data collected by EPI device before and after 5 days of intensive meditation. Results: Results show significant changes in EPI parameter integral area with filter (physiological) in both right and left side, which reflects the availability of high functional energy reserve in meditators. The researchers observed similar trends without filter (psycho-physiological) indicating high reserves of energy at psycho-physiological level also. Activation coefficient, another parameter of EPI, reduced showing more relaxed state than earlier, possibly due to parasympathetic dominance. Integral entropy decreased in the case of psycho-physiological parameters left-side without filter, which indicates less disorder after meditation, but these changes were not significant. The study showed a reversed change in integral entropy in the right side without filter; however, the values on both sides with filter increased, which indicates disorder. Conclusion: The study suggests that EPI can be used in the recording functional physiological and psychophysiological status of meditators at a subtle level. PMID:26170590
Maas, Anne H; Rozendaal, Yvonne J W; van Pul, Carola; Hilbers, Peter A J; Cottaar, Ward J; Haak, Harm R; van Riel, Natal A W
2015-03-01
Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice environment incorporating the main factors that influence glycemic control: food, exercise, and medication. The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data points lie within an acceptance range of ±20% of the corresponding model value. All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters allows to describe heterogeneity in the data and shows the capabilities of this model for individualization. We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will form the basis of a simulator providing individualized education on glucose control. © 2014 Diabetes Technology Society.
Bogdan, Anna; Sudoł-Szopińska, Iwona; Luczak, Anna; Konarska, Maria; Pietrowski, Piotr
2012-01-01
This article proposes a method for a comprehensive assessment of the effect of integral motorcycle helmets on physiological and cognitive responses of motorcyclists. To verify the reliability of commonly used tests, we conducted experiments with 5 motorcyclists. We recorded changes in physiological parameters (heart rate, local skin temperature, core temperature, air temperature, relative humidity in the space between the helmet and the surface of the head, and the concentration of O(2) and CO(2) under the helmet) and in psychological parameters (motorcyclists' reflexes, fatigue, perceptiveness and mood). We also studied changes in the motorcyclists' subjective sensation of thermal comfort. The results made it possible to identify reliable parameters for assessing the effect of integral helmets on performance, i.e., physiological factors (head skin temperature, internal temperature and concentration of O(2) and CO(2) under the helmet) and on psychomotor factors (reaction time, attention and vigilance, work performance, concentration and a subjective feeling of mood and fatigue).
USDA-ARS?s Scientific Manuscript database
To evaluate the effects different doses of IBRV and the impact they have on immunological and physiological parameters of cattle, 18 Holstein steers (450.11 ± 75.70 kg) were randomly assigned to either a control group or 1 of 2 IBRV challenged groups. Prior to the challenge, steers were fitted with ...
A physiologically based pharmacokinetic (PBPK) model was developed to investigate exposure scenarios of children to carbaryl following turf application. Physiological, pharmacokinetic and pharmacodynamic parameters describing the fate and effects of carbaryl in rats were scaled ...
The capability of physiologically based pharmacokinetic models to incorporate age-appropriate physiological and chemical-specific parameters was utilized to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages of rats.
Physiological responses to environmental factors related to space flight
NASA Technical Reports Server (NTRS)
Pace, N.
1972-01-01
The research is reported for establishing physiological base line data, and for developing procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters. The work in the following areas is discussed: biochemistry, bioinstrumentation, nutrition, physiology, experimental surgery, and animal colony.
The physiology of spacecraft and space suit atmosphere selection
NASA Astrophysics Data System (ADS)
Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.
The majority of the environmental factors which comprise the spacecraft and space suit environments can be controlled at "Earth normal" values, at optimum values, or at other values decided upon by spacecraft designers. Factors which are considered in arriving at control values and control ranges of these parameters include physiological, engineering, operational cost, and safety considerations. Several of the physiologic considerations, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness are identified and their impact on space craft and space suit atmosphere selection are considered. The past experience in controlling these parameters in U.S. and Soviet spacecraft and space suits and the associated physiological responses are reviewed. Current areas of physiological investigation relating to environmental factors in spacecraft are discussed, particularly decompression sickness which can occur as a result of change in pressure from Earth to spacecraft or spacecraft to space suit. Physiological considerations for long-term lunar or Martian missions will have different impacts on atmosphere selection and may result in the selection of atmospheres different than those currently in use.
Özlü, Zeynep Karaman; Bilican, Pınar
2017-01-01
Surgical pain is experienced by inpatients with clinical, disease-related concerns, unknown encounters after surgery, quality of sleep, restrictions in position after surgery is known to be serious. The study was conducted to determine the effect of aromatherapy massage on quality of sleep and physiological parameters in surgical intensive care patients. This is an experimental study. The sample of this study consisted of 60 patients who were divided into two groups as experimental group and control group including 30 patients in each one. The participants were postoperative patients, absent complications, who were unconscious and extubated. A data collection form on personal characteristics of the patients, a registration form on their physical parameters and the Richards-Campbell Sleep Scale (RCSQ) were used to collect the data of the study. The Richards-Campbell Sleep Scale indicated that while the experimental group had a mean score of 53.80 ± 13.20, the control group had a mean score of 29.08 ± 9.71 and there was a statistically significant difference between mean scores of the groups. In a comparison of physiologic parameters, only diastolic blood pressure measuring between parameters in favor of an assembly as a statistically significant difference was detected. Results of the study showed that aromatherapy massage enhanced the sleep quality of patients in a surgical intensive care unit and resulted in some positive changes in their physiological parameters.
Özlü, Zeynep Karaman; Bilican, Pınar
2017-01-01
Background: Surgical pain is experienced by inpatients with clinical, disease-related concerns, unknown encounters after surgery, quality of sleep, restrictions in position after surgery is known to be serious. The study was conducted to determine the effect of aromatherapy massage on quality of sleep and physiological parameters in surgical intensive care patients. Materials and Methods: This is an experimental study. The sample of this study consisted of 60 patients who were divided into two groups as experimental group and control group including 30 patients in each one. The participants were postoperative patients, absent complications, who were unconscious and extubated. A data collection form on personal characteristics of the patients, a registration form on their physical parameters and the Richards-Campbell Sleep Scale (RCSQ) were used to collect the data of the study. Results: The Richards-Campbell Sleep Scale indicated that while the experimental group had a mean score of 53.80 ± 13.20, the control group had a mean score of 29.08 ± 9.71 and there was a statistically significant difference between mean scores of the groups. In a comparison of physiologic parameters, only diastolic blood pressure measuring between parameters in favor of an assembly as a statistically significant difference was detected. Conclusions: Results of the study showed that aromatherapy massage enhanced the sleep quality of patients in a surgical intensive care unit and resulted in some positive changes in their physiological parameters. PMID:28480419
Brown, Matthew S; Ashley, Brandon; Koh, Ahyeon
2018-01-01
Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress.
Brown, Matthew S.; Ashley, Brandon; Koh, Ahyeon
2018-01-01
Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress. PMID:29755977
Cherubini, Andrea; Caligiuri, Maria Eugenia; Peran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco
2016-09-01
This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.
NASA Astrophysics Data System (ADS)
Ozheredov, V. A.; Breus, T. K.; Gurfinkel, Yu. I.; Matveeva, T. A.
2014-12-01
A new approach to finding the dependence between heliophysical and meteorological factors and physiological parameters is considered that is based on the preliminary filtering of precedents (outliers). The sought-after dependence is masked by extraneous influences which cannot be taken into account. Therefore, the typically calculated correlation between the external-influence ( x) and physiology ( y) parameters is extremely low and does not allow their interdependence to be conclusively proved. A robust method for removing the precedents (outliers) from the database is proposed that is based on the intelligent sorting of the polynomial curves of possible dependences y( x), followed by filtering out the precedents which are far away from y( x) and optimizing the coefficient of nonlinear correlation between the regular, i.e., remaining, precedents. This optimization problem is shown to be a search for a maximum in the absence of the concept of gradient and requires the use of a genetic algorithm based on the Gray code. The relationships between the various medical and biological parameters and characteristics of the space and terrestrial weather are obtained and verified using the cross-validation method. It is proven that, by filtering out no more than 20% of precedents, it is possible to obtain a nonlinear correlation coefficient of no less than 0.5. A juxtaposition of the proposed method for filtering precedents (outliers) and the least-square method (LSM) for determining the optimal polynomial using multiple independent tests (Monte Carlo method) of models, which are as close as possible to real dependences, has shown that the LSM determination loses much in comparison to the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.; ...
2017-07-26
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
NASA Astrophysics Data System (ADS)
Quinn Thomas, R.; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; Gonzalez-Benecke, Carlos A.; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O.
2017-07-01
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.
Hongratanaworakit, T; Heuberger, E; Buchbauer, G
2004-01-01
The aim of the study was to investigate the effects of East Indian sandalwood oil ( Santalum album, Santalaceae) and alpha-santalol on physiological parameters as well as on mental and emotional conditions in healthy human subjects after transdermal absorption. In order to exclude any olfactory stimulation, the inhalation of the fragrances was prevented by breathing masks. Eight physiological parameters, i. e., blood oxygen saturation, blood pressure, breathing rate, eye-blink rate, pulse rate, skin conductance, skin temperature, and surface electromyogram were recorded. Subjective mental and emotional condition was assessed by means of rating scales. While alpha-santalol caused significant physiological changes which are interpreted in terms of a relaxing/sedative effect, sandalwood oil provoked physiological deactivation but behavioral activation. These findings are likely to represent an uncoupling of physiological and behavioral arousal processes by sandalwood oil.
Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.
2014-01-01
The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.
Herring, Garth; Eagles-Smith, Collin A; Gawlik, Dale E; Beerens, James M; Ackerman, Joshua T
2014-01-01
The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.
Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.
2014-01-01
The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks. PMID:25184221
Physiologically relevant organs on chips
Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.
2015-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624
Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro.
Dash, A; Simmers, M B; Deering, T G; Berry, D J; Feaver, R E; Hastings, N E; Pruett, T L; LeCluyse, E L; Blackman, B R; Wamhoff, B R
2013-06-01
In vitro primary hepatocyte systems typically elicit drug induction and toxicity responses at concentrations much higher than corresponding in vivo or clinical plasma C(max) levels, contributing to poor in vitro-in vivo correlations. This may be partly due to the absence of physiological parameters that maintain metabolic phenotype in vivo. We hypothesized that restoring hemodynamics and media transport would improve hepatocyte architecture and metabolic function in vitro compared with nonflow cultures. Rat hepatocytes were cultured for 2 wk either in nonflow collagen gel sandwiches with 48-h media changes or under controlled hemodynamics mimicking sinusoidal circulation within a perfused Transwell device. Phenotypic, functional, and metabolic parameters were assessed at multiple times. Hepatocytes in the devices exhibited polarized morphology, retention of differentiation markers [E-cadherin and hepatocyte nuclear factor-4α (HNF-4α)], the canalicular transporter [multidrug-resistant protein-2 (Mrp-2)], and significantly higher levels of liver function compared with nonflow cultures over 2 wk (albumin ~4-fold and urea ~5-fold). Gene expression of cytochrome P450 (CYP) enzymes was significantly higher (fold increase over nonflow: CYP1A1: 53.5 ± 10.3; CYP1A2: 64.0 ± 15.1; CYP2B1: 15.2 ± 2.9; CYP2B2: 2.7 ± 0.8; CYP3A2: 4.0 ± 1.4) and translated to significantly higher basal enzyme activity (device vs. nonflow: CYP1A: 6.26 ± 2.41 vs. 0.42 ± 0.015; CYP1B: 3.47 ± 1.66 vs. 0.4 ± 0.09; CYP3A: 11.65 ± 4.70 vs. 2.43 ± 0.56) while retaining inducibility by 3-methylcholanthrene and dexamethasone (fold increase over DMSO: CYP1A = 27.33 and CYP3A = 4.94). These responses were observed at concentrations closer to plasma levels documented in vivo in rats. The retention of in vivo-like hepatocyte phenotype and metabolic function coupled with drug response at more physiological concentrations emphasizes the importance of restoring in vivo physiological transport parameters in vitro.
The capability of physiologically-based pharmacokinetic (PBPK) models to incorporate ageappropriate physiological and chemical-specific parameters was utilized in this study to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages o...
Risk-adjusted scoring systems in colorectal surgery.
Leung, Edmund; McArdle, Kirsten; Wong, Ling S
2011-01-01
Consequent to recent advances in surgical techniques and management, survival rate has increased substantially over the last 25 years, particularly in colorectal cancer patients. However, post-operative morbidity and mortality from colorectal cancer vary widely across the country. Therefore, standardised outcome measures are emphasised not only for professional accountability, but also for comparison between treatment units and regions. In a heterogeneous population, the use of crude mortality as an outcome measure for patients undergoing surgery is simply misleading. Meaningful comparisons, however, require accurate risk stratification of patients being analysed before conclusions can be reached regarding the outcomes recorded. Sub-specialised colorectal surgical units usually dedicated to more complex and high-risk operations. The need for accurate risk prediction is necessary in these units as both mortality and morbidity often are tools to justify the practice of high-risk surgery. The Acute Physiology And Chronic Health Evaluation (APACHE) is a system for classifying patients in the intensive care unit. However, APACHE score was considered too complex for general surgical use. The American Society of Anaesthesiologists (ASA) grade has been considered useful as an adjunct to informed consent and for monitoring surgical performance through time. ASA grade is simple but too subjective. The Physiological & Operative Severity Score for the enUmeration of Mortality and morbidity (POSSUM) and its variant Portsmouth POSSUM (P-POSSUM) were devised to predict outcomes in surgical patients in general, taking into account of the variables in the case-mix. POSSUM has two parts, which include assessment of physiological parameters and operative scores. There are 12 physiological parameters and 6 operative measures. The physiological parameters are taken at the time of surgery. Each physiological parameter or operative variable is sub-divided into three or four levels with an exponentially increasing score. However, POSSUM and P-POSSUM over-predict mortality in patients who have had colorectal surgery. Discrepancies in these models have led to the introduction of a specialty-specific POSSUM: the ColoRectal POSSUM (CR-POSSUM). CR-POSSUM only uses six physiological parameters and four operative measures for prediction of mortality. It is much simplified to allow ease of use. Copyright © 2010 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ku, Y. T.; Montgomery, L. D.; Wenzel, K. C.; Webbon, B. W.; Burks, J. S.
1999-01-01
Personal cooling systems are used to alleviate symptoms of multiple sclerosis and to prevent increased core temperature during daily activities. The objective of this study was to determine the thermal and physiologic responses of patients with multiple sclerosis to short-term maximal head and neck cooling. A Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used to cool the head and neck regions of 24 female and 26 male patients with multiple sclerosis in this study. The subjects, seated in an upright position at normal room temperature (approximately 22 degrees C), were cooled for 30 min by the liquid cooling garment, which was operated at its maximum cooling capacity. Oral, right, and left ear temperatures and cooling system parameters were logged manually every 5 min. Forearm, calf, chest, and rectal temperatures, heart rate, and respiration rate were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. This protocol was performed during the winter and summer to investigate the seasonal differences in the way patients with multiple sclerosis respond to head and neck cooling. No significant differences were found between the male and female subject group's mean rectal or oral temperature responses during any phase of the experiment. The mean oral temperature decreased significantly (P < 0.05) for both groups approximately 0.3 degrees C after 30 min of cooling and continued to decrease further (approximately 0.1-0.2 degrees C) for a period of approximately 15 min after removal of the cooling helmet. The mean rectal temperatures decreased significantly (P < 0.05) in both male and female subjects in the winter studies (approximately 0.2-0.3 degrees C) and for the male subjects during the summer test (approximately 0.2 degrees C). However, the rectal temperature of the female subjects did not change significantly during any phase of the summer test. These data indicate that head and neck cooling may, in general, be used to reduce the oral and body temperatures of both male and female patients with multiple sclerosis by the approximate amount needed for symptomatic relief as shown by other researchers. However, thermal response of patients with multiple sclerosis may be affected by gender and seasonal factors, which should be considered in the use of liquid cooling therapy.
NASA Astrophysics Data System (ADS)
Bauerle, William L.; Daniels, Alex B.; Barnard, David M.
2014-05-01
Sensitivity of carbon uptake and water use estimates to changes in physiology was determined with a coupled photosynthesis and stomatal conductance ( g s) model, linked to canopy microclimate with a spatially explicit scheme (MAESTRA). The sensitivity analyses were conducted over the range of intraspecific physiology parameter variation observed for Acer rubrum L. and temperate hardwood C3 (C3) vegetation across the following climate conditions: carbon dioxide concentration 200-700 ppm, photosynthetically active radiation 50-2,000 μmol m-2 s-1, air temperature 5-40 °C, relative humidity 5-95 %, and wind speed at the top of the canopy 1-10 m s-1. Five key physiological inputs [quantum yield of electron transport ( α), minimum stomatal conductance ( g 0), stomatal sensitivity to the marginal water cost of carbon gain ( g 1), maximum rate of electron transport ( J max), and maximum carboxylation rate of Rubisco ( V cmax)] changed carbon and water flux estimates ≥15 % in response to climate gradients; variation in α, J max, and V cmax input resulted in up to ~50 and 82 % intraspecific and C3 photosynthesis estimate output differences respectively. Transpiration estimates were affected up to ~46 and 147 % by differences in intraspecific and C3 g 1 and g 0 values—two parameters previously overlooked in modeling land-atmosphere carbon and water exchange. We show that a variable environment, within a canopy or along a climate gradient, changes the spatial parameter effects of g 0, g 1, α, J max, and V cmax in photosynthesis- g s models. Since variation in physiology parameter input effects are dependent on climate, this approach can be used to assess the geographical importance of key physiology model inputs when estimating large scale carbon and water exchange.
NASA Technical Reports Server (NTRS)
Myers, J. G.; Eke, Chika; Werner, C.; Nelson, E. S.; Mulugeta, L.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.
2016-01-01
Space flight impacts human physiology in many ways, the most immediate being the marked cephalad (headward) shift of fluid upon introduction into the microgravity environment. This physiological response to microgravity points to the redistribution of blood and interstitial fluid as a major factor in the loss of venous tone and reduction in heart muscle efficiency which impact astronaut performance. In addition, researchers have hypothesized that a reduction in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, is associated with this redistribution of fluid. VIIP arises within several months of beginning space flight and includes a variety of ophthalmic changes including posterior globe flattening, distension of the optic nerve sheath, and kinking of the optic nerve. We utilize a suite of lumped parameter models to simulate microgravity-induced fluid redistribution in the cardiovascular, central nervous and ocular systems to provide initial and boundary data to a 3D finite element simulation of ocular biomechanics in VIIP. Specifically, the lumped parameter cardiovascular model acts as the primary means of establishing how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. The cardiovascular model consists of 16 compartments, including three cerebrospinal fluid (CSF) compartments, three cranial blood compartments, and 10 thoracic and lower limb blood compartments. To assess the models capability to address variations in physiological parameters, we completed a formal uncertainty and sensitivity analysis that evaluated the relative importance of 42 input parameters required in the model on relative compartment flows and compartment pressures. Utilizing the model in a pulsatile flow configuration, the sensitivity analysis identified the ten parameters that most influenced each compartment pressure. Generally, each compartment responded appropriately to parameter variations associated with itself and adjacent compartments. However, several unexpected interactions between components, such as between the choroid plexus and the lower capillaries, were found, and are due to simplifications in the formulation of the model. The analysis illustrates that highly influential parameters and those that have unique influences within the model formulation must be tightly controlled for successful model application.
Lätt, Evelin; Jürimäe, Jaak; Mäestu, Jarek; Purge, Priit; Rämson, Raul; Haljaste, Kaja; Keskinen, Kari L; Rodriguez, Ferran A; Jürimäe, Toivo
2010-01-01
The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (ΔLa). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. Key pointsThis study investigated the influence of different anthropometrical, physiological and biomechanical parameters on 100-m swimming performance in adolescent boys.Biomechanical factors contributed most to sprint swimming performance in these young male swimmers (90.3% of variability in performance), followed by anthropometrical (45.8%) and physiological (45.2%) parameters.Two selected variables (stroke index and stroke rate) explained 92.6% of the variance in competitive performance in these adolescent swimmers.
Lätt, Evelin; Jürimäe, Jaak; Mäestu, Jarek; Purge, Priit; Rämson, Raul; Haljaste, Kaja; Keskinen, Kari L.; Rodriguez, Ferran A.; Jürimäe, Toivo
2010-01-01
The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (ΔLa). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. Key points This study investigated the influence of different anthropometrical, physiological and biomechanical parameters on 100-m swimming performance in adolescent boys. Biomechanical factors contributed most to sprint swimming performance in these young male swimmers (90.3% of variability in performance), followed by anthropometrical (45.8%) and physiological (45.2%) parameters. Two selected variables (stroke index and stroke rate) explained 92.6% of the variance in competitive performance in these adolescent swimmers. PMID:24149633
Sibeaux, Adélaïde; Michel, Catherine Louise; Bonnet, Xavier; Caron, Sébastien; Fournière, Kévin; Gagno, Stephane; Ballouard, Jean-Marie
2016-01-01
Physiological parameters provide indicators to evaluate how organisms respond to conservation actions. For example, individuals translocated during reinforcement programmes may not adapt to their novel host environment and may exhibit elevated chronic levels of stress hormones and/or decreasing body condition. Conversely, successful conservation actions should be associated with a lack of detrimental physiological perturbation. However, physiological references fluctuate over time and are influenced by various factors (e.g. sex, age, reproductive status). It is therefore necessary to determine the range of natural variations of the selected physiological metrics to establish useful baselines. This study focuses on endangered free-ranging Hermann's tortoises ( Testudo hermanni hermanni ), where conservation actions have been preconized to prevent extinction of French mainland populations. The influence of sex and of environmental factors (site, year and season) on eight physiological parameters (e.g. body condition, corticosterone concentrations) was assessed in 82 individuals from two populations living in different habitats. Daily displacements were monitored by radio-tracking. Most parameters varied between years and seasons and exhibited contrasting sex patterns but with no or limited effect of site. By combining behavioural and physiological traits, this study provides sex-specific seasonal baselines that can be used to monitor the health status of Hermann's tortoises facing environmental threats (e.g. habitat changes) or during conservation actions (e.g. translocation). These results might also assist in selection of the appropriate season for translocation.
ERIC Educational Resources Information Center
Turner, Samuel M.; And Others
1986-01-01
Nonclinic socially anxious individuals, clinic socially anxious patients, and nonsocially anxious subjects were assessed for changes in patterns of physiological reactivity and cognition across three interpersonal tasks. Results indicated that both thoughts and physiological reactivity were influenced by situational parameters. (Author/ABB)
Physiological parameter values in greyhounds before and after high-intensity exercise.
Pellegrino, Francisco Javier; Risso, Analía; Vaquero, Pablo G; Corrada, Yanina A
2018-01-01
Dog sports competitions have greatly expanded. The availability of reference values for each type of activity could help assess fitness accurately. Heart rate (HR), blood lactate (BL) and rectal temperature (RT) are relevant physiological parameters to determine the dogs response to effort. Previous studies in greyhounds have reported the effect of high-intensity exercise on many physiological parameters immediately after completing different racing distances and recovery times. However, there are no studies concerning physiological changes over shorter racing distances. We therefore assessed the effect of sprint exercise on HR, BL and RT in nine greyhounds performing sprint exercise over a 100-m distance chasing a lure. After the exercise, dogs underwent a passive 10-min recovery phase. Before the exercise, immediately after it and at 5 and 10 min during recovery, HR and RT were assessed and blood samples were collected for BL determination. HR, BL and RT values increased significantly after the exercise (P<0.01). Whereas HR returned to pre-exercise values at 10 min during the recovery phase (P>0.1), BL concentration and RT remained increased (P<0.01). The abrupt increase in HR, BL and RT values observed immediately after the exercise indicates the high intensity of the effort performed. Similarly, BL concentration after the exercise exceeded the 4 mmol/L lactate threshold, suggesting a predominant anaerobic metabolism during effort. Although HR returned to pre-exercise values 10 min after the exercise, a more extensive recovery phase would be necessary for a total return to resting values, particularly for BL and RT. In greyhounds subjected to high-intensity exercise, HR, BL and RT were reliable physiological parameters to accurately assess the physiological response to effort. The use of sprint exercises over short racing distances could be useful for appropriately monitoring fitness in sporting dogs.
Seifert, Georg; Calaminus, Gabriele; Wiener, Andreas; Cysarz, Dirk
2014-01-01
Background Quality of life (QoL), being the sum expression of diverse influencing factors, is not easy to determine. A clinically relevant option would be to identify and measure quality of life on the basis of physiological parameters which correlate plausibly and statistically with psychometrically measured QoL. Analysis of heart rate variability (HRV) offers readily measurable physiological parameters which could be of use here. A correlation of HRV with both course of disease and QoL has been reported in patients with chronic illness. Various psychometric instruments have been developed for use in paediatric oncology. The aim of this study was to obtain data on HRV and QoL and their correlations, initially in healthy children. Methods Holter ECG and quality of life were examined in 160 children and adolescents (72 male) aged between 8 and 18 years. QoL was determined with the established questionnaire PEDQoL. Standard parameters of HRV from the frequency domain were calculated and correlated with QoL domains using Spearman (nonparametric) correlation analysis. Results Minor but significant associations were revealed only with regard to the PEDQoL domain “autonomy” on the one hand and heart rate and HRV (e.g. MRR, MRRn, MRRd, HRV_ULF, SDNN) parameters which evidently reflect distinct physiological functions on the other. Conclusions In healthy children and adolescents we have a first indication that there is a correlation between parameters of HRV and QoL. However, to a greater extent, HRV reflects associated physiological processes of the autonomic nervous system. A higher correlation is more likely to be found in chronically ill children. PMID:24625571
Medical student attitudes toward kidney physiology and nephrology: a qualitative study.
Roberts, John K; Sparks, Matthew A; Lehrich, Ruediger W
2016-11-01
Interest in nephrology among trainees is waning in the USA. Early perceptions and attitudes to subject matter can be linked to the quality of pre-clinical curricula. We wanted to explore these attitudes in the setting of modern curriculum redesign. We utilized Q methodology to understand first-year medical student attitudes after an innovative kidney physiology curriculum redesign that focuses on blending multiple learning methods. First-year medical students were invited to take a Q sort survey at the conclusion of a kidney physiology course. Students prioritized statements related to their understanding of kidney physiology, learning preferences, preferred course characteristics, perceived clinical relevance of kidney physiology, and interest in nephrology as a career. Factor analysis was performed to identify different student viewpoints. At the conclusion of our modified course, all students (n = 108) were invited to take the survey and 44 (41%) Q sorts were returned. Two dominant viewpoints were defined according to interest in nephrology. The Potentials are students who understand kidney physiology, perceive kidney physiology as clinically relevant, attend class sessions, utilize videos, and are willing to shadow a nephrologist. The Uninterested are students who are less satisfied with their kidney physiology knowledge, prefer to study alone with a textbook, avoid lectures, and are not interested in learning about nephrology. In an updated renal physiology course, students that use multiple learning methods also have favorable attitudes toward learning kidney physiology. Thus, modern curriculum changes that accommodate a variety of learning styles may promote positive attitudes toward nephrology.
Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C
2014-11-01
The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.
Abdul-Hamid, Hazandy; Mencuccini, Maurizio
2009-01-01
Forest growth is an important factor both economically and ecologically, and it follows a predictable trend with age. Generally, growth accelerates as canopies develop in young forests and declines substantially soon after maximum leaf area is attained. The causes of this decline are multiple and may be linked to age- or size-related processes, or both. Our objective was to determine the relative effects of tree age and tree size on the physiological attributes of two broadleaf species. As age and size are normally coupled during growth, an approach based on grafting techniques to separate the effects of size from those of age was adopted. Genetically identical grafted seedlings were produced from scions taken from trees of four age classes, ranging from 4 to 162 years. We found that leaf-level net photosynthetic rate per unit of leaf mass and some other leaf structural and biochemical characteristics had decreased substantially with increasing size of the donor trees in the field, whereas other gas exchange parameters expressed on a leaf area basis did not. In contrast, these parameters remained almost constant in grafted seedlings, i.e., scions taken from donor trees with different meristematic ages show no age-related trend after they were grafted onto young rootstocks. In general, the results suggested that size-related limitations triggered the declines in photosynthate production and tree growth, whereas less evidence was found to support a role of meristematic age.
Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm
2014-10-15
Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl(-) and KATP K(+) ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450-1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above -20 mV. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Multiscale digital Arabidopsis predicts individual organ and whole-organism growth.
Chew, Yin Hoon; Wenden, Bénédicte; Flis, Anna; Mengin, Virginie; Taylor, Jasper; Davey, Christopher L; Tindal, Christopher; Thomas, Howard; Ougham, Helen J; de Reffye, Philippe; Stitt, Mark; Williams, Mathew; Muetzelfeldt, Robert; Halliday, Karen J; Millar, Andrew J
2014-09-30
Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.
Lu, Jingtao; Goldsmith, Michael-Rock; Grulke, Christopher M; Chang, Daniel T; Brooks, Raina D; Leonard, Jeremy A; Phillips, Martin B; Hypes, Ethan D; Fair, Matthew J; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C; Tan, Yu-Mei
2016-02-01
Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals.
Grulke, Christopher M.; Chang, Daniel T.; Brooks, Raina D.; Leonard, Jeremy A.; Phillips, Martin B.; Hypes, Ethan D.; Fair, Matthew J.; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C.; Tan, Yu-Mei
2016-01-01
Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals. PMID:26871706
Albert, Loren P; Wu, Jin; Prohaska, Neill; de Camargo, Plinio Barbosa; Huxman, Travis E; Tribuzy, Edgard S; Ivanov, Valeriy Y; Oliveira, Rafael S; Garcia, Sabrina; Smith, Marielle N; Oliveira Junior, Raimundo Cosme; Restrepo-Coupe, Natalia; da Silva, Rodrigo; Stark, Scott C; Martins, Giordane A; Penha, Deliane V; Saleska, Scott R
2018-03-04
Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Loren P.; Wu, Jin; Prohaska, Neill
Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured age-dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used this data to independently test the much-debated hypothesis—arising from satellite and tower-based observations—that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branchesmore » had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. In conclusion, interaction between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.« less
Vivodtzev, Isabelle; Gagnon, Philippe; Pepin, Véronique; Saey, Didier; Laviolette, Louis; Brouillard, Cynthia; Maltais, François
2011-01-01
Rationale The endurance time (Tend) during constant-workrate cycling exercise (CET) is highly variable in COPD. We investigated pulmonary and physiological variables that may contribute to these variations in Tend. Methods Ninety-two patients with COPD completed a CET performed at 80% of peak workrate capacity (Wpeak). Patients were divided into tertiles of Tend [Group 1: <4 min; Group 2: 4–6 min; Group 3: >6 min]. Disease severity (FEV1), aerobic fitness (Wpeak, peak oxygen consumption [ peak], ventilatory threshold [ VT]), quadriceps strength (MVC), symptom scores at the end of CET and exercise intensity during CET (heart rate at the end of CET to heart rate at peak incremental exercise ratio [HRCET/HRpeak]) were analyzed as potential variables influencing Tend. Results Wpeak, peak, VT, MVC, leg fatigue at end of CET, and HRCET/HRpeak were lower in group 1 than in group 2 or 3 (p≤0.05). VT and leg fatigue at end of CET independently predicted Tend in multiple regression analysis (r = 0.50, p = 0.001). Conclusion Tend was independently related to the aerobic fitness and to tolerance to leg fatigue at the end of exercise. A large fraction of the variability in Tend was not explained by the physiological parameters assessed in the present study. Individualization of exercise intensity during CET should help in reducing variations in Tend among patients with COPD. PMID:21386991
Albert, Loren P.; Wu, Jin; Prohaska, Neill; ...
2018-03-04
Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured age-dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used this data to independently test the much-debated hypothesis—arising from satellite and tower-based observations—that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branchesmore » had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. In conclusion, interaction between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.« less
ERIC Educational Resources Information Center
Tas, Murat; Sinanoglu, Ahmet
2017-01-01
In the research it was aimed to examine the effects of basic table tennis trainings, which were implemented on girls aged 10-12 for 16 weeks, on certain physical and physiological parameters. A total of 40 students, as randomly selected 20 test groups and 20 control groups at an age range of 10-12 participated in the research. These students were…
Freschet, Grégoire T; Violle, Cyrille; Bourget, Malo Y; Scherer-Lorenzen, Michael; Fort, Florian
2018-06-01
Plants respond to resource stress by changing multiple aspects of their biomass allocation, morphology, physiology and architecture. To date, we lack an integrated view of the relative importance of these plastic responses in alleviating resource stress and of the consistency/variability of these responses among species. We subjected nine species (legumes, forbs and graminoids) to nitrogen and/or light shortages and measured 11 above-ground and below-ground trait adjustments critical in the alleviation of these stresses (plus several underlying traits). Nine traits out of 11 showed adjustments that improved plants' potential capacity to acquire the limiting resource at a given time. Above ground, aspects of plasticity in allocation, morphology, physiology and architecture all appeared important in improving light capture, whereas below ground, plasticity in allocation and physiology were most critical to improving nitrogen acquisition. Six traits out of 11 showed substantial heterogeneity in species plasticity, with little structuration of these differences within trait covariation syndromes. Such comprehensive assessment of the complex nature of phenotypic responses of plants to multiple stress factors, and the comparison of plant responses across multiple species, makes a clear case for the high (but largely overlooked) diversity of potential plastic responses of plants, and for the need to explore the potential rules structuring them. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Stratford, Trisha; Meara, Alan; Psychotherapy, M Gestalt; Lal, Sara
2014-08-01
This exploratory study was designed to investigate the link between a client's heart rate variability (HRV) and the forming of a therapeutic alliance (TA) during psychotherapy. Change in HRV is associated with many psychological and physiological situations, including cardiac mortality. Cardiac effects were evaluated during therapy in 30 symptomatically anxious clients using HRV during six weekly 1-hour therapy sessions (S1-S6). Therapeutic index (TI), a measure of TA, was evaluated using skin conductance resonance between client and therapist. The Working Alliance Inventory provides a subjective measure of TA. State and trait anxiety and mood states were also assessed. Most HRV parameters were highest during S4. The sympathovagal balance was highest in S1 but stabilized after S2. In S4, TI was linked to high HRV parameters. Overall higher anxiety levels seem to be associated to lower HRV parameters. Conversely, in S4, high HRV parameters were linked to higher mood scores. This study found that a subjective measure of TA contradicted the physiological outcome. Results suggest that physiological data collected during therapy are a more accurate barometer of TA forming. These research findings suggest a need for further research identifying physiological markers in clients with a variety of mental health disorders over long-term therapy.
Correlations of psycho-physiological parameters influencing the physical fitness of aged women.
Bretz, É; Kóbor-Nyakas, D É; Bretz, K J; Hrehuss, N; Radák, Z; Nyakas, Csaba
2014-12-01
Regular assessment of psycho-physiological parameters in aged subjects helps to clarify physical and mental conditions which are important in the prevention of health-endangering events to assure a healthy aging. Thirty older care female residents consented voluntarily to participate in the study. The somatic and psycho-physiological parameters recorded were handgrip force, disjunctive reaction time, balance control and whole body movement coordination, the electrocardiogram and heart rate variability. Significant correlations were found between (a) reaction time and balance control efficiency (r = -0.567, p < 0.009), (b) reaction time and movement coordination accuracy (r = -0.453, p < 0.045), (c) cardiac state and movement coordination accuracy (r = 0.545, p < 0.016), (d) cardiac stress and cardiac state (r = -0.495, p < 0.031), and (e) cardiac stress and force (r = -0.822, p < 0.045). In conclusion, for the aim of establishing basic battery tests for assessing psycho-physiological condition of physical fitness our results emphasize the importance of systematic physical activity, endurance and strength training supporting muscle force, balance control and whole-body movement coordination, in addition to improving the cardiac stress index level. The strong interrelation among these parameters allows the drawing of a more complete view regarding the health condition of aged individuals.
Arts, Johanna W M; Kramer, Klaas; Arndt, Saskia S; Ohl, Frauke
2012-01-01
Transportation of laboratory rodents unavoidably causes stress. Nevertheless, very little is known about the effects of transportation and how long it takes for the animal to recuperate. In the present study, we investigated physiological and behavioral parameters before and after transportation in both transported and nontransported animals. We took blood samples to analyze plasma corticosterone and creatine kinase, and performed physiological measurements by means of telemetry, measuring heart rate, blood pressure, and activity. Behavior was measured by means of home cage observations. This study revealed that plasma corticosterone levels increased at least up to 16 days after transportation, blood pressure and heart rate showed a lasting decrease after transportation, grooming increased, and social interactions and locomotor activity decreased after transportation. With these data we demonstrate that there is a long-lasting effect of transportation on physiological and behavioral parameters. Our results show that the stressful impact of transportation embraces all parts of the procedure, including for example the packing of the animals. Researchers must be aware of this impact and provide a sufficient acclimatization period to allow for the (re-)stabilization of parameters. Insufficient acclimatization periods endanger not only the reliability of research results but also the welfare of the animal used.
Characterizing Uncertainty and Variability in PBPK Models ...
Mode-of-action based risk and safety assessments can rely upon tissue dosimetry estimates in animals and humans obtained from physiologically-based pharmacokinetic (PBPK) modeling. However, risk assessment also increasingly requires characterization of uncertainty and variability; such characterization for PBPK model predictions represents a continuing challenge to both modelers and users. Current practices show significant progress in specifying deterministic biological models and the non-deterministic (often statistical) models, estimating their parameters using diverse data sets from multiple sources, and using them to make predictions and characterize uncertainty and variability. The International Workshop on Uncertainty and Variability in PBPK Models, held Oct 31-Nov 2, 2006, sought to identify the state-of-the-science in this area and recommend priorities for research and changes in practice and implementation. For the short term, these include: (1) multidisciplinary teams to integrate deterministic and non-deterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through more complete documentation of the model structure(s) and parameter values, the results of sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include: (1) theoretic and practical methodological impro
NASA Technical Reports Server (NTRS)
Skidmore, M.
1999-01-01
The Sensors 2000! Program, in support of the Space Life Sciences Payloads Office at NASA Ames Research Center developed a suite of bioinstrumentation hardware for use on the Joint US/Russian Bion I I Biosatellite Mission (December 24, 1996 - January 7, 1997). This spaceflight included 20 separate experiments that were organized into a complimentary and interrelated whole, and performed by teams of US, Russian, and French investigators. Over 40 separate parameters were recorded in-flight on both analog and digital recording media for later analysis. These parameters included; Electromyogram (7 ch), Electrogastrogram, Electrooculogram (2 ch), ECG/EKG, Electroencephlogram (2 ch), single fiber firing of Neurovestibular afferent nerves (7 ch), Tendon Force, Head Motion Velocity (pitch & yaw), P02 (in vivo & ambient), temperature (deep body, skin, & ambient), and multiple animal and spacecraft performance parameters for a total of 45 channels of recorded data. Building on the close cooperation of previous missions, US and Russian engineers jointly developed, integrated, and tested the physiologic instrumentation and data recording system. For the first time US developed hardware replaced elements of the Russian systems resulting in a US/Russian hybrid instrumentation and data system that functioned flawlessly during the 14 day mission.
Meluzín, J; Podroužková, H; Gregorová, Z; Panovský, R
2013-05-01
The purpose of this summary paper is to discuss the current knowledge of the impact of age on diastolic function of the left ventricle. Data from the literature: Reports published till this time have convincingly demonstrated a significant relationship of age to diastolic function of the left ventricle. Ageing is a physiological process accompanied by structural changes in both myocardium and arterial bed resulting in worsening of parameters characterizing the left ventricular diastolic function. This "physiological" diastolic dysfunction in the elderly subjects can be explained by the deterioration of passive left ventricular filling properties and by worsening of left ventricular relaxation. The detailed analysis of published reports shows problems in distiguishing this "physiological" diastolic dysfunction resulting from physiological tissue ageing from "pathological" diastolic dysfunction reflecting a disease of cardiovascular system. To interprete correctly values of parameters quantifying diastolic function of the left ventricle, one should take into account the age of subjects under the examination. Further studies are necessary to distinguish exactly "physiological" deterioration of diastolic function associated with ageing from really "pathological" diastolic dysfunction in the elderly subjects.
DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology
NASA Technical Reports Server (NTRS)
Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.
2010-01-01
Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA
Physiologically relevant organs on chips.
Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P
2014-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo
2016-01-01
The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ozkan, Ozhan; Yildiz, Murat; Arslan, Evren; Yildiz, Sedat; Bilgin, Suleyman; Akkus, Selami; Koyuncuoglu, Hasan R; Koklukaya, Etem
2016-03-01
Fibromyalgia syndrome (FMS), usually observed commonly in females over age 30, is a rheumatic disease accompanied by extensive chronic pain. In the diagnosis of the disease non-objective psychological tests and physiological tests and laboratory test results are evaluated and clinical experiences stand out. However, these tests are insufficient in differentiating FMS with similar diseases that demonstrate symptoms of extensive pain. Thus, objective tests that would help the diagnosis are needed. This study analyzes the effect of sympathetic skin response (SSR) parameters on the auxiliary tests used in FMS diagnosis, the laboratory tests and physiological tests. The study was conducted in Suleyman Demirel University, Faculty of Medicine, Physical Medicine and Rehabilitation Clinic in Turkey with 60 patients diagnosed with FMS for the first time and a control group of 30 healthy individuals. In the study all participants underwent laboratory tests (blood tests), certain physiological tests (pulsation, skin temperature, respiration) and SSR measurements. The test data and SSR parameters obtained were classified using artificial neural network (ANN). Finally, in the ANN framework, where only laboratory and physiological test results were used as input, a simulation result of 96.51 % was obtained, which demonstrated diagnostic accuracy. This data, with the addition of SSR parameter values obtained increased to 97.67 %. This result including SSR parameters - meaning a higher diagnostic accuracy - demonstrated that SSR could be a new auxillary diagnostic method that could be used in the diagnosis of FMS.
Reintrepreting the cardiovascular system as a mechanical model
NASA Astrophysics Data System (ADS)
Lemos, Diogo; Machado, José; Minas, Graça; Soares, Filomena; Barros, Carla; Leão, Celina Pinto
2013-10-01
The simulation of the different physiological systems is very useful as a pedagogical tool, allowing a better understanding of the mechanisms and the functions of the processes. The observation of the physiological phenomena through mechanical simulators represents a great asset. Furthermore, the development of these simulators allows reinterpreting physiological systems, with the advantage of using the same transducers and sensors that are commonly used in diagnostic and therapeutic cardiovascular procedures for the monitoring of system' parameters. The cardiovascular system is one of the most important systems of the human body and has been the target of several biomedical studies. The present work describes a mechanical simulation of the cardiovascular system, in particularly, the systemic circulation, which can be described in terms of its hemodynamic variables. From the mechanical process and parameters, physiological system's behavior was reproduced, as accurately as possible.
Yao, Lei; Gohel, Mayur D I; Li, Yi; Chung, Waiyee J
2011-07-01
Clothing is considered the second skin of the human body. The aim of this study was to determine clothing-wearer interaction on skin physiology under mild cold conditions. Skin physiological parameters, subjective sensory response, stress level, and physical properties of clothing fabric from two longitude parallel-designed wear trials were studied. The wear trials involved four kinds of pajamas made from cotton or polyester material that had hydrophilic or hydrophobic treatment, conducted for three weeks under mild cold conditions. Statistical tools, factor analysis, hierarchical linear regression, and logistic regression were applied to analyze the strong predictors of skin physiological parameters, stress level, and sensory response. A framework was established to illustrate clothing-wearer interactions with clothing fabric properties, skin physiology, stress level, and sensory response under mild cold conditions. Fabric has various effects on the human body under mild cold conditions. A fabric's properties influence skin physiology, sensation, and psychological response. © 2011 The International Society of Dermatology.
Physiological responses to hypothermia.
Wood, Thomas; Thoresen, Marianne
2015-04-01
Therapeutic hypothermia is the only treatment currently recommended for moderate or severe encephalopathy of hypoxic‒ischaemic origin in term neonates. Though the effects of hypothermia on human physiology have been explored for many decades, much of the data comes from animal or adult studies; the latter originally after accidental hypothermia, followed by application of controlled hypothermia after cardiac arrest or trauma, or during cardiopulmonary bypass. Though this work is informative, the effects of hypothermia on neonatal physiology after perinatal asphyxia must be considered in the context of a prolonged hypoxic insult that has already induced a number of significant physiological sequelae. This article reviews the effects of therapeutic hypothermia on respiratory, cardiovascular, and metabolic parameters, including glycaemic control and feeding requirements. The potential pitfalls of blood‒gas analysis and overtreatment of physiological changes in cardiovascular parameters are also discussed. Finally, the effects of hypothermia on drug metabolism are covered, focusing on how the pharmacokinetics, pharmacodynamics, and dosing requirements of drugs frequently used in neonatal intensive care may change during therapeutic hypothermia. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Quadriparametric Model to Describe the Diversity of Waves Applied to Hormonal Data.
Abdullah, Saman; Bouchard, Thomas; Klich, Amna; Leiva, Rene; Pyper, Cecilia; Genolini, Christophe; Subtil, Fabien; Iwaz, Jean; Ecochard, René
2018-05-01
Even in normally cycling women, hormone level shapes may widely vary between cycles and between women. Over decades, finding ways to characterize and compare cycle hormone waves was difficult and most solutions, in particular polynomials or splines, do not correspond to physiologically meaningful parameters. We present an original concept to characterize most hormone waves with only two parameters. The modelling attempt considered pregnanediol-3-alpha-glucuronide (PDG) and luteinising hormone (LH) levels in 266 cycles (with ultrasound-identified ovulation day) in 99 normally fertile women aged 18 to 45. The study searched for a convenient wave description process and carried out an extended search for the best fitting density distribution. The highly flexible beta-binomial distribution offered the best fit of most hormone waves and required only two readily available and understandable wave parameters: location and scale. In bell-shaped waves (e.g., PDG curves), early peaks may be fitted with a low location parameter and a low scale parameter; plateau shapes are obtained with higher scale parameters. I-shaped, J-shaped, and U-shaped waves (sometimes the shapes of LH curves) may be fitted with high scale parameter and, respectively, low, high, and medium location parameter. These location and scale parameters will be later correlated with feminine physiological events. Our results demonstrate that, with unimodal waves, complex methods (e.g., functional mixed effects models using smoothing splines, second-order growth mixture models, or functional principal-component- based methods) may be avoided. The use, application, and, especially, result interpretation of four-parameter analyses might be advantageous within the context of feminine physiological events. Schattauer GmbH.
Cooper, A J; Swaminath, S; Baxter, D; Poulin, C
1990-05-01
A 20 year old female pedophile exhibiting multiple paraphilias and who had been both a victim of incest and an active participant, undertook extensive clinical, psychometric, endocrine and laboratory sexual arousal studies. Her psychiatric, psychometric and physiologic arousal profiles showed similarities to those of a sizable proportion of male child molesters, especially incestors. It is suggested that laboratory arousal tests (using the vaginal photoplethysmograph) may have a role in the assessment of some female sex offenders.
Telemetry methods for monitoring physiological parameters
NASA Technical Reports Server (NTRS)
Fryer, T. B.; Sandler, H.
1982-01-01
The use of telemetry to monitor various physiological functions is discussed. The advantages of the technique and the parameters that it can monitor are assessed, and the main telemetry systems, including pressure telemetry, flow telemetry, and multichannel telemetry, are detailed. Human applications of implanted flow transducers, total implant versus backpack telemetry, the use of power sources and integrated circuits in telemetry, and the future prospects of the technique in hypertension treatment and research are discussed.
ERIC Educational Resources Information Center
Mayda, Muhammet Hakan; Karakoc, Onder; Ozdal, Mustafa
2016-01-01
It was pointed to analyze some physical, physiological and anthropometric parameters of visually impaired and non-impaired A National male judoka in this study. A total of 14 volunteer A National male judoka, of which 8 were visually impaired (age: 25.12 ± 3.75, disability status: 20-200) and 6 were not visually impaired (age: 21.50 ± 1.51),…
Bio-logging of physiological parameters in higher marine vertebrates
NASA Astrophysics Data System (ADS)
Ponganis, Paul J.
2007-02-01
Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.
Kruger, Tillmann H C; Deiter, Frank; Zhang, Yuanyuan; Jung, Stefanie; Schippert, Cordula; Kahl, Kai G; Heinrichs, Markus; Schedlowski, Manfred; Hartmann, Uwe
2018-06-01
The neuropeptide oxytocin (OXT) has a variety of physiological functions in maternal behavior and attachment including sexual behavior. Based on animal research and our previous human studies, we set out to investigate intranasal administration of OXT and hypothesized that OXT should be able to modulate sexual function in women. In a double-blind, placebo-controlled, crossover laboratory setting, the acute effects of intranasal administered OXT (24 international units) on sexual drive, arousal, orgasm, and refractory aspects of sexual behavior were analyzed in 27 healthy females (mean age ± SD, 27.52 ± 8.04) together with physiological parameters using vaginal photoplethysmography. Oxytocin administration showed no effect on subjective sexual parameters (eg, postorgasmic tension; P = 0.051). Physiological parameters (vaginal photoplethysmography amplitude and vaginal blood volume) showed a response pattern towards sexual arousal but were not affected by OXT. Using a well-established laboratory paradigm, we did not find that intranasal OXT influences female sexual parameters. Also, sexual drive and other functions were not affected by OXT. These findings indicate that OXT is not able to significantly increase subjective and objective parameters of sexual function in a setting with high internal validity; however, this might be different in a more naturalistic setting.
NASA Astrophysics Data System (ADS)
Zhang, Kun; Ma, Jinzhu; Zhu, Gaofeng; Ma, Ting; Han, Tuo; Feng, Li Li
2017-01-01
Global and regional estimates of daily evapotranspiration are essential to our understanding of the hydrologic cycle and climate change. In this study, we selected the radiation-based Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) model and assessed it at a daily time scale by using 44 flux towers. These towers distributed in a wide range of ecological systems: croplands, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grasslands, mixed forests, savannas, and shrublands. A regional land surface evapotranspiration model with a relatively simple structure, the PT-JPL model largely uses ecophysiologically-based formulation and parameters to relate potential evapotranspiration to actual evapotranspiration. The results using the original model indicate that the model always overestimates evapotranspiration in arid regions. This likely results from the misrepresentation of water limitation and energy partition in the model. By analyzing physiological processes and determining the sensitive parameters, we identified a series of parameter sets that can increase model performance. The model with optimized parameters showed better performance (R2 = 0.2-0.87; Nash-Sutcliffe efficiency (NSE) = 0.1-0.87) at each site than the original model (R2 = 0.19-0.87; NSE = -12.14-0.85). The results of the optimization indicated that the parameter β (water control of soil evaporation) was much lower in arid regions than in relatively humid regions. Furthermore, the optimized value of parameter m1 (plant control of canopy transpiration) was mostly between 1 to 1.3, slightly lower than the original value. Also, the optimized parameter Topt correlated well to the actual environmental temperature at each site. We suggest that using optimized parameters with the PT-JPL model could provide an efficient way to improve the model performance.
Kim, Song Soo; Lee, Ho Yun; Nevrekar, Dipti V.; Forssen, Anna V.; Crapo, James D.; Schroeder, Joyce D.; Lynch, David A.
2013-01-01
Purpose: To provide a new detailed visual assessment scheme of computed tomography (CT) for chronic obstructive pulmonary disease (COPD) by using standard reference images and to compare this visual assessment method with quantitative CT and several physiologic parameters. Materials and Methods: This research was approved by the institutional review board of each institution. CT images of 200 participants in the COPDGene study were evaluated. Four thoracic radiologists performed independent, lobar analysis of volumetric CT images for type (centrilobular, panlobular, and mixed) and extent (on a six-point scale) of emphysema, the presence of bronchiectasis, airway wall thickening, and tracheal abnormalities. Standard images for each finding, generated by two radiologists, were used for reference. The extent of emphysema, airway wall thickening, and luminal area were quantified at the lobar level by using commercial software. Spearman rank test and simple and multiple regression analyses were performed to compare the results of visual assessment with physiologic and quantitative parameters. Results: The type of emphysema, determined by four readers, showed good agreement (κ = 0.63). The extent of the emphysema in each lobe showed good agreement (mean weighted κ = 0.70) and correlated with findings at quantitative CT (r = 0.75), forced expiratory volume in 1 second (FEV1) (r = −0.68), FEV1/forced vital capacity (FVC) ratio (r = −0.74) (P < .001). Agreement for airway wall thickening was fair (mean κ = 0.41), and the number of lobes with thickened bronchial walls correlated with FEV1 (r = −0.60) and FEV1/FVC ratio (r = −0.60) (P < .001). Conclusion: Visual assessment of emphysema and airways disease in individuals with COPD can provide reproducible, physiologically substantial information that may complement that provided by quantitative CT assessment. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120385/-/DC1 PMID:23220894
ERIC Educational Resources Information Center
García-Vázquez, Francisco A.; Romar, Raquel; Gadea, Joaquín; Matás, Carmen; Coy, Pilar; Ruiz, Salvador
2018-01-01
Over recent decades, education has increasingly focused on student-centered learning. Guided practices represent a new way of learning for undergraduate students of physiology, whereby the students turn into teacher-students and become more deeply involved in the subject by preparing and teaching a practical (laboratory) class to their peers. The…
A multiple disk centrifugal pump as a blood flow device.
Miller, G E; Etter, B D; Dorsi, J M
1990-02-01
A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.
Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross
2015-02-01
Osteoarthritis (OA) is a complex disease of the joint for which current treatments are unsatisfactory, thus motivating development of tissue engineering (TE)-based therapies. To date, TE strategies have had some success, developing replacement tissue constructs with biochemical properties approaching that of native cartilage. However, poor biomechanical properties and limited postimplantation integration with surrounding tissue are major shortcomings that need to be addressed. Functional tissue engineering strategies that apply physiologically relevant biophysical cues provide a platform to improve TE constructs before implantation. In the previous decade, new experimental and theoretical findings in cartilage biomechanics and electromechanics have emerged, resulting in an increased understanding of the complex interplay of multiple biophysical cues in the extracellular matrix of the tissue. The effect of biophysical stimulation on cartilage, and the resulting chondrocyte-mediated biosynthesis, remodeling, degradation, and repair, has, therefore, been extensively explored by the TE community. This article compares and contrasts the cellular response of chondrocytes to multiple biophysical stimuli, and may be read in conjunction with its companion paper that compares and contrasts the subsequent intracellular signal transduction cascades. Mechanical, magnetic, and electrical stimuli promote proliferation, differentiation, and maturation of chondrocytes within established dose parameters or "biological windows." This knowledge will provide a framework for ongoing studies incorporating multiple biophysical cues in TE functional neocartilage for treatment of OA.
2009-09-01
physiologic mechanisms underlying experimental observations: a practical example☆ Sven Zenker, Andreas Hoeft Department of Anaesthesiology and...to describe experi - mental data (goodness of fit) and its complexity (number of parameters). Their use in macroscopic physiologic investigations...BSP, and BRS could either be identical or vary across interventions, resulting in models with 4 to 12 parameters. After digitizing the experimental data
Pasqualone, Antonella; Summo, Carmine; Centomani, Isabella; Lacolla, Giovanni; Caranfa, Gianraffaele; Cucci, Giovanna
2017-03-01
Several studies have evaluated the effects of composted sewage sludge on barley and found a positive influence on crop productivity. No studies have investigated the effects of composted sewage sludge on functional compounds of the caryopsis, such as phenolics and β-glucans. The former play a role in plant defence mechanisms and both could be influenced by variations of kernel size related to fertilization intensity. The present study aimed to evaluate the effect of different doses (3-12 mg ha -1 ) of composted sewage sludge applied alone or in combination with mineral fertilization on morpho-physiological and yield qualitative parameters, especially phenolics and β-glucans contents of grains, in barley. Increasing fertilization rates, irrespective of fertilizer type, improved morpho-physiological and yield parameters, whereas the phenolic compounds and the related antioxidant activity significantly decreased (P < 0.05). The β-glucans and the main color indices did not show significant differences. The combined application of 6 mg ha -1 sewage sludge and nitrogen was not significantly different from mineral fertilization. Morpho-physiological and qualitative parameters, as well as bioactive compounds, were all significantly correlated with nutrient levels, with higher r values for nitrogen. Composted sewage sludge had a similar effect compared to mineral fertilization. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Physiological assessment of tongue function in dysarthria following traumatic brain injury.
Goozée, J V; Murdoch, B E; Theodoros, D G
2001-01-01
A tongue pressure transducer system was used to assess tongue strength, endurance, fine pressure control and rate of repetitive movement in a group of 20 individuals, aged 17 to 60 years, with dysarthria following severe traumatic brain injury (TBI). Comparison of the TBI group's results against data obtained from a group of 20 age and sex matched control subjects revealed reductions in tongue endurance and rate of repetitive movement. Tongue strength and fine pressure control, however, were found not to differ significantly from the control group. Pearson's product-moment correlations indicated there to be only weak correlations between the physiological nonspeech tongue parameters and the deviant perceptual articulatory features exhibited by the TBI group. Further analysis of the results on an individual subject basis revealed no clear relationships between the physiological and perceptual parameters suggesting that the TBI subjects may have been compensating in different ways for the physiological impairments.
Lin, Tung-Cheng
2013-11-01
Online game playing may induce physiological effects. However, the physical mechanisms that cause these effects remain unclear. The purpose of this study was to examine the physiological effects of long-hour online gaming from an autonomic nervous system (ANS) perspective. Heart rate variability (HRV), a valid and noninvasive electrocardiographic method widely used to investigate ANS balance, was used to measure physiological effect parameters. This study used a five-time, repeated measures, mixed factorial design. Results found that playing violent games causes significantly higher sympathetic activity and diastolic blood pressure than playing nonviolent games. Long-hour online game playing resulted in the gradual dominance of the parasympathetic nervous system due to physical exhaustion. Gaming workload was found to modulate the gender effects, with males registering significantly higher sympathetic activity and females significantly higher parasympathetic activity in the higher gaming workload group.
An open-access microfluidic model for lung-specific functional studies at an air-liquid interface.
Nalayanda, Divya D; Puleo, Christopher; Fulton, William B; Sharpe, Leilani M; Wang, Tza-Huei; Abdullah, Fizan
2009-10-01
In an effort to improve the physiologic relevance of existing in vitro models for alveolar cells, we present a microfluidic platform which provides an air-interface in a dynamic system combining microfluidic and suspended membrane culture systems. Such a system provides the ability to manipulate multiple parameters on a single platform along with ease in cell seeding and manipulation. The current study presents a comparison of the efficacy of the hybrid system with conventional platforms using assays analyzing the maintenance of function and integrity of A549 alveolar epithelial cell monolayer cultures. The hybrid system incorporates bio-mimetic nourishment on the basal side of the epithelial cells along with an open system on the apical side of the cells exposed to air allowing for easy access for assays.
Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall
2012-01-01
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561
Datta, J K; Banerjee, A; Sikdar, M Saha; Gupta, S; Mondal, N K
2009-09-01
Field experiment was carried out during November 2006 to February 2007 under old alluvial soil to evaluate the impact of combined dose of chemical fertilizer, biofertilizer in combination with compost for the yellow sarson (Brassica campestries cv. B9) in a randomized block design replicated thrice. Various morpho-physiological parameters viz., plant population, length of shoot and root, leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), yield attributes viz., number of siliquae per plant, number of seeds/siliquae, 1000 seed weight (test weight), seed yield, stover yield and physiological and biochemical parameters viz., pigment content, sugar, amino acid, protein, ascorbic acid content in physiologically active leaf were performed. The treatment T1 i.e., 40% less N fertilizer 25% less P fertilizer K fertilizer constant + 12 kg ha(-1) biofertilizer (Azophos) and organic manure (compost) @ 5Mt ha(-1), showed the maximum chlorophyll accumulation (10. 231 mg g(-1) freshweight), highest seed/siliquae (25.143), test weight of seeds (4. 861g) and highest seed yield (10.661 tha(-1)). A comparison between all the morphological, anatomical, physiological and biochemical parameters due to application of chemical fertilizer; bio-fertilizer and compost alone and in combination and their impact on soil microorganism, flora and fauna will throw a sound environmental information.
Mining temporal data sets: hypoplastic left heart syndrome case study
NASA Astrophysics Data System (ADS)
Kusiak, Andrew; Caldarone, Christopher A.; Kelleher, Michael D.; Lamb, Fred S.; Persoon, Thomas J.; Gan, Yuan; Burns, Alex
2003-03-01
Hypoplastic left heart syndrome (HLHS) affects infants and is uniformly fatal without surgery. Post-surgery mortality rates are highly variable and dependent on postoperative management. The high mortality after the first stage surgery usually occurs within the first few days after procedure. Typically, the deaths are attributed to the unstable balance between the pulmonary and systemic circulations. An experienced team of physicians, nurses, and therapists is required to successfully manage the infant. However, even the most experienced teams report significant mortality due to the extremely complex relationships among physiologic parameters in a given patient. A data acquisition system was developed for the simultaneous collection of 73 physiologic, laboratory, and nurse-assessed variables. Data records were created at intervals of 30 seconds. An expert-validated wellness score was computed for each data record. A training data set consisting of over 5000 data records from multiple patients was collected. Preliminary results demonstratd that the knowledge discovery approach was over 94.57% accurate in predicting the "wellness score" of an infant. The discovered knowledge can improve care of complex patients by development of an intelligent simulator that can be used to support decisions.
Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes
Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo
2016-01-01
One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479
Modeling thermal sensation in a Mediterranean climate—a comparison of linear and ordinal models
NASA Astrophysics Data System (ADS)
Pantavou, Katerina; Lykoudis, Spyridon
2014-08-01
A simple thermo-physiological model of outdoor thermal sensation adjusted with psychological factors is developed aiming to predict thermal sensation in Mediterranean climates. Microclimatic measurements simultaneously with interviews on personal and psychological conditions were carried out in a square, a street canyon and a coastal location of the greater urban area of Athens, Greece. Multiple linear and ordinal regression were applied in order to estimate thermal sensation making allowance for all the recorded parameters or specific, empirically selected, subsets producing so-called extensive and empirical models, respectively. Meteorological, thermo-physiological and overall models - considering psychological factors as well - were developed. Predictions were improved when personal and psychological factors were taken into account as compared to meteorological models. The model based on ordinal regression reproduced extreme values of thermal sensation vote more adequately than the linear regression one, while the empirical model produced satisfactory results in relation to the extensive model. The effects of adaptation and expectation on thermal sensation vote were introduced in the models by means of the exposure time, season and preference related to air temperature and irradiation. The assessment of thermal sensation could be a useful criterion in decision making regarding public health, outdoor spaces planning and tourism.
Golman, Mikhail; Padovano, William; Shmuylovich, Leonid; Kovács, Sándor J
2018-03-01
Conventional echocardiographic diastolic function (DF) assessment approximates transmitral flow velocity contours (Doppler E-waves) as triangles, with peak (E peak ), acceleration time (AT), and deceleration time (DT) as indexes. These metrics have limited value because they are unable to characterize the underlying physiology. The parametrized diastolic filling (PDF) formalism provides a physiologic, kinematic mechanism based characterization of DF by extracting chamber stiffness (k), relaxation (c), and load (x o ) from E-wave contours. We derive the mathematical relationship between the PDF parameters and E peak , AT, DT and thereby introduce the geometric method (GM) that computes the PDF parameters using E peak , AT, and DT as input. Numerical experiments validated GM by analysis of 208 E-waves from 31 datasets spanning the full range of clinical diastolic function. GM yielded indistinguishable average parameter values per subject vs. the gold-standard PDF method (k: R 2 = 0.94, c: R 2 = 0.95, x o : R 2 = 0.95, p < 0.01 all parameters). Additionally, inter-rater reliability for GM-determined parameters was excellent (k: ICC = 0.956 c: ICC = 0.944, x o : ICC = 0.993). Results indicate that E-wave symmetry (AT/DT) may comprise a new index of DF. By employing indexes (E peak , AT, DT) that are already in standard clinical use the GM capitalizes on the power of the PDF method to quantify DF in terms of physiologic chamber properties.
A stochastic differential equation model of diurnal cortisol patterns
NASA Technical Reports Server (NTRS)
Brown, E. N.; Meehan, P. M.; Dempster, A. P.
2001-01-01
Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.
Rodgers, Cheryl C; Krance, Robert; Street, Richard L; Hockenberry, Marilyn J
2014-05-01
To examine symptom reports and physiologic parameters in adolescents using the Eating After Transplant (EAT!) intervention during recovery after hematopoietic stem cell transplantation (HSCT). Repeated measures design. HSCT service at a pediatric teaching institution in the southern United States. 16 adolescents recovering from a first-time allogeneic HSCT. Use of EAT! was monitored electronically, symptom reports were obtained from a questionnaire, and physiologic parameters were obtained from the medical record at HSCT hospital discharge and 20, 40, and 60 days postdischarge. EAT! use, symptom prevalence, symptom-related distress, and physiologic parameters including weight, body mass index (BMI), pre-albumin, and albumin. Symptom prevalence was highest at hospital discharge and steadily declined; however, mean symptom distress scores remained stable. Mean weight and BMI significantly declined during the first 60 days postdischarge; pre-albumin and albumin markers were unchanged. No correlation was noted among use of EAT! and any research variables. The most frequent symptoms were not always the most distressing symptoms. Weight and BMI significantly declined during HSCT recovery. Nurses should assess symptom frequency and distress to fully understand patients' symptom experiences. Nurses should monitor weight and BMI throughout HSCT recovery.
Physiological responses to environmental factors related to space flight
NASA Technical Reports Server (NTRS)
Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Mains, R. C.; Rahlmann, D. F.
1975-01-01
Physiological procedures and instrumentation developed for the measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are described along with the physiological response of monkeys to weightlessness. Specific areas examined include: cardiovascular studies; thyroid function; blood oxygen transport; growth and reproduction; excreta analysis for metabolic balance studies; and electrophoretic separation of creatine phosphokinase isoenzymes in human blood.
Physiological responses to daily light exposure
NASA Astrophysics Data System (ADS)
Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming
2016-04-01
Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.
Morrison, Thomas R.; Sikes, Robert W.; Melloni, Richard H.
2016-01-01
Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. To characterize the electrophysiological profile of the AAS aggression circuit, we recorded LAH neurons in adolescent male hamsters in vivo and microiontophoretically applied agonists and antagonists of aggressive behavior. The interspike interval (ISI) of neurons from AAS-treated animals correlated positively with aggressive behaviors, and adolescent AAS exposure altered parameters of activity in regular firing neurons while also changing the proportion of neuron types (i.e., bursting, regular, irregular). AAS treated animals had more responsive neurons that were excited by AVP application, while cells from control animals showed the opposite effect and were predominantly inhibited by AVP. Both DA D2 antagonists and 5HT increased the firing frequency of AVP responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure. PMID:26691962
Innovations and Improvements in Pharmacokinetic Models Based on Physiology.
Abbiati, Roberto Andrea; Manca, Davide
2017-01-01
Accompanied by significant improvements of modeling techniques and computational methods in medical sciences, the last thirty years saw the flourishing of pharmacokinetic models for applications in the pharmacometric field. In particular, physiologically based pharmacokinetic (PBPK) models, grounded on a mechanistic foundation, have been applied to explore a multiplicity of aspects with possible applications in patient care and new drugs development, as in the case of siRNA therapies. This article summarizes the features we recently introduced in PBPK modeling within a threeyear research project funded by Italian Research Ministry. Four major points are detailed: (i) the mathematical formulation of the model, which allows modulating its complexity as a function of the administration route and active principle; (ii) a dedicated parameter of the PBPK model quantifies the drugprotein binding, which affects the active principle distribution; (iii) the gall bladder compartment and the bile enterohepatic circulation process; (iv) the coupling of the pharmacokinetic and pharmacodynamic models to produce an overall understanding of the drug effects on mammalian body. The proposed model is applied to two separate endovenous (remifentanil) and oral (sorafenib) drug administrations. The resulting PBPK simulations are consistent with the literature experimental data. Blood concentration predictability is confirmed in multiple reference subjects. Furthermore, in case of sorafenib administration in mice, it is possible to evaluate the drug concentration in the liver and reproduce the effects of the enterohepatic circulation. Finally, a preliminary application of the coupling of the pharmacokinetic/pharmacodynamic models is presented and discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A multiplex culture system for the long‐term growth of fission yeast cells
Callens, Céline; Coelho, Nelson C.; Miller, Aaron W.; Sananes, Maria Rosa Domingo; Dunham, Maitreya J.; Denoual, Matthieu
2017-01-01
Abstract Maintenance of long‐term cultures of yeast cells is central to a broad range of investigations, from metabolic studies to laboratory evolution assays. However, repeated dilutions of batch cultures lead to variations in medium composition, with implications for cell physiology. In Saccharomyces cerevisiae, powerful miniaturized chemostat setups, or ministat arrays, have been shown to allow for constant dilution of multiple independent cultures. Here we set out to adapt these arrays for continuous culture of a morphologically and physiologically distinct yeast, the fission yeast Schizosaccharomyces pombe, with the goal of maintaining constant population density over time. First, we demonstrated that the original ministats are incompatible with growing fission yeast for more than a few generations, prompting us to modify different aspects of the system design. Next, we identified critical parameters for sustaining unbiased vegetative growth in these conditions. This requires deletion of the gsf2 flocculin‐encoding gene, along with addition of galactose to the medium and lowering of the culture temperature. Importantly, we improved the flexibility of the ministats by developing a piezo‐pump module for the independent regulation of the dilution rate of each culture. This made it possible to easily grow strains that have different generation times in the same assay. Our system therefore allows for maintaining multiple fission yeast cultures in exponential growth, adapting the dilution of each culture over time to keep constant population density for hundreds of generations. These multiplex culture systems open the door to a new range of long‐term experiments using this model organism. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:28426144
A highly scalable information system as extendable framework solution for medical R&D projects.
Holzmüller-Laue, Silke; Göde, Bernd; Stoll, Regina; Thurow, Kerstin
2009-01-01
For research projects in preventive medicine a flexible information management is needed that offers a free planning and documentation of project specific examinations. The system should allow a simple, preferably automated data acquisition from several distributed sources (e.g., mobile sensors, stationary diagnostic systems, questionnaires, manual inputs) as well as an effective data management, data use and analysis. An information system fulfilling these requirements has been developed at the Center for Life Science Automation (celisca). This system combines data of multiple investigations and multiple devices and displays them on a single screen. The integration of mobile sensor systems for comfortable, location-independent capture of time-based physiological parameter and the possibility of observation of these measurements directly by this system allow new scenarios. The web-based information system presented in this paper is configurable by user interfaces. It covers medical process descriptions, operative process data visualizations, a user-friendly process data processing, modern online interfaces (data bases, web services, XML) as well as a comfortable support of extended data analysis with third-party applications.
Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Reed, Erik; Cavanagh, Peter
2011-01-01
Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.
Adam, Stewart I; Srinet, Prateek; Aronberg, Ryan M; Rosenberg, Graeme; Leder, Steven B
2015-01-01
To investigate physiologic parameters, voice production abilities, and functional verbal communication ratings of the Blom low profile voice inner cannula and Passy-Muir one-way tracheotomy tube speaking valves. Case series with planned data collection. Large, urban, tertiary care teaching hospital. Referred sample of 30 consecutively enrolled adults requiring a tracheotomy tube and tested with Blom and Passy-Muir valves. Physiologic parameters recorded were oxygen saturation, respiration rate, and heart rate. Voice production abilities included maximum voice intensity in relation to ambient room noise and maximum phonation duration of the vowel/a/. Functional verbal communication was determined from randomized and blinded listener ratings of counting 1-10, saying the days of the week, and reading aloud the sentence, "There is according to legend a boiling pot of gold at one end." There were no significant differences (p>0.05) between the Blom and Passy-Muir valves for the physiologic parameters of oxygen saturation, respiration rate, and heart rate; voice production abilities of both maximum intensity and duration of/a/; and functional verbal communication ratings. Both valves allowed for significantly greater maximum voice intensity over ambient room noise (p<0.001). The Blom low profile voice inner cannula and Passy-Muir one-way speaking valves exhibited equipoise regarding patient physiologic parameters, voice production abilities, and functional verbal communication ratings. Readers will understand the importance of verbal communication for patients who require a tracheotomy tube; will be able to determine the differences between the Blom low profile voice inner cannula and Passy-Muir one-way tracheotomy tube speaking valves; and will be confident in knowing that both the Blom and Passy-Muir one-way tracheotomy tube speaking valves are equivalent regarding physiological functioning and speech production abilities. Copyright © 2015 Elsevier Inc. All rights reserved.
Ride comfort analysis with physiological parameters for an e-health train.
Lee, Youngbum; Shin, Kwangsoo; Lee, Sangjoon; Song, Yongsoo; Han, Sungho; Lee, Myoungho
2009-12-01
Transportation by train has numerous advantages over road transportation, especially with regard to energy efficiency, ecological features, safety, and punctuality. However, the contrast in ride comfort between standard road transportation and train travel has become a competitive issue. The ride comfort enhancement technology of tilting trains (TTX) is a particularly important issue in the development of the Korean high-speed railroad business. Ride comfort is now defined in international standards such as UIC13 and ISO2631. The Korean standards such as KSR9216 mainly address physical parameters such as vibration and noise. In the area of ride comfort, living quality parameter techniques have recently been considered in Korea, Japan, and Europe. This study introduces biological parameters, particularly variations in heart rate, as a more direct measure of comfort. Biological parameters are based on physiological responses rather than on purely external mechanical parameters. Variability of heart rate and other physiological parameters of passengers are measured in a simulation involving changes in the tilting angle of the TTX. This research is a preliminary study for the implementation of an e-health train, which would provide passengers with optimized ride comfort. The e-health train would also provide feedback on altered ride comfort situations that can improve a passenger's experience and provide a healthcare service on the train. The aim of this research was to develop a ride comfort evaluation system for the railway industry, the automobile industry, and the air industry. The degree of tilt correlated with heart rate, fatigue, and unrelieved alertness.
2006-07-01
physiologically-based pharmacokinetic modeling of interactions and multiple route exposure assessment; and integrating relative potency factors with response...defaults, while at the other end is the use of extensive chemical-specific data in physiologically based pharmacokinetic (PBPK) modeling or even...for internal dosimetry as well as an in depth prospective on the use and limitations of physiologically based pharmacokinetic (PBPK) models in
Protein disulfide isomerase a multifunctional protein with multiple physiological roles
NASA Astrophysics Data System (ADS)
Ali Khan, Hyder; Mutus, Bulent
2014-08-01
Protein disulfide isomerase (PDI), is a member of the thioredoxin superfamily of redox proteins. PDI has three catalytic activities including, thiol-disulfide oxireductase, disulfide isomerase and redox-dependent chaperone. Originally, PDI was identified in the lumen of the endoplasmic reticulum and subsequently detected at additional locations, such as cell surfaces and the cytosol. This review will provide an overview of the recent advances in relating the structural features of PDI to its multiple catalytic roles as well as its physiological and pathophysiological functions related to redox regulation and protein folding.
Adolescents from families of divorce: vulnerability to physiological and psychological disturbances.
Thompson, P
1998-03-01
Multiple factors contribute to the vulnerability of adolescents to physiological and psychological disturbances following parental divorce. These include father absence, interparental conflict, economic distress, multiple life stressors, parent adjustment, and short-term crisis. Clinical and societal problems manifested in these vulnerable adolescents are discussed. Systems theory is used to explain this vulnerability of adolescents and to identify appropriate interventions and policies to promote health in this population. Policies recommended include required divorce mediation, early referrals for family and sibling therapy, and school programs to identify and support those most vulnerable.
Structure-function relations in physiology education: Where's the mechanism?
Lira, Matthew E; Gardner, Stephanie M
2017-06-01
Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such as structure-function relations, selectively neglect mechanisms by not mentioning this term explicitly. We explored how students characterized mechanisms and functions to shed light on how students make sense of these terms. Students characterized mechanisms as 1 ) processes that occur at levels of organization lower than that of functions; and 2 ) as detailed events with many steps involved. We also found that students produced more variability in how they characterized functions compared with mechanisms: students characterized functions in relation to multiple levels of organization and multiple definitions. We interpret these results as evidence that students see mechanisms as holding a more narrow definition than used in the biological sciences, and that students struggle to coordinate and distinguish mechanisms from functions due to cognitive processes germane to learning in many domains. We offer the instructional suggestion that we scaffold student learning by affording students opportunities to relate and also distinguish between these terms so central to understanding physiology. Copyright © 2017 the American Physiological Society.
1992-08-01
including instrumenting and dressing the subjects, monitoring the physiological parameters in the simulator, and collecting and processing data. They...also was decided to extend the recruiting process to include all helicopter aviators, even if not UH-60 qualified. There is little in the flight profile...parameter channels, and the data were processed to produce a single root mean square (RMS) error value for each channel appropriate to each of the 9
Network feedback regulates motor output across a range of modulatory neuron activity
Spencer, Robert M.
2016-01-01
Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5–35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. PMID:27030739
Common Student Misconceptions in Exercise Physiology and Biochemistry
ERIC Educational Resources Information Center
Morton, James P.; Doran, Dominic A.; MacLaren, Don P. M.
2008-01-01
The present study represents a preliminary investigation designed to identify common misconceptions in students' understanding of physiological and biochemical topics within the academic domain of sport and exercise sciences. A specifically designed misconception inventory (consisting of 10 multiple-choice questions) was administered to a cohort…
NASA Technical Reports Server (NTRS)
Lisle, J. T.; Pyle, B. H.; McFeters, G. A.
1999-01-01
A suite of fluorescent intracellular stains and probes was used, in conjunction with viable plate counts, to assess the effect of chlorine disinfection on membrane potential (rhodamine 123; Rh123 and bis-(1,3-dibutylbarbituric acid) trimethine oxonol; DiBAC4(3)), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride; CTC) and substrate responsiveness (direct viable counts; DVC) in the commensal pathogen Escherichia coli O157:H7. After a 5 min exposure to the disinfectant, physiological indices were affected in the following order: viable plate counts > substrate responsiveness > membrane potential > respiratory activity > membrane integrity. In situ assessment of physiological activity by examining multiple targets, as demonstrated in this study, permits a more comprehensive determination of the site and extent of injury in bacterial cells following sublethal disinfection with chlorine. This approach to assessing altered bacterial physiology has application in various fields where detection of stressed bacteria is of interest.
Stier, Antoine; Reichert, Sophie; Criscuolo, Francois; Bize, Pierre
2015-11-01
Ageing is characterized by a progressive deterioration of multiple physiological and molecular pathways, which impair organismal performance and increase risks of death with advancing age. Hence, ageing studies must identify physiological and molecular pathways that show signs of age-related deterioration, and test their association with the risk of death and longevity. This approach necessitates longitudinal sampling of the same individuals, and therefore requires a minimally invasive sampling technique that provides access to the larger spectrum of physiological and molecular pathways that are putatively associated with ageing. The present paper underlines the interest in using red blood cells (RBCs) as a promising target for longitudinal studies of ageing in vertebrates. RBCs provide valuable information on the following six pathways: cell maintenance and turnover (RBC number, size, and heterogeneity), glucose homeostasis (RBC glycated haemoglobin), oxidative stress parameters, membrane composition and integrity, mitochondrial functioning, and telomere dynamics. The last two pathways are specific to RBCs of non-mammalian species, which possess a nucleus and functional mitochondria. We present the current knowledge about RBCs and age-dependent changes in these pathways in non-model and wild species that are especially suitable to address questions related to ageing using longitudinal studies. We discuss how the different pathways relate with survival and lifespan and give information on their genetic and environmental determinants to appraise their evolutionary potential. Copyright © 2015 Elsevier Inc. All rights reserved.
Microbial Response to Microgravity and Other Low Shear Environments
NASA Technical Reports Server (NTRS)
Nickerson, C.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; Pierson, Duane L.
2004-01-01
Microbial existence and survival requires the ability to sense and respond to environmental changes, including changes in physical forces. This is because microbes inhabit an amazingly diverse range of ecological niches and therefore must constantly adapt to a wide variety of changing environmental conditions, including alterations in temperature, pH, nutrient availability, oxygen levels, and osmotic pressure gradients. Microbes sense their environment through a variety of sensors and receptors which serve to integrate the different signals into the appropriate cellular response(s) that is optimal for survival. While numerous environmental stimuli have been examined for their effect on microorganisms, effects due to changes in mechanical and/or physical forces are also becoming increasingly apparent. Recently, several important studies have demonstrated a key role for microgravity and the low fluid shear dynamics associated with microgravity in the regulation of microbial gene expression, physiology and pathogenesis. The mechanosensory response of microorganisms to these environmental signals, which are relevant to those encountered during microbial life cycles on Earth, may provide insight into their adaptations to physiologically relevant conditions and may ultimately lead to eludicidation of the mechanisms important for mechanosensory transduction in living cells. This review summarizes the recent and potential future research trends aimed at understanding the effect of changes in mechanical forces that occur in microgravity and other low shear environments on different microbial parameters. The results of these studies provide an important step towards understanding how microbes integrate information from multiple mechanical stimuli to an appropriate physiological response.
Zhang, Fang; Ma, Yuxin; Lin, Ling; He, Jianfeng
2012-12-01
Flow cytometry (FCM) is efficient in detecting both abundance and optical physiological parameters including cell size and cellular carbon content-side scatter (SSC), carotenoids-green and orange fluorescence (FL1 and FL2), and red fluorescence-chlorophylls (FL3) can be obtained by FCM. The utilization of these physiological parameters in indicating water masses in Prydz Bay was investigated for the first time. Picophytoplankton were very sensitive to hydrophysical changes and present distinct characteristics of water masses: Picophytoplankton in water closer to the Amery Ice Shelf were more affected by salinity than by temperature, while temperature became more important than salinity the nearer the picophytoplankton were to the deep sea. The picophytoplankton dealt with declines in light by increasing the size of cells, which increase the fixation of carbon. This can also be increased by high temperature and salinity. Pure water masses can increase the content of chlorophylls and cellular carbon. Generally, the distributions of all the five parameters at upper water depths were less affected by temperature and salinity than by water masses; and these parameters can be as indicators to Summer Surface Water (SSW), Winter Water (WW) and Continental Shelf Water (CSW). Copyright © 2012 Elsevier B.V. All rights reserved.
Radiofrequency for the treatment of skin laxity: mith or truth*
de Araújo, Angélica Rodrigues; Soares, Viviane Pinheiro Campos; da Silva, Fernanda Souza; Moreira, Tatiane da Silva
2015-01-01
The nonablative radiofrequency is a procedure commonly used for the treatment of skin laxity from an increase in tissue temperature. The goal is to induce thermal damage to thus stimulate neocollagenesis in deep layers of the skin and subcutaneous tissue. However, many of these devices haven't been tested and their parameters are still not accepted by the scientific community. Because of this, it is necessary to review the literature regarding the physiological effects and parameters for application of radiofrequency and methodological quality and level of evidence of studies. A literature search was performed in MEDLINE, PEDro, SciELO, PubMed, LILACS and CAPES and experimental studies in humans, which used radiofrequency devices as treatment for facial or body laxity, were selected. The results showed that the main physiological effect is to stimulate collagen synthesis. There was no homogeneity between studies in relation to most of the parameters used and the methodological quality of studies and level of evidence for using radiofrequency are low. This fact complicates the determination of effective parameters for clinical use of this device in the treatment of skin laxity. The analyzed studies suggest that radiofrequency is effective, however the physiological mechanisms and the required parameters are not clear in the literature. PMID:26560216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moerk, Anna-Karin, E-mail: anna-karin.mork@ki.s; Jonsson, Fredrik; Pharsight, a Certara company, St. Louis, MO
2009-11-01
The aim of this study was to derive improved estimates of population variability and uncertainty of physiologically based pharmacokinetic (PBPK) model parameters, especially of those related to the washin-washout behavior of polar volatile substances. This was done by optimizing a previously published washin-washout PBPK model for acetone in a Bayesian framework using Markov chain Monte Carlo simulation. The sensitivity of the model parameters was investigated by creating four different prior sets, where the uncertainty surrounding the population variability of the physiological model parameters was given values corresponding to coefficients of variation of 1%, 25%, 50%, and 100%, respectively. The PBPKmore » model was calibrated to toxicokinetic data from 2 previous studies where 18 volunteers were exposed to 250-550 ppm of acetone at various levels of workload. The updated PBPK model provided a good description of the concentrations in arterial, venous, and exhaled air. The precision of most of the model parameter estimates was improved. New information was particularly gained on the population distribution of the parameters governing the washin-washout effect. The results presented herein provide a good starting point to estimate the target dose of acetone in the working and general populations for risk assessment purposes.« less
Medical smart textiles based on fiber optic technology: an overview.
Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano
2015-04-13
The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.
Pfitzer, S; Ganswindt, A; Fosgate, G T; Botha, P J; Myburgh, J G
2014-09-27
The electric stunner (e-stunner) is commonly used to handle Nile crocodiles (Crocodylus niloticus) on commercial farms in South Africa, but while it seems to improve handling and safety for the keepers, no information regarding physiological reactions to e-stunning is currently available. The aim of this study was therefore to compare various physiological parameters in farmed C niloticus captured either manually (noosing) or by using an e-stunner. A total of 45 crocodiles were captured at a South African farm by either e-stunning or noosing, and blood samples were taken immediately as well as four hours after capture. Parameters monitored were serum corticosterone, lactate, glucose, as well as alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase and creatine kinase. Lactate concentrations were significantly higher in noosed compared with e-stunned animals (P<0.001). No other blood parameter differed significantly between the two methods of capture. In addition, recorded capture time confirmed that noosing takes significantly longer time compared with e-stunning (P<0.001), overall indicating that e-stunning seems to be the better option for restraint of especially large numbers of crocodiles in a commercial setup because it is quicker, safer and did not cause a significant increase in any of the parameters measured. British Veterinary Association.
Medical Smart Textiles Based on Fiber Optic Technology: An Overview
Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano
2015-01-01
The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010
Fei, Ding-Yu; Zhao, Xiaoming; Boanca, Cosmin; Hughes, Esther; Bai, Ou; Merrell, Ronald; Rafiq, Azhar
2010-07-01
To design and test an embedded biomedical sensor system that can monitor astronauts' comprehensive physiological parameters, and provide real-time data display during extra-vehicle activities (EVA) in the space exploration. An embedded system was developed with an array of biomedical sensors that can be integrated into the spacesuit. Wired communications were tested for physiological data acquisition and data transmission to a computer mounted on the spacesuit during task performances simulating EVA sessions. The sensor integration, data collection and communication, and the real-time data monitoring were successfully validated in the NASA field tests. The developed system may work as an embedded system for monitoring health status during long-term space mission. Copyright 2010 Elsevier Ltd. All rights reserved.
ARED (Advanced-Resistive Exercise Device) Update
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2009-01-01
This viewgraph presentation describes ARED which is a new hardware exercise device for use on the International Space Station. Astronaut physiological adaptations, muscle parameters, and cardiovascular parameters are also reviewed.
PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.
Xia, Jing; Wang, Michelle Yongmei
Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.
Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-v...
Physiological, Psychological, and Social Effects of Noise
NASA Technical Reports Server (NTRS)
Kryter, K. D.
1984-01-01
The physiological, and behavioral effects of noise on man are investigated. Basic parameters such as definitions of noise, measuring techniques of noise, and the physiology of the ear are presented prior to the development of topics on hearing loss, speech communication in noise, social effects of noise, and the health effects of noise pollution. Recommendations for the assessment and subsequent control of noise is included.
[Physiology in Relation to Anesthesia Practice: Preface and Comments].
Yamada, Yoshitsugu
2016-05-01
It has been long recognized that anesthesia practice is profoundly based in physiology. With the advance of the technology of imaging, measurement and information, a serious gap has emerged between anesthesia mainly handling gross systemic parameters and molecular physiology. One of the main reasons is the lack of establishment of integration approach. This special series of reviews deals with systems physiology covering respiratory, cardiovascular, and nervous systems. It also includes metabolism, and fluid, acid-base, and electrolyte balance. Each review focuses on several physiological concepts in each area, explaining current understanding and limits of the concepts based on the new findings. They reaffirm the importance of applying physiological inference in anesthesia practice and underscore the needs of advancement of systems physiology.
Beck, W; Gobatto, C
2016-03-01
Nocturnal rodents should be assessed at an appropriate time of day, which leads to a challenge in identifying an adequate environmental light which allows animal visualisation without perturbing physiological homeostasis. Thus, we analysed the influence of high wavelength and low intensity light during dark period on physical exercise and biochemical and haematological parameters of nocturnal rats. We submitted 80 animals to an exhaustive exercise at individualised intensity under two different illuminations during dark period. Red light (> 600 nm; < 15lux) was applied constantly during dark period (EI; for experimental illumination groups) or only for handling and assessments (SI; for standard illumination groups). EI led to worse haematological and biochemical conditions, demonstrating that EI alone can influence physiological parameters and jeopardise result interpretation. SI promotes normal physiological conditions and greater aerobic tolerance than EI, showing the importance of a correct illumination pattern for all researchers that employ nocturnal rats for health/disease or sports performance experiments.
Langlois, C; Simon, L; Lécuyer, Ch
2003-12-01
A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.
BIOTEX--biosensing textiles for personalised healthcare management.
Coyle, Shirley; Lau, King-Tong; Moyna, Niall; O'Gorman, Donal; Diamond, Dermot; Di Francesco, Fabio; Costanzo, Daniele; Salvo, Pietro; Trivella, Maria Giovanna; De Rossi, Danilo Emilio; Taccini, Nicola; Paradiso, Rita; Porchet, Jacque-André; Ridolfi, Andrea; Luprano, Jean; Chuzel, Cyril; Lanier, Thierry; Revol-Cavalier, Frdéric; Schoumacker, Sébastien; Mourier, Véronique; Chartier, Isabelle; Convert, Reynald; De-Moncuit, Henri; Bini, Christina
2010-03-01
Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and the chemical composition of body fluids, with a particular interest in sweat. A wearable sensing system has been developed that integrates a textile-based fluid handling system for sample collection and transport with a number of sensors including sodium, conductivity, and pH sensors. Sensors for sweat rate, ECG, respiration, and blood oxygenation were also developed. For the first time, it has been possible to monitor a number of physiological parameters together with sweat composition in real time. This has been carried out via a network of wearable sensors distributed around the body of a subject user. This has huge implications for the field of sports and human performance and opens a whole new field of research in the clinical setting.
A physiologically based pharmacokinetic (PBPK) model for the organoarsenical dimethylarsinic acid (DMA(V)) was developed in mice. The model was calibrated using tissue time course data from multiple tissues in mice administered DMA(V) intravenously. The final model structure was ...
Li, Albert S; Berger, Kenneth I; Schwartz, David R; Slater, William R; Goldfarb, David S
2014-04-12
In order to develop clinical reasoning, medical students must be able to integrate knowledge across traditional subject boundaries and multiple disciplines. At least two dimensions of integration have been identified: horizontal integration, bringing together different disciplines in considering a topic; and vertical integration, bridging basic science and clinical practice. Much attention has been focused on curriculum overhauls, but our approach is to facilitate horizontal and vertical integration on a smaller scale through an interdisciplinary case study discussion and then to assess its utility. An interdisciplinary case study discussion about a critically ill patient was implemented at the end of an organ system-based, basic sciences module at New York University School of Medicine. Three clinical specialists-a cardiologist, a pulmonologist, and a nephrologist-jointly led a discussion about a complex patient in the intensive care unit with multiple medical problems secondary to septic shock. The discussion emphasized the physiologic underpinnings behind the patient's presentation and the physiologic considerations across the various systems in determining proper treatment. The discussion also highlighted the interdependence between the cardiovascular, respiratory, and renal systems, which were initially presented in separate units. After the session students were given a brief, anonymous three-question free-response questionnaire in which they were asked to evaluate and freely comment on the exercise. Students not only took away physiological principles but also gained an appreciation for various thematic lessons for bringing basic science to the bedside, especially horizontal and vertical integration. The response of the participants was overwhelmingly positive with many indicating that the exercise integrated the material across organ systems, and strengthened their appreciation of the role of physiology in understanding disease presentations and guiding appropriate therapy. Horizontal and vertical integration can be presented effectively through a single-session case study, with complex patient cases involving multiple organ systems providing students opportunities to integrate their knowledge across organ systems while emphasizing the importance of physiology in clinical reasoning. Furthermore, having several clinicians from different specialties discuss the case together can reinforce the matter of integration across multiple organ systems and disciplines in students' minds.
2014-01-01
Background In order to develop clinical reasoning, medical students must be able to integrate knowledge across traditional subject boundaries and multiple disciplines. At least two dimensions of integration have been identified: horizontal integration, bringing together different disciplines in considering a topic; and vertical integration, bridging basic science and clinical practice. Much attention has been focused on curriculum overhauls, but our approach is to facilitate horizontal and vertical integration on a smaller scale through an interdisciplinary case study discussion and then to assess its utility. Methods An interdisciplinary case study discussion about a critically ill patient was implemented at the end of an organ system-based, basic sciences module at New York University School of Medicine. Three clinical specialists—a cardiologist, a pulmonologist, and a nephrologist—jointly led a discussion about a complex patient in the intensive care unit with multiple medical problems secondary to septic shock. The discussion emphasized the physiologic underpinnings behind the patient’s presentation and the physiologic considerations across the various systems in determining proper treatment. The discussion also highlighted the interdependence between the cardiovascular, respiratory, and renal systems, which were initially presented in separate units. After the session students were given a brief, anonymous three-question free-response questionnaire in which they were asked to evaluate and freely comment on the exercise. Results Students not only took away physiological principles but also gained an appreciation for various thematic lessons for bringing basic science to the bedside, especially horizontal and vertical integration. The response of the participants was overwhelmingly positive with many indicating that the exercise integrated the material across organ systems, and strengthened their appreciation of the role of physiology in understanding disease presentations and guiding appropriate therapy. Conclusions Horizontal and vertical integration can be presented effectively through a single-session case study, with complex patient cases involving multiple organ systems providing students opportunities to integrate their knowledge across organ systems while emphasizing the importance of physiology in clinical reasoning. Furthermore, having several clinicians from different specialties discuss the case together can reinforce the matter of integration across multiple organ systems and disciplines in students’ minds. PMID:24725336
Rashidi Fakari, Fahimeh; Tabatabaeichehr, Mahbubeh; Kamali, Hossian; Rashidi Fakari, Farzaneh; Naseri, Maryam
2015-01-01
Introduction: Anxiety increases significantly during labor, especially among nulliparous women. Such anxiety may affect the progress of labor and physiological parameters. The use of essential oils of aromatic plants, or aromatherapy, is a non-invasive procedure that can decrease childbirth anxiety. This study examined the effect of inhalation of the aroma of geranium essential oil on the level of anxiety and physiological parameters of nulliparous women in the first stage of labor. Methods: In study, was carried out on 100 nulliparous women admitted to Bent al-Hoda Hospital in the city of Bojnord in North Khorasan province of Iran during 2012-2013. The women were randomly assigned to two groups of equal size, one experimental group (geranium essential oil) and one control (placebo) group. Anxiety levels were measured using Spielberger' questionnaire before and after intervention. Physiological parameters (systolic and diastolic blood pressure, respiratory rate, pulse rate) were also measured before and after intervention in both groups. Data analysis was conducted using the x2 test, paired t-test, Mann-Whitney U test, and Wilcox on test on SPSS 11.5. Results: The mean anxiety score decreased significantly after inhalation of the aroma of geranium essential oil. There was also a significant decrease in diastolic blood pressure. Conclusion: Aroma of essential oil of geraniums can effectively reduce anxiety during labor and can be recommended as a non-invasive anti-anxiety aid during childbirth. PMID:26161367
Carriers for the Tunable Release of Therapeutics: Etymological Classification and Examples
Uskoković, Vuk; Ghosh, Shreya
2016-01-01
Introduction Physiological processes at the molecular level take place at precise spatiotemporal scales, which vary from tissue to tissue and from one patient to another, implying the need for the carriers that enable tunable release of therapeutics. Areas Covered Classification of all drug release to intrinsic and extrinsic is proposed, followed by the etymological clarification of the term “tunable” and its distinction from the term “tailorable”. Tunability is defined as analogous to tuning a guitar string or a radio receiver to the right frequency using a single knob. It implies changing a structural parameter along a continuous quantitative scale and correlating it numerically with the release kinetics. Examples of tunable, tailorable and environmentally responsive carriers are given, along with the parameters used to achieve these levels of control. Expert Opinion Interdependence of multiple variables defining the carrier microstructure obstructs the attempts to elucidate parameters that allow for the independent tuning of release kinetics. Learning from the tunability of nanostructured materials and superstructured metamaterials can be a fruitful source of inspiration in the quest for the new generation of tunable release carriers. The greater intersection of traditional materials sciences and pharmacokinetic perspectives could foster the development of more sophisticated mechanisms for tunable release. PMID:27322661
Acclimatization of rats after ground transportation to a new animal facility.
Capdevila, S; Giral, M; Ruiz de la Torre, J L; Russell, R J; Kramer, K
2007-04-01
This study aimed to assess the time needed by rats, which had not been previously transported, to acclimate to a new environment after 5 h of van transport, using physiological parameters as measures of acclimatization. Animal shipping boxes and transport van conditions were standardized to minimize stress factors that could be associated with transport. Heart rate (HR), body temperature and activity levels were measured in the rats before and after transport using previously implanted radio-telemetry transmitters. Body weight was also recorded. All parameters were changed significantly except for body temperature. Results suggest that rats take three days to acclimate to a new environment, as measured by the physiological parameters of body weight, HR and activity.
Ambulatory instrumentation suitable for long-term monitoring of cattle health.
Schoenig, S A; Hildreth, T S; Nagl, L; Erickson, H; Spire, M; Andresen, D; Warren, S
2004-01-01
The benefits of real-time health diagnoses of cattle are potentially tremendous. Early detection of transmissible disease, whether from natural or terrorist events, could help to avoid huge financial losses in the agriculture industry while also improving meat quality. This work discusses physiological and behavioral parameters relevant to cattle state-of-health assessment. These parameters, along with a potentially harsh monitoring environment, drive a set of design considerations that must be addressed when building systems to acquire long-term, real-time measurements in the field. A prototype system is presented that supports the measurement of suitable physiologic parameters and begins to address the design constraints for continuous state-of-health determination in free-roaming cattle.
Predicting musically induced emotions from physiological inputs: linear and neural network models.
Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M
2013-01-01
Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.
Maagaard, Marie; Heiberg, Johan
2016-09-01
Patients with pectus excavatum (PE) often describe improvements in exercise stamina following corrective surgery. Studies have investigated the surgical effect on physiological parameters; still, no consensus has yet been reached. Therefore, the aim of this literature review was to describe the cardiac outcome after surgical correction, both at rest and during exercise. In February 2016, a detailed search of the databases PubMed, Medline, and EMBASE was performed. We assessed clinical studies that described cardiac outcomes both before and after surgical correction of PE. We only included studies reporting either pre-defined echocardiographic or exercise test parameters. No exclusion criteria or statistical analyses were applied. Twenty-one full-text articles, published between 1972 and 2016, were selected, with cohort-ranges of 3-168 patients, mean age-ranges of 5-33 years, and mean follow-up-ranges from immediately to 4 years after surgery. Twelve studies described resting cardiac parameters. Four studies measured cardiac output, where one described 36% immediate increase after surgery, one reported 15% increase after Nuss-bar removal and two found no difference. Three studies demonstrated improvement in mean stroke volume ranges of 22-34% and two studies found no difference. Fifteen studies investigated exercise capacity, with 11 considering peak O 2 pr. kg, where five studies demonstrated improvements with the mean ranging from 8% to 15% after surgery, five studies demonstrated no difference, and one saw a decrease of 19% 3 months after Nuss-bar implantation. A measurable increase in exercise capacity exists following surgery, which may be caused by multiple factors. This may be owed to the relief of compressed cardiac chambers with the increased anterior-posterior thoracic dimensions, which could facilitate an improved filling of the heart. With these results, the positive physiological impact of the surgery is emphasized and the potential gain in cardiac function should be integrated in the clinical assessment of patients with PE.
Heiberg, Johan
2016-01-01
Patients with pectus excavatum (PE) often describe improvements in exercise stamina following corrective surgery. Studies have investigated the surgical effect on physiological parameters; still, no consensus has yet been reached. Therefore, the aim of this literature review was to describe the cardiac outcome after surgical correction, both at rest and during exercise. In February 2016, a detailed search of the databases PubMed, Medline, and EMBASE was performed. We assessed clinical studies that described cardiac outcomes both before and after surgical correction of PE. We only included studies reporting either pre-defined echocardiographic or exercise test parameters. No exclusion criteria or statistical analyses were applied. Twenty-one full-text articles, published between 1972 and 2016, were selected, with cohort-ranges of 3–168 patients, mean age-ranges of 5–33 years, and mean follow-up-ranges from immediately to 4 years after surgery. Twelve studies described resting cardiac parameters. Four studies measured cardiac output, where one described 36% immediate increase after surgery, one reported 15% increase after Nuss-bar removal and two found no difference. Three studies demonstrated improvement in mean stroke volume ranges of 22–34% and two studies found no difference. Fifteen studies investigated exercise capacity, with 11 considering peak O2 pr. kg, where five studies demonstrated improvements with the mean ranging from 8% to 15% after surgery, five studies demonstrated no difference, and one saw a decrease of 19% 3 months after Nuss-bar implantation. A measurable increase in exercise capacity exists following surgery, which may be caused by multiple factors. This may be owed to the relief of compressed cardiac chambers with the increased anterior-posterior thoracic dimensions, which could facilitate an improved filling of the heart. With these results, the positive physiological impact of the surgery is emphasized and the potential gain in cardiac function should be integrated in the clinical assessment of patients with PE. PMID:27747182
Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M
2008-12-01
Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering. Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios. There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy. Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model). The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading. AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction. Further, the model suggested that the native AF fiber architecture is uniquely designed to support shear stresses encountered under multiple loading configurations.
Distributed and Lumped Parameter Models for the Characterization of High Throughput Bioreactors
Conoscenti, Gioacchino; Cutrì, Elena; Tuan, Rocky S.; Raimondi, Manuela T.; Gottardi, Riccardo
2016-01-01
Next generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology [1, 2]. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at generating osteochondral constructs, i.e., a biphasic construct in which one side is cartilaginous in nature, while the other is osseous. We next develop a general computational approach to model the microfluidics of a multi-chamber, interconnected system that may be applied to human-on-chip devices. This objective requires overcoming several challenges at the level of computational modeling. The main one consists of addressing the multi-physics nature of the problem that combines free flow in channels with hindered flow in porous media. Fluid dynamics is also coupled with advection-diffusion-reaction equations that model the transport of biomolecules throughout the system and their interaction with living tissues and C constructs. Ultimately, we aim at providing a predictive approach useful for the general organ-on-chip community. To this end, we have developed a lumped parameter approach that allows us to analyze the behavior of multi-unit bioreactor systems with modest computational effort, provided that the behavior of a single unit can be fully characterized. PMID:27669413
Distributed and Lumped Parameter Models for the Characterization of High Throughput Bioreactors.
Iannetti, Laura; D'Urso, Giovanna; Conoscenti, Gioacchino; Cutrì, Elena; Tuan, Rocky S; Raimondi, Manuela T; Gottardi, Riccardo; Zunino, Paolo
Next generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology [1, 2]. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at generating osteochondral constructs, i.e., a biphasic construct in which one side is cartilaginous in nature, while the other is osseous. We next develop a general computational approach to model the microfluidics of a multi-chamber, interconnected system that may be applied to human-on-chip devices. This objective requires overcoming several challenges at the level of computational modeling. The main one consists of addressing the multi-physics nature of the problem that combines free flow in channels with hindered flow in porous media. Fluid dynamics is also coupled with advection-diffusion-reaction equations that model the transport of biomolecules throughout the system and their interaction with living tissues and C constructs. Ultimately, we aim at providing a predictive approach useful for the general organ-on-chip community. To this end, we have developed a lumped parameter approach that allows us to analyze the behavior of multi-unit bioreactor systems with modest computational effort, provided that the behavior of a single unit can be fully characterized.
USDA-ARS?s Scientific Manuscript database
Environmental effects cause animal production inefficiencies and animal well-being issues. Thus, many experiments have been designed to understand thermal stress and to test different means to relieve it. There are multiple physiological responses and behavior/activities that can be measured to di...
Stress Physiology in Infancy and Early Childhood: Cortisol Flexibility, Attunement and Coordination.
Atkinson, L; Jamieson, B; Khoury, J; Ludmer, J; Gonzalez, A
2016-08-01
Research on stress physiology in infancy has assumed increasing importance due to its lifelong implications. In this review, we focus on measurement of hypothalamic-pituitary-adrenal (HPA) function, in particular, and on complementary autonomic processes. We suggest that the measure of HPA function has been overly exclusive, focusing on individual reactivity to single, pragmatically selected laboratory challenges. We advocate use of multiple, strategically chosen challenges and within-subject designs. By administering one challenge that typically does not provoke reactivity and another that does, it is possible to represent allostatic load in terms of "flexibility," the capacity to titrate response to challenge. We also recommend assessing infant reactivity in the context of the primary caregiver's physiological function. Infant-mother "attunement" is central to developmental psychology, permeating diverse developmental domains with varied consequences. A review of adrenocortical attunement suggests that attunement is a reliable process, manifest across varied populations. However, attunement appears stronger in the context of more highly stressful circumstances, such that administration of multiple, selected challenges may help evaluate the degree to which individuals titrate attunement to challenge and determine the correlates of this differential attunement. Finally, we advocate studying the "coordination" of HPA function with other aspects of stress physiology and variation in the degree of this coordination. The use of multiple stressors is important here because each stress system is differentially sensitive to different types of challenge. Therefore, use of single stressors in between-subject designs impedes full recognition of the role played by each system. Overall, we recommend measure of flexibility, attunement, and coordination in the context of multiple challenges to capture allostasis in environmental and physiological context. The simultaneous use of such inclusive and integrative metrics may yield more reliable findings than has hitherto been the case. The interrelation of these metrics can be understood in the context of the adaptive calibration model.. © 2016 British Society for Neuroendocrinology.
Novel image encryption algorithm based on multiple-parameter discrete fractional random transform
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Dong, Taiji; Wu, Jianhua
2010-08-01
A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data
2014-01-01
Background Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple parameters, the selection of which is controversial and depends on the intended purpose. This study describes the results of tests conducted to support parameter selection, towards the goal of enabling further biomarker discovery. Methods This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions. Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of the sample standard deviation σ, or the entropy-maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors' composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a Wilcoxon rank sum test. Results The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 σ and should even exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership function show different behavior when coupled with different r values, therefore the weighting parameters have been chosen independently for the different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2σ. Conclusions Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical conditions are unknown beforehand, compromises had to be made. Optimal parameter combinations are suggested for the methods considered. Yet, due to the high number of potential parameter combinations, further investigations of entropy for heart rate variability data will be necessary. PMID:25078574
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data.
Mayer, Christopher C; Bachler, Martin; Hörtenhuber, Matthias; Stocker, Christof; Holzinger, Andreas; Wassertheurer, Siegfried
2014-01-01
Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple parameters, the selection of which is controversial and depends on the intended purpose. This study describes the results of tests conducted to support parameter selection, towards the goal of enabling further biomarker discovery. This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions. Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of the sample standard deviation σ, or the entropy-maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors' composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a Wilcoxon rank sum test. The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 σ and should even exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership function show different behavior when coupled with different r values, therefore the weighting parameters have been chosen independently for the different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2σ. Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical conditions are unknown beforehand, compromises had to be made. Optimal parameter combinations are suggested for the methods considered. Yet, due to the high number of potential parameter combinations, further investigations of entropy for heart rate variability data will be necessary.
NASA Astrophysics Data System (ADS)
Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim
2016-11-01
Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.
Creating Simulated Microgravity Patient Models
NASA Technical Reports Server (NTRS)
Hurst, Victor; Doerr, Harold K.; Bacal, Kira
2004-01-01
The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).
Fish, Richard E; Foster, Melanie L; Gruen, Margaret E; Sherman, Barbara L; Dorman, David C
2017-01-01
Safety pharmacology studies in dogs often integrate behavioral assessments made using video recording with physiologic measurements collected by telemetry. However, whether merely wearing the telemetry vest affects canine behavior and other parameters has not been evaluated. This pilot study assessed the effect of a telemetry vest on behavioral and physiologic responses to an environmental stressor, the sounds of a thunderstorm, in Labrador retrievers. Dogs were assigned to one of 2 experimental groups (Vest and No-Vest, n = 8 dogs per group) by using a matched pairs design, with a previously determined, sound-associated anxiety score as the blocking variable. Dogs were individually retested with the same standardized sound stimulus (thunderstorm) in an open-field arena, and their behavioral responses were video recorded. Video analysis of locomotor activity and anxiety-related behavior and manual determination of heart rate and body temperature were performed; results were compared between groups. Vest wearing did not affect total locomotor activity or rectal body temperature but significantly decreased heart rate by 8% and overall mean anxiety score by 34% during open-field test sessions. Our results suggest that the use of telemetry vests in dogs influences the measurement of physiologic parameters and behaviors that are assessed in safety pharmacology studies. PMID:28724487
Yamada, Shimpei; Miyake, Shinji
2007-03-01
This study examined the effects of long term mental arithmetic on physiological parameters, subjective indices and task performances to investigate the psychophysiological changes induced by mental tasks. Fifteen male university students performed six successive trials of a ten-minute mental arithmetic task. They took a five-minute resting period before and after the tasks. CFF (Critical Flicker Fusion frequency) and subjective fatigue scores using a visual analog scale, POMS (Profiles of Mood States) and SFF (Subjective Feelings of Fatigue) were obtained after each task and resting period. The voices of participants who were instructed to speak five Japanese vowels ('a', 'i', 'u', 'e', 'o') were recorded after each block to investigate a chaotic property of vocal signals that is reported to be changed by fatigue. Subjective workload ratings were also obtained by the NASA-TLX (National Aeronautics and Space Administration-Task Load Index) after the task. Physiological signals of ECG (Electrocardiogram), PTG (Photoelectric Plethysmogram), SCL (Skin Conductance Level), TBV (Tissue Blood Volume) and Respiration were recorded for all experimental blocks. The number of answers, correct rates and average levels of task difficulty for each ten-minute task were used as task performance indices. In this experiment, the task performance did not decrease, whereas subjective fatigue increased. Activation of the sympathetic nervous system was suggested by physiological parameters.
NASA Astrophysics Data System (ADS)
Ye, Jiancheng; Huang, Guoliang
2017-01-01
In the domain of biomedical signals measurements, monitoring human physiological parameters is an important issue. With the rapid development of wireless body area network, it makes monitor, transmit and record physiological parameters faster and more convenient. Infants and the elderly completely bedridden are two special groups of the society who need more medical care. According to researches investigating current frontier domains and the market products, the detection of physiological parameters from the excrement is rare. However, urine and faeces contain a large number of physiological information, which are high relative to health. The mainly distributed odour from urine is NH4 and the distributed odour from feces is mainly H2S, which are both could be detected by the sensors. In this paper, we introduce the design and implementation of a portable wireless device based on body area network for real time monitoring to the odour of excrement for health of infants and the elderly completely bedridden. The device not only could monitor in real time the emitted odour of faeces and urine for health analysis, but also measures the body temperature and environment humidity, and send data to the mobile phone of paramedics to alarm or the server for storage and process, which has prospect to monitoring infants and the paralysis elderly.
Fish, Richard E; Foster, Melanie L; Gruen, Margaret E; Sherman, Barbara L; Dorman, Davidc C
2017-07-01
Safety pharmacology studies in dogs often integrate behavioral assessments made using video recording with physiologic measurements collected by telemetry. However, whether merely wearing the telemetry vest affects canine behavior and other parameters has not been evaluated. This pilot study assessed the effect of a telemetry vest on behavioral and physiologic responses to an environmental stressor, the sounds of a thunderstorm, in Labrador retrievers. Dogs were assigned to one of 2 experimental groups (Vest and No-Vest, n = 8 dogs per group) by using a matched pairs design, with a previously determined, sound-associated anxiety score as the blocking variable. Dogs were individually retested with the same standardized sound stimulus (thunderstorm) in an open-field arena, and their behavioral responses were video recorded. Video analysis of locomotor activity and anxiety-related behavior and manual determination of heart rate and body temperature were performed; results were compared between groups. Vest wearing did not affect total locomotor activity or rectal body temperature but significantly decreased heart rate by 8% and overall mean anxiety score by 34% during open-field test sessions. Our results suggest that the use of telemetry vests in dogs influences the measurement of physiologic parameters and behaviors that are assessed in safety pharmacology studies.
[Acoustic and aerodynamic characteristics of the oesophageal voice].
Vázquez de la Iglesia, F; Fernández González, S
2005-12-01
The aim of the study is to determine the physiology and pathophisiology of esophageal voice according to objective aerodynamic and acoustic parameters (quantitative and qualitative parameters). Our subjects were comprised of 33 laryngectomized patients (all male) that underwent aerodynamic, acoustic and perceptual protocol. There is a statistical association between acoustic and aerodynamic qualitative parameters (phonation flow chart type, sound spectrum, perceptual analysis) among quantitative parameters (neoglotic pressure, phonation flow, phonation time, fundamental frequency, maximum intensity sound level, speech rate). Nevertheles, not always such observations bring practical resources to clinical practice. We consider that the facts studied may enable us to add, pragmatically, new resources to the more effective vocal rehabilitation to these patients. The physiology of esophageal voice is well understood by the method we have applied, also seeking for rehabilitation, improving oral communication skills in the laryngectomee population.
Rosado-Souza, Laise; Scossa, Federico; Chaves, Izabel S; Kleessen, Sabrina; Salvador, Luiz F D; Milagre, Jocimar C; Finger, Fernando; Bhering, Leonardo L; Sulpice, Ronan; Araújo, Wagner L; Nikoloski, Zoran; Fernie, Alisdair R; Nunes-Nesi, Adriano
2015-09-01
Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.
Building new physiologically based pharmacokinetic (PBPK) models requires a lot data, such as the chemical-specific parameters and in vivo pharmacokinetic data. Previously-developed, well-parameterized, and thoroughly-vetted models can be great resource for supporting the constr...
Advancements in remote physiological measurement and applications in human-computer interaction
NASA Astrophysics Data System (ADS)
McDuff, Daniel
2017-04-01
Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.
NASA Astrophysics Data System (ADS)
Alfonzo, Evelyn Priscila München; Barbosa da Silva, Marcos Vinicius Gualberto; dos Santos Daltro, Darlene; Stumpf, Marcelo Tempel; Dalcin, Vanessa Calderaro; Kolling, Giovani; Fischer, Vivian; McManus, Concepta Margaret
2016-02-01
Dairy cattle raised under harsh conditions have to adapt and prevent heat stress. The aim of this study was to evaluate physical characteristics and their association with heat tolerance in different genetic groups of dairy cattle. Thickness of the skin and coat, length and number of hairs, body measurements, as well as physiological parameters and body temperatures by infrared thermography were determined in 19 Holstein and 19 Girolando (½ and ¾ Holstein) cows. The Holstein cattle were less tolerant to heat stress than Girolando (GH50 and GH75 Holstein), because of the difficulty in dissipating heat due to the larger body size, as well as thicker and longer hairs. The correlations between physical characteristics, physiological parameters, and thermographic measurements prove to be inconsistent among genetic groups and therefore are not predictive of heat tolerance, while the regressions of morphometric characteristics on physiological and thermographic measures were not significant. Thus, the physical characteristics were not good predictors of physiological indices and thermographic temperature and so should not be used.
Alfonzo, Evelyn Priscila München; Barbosa da Silva, Marcos Vinicius Gualberto; dos Santos Daltro, Darlene; Stumpf, Marcelo Tempel; Dalcin, Vanessa Calderaro; Kolling, Giovani; Fischer, Vivian; McManus, Concepta Margaret
2016-02-01
Dairy cattle raised under harsh conditions have to adapt and prevent heat stress. The aim of this study was to evaluate physical characteristics and their association with heat tolerance in different genetic groups of dairy cattle. Thickness of the skin and coat, length and number of hairs, body measurements, as well as physiological parameters and body temperatures by infrared thermography were determined in 19 Holstein and 19 Girolando (½ and ¾ Holstein) cows. The Holstein cattle were less tolerant to heat stress than Girolando (GH50 and GH75 Holstein), because of the difficulty in dissipating heat due to the larger body size, as well as thicker and longer hairs. The correlations between physical characteristics, physiological parameters, and thermographic measurements prove to be inconsistent among genetic groups and therefore are not predictive of heat tolerance, while the regressions of morphometric characteristics on physiological and thermographic measures were not significant. Thus, the physical characteristics were not good predictors of physiological indices and thermographic temperature and so should not be used.
Physiological stress and performance analysis to karate combat.
Chaabene, Helmi; Hellara, Ilhem; Ghali, Faten B; Franchini, Emerson; Neffati, Fedoua; Tabben, Montassar; Najjar, Mohamed F; Hachana, Younés
2016-10-01
This study aimed to evaluate the relationship between physiological, and parameters of performance analysis during karate contest. Nine elite-level karate athletes participated in this study. Saliva sample was collected pre- and post-karate combat. Salivary cortisol (sC) post-combat 2 raised significantly compared to that recorded at pre-combat 1 (Δ%=105.3%; P=0.04; dz=0.78). The largest decrease of the salivary T/C ratio (sR) compared to pre-combat 1 was recorded post-combat 2 (Δ%=-43.5%; P=0.03). Moreover, blood lactate concentration post-combat 1 correlated positively to sCpost-combat 1 (r=0.66; P=0.05) and negatively to both salivary testosterone (sT) (r=-0.76; P=0.01) and sRpost-combat 1 (r=-0.76; P=0.01). There was no significant relationship between hormonal measures and parameters of match analysis. Although under simulated condition, karate combat poses large physiological stress to the karateka. Additionally, physiological strain to karate combat led to a catabolic hormonal response.
Modeling mechanical cardiopulmonary interactions for virtual environments.
Kaye, J M
1997-01-01
We have developed a computer system for modeling mechanical cardiopulmonary behavior in an interactive, 3D virtual environment. The system consists of a compact, scalar description of cardiopulmonary mechanics, with an emphasis on respiratory mechanics, that drives deformable 3D anatomy to simulate mechanical behaviors of and interactions between physiological systems. Such an environment can be used to facilitate exploration of cardiopulmonary physiology, particularly in situations that are difficult to reproduce clinically. We integrate 3D deformable body dynamics with new, formal models of (scalar) cardiorespiratory physiology, associating the scalar physiological variables and parameters with corresponding 3D anatomy. Our approach is amenable to modeling patient-specific circumstances in two ways. First, using CT scan data, we apply semi-automatic methods for extracting and reconstructing the anatomy to use in our simulations. Second, our scalar models are defined in terms of clinically-measurable, patient-specific parameters. This paper describes our approach and presents a sample of results showing normal breathing and acute effects of pneumothoraces.
Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.
Krepkovich, Eileen T; Perreault, Eric J
2008-01-01
This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.
Investigations of respiratory control systems simulation
NASA Technical Reports Server (NTRS)
Gallagher, R. R.
1973-01-01
The Grodins' respiratory control model was investigated and it was determined that the following modifications were necessary before the model would be adaptable for current research efforts: (1) the controller equation must be modified to allow for integration of the respiratory system model with other physiological systems; (2) the system must be more closely correlated to the salient physiological functionings; (3) the respiratory frequency and the heart rate should be expanded to illustrate other physiological relationships and dependencies; and (4) the model should be adapted to particular individuals through a better defined set of initial parameter values in addition to relating these parameter values to the desired environmental conditions. Several of Milhorn's respiratory control models were also investigated in hopes of using some of their features as modifications for Grodins' model.
Wannaz, E. D.; Rodriguez, J. H.; Wolfsberger, T.; Carreras, H. A.; Pignata, M. L.; Fangmeier, A.; Franzaring, J.
2012-01-01
A pollution gradient was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina). Leaves of Eucalyptus rostrata, and Populus hybridus and different needle ages of Pinus spec. were collected and concentrations of aluminium (Al) and sulphur (S) as well as physiological parameters (chlorophyll and lipid oxidation products) were analyzed. Al and S concentrations indicate a steep pollution gradient in the study showing a relationship with the physiological parameters in particular membrane lipid oxidation products. The present study confirms that aluminium smelting results in high Al and sulphur deposition in the study area, and therefore further studies should be carried out taking into account potentially adverse effects of these compounds on human and ecosystem health. PMID:22654642
Respiration and heartbeat monitoring using a distributed pulsed MIMO radar.
Walterscheid, Ingo; Smith, Graeme E
2017-07-01
This paper addresses non-contact monitoring of physiological signals induced by respiration and heartbeat. To detect the tiny physiological movements of the chest or other parts of the torso, a Mulitple-Input Multiple-Output (MIMO) radar is used. The spatially distributed transmitters and receivers are able to detect the chest surface movements of one or multiple persons in a room. Due to several bistatic measurements at the same time a robust detection and measuring of the breathing and heartbeat rate is possible. Using an appropriate geometrical configuration of the sensors even a localization of the person is feasible.
Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Boyle, Richard D.
2014-01-01
Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.
Methods for determining the physiological state of a plant
Kramer, David M.; Sacksteder, Colette
2003-09-23
The present invention provides methods for measuring a photosynthetic parameter. The methods of the invention include the steps of: (a) illuminating a plant leaf until steady-state photosynthesis is achieved; (b) subjecting the illuminated plant leaf to a period of darkness; (c) using a kinetic spectrophotometer or kinetic spectrophotometer/fluorimeter to collect spectral data from the plant leaf treated in accordance with steps (a) and (b); and (d) determining a photosynthetic parameter from the spectral data. In another aspect, the invention provides methods for determining the physiological state of a plant.
Nanomaterial-Enabled Wearable Sensors for Healthcare.
Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong
2018-01-01
Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medical Area Body Network. Final rule.
2012-09-11
This document expands the Commission's Medical Device Radiocommunications Service (MedRadio) rules to permit the development of new Medical Body Area Network (MBAN) devices in the 2360-2400 MHz band. The MBAN technology will provide a flexible platform for the wireless networking of multiple body transmitters used for the purpose of measuring and recording physiological parameters and other patient information or for performing diagnostic or therapeutic functions, primarily in health care facilities. This platform will enhance patient safety, care and comfort by reducing the need to physically connect sensors to essential monitoring equipment by cables and wires. This decision is the latest in a series of actions to expand the spectrum available for wireless medical use. The Commission finds that the risk of increased interference is minimal and is greatly outweighed by the benefits of the MBAN rules.
Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco
2016-02-01
The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.
Sejdić, E.; Millecamps, A.; Teoli, J.; Rothfuss, M. A.; Franconi, N. G.; Perera, S.; Jones, A. K.; Brach, J. S.; Mickle, M. H.
2015-01-01
Gait function is traditionally assessed using well-lit, unobstructed walkways with minimal distractions. In patients with subclinical physiological abnormalities, these conditions may not provide enough stress on their ability to adapt to walking. The introduction of challenging walking conditions in gait can induce responses in physiological systems in addition to the locomotor system. There is a need for a device that is capable of monitoring multiple physiological systems in various walking conditions. To address this need, an Android-based gait-monitoring device was developed that enabled the recording of a patient's physiological systems during walking. The gait-monitoring device was tested during self-regulated overground walking sessions of fifteen healthy subjects that included 6 females and 9 males aged 18 to 35 years. The gait-monitoring device measures the patient's stride interval, acceleration, electrocardiogram, skin conductance and respiratory rate. The data is stored on an Android phone and is analyzed offline through the extraction of features in the time, frequency and time-frequency domains. The analysis of the data depicted multisystem physiological interactions during overground walking in healthy subjects. These interactions included locomotion-electrodermal, locomotion-respiratory and cardiolocomotion couplings. The current results depicting strong interactions between the locomotion system and the other considered systems (i.e., electrodermal, respiratory and cardivascular systems) warrant further investigation into multisystem interactions during walking, particularly in challenging walking conditions with older adults. PMID:26390946
Physiological correlates of mental workload
NASA Technical Reports Server (NTRS)
Zacharias, G. L.
1980-01-01
A literature review was conducted to assess the basis of and techniques for physiological assessment of mental workload. The study findings reviewed had shortcomings involving one or more of the following basic problems: (1) physiologic arousal can be easily driven by nonworkload factors, confounding any proposed metric; (2) the profound absence of underlying physiologic models has promulgated a multiplicity of seemingly arbitrary signal processing techniques; (3) the unspecified multidimensional nature of physiological "state" has given rise to a broad spectrum of competing noncommensurate metrics; and (4) the lack of an adequate definition of workload compels physiologic correlations to suffer either from the vagueness of implicit workload measures or from the variance of explicit subjective assessments. Using specific studies as examples, two basic signal processing/data reduction techniques in current use, time and ensemble averaging are discussed.
Videophysiology--Videopsychology--Videoaesthetics.
ERIC Educational Resources Information Center
Malik, M. F.; Murphy, D.
This article considers the physiological, psychological, and aesthetical parameters of video on two levels--practical and conceptual. Physiological effects and processes are defined as those which occur within a human being when viewing a video event, while videopsychology focuses on how people use the medium of video and the possibilities for…
Bromochloromethane (BCM) is a volatile organic compound and a by-product of disinfection of water by chlorination. Physiologically based pharmacokinetic (PBPK) models are used in risk assessment applications and a PBPK model for BCM, Updated with F-344 specific input parameters,...
Physiologically based pharmacokinetic (PBPK) models are compartmental models that describe the uptake and distribution of drugs and chemicals throughout the body. They can be structured so that model parameters (i.e., physiological and chemical-specific) reflect biological charac...
Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest
Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Linda H. Pardo; Timothy J. Fahey
2013-01-01
Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature...
Tissue Physiology and Pathology of Aromatase
Stocco, Carlos
2011-01-01
Summary Aromatase is expressed in multiple tissues, indicating a crucial role for locally produced oestrogens in the differentiation, regulation and normal function of several organs and processes. This review is an overview of the role of aromatase in different tissues under normal physiological conditions and its contribution to the development of some oestrogen-related pathologies. PMID:22108547
A multiplex culture system for the long-term growth of fission yeast cells.
Callens, Céline; Coelho, Nelson C; Miller, Aaron W; Sananes, Maria Rosa Domingo; Dunham, Maitreya J; Denoual, Matthieu; Coudreuse, Damien
2017-08-01
Maintenance of long-term cultures of yeast cells is central to a broad range of investigations, from metabolic studies to laboratory evolution assays. However, repeated dilutions of batch cultures lead to variations in medium composition, with implications for cell physiology. In Saccharomyces cerevisiae, powerful miniaturized chemostat setups, or ministat arrays, have been shown to allow for constant dilution of multiple independent cultures. Here we set out to adapt these arrays for continuous culture of a morphologically and physiologically distinct yeast, the fission yeast Schizosaccharomyces pombe, with the goal of maintaining constant population density over time. First, we demonstrated that the original ministats are incompatible with growing fission yeast for more than a few generations, prompting us to modify different aspects of the system design. Next, we identified critical parameters for sustaining unbiased vegetative growth in these conditions. This requires deletion of the gsf2 flocculin-encoding gene, along with addition of galactose to the medium and lowering of the culture temperature. Importantly, we improved the flexibility of the ministats by developing a piezo-pump module for the independent regulation of the dilution rate of each culture. This made it possible to easily grow strains that have different generation times in the same assay. Our system therefore allows for maintaining multiple fission yeast cultures in exponential growth, adapting the dilution of each culture over time to keep constant population density for hundreds of generations. These multiplex culture systems open the door to a new range of long-term experiments using this model organism. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.
Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.
Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W
2012-01-01
The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.
Romero, G; Panzalis, R; Ruegg, P
2017-11-01
The aim of this paper was to study the relationship between milk flow emission variables recorded during milking of dairy goats with variables related to milking routine, goat physiology, milking parameters and milking machine characteristics, to determine the variables affecting milking performance and help the goat industry pinpoint farm and milking practices that improve milking performance. In total, 19 farms were visited once during the evening milking. Milking parameters (vacuum level (VL), pulsation ratio and pulsation rate, vacuum drop), milk emission flow variables (milking time, milk yield, maximum milk flow (MMF), average milk flow (AVMF), time until 500 g/min milk flow is established (TS500)), doe characteristics of 8 to 10 goats/farm (breed, days in milk and parity), milking practices (overmilking, overstripping, pre-lag time) and milking machine characteristics (line height, presence of claw) were recorded on every farm. The relationships between recorded variables and farm were analysed by a one-way ANOVA analysis. The relationships of milk yield, MMF, milking time and TS500 with goat physiology, milking routine, milking parameters and milking machine design were analysed using a linear mixed model, considering the farm as the random effect. Farm was significant (P<0.05) in all the studied variables. Milk emission flow variables were similar to those recommended in scientific studies. Milking parameters were adequate in most of the farms, being similar to those recommended in scientific studies. Few milking parameters and milking machine characteristics affected the tested variables: average vacuum level only showed tendency on MMF, and milk pipeline height on TS500. Milk yield (MY) was mainly affected by parity, as the interaction of days in milk with parity was also significant. Milking time was mainly affected by milk yield and breed. Also significant were parity, the interaction of days in milk with parity and overstripping, whereas overmilking showed a slight tendency. We concluded that most of the studied variables were mainly related to goat physiology characteristics, as the effects of milking parameters and milking machine characteristics were scarce.
NASA Astrophysics Data System (ADS)
Jiang, Peidong; Zhang, Jingxue
The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.
Manual editing of automatically recorded data in an anesthesia information management system.
Wax, David B; Beilin, Yaakov; Hossain, Sabera; Lin, Hung-Mo; Reich, David L
2008-11-01
Anesthesia information management systems allow automatic recording of physiologic and anesthetic data. The authors investigated the prevalence of such data modification in an academic medical center. The authors queried their anesthesia information management system database of anesthetics performed in 2006 and tabulated the counts of data points for automatically recorded physiologic and anesthetic parameters as well as the subset of those data that were manually invalidated by clinicians (both with and without alternate values manually appended). Patient, practitioner, data source, and timing characteristics of recorded values were also extracted to determine their associations with editing of various parameters in the anesthesia information management system record. A total of 29,491 cases were analyzed, 19% of which had one or more data points manually invalidated. Among 58 attending anesthesiologists, each invalidated data in a median of 7% of their cases when working as a sole practitioner. A minority of invalidated values were manually appended with alternate values. Pulse rate, blood pressure, and pulse oximetry were the most commonly invalidated parameters. Data invalidation usually resulted in a decrease in parameter variance. Factors independently associated with invalidation included extreme physiologic values, American Society of Anesthesiologists physical status classification, emergency status, timing (phase of the procedure/anesthetic), presence of an intraarterial catheter, resident or certified registered nurse anesthetist involvement, and procedure duration. Editing of physiologic data automatically recorded in an anesthesia information management system is a common practice and results in decreased variability of intraoperative data. Further investigation may clarify the reasons for and consequences of this behavior.
Medical Rapid Response in Psychiatry: Reasons for Activation and Immediate Outcome.
Manu, Peter; Loewenstein, Kristy; Girshman, Yankel J; Bhatia, Padam; Barnes, Maira; Whelan, Joseph; Solderitch, Victoria A; Rogozea, Liliana; McManus, Marybeth
2015-12-01
Rapid response teams are used to improve the recognition of acute deteriorations in medical and surgical settings. They are activated by abnormal physiological parameters, symptoms or clinical concern, and are believed to decrease hospital mortality rates. We evaluated the reasons for activation and the outcome of rapid response interventions in a 222-bed psychiatric hospital in New York City using data obtained at the time of all activations from January through November, 2012. The primary outcome was the admission rate to a medical or surgical unit for each of the main reasons for activation. The 169 activations were initiated by nursing staff (78.7 %) and psychiatrists (13 %) for acute changes in condition (64.5 %), abnormal physiological parameters (27.2 %) and non-specified concern (8.3 %). The most common reasons for activation were chest pain (14.2 %), fluctuating level of consciousness (9.5 %), hypertension (9.5 %), syncope or fall (8.9 %), hypotension (8.3 %), dyspnea (7.7 %) and seizures (5.9 %). The rapid response team transferred 127 (75.2 %) patients to the Emergency Department and 46 (27.2 %) were admitted to a medical or surgical unit. The admission rates were statistically similar for acute changes in condition, abnormal physiological parameters, and clinicians' concern. In conclusion, a majority of rapid response activations in a self-standing psychiatric hospital were initiated by nursing staff for changes in condition, rather than for policy-specified abnormal physiological parameters. The findings suggest that a rapid response system may empower psychiatric nurses to use their clinical skills to identify patients requiring urgent transfer to a general hospital.
Gunn, Hilary; Cameron, Michelle; Hoang, Phu; Lord, Stephen; Shaw, Steve; Freeman, Jennifer
2018-04-24
This study evaluated the relationship between physiological and perceived fall risk in people with multiple sclerosis (MS). Secondary analysis of data from prospective cohort studies undertaken in Australia, the United Kingdom, and the United States. Community. Ambulatory people with MS (N=416) (age 51.5±12.0 years; 73% female; 62% relapsing-remitting MS; 13.7±9.9 years disease duration). Not applicable. All participants completed measures of physiological (Physiological Profile Assessment [PPA]) and perceived (Falls Efficacy Scale-international [FESi]) fall risk and prospectively recorded falls for 3 months. 155 (37%) of the participants were recurrent fallers (≥2 falls). Mean PPA and FESi scores were high (PPA 2.14±1.87, FESi 34.27±11.18). The PPA and the FESi independently predicted faller classification in logistic regression, which indicated that the odds of being classified as a recurrent faller significantly increased with increasing scores (PPA odds ratio [OR] 1.30 [95% CI 1.17-1.46], FESi OR 1.05 [95% CI 1.03-1.07]). Classification and regression tree analysis divided the sample into four groups based on cutoff values for the PPA: (1) low physiological/low perceived risk (PPA <2.83, FESi <27.5), (2) low physiological/high perceived risk (PPA <2.83, FESi >27.5), (3) high physiological/low perceived risk (PPA >2.83, FESi <35.5), and (4) high physiological/high perceived risk (PPA <2.83, FESi >35.5). Over 50% of participants had a disparity between perceived and physiological fall risk; most were in group 2. It is possible that physiological risk factors not detected by the PPA may also be influential. This study highlights the importance of considering both physiological and perceived fall risk in MS and the need for further research to explore the complex interrelationships of perceptual and physiological risk factors in this population. This study also supports the importance of developing behavioral and physical interventions that can be tailored to the individual's needs. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Biochemical and physiological consequences of the Apollo flight diet.
NASA Technical Reports Server (NTRS)
Hander, E. W.; Leach, C. S.; Fischer, C. L.; Rummel, J.; Rambaut, P.; Johnson, P. C.
1971-01-01
Six male subjects subsisting on a typical Apollo flight diet for five consecutive days were evaluated for changes in biochemical and physiological status. Laboratory examinations failed to demonstrate any significant changes of the kind previously attributed to weightlessness, such as in serum electrolytes, endocrine values, body fluid, or hematologic parameters.
A physiologically-based pharmacokinetic (PBPK) model is being developed to estimate the dosimetry of toluene in rats inhaling the VOC under various experimental conditions. The effects of physical activity are currently being estimated utilizing a three-step process. First, we d...
This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. A...
USDA-ARS?s Scientific Manuscript database
We assessed whether a wheat bran extract containing arabino-xylan-oligosaccharide (AXOS) elicited a prebiotic effect and influenced other physiologic parameters when consumed in ready-to-eat cereal at two dose levels. This double-blind, randomized, controlled, crossover trial evaluated the effects o...
Relationship between human physiological parameters and geomagnetic variations of solar origin
NASA Astrophysics Data System (ADS)
Dimitrova, S.
Results presented concern influence of increased geomagnetic activity on some human physiological parameters. The blood pressure and heart rate of 86 volunteers were measured on working days in autumn 2001 (01/10 09/11) and in spring 2002 (08/04 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether 2799 recordings were obtained and analysed. Questionnaire information about subjective psycho-physiological complaints was also gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were the following: (1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; (2) gender males and females; (3) blood pressure degree persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors’ levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure of the group examined reached 9%. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase and the highest sensitivity was revealed for the hypertensive females.
Labrague, Leodoro J; McEnroe-Petitte, Denise M
2016-04-01
The aim of this study was to determine the influence of music on anxiety levels and physiologic parameters in women undergoing gynecologic surgery. This study employed a pre- and posttest experimental design with nonrandom assignment. Ninety-seven women undergoing gynecologic surgery were included in the study, where 49 were allocated to the control group (nonmusic group) and 48 were assigned to the experimental group (music group). Preoperative anxiety was measured using the State Trait Anxiety Inventory (STAI) while noninvasive instruments were used in measuring the patients' physiologic parameters (blood pressure [BP], pulse [P], and respiration [R]) at two time periods. Women allocated in the experimental group had lower STAI scores (t = 17.41, p < .05), systolic (t = 6.45, p < .05) and diastolic (t = 2.80, p < .006) BP, and P rate (PR; t = 7.32, p < .05) than in the control group. This study provides empirical evidence to support the use of music during the preoperative period in reducing anxiety and unpleasant symptoms in women undergoing gynecologic surgery. © The Author(s) 2014.
Physiological monitoring and control in hemodialysis: state of the art and outlook.
Kraemer, Matthias
2006-09-01
Medical devices for monitoring and feedback control of physiological parameters of the dialysis patient were introduced in the early 1990s. They have a wide range of applications, aiming at increasing the safety and ensuring the efficiency of the treatment, and at an improved restoration of physiological conditions, leading to an overall reduction in morbidity and mortality. Such devices include sensors for the measurement of temperature, optical parameters and sound speed in blood, and electrical characteristics of the human body, and other parameters. Essential for the development of these devices is a detailed understanding of the pathophysiological background of a therapeutical problem. There is still a large potential to introduce new devices for further therapy improvement and automation. Also, the size of the hemodialysis market appears attractive; however, a new product has to meet several specific requirements in order to also become commercially successful. This review describes the therapeutic and technical principles of several available devices, reports on concepts for possible future devices, and presents a short overview on the market environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overton, J.H.; Jarabek, A.M.
1989-01-01
The U.S. EPA advocates the assessment of health-effects data and calculation of inhaled reference doses as benchmark values for gauging systemic toxicity to inhaled gases. The assessment often requires an inter- or intra-species dose extrapolation from no observed adverse effect level (NOAEL) exposure concentrations in animals to human equivalent NOAEL exposure concentrations. To achieve this, a dosimetric extrapolation procedure was developed based on the form or type of equations that describe the uptake and disposition of inhaled volatile organic compounds (VOCs) in physiologically-based pharmacokinetic (PB-PK) models. The procedure assumes allometric scaling of most physiological parameters and that the value ofmore » the time-integrated human arterial-blood concentration must be limited to no more than to that of experimental animals. The scaling assumption replaces the need for most parameter values and allows the derivation of a simple formula for dose extrapolation of VOCs that gives equivalent or more-conservative exposure concentrations values than those that would be obtained using a PB-PK model in which scaling was assumed.« less
Robertson, Tony; Beveridge, Gayle; Bromley, Catherine
2017-01-01
Allostatic load is a multiple biomarker measure of physiological 'wear and tear' that has shown some promise as marker of overall physiological health, but its power as a risk predictor for mortality and morbidity is less well known. This study has used data from the 2003 Scottish Health Survey (SHeS) (nationally representative sample of Scottish population) linked to mortality records to assess how well allostatic load predicts all-cause and cause-specific mortality. From the sample, data from 4,488 men and women were available with mortality status at 5 and 9.5 (rounded to 10) years after sampling in 2003. Cox proportional hazard models estimated the risk of death (all-cause and the five major causes of death in the population) according to allostatic load score. Multiple imputation was used to address missing values in the dataset. Analyses were also adjusted for potential confounders (sex, age and deprivation). There were 258 and 618 deaths over the 5-year and 10-year follow-up period, respectively. In the fully-adjusted model, higher allostatic load (poorer physiological 'health') was not associated with an increased risk of all-cause mortality after 5 years (HR = 1.07, 95% CI 0.94 to 1.22; p = 0.269), but it was after 10 years (HR = 1.08, 95% CI 1.01 to 1.16; p = 0.026). Allostatic load was not associated with specific causes of death over the same follow-up period. In conclusions, greater physiological wear and tear across multiple physiological systems, as measured by allostatic load, is associated with an increased risk of death, but may not be as useful as a predictor for specific causes of death.
Beveridge, Gayle; Bromley, Catherine
2017-01-01
Allostatic load is a multiple biomarker measure of physiological ‘wear and tear’ that has shown some promise as marker of overall physiological health, but its power as a risk predictor for mortality and morbidity is less well known. This study has used data from the 2003 Scottish Health Survey (SHeS) (nationally representative sample of Scottish population) linked to mortality records to assess how well allostatic load predicts all-cause and cause-specific mortality. From the sample, data from 4,488 men and women were available with mortality status at 5 and 9.5 (rounded to 10) years after sampling in 2003. Cox proportional hazard models estimated the risk of death (all-cause and the five major causes of death in the population) according to allostatic load score. Multiple imputation was used to address missing values in the dataset. Analyses were also adjusted for potential confounders (sex, age and deprivation). There were 258 and 618 deaths over the 5-year and 10-year follow-up period, respectively. In the fully-adjusted model, higher allostatic load (poorer physiological ‘health’) was not associated with an increased risk of all-cause mortality after 5 years (HR = 1.07, 95% CI 0.94 to 1.22; p = 0.269), but it was after 10 years (HR = 1.08, 95% CI 1.01 to 1.16; p = 0.026). Allostatic load was not associated with specific causes of death over the same follow-up period. In conclusions, greater physiological wear and tear across multiple physiological systems, as measured by allostatic load, is associated with an increased risk of death, but may not be as useful as a predictor for specific causes of death. PMID:28813505
Kambhampati, Murty S.; Begonia, Gregorio B.; Begonia, Maria F. T.; Bufford, Yolanda
2005-01-01
Lead (Pb) is one of the most toxic metals in the environment and may cause drastic morphological and physiological deformities in Ipomoea lacunosa. The goal of this research was to evaluate some morphological and physiological responses of morning glory grown on a Pb- and chelate-amended soil. Soil samples were analyzed, at Mississippi State University Soil Laboratory, for physico-chemical parameters, such as soil texture (73% sand, 23% silt, 4.4% clay), organic matter (6.24 ± 0.60%), and pH (7.95 ± 0.03), to establish soil conditions at the beginning of the experiments. Five EDTA (ethylenediaminetetraacetic acid) concentrations (0, 0.1, 0.5, 1, 5mM) and four lead (0, 500, 1000, 2000mg/L) treatments were arranged in factorial in a Randomized Complete Block (RCB) design with five replications. Duncan’s multiple comparison range test showed that the mean difference values of stomatal density were significant between 500 and 1000mg/L Pb and between 1000 and 2000mg/L Pb. Two way ANOVA (at 1% level) indicated that interaction between Pb and EDTA had a significant effect on the stomatal density and photosynthetic rates, and at 5% level Pb had a significant effect on chlorophyll concentrations. Lowest concentrations of chlorophyll were recorded at 2000mg/L Pb and 5mM EDTA and exhibited a decreasing trend specifically in the ranges of 1000 and 2000mg/L Pb and 1.0 and 5.0mM EDTA. Duncan’s multiple comparison range test confirmed that mean differences between the control treatment vs. 2000mg/L Pb, and 500mg/L vs. 2000mg/L Pb were significantly different at p>0.05. There was a decrease in leaf net photosynthetic rate with increasing concentrations of Pb from 0 to 2000mg/L. In conclusion, I. lacunosa L. plants were grown to maturity in all treatments with no significant and/or apparent morphological disorders, which indicated that this species might be highly tolerant even at 2000mg/L Pb concentrations in the soil. PMID:16705831
Kambhampati, Murty S; Begonia, Gregorio B; Begonia, Maria F T; Bufford, Yolanda
2005-08-01
Lead (Pb) is one of the most toxic metals in the environment and may cause drastic morphological and physiological deformities in Ipomoea lacunosa. The goal of this research was to evaluate some morphological and physiological responses of morning glory grown on a Pb- and chelate-amended soil. Soil samples were analyzed, at Mississippi State University Soil Laboratory, for physico-chemical parameters, such as soil texture (73% sand, 23% silt, 4.4% clay), organic matter (6.24 +/- 0.60%), and pH (7.95 +/- 0.03), to establish soil conditions at the beginning of the experiments. Five EDTA (ethylenediaminetetraacetic acid) concentrations (0, 0.1, 0.5, 1, 5mM) and four lead (0, 500, 1000, 2000mg/L) treatments were arranged in factorial in a Randomized Complete Block (RCB) design with five replications. Duncan's multiple comparison range test showed that the mean difference values of stomatal density were significant between 500 and 1000mg/L Pb and between 1000 and 2000mg/L Pb. Two way ANOVA (at 1% level) indicated that interaction between Pb and EDTA had a significant effect on the stomatal density and photosynthetic rates, and at 5% level Pb had a significant effect on chlorophyll concentrations. Lowest concentrations of chlorophyll were recorded at 2000mg/L Pb and 5mM EDTA and exhibited a decreasing trend specifically in the ranges of 1000 and 2000mg/L Pb and 1.0 and 5.0mM EDTA. Duncan's multiple comparison range test confirmed that mean differences between the control treatment vs. 2000mg/L Pb, and 500mg/L vs. 2000mg/L Pb were significantly different atp>0.05. There was a decrease in leaf net photosynthetic rate with increasing concentrations of Pb from 0 to 2000mg/L. In conclusion, I. lacunosa L. plants were grown to maturity in all treatments with no significant and/or apparent morphological disorders, which indicated that this species might be highly tolerant even at 2000mg/L Pb concentrations in the soil.
Estimating physiological skin parameters from hyperspectral signatures
NASA Astrophysics Data System (ADS)
Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe
2013-05-01
We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.
Belanger, Christina L.
2012-01-01
Modern climate change has a strong potential to shift earth systems and biological communities into novel states that have no present-day analog, leaving ecologists with no observational basis to predict the likely biotic effects. Fossil records contain long time-series of past environmental changes outside the range of modern observation, which are vital for predicting future ecological responses, and are capable of (a) providing detailed information on rates of ecological change, (b) illuminating the environmental drivers of those changes, and (c) recording the effects of environmental change on individual physiological rates. Outcrops of Early Miocene Newport Member of the Astoria Formation (Oregon) provide one such time series. This record of benthic foraminiferal and molluscan community change from continental shelf depths spans a past interval environmental change (∼20.3-16.7 mya) during which the region warmed 2.1–4.5°C, surface productivity and benthic organic carbon flux increased, and benthic oxygenation decreased, perhaps driven by intensified upwelling as on the modern Oregon coast. The Newport Member record shows that (a) ecological responses to natural environmental change can be abrupt, (b) productivity can be the primary driver of faunal change during global warming, (c) molluscs had a threshold response to productivity change while foraminifera changed gradually, and (d) changes in bivalve body size and growth rates parallel changes in taxonomic composition at the community level, indicating that, either directly or indirectly through some other biological parameter, the physiological tolerances of species do influence community change. Ecological studies in modern and fossil records that consider multiple ecological levels, environmental parameters, and taxonomic groups can provide critical information for predicting future ecological change and evaluating species vulnerability. PMID:22558424
Attene, Giuseppe; Nikolaidis, Pantelis T.; Bragazzi, Nicola L.; Dello Iacono, Antonio; Pizzolato, Fabio; Zagatto, Alessandro M.; Dal Pupo, Juliano; Oggianu, Marcello; Migliaccio, Gian M.; Mannucci Pacini, Elena; Padulo, Johnny
2016-01-01
The aim of this study was to examine the effects of a 5-week training program, consisting of repeated 30-m sprints, on two repeated sprint ability (RSA) test formats: one with one change of direction (RSA) and the other with multiple changes of direction (RSM). Thirty-six young male and female basketball players (age 16.1 ± 0.9 years), divided into two experimental groups, were tested for RSA, RSM, squat jump, counter-movement jump, and the Yo-Yo Intermittent Recovery-Level-1 (Yo-Yo IR1) test, before and after a 4-week training program and 1 week of tapering. One group performed 30-m sprints with one change of direction (RSA group, RSAG), whereas the other group performed multidirectional 30-m sprints (RSM group, RSMG). Both groups improved in all scores in the post-intervention measurements (P < 0.05), except for the fatigue index in the RSM test. However, when comparing the two groups, similar effects were found for almost all parameters of the tests applied, except for RPE in the RSA test, which had a greater decrease in the RSAG (from 8.7 to 5.9) than in the RSMG (from 8.5 to 6.6, P = 0.021). We can conclude that repeated 30-m sprints, either with one change of direction or multidirectional, induce similar physiological and performance responses in young basketball players, but have a different psycho-physiological impact. PMID:27445852
From Micro to Nano: The Evolution of Wireless Sensor-Based Health Care.
Sarkar, Subhadeep; Misra, Sudip
2016-01-01
Over the past decade, embedded systems and microelectromechanical systems have evolved in a radical way, redefining our standard of living and enhancing the quality of life. Health care, among various other fields, has benefited vastly from this technological development. The concept of using sensors for health care purposes originated in the late 1980s when sensors were developed to measure certain physiological parameters associated with the human body. In traditional sensor nodes, the signal sources are mostly different environmental phenomena (such as temperature, vibration, and luminosity) or man-made events (such as intrusion and mobile target tracking), whereas in case of the physiological sensors, the signal source is living human tissue. These sensor nodes, as their primary sensing element, have a diaphragm that converts pressure into displacement. This displacement, in turn, is subsequently transformed into an electrical signal. The concept of wireless physiological sensor nodes, however, gained popularity in the mid-2000s, with the sensed data from the nodes transmitted to the hub via a wireless medium. The network formed by this heterogeneous set of wireless body sensor nodes is termed a wireless body-area network (WBAN). Each WBAN is essentially a composition of multiple wireless body sensor nodes and a single hub. The hub is primarily responsible for acquisition of the raw sensed data from all the component sensor nodes and first-level aggregation of the data before transmitting the aggregated data for further analysis to a remote data acquisition center. Here, we outline the evolution of WBANs in the context of modern health care and its convergence with nanotechnology.
Barss, Trevor S; Ainsley, Emily N; Claveria-Gonzalez, Francisca C; Luu, M John; Miller, Dylan J; Wiest, Matheus J; Collins, David F
2018-04-01
Neuromuscular electrical stimulation (NMES) is used to produce contractions to restore movement and reduce secondary complications for individuals experiencing motor impairment. NMES is conventionally delivered through a single pair of electrodes over a muscle belly or nerve trunk using short pulse durations and frequencies between 20 and 40Hz (conventional NMES). Unfortunately, the benefits and widespread use of conventional NMES are limited by contraction fatigability, which is in large part because of the nonphysiological way that contractions are generated. This review provides a summary of approaches designed to reduce fatigability during NMES, by using physiological principles that help minimize fatigability of voluntary contractions. First, relevant principles of the recruitment and discharge of motor units (MUs) inherent to voluntary contractions and conventional NMES are introduced, and the main mechanisms of fatigability for each contraction type are briefly discussed. A variety of NMES approaches are then described that were designed to reduce fatigability by generating contractions that more closely mimic voluntary contractions. These approaches include altering stimulation parameters, to recruit MUs in their physiological order, and stimulating through multiple electrodes, to reduce MU discharge rates. Although each approach has unique advantages and disadvantages, approaches that minimize MU discharge rates hold the most promise for imminent translation into rehabilitation practice. The way that NMES is currently delivered limits its utility as a rehabilitative tool. Reducing fatigability by delivering NMES in ways that better mimic voluntary contractions holds promise for optimizing the benefits and widespread use of NMES-based programs. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Wearable Environmental and Physiological Sensing Unit
NASA Technical Reports Server (NTRS)
Spremo, Stevan; Ahlman, Jim; Stricker, Ed; Santos, Elmer
2007-01-01
The wearable environmental and physiological sensing unit (WEPS) is a prototype of systems to be worn by emergency workers (e.g., firefighters and members of hazardous-material response teams) to increase their level of safety. The WEPS includes sensors that measure a few key physiological and environmental parameters, a microcontroller unit that processes the digitized outputs of the sensors, and a radio transmitter that sends the processed sensor signals to a computer in a mobile command center for monitoring by a supervisor. The monitored parameters serve as real-time indications of the wearer s physical condition and level of activity, and of the degree and type of danger posed by the wearer s environment. The supervisor could use these indications to determine, for example, whether the wearer should withdraw in the face of an increasing hazard or whether the wearer should be rescued.
Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne
2015-08-19
This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors.
Nassiri, Parvin; Monazzam, Mohammad Reza; Golbabaei, Farideh; Dehghan, Somayeh Farhang; Rafieepour, Athena; Mortezapour, Ali Reza; Asghari, Mehdi
2017-10-07
The purpose of this article is to examine the applicability of Universal Thermal Climate Index (UTCI) index as an innovative index for evaluating of occupational heat stress in outdoor environments. 175 workers of 12 open-pit mines in Tehran, Iran were selected for this research study. First, the environmental variables such as air temperature, wet-bulb temperature, globe temperature, relative humidity and air flow rate were measured; then UTCI, wet-bulb globe temperature (WBGT) and heat stress index (HSI) indices were calculated. Simultaneously, physiological parameters including heart rate, oral temperature, tympanic temperature and skin temperature of workers were measured. UTCI and WBGT are positively significantly correlated with all environmental parameters (p<0.03), except for air velocity (r<-0.39; p>0.05). Moreover, a strong significant relationship was found between UTCI and WBGT (r=0.95; p<0.001). The significant positive correlations exist between physiological parameters including oral temperature, tympanic and skin temperatures and heart rate and both the UTCI and WBGT indices (p<0.029). The highest correlation coefficient has been found between the UTCI and physiological parameters. Due to the low humidity and air velocity (~<1 m/s) in understudied mines, UTCI index appears to be appropriate to assess the occupational heat stress in these outdoor workplaces.
Inter-Individual Variability in High-Throughput Risk ...
We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have little or no existing TK data. Chemicals are prioritized based on model estimates of hazard and exposure, to decide which chemicals should be first in line for further study. Hazard may be estimated with in vitro HT screening assays, e.g., U.S. EPA’s ToxCast program. Bioactive ToxCast concentrations can be extrapolated to doses that produce equivalent concentrations in body tissues using a reverse TK approach in which generic TK models are parameterized with 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. Here we draw physiological parameters from realistic estimates of distributions of demographic and anthropometric quantities in the modern U.S. population, based on the most recent CDC NHANES data. A Monte Carlo approach, accounting for the correlation structure in physiological parameters, is used to estimate ToxCast equivalent doses for the most sensitive portion of the population. To quantify risk, ToxCast equivalent doses are compared to estimates of exposure rates based on Bayesian inferences drawn from NHANES urinary analyte biomonitoring data. The inclusion
Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich
2016-07-01
A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Ye, Jing-Jhao; Chuang, Chiung-Cheng; Tai, Yu-Ting; Lee, Kuan-Ting; Hung, Kuo-Sheng
2017-09-01
Radiofrequency therapy (RFT) generates molecular motion and produces heat and electromagnetic effects on tissues, which attenuate pain sensation and thereby relieve pain. This study was to observe the altering trend of physiological parameters after RFT for chronic cervical or lumbar pain. This study recruited 66 patients with chronic cervical or lumbar pain and recorded their physiological parameters before and after RFT using heart rate variability (HRV) and photoplethysmography (PPG) to explore the feasibility of RFT efficacy assessment. The patients' visual analog scale scores significantly decreased after RFT and the HRV parameters that represented parasympathetic activity significantly changed (HR decreased, and R-R interval and low- and high-frequency power increased significantly). Meanwhile, the PPG parameters that represented sympathetic activity also increased (PPG amplitude and autonomic nervous system state significantly decreased). This study showed significant efficacy of RFT in patients with chronic cervical or lumbar pain. The changes of HRV and PPG parameters may explain part of the mechanisms of RFT. © 2016 World Institute of Pain.
ERIC Educational Resources Information Center
Cramer, Nicholas; Asmar, Abdo; Gorman, Laurel; Gros, Bernard; Harris, David; Howard, Thomas; Hussain, Mujtaba; Salazar, Sergio; Kibble, Jonathan D.
2016-01-01
Multiple-choice questions are a gold-standard tool in medical school for assessment of knowledge and are the mainstay of licensing examinations. However, multiple-choice questions items can be criticized for lacking the ability to test higher-order learning or integrative thinking across multiple disciplines. Our objective was to develop a novel…
A microvascular compartment model validated using 11C-methylglucose liver PET in pigs
NASA Astrophysics Data System (ADS)
Munk, Ole L.; Keiding, Susanne; Baker, Charles; Bass, Ludvik
2018-01-01
The standard compartment model (CM) is widely used to analyse dynamic PET data. The CM is fitted to time-activity curves to estimate rate constants that describe the transport of a tracer between well-mixed compartments. The aim of this study was to develop and validate a more realistic microvascular compartment model (MCM) that includes capillary tracer concentration gradients, backflux from cells into the perfused capillaries and multiple re-uptakes during the passage through a capillary. The MCM incorporates only parameters with clear physiological meaning, it is easy to implement, and it does not require numerical solution. We compared the MCM and CM for the analysis of 3 min dynamic PET data of pig livers (N = 5) following injection of 11C-methylglucose. During PET scans, the tracer concentrations in blood were measured in the abdominal aorta, portal vein and liver vein by manual sampling. We found that the MCM outperformed the CM and that dynamic PET data include information which cannot be extracted using standard CM. The MCM fitted dynamic PET data better than the CM (Akaike values were 46 ± 4 for best MCM fits, and 82 ± 8 for best CM fits; mean ± standard deviation) and extracted physiologically reasonable parameter estimates such as blood perfusion that were in agreement with independent measurements. The difference between model-independent perfusion estimates and the best MCM perfusion estimates was -0.01 ± 0.05 ml/ml/min, whereas the difference was 0.30 ± 0.13 ml/ml/min using the CM. In addition, the MCM predicted the time course of concentrations in the liver vein, a prediction fundamentally unobtainable using the CM as it does not return tracer backflux from cells to capillary blood. The results demonstrate the benefit of using models that include more physiology and that models including concentration gradients should be preferred when analysing the blood-cell exchange of any tracer in any capillary bed.
Andreozzi, Stefano; Miskovic, Ljubisa; Hatzimanikatis, Vassily
2016-01-01
Accurate determination of physiological states of cellular metabolism requires detailed information about metabolic fluxes, metabolite concentrations and distribution of enzyme states. Integration of fluxomics and metabolomics data, and thermodynamics-based metabolic flux analysis contribute to improved understanding of steady-state properties of metabolism. However, knowledge about kinetics and enzyme activities though essential for quantitative understanding of metabolic dynamics remains scarce and involves uncertainty. Here, we present a computational methodology that allow us to determine and quantify the kinetic parameters that correspond to a certain physiology as it is described by a given metabolic flux profile and a given metabolite concentration vector. Though we initially determine kinetic parameters that involve a high degree of uncertainty, through the use of kinetic modeling and machine learning principles we are able to obtain more accurate ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli producing 1,4-butanediol and we discovered that the observed physiological state corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests which are the enzymes that should be manipulated in order to engineer the reference state of the cell in a desired way. The proposed approach also sets up the foundations of a novel type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Bauerle, William L.; Bowden, Joseph D.
2011-01-01
A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246
Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu
2018-01-01
We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.
Rodríguez, Airam; Broggi, Juli; Alcaide, Miguel; Negro, Juan José; Figuerola, Jordi
2014-08-01
Individual immune responses are likely affected by genetic, physiological, and environmental determinants. We studied the determinants and short-term consequences of Phytohaemagglutinin (PHA) induced immune response, a commonly used immune challenge eliciting both innate and acquired immunity, on lesser kestrel (Falco naumanni) nestlings in semi-captivity conditions and with a homogeneous diet composition. We conducted a repeated measures analyses of a set of blood parameters (carotenoids, triglycerides, β-hydroxybutyrate, cholesterol, uric acid, urea, total proteins, and total antioxidant capacity), metabolic (resting metabolic rate), genotypic (MHC class II B heterozygosity), and biometric (body mass) variables. PHA challenge did not affect the studied physiological parameters on a short-term basis (<12 hr), except plasma concentrations of triglycerides and carotenoids, which decreased and increased, respectively. Uric acid was the only physiological parameter correlated with the PHA induced immune response (skin swelling), but the change of body mass, cholesterol, total antioxidant capacity, and triglycerides between sessions (i.e., post-pre treatment) were also positively correlated to PHA response. No relationships were detected between MHC gene heterozygosity or resting metabolic rate and PHA response. Our results indicate that PHA response in lesser kestrel nestlings growing in optimal conditions does not imply a severe energetic cost 12 hr after challenge, but is condition-dependent as a rapid mobilization of carotenoids and decrease of triglycerides is elicited on a short-term basis. © 2014 Wiley Periodicals, Inc.
Real time reconstruction of quasiperiodic multi parameter physiological signals
NASA Astrophysics Data System (ADS)
Ganeshapillai, Gartheeban; Guttag, John
2012-12-01
A modern intensive care unit (ICU) has automated analysis systems that depend on continuous uninterrupted real time monitoring of physiological signals such as electrocardiogram (ECG), arterial blood pressure (ABP), and photo-plethysmogram (PPG). These signals are often corrupted by noise, artifacts, and missing data. We present an automated learning framework for real time reconstruction of corrupted multi-parameter nonstationary quasiperiodic physiological signals. The key idea is to learn a patient-specific model of the relationships between signals, and then reconstruct corrupted segments using the information available in correlated signals. We evaluated our method on MIT-BIH arrhythmia data, a two-channel ECG dataset with many clinically significant arrhythmias, and on the CinC challenge 2010 data, a multi-parameter dataset containing ECG, ABP, and PPG. For each, we evaluated both the residual distance between the original signals and the reconstructed signals, and the performance of a heartbeat classifier on a reconstructed ECG signal. At an SNR of 0 dB, the average residual distance on the CinC data was roughly 3% of the energy in the signal, and on the arrhythmia database it was roughly 16%. The difference is attributable to the large amount of diversity in the arrhythmia database. Remarkably, despite the relatively high residual difference, the classification accuracy on the arrhythmia database was still 98%, indicating that our method restored the physiologically important aspects of the signal.
Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients.
Triantafyllopoulos, Dimitrios; Korvesis, Panagiotis; Mporas, Iosif; Megalooikonomou, Vasileios
2016-03-01
New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient's physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data.
Indicators of Multiple Personality Disorder for the Clinician.
ERIC Educational Resources Information Center
Dalton, Thomas W.
Multiple personality disorder (MPD) is now recognized as a valid diagnostic category. Occurrence may be higher than previously suspected. While physiological testing of MPD has shown significant differences between the various personalities of individuals in terms of galvanic skin response, electroencephalogram recordings, electrodermal response…
ERIC Educational Resources Information Center
Benevides, Teal W.; Lane, Shelly J.
2015-01-01
The autonomic nervous system (ANS) is responsible for multiple physiological responses, and dysfunction of this system is often hypothesized as contributing to cognitive, affective, and behavioral responses in children. Research suggests that examination of ANS activity may provide insight into behavioral dysregulation in children with autism…
Melatonin, The Pineal Gland and Circadian Rhythms
1992-04-30
physiological rhythms including locomotion, sleep/wake, thermoregulation , car- diovascular function and many endocrine processes. Among the rhythms under SCN...control of a wide array of behavioral and physiological rhythms including locomotion, sleep/wake, thermoregulation , cardiovascular function and many... reptiles and birds, overt rhythmicity results from the integration of multiple circadian oscillators within the pineal gland, eyes and the presumed
Zhu, Mingku; Meng, Xiaoqing; Cai, Jing; Li, Ge; Dong, Tingting; Li, Zongyun
2018-05-08
Basic region/leucine zipper (bZIP) transcription factors perform as crucial regulators in ABA-mediated stress response in plants. Nevertheless, the functions for most bZIP family members in tomato remain to be deciphered. Here we examined the functional characterization of SlbZIP1 under salt and drought stresses in tomato. Silencing of SlbZIP1 in tomato resulted in reduced expression of multiple ABA biosynthesis- and signal transduction-related genes in transgenic plants. In stress assays, SlbZIP1-RNAi transgenic plants exhibited reduced tolerance to salt and drought stresses compared with WT plants, as are evaluated by multiple physiological parameters associated with stress responses, such as decreased ABA, chlorophyll contents and CAT activity, and increased MDA content. In addition, RNA-seq analysis of transgenic plants revealed that the transcription levels of multiple genes encoding defense proteins related to responses to abiotic stress (e.g. endochitinase, peroxidases, and lipid transfer proteins) and biotic stress (e.g. pathogenesis-related proteins) were downregulated in SlbZIP1-RNAi plants, suggesting that SlbZIP1 plays a role in regulating the genes related to biotic and abiotic stress response. Collectively, the data suggest that SlbZIP1 exerts an essential role in salt and drought stress tolerance through modulating an ABA-mediated pathway, and SlbZIP1 may hold potential applications in the engineering of salt- and drought-tolerant tomato cultivars.
Multiple turnovers of the nicotino-enzyme PdxB require α-keto acids as co-substrates
Rudolph, Johannes; Kim, Juhan; Copley, Shelley D.
2012-01-01
PdxB catalyzes the second step in the biosynthesis of pyridoxal phosphate by oxidizing 4-phospho-D-erythronate (4PE) to 2-oxo-3-hydroxy-4-phospho-butanoate (OHPB) with concomitant reduction of NAD+ to NADH. PdxB is a nicotino-enzyme wherein the NAD(H) cofactor remains tightly bound to PdxB. It has been a mystery how PdxB performs multiple turnovers since addition of free NAD+ does not re-oxidize the enzyme-bound NADH following conversion of 4PE to OHPB. We have solved this mystery by demonstrating that a variety of physiologically available α-ketoacids serve as oxidants of PdxB to sustain multiple turnovers. In a coupled assay using the next two enzymes of the biosynthetic pathway for pyridoxal phosphate (SerC and PdxA), we have found that α-ketoglutarate, oxaloacetic acid, and pyruvate are equally good substrates for PdxB (kcat/Km values ~ 1 × 104 M-1s-1). The kinetic parameters for the substrate 4PE include a kcat of 1.4 s-1, a Km of 2.9 μM, and a kcat/Km of 6.7 × 106 M-1s-1. Additionally, we have characterized the stereochemistry of α-ketoglutarate reduction by showing that D-2-HGA, but not L-2-HGA, is a competitive inhibitor vs. 4PE and a noncompetitive inhibitor vs. α-ketoglutarate. PMID:20831184
Wickrama, K. A. S.; Kwon, Josephine A.; Oshri, Assaf; Lee, Tae Kyoung
2014-01-01
Purpose The present study investigated the psycho-physiological inter and intra-individual processes that mediate the linkage between childhood/adolescent socioeconomic adversities and adult health outcomes. Specifically, the proposed model examined the roles of youth depressive symptoms and BMI trajectories as mediators that explain the link between early adversity and young adults’ general health and physical illnesses after controlling for gender, race/ethnicity, and earlier general health reports. Methods Using a nationally representative sample of 12,424 from National Longitudinal Study of Adolescent Health (Add Health), this study used growth curve modeling to consider both the severity (initial level) as well as the change over time (deterioration or elevation) as psycho-physiological mediators, thereby acknowledging multiple facets of depressive symptoms and BMI trajectories as psych-physiological mediators of early adversity to adult health. Results Results provide evidence for (a) the influence of early childhood and early adolescent cumulative socioeconomic adversity on both the initial levels and changes over time of depressive symptoms and BMI and (b) the independent influences depressive symptoms and BMI trajectories on the general health and the physical illnesses of young adults Conclusions These findings contribute valuable knowledge to existing research by elucidating how early adversity exerts an enduring long-term influence on physical health problems in young adulthood; further, this information suggests effective intervention and prevention programs should incorporate multiple facets (severity and change over time) of multiple mechanisms (psychological and physiological). PMID:24856408
Simultaneous and sequential hemorrhage of multiple cerebral cavernous malformations: a case report.
Louis, Nundia; Marsh, Robert
2016-02-09
The etiology of cerebral cavernous malformation hemorrhage is not well understood. Causative physiologic parameters preceding hemorrhagic cavernous malformation events are often not reported. We present a case of an individual with sequential simultaneous hemorrhages in multiple cerebral cavernous malformations with a new onset diagnosis of hypertension. A 42-year-old white man was admitted to our facility with worsening headache, left facial and tongue numbness, dizziness, diplopia, and elevated blood pressure. His past medical history was significant for new onset diagnosis of hypertension and chronic seasonal allergies. Serial imaging over the ensuing 8 days revealed sequential hemorrhagic lesions. He underwent suboccipital craniotomy for resection of the lesions located in the fourth ventricle and right cerebellum. One month after surgery, he had near complete resolution of his symptoms with mild residual vertigo but symptomatic chronic hypertension. Many studies have focused on genetic and inflammatory mechanisms contributing to cerebral cavernous malformation rupture, but few have reported on the potential of hemodynamic changes contributing to cerebral cavernous malformation rupture. Systemic blood pressure changes clearly have an effect on angioma pressures. When considering the histopathological features of cerebral cavernous malformation architecture, changes in arterial pressure could cause meaningful alterations in hemorrhage propensity and patterns.
Short-term effects of fertilization on loblolly pine (Pinus taeda L.) physiology
C.M. Gough; J.R. Seiler; Chris A. Maier
2004-01-01
Fertilization commonly increases biomass production in loblolly pine (Pinus taeda L.). However, the sequence of short-term physiological adjustments allowing for the establishment of leaf area and enhanced growth is not well understood. The effects of fertilization on photosynthetic parameters, root respiration, and growth for over 200 d following...
USDA-ARS?s Scientific Manuscript database
This study measured physiological, immunological, and endocrinological responses of Bos indicus cattle of differing temperaments to transportation. Based on temperament score (TS) the 7 most Calm (TS = 0.84 ± 0.03) and 8 most Temperamental (TS = 3.37 ± 0.18) Brahman bulls were selected from our rese...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to provide a comprehensive evaluation of chromium (Cr) supplementation on metabolic, physiologic, and phenotypic parameters in subjects with Type 2 DM and evaluate changes in “responders” and “non-responders”. After pre-intervention testing to assess glycemia, insuli...
NASA Astrophysics Data System (ADS)
Zakynthinaki, M. S.; Stirling, J. R.
2007-01-01
Stochastic optimization is applied to the problem of optimizing the fit of a model to the time series of raw physiological (heart rate) data. The physiological response to exercise has been recently modeled as a dynamical system. Fitting the model to a set of raw physiological time series data is, however, not a trivial task. For this reason and in order to calculate the optimal values of the parameters of the model, the present study implements the powerful stochastic optimization method ALOPEX IV, an algorithm that has been proven to be fast, effective and easy to implement. The optimal parameters of the model, calculated by the optimization method for the particular athlete, are very important as they characterize the athlete's current condition. The present study applies the ALOPEX IV stochastic optimization to the modeling of a set of heart rate time series data corresponding to different exercises of constant intensity. An analysis of the optimization algorithm, together with an analytic proof of its convergence (in the absence of noise), is also presented.
Yao, Ye; Lian, Zhiwei; Liu, Weiwei; Shen, Qi
2008-01-28
This study mainly explored the thermal comfort from the perspective of physiology. Three physiological parameters, including skin temperature (local and mean), electrocardiograph (ECG) and electroencephalogram (EEG), were investigated to see how they responded to the ambient temperature and how they were related to the thermal comfort sensation. A total of four ambient temperatures (21 degrees C, 24 degrees C, 26 degrees C and 29 degrees C) were created, while the other thermal conditions including the air velocity (about 0.05+/-0.01 m/s) and the air humidity (about 60+/-5 m/s) were kept as stable as possible throughout the experiments. Twenty healthy students were tested with questionnaire investigation under those thermal environments. The statistical analysis shows that the skin temperature (local and mean), the ratio of LF(norm) to HF(norm) of ECG and the global relative power of the different EEG frequency bands will be sensitive to the ambient temperatures and the thermal sensations of the subjects. It is suggested that the three physiological parameters should be considered all together in the future study of thermal comfort.
Jones, Hannah; Santamaria, Nick
2018-06-01
Focus on skin-to-skin contact (SSC) as a family-centered care intervention in Neonatal Intensive Special Care (NISC) Units continues to increase. Previously, SSC has been shown to improve neonatal physiological stability, support brain development, and promote bonding and attachment. Limited research exists investigating SSC duration and neonatal physiological responses. This study examined the relationship between SSC duration and the neonate's oxygen saturation, heart rate (HR), respiratory rate (RR), and temperature. An observational cohort study was conducted at The Royal Women's Hospital NISC Unit in Melbourne, Australia. For each neonate participant, 1 SSC with their parent was studied (parent convenience) and neonatal physiological parameters recorded, with a bivariate correlation used to explore the relationship between the duration of SSC and the percentage of time during SSC that the neonate's physiological variables remained within a target range. No correlation existed between the duration of SSC and the neonatal physiological variables of oxygen saturation, HR, RR, and temperature. However, neonatal oxygen requirement was more often reduced across the duration of SSC. Due to previously documented benefits to neonates physiologically from SSC, and our supportive finding that SSC reduces neonatal oxygen requirement, we believe that this study adds to the evidence to support promotion of SSC in NISC Units. The duration of SSC does not appear to negatively impact the physiological effects to the neonate. Thus, SSC should be encouraged in all NISC Units to be conducted for the length of time the parent is able. This study should be repeated with a larger sample size.
Quantitative theory of driven nonlinear brain dynamics.
Roberts, J A; Robinson, P A
2012-09-01
Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.
Phosphatidylcholine Membrane Fusion Is pH-Dependent.
Akimov, Sergey A; Polynkin, Michael A; Jiménez-Munguía, Irene; Pavlov, Konstantin V; Batishchev, Oleg V
2018-05-03
Membrane fusion mediates multiple vital processes in cell life. Specialized proteins mediate the fusion process, and a substantial part of their energy is used for topological rearrangement of the membrane lipid matrix. Therefore, the elastic parameters of lipid bilayers are of crucial importance for fusion processes and for determination of the energy barriers that have to be crossed for the process to take place. In the case of fusion of enveloped viruses (e.g., influenza) with endosomal membrane, the interacting membranes are in an acidic environment, which can affect the membrane's mechanical properties. This factor is often neglected in the analysis of virus-induced membrane fusion. In the present work, we demonstrate that even for membranes composed of zwitterionic lipids, changes of the environmental pH in the physiologically relevant range of 4.0 to 7.5 can affect the rate of the membrane fusion notably. Using a continual model, we demonstrated that the key factor defining the height of the energy barrier is the spontaneous curvature of the lipid monolayer. Changes of this parameter are likely to be caused by rearrangements of the polar part of lipid molecules in response to changes of the pH of the aqueous solution bathing the membrane.
Hwang, Hyundoo; Barnes, Dawn E; Matsunaga, Yohei; Benian, Guy M; Ono, Shoichiro; Lu, Hang
2016-01-29
The sarcomere, the fundamental unit of muscle contraction, is a highly-ordered complex of hundreds of proteins. Despite decades of genetics work, the functional relationships and the roles of those sarcomeric proteins in animal behaviors remain unclear. In this paper, we demonstrate that optogenetic activation of the motor neurons that induce muscle contraction can facilitate quantitative studies of muscle kinetics in C. elegans. To increase the throughput of the study, we trapped multiple worms in parallel in a microfluidic device and illuminated for photoactivation of channelrhodopsin-2 to induce contractions in body wall muscles. Using image processing, the change in body size was quantified over time. A total of five parameters including rate constants for contraction and relaxation were extracted from the optogenetic assay as descriptors of sarcomere functions. To potentially relate the genes encoding the sarcomeric proteins functionally, a hierarchical clustering analysis was conducted on the basis of those parameters. Because it assesses physiological output different from conventional assays, this method provides a complement to the phenotypic analysis of C. elegans muscle mutants currently performed in many labs; the clusters may provide new insights and drive new hypotheses for functional relationships among the many sarcomere components.
NASA Astrophysics Data System (ADS)
Hwang, Hyundoo; Barnes, Dawn E.; Matsunaga, Yohei; Benian, Guy M.; Ono, Shoichiro; Lu, Hang
2016-01-01
The sarcomere, the fundamental unit of muscle contraction, is a highly-ordered complex of hundreds of proteins. Despite decades of genetics work, the functional relationships and the roles of those sarcomeric proteins in animal behaviors remain unclear. In this paper, we demonstrate that optogenetic activation of the motor neurons that induce muscle contraction can facilitate quantitative studies of muscle kinetics in C. elegans. To increase the throughput of the study, we trapped multiple worms in parallel in a microfluidic device and illuminated for photoactivation of channelrhodopsin-2 to induce contractions in body wall muscles. Using image processing, the change in body size was quantified over time. A total of five parameters including rate constants for contraction and relaxation were extracted from the optogenetic assay as descriptors of sarcomere functions. To potentially relate the genes encoding the sarcomeric proteins functionally, a hierarchical clustering analysis was conducted on the basis of those parameters. Because it assesses physiological output different from conventional assays, this method provides a complement to the phenotypic analysis of C. elegans muscle mutants currently performed in many labs; the clusters may provide new insights and drive new hypotheses for functional relationships among the many sarcomere components.
Moya, Aurélie; Ferrier-Pagès, Christine; Furla, Paola; Richier, Sophie; Tambutté, Eric; Allemand, Denis; Tambutté, Sylvie
2008-09-01
High calcification rates observed in reef coral organisms are due to the symbiotic relationship established between scleractinian corals and their photosynthetic dinoflagellates, commonly called zooxanthellae. Zooxanthellae are known to enhance calcification in the light, a process referred as "light-enhanced calcification". The disruption of the relationship between corals and their zooxanthellae leads to bleaching. Bleaching is one of the major causes of the present decline of coral reefs related to climate change and anthropogenic activities. In our aquaria, corals experienced a chemical pollution leading to bleaching and ending with the death of corals. During the time course of this bleaching event, we measured multiple parameters and could evidence four major consecutive steps: 1) at month 1 (January 2005), the stress affected primarily the photosystem II machinery of zooxanthellae resulting in an immediate decrease of photosystem II efficiency, 2) at month 2, the stress affected the photosynthetic production of O2 by zooxanthellae and the rate of light calcification, 3) at month 3, there was a decrease in both light and dark calcification rates, the appearance of the first oxidative damage in the zooxanthellae, the disruption of symbiosis, 4) and finally the death of corals at month 6.
Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring
Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.
2003-01-01
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Immunomodulatory effects of phytogenics in chickens and pigs — A review
2018-01-01
Environmental stressors like pathogens and toxins may depress the animal immune system through invasion of the gastrointestinal tract (GIT) tract, where they may impair performance and production, as well as lead to increased mortality rates. Therefore, protection of the GIT tract and improving animal health are top priorities in animal production. Being natural-sourced materials, phytochemicals are potential feed additives possessing multiple functions, including: anti-inflammatory, anti-fungal, anti-viral and antioxidative properties. This paper focuses on immunity-related physiological parameters regulated by phytochemicals, such as carvacrol, cinnamaldehyde, curcumin, and thymol; many studies have proven that these phytochemicals can improve animal performance and production. On the molecular level, the impact of inflammatory gene expression on underlying mechanisms was also examined, as were the effects of environmental stimuli and phytochemicals in initiating nuclear factor kappa B and mitogen-activated protein kinases signaling pathways and improving health conditions. PMID:29268586
Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis
2016-01-01
Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of lung volumes from supine portable chest radiographs.
Ries, A L; Clausen, J L; Friedman, P J
1979-12-01
Lung volumes in supine nonambulatory patients are physiological parameters often difficult to measure with current techniques (plethysmograph, gas dilution). Existing radiographic methods for measuring lung volumes require standard upright chest radiographs. Accordingly, in 31 normal supine adults, we determined helium-dilution functional residual and total lung capacities and measured planimetric lung field areas (LFA) from corresponding portable anteroposterior and lateral radiographs. Low radiation dose methods, which delivered less than 10% of that from standard portable X-ray technique, were utilized. Correlation between lung volume and radiographic LFA was highly significant (r = 0.96, SEE = 10.6%). Multiple-step regressions using height and chest diameter correction factors reduced variance, but weight and radiographic magnification factors did not. In 17 additional subjects studied for validation, the regression equations accurately predicted radiographic lung volume. Thus, this technique can provide accurate and rapid measurement of lung volume in studies involving supine patients.
Novel use of a noninvasive hemodynamic monitor in a personalized, active learning simulation.
Zoller, Jonathan K; He, Jianghua; Ballew, Angela T; Orr, Walter N; Flynn, Brigid C
2017-06-01
The present study furthered the concept of simulation-based medical education by applying a personalized active learning component. We tested this novel approach utilizing a noninvasive hemodynamic monitor with the capability to measure and display in real time numerous hemodynamic parameters in the exercising participant. Changes in medical knowledge concerning physiology were examined with a pre-and posttest. Simply by observation of one's own hemodynamic variables, the understanding of complex physiological concepts was significantly enhanced. Copyright © 2017 the American Physiological Society.
Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment
This pyrethroid insecticide parameter review is an extension of our interest in developing quantitative structure–activity relationship–physiologically based pharmacokinetic/pharmacodynamic (QSAR-PBPK/PD) models for assessing health risks, which interest started with the organoph...
Zenker, Sven
2010-08-01
Combining mechanistic mathematical models of physiology with quantitative observations using probabilistic inference may offer advantages over established approaches to computerized decision support in acute care medicine. Particle filters (PF) can perform such inference successively as data becomes available. The potential of PF for real-time state estimation (SE) for a model of cardiovascular physiology is explored using parallel computers and the ability to achieve joint state and parameter estimation (JSPE) given minimal prior knowledge tested. A parallelized sequential importance sampling/resampling algorithm was implemented and its scalability for the pure SE problem for a non-linear five-dimensional ODE model of the cardiovascular system evaluated on a Cray XT3 using up to 1,024 cores. JSPE was implemented using a state augmentation approach with artificial stochastic evolution of the parameters. Its performance when simultaneously estimating the 5 states and 18 unknown parameters when given observations only of arterial pressure, central venous pressure, heart rate, and, optionally, cardiac output, was evaluated in a simulated bleeding/resuscitation scenario. SE was successful and scaled up to 1,024 cores with appropriate algorithm parametrization, with real-time equivalent performance for up to 10 million particles. JSPE in the described underdetermined scenario achieved excellent reproduction of observables and qualitative tracking of enddiastolic ventricular volumes and sympathetic nervous activity. However, only a subset of the posterior distributions of parameters concentrated around the true values for parts of the estimated trajectories. Parallelized PF's performance makes their application to complex mathematical models of physiology for the purpose of clinical data interpretation, prediction, and therapy optimization appear promising. JSPE in the described extremely underdetermined scenario nevertheless extracted information of potential clinical relevance from the data in this simulation setting. However, fully satisfactory resolution of this problem when minimal prior knowledge about parameter values is available will require further methodological improvements, which are discussed.
Dietrich, Johannes W.; Landgrafe-Mende, Gabi; Wiora, Evelin; Chatzitomaris, Apostolos; Klein, Harald H.; Midgley, John E. M.; Hoermann, Rudolf
2016-01-01
Although technical problems of thyroid testing have largely been resolved by modern assay technology, biological variation remains a challenge. This applies to subclinical thyroid disease, non-thyroidal illness syndrome, and those 10% of hypothyroid patients, who report impaired quality of life, despite normal thyrotropin (TSH) concentrations under levothyroxine (L-T4) replacement. Among multiple explanations for this condition, inadequate treatment dosage and monotherapy with L-T4 in subjects with impaired deiodination have received major attention. Translation to clinical practice is difficult, however, since univariate reference ranges for TSH and thyroid hormones fail to deliver robust decision algorithms for therapeutic interventions in patients with more subtle thyroid dysfunctions. Advances in mathematical and simulative modeling of pituitary–thyroid feedback control have improved our understanding of physiological mechanisms governing the homeostatic behavior. From multiple cybernetic models developed since 1956, four examples have also been translated to applications in medical decision-making and clinical trials. Structure parameters representing fundamental properties of the processing structure include the calculated secretory capacity of the thyroid gland (SPINA-GT), sum activity of peripheral deiodinases (SPINA-GD) and Jostel’s TSH index for assessment of thyrotropic pituitary function, supplemented by a recently published algorithm for reconstructing the personal set point of thyroid homeostasis. In addition, a family of integrated models (University of California-Los Angeles platform) provides advanced methods for bioequivalence studies. This perspective article delivers an overview of current clinical research on the basis of mathematical thyroid models. In addition to a summary of large clinical trials, it provides previously unpublished results of validation studies based on simulation and clinical samples. PMID:27375554
Dietrich, Johannes W; Landgrafe-Mende, Gabi; Wiora, Evelin; Chatzitomaris, Apostolos; Klein, Harald H; Midgley, John E M; Hoermann, Rudolf
2016-01-01
Although technical problems of thyroid testing have largely been resolved by modern assay technology, biological variation remains a challenge. This applies to subclinical thyroid disease, non-thyroidal illness syndrome, and those 10% of hypothyroid patients, who report impaired quality of life, despite normal thyrotropin (TSH) concentrations under levothyroxine (L-T4) replacement. Among multiple explanations for this condition, inadequate treatment dosage and monotherapy with L-T4 in subjects with impaired deiodination have received major attention. Translation to clinical practice is difficult, however, since univariate reference ranges for TSH and thyroid hormones fail to deliver robust decision algorithms for therapeutic interventions in patients with more subtle thyroid dysfunctions. Advances in mathematical and simulative modeling of pituitary-thyroid feedback control have improved our understanding of physiological mechanisms governing the homeostatic behavior. From multiple cybernetic models developed since 1956, four examples have also been translated to applications in medical decision-making and clinical trials. Structure parameters representing fundamental properties of the processing structure include the calculated secretory capacity of the thyroid gland (SPINA-GT), sum activity of peripheral deiodinases (SPINA-GD) and Jostel's TSH index for assessment of thyrotropic pituitary function, supplemented by a recently published algorithm for reconstructing the personal set point of thyroid homeostasis. In addition, a family of integrated models (University of California-Los Angeles platform) provides advanced methods for bioequivalence studies. This perspective article delivers an overview of current clinical research on the basis of mathematical thyroid models. In addition to a summary of large clinical trials, it provides previously unpublished results of validation studies based on simulation and clinical samples.
Carniel, Emanuele Luigi; Frigo, Alessandro; Costantini, Mario; Giuliani, Tommaso; Nicoletti, Loredana; Merigliano, Stefano; Natali, Arturo N
2016-07-15
Recent technological advances in esophageal manometry allowed the definition of new classification methods for the diagnosis of disorders of esophageal motility and the implementation of innovative computational tools for the autonomic, reliable and unbiased detection of different disorders. Computational models can be developed aiming to interpret the mechanical behavior and functionality of the gastrointestinal tract and to summarize the results from clinical measurements, as high-resolution manometry pressure plots, into model parameters. A physiological model was here developed to interpret data from esophageal high-resolution manometry. Such model accounts for parameters related to specific physiological properties of the biological structures involved in the peristaltic mechanism. The identification of model parameters was performed by minimizing the discrepancy between clinical data from high-resolution manometry and model results. Clinical data were collected from both healthy volunteers (n = 35) and patients with different motor disorders, such as achalasia patterns 1 (n = 13), 2 (n = 20) and 3 (n = 5), distal esophageal spasm (n = 69), esophago-gastric junction outflow obstruction (n = 25), nutcracker esophagus (n = 11) and normal motility (n = 42). The physiological model that was formulated in this work can properly explain high-resolution manometry data, as confirmed by the evaluation of the coefficient of determination R 2 = 0.83 - 0.96. The study finally led to identify the statistical distributions of model parameters for each healthy or pathologic conditions considered, addressing the applicability of the achieved results for the implementation of autonomic diagnosis procedures to support the medical staff during the traditional diagnostic process. © IMechE 2016.
Tacke, Sabine; Guth, Brian; Henke, Julia
2017-01-01
Repeated anaesthesia may be required in experimental protocols and in daily veterinary practice, but anaesthesia is known to alter physiological parameters in GPs (Cavia porcellus, GPs). This study investigated the effects of repeated anaesthesia with either medetomidine-midazolam-fentanyl (MMF) or isoflurane (Iso) on physiological parameters in the GP. Twelve GPs were repeatedly administered with MMF or Iso in two anaesthesia sets. One set consisted of six 40-min anaesthesias, performed over 3 weeks (2 per week); the anaesthetic used first was randomized. Prior to Iso anaesthesia, atropine was injected. MMF anaesthesia was antagonized with AFN (atipamezole-flumazenil-naloxone). Abdominally implanted radio-telemetry devices recorded the mean arterial blood pressure (MAP), heart rate (HR) and core body temperature continuously. Additionally, respiratory rate, blood glucose and body weight were assessed. An operable state could be achieved and maintained for 40 min in all GPs. During the surgical tolerance with MMF, the GPs showed a large MAP range between the individuals. In the MMF wake- up phase, the time was shortened until the righting reflex (RR) returned and that occurred at lower MAP and HR values. Repeated Iso anaesthesia led to an increasing HR during induction (anaesthesias 2–6), non-surgical tolerance (anaesthesias 3–6) and surgical tolerance (anaesthesias 4, 6). Both anaesthetics may be used repeatedly, as repeating the anaesthesias resulted in only slightly different physiological parameters, compared to those seen with single anaesthesias. The regular atropine premedication induced HR increases and repeated MMF anaesthesia resulted in a metabolism increase which led to the faster return of RR. Nevertheless, Iso’s anaesthesia effects of strong respiratory depression and severe hypotension remained. Based on this increased anaesthesia risk with Iso, MMF anaesthesia is preferable for repeated use in GPs. PMID:28328950
Chatiza, F P; Bartels, P; Nedambale, T L; Wagenaar, G M
2012-07-15
The need for information on the reproductive physiology of different wildlife species is important for ex situ conservation using such methods as in vitro fertilization (IVF). Information on species reproductive physiology and evaluation of sperm quality using accurate, objective, repeatable methods, such as computer-assisted sperm analysis (CASA) for ex situ conservation has become a priority. The aim of this study was to evaluate motility patterns of antelope epididymal spermatozoa incubated for 4 h under conditions that support bovine IVF using CASA. Cauda epididymal spermatozoa were collected postmortem from testicles of springbok (N=38), impala (N=26), and blesbok (N=42), and cryopreserved in biladyl containing 7% glycerol. Spermatozoa were thawed and incubated in Capacitation media and modified Tyrode lactate (m-TL) IVF media using a protocol developed for domestic cattle IVF. The study evaluates 14 motility characteristics of the antelope epididymal sperm at six time points using CASA. Species differences in CASA parameters evaluated under similar conditions were observed. Several differences in individual motility parameters at the time points were reported for each species. Epididymal sperm of the different antelope species responded differently to capacitation agents exhibiting variations in hyperactivity. Motility parameters that describe the vigor of sperm decreased over time. Spermatozoa from the different antelope species have different physiological and optimal capacitation and in vitro culture requirements. The interspecies comparison of kinematic parameters of spermatozoa between the antelopes over several end points contributes to comparative sperm physiology which forms an important step in the development of species specific assisted reproductive techniques (ARTs) for ex situ conservation of these species. Copyright © 2012 Elsevier Inc. All rights reserved.
Yang, Hongli; Downs, J. Crawford; Burgoyne, Claude F.
2009-01-01
Purpose To characterize physiologic inter-eye differences in optic nerve head (ONH) architecture within six normal rhesus monkeys and compare them to inter-eye differences within three previously-reported cynomolgus monkeys with early experimental glaucoma (EEG). Methods Trephinated ONH and peripapillary sclera from both eyes of six normal monkeys were serial sectioned, 3D reconstructed, 3D delineated and parameterized. For each normal animal, and each parameter, physiologic inter-eye difference (PID) was calculated (both overall and regionally) by converting all OS data to OD configuration and subtracting the OS from the OD value and Physiologic Inter-eye Percent Difference (PIPD) was calculated as the PID divided by the measurement mean of the two eyes. For each EEG monkey, inter-eye (EEG minus normal) differences and percent differences for each parameter overall and regionally were compared to the PID and PIPD Maximums. Results For all parameters the PID Maximums were relatively small overall. Compared to overall PID maximums, overall inter-eye differences in EEG monkeys were greatest for laminar deformation and thickening, posterior scleral canal enlargement, cupping and prelaminar neural tissue thickening. Compared to the regional PID Maximums, the lamina cribrosa was posteriorly deformed centrally, inferiorly, inferonasally and superiorly and was thickened centrally. The prelaminar neural tissues were thickened inferiorly, inferonasally and superiorly. Conclusion These data provide the first characterization of PID/PIPD maximums for ONH neural and connective tissue parameters in normal monkeys and serve to further clarify the location and character of early ONH change in experimental glaucoma. However, because of the species differences, the findings in EEG need to be confirmed within EEG rhesus monkey eyes. PMID:18775866
Schmitz, Sabrina; Tacke, Sabine; Guth, Brian; Henke, Julia
2017-01-01
Repeated anaesthesia may be required in experimental protocols and in daily veterinary practice, but anaesthesia is known to alter physiological parameters in GPs (Cavia porcellus, GPs). This study investigated the effects of repeated anaesthesia with either medetomidine-midazolam-fentanyl (MMF) or isoflurane (Iso) on physiological parameters in the GP. Twelve GPs were repeatedly administered with MMF or Iso in two anaesthesia sets. One set consisted of six 40-min anaesthesias, performed over 3 weeks (2 per week); the anaesthetic used first was randomized. Prior to Iso anaesthesia, atropine was injected. MMF anaesthesia was antagonized with AFN (atipamezole-flumazenil-naloxone). Abdominally implanted radio-telemetry devices recorded the mean arterial blood pressure (MAP), heart rate (HR) and core body temperature continuously. Additionally, respiratory rate, blood glucose and body weight were assessed. An operable state could be achieved and maintained for 40 min in all GPs. During the surgical tolerance with MMF, the GPs showed a large MAP range between the individuals. In the MMF wake- up phase, the time was shortened until the righting reflex (RR) returned and that occurred at lower MAP and HR values. Repeated Iso anaesthesia led to an increasing HR during induction (anaesthesias 2-6), non-surgical tolerance (anaesthesias 3-6) and surgical tolerance (anaesthesias 4, 6). Both anaesthetics may be used repeatedly, as repeating the anaesthesias resulted in only slightly different physiological parameters, compared to those seen with single anaesthesias. The regular atropine premedication induced HR increases and repeated MMF anaesthesia resulted in a metabolism increase which led to the faster return of RR. Nevertheless, Iso's anaesthesia effects of strong respiratory depression and severe hypotension remained. Based on this increased anaesthesia risk with Iso, MMF anaesthesia is preferable for repeated use in GPs.
Long, Xi; Haakma, Reinder; Leufkens, Tim R. M.; Fonseca, Pedro; Aarts, Ronald M.
2015-01-01
Autonomic cardiorespiratory activity changes across sleep stages. However, it is unknown to what extent it is affected by between- and within-subject variability during sleep. As it is hypothesized that the variability is caused by differences in subject demographics (age, gender, and body mass index), time, and physiology, we quantified these effects and investigated how they limit reliable cardiorespiratory-based sleep staging. Six representative parameters obtained from 165 overnight heartbeat and respiration recordings were analyzed. Multilevel models were used to evaluate the effects evoked by differences in sleep stages, demographics, time, and physiology between and within subjects. Results show that the between- and within-subject effects were found to be significant for each parameter. When adjusted by sleep stages, the effects in physiology between and within subjects explained more than 80% of total variance but the time and demographic effects explained less. If these effects are corrected, profound improvements in sleep staging can be observed. These results indicate that the differences in subject demographics, time, and physiology present significant effects on cardiorespiratory activity during sleep. The primary effects come from the physiological variability between and within subjects, markedly limiting the sleep staging performance. Efforts to diminish these effects will be the main challenge. PMID:26366167
NASA Astrophysics Data System (ADS)
Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.
2018-02-01
To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.
Microbial communities in carbonate rocks-from soil via groundwater to rocks.
Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika
2017-09-01
Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reichardt, J; Hess, M; Macke, A
2000-04-20
Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.
NASA Technical Reports Server (NTRS)
Parks, Kelsey
2010-01-01
Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.
The use of subjective rating of exertion in Ergonomics.
Capodaglio, P
2002-01-01
In Ergonomics, the use of psychophysical methods for subjectively evaluating work tasks and determining acceptable loads has become more common. Daily activities at the work site are studied not only with physiological methods but also with perceptual estimation and production methods. The psychophysical methods are of special interest in field studies of short-term work tasks for which valid physiological measurements are difficult to obtain. The perceived exertion, difficulty and fatigue that a person experiences in a certain work situation is an important sign of a real or objective load. Measurement of the physical load with physiological parameters is not sufficient since it does not take into consideration the particular difficulty of the performance or the capacity of the individual. It is often difficult from technical and biomechanical analyses to understand the seriousness of a difficulty that a person experiences. Physiological determinations give important information, but they may be insufficient due to the technical problems in obtaining relevant but simple measurements for short-term activities or activities involving special movement patterns. Perceptual estimations using Borg's scales give important information because the severity of a task's difficulty depends on the individual doing the work. Observation is the most simple and used means to assess job demands. Other evaluations integrating observation are the followings: indirect estimation of energy expenditure based on prediction equations or direct measurement of oxygen consumption; measurements of forces, angles and biomechanical parameters; measurements of physiological and neurophysiological parameters during tasks. It is recommended that determinations of performances of occupational activities assess rating of perceived exertion and integrate these measurements of intensity levels with those of activity's type, duration and frequency. A better estimate of the degree of physical activity of individuals thus can be obtained.
Boivin, Gregory P; Bottomley, Michael A; Dudley, Emily S; Schiml, Patricia A; Wyatt, Christopher N; Grobe, Nadja
2016-01-01
Rodent euthanasia with CO2 by using gradual displacement of 10% to 30% of the chamber volume per minute is considered acceptable by the AVMA Panel on Euthanasia. However, whether a 50% to 100% chamber replacement rate (CRR) of CO2 is more painful or distressful than 10% to 30% CRR is unclear. Therefore, we examined physiological and behavioral parameters, corticosterone and ACTH levels, and lung histology of mice euthanized at CRR of 15%, 30%, 50%, or 100%. Adult male C57BL/6N mice were euthanized at different CO2 CRR as physiological parameters were recorded telemetrically. Video recordings were reviewed to determine when the mouse first became ataxic, when it was fully recumbent (characterized by the mouse's nose resting on the cage floor), and when breathing stopped. Overall, CO2 euthanasia increased cardiovascular parameters and activity. Specific significant differences that were associated with 50% to 100% compared with 15% to 30% CO2 CRR included an increase in systolic blood pressure per second from initiation of CO2 until ataxia, a decrease in total diastolic blood pressure until ataxia, and a decrease in total heart rate until ataxia, immobility, and death. All physiological responses occurred more rapidly with higher CRR. Activity levels, behavioral responses, plasma adrenocorticotropic hormone and corticosterone levels, and lung pathology were not different between groups. We found no physiological, behavioral, or histologic evidence that 15% or 30% CO2 CRR is less painful or distressful than is 50% or 100% CO2 CRR. We conclude that 50% to 100% CO2 CRR is acceptable for euthanizing adult male C57BL/6N mice. PMID:27423153
Vehviläinen, Tommi; Lindholm, Harri; Rintamäki, Hannu; Pääkkönen, Rauno; Hirvonen, Ari; Niemi, Olli; Vinha, Juha
2016-01-01
The purpose of this study is to perform a multiparametric analysis on the environmental factors, the physiological stress reactions in the body, the measured alertness, and the subjective symptoms during simulated office work. Volunteer male subjects were monitored during three 4-hr work meetings in an office room, both in a ventilated and a non-ventilated environment. The environmental parameters measured included CO(2), temperature, and relative humidity. The physiological test battery consisted of measuring autonomic nervous system functions, salivary stress hormones, blood's CO(2)- content and oxygen saturation, skin temperatures, thermal sensations, vigilance, and sleepiness. The study shows that we can see physiological changes caused by high CO(2) concentration. The findings support the view that low or moderate level increases in concentration of CO(2) in indoor air might cause elevation in the blood's transcutaneously assessed CO(2). The observed findings are higher CO(2) concentrations in tissues, changes in heart rate variation, and an increase of peripheral blood circulation during exposure to elevated CO(2) concentration. The subjective parameters and symptoms support the physiological findings. This study shows that a high concentration of CO(2) in indoor air seem to be one parameter causing physiological effects, which can decrease the facility user's functional ability. The correct amount of ventilation with relation to the number of people using the facility, functional air distribution, and regular breaks can counteract the decrease in functional ability. The findings of the study suggest that merely increasing ventilation is not necessarily a rational solution from a technical-economical viewpoint. Instead or in addition, more comprehensive, anthropocentric planning of space is needed as well as instructions and new kinds of reference values for the design and realization of office environments.
Alternatives to the Six-Minute Walk Test in Pulmonary Arterial Hypertension
Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Saey, Didier; Maltais, François; Bonnet, Sébastien; Provencher, Steeve
2014-01-01
Introduction The physiological response during the endurance shuttle walk test (ESWT), the cycle endurance test (CET) and the incremental shuttle walk test (ISWT) remains unknown in PAH. We tested the hypothesis that endurance tests induce a near-maximal physiological demand comparable to incremental tests. We also hypothesized that differences in respiratory response during exercise would be related to the characteristics of the exercise tests. Methods Within two weeks, twenty-one PAH patients (mean age: 54(15) years; mean pulmonary arterial pressure: 42(12) mmHg) completed two cycling exercise tests (incremental cardiopulmonary cycling exercise test (CPET) and CET) and three field tests (ISWT, ESWT and six-minute walk test (6MWT)). Physiological parameters were continuously monitored using the same portable telemetric device. Results Peak oxygen consumption (VO2peak) was similar amongst the five exercise tests (p = 0.90 by ANOVA). Walking distance correlated markedly with the VO2peak reached during field tests, especially when weight was taken into account. At 100% exercise, most physiological parameters were similar between incremental and endurance tests. However, the trends overtime differed. In the incremental tests, slopes for these parameters rose steadily over the entire duration of the tests, whereas in the endurance tests, slopes rose sharply from baseline to 25% of maximum exercise at which point they appeared far less steep until test end. Moreover, cycling exercise tests induced higher respiratory exchange ratio, ventilatory demand and enhanced leg fatigue measured subjectively and objectively. Conclusion Endurance tests induce a maximal physiological demand in PAH. Differences in peak respiratory response during exercise are related to the modality (cycling vs. walking) rather than the progression (endurance vs. incremental) of the exercise tests. PMID:25111294
Alternatives to the six-minute walk test in pulmonary arterial hypertension.
Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Saey, Didier; Maltais, François; Bonnet, Sébastien; Provencher, Steeve
2014-01-01
The physiological response during the endurance shuttle walk test (ESWT), the cycle endurance test (CET) and the incremental shuttle walk test (ISWT) remains unknown in PAH. We tested the hypothesis that endurance tests induce a near-maximal physiological demand comparable to incremental tests. We also hypothesized that differences in respiratory response during exercise would be related to the characteristics of the exercise tests. Within two weeks, twenty-one PAH patients (mean age: 54(15) years; mean pulmonary arterial pressure: 42(12) mmHg) completed two cycling exercise tests (incremental cardiopulmonary cycling exercise test (CPET) and CET) and three field tests (ISWT, ESWT and six-minute walk test (6MWT)). Physiological parameters were continuously monitored using the same portable telemetric device. Peak oxygen consumption (VO(2peak)) was similar amongst the five exercise tests (p = 0.90 by ANOVA). Walking distance correlated markedly with the VO(2peak) reached during field tests, especially when weight was taken into account. At 100% exercise, most physiological parameters were similar between incremental and endurance tests. However, the trends overtime differed. In the incremental tests, slopes for these parameters rose steadily over the entire duration of the tests, whereas in the endurance tests, slopes rose sharply from baseline to 25% of maximum exercise at which point they appeared far less steep until test end. Moreover, cycling exercise tests induced higher respiratory exchange ratio, ventilatory demand and enhanced leg fatigue measured subjectively and objectively. Endurance tests induce a maximal physiological demand in PAH. Differences in peak respiratory response during exercise are related to the modality (cycling vs. walking) rather than the progression (endurance vs. incremental) of the exercise tests.
Olson, Johanna; Schrager, Sheree M.; Belzer, Marvin; Simons, Lisa K.; Clark, Leslie F.
2016-01-01
Purpose The purpose of this study was to describe baseline characteristics of participants in a prospective observational study of transgender youth (aged 12–24 years) seeking care for gender dysphoria at a large, urban transgender youth clinic. Methods Eligible participants presented consecutively for care at between February 2011 and June 2013 and completed a computer-assisted survey at their initial study visit. Physiologic data were abstracted from medical charts. Data were analyzed by descriptive statistics, with limited comparisons between transmasculine and transfeminine participants. Results A total of 101 youth were evaluated for physiologic parameters, 96 completed surveys assessing psychosocial parameters. About half (50.5%) of the youth were assigned a male sex at birth. Baseline physiologic values were within normal ranges for assigned sex at birth. Youth recognized gender incongruence at a mean age of 8.3 years (standard deviation = 4.5), yet disclosed to their family much later (mean = 17.1; standard deviation = 4.2). Gender dysphoria was high among all participants. Thirty-five percent of the participants reported depression symptoms in the clinical range. More than half of the youth reported having thought about suicide at least once in their lifetime, and nearly a third had made at least one attempt. Conclusions Baseline physiologic parameters were within normal ranges for assigned sex at birth. Transgender youth are aware of the incongruence between their internal gender identity and their assigned sex at early ages. Prevalence of depression and suicidality demonstrates that youth may benefit from timely and appropriate intervention. Evaluation of these youth over time will help determine the impact of medical intervention and mental health therapy. PMID:26208863
Olson, Johanna; Schrager, Sheree M; Belzer, Marvin; Simons, Lisa K; Clark, Leslie F
2015-10-01
The purpose of this study was to describe baseline characteristics of participants in a prospective observational study of transgender youth (aged 12-24 years) seeking care for gender dysphoria at a large, urban transgender youth clinic. Eligible participants presented consecutively for care at between February 2011 and June 2013 and completed a computer-assisted survey at their initial study visit. Physiologic data were abstracted from medical charts. Data were analyzed by descriptive statistics, with limited comparisons between transmasculine and transfeminine participants. A total of 101 youth were evaluated for physiologic parameters, 96 completed surveys assessing psychosocial parameters. About half (50.5%) of the youth were assigned a male sex at birth. Baseline physiologic values were within normal ranges for assigned sex at birth. Youth recognized gender incongruence at a mean age of 8.3 years (standard deviation = 4.5), yet disclosed to their family much later (mean = 17.1; standard deviation = 4.2). Gender dysphoria was high among all participants. Thirty-five percent of the participants reported depression symptoms in the clinical range. More than half of the youth reported having thought about suicide at least once in their lifetime, and nearly a third had made at least one attempt. Baseline physiologic parameters were within normal ranges for assigned sex at birth. Transgender youth are aware of the incongruence between their internal gender identity and their assigned sex at early ages. Prevalence of depression and suicidality demonstrates that youth may benefit from timely and appropriate intervention. Evaluation of these youth over time will help determine the impact of medical intervention and mental health therapy. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Lerant, Anna A; Hester, Robert L; Coleman, Thomas G; Phillips, William J; Orledge, Jeffrey D; Murray, W Bosseau
2015-01-01
Insufficient pre-oxygenation before emergency intubation, and hyperventilation after intubation are mistakes that are frequently observed in and outside the operating room, in clinical practice and in simulation exercises. Physiological parameters, as appearing on standard patient monitors, do not alert to the deleterious effects of low oxygen saturation on coronary perfusion, or that of low carbon dioxide concentrations on cerebral perfusion. We suggest the use of HumMod, a computer-based human physiology simulator, to demonstrate beneficial physiological responses to pre-oxygenation and the futility of excessive minute ventilation after intubation. We programmed HumMod, to A.) compare varying times (0-7 minutes) of pre-oxygenation on oxygen saturation (SpO2) during subsequent apnoea; B.) simulate hyperventilation after apnoea. We compared the effect of different minute ventilation rates on SpO2, acid-base status, cerebral perfusion and other haemodynamic parameters. A.) With no pre-oxygenation, starting SpO2 dropped from 98% to 90% in 52 seconds with apnoea. At the other extreme, following full pre-oxygenation with 100% O2 for 3 minutes or more, the SpO2 remained 100% for 7.75 minutes during apnoea, and dropped to 90% after another 75 seconds. B.) Hyperventilation, did not result in more rapid normalization of SpO2, irrespective of the level of minute ventilation. However, hyperventilation did cause significant decreases in cerebral blood flow (CBF). HumMod accurately simulates the physiological responses compared to published human studies of pre-oxygenation and varying post intubation minute ventilations, and it can be used over wider ranges of parameters than available in human studies and therefore available in the literature.
Lerant, Anna A.; Hester, Robert L.; Coleman, Thomas G.; Phillips, William J.; Orledge, Jeffrey D.; Murray, W. Bosseau
2015-01-01
Introduction: Insufficient pre-oxygenation before emergency intubation, and hyperventilation after intubation are mistakes that are frequently observed in and outside the operating room, in clinical practice and in simulation exercises. Physiological parameters, as appearing on standard patient monitors, do not alert to the deleterious effects of low oxygen saturation on coronary perfusion, or that of low carbon dioxide concentrations on cerebral perfusion. We suggest the use of HumMod, a computer-based human physiology simulator, to demonstrate beneficial physiological responses to pre-oxygenation and the futility of excessive minute ventilation after intubation. Methods: We programmed HumMod, to A.) compare varying times (0-7 minutes) of pre-oxygenation on oxygen saturation (SpO2) during subsequent apnoea; B.) simulate hyperventilation after apnoea. We compared the effect of different minute ventilation rates on SpO2, acid-base status, cerebral perfusion and other haemodynamic parameters. Results: A.) With no pre-oxygenation, starting SpO2 dropped from 98% to 90% in 52 seconds with apnoea. At the other extreme, following full pre-oxygenation with 100% O2 for 3 minutes or more, the SpO2 remained 100% for 7.75 minutes during apnoea, and dropped to 90% after another 75 seconds. B.) Hyperventilation, did not result in more rapid normalization of SpO2, irrespective of the level of minute ventilation. However, hyperventilation did cause significant decreases in cerebral blood flow (CBF). Conclusions: HumMod accurately simulates the physiological responses compared to published human studies of pre-oxygenation and varying post intubation minute ventilations, and it can be used over wider ranges of parameters than available in human studies and therefore available in the literature. PMID:26283881
Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg
2017-09-18
Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.
Conti, Laura Mc; Champion, Tatiana; Guberman, Úrsula C; Mathias, Carlos Ht; Fernandes, Stéfano L; Silva, Elisângela Gm; Lázaro, Monique A; Lopes, Aline Dcg; Fortunato, Viviane R
2017-02-01
Objectives This study assessed behavioral and physiologic stress parameters in cats placed in two environments: home and the veterinary hospital. With a widely used scale, several parameters were assessed, including respiratory rate (RR), heart rate (HR), systolic blood pressure (SBP), vagosympathetic responses using calculated intervals (heart rate variability [HRV]10, HRV20 and vasovagal tonus index [VVTI]) and 'stress attitude', such as struggling, vocalization and agitation during handling. In addition, we evaluated whether a feline facial pheromone analogue (FFPA) had an effect on any of these measures in either environment. Methods Using a placebo and a pheromone substance, we evaluated 30 adult and healthy cats at home and in veterinary hospitals. Statistical analyses were performed using the Shapiro-Wilk, Kruskal-Wallis, and Dunn or ANOVA and Tukey tests, as well as Spearman's correlation ( P <0.05). Results We found that exposure to FFPA did not reduce the effects of stress. Some parameters presented differences with regard to environment: the RR was 45 and 70 breaths/min and stress attitude score was 1.3 and 0.0 for cats evaluated at home and at the hospital, respectively. The HR and two vagosympathetic responses were also different between the two environments, with a HR of 160 and 187 beats/min, HRV10 of 14.24 and 14.00, and HRV20 of 14.89 and 14.65 in cats at home and the hospital, respectively. There was no variation in SBP and VVTI parameters between the environments. Conclusions and relevance Exposure to FFPA does not reduce the physiologic and behavioral changes measured in this study. Furthermore, environmental change, physical restraint and manipulation during the physical examination alter RR, HR, HRV and behavior but not SBP and VVTI. This study is relevant because physiologic and behavioral stress can affect the quality and interpretation of physical examination results. This study presents detailed data that show the effects of environment and manipulation on such parameters. Furthermore, this study shows a lack of effect of FFPA on any of these parameters.
Stress Hormones and their Regulation in a Captive Dolphin Population
2013-09-30
multiple environmental stressors, many of which are anthropogenic. The resulting stress response is mounted to manage immediate physiological needs. When...variability in stress hormones and 2) evaluating physiological and metabolic alterations that occur during stress in bottlenose dolphin. The...specific research objectives of this effort are to (1) establish protocols for improved sensitivity of low-level corticosteroids ( aldosterone and
Nutriproteomics: facts, concepts, and perspectives.
Sauer, Sascha; Luge, Toni
2015-03-01
Nutrition is a basic component of life. Nowadays, human nutrition research focuses amongst others on health-related aspects of food ingredients and extracts, and on analyzing the outcomes of specific diets. Usually, food ingredients such as bioactive peptides come in complex matrices. Single compounds, multiple interactions thereof and the underlying food matrix can vary physiological response of the organism. Proteins and peptides derived from food and beverages can cause adverse allergic reactions but are in general required for multiple functions such as growth and homeostatic regulation. Endogenously expressed human proteins and peptides can be used as biomarkers to monitor physiological deregulation and the effects of food consumption. The intestinal microbiome seems to play a fundamental role in establishing and maintaining physiological regulation and in digesting proteins and peptides and other biomolecules derived from food. Notably, the subtle interplay of flavor naturals in food and beverages with olfactory receptors can result in establishing human taste preferences, which again influences overall physiology. This article presents basic approaches and concepts to address scientific questions in nutritional proteomics and discusses potential benefits of proteomics-based methodologies to help advance the field of molecular nutrition research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Human exposure to xenobiotics may occur through multiple pathways and routes of entry punctuated by exposure intervals throughout a work or leisure day. Exposure to a single environmental chemical along multiple pathways and routes (aggregate exposure) may have an influence on an...
ERIC Educational Resources Information Center
Haslam, Filocha; Treagust, David F.
1987-01-01
Describes a multiple-choice instrument that reliably and validly diagnoses secondary students' understanding of photosynthesis and respiration in plants. Highlights the consistency of students' misconceptions across secondary levels and indicates a high percentage of students have misconceptions regarding plant physiology. (CW)
Neural Correlates of Alerting and Orienting Impairment in Multiple Sclerosis Patients
Vázquez-Marrufo, Manuel; Galvao-Carmona, Alejandro; González-Rosa, Javier J.; Hidalgo-Muñoz, Antonio R.; Borges, Mónica; Ruiz-Peña, Juan Luis; Izquierdo, Guillermo
2014-01-01
Background A considerable percentage of multiple sclerosis patients have attentional impairment, but understanding its neurophysiological basis remains a challenge. The Attention Network Test allows 3 attentional networks to be studied. Previous behavioural studies using this test have shown that the alerting network is impaired in multiple sclerosis. The aim of this study was to identify neurophysiological indexes of the attention impairment in relapsing-remitting multiple sclerosis patients using this test. Results After general slowing had been removed in patients group to isolate the effects of each condition, some behavioral differences between them were obtained. About Contingent Negative Variation, a statistically significant decrement were found in the amplitude for Central and Spatial Cue Conditions for patient group (p<0.05). ANOVAs showed for the patient group a significant latency delay for P1 and N1 components (p<0.05) and a decrease of P3 amplitude for congruent and incongruent stimuli (p<0.01). With regard to correlation analysis, PASAT-3s and SDMT showed significant correlations with behavioral measures of the Attention Network Test (p<0.01) and an ERP parameter (CNV amplitude). Conclusions Behavioral data are highly correlated with the neuropsychological scores and show that the alerting and orienting mechanisms in the patient group were impaired. Reduced amplitude for the Contingent Negative Variation in the patient group suggests that this component could be a physiological marker related to the alerting and orienting impairment in relapsing-remitting multiple sclerosis. P1 and N1 delayed latencies are evidence of the demyelination process that causes impairment in the first steps of the visual sensory processing. Lastly, P3 amplitude shows a general decrease for the pathological group probably indexing a more central impairment. These results suggest that the Attention Network Test give evidence of multiple levels of attention impairment, which could help in the assessment and treatment of relapsing-remitting multiple sclerosis patients. PMID:24820333
Neural correlates of alerting and orienting impairment in multiple sclerosis patients.
Vázquez-Marrufo, Manuel; Galvao-Carmona, Alejandro; González-Rosa, Javier J; Hidalgo-Muñoz, Antonio R; Borges, Mónica; Ruiz-Peña, Juan Luis; Izquierdo, Guillermo
2014-01-01
A considerable percentage of multiple sclerosis patients have attentional impairment, but understanding its neurophysiological basis remains a challenge. The Attention Network Test allows 3 attentional networks to be studied. Previous behavioural studies using this test have shown that the alerting network is impaired in multiple sclerosis. The aim of this study was to identify neurophysiological indexes of the attention impairment in relapsing-remitting multiple sclerosis patients using this test. After general slowing had been removed in patients group to isolate the effects of each condition, some behavioral differences between them were obtained. About Contingent Negative Variation, a statistically significant decrement were found in the amplitude for Central and Spatial Cue Conditions for patient group (p<0.05). ANOVAs showed for the patient group a significant latency delay for P1 and N1 components (p<0.05) and a decrease of P3 amplitude for congruent and incongruent stimuli (p<0.01). With regard to correlation analysis, PASAT-3s and SDMT showed significant correlations with behavioral measures of the Attention Network Test (p<0.01) and an ERP parameter (CNV amplitude). Behavioral data are highly correlated with the neuropsychological scores and show that the alerting and orienting mechanisms in the patient group were impaired. Reduced amplitude for the Contingent Negative Variation in the patient group suggests that this component could be a physiological marker related to the alerting and orienting impairment in relapsing-remitting multiple sclerosis. P1 and N1 delayed latencies are evidence of the demyelination process that causes impairment in the first steps of the visual sensory processing. Lastly, P3 amplitude shows a general decrease for the pathological group probably indexing a more central impairment. These results suggest that the Attention Network Test give evidence of multiple levels of attention impairment, which could help in the assessment and treatment of relapsing-remitting multiple sclerosis patients.
Paul, L; Rafferty, D; Young, S; Miller, L; Mattison, P; McFadyen, A
2008-08-01
Functional electrical stimulation (FES) is used clinically in the management of drop foot in people suffering from neurological conditions. The aim of the study was to investigate the effects of FES, in terms of speed and physiological cost of gait, in people with multiple sclerosis (pwMS). Twelve pwMS and 12 healthy matched controls walked at their own preferred walking speed (PWS) for 5 min around a 10 m elliptical course. Subjects with MS completed the protocol with and without using their FES. In addition, control subjects completed the protocol twice more walking at the same PWS of the pwMS to which they were matched. Wearing FES lead to a significant improvement in walking speed (0.49 ms(-1) and 0.43 ms(-1) with and without their FES respectively; P<0.001) and a significant reduction in the physiological cost of gait (0.41 mL min(-1) kg(-1) m(-1) and 0.46 mL min(-1) kg(-1) m(-1) with and without FES respectively; P=0.017) in pwMS. The speed of walking, oxygen uptake, and physiological cost were significantly different between pwMS and controls both at preferred and matched speeds. Although pwMS exhibit a higher physiological cost of walking, FES offers an orthotic benefit to pwMS and should be considered as a possible treatment option.
Role of Proangiogenic Factors in Immunopathogenesis of Multiple Sclerosis.
Hamid, Kabir Magaji; Mirshafiey, Abbas
2016-02-01
Angiogenesis is a complex and balanced process in which new blood vessels form from preexisting ones by sprouting, splitting, growth and remodeling. This phenomenon plays a vital role in many physiological and pathological processes. However, the disturbance in physiological process can play a role in pathogenesis of some chronic inflammatory diseases, including multiple sclerosis (MS) in human and its animal model. Although the relation between abnormal blood vessels and MS lesions was established in previous studies, but the role of pathological angiogenesis remains unclear. In this study, the link between proangiogenic factors and multiple sclerosis pathogenesis was examined by conducting a systemic review. Thus we searched the English medical literature via PubMed, ISI web of knowledge, Medline and virtual health library (VHL) databases. In this review, we describe direct and indirect roles of some proangiogenic factors in MS pathogenesis and report the association of these factors with pathological and inflammatory angiogenesis.
ERIC Educational Resources Information Center
Maddox, George L.; Douglass, Elizabeth B.
This paper explores the relationship between age and individual differences. Two hypotheses were tested through the use of repeated measures of functioning in terms of social, psychological, and physiological parameters: (1) individual differences do not decrease with age, and (2) individuals tend to maintain the same rank in relation to age peers…
Pruneti, Carlo; Giusti, Mariarosa; Boem, Adriano; Luisi, Michele
2002-01-01
The aim of this study was to determine the behavioral and physiological effects of the central nervous system depressant alprazolam on a group of cardiac patients. Immediately after hospital discharge, the Crown and Crisp Experiential Index (CCEI) was administered, the salivary cortisol was detected and a psycho-physiological profile was recorded in 52 subjects who had suffered from myocardial infarction. Half of the subjects represented the experimental group and the remaining 26 individuals acted as a control group not undergoing treatment. The benzodiazepine alprazolam (0.25 mg) was administered twice daily to the treated group only. With the exception of the administration of the drug, all recruited subjects underwent the same clinical evaluation. The CCEI data of the treated group showed significant decreases for the following scales: free floating anxiety (p < 0.001), phobic anxiety (p < 0.01), somatic complaints (p < 0.05), and depression (p < 0.01). In the same group, with regard to the physiological parameters, the skin conductance response significantly decreased during the baseline phase (p < 0.01), and almost all parameters showed decreased values during mental stress test administration. Cortisol levels also decreased during the recovery phase of the psycho-physiological profile assessment. Alprazolam seems to be able to reduce sympathetic discharge and some stress-related behavioral and physiological responses. This could be of benefit for selected cardiac patients for whom increases in sympathetic tone may constitute a risk factor.
Domingo, Christian; Blanch, Lluis; Murias, Gaston; Luján, Manel
2010-01-01
The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables. PMID:22399898
Domingo, Christian; Blanch, Lluis; Murias, Gaston; Luján, Manel
2010-01-01
The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables.
Min, Eun Young; Cha, Yong-Joo; Kang, Ju-Chan
2015-09-01
In this study, the 96-h LC50 at 22 and 26 °C values was 28.591 and 11.761 mg/L, respectively, for NiCl2 exposure in the abalone. The alteration of physiological and immune-toxicological parameters such as the total hemocyte count (THC), lysozyme, phenoloxidase (PO), and phagocytosis activity was measured in the abalone exposed to nickel (200 and 400 μg/L) under thermal stress for 96 h. In this study, Mg and THC decreased, while Ca, lysozyme, PO, and phagocytosis activity increased in the hemolymph of Pacific abalone exposed to NiCl2 when compared to a control at both 22 and 26 °C. However, these parameters were not affected by a rise in temperature from 22 to 26 °C in non-exposed groups. Our results showed that NiCl2 below 400 μg/L was able to stimulate immune responses in abalone. However, complex stressors, thermal changes, or NiCl2 can modify the immunological response and lead to changes in the physiology of host-pollutant interactions in the abalone.
Effects of mini trampoline exercise on male gymnasts' physiological parameters: a pilot study.
Karakollukçu, M; Aslan, C S; Paoli, A; Bianco, A; Sahin, F N
2015-01-01
There are limited studies that indicate the effects of trampoline exercise on strength and other physiological parameters. This study aims to determine whether twelve weeks of trampoline exercise would have any effects on the physical and physiological parameters of male gymnasts. A number of 20 intercollegiate competitive male gymnasts (as experimental group) and 20 non-athlete male (as control group) participated voluntarily. Their anthropometric characteristics and the anaerobic power were measured and their back strength, vertical jump, standing long jump and 20 meter sprint performances were measured. As a result; whereas 12 weeks of trampoline exercise improved standing long jump (before 242.35±3.40 cm; after 251.70±2.95 cm) and also vertical jump, 20 meter sprint speed and anaerobic power of subjects. We did not observe significant changes on back strength performances (before 148.32±5.73 kg; after 148.10±5.71). The trampoline exercise protocol improved significantly speed, jump and anaerobic performances of the experimental group, while did not induced any changes on back strength performances. More studies are necessary to confirm the interesting results coming from this pilot intervention.
de Almeida, Alex-Alan Furtado; Branco, Márcia Christina da Silva; Costa, Marcio Gilberto Cardoso; Ahnert, Dario
2017-01-01
Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong genetic components were observed from many of the correlations, which indicate the possibility to formulate selection indices for multi-traits, such as dwarfism or semidwarfism, tolerance to increase of leaf sodium concentrations and maintenance of the photosynthetic apparatus integrity under these conditions. Additionally, plants with higher carbon fixation, better water use, higher carboxylation efficiency and greater magnesium accumulation in leaves can be selected. PMID:28628670
Pereira, Allan Silva; de Almeida, Alex-Alan Furtado; Branco, Márcia Christina da Silva; Costa, Marcio Gilberto Cardoso; Ahnert, Dario
2017-01-01
Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong genetic components were observed from many of the correlations, which indicate the possibility to formulate selection indices for multi-traits, such as dwarfism or semidwarfism, tolerance to increase of leaf sodium concentrations and maintenance of the photosynthetic apparatus integrity under these conditions. Additionally, plants with higher carbon fixation, better water use, higher carboxylation efficiency and greater magnesium accumulation in leaves can be selected.
NASA Astrophysics Data System (ADS)
Conturo, Thomas Edward
Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The foldover in magnified images was eliminated by exciting limited regions with orthogonal pi/2 and pi pulses. Off-midline regions were imaged by tandemly offsetting the phase-encoding and excitation. Artifacts due to non-steady-state conditions were demonstrated. The approach to steady state was defined by operators and vectors, and any repeated series of RF pulses was proven to produce a steady-state. The vector difference between the magnetization and its steady state value is relatively constant during the approach. The repetition time relative to T_1 is the main determinant of approach rate, and off-resonant RF pulses incoherent with the magnetization produce a more rapid approach than on-resonant pulses.
Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra.
Liang, Junyi; Xia, Jiangyang; Shi, Zheng; Jiang, Lifen; Ma, Shuang; Lu, Xingjie; Mauritz, Marguerite; Natali, Susan M; Pegoraro, Elaine; Penton, C Ryan; Plaza, César; Salmon, Verity G; Celis, Gerardo; Cole, James R; Konstantinidis, Konstantinos T; Tiedje, James M; Zhou, Jizhong; Schuur, Edward A G; Luo, Yiqi
2018-05-26
Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming-induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over five years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment-corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87 g m -2 , respectively, without or with changes in those parameters. Thus, warming-induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chronic alcoholism: insights from neurophysiology.
Campanella, S; Petit, G; Maurage, P; Kornreich, C; Verbanck, P; Noël, X
2009-01-01
Increasing knowledge of the anatomical structures and cellular processes underlying psychiatric disorders may help bridge the gap between clinical signs and basic physiological processes. Accordingly, considerable insight has been gained in recent years into a common psychiatric condition, i.e., chronic alcoholism. We reviewed various physiological parameters that are altered in chronic alcoholic patients compared to healthy individuals--continuous electroencephalogram, oculomotor measures, cognitive event-related potentials and event-related oscillations--to identify links between these physiological parameters, altered cognitive processes and specific clinical symptoms. Alcoholic patients display: (1) high beta and theta power in the resting electroencephalogram, suggesting hyperarousal of their central nervous system; (2) abnormalities in smooth pursuit eye movements, in saccadic inhibition during antisaccade tasks, and in prepulse inhibition, suggesting disturbed attention modulation and abnormal patterns of prefrontal activation that may stem from the same prefrontal "inhibitory" cortical dysfunction; (3) decreased amplitude for cognitive event-related potentials situated along the continuum of information-processing, suggesting that alcoholism is associated with neurophysiological deficits at the level of the sensory cortex and not only disturbances involving associative cortices and limbic structures; and (4) decreased theta, gamma and delta oscillations, suggesting cognitive disinhibition at a functional level. The heterogeneity of alcoholic disorders in terms of symptomatology, course and outcome is the result of various pathophysiological processes that physiological parameters may help to define. These alterations may be related to precise cognitive processes that could be easily monitored neurophysiologically in order to create more homogeneous subgroups of alcoholic individuals.
Dellagrana, Rodolfo André; Rossato, Mateus; Sakugawa, Raphael Luiz; Baroni, Bruno Mafredini; Diefenthaeler, Fernando
2018-02-22
This study was aimed at verifying effects of photobiomodulation therapy (PBMT) with different energy doses (15, 30, and 60 J per site) on physiological and performance parameters during running tests. Fifteen male recreational runners participated in a crossover, randomised, double-blind, and placebo-controlled trial. They performed testing protocol in 5 sessions with different treatments: control, placebo, and PBMT with 15, 30 or 60 J per site (14 sites in each lower limb). Physiological and performance variables were assessed during submaximal (at 8 km·h-1 and 9 km·h-1) and maximal running tests. PBMT with 30 J significantly (p<0.05) improved running economy (RE) at 8 and 9 km·h-1 (3.01% and 3.03%, respectively), rate of perceived exertion (RPE) at 8 km·h-1 (7.86%), velocity at VO2MAX (3.07%), peak of velocity (PV) (1.49%), and total time to exhaustion (TTE) (3.41%) compared to placebo. PBMT with 15 J improved RE at 9 km·h-1 (2.98%), RPE at 8 km·h-1 (4.80%), PV (1.33%), TTE (3.06%), and total distance (4.01%) compared to the placebo; while PBMT with 60 J only increased RE at 9 km·h-1 (3.87%) compared to placebo. All PBMT doses positively affected physiological and/or performance parameters; however magnitude-based inference reported that PBMT applied with 30 J led to more beneficial effects than 15 J and 60 J.
Bowden, Joseph D; Bauerle, William L
2008-11-01
We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.
Hu, L.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D.
2015-01-01
Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical oscillations, obtaining single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical comparisons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRI. PMID:25665966
Exercise and multiple sclerosis: physiological, psychological, and quality of life issues.
Sutherland, G; Andersen, M B
2001-12-01
The case for the benefits of physical activity has been well documented in healthy individuals, and the potential for reducing the risk of mental and physical ill health is substantial. Yet, individuals with multiple sclerosis (MS) have long been advised to avoid participation in exercise in order to minimise the risk of exacerbations and symptoms of fatigue. There is, however, increasing interest in how acute and chronic exercise affect physiological and psychological functioning in MS. Much of the research has examined physiological tolerance to exercise and focused on responses in terms of heart rate, blood pressure, cardiorespiratory fitness, muscle function, and symptom stability. Little research has focused on understanding how exercise affects psychosocial functioning and brings about changes in depression, affect, mood, well-being, and quality of life. This paper provides a summary of the research exploring the efficacy of physical activity for people with MS. In addition, the key issues that face clinical practice are examined, and considerations for research are discussed.
Multimodality and nanoparticles in medical imaging
Huang, Wen-Yen; Davis, Jason J.
2015-01-01
A number of medical imaging techniques are used heavily in the provision of spatially resolved information on disease and physiological status and accordingly play a critical role in clinical diagnostics and subsequent treatment. Though, for most imaging modes, contrast is potentially enhanced through the use of contrast agents or improved hardware or imaging protocols, no single methodology provides, in isolation, a detailed mapping of anatomy, disease markers or physiological status. In recent years, the concept of complementing the strengths of one imaging modality with those of another has come to the fore and been further bolstered by the development of fused instruments such as PET/CT and PET/MRI stations. Coupled with the continual development in imaging hardware has been a surge in reports of contrast agents bearing multiple functionality, potentially providing not only a powerful and highly sensitised means of co-localising physiological/disease status and anatomy, but also the tracking and delineation of multiple markers and indeed subsequent or simultaneous highly localized therapy (“theragnostics”). PMID:21409202
Madliger, Christine L; Love, Oliver P
2015-10-01
The growing field of conservation physiology applies a diversity of physiological traits (e.g., immunological, metabolic, endocrine, and nutritional traits) to understand and predict organismal, population, and ecosystem responses to environmental change and stressors. Although the discipline of conservation physiology is gaining momentum, there is still a pressing need to better translate knowledge from physiology into real-world tools. The goal of this symposium, ‘‘Physiology in Changing Landscapes: An Integrative Perspective for Conservation Biology’’, was to highlight that many current investigations in ecological, evolutionary, and comparative physiology are necessary for understanding the applicability of physiological measures for conservation goals, particularly in the context of monitoring and predicting the health, condition, persistence, and distribution of populations in the face of environmental change. Here, we outline five major investigations common to environmental and ecological physiology that can contribute directly to the progression of the field of conservation physiology: (1) combining multiple measures of physiology and behavior; (2) employing studies of dose–responses and gradients; (3) combining a within-individual and population-level approach; (4) taking into account the context-dependency of physiological traits; and (5) linking physiological variables with fitness metrics. Overall, integrative physiologists have detailed knowledge of the physiological systems that they study; however, communicating theoretical and empirical knowledge to conservation biologists and practitioners in an approachable and applicable way is paramount to the practical development of physiological tools that will have a tangible impact for conservation.
Moore, Lynne; Hanley, James A; Lavoie, André; Turgeon, Alexis
2009-05-01
The National Trauma Data Bank (NTDB) is plagued by the problem of missing physiological data. The Glasgow Coma Scale score, Respiratory Rate and Systolic Blood Pressure are an essential part of risk adjustment strategies for trauma system evaluation and clinical research. Missing data on these variables may compromise the feasibility and the validity of trauma group comparisons. To evaluate the validity of Multiple Imputation (MI) for completing missing physiological data in the National Trauma Data Bank (NTDB), by assessing the impact of MI on 1) frequency distributions, 2) associations with mortality, and 3) risk adjustment. Analyses were based on 170,956 NTDB observations with complete physiological data (observed data set). Missing physiological data were artificially imposed on this data set and then imputed using MI (MI data set). To assess the impact of MI on risk adjustment, 100 pairs of hospitals were randomly selected with replacement and compared using adjusted Odds Ratios (OR) of mortality. OR generated by the observed data set were then compared to those generated by the MI data set. Frequency distributions and associations with mortality were preserved following MI. The median absolute difference between adjusted OR of mortality generated by the observed data set and by the MI data set was 3.6% (inter-quartile range: 2.4%-6.1%). This study suggests that, provided it is implemented with care, MI of missing physiological data in the NTDB leads to valid frequency distributions, preserves associations with mortality, and does not compromise risk adjustment in inter-hospital comparisons of mortality.
What have we learned about GPER function in physiology and disease from knockout mice?
Prossnitz, Eric R.; Hathaway, Helen J.
2015-01-01
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and patho-physiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also revealed roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. PMID:26189910
NASA Astrophysics Data System (ADS)
McGraw, Gerald M., Jr.
Multimodality is the theory of communication as it applies to social and educational semiotics (making meaning through the use of multiple signs and symbols). The term multimodality describes a communication methodology that includes multiple textual, aural, and visual applications (modes) that are woven together to create what is referred to as an artifact. Multimodal teaching methodology attempts to create a deeper meaning to course content by activating the higher cognitive areas of the student's brain, creating a more sustained retention of the information (Murray, 2009). The introduction of multimodality educational methodologies as a means to more optimally engage students has been documented within educational literature. However, studies analyzing the distribution and penetration into basic sciences, more specifically anatomy and physiology, have not been forthcoming. This study used a quantitative survey design to determine the degree to which instructors integrated multimodality teaching practices into their course curricula. The instrument used for the study was designed by the researcher based on evidence found in the literature and sent to members of three associations/societies for anatomy and physiology instructors: the Human Anatomy and Physiology Society; the iTeach Anatomy & Physiology Collaborate; and the American Physiology Society. Respondents totaled 182 instructor members of two- and four-year, private and public higher learning colleges collected from the three organizations collectively with over 13,500 members in over 925 higher learning institutions nationwide. The study concluded that the expansion of multimodal methodologies into anatomy and physiology classrooms is at the beginning of the process and that there is ample opportunity for expansion. Instructors continue to use lecture as their primary means of interaction with students. Email is still the major form of out-of-class communication for full-time instructors. Instructors with greater than 16 years of teaching anatomy and physiology are less likely to use video or animation in their classroom than instructors with fewer years.
Boswell, C Andrew; Mundo, Eduardo E; Ulufatu, Sheila; Bumbaca, Daniela; Cahaya, Hendry S; Majidy, Nicholas; Van Hoy, Marjie; Schweiger, Michelle G; Fielder, Paul J; Prabhu, Saileta; Khawli, Leslie A
2014-05-05
A solid understanding of physiology is beneficial in optimizing drug delivery and in the development of clinically predictive models of drug disposition kinetics. Although an abundance of data exists in the literature, it is often confounded by the use of various experimental methods and a lack of consensus in values from different sources. To help address this deficiency, we sought to directly compare three important vascular parameters at the tissue level using the same experimental approach in both mice and rats. Interstitial volume, vascular volume, and blood flow were radiometrically measured in selected harvested tissues of both species by extracellular marker infusion, red blood cell labeling, and rubidium chloride bolus distribution, respectively. The latter two parameters were further compared by whole-body autoradiographic imaging. An overall good interspecies agreement was observed for interstitial volume and blood flow on a weight-normalized basis in most tissues. In contrast, the measured vascular volumes of most rat tissues were higher than for mouse. Mice and rats, the two most commonly utilized rodent species in translational drug development, should not be considered as interchangeable in terms of vascular volume per gram of tissue. This will be particularly critical in biodistribution studies of drugs, as the amount of drug in the residual blood of tissues is often not negligible, especially for biologic drugs (e.g., antibodies) having long circulation half-lives. Physiologically based models of drug pharmacokinetics and/or pharmacodynamics also rely on accurate knowledge of biological parameters in tissues. For tissue parameters with poor interspecies agreement, the significance and possible drivers are discussed.
Tofts, Paul S; Cutajar, Marica; Mendichovszky, Iosif A; Peters, A Michael; Gordon, Isky
2012-06-01
To model the uptake phase of T(1)-weighted DCE-MRI data in normal kidneys and to demonstrate that the fitted physiological parameters correlate with published normal values. The model incorporates delay and broadening of the arterial vascular peak as it appears in the capillary bed, two distinct compartments for renal intravascular and extravascular Gd tracer, and uses a small-vessel haematocrit value of 24%. Four physiological parameters can be estimated: regional filtration K ( trans ) (ml min(-1) [ml tissue](-1)), perfusion F (ml min(-1) [100 ml tissue](-1)), blood volume v ( b ) (%) and mean residence time MRT (s). From these are found the filtration fraction (FF; %) and total GFR (ml min(-1)). Fifteen healthy volunteers were imaged twice using oblique coronal slices every 2.5 s to determine the reproducibility. Using parenchymal ROIs, group mean values for renal biomarkers all agreed with published values: K ( trans ): 0.25; F: 219; v ( b ): 34; MRT: 5.5; FF: 15; GFR: 115. Nominally cortical ROIs consistently underestimated total filtration (by ~50%). Reproducibility was 7-18%. Sensitivity analysis showed that these fitted parameters are most vulnerable to errors in the fixed parameters kidney T(1), flip angle, haematocrit and relaxivity. These renal biomarkers can potentially measure renal physiology in diagnosis and treatment. • Dynamic contrast-enhanced magnetic resonance imaging can measure renal function. • Filtration and perfusion values in healthy volunteers agree with published normal values. • Precision measured in healthy volunteers is between 7 and 15%.
Feng, Tao; Wang, Chao; Wang, Peifang; Qian, Jin; Wang, Xun
2018-09-01
Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area. Based on the calculated physical and physiological characteristics of surface blooms, principal component analysis (PCA) captured the major processes influencing surface bloom formation at different stages (two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP), vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT) were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9% of bloom formations and maintained blooms over long periods, thus demonstrating the importance of wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies influenced blooms at different stages. In conclusion, the approach developed here presents a promising tool for understanding the processes of onshore/offshore algal blooms formation and subsequent predicting. Copyright © 2018 Elsevier Ltd. All rights reserved.
Watanabe, Eri; Kuchta, Kenny; Kimura, Mari; Rauwald, Hans Wilhelm; Kamei, Tsutomu; Imanishi, Jiro
2015-01-01
Bergamot essential oil (BEO) is commonly used against psychological stress and anxiety in aromatherapy. The primary aim of the present study was to obtain first clinical evidence for these psychological and physiological effects. A secondary aim was to achieve some fundamental understanding of the relevant pharmacological processes. Endocrinological, physiological, and psychological effects of BEO vapor inhalation on 41 healthy females were tested using a random crossover study design. Volunteers were exposed to 3 experimental setups (rest (R), rest + water vapor (RW), rest + water vapor + bergamot essential oil (RWB)) for 15 min each. Immediately after each setup, saliva samples were collected and the volunteers rested for 10 min. Subsequently, they completed the Profile of Mood States, State-Trait Anxiety Inventory, and Fatigue Self-Check List. High-frequency (HF) heart rate values, an indicator for parasympathetic nervous system activity, were calculated from heart rate variability values measured both during the 15 min of the experiment and during the subsequent 10 min of rest. Salivary cortisol (CS) levels in the saliva samples were analyzed using ELISA. CS of all 3 conditions R, RW, and RWB were found to be significantly distinct (p = 0.003). In the subsequent multiple comparison test, the CS value of RWB was significantly lower when compared to the R setup. When comparing the HF values of the RWB setup during the 10 min of rest after the experiment to those of RW, this parameter was significantly increased (p = 0.026) in the RWB setup for which scores for negative emotions and fatigue were also improved. These results demonstrate that BEO inhaled together with water vapor exerts psychological and physiological effects in a relatively short time. © 2015 S. Karger GmbH, Freiburg.
Mameli, Ombretta; Caria, Marcello A; Biagi, Francesca; Zedda, Marco; Farina, Vittorio
2017-05-01
It has been recently shown in rats that spontaneous movements of whisker pad macrovibrissae elicited evoked responses in the trigeminal mesencephalic nucleus (Me5). In the present study, electrophysiological and neuroanatomical experiments were performed in anesthetized rats to evaluate whether, besides the whisker displacement per se, the Me5 neurons are also involved in encoding the kinematic properties of macrovibrissae movements, and also whether, as reported for the trigeminal ganglion, even within the Me5 nucleus exists a neuroanatomical representation of the whisker pad macrovibrissae. Extracellular electrical activity of single Me5 neurons was recorded before, during, and after mechanical deflection of the ipsilateral whisker pad macrovibrissae in different directions, and with different velocities and amplitudes. In several groups of animals, single or multiple injections of the tracer Dil were performed into the whisker pad of one side, in close proximity to the vibrissae follicles, in order to label the peripheral terminals of the Me5 neurons innervating the macrovibrissae (whisking-neurons), and therefore, the respective perikaria within the nucleus. Results showed that: (1) the whisker pad macrovibrissae were represented in the medial-caudal part of the Me5 nucleus by a single cluster of cells whose number seemed to match that of the macrovibrissae; (2) macrovibrissae mechanical deflection elicited significant responses in the Me5 whisking-neurons, which were related to the direction, amplitude, and frequency of the applied deflection. The specific functional role of Me5 neurons involved in encoding proprioceptive information arising from the macrovibrissae movements is discussed within the framework of the whole trigeminal nuclei activities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Litwin, Dennis C; Lengel, David J; Kamendi, Harriet W; Bialecki, Russell A
2011-01-18
A successful integration of the automated blood sampling (ABS) and telemetry (ABST) system is described. The new ABST system facilitates concomitant collection of physiological variables with blood and urine samples for determination of drug concentrations and other biochemical measures in the same rat without handling artifact. Integration was achieved by designing a 13 inch circular receiving antenna that operates as a plug-in replacement for the existing pair of DSI's orthogonal antennas which is compatible with the rotating cage and open floor design of the BASi Culex® ABS system. The circular receiving antenna's electrical configuration consists of a pair of electrically orthogonal half-toroids that reinforce reception of a dipole transmitter operating within the coil's interior while reducing both external noise pickup and interference from other adjacent dipole transmitters. For validation, measured baclofen concentration (ABST vs. satellite (μM): 69.6 ± 23.8 vs. 76.6 ± 19.5, p = NS) and mean arterial pressure (ABST vs. traditional DSI telemetry (mm Hg): 150 ± 5 vs.147 ± 4, p = NS) variables were quantitatively and qualitatively similar between rats housed in the ABST system and traditional home cage approaches. The ABST system offers unique advantages over traditional between-group study paradigms that include improved data quality and significantly reduced animal use. The superior within-group model facilitates assessment of multiple physiological and biochemical responses to test compounds in the same animal. The ABST also provides opportunities to evaluate temporal relations between parameters and to investigate anomalous outlier events because drug concentrations, physiological and biochemical measures for each animal are available for comparisons.
Inertial picobalance reveals fast mass fluctuations in mammalian cells
NASA Astrophysics Data System (ADS)
Martínez-Martín, David; Fläschner, Gotthold; Gaub, Benjamin; Martin, Sascha; Newton, Richard; Beerli, Corina; Mercer, Jason; Gerber, Christoph; Müller, Daniel J.
2017-10-01
The regulation of size, volume and mass in living cells is physiologically important, and dysregulation of these parameters gives rise to many diseases. Cell mass is largely determined by the amount of water, proteins, lipids, carbohydrates and nucleic acids present in a cell, and is tightly linked to metabolism, proliferation and gene expression. Technologies have emerged in recent years that make it possible to track the masses of single suspended cells and adherent cells. However, it has not been possible to track individual adherent cells in physiological conditions at the mass and time resolutions required to observe fast cellular dynamics. Here we introduce a cell balance (a ‘picobalance’), based on an optically excited microresonator, that measures the total mass of single or multiple adherent cells in culture conditions over days with millisecond time resolution and picogram mass sensitivity. Using our technique, we observe that the mass of living mammalian cells fluctuates intrinsically by around one to four per cent over timescales of seconds throughout the cell cycle. Perturbation experiments link these mass fluctuations to the basic cellular processes of ATP synthesis and water transport. Furthermore, we show that growth and cell cycle progression are arrested in cells infected with vaccinia virus, but mass fluctuations continue until cell death. Our measurements suggest that all living cells show fast and subtle mass fluctuations throughout the cell cycle. As our cell balance is easy to handle and compatible with fluorescence microscopy, we anticipate that our approach will contribute to the understanding of cell mass regulation in various cell states and across timescales, which is important in areas including physiology, cancer research, stem-cell differentiation and drug discovery.
Relationship of psychological and physiological parameters during an arctic ski expedition
NASA Astrophysics Data System (ADS)
Bishop, Sheryl L.; Grobler, Lukas C.; SchjØll, Olaf
2001-08-01
Considerable data (primarily physiological) have been collected during expeditions in extreme environments over the last century. Physiological measurements have only recently been examined in association with the emotional or behavioral state of the subject. Establishing this psychophysiological relationship is essential to understanding fully the adaptation of humans to the stresses of extreme environments. This pilot study investigated the simultaneous collection of physiological, psychological and behavioral data from a two-man Greenland expedition in order to model how specific relationships between physiological and psychological adaptation to a polar environment may be identified. The data collected describes changes in adrenal and other hormonal activity and psychological functioning. Levels of cortisol and testosterone were calculated. Factors influencing the plasma profiles of the aforementioned included 24-hour sunlight, high calorific intake of more than 28 000 kJ/day and extreme physical exercise. There was a difference between individual psychological profiles as well as self-report stress and physiological stress.
1992-09-01
and collecting and processing data. They were at the front line in interacting with the subjects and maintaining morale. They did an excellent job. They...second for 16 parameter channels, and the data were processed to produce a single root mean square (RMS) error value for each channel appropriate to...represented in the final analysis. Physiological data The physiological data on the VAX were processed by sampling them at 5-minute intervals throughout the
do Nascimento, Marcelo Guimarães Boia; Gomes, Sérgio Adriano; Mota, Márcio Rabelo; Aparecida, Renata; de Melo, Gislane Ferreira
2016-01-01
The present study aimed to identify the psychological profiles of professional futsal players in terms of the gender schema and to evaluate the physiological parameters (speed, acceleration, strength, and power) and fatigue index of these athletes according to their gender profiles and relative to their positions on the court. The Masculine Inventory of the Self-concept Gender Schemas was used to classify the sample into typological groups, and the Running Anaerobic Sprint Test was used to measure the physiological parameters (speed, acceleration, strength, and power) and the fatigue index. The study sample was composed of 64 male professional futsal players who competed in the National Indoor Soccer league in 2013; the subjects had an average weight of 76.00±6.7 kg. Among the athletes studied, 23 (35.9%) were classified as heteroschematic female, 22 (34.4%) as heteroschematic male, and 19 (29.7%) as isoschematic. Regarding their positions on the court, eleven were goalkeepers (17.2%), 13 (20.3%) were defenders, 28 (43.8%) were midfielders, and 12 (18.8%) were attackers. The players had similar weights even when belonging to different typological groups and having different positions in the court. However, it is worth noting that male heteroschematic players had a greater mean weight (77.11±5.93 kg) and that the goalkeeper was, on average, the heaviest player (79.36±8.14 kg). The results of the physiological parameter analysis relative to typological group showed that, on average, high-level soccer players presented similar performance profiles in different rounds, as statistically significant differences were not found in any of the studied physiological variables (weight, distance, speed, acceleration, strength, power, and fatigue index). Although the results of this research did not reveal statistically significant differences between the groups in terms of the assessed variables, we observed that some results related to personality traits associated with both the male and female components could help to clarify and establish relationships with some strategic aspects inherent to futsal. PMID:27069373
ERIC Educational Resources Information Center
Abad, Francisco J.; Olea, Julio; Ponsoda, Vicente
2009-01-01
This article deals with some of the problems that have hindered the application of Samejima's and Thissen and Steinberg's multiple-choice models: (a) parameter estimation difficulties owing to the large number of parameters involved, (b) parameter identifiability problems in the Thissen and Steinberg model, and (c) their treatment of omitted…
Behavioral Health and Performance Laboratory Standard Measures (BHP-SM)
NASA Technical Reports Server (NTRS)
Williams, Thomas J.; Cromwell, Ronita
2017-01-01
The Spaceflight Standard Measures is a NASA Johnson Space Center Human Research Project (HRP) project that proposes to collect a set of core measurements, representative of many of the human spaceflight risks, from astronauts before, during and after long-duration International Space Station (ISS) missions. The term "standard measures" is defined as a set of core measurements, including physiological, biochemical, psychosocial, cognitive, and functional, that are reliable, valid, and accepted in terrestrial science, are associated with a specific and measurable outcome known to occur as a consequence of spaceflight, that will be collected in a standardized fashion from all (or most) crewmembers. While such measures might be used to define standards of health and performance or readiness for flight, the prime intent in their collection is to allow longitudinal analysis of multiple parameters in order to answer a variety of operational, occupational, and research-based questions. These questions are generally at a high level, and the approach for this project is to populate the standard measures database with the smallest set of data necessary to indicate further detailed research is required. Also included as standard measures are parameters that are not outcome-based in and of-themselves, but provide ancillary information that supports interpretation of the outcome measures, e.g., nutritional assessment, vehicle environmental parameters, crew debriefs, etc. The project's main aim is to ensure that an optimized minimal set of measures is consistently captured from all ISS crewmembers until the end of Station in order to characterize the human in space. -This allows the HRP to identify, establish, and evaluate a common set of measures for use in spaceflight and analog research to: develop baselines, systematically characterize risk likelihood and consequences, and assess effectiveness of countermeasures that work for behavioral health and performance risk factors. -By standardizing the battery of measures on all crewmembers, it will allow the HRP to evaluate countermeasures that work for one physiological system and ensure another system is not negatively affected. -These measures, named "Standard Measures," will serve as a data repository and be available to other studies under data sharing agreements.
USDA-ARS?s Scientific Manuscript database
The objective of this experiment was to assess physiological responses to an endotoxin challenge in crossbred male progeny whose Brahman sires experienced prenatal transportation stress (PS) in utero. Sixteen steers (PNS group) sired by 3 PS bulls (gestating dams were transported for 2 h at 60, 80, ...
Hahn, Andrew D; Rowe, Daniel B
2012-02-01
As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.
Sengupta, Pallav; Sahoo, Sobhana
2014-09-01
Reports on the cardiorespiratory fitness and body composition of male workers engaged in processing of tea leaves in factories within the tea-estates of West Bengal, under the influence of physiological workload, are quite scanty. This cross-sectional study was conducted to evaluate morphometric characteristics based on physiological status and physical fitness of tea factory laborers who are continuously exposed to tea dust in their work environment for more than two years. Subjects were divided into control and tea garden workers groups. Height and weight were measured and the body mass index (BMI) was computed. Physiological parameters such as resting heart rate, blood pressure, fitness variables like physical fitness index (PFI), energy expenditure (EE), handgrip strength and anthropometric parameters like mid-upper arm (MUAC), thigh circumference (TC), head circumference (HC) and waist-to-hip ratio (WHR) were measured. Body surface area (BSA), BMI, body fat percentage and fitness variables (PFI, EE) showed significant difference (p < 0.05) between the two groups. Anthropometric measures (MUAC, TC, HC, WHR) reflected poor status among laborers. The present study shows that the majority of workers had ectomorph stature, good physical fitness, but had poor nutritional status (BMI and WHR).
Chan, Leo L; Kury, Alexandria; Wilkinson, Alisha; Berkes, Charlotte; Pirani, Alnoor
2012-11-01
The studying and monitoring of physiological and metabolic changes in Saccharomyces cerevisiae (S. cerevisiae) has been a key research area for the brewing, baking, and biofuels industries, which rely on these economically important yeasts to produce their products. Specifically for breweries, physiological and metabolic parameters such as viability, vitality, glycogen, neutral lipid, and trehalose content can be measured to better understand the status of S. cerevisiae during fermentation. Traditionally, these physiological and metabolic changes can be qualitatively observed using fluorescence microscopy or flow cytometry for quantitative fluorescence analysis of fluorescently labeled cellular components associated with each parameter. However, both methods pose known challenges to the end-users. Specifically, conventional fluorescent microscopes lack automation and fluorescence analysis capabilities to quantitatively analyze large numbers of cells. Although flow cytometry is suitable for quantitative analysis of tens of thousands of fluorescently labeled cells, the instruments require a considerable amount of maintenance, highly trained technicians, and the system is relatively expensive to both purchase and maintain. In this work, we demonstrate the first use of Cellometer Vision for the kinetic detection and analysis of vitality, glycogen, neutral lipid, and trehalose content of S. cerevisiae. This method provides an important research tool for large and small breweries to study and monitor these physiological behaviors during production, which can improve fermentation conditions to produce consistent and higher-quality products.
Mesa, Matthew G.
1994-01-01
Northern squaw fish Ptychocheilus oregonensis are the predominant predators of juvenile Pacific salmonids Oncorhynchus spp. in the Columbia River, and their predation rates are greatest just below dams. Because juvenile salmonids are commonly subjected to multiple stressors at dams in the course of their seaward migration, high predation rates below dams may be due in part to an increase in the vulnerability of stressed fish. I conducted laboratory experiments to examine the predator avoidance ability and physiological stress responses of juvenile chinook salmon O. tshawytscha subjected to treatments (stressors) designed to simulate routine hatchery practices (multiple handlings) or dam passage (multiple agitations). Both stressors resulted in lethargic behavior in the fish, and agitation also caused disorieniation and occasional injury. When equal numbers of stressed and unstressed fish were exposed to northern squawfish for up to 1 h, significantly more stressed fish were eaten, but this effect was not evident during longer exposures. The lack of differential predation in trials lasting up to 24 h can be explained by the rapid development of schooling behavior in the prey, but other possibilities exist, such as changing ratios of stressed and unstressed prey over time. Concentrations of plasma cortisol, glucose, and lactate in fish subjected to multiple stressors were similar and sometimes cumulative, returned to prestress levels within 6-24 h, and correlated poorly with predator avoidance ability. My results suggest that juvenile salmonids are capable of avoiding predators within 1 h after being subjected to multiple acute stressors even though physiological homeostasis may be altered for up to 24 h. Therefore, because juvenile salmonids typically reside in lailrace areas for only a short time after dam passage, measures aimed at reducing physical stress or protecting them as they migrate through dam tailraces may help alleviate the relatively intense predation in these areas.
The use of real-time optical feedback to improve outcomes
NASA Astrophysics Data System (ADS)
Magaña, Isidro B.; Adhikari, Pratik; Yendluri, Raghuvara B.; Goodrich, Glenn P.; Schwartz, Jon A.; O'Neal, D. P.
2014-03-01
More than a decade into the development of gold nanoparticles for cancer therapies, with multiple clinical trials underway, ongoing pre-clinical research continues towards better understanding in vivo interactions with the goal of treatment optimization through improved best practices. In an effort to collect information for healthcare providers, enabling informed decisions in a relevant time frame, instrumentation for real-time plasma concentration (multi-wavelength pulse photometry) and protocols for rapid elemental analysis (energy dispersive X-Ray fluorescence) of biopsied tumor tissue have been developed in a murine model. An initial analysis, designed to demonstrate the robust nature and utility of the techniques, revealed that area under the bioavailability curve (AUC) alone does not currently inform tumor accumulation with a high degree of accuracy (R2=0.32), This finding suggests that the control of additional experimental and physiological variables may yield more predictable tumor accumulation. Subject core temperature are blood pressure were monitored, but did not demonstrate clear trends. An effort to modulate AUC has produced an adjuvant therapy which is employed to enhance circulation parameters, including the AUC, of nanorods and gold nanoshells. Preliminary studies demonstrated a greater than 300% increase in average AUC through the use of a reticuloendothelial blockade agent versus control groups. Given a better understanding of the relative importance of the physiological factors which impact rates of tumor accumulation, a proposed set of experimental best practices is presented.
Peterson, Christine Tara; Lucas, Joseph; John-Williams, Lisa St; Thompson, J Will; Moseley, M Arthur; Patel, Sheila; Peterson, Scott N; Porter, Valencia; Schadt, Eric E; Mills, Paul J; Tanzi, Rudolph E; Doraiswamy, P Murali; Chopra, Deepak
2016-09-09
The effects of integrative medicine practices such as meditation and Ayurveda on human physiology are not fully understood. The aim of this study was to identify altered metabolomic profiles following an Ayurveda-based intervention. In the experimental group, 65 healthy male and female subjects participated in a 6-day Panchakarma-based Ayurvedic intervention which included herbs, vegetarian diet, meditation, yoga, and massage. A set of 12 plasma phosphatidylcholines decreased (adjusted p < 0.01) post-intervention in the experimental (n = 65) compared to control group (n = 54) after Bonferroni correction for multiple testing; within these compounds, the phosphatidylcholine with the greatest decrease in abundance was PC ae C36:4 (delta = -0.34). Application of a 10% FDR revealed an additional 57 metabolites that were differentially abundant between groups. Pathway analysis suggests that the intervention results in changes in metabolites across many pathways such as phospholipid biosynthesis, choline metabolism, and lipoprotein metabolism. The observed plasma metabolomic alterations may reflect a Panchakarma-induced modulation of metabotypes. Panchakarma promoted statistically significant changes in plasma levels of phosphatidylcholines, sphingomyelins and others in just 6 days. Forthcoming studies that integrate metabolomics with genomic, microbiome and physiological parameters may facilitate a broader systems-level understanding and mechanistic insights into these integrative practices that are employed to promote health and well-being.
The impacts of repeated cold exposure on insects.
Marshall, Katie E; Sinclair, Brent J
2012-05-15
Insects experience repeated cold exposure (RCE) on multiple time scales in natural environments, yet the majority of studies of the effects of cold on insects involve only a single exposure. Three broad groups of experimental designs have been employed to examine the effects of RCE on insect physiology and fitness, defined by the control treatments: 'RCE vs cold', which compares RCE with constant cold conditions; 'RCE vs warm', which compares RCE with constant warm conditions; and 'RCE vs matched cold' which compares RCE with a prolonged period of cold matched by time to the RCE condition. RCE are generally beneficial to immediate survival, and increase cold hardiness relative to insects receiving a single prolonged cold exposure. However, the effects of RCE depend on the study design, and RCE vs warm studies cannot differentiate between the effects of cold exposure in general vs RCE in particular. Recent studies of gene transcription, immune function, feeding and reproductive output show that the responses of insects to RCE are distinct from the responses to single cold exposures. We suggest that future research should attempt to elucidate the mechanistic link between physiological responses and fitness parameters. We also recommend that future RCE experiments match the time spent at the stressful low temperature in all experimental groups, include age controls where appropriate, incorporate a pilot study to determine time and intensity of exposure, and measure sub-lethal impacts on fitness.
The role of multiple-scale modelling of epilepsy in seizure forecasting
Kuhlmann, Levin; Grayden, David B.; Wendling, Fabrice; Schiff, Steven J.
2014-01-01
Over the past three decades, a number of seizure prediction, or forecasting, methods have been developed. Although major achievements were accomplished regarding the statistical evaluation of proposed algorithms, it is recognized that further progress is still necessary for clinical application in patients. The lack of physiological motivation can partly explain this limitation. Therefore, a natural question is raised: can computational models of epilepsy be used to improve these methods? Here we review the literature on the multiple-scale neural modelling of epilepsy and the use of such models to infer physiological changes underlying epilepsy and epileptic seizures. We argue how these methods can be applied to advance the state-of-the-art in seizure forecasting. PMID:26035674
Advanced integrated real-time clinical displays.
Kruger, Grant H; Tremper, Kevin K
2011-09-01
Intelligent medical displays have the potential to improve patient outcomes by integrating multiple physiologic signals, exhibiting high sensitivity and specificity, and reducing information overload for physicians. Research findings have suggested that information overload and distractions caused by patient care activities and alarms generated by multiple monitors in acute care situations, such as the operating room and the intensive care unit, may produce situations that negatively impact the outcomes of patients under anesthesia. This can be attributed to shortcomings of human-in-the-loop monitoring and the poor specificity of existing physiologic alarms. Modern artificial intelligence techniques (ie, intelligent software agents) are demonstrating the potential to meet the challenges of next-generation patient monitoring and alerting. Copyright © 2011 Elsevier Inc. All rights reserved.
Marta, Cecilia B.; Bansal, Rashmi; Pfeiffer, Steven E.
2009-01-01
Antibodies to myelin oligodendrocyte glycoprotein (MOG) have been implicated in Multiple Sclerosis demyelination through activation of complement and/or macrophage-effector processes. We presented a novel mechanism, whereby MOG on oligodendrocytes, when cross-linked with anti-MOG and secondary antibody resulted in its repartitioning into lipid rafts, and changes in protein phosphorylation and morphology. Here, we show that similar events occur when anti-MOG is cross-linked with Fc receptors (FcRs) present on microglia but not with complement. These results indicate that FcRs are endogenous antigen/antibody cross-linkers in vitro, suggesting that FcRs could be physiologically relevant in vivo and possible targets for therapy in Multiple Sclerosis. PMID:18406472
Transcranial electric and magnetic stimulation: technique and paradigms.
Paulus, Walter; Peterchev, Angel V; Ridding, Michael
2013-01-01
Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.
Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping
2017-08-01
The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.
A return to the genetic heritage of durum wheat to cope with drought heightened by climate change.
Slama, Amor; Mallek-Maalej, Elhem; Ben Mohamed, Hatem; Rhim, Thouraya; Radhouane, Leila
2018-01-01
The objective of this work was to perform a comparative analysis of the physiological, biochemical and agronomical parameters of recent and heritage durum wheat cultivars (Triticum durum Desf.) under water-deficit conditions. Five cultivars were grown under irrigated (control) and rainfall (stressed) conditions. Different agro-physiological and biochemical parameters were studied: electrolyte leakage, relative water content, chlorophyll fluorescence, proline, soluble sugars, specific peroxidase activity, yield and drought stress indices. It was revealed that a water deficit increased proline content, electrolyte leakage, soluble sugars and specific peroxidase activity and decreased relative water content, fluorescence and grain yield. According to these parameters and drought stress indices, our investigation indicated that old cultivars are the best-adapted to local conditions and showed characteristics of drought tolerance, while recent cultivars showed more drought susceptibility. Therefore, local cultivars of each country should be kept by farmers and plant breeders to preserve their genetic heritage.
Torres, M E; Añino, M M; Schlotthauer, G
2003-12-01
It is well known that, from a dynamical point of view, sudden variations in physiological parameters which govern certain diseases can cause qualitative changes in the dynamics of the corresponding physiological process. The purpose of this paper is to introduce a technique that allows the automated temporal localization of slight changes in a parameter of the law that governs the nonlinear dynamics of a given signal. This tool takes, from the multiresolution entropies, the ability to show these changes as statistical variations at each scale. These variations are held in the corresponding principal component. Appropriately combining these techniques with a statistical changes detector, a complexity change detection algorithm is obtained. The relevance of the approach, together with its robustness in the presence of moderate noise, is discussed in numerical simulations and the automatic detector is applied to real and simulated biological signals.
Johnstone, Christopher P; Lill, Alan; Reina, Richard D
2017-02-01
We review evidence for and against the use of erythrocyte indicators of health status and condition, parasite infection level and physiological stress in free-living vertebrates. The use of indicators that are measured directly from the blood, such as haemoglobin concentration, haematocrit and erythrocyte sedimentation rate, and parameters that are calculated from multiple measured metrics, such as mean cell volume, mean cell haemoglobin content or mean cell haemoglobin concentration is evaluated. The evidence for or against the use of any given metric is equivocal when the relevant research is considered in total, although there is sometimes strong support for using a particular metric in a particular taxon. Possibly the usefulness of these metrics is taxon, environment or condition specific. Alternatively, in an uncontrolled environment where multiple factors are influencing a metric, its response to environmental change will sometimes, but not always, be predictable. We suggest that (i) researchers should validate a metricfres utility before use, (ii) multiple metrics should be used to construct an overall erythrocyte profile for an individual or population, (iii) there is a need for researchers to compile reference ranges for free-living species, and (iv) some metrics which are useful under controlled, clinical conditions may not have the same utility or applicability for free-living vertebrates. Erythrocyte metrics provide useful information about health and condition that can be meaningfully interpreted in free-living vertebrates, but their use requires careful forethought about confounding factors. © 2015 Cambridge Philosophical Society.
He, Fuyuan; Deng, Kaiwen; Zou, Huan; Qiu, Yun; Chen, Feng; Zhou, Honghao
2011-01-01
To study on the differences between chromatopharmacokinetics (pharmacokinetics with fingerprint chromatography) and chromatopharmacodynamics (pharmacodynamics with fingerprint chromatography) of Chinese materia medica formulae to answer the question whether the pharmacokinetic parameters of multiple composites can be utilized to guide the medication of multiple composites. On the base of established four chromatopharmacology (pharmacology with chromatographic fingerprint), the pharmacokinetics, and pharmacodynamics were analyzed comparably on their mathematical model and parameter definition. On the basis of quantitative pharmacology, the function expressions and total statistical parameters, such as total zero moment, total first moment, total second moment of the pharmacokinetics, and pharmacodynamics were analyzed to the common expressions and elucidated results for single and multiple components in Chinese materia medica formulae. Total quantitative pharmacokinetic, i.e., chromatopharmacokinetic parameter were decided by each component pharmacokinetic parameters, whereas the total quantitative pharmacodynamic, i.e., chromatopharmacodynamic parameter were decided by both of pharmacokinetic and pharmacodynamic parameters of each components. The pharmacokinetic parameters were corresponded to pharmacodynamic parameters with an existing stable effective coefficient when the constitutive ratio of each composite was a constant. The effects of Chinese materia medica were all controlled by pharmacokinetic and pharmacodynamic coefficient. It is a special case that the pharmacokinetic parameter could independently guide the clinical medication for single component whereas the chromatopharmacokinetic parameters are not applied to the multiple drug combination system, and not be used to solve problems of chromatopharmacokinetic of Chinese materia medica formulae.
Phelps, Kendra L; Kingston, Tigga
2018-06-01
Environmental and biological context play significant roles in modulating physiological stress responses of individuals in wildlife populations yet are often overlooked when evaluating consequences of human disturbance on individual health and fitness. Furthermore, most studies gauge individual stress responses based on a single physiological biomarker, typically circulating glucocorticoid concentrations, which limits interpretation of the complex, multifaceted responses of individuals to stressors. We selected four physiological biomarkers to capture short-term and prolonged stress responses in a widespread cave-roosting bat, Hipposideros diadema, across multiple gradients of human disturbance in and around caves in the Philippines. We used conditional inference trees and random forest analysis to determine the role of environmental quality (cave complexity, available roosting area), assemblage composition (intra- and interspecific associations and species richness), and intrinsic characteristics of individuals (sex and reproductive status) in modulating responses to disturbance. Direct cave disturbance (hunting pressure and human visitation) was the primary driver of neutrophil-to-lymphocyte ratios, with lower ratios associated with increased disturbance, while context-specific factors were more important in explaining total leukocyte count, body condition, and ectoparasite load. Moreover, conditional inference trees revealed complex interactions among human disturbance and modulating factors. Cave complexity often ameliorated individual responses to human disturbance, whereas conspecific abundance often compounded responses. Our study demonstrates the importance of an integrated approach that incorporates environmental and biological context when identifying drivers of physiological responses, and that assesses responses to gradients of direct and indirect disturbance using multiple complementary biomarkers.
Insomnia, metabolic rate and sleep restoration.
Bonnet, M H; Arand, D L
2003-07-01
Studies have shown occasional evidence of increased physiological activity in patients with primary insomnia. We hypothesized that metabolic rate, as measured by overall oxygen use (VO2), might be a more general index of increased physiological activity. An initial experiment found elevated VO2 both at night and during the day in patients with primary insomnia as compared with matched normal sleepers. A second experiment found significant but more modest increases in VO2 in patients with Sleep State Misperception Insomnia [who complain of poor sleep but who had normal sleep by electroencephalographic (EEG) criteria]. In a third experiment, normal young adults were given caffeine 400 mg three times per day (TID) for 1 week as a means of increasing VO2 and possibly producing other symptoms of insomnia. Participants developed many symptoms consistent with those seen in patients with primary insomnia (poor sleep, increased latency on the Multiple Sleep Latency Test, increasing fatigue despite physiological activation, and increased anxiety on the Minnesota Multiphasic Personality Inventory (MMPI)). In a final experiment, physiological arousal was again produced by caffeine to determine if sleep with elevated arousal would be less restorative. All subjects (Ss) slept for 3.5 h after being given 400 mg of caffeine. During 41 h of sleep deprivation that followed, there was no significant condition difference for the Multiple Sleep Latency Test or mood measures. The results provided only weak support for the idea that sleep is less restorative after physiological arousal.
Ivory, James D; Magee, Robert G
2009-06-01
Portable media consoles are becoming extremely popular devices for viewing a number of different types of media content, both for entertainment and for educational purposes. Given the increasingly heavy use of portable consoles as an alternative to traditional television-style monitors, it is important to investigate how physiological and psychological effects of portable consoles may differ from those of television-based consoles, because such differences in physiological and psychological responses may precipitate differences in the delivered content's effectiveness. Because portable consoles are popular as a delivery system for multiple types of media content, such as movies and video games, it is also important to investigate whether differences between the effects of portable and television-based consoles are consistent across multiple types of media. This article reports a 2 x 2 (console: portable or television-based x medium: video game or movie) mixed factorial design experiment with physiological arousal and self-reported flow experience as dependent variables, designed to explore whether console type affects media experiences and whether these effects are consistent across different media. Results indicate that portable media consoles evoke lower levels of physiological arousal and flow experience and that this effect is consistent for both video games and movies. These findings suggest that even though portable media consoles are often convenient compared to television-based consoles, the convenience may come at a cost in terms of the user experience.
Fluid dynamics in flexible tubes: An application to the study of the pulmonary circulation
NASA Technical Reports Server (NTRS)
Kuchar, N. R.
1971-01-01
Based on an analysis of unsteady, viscous flow through distensible tubes, a lumped-parameter model for the dynamics of blood flow through the pulmonary vascular bed was developed. The model is nonlinear, incorporating the variation of flow resistance with transmural pressure. Solved using a hybrid computer, the model yields information concerning the time-dependent behavior of blood pressures, flow rates, and volumes in each important class of vessels in each lobe of each lung in terms of the important physical and environmental parameters. Simulations of twenty abnormal or pathological situations of interest in environmental physiology and clinical medicine were performed. The model predictions agree well with physiological data.
NASA Astrophysics Data System (ADS)
Perrin, Laura; Probert, Ian; Langer, Gerald; Aloisi, Giovanni
2016-11-01
Coccolithophores are unicellular calcifying marine algae that play an important role in the oceanic carbon cycle via their cellular processes of photosynthesis (a CO2 sink) and calcification (a CO2 source). In contrast to the well-studied, surface-water coccolithophore blooms visible from satellites, the lower photic zone is a poorly known but potentially important ecological niche for coccolithophores in terms of primary production and carbon export to the deep ocean. In this study, the physiological responses of an Emiliania huxleyi strain to conditions simulating the deep niche in the oligotrophic gyres along the BIOSOPE transect in the South Pacific Gyre were investigated. We carried out batch culture experiments with an E. huxleyi strain isolated from the BIOSOPE transect, reproducing the in situ conditions of light and nutrient (nitrate and phosphate) limitation. By simulating coccolithophore growth using an internal stores (Droop) model, we were able to constrain fundamental physiological parameters for this E. huxleyi strain. We show that simple batch experiments, in conjunction with physiological modelling, can provide reliable estimates of fundamental physiological parameters for E. huxleyi that are usually obtained experimentally in more time-consuming and costly chemostat experiments. The combination of culture experiments, physiological modelling and in situ data from the BIOSOPE cruise show that E. huxleyi growth in the deep BIOSOPE niche is limited by availability of light and nitrate. This study contributes more widely to the understanding of E. huxleyi physiology and behaviour in a low-light and oligotrophic environment of the ocean.
Kubo, Kenta; Okanoya, Kazuo; Kawai, Nobuyuki
2012-01-01
Although studies have emphasized the multiple components of anger, little is known about the physiological and psychological mechanisms of the approach motivational component and the negative emotional component of anger. In the present study, participants wrote brief opinions about social problems (e.g., tuition hikes) and received a handwritten, insulting comment about their composition from the experimenter. Half of the participants (apology group) received a simple apologetic sentence at the end of the insulting comment. Half of the participants (no apology group) did not receive one. The physiological responses of the participants were recorded prior to, and after they read the comments. Increases in heart rate and asymmetric frontal brain activity were suppressed only in the apology group. Both groups showed an increase in skin conductance response. Our psychological scales showed that the apology suppressed self reported state anger from an approach-motivational standpoint but not from a negative emotional standpoint. The results suggest that anger is not a unitary process but has multiple components. The apology did provide a different physiological profile but did not dampen down the subjective experience of anger. Thus, providing an apology may not always be effective for alleviating the experience of anger to an insult.
Kubo, Kenta; Okanoya, Kazuo; Kawai, Nobuyuki
2012-01-01
Although studies have emphasized the multiple components of anger, little is known about the physiological and psychological mechanisms of the approach motivational component and the negative emotional component of anger. In the present study, participants wrote brief opinions about social problems (e.g., tuition hikes) and received a handwritten, insulting comment about their composition from the experimenter. Half of the participants (apology group) received a simple apologetic sentence at the end of the insulting comment. Half of the participants (no apology group) did not receive one. The physiological responses of the participants were recorded prior to, and after they read the comments. Increases in heart rate and asymmetric frontal brain activity were suppressed only in the apology group. Both groups showed an increase in skin conductance response. Our psychological scales showed that the apology suppressed self reported state anger from an approach-motivational standpoint but not from a negative emotional standpoint. The results suggest that anger is not a unitary process but has multiple components. The apology did provide a different physiological profile but did not dampen down the subjective experience of anger. Thus, providing an apology may not always be effective for alleviating the experience of anger to an insult. PMID:22457729
Deadly diving? Physiological and behavioural management of decompression stress in diving mammals
Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.
2012-01-01
Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402
NASA Astrophysics Data System (ADS)
Toda, M.; Yokozawa, M.; Richardson, A. D.; Kohyama, T.
2011-12-01
The effects of wind disturbance on interannual variability in ecosystem CO2 exchange have been assessed in two forests in northern Japan, i.e., a young, even-aged, monocultured, deciduous forest and an uneven-aged mixed forest of evergreen and deciduous trees, including some over 200 years old using eddy covariance (EC) measurements during 2004-2008. The EC measurements have indicated that photosynthetic recovery of trees after a huge typhoon occurred during early September in 2004 activated annual carbon uptake of both forests due to changes in physiological response of tree leaves during their growth stages. However, little have been resolved about what biotic and abiotic factors regulated interannual variability in heat, water and carbon exchange between an atmosphere and forests. In recent years, an inverse modeling analysis has been utilized as a powerful tool to estimate biotic and abiotic parameters that might affect heat, water and CO2 exchange between the atmosphere and forest of a parsimonious physiologically based model. We conducted the Bayesian inverse model analysis for the model with the EC measurements. The preliminary result showed that the above model-derived NEE values were consistent with observed ones on the hourly basis with optimized parameters by Baysian inversion. In the presentation, we would examine interannual variability in biotic and abiotic parameters related to heat, water and carbon exchange between the atmosphere and forests after disturbance by typhoon.
NASA Astrophysics Data System (ADS)
Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena
2016-10-01
Following the principles of "morphology reveals biomechanics", the anatomical structure of the cartilage-osseous interface and the supporting trabecular network show defined adaptation in their architectural properties to physiological loading. In case of a faulty relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise and disturb the balanced formation and resorption processes. To describe and quantify the changes occurring, 10 human OA patellae were analysed concerning the architectural parameters of the trabecular network within the first five mms by the evaluation of 3Dmicro-CT datasets. The analysed OA-samples showed a strong irregularity for all trabecular parameters across the trabecular network, no regularity in parameter distribution was found. In general, we saw a decrease of material in the OA population as BV/TV, BS/TV, Tb.N and Tb.Th were decreased and the spacing increased. The development into depth showed a logarithmic dependency, which revealed the greatest difference for all parameters within the first mm in comparison to the physiologic samples. The differences decreased towards the 5th mm. The interpretation of the mathematic dependency leads to the conclusion that the main impact of OA is beneath the subchondral bone plate (SBP) and lessens with depth. Next to the clear difference in material, the architectural arrangement is more rod-like and isotropic just beneath the SBP in comparison to the plate-like and more anisotropic physiological arrangement.