Naughton, Fiona B; Kalli, Antreas C; Sansom, Mark S P
2018-02-02
Pleckstrin homology (PH) domains mediate protein-membrane interactions by binding to phosphatidylinositol phosphate (PIP) molecules. The structural and energetic basis of selective PH-PIP interactions is central to understanding many cellular processes, yet the molecular complexities of the PH-PIP interactions are largely unknown. Molecular dynamics simulations using a coarse-grained model enables estimation of free-energy landscapes for the interactions of 12 different PH domains with membranes containing PIP 2 or PIP 3 , allowing us to obtain a detailed molecular energetic understanding of the complexities of the interactions of the PH domains with PIP molecules in membranes. Distinct binding modes, corresponding to different distributions of cationic residues on the PH domain, were observed, involving PIP interactions at either the "canonical" (C) and/or "alternate" (A) sites. PH domains can be grouped by the relative strength of their C- and A-site interactions, revealing that a higher affinity correlates with increased C-site interactions. These simulations demonstrate that simultaneous binding of multiple PIP molecules by PH domains contributes to high-affinity membrane interactions, informing our understanding of membrane recognition by PH domains in vivo. Copyright © 2017. Published by Elsevier Ltd.
Han, Bo; He, Kunyan; Cai, Chunlin; Tang, Yin; Yang, Linli; Heinemann, Stefan H.; Hoshi, Toshinori; Hou, Shangwei
2016-01-01
Voltage-gated ether à go-go (EAG) K+ channels are expressed in various types of cancer cells and also in the central nervous system. Aberrant overactivation of human EAG1 (hEAG1) channels is associated with cancer and neuronal disorders such as Zimmermann-Laband and Temple-Baraitser syndromes. Although hEAG1 channels are recognized as potential therapeutic targets, regulation of their functional properties is only poorly understood. Here, we show that the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent inhibitory gating modifier of hEAG1 channels. PIP2 inhibits the channel activity by directly binding to a short N-terminal segment of the channel important for Ca2+/calmodulin (CaM) binding as evidenced by bio-layer interferometry measurements. Conversely, depletion of endogenous PIP2 either by serotonin-induced phospholipase C (PLC) activation or by a rapamycin-induced translocation system enhances the channel activity at physiological membrane potentials, suggesting that PIP2 exerts a tonic inhibitory influence. Our study, combining electrophysiological and direct binding assays, demonstrates that hEAG1 channels are subject to potent inhibitory modulation by multiple phospholipids and suggests that manipulations of the PIP2 signaling pathway may represent a strategy to treat hEAG1 channel-associated diseases. PMID:27005320
The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.
Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E
2017-12-05
Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Marx, Benjamin; Miller-Lazic, Daliborka; Doorbar, John; Majewski, Slawomir; Hofmann, Kay; Hufbauer, Martin; Akgül, Baki
2017-01-01
The E6 oncoproteins of high-risk human papillomaviruses (HPV) of genus alpha contain a short peptide sequence at the carboxy-terminus, the PDZ binding domain, with which they interact with the corresponding PDZ domain of cellular proteins. Interestingly, E6 proteins from papillomaviruses of genus beta (betaPV) do not encode a comparable PDZ binding domain. Irrespective of this fact, we previously showed that the E6 protein of HPV8 (betaPV type) could circumvent this deficit by targeting the PDZ protein Syntenin-2 through transcriptional repression (Lazic et al., 2012). Despite its high binding affinity to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ), very little is known about Syntenin-2. This study aimed to extend the knowledge on Syntenin-2 and how its expression is controlled. We now identified that Syntenin-2 is expressed at high levels in differentiating and in lower amounts in keratinocytes cultured in serum-free media containing low calcium concentration. HPV8-E6 led to a further reduction of Syntenin-2 expression only in cells cultured in low calcium. In the skin of patients suffering from Epidermodysplasia verruciformis, who are predisposed to betaPV infection, Syntenin-2 was expressed in differentiating keratinocytes of non-lesional skin, but was absent in virus positive squamous tumors. Using 5-Aza-2'-deoxycytidine, which causes DNA demethylation, Syntenin-2 transcription was profoundly activated and fully restored in the absence and presence of HPV8-E6, implicating that E6 mediated repression of Syntenin-2 transcription is due to promoter hypermethylation. Since Syntenin-2 binds to PI(4,5)P 2 , we further tested whether the PI(4,5)P 2 metabolic pathway might govern Syntenin-2 expression. PI(4,5)P 2 is generated by the activity of phosphatidylinositol-4-phosphate-5-kinase type I (PIP5KI) or phosphatidylinositol-5-phosphate-4-kinase type II (PIP4KII) isoforms α, β and γ. Phosphatidylinositide kinases have recently been identified as regulators of gene transcription. Surprisingly, transfection of siRNAs directed against PIP5KI and PIP4KII resulted in higher Syntenin-2 expression with the highest effect mediated by siPIP5KIα. HPV8-E6 was able to counteract siPIP4KIIα, siPIP4KIIβ and siPIP5KIγ mediated Syntenin-2 re-expression but not siPIP5KIα. Finally, we identified Syntenin-2 as a key factor regulating PIP5KIα expression. Collectively, our data demonstrates that Syntenin-2 is regulated through multiple mechanisms and that downregulation of Syntenin-2 expression may contribute to E6 mediated dedifferentiation of infected skin cells.
Crystal structure of human PCNA in complex with the PIP box of DVC1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049; Xu, Min
2016-05-27
In higher eukaryotes, DVC1 (SPRTN, Spartan or C1orf124) is implicated in the translesion synthesis (TLS) pathway. DVC1 localizes to sites of DNA damage, binds to the proliferating cell nuclear antigen (PCNA) via its conserved PCNA-interacting motif (PIP box), and associates with ubiquitin selective segregase p97 and other factors, thus regulating translesion synthesis polymerases. Here, we report the crystal structure of human PCNA in complex with a peptide ({sup 321}SNSHQNVLSNYFPRVS{sup 336}) derived from human DVC1 that contains a unique YF type PIP box. Structural analysis reveals the detailed PIP box-PCNA interaction. Interestingly, substitution of Y331 with Phe severely reduces its PCNAmore » binding affinity. These findings offer new insights into the determinants of PIP box for PCNA binding. -- Highlights: •Crystal structure of PCNA in complex with DVC1{sup PIP} peptide was determined. •The Y331{sup P7}F mutation severely impairs DVC1's PCNA binding affinity. •The intramolecular hydrogen bond N326−Y331 in the 3{sub 10} helix affects DVC1's PCNA binding affinity.« less
The PP1 binding code: a molecular-lego strategy that governs specificity.
Heroes, Ewald; Lesage, Bart; Görnemann, Janina; Beullens, Monique; Van Meervelt, Luc; Bollen, Mathieu
2013-01-01
Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo. © 2012 The Authors Journal compilation © 2012 FEBS.
Phosphoinositide and Inositol Phosphate Analysis in Lymphocyte Activation
Sauer, Karsten; Huang, Yina Hsing; Lin, Hongying; Sandberg, Mark; Mayr, Georg W.
2015-01-01
Lymphocyte antigen receptor engagement profoundly changes the cellular content of phosphoinositide lipids and soluble inositol phosphates. Among these, the phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) play key signaling roles by acting as pleckstrin homology (PH) domain ligands that recruit signaling proteins to the plasma membrane. Moreover, PIP2 acts as a precursor for the second messenger molecules diacylglycerol and soluble inositol 1,4,5-trisphosphate (IP3), essential mediators of PKC, Ras/Erk, and Ca2+ signaling in lymphocytes. IP3 phosphorylation by IP3 3-kinases generates inositol 1,3,4,5-tetrakisphosphate (IP4), an essential soluble regulator of PH domain binding to PIP3 in developing T cells. Besides PIP2, PIP3, IP3, and IP4, lymphocytes produce multiple other phosphoinositides and soluble inositol phosphates that could have important physiological functions. To aid their analysis, detailed protocols that allow one to simultaneously measure the levels of multiple different phosphoinositide or inositol phosphate isomers in lymphocytes are provided here. They are based on thin layer, conventional and high-performance liquid chromatographic separation methods followed by radiolabeling or non-radioactive metal-dye detection. Finally, less broadly applicable nonchromatographic methods for detection of specific phosphoinositide or inositol phosphate isomers are discussed. Support protocols describe how to obtain pure unstimulated CD4+CD8+ thymocyte populations for analyses of inositol phosphate turnover during positive and negative selection, key steps in T cell development. PMID:19918943
Boehm, Elizabeth M.; Powers, Kyle T.; Kondratick, Christine M.; Spies, Maria; Houtman, Jon C. D.; Washington, M. Todd
2016-01-01
Y-family DNA polymerases, such as polymerase η, polymerase ι, and polymerase κ, catalyze the bypass of DNA damage during translesion synthesis. These enzymes are recruited to sites of DNA damage by interacting with the essential replication accessory protein proliferating cell nuclear antigen (PCNA) and the scaffold protein Rev1. In most Y-family polymerases, these interactions are mediated by one or more conserved PCNA-interacting protein (PIP) motifs that bind in a hydrophobic pocket on the front side of PCNA as well as by conserved Rev1-interacting region (RIR) motifs that bind in a hydrophobic pocket on the C-terminal domain of Rev1. Yeast polymerase η, a prototypical translesion synthesis polymerase, binds both PCNA and Rev1. It possesses a single PIP motif but not an RIR motif. Here we show that the PIP motif of yeast polymerase η mediates its interactions both with PCNA and with Rev1. Moreover, the PIP motif of polymerase η binds in the hydrophobic pocket on the Rev1 C-terminal domain. We also show that the RIR motif of human polymerase κ and the PIP motif of yeast Msh6 bind both PCNA and Rev1. Overall, these findings demonstrate that PIP motifs and RIR motifs have overlapping specificities and can interact with both PCNA and Rev1 in structurally similar ways. These findings also suggest that PIP motifs are a more versatile protein interaction motif than previously believed. PMID:26903512
Prolactin-Induced Protein Is Required for Cell Cycle Progression in Breast Cancer12
Naderi, Ali; Vanneste, Marion
2014-01-01
Prolactin-induced protein (PIP) is expressed in the majority of breast cancers and is used for the diagnostic evaluation of this disease as a characteristic biomarker; however, the molecular mechanisms of PIP function in breast cancer have remained largely unknown. In this study, we carried out a comprehensive investigation of PIP function using PIP silencing in a broad group of breast cancer cell lines, analysis of expression microarray data, proteomic analysis using mass spectrometry, and biomarker studies on breast tumors. We demonstrated that PIP is required for the progression through G1 phase, mitosis, and cytokinesis in luminal A, luminal B, and molecular apocrine breast cancer cells. In addition, PIP expression is associated with a transcriptional signature enriched with cell cycle genes and regulates key genes in this process including cyclin D1, cyclin B1, BUB1, and forkhead box M1 (FOXM1). It is notable that defects in mitotic transition and cytokinesis following PIP silencing are accompanied by an increase in aneuploidy of breast cancer cells. Importantly, we have identified novel PIP-binding partners in breast cancer and shown that PIP binds to β-tubulin and is necessary for microtubule polymerization. Furthermore, PIP interacts with actin-binding proteins including Arp2/3 and is needed for inside-out activation of integrin-β1 mediated through talin. This study suggests that PIP is required for cell cycle progression in breast cancer and provides a rationale for exploring PIP inhibition as a therapeutic approach in breast cancer that can potentially target microtubule polymerization. PMID:24862759
Molecular mechanism of membrane binding of the GRP1 PH domain.
Lai, Chun-Liang; Srivastava, Anand; Pilling, Carissa; Chase, Anna R; Falke, Joseph J; Voth, Gregory A
2013-09-09
The pleckstrin homology (PH) domain of the general receptor of phosphoinositides 1 (GRP1) protein selectively binds to a rare signaling phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), in the membrane. The specific PIP3 lipid docking of GRP1 PH domain is essential to protein cellular function and is believed to occur in a stepwise process, electrostatic-driven membrane association followed by the specific PIP3 binding. By a combination of all-atom molecular dynamics (MD) simulations, coarse-grained analysis, electron paramagnetic resonance (EPR) membrane docking geometry, and fluorescence resonance energy transfer (FRET) kinetic studies, we have investigated the search and bind process in the GRP1 PH domain at the molecular scale. We simulated the two membrane binding states of the GRP1 PH domain in the PIP3 search process, before and after the GRP1 PH domain docks with the PIP3 lipid. Our results suggest that the background anionic phosphatidylserine lipids, which constitute around one-fifth of the membrane by composition, play a critical role in the initial stages of recruiting protein to the membrane surface through non-specific electrostatic interactions. Our data also reveal a previously unseen transient membrane association mechanism that is proposed to enable a two-dimensional "hopping" search of the membrane surface for the rare PIP3 target lipid. We further modeled the PIP3-bound membrane-protein system using the EPR membrane docking structure for the MD simulations, quantitatively validating the EPR membrane docking structure and augmenting our understanding of the binding interface with atomic-level detail. Several observations and hypotheses reached from our MD simulations are also supported by experimental kinetic studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria
2016-08-15
Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP 2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL -) with a distinct second site is required for high PIP 2sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP 2sensitivity, even in the absence of PL -. Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP 2(2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domainmore » (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL -binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP 2site and explaining the positive allostery between PL -binding and PIP 2sensitivity.« less
Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.
Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G
2016-09-01
Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. © 2016 Lee et al.
Wang, Yanfeng; Zhao, Liang; Suzuki, Aae; Lian, Lurong; Min, Sang H.; Wang, Ziqian; Litvinov, Rustem I.; Stalker, Timothy J.; Yago, Tadayuki; Klopocki, Arkadiusz G.; Schmidtke, David W.; Yin, Helen; Choi, John K.; McEver, Rodger P.; Weisel, John W.; Hartwig, John H.; Abrams, Charles S.
2013-01-01
Three isoforms of phosphatidylinositol-4-phosphate 5-kinase (PIP5KIα, PIP5KIβ, and PIP5KIγ) can each catalyze the final step in the synthesis of phosphatidylinositol-4,5-bisphosphate (PIP2), which in turn can be either converted to second messengers or bind directly to and thereby regulate proteins such as talin. A widely quoted model speculates that only p90, a longer splice form of platelet-specific PIP5KIγ, but not the shorter p87 PIP5KIγ, regulates the ligand-binding activity of integrins via talin. However, when we used mice genetically engineered to lack only p90 PIP5KIγ, we found that p90 PIP5KIγ is not critical for integrin activation or platelet adhesion on collagen. However, p90 PIP5KIγ-null platelets do have impaired anchoring of their integrins to the underlying cytoskeleton. Platelets lacking both the p90 and p87 PIP5KIγ isoforms had normal integrin activation and actin dynamics, but impaired anchoring of their integrins to the cytoskeleton. Most importantly, they formed weak shear-resistant adhesions ex vivo and unstable vascular occlusions in vivo. Together, our studies demonstrate that, although PIP5KIγ is essential for normal platelet function, individual isoforms of PIP5KIγ fulfill unique roles for the integrin-dependent integrity of the membrane cytoskeleton and for the stabilization of platelet adhesion. PMID:23372168
Eckey, Karina; Wrobel, Eva; Strutz-Seebohm, Nathalie; Pott, Lutz; Schmitt, Nicole; Seebohm, Guiscard
2014-08-15
Kv7.1 to Kv7.5 α-subunits belong to the family of voltage-gated potassium channels (Kv). Assembled with the β-subunit KCNE1, Kv7.1 conducts the slowly activating potassium current IKs, which is one of the major currents underlying repolarization of the cardiac action potential. A known regulator of Kv7 channels is the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 increases the macroscopic current amplitude by stabilizing the open conformation of 7.1/KCNE1 channels. However, knowledge about the exact nature of the interaction is incomplete. The aim of this study was the identification of the amino acids responsible for the interaction between Kv7.1 and PIP2. We generated 13 charge neutralizing point mutations at the intracellular membrane border and characterized them electrophysiologically in complex with KCNE1 under the influence of diC8-PIP2. Electrophysiological analysis of corresponding long QT syndrome mutants suggested impaired PIP2 regulation as the cause for channel dysfunction. To clarify the underlying structural mechanism of PIP2 binding, molecular dynamics simulations of Kv7.1/KCNE1 complexes containing two PIP2 molecules in each subunit at specific sites were performed. Here, we identified a subset of nine residues participating in the interaction of PIP2 and Kv7.1/KCNE1. These residues may form at least two binding pockets per subunit, leading to the stabilization of channel conformations upon PIP2 binding. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Koebnik, Ralf; Krüger, Antje; Thieme, Frank; Urban, Alexander; Bonas, Ulla
2006-11-01
The pathogenicity of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion system which is encoded by the 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Expression of the hrp operons is strongly induced in planta and in a special minimal medium and depends on two regulatory proteins, HrpG and HrpX. In this study, DNA affinity enrichment was used to demonstrate that the AraC-type transcriptional activator HrpX binds to a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGC-N(15)-TTCGC), present in the promoter regions of four hrp operons. No binding of HrpX was observed when DNA fragments lacking a PIP box were used. HrpX also bound to a DNA fragment containing an imperfect PIP box (TTCGC-N(8)-TTCGT). Dinucleotide replacements in each half-site of the PIP box strongly decreased binding of HrpX, while simultaneous dinucleotide replacements in both half-sites completely abolished binding. Based on the complete genome sequence of Xanthomonas campestris pv. vesicatoria, putative plant-inducible promoters consisting of a PIP box and a -10 promoter motif were identified in the promoter regions of almost all HrpX-activated genes. Bioinformatic analyses and reverse transcription-PCR experiments revealed novel HrpX-dependent genes, among them a NUDIX hydrolase gene and several genes with a predicted role in the degradation of the plant cell wall. We conclude that HrpX is the most downstream component of the hrp regulatory cascade, which is proposed to directly activate most genes of the hrpX regulon via binding to corresponding PIP boxes.
Alberdi, Araitz; Gomis-Perez, Carolina; Bernardo-Seisdedos, Ganeko; Alaimo, Alessandro; Malo, Covadonga; Aldaregia, Juncal; Lopez-Robles, Carlos; Areso, Pilar; Butz, Elisabeth; Wahl-Schott, Christian; Villarroel, Alvaro
2015-11-01
We show that the combination of an intracellular bi-partite calmodulin (CaM)-binding site and a distant assembly region affect how an ion channel is regulated by a membrane lipid. Our data reveal that regulation by phosphatidylinositol(4,5)bisphosphate (PIP2) and stabilization of assembled Kv7.2 subunits by intracellular coiled-coil regions far from the membrane are coupled molecular processes. Live-cell fluorescence energy transfer measurements and direct binding studies indicate that remote coiled-coil formation creates conditions for different CaM interaction modes, each conferring different PIP2 dependency to Kv7.2 channels. Disruption of coiled-coil formation by epilepsy-causing mutation decreases apparent CaM-binding affinity and interrupts CaM influence on PIP2 sensitivity. © 2015. Published by The Company of Biologists Ltd.
Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing
Chandran, Anandhakumar; Syed, Junetha; Taylor, Rhys D.; Kashiwazaki, Gengo; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2016-01-01
Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2 showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing. PMID:27098039
Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C
Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su
2015-01-01
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically. PMID:26658739
Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C.
Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su
2015-01-01
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.
A major integral protein of the plant plasma membrane binds flavin.
Lorenz, Astrid; Kaldenhoff, Ralf; Hertel, Rainer
2003-05-01
Abundant flavin binding sites have been found in membranes of plants and fungi. With flavin mononucleotide-agarose affinity columns, riboflavin-binding activity from microsomes of Cucurbita pepoL. hypocotyls was purified and identified as a specific PIP1-homologous protein of the aquaporin family. Sequences such as gi|2149955 in Phaseolus vulgaris, PIP1b of Arabidopsis thaliana, and NtAQP1 of tobacco are closely related. The identification as a riboflavin-binding protein was confirmed by binding tests with an extract of Escherichia coli cells expressing the tobacco NtAQP1 as well as leaves of transgenic tobacco plants that overexpress NtAQP1 or were inhibited in PIP1 expression by antisense constructs. When binding was assayed in the presence of dithionite, the reduced flavin formed a relatively stable association with the protein. Upon dilution under oxidizing conditions, the adduct was resolved, and free flavin reappeared with a half time of about 30 min. Such an association can also be induced photochemically, with oxidized flavin by blue light at 450 nm, in the presence of an electron donor. Several criteria, localization in the plasma membrane, high abundance, affinity to roseoflavin, and photochemistry, argue for a role of the riboflavin-binding protein PIP1 as a photoreceptor.
Phosphoinositide-mediated oligomerization of a defensin induces cell lysis
Poon, Ivan KH; Baxter, Amy A; Lay, Fung T; Mills, Grant D; Adda, Christopher G; Payne, Jennifer AE; Phan, Thanh Kha; Ryan, Gemma F; White, Julie A; Veneer, Prem K; van der Weerden, Nicole L; Anderson, Marilyn A; Kvansakul, Marc; Hulett, Mark D
2014-01-01
Cationic antimicrobial peptides (CAPs) such as defensins are ubiquitously found innate immune molecules that often exhibit broad activity against microbial pathogens and mammalian tumor cells. Many CAPs act at the plasma membrane of cells leading to membrane destabilization and permeabilization. In this study, we describe a novel cell lysis mechanism for fungal and tumor cells by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). We determined the crystal structure of a NaD1:PIP2 complex, revealing a striking oligomeric arrangement comprising seven dimers of NaD1 that cooperatively bind the anionic headgroups of 14 PIP2 molecules through a unique ‘cationic grip’ configuration. Site-directed mutagenesis of NaD1 confirms that PIP2-mediated oligomerization is important for fungal and tumor cell permeabilization. These observations identify an innate recognition system by NaD1 for direct binding of PIP2 that permeabilizes cells via a novel membrane disrupting mechanism. DOI: http://dx.doi.org/10.7554/eLife.01808.001 PMID:24692446
Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling
NASA Astrophysics Data System (ADS)
Egea-Jimenez, Antonio Luis; Gallardo, Rodrigo; Garcia-Pino, Abel; Ivarsson, Ylva; Wawrzyniak, Anna Maria; Kashyap, Rudra; Loris, Remy; Schymkowitz, Joost; Rousseau, Frederic; Zimmermann, Pascale
2016-07-01
PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.
Tang, Qiong-Yao; Larry, Trevor; Hendra, Kalen; Yamamoto, Erica; Bell, Jessica; Cui, Meng; Logothetis, Diomedes E.; Boland, Linda M.
2015-01-01
All vertebrate inwardly rectifying potassium (Kir) channels are activated by phosphatidylinositol 4,5-bisphosphate (PIP2) (Logothetis, D. E., Petrou, V. I., Zhang, M., Mahajan, R., Meng, X. Y., Adney, S. K., Cui, M., and Baki, L. (2015) Annu. Rev. Physiol. 77, 81–104; Fürst, O., Mondou, B., and D'Avanzo, N. (2014) Front. Physiol. 4, 404–404). Structural components of a PIP2-binding site are conserved in vertebrate Kir channels but not in distantly related animals such as sponges and sea anemones. To expand our understanding of the structure-function relationships of PIP2 regulation of Kir channels, we studied AqKir, which was cloned from the marine sponge Amphimedon queenslandica, an animal that represents the phylogenetically oldest metazoans. A requirement for PIP2 in the maintenance of AqKir activity was examined in intact oocytes by activation of a co-expressed voltage-sensing phosphatase, application of wortmannin (at micromolar concentrations), and activation of a co-expressed muscarinic acetylcholine receptor. All three mechanisms to reduce the availability of PIP2 resulted in inhibition of AqKir current. However, time-dependent rundown of AqKir currents in inside-out patches could not be re-activated by direct application to the inside membrane surface of water-soluble dioctanoyl PIP2, and the current was incompletely re-activated by the more hydrophobic arachidonyl stearyl PIP2. When we introduced mutations to AqKir to restore two positive charges within the vertebrate PIP2-binding site, both forms of PIP2 strongly re-activated the mutant sponge channels in inside-out patches. Molecular dynamics simulations validate the additional hydrogen bonding potential of the sponge channel mutants. Thus, nature's mutations conferred a high affinity activation of vertebrate Kir channels by PIP2, and this is a more recent evolutionary development than the structures that explain ion channel selectivity and inward rectification. PMID:25957411
Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H.
2014-01-01
Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the actin cytoskeleton controlling directional movement. PMID:25356636
G-Quadruplex Induction by the Hairpin Pyrrole-Imidazole Polyamide Dimer.
Obata, Shunsuke; Asamitsu, Sefan; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2018-02-06
The G-quadruplex (G4) is one type of higher-order structure of nucleic acids and is thought to play important roles in various biological events such as regulation of transcription and inhibition of DNA replication. Pyrrole-imidazole polyamides (PIPs) are programmable small molecules that can sequence-specifically bind with high affinity to the minor groove of double-stranded DNA (dsDNA). Herein, we designed head-to-head hairpin PIP dimers and their target dsDNA in a model G4-forming sequence. Using an electrophoresis mobility shift assay and transcription arrest assay, we found that PIP dimers could induce the structural change to G4 DNA from dsDNA through the recognition by one PIP dimer molecule of two duplex-binding sites flanking both ends of the G4-forming sequence. This induction ability was dependent on linker length. This is the first study to induce G4 formation using PIPs, which are known to be dsDNA binders. The results reported here suggest that selective G4 induction in native sequences may be achieved with PIP dimers by applying the same design strategy.
Barret, Cécile; Roy, Christian; Montcourrier, Philippe; Mangeat, Paul; Niggli, Verena
2000-01-01
The cytoskeleton-membrane linker protein ezrin has been shown to associate with phosphatidyl-inositol 4,5-bisphosphate (PIP2)-containing liposomes via its NH2-terminal domain. Using internal deletions and COOH-terminal truncations, determinants of PIP2 binding were located to amino acids 12–115 and 233–310. Both regions contain a KK(X)nK/RK motif conserved in the ezrin/radixin/moesin family. K/N mutations of residues 253 and 254 or 262 and 263 did not affect cosedimentation of ezrin 1-333 with PIP2-containing liposomes, but their combination almost completely abolished the capacity for interaction. Similarly, double mutation of Lys 63, 64 to Asn only partially reduced lipid interaction, but combined with the double mutation K253N, K254N, the interaction of PIP2 with ezrin 1-333 was strongly inhibited. Similar data were obtained with full-length ezrin. When residues 253, 254, 262, and 263 were mutated in full-length ezrin, the in vitro interaction with the cytoplasmic tail of CD44 was not impaired but was no longer PIP2 dependent. This construct was also expressed in COS1 and A431 cells. Unlike wild-type ezrin, it was not any more localized to dorsal actin-rich structures, but redistributed to the cytoplasm without strongly affecting the actin-rich structures. We have thus identified determinants of the PIP2 binding site in ezrin whose mutagenesis correlates with an altered cellular localization. PMID:11086008
Anoctamin 6 Contributes to Cl− Secretion in Accessory Cholera Enterotoxin (Ace)-stimulated Diarrhea
Aoun, Joydeep; Hayashi, Mikio; Sheikh, Irshad Ali; Sarkar, Paramita; Saha, Tultul; Ghosh, Priyanka; Bhowmick, Rajsekhar; Ghosh, Dipanjan; Chatterjee, Tanaya; Chakrabarti, Pinak; Chakrabarti, Manoj K.; Hoque, Kazi Mirajul
2016-01-01
Accessory cholera enterotoxin (Ace) of Vibrio cholerae has been shown to contribute to diarrhea. However, the signaling mechanism and specific type of Cl− channel activated by Ace are still unknown. We have shown here that the recombinant Ace protein induced ICl of apical plasma membrane, which was inhibited by classical CaCC blockers. Surprisingly, an Ace-elicited rise of current was neither affected by ANO1 (TMEM16A)-specific inhibitor T16A(inh)-AO1(TAO1) nor by the cystic fibrosis transmembrane conductance regulator (CFTR) blocker, CFTR inh-172. Ace stimulated whole-cell current in Caco-2 cells. However, the apical ICl was attenuated by knockdown of ANO6 (TMEM16F). This impaired phenotype was restored by re-expression of ANO6 in Caco-2 cells. Whole-cell patch clamp recordings of ANO currents in HEK293 cells transiently expressing mouse ANO1-mCherry or ANO6-GFP confirmed that Ace induced Cl− secretion. Application of Ace produced ANO6 but not the ANO1 currents. Ace was not able to induce a [Ca2+]i rise in Caco-2 cells, but cellular abundance of phosphatidylinositol 4,5-bisphosphate (PIP2) increased. Identification of the PIP2-binding motif at the N-terminal sequence among human and mouse ANO6 variants along with binding of PIP2 directly to ANO6 in HEK293 cells indicate likely PIP2 regulation of ANO6. The biophysical and pharmacological properties of Ace stimulated Cl− current along with intestinal fluid accumulation, and binding of PIP2 to the proximal KR motif of channel proteins, whose mutagenesis correlates with altered binding of PIP2, is comparable with ANO6 stimulation. We conclude that ANO6 is predominantly expressed in intestinal epithelia, where it contributes secretory diarrhea by Ace stimulation in a calcium-independent mechanism of RhoA-ROCK-PIP2 signaling. PMID:27799301
Anomalous Dynamics of a Lipid Recognition Protein on a Membrane Surface
Yamamoto, Eiji; Kalli, Antreas C.; Akimoto, Takuma; Yasuoka, Kenji; Sansom, Mark S. P.
2015-01-01
Pleckstrin homology (PH) domains are lipid-binding modules present in peripheral membrane proteins which interact with phosphatidyl-inositol phosphates (PIPs) in cell membranes. We use multiscale molecular dynamics simulations to characterize the localization and anomalous dynamics of the DAPP1 PH domain on the surface of a PIP-containing lipid bilayer. Both translational and rotational diffusion of the PH domain on the lipid membrane surface exhibit transient subdiffusion, with an exponent α ≈ 0.5 for times of less than 10 ns. In addition to a PIP3 molecule at the canonical binding site of the PH domain, we observe additional PIP molecules in contact with the protein. Fluctuations in the number of PIPs associated with the PH domain exhibit 1/f noise. We suggest that the anomalous diffusion and long-term correlated interaction of the PH domain with the membrane may contribute to an enhanced probability of encounter with target complexes on cell membrane surfaces. PMID:26657413
Aoun, Joydeep; Hayashi, Mikio; Sheikh, Irshad Ali; Sarkar, Paramita; Saha, Tultul; Ghosh, Priyanka; Bhowmick, Rajsekhar; Ghosh, Dipanjan; Chatterjee, Tanaya; Chakrabarti, Pinak; Chakrabarti, Manoj K; Hoque, Kazi Mirajul
2016-12-23
Accessory cholera enterotoxin (Ace) of Vibrio cholerae has been shown to contribute to diarrhea. However, the signaling mechanism and specific type of Cl - channel activated by Ace are still unknown. We have shown here that the recombinant Ace protein induced I Cl of apical plasma membrane, which was inhibited by classical CaCC blockers. Surprisingly, an Ace-elicited rise of current was neither affected by ANO1 (TMEM16A)-specific inhibitor T16A (inh) -AO1(TAO1) nor by the cystic fibrosis transmembrane conductance regulator (CFTR) blocker, CFTR inh-172. Ace stimulated whole-cell current in Caco-2 cells. However, the apical I Cl was attenuated by knockdown of ANO6 (TMEM16F). This impaired phenotype was restored by re-expression of ANO6 in Caco-2 cells. Whole-cell patch clamp recordings of ANO currents in HEK293 cells transiently expressing mouse ANO1-mCherry or ANO6-GFP confirmed that Ace induced Cl - secretion. Application of Ace produced ANO6 but not the ANO1 currents. Ace was not able to induce a [Ca 2+ ] i rise in Caco-2 cells, but cellular abundance of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) increased. Identification of the PIP 2 -binding motif at the N-terminal sequence among human and mouse ANO6 variants along with binding of PIP 2 directly to ANO6 in HEK293 cells indicate likely PIP 2 regulation of ANO6. The biophysical and pharmacological properties of Ace stimulated Cl - current along with intestinal fluid accumulation, and binding of PIP 2 to the proximal KR motif of channel proteins, whose mutagenesis correlates with altered binding of PIP 2 , is comparable with ANO6 stimulation. We conclude that ANO6 is predominantly expressed in intestinal epithelia, where it contributes secretory diarrhea by Ace stimulation in a calcium-independent mechanism of RhoA-ROCK-PIP 2 signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha
2013-09-20
Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool ofmore » PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.« less
Ca2+-Calmodulin and PIP2 interactions at the proximal C-terminus of Kv7 channels.
Tobelaim, William S; Dvir, Meidan; Lebel, Guy; Cui, Meng; Buki, Tal; Peretz, Asher; Marom, Milit; Haitin, Yoni; Logothetis, Diomedes E; Hirsch, Joel A; Attali, Bernard
2017-11-02
In the heart, co-assembly of Kv7.1 with KCNE1 produces the slow I KS potassium current, which repolarizes the cardiac action potential and mutations in human Kv7.1 and KCNE1 genes cause cardiac arrhythmias. The proximal Kv7.1 C-terminus binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP 2 ) and recently we revealed the competition of PIP 2 with the calcified CaM N-lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor a LQT mutation. Data indicated that PIP 2 and Ca 2+ -CaM perform the same function on I KS channel gating to stabilize the channel open state. Here we show that similar features were observed for Kv7.1 currents expressed alone. We also find that conservation of homologous residues in helix B of other Kv7 subtypes confer similar competition of Ca 2+ -CaM with PIP2 binding to their proximal C-termini and suggest that PIP2-CaM interactions converge to Kv7 helix B to modulates channel activity in a Kv7 subtype-dependent manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.
2013-10-01
Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes,more » intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.« less
Khadka, Bijendra; Gupta, Radhey S
2017-08-01
Homologs of the phosphatidylinositol-4-phosphate-5-kinase (PIP5K), which controls a multitude of essential cellular functions, contain a 8 aa insert in a conserved region that is specific for the Saccharomycetaceae family of fungi. Using structures of human PIP4K proteins as templates, structural models were generated of the Saccharomyces cerevisiae and human PIP5K proteins. In the modeled S. cerevisiae PIP5K, the 8 aa insert forms a surface exposed loop, present on the same face of the protein as the activation loop of the kinase domain. Electrostatic potential analysis indicates that the residues from 8 aa conserved loop form a highly positively charged surface patch, which through electrostatic interaction with the anionic portions of phospholipid head groups, is expected to play a role in the membrane interaction of the yeast PIP5K. To unravel this prediction, molecular dynamics (MD) simulations were carried out to examine the binding interaction of PIP5K, either containing or lacking the conserved signature insert, with two different membrane lipid bilayers. The results from MD studies provide insights concerning the mechanistic of interaction of PIP5K with lipid bilayer, and support the contention that the identified 8 aa conserved insert in fungal PIP5K plays an important role in the binding of this protein with membrane surface. Proteins 2017; 85:1454-1467. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Orihara, Kouhei; Hikichi, Atsushi; Arita, Tomohiko; Muguruma, Hitoshi; Yoshimi, Yasuo
2018-03-20
Heparin, a highly sulfated glycosaminoglycan, is an important biomaterial having biological and therapeutic functionalities such as anticoagulation, regeneration, and protein stabilization. This study addresses a label-free quartz crystal microbalance (QCM) biosensor for heparin detection based on a macromolecularly imprinted polymer (MIP) as an artificial recognition element. We demonstrate the novel strategy for MIP in the form of thin film on a gold (Au) electrode with the plasma-induced graft polymerization (PIP) technique. The procedure of PIP is as follows: (i) Hexamethyldisiloxane plasma-polymerized thin film (PPF) as a pre-coating scaffold of active species for PIP (post-polymerization) is deposited on an Au electrode. (ii) The PPF/Au electrode is soaked in an water solution containing heparin (template), (2-(methacryloxy)-ethyl)trimethylammonium chloride acrylamide (functional monomer), acrylamide, and N,N-methylenebisacrylamide (crosslinker). Double bonds of monomer and crosslinker attacked by residually active species in pre-coating PPF cause radical chain reaction. Consequently, a growing polymer network of 20 nm thickness of PIP-MIP thin film is formed and grafted on the PPF/Au surface. (iii) The PIP-MIP/PPF/Au is washed by sodium chloride solution so as to remove the template. Non-imprinted polymer (NIP) is carried out like the same procedure without a template. The AFM, XPS, and QCM measurements show that the PIP process facilitates macromolecularly surface imprinting of template heparin where the template is easily removed and is rapidly rebound to PIP-MIP without a diffusional barrier. The heparin-PIP-MIP specifically binds to heparin compared with heparin analog chondroitin sulfate C (selective factor: 4.0) and a detectable range of heparin in the presence of CS (0.1 wt%) was 0.001-0.1 wt%. The PIP-NIP does not show selectivity between them. The evaluated binding kinetics are association (k a = 350 ± 100 M -1 s -1 ), dissociation (k d = (5.0 ± 2.0) × 10 -4 s -1 ), and binding (K D = 1.3 ± 0.6 μM) constants, demonstrating that the PIP-MIP as a synthetic antibody can be applied to analytical chemistry. Copyright © 2018 Elsevier B.V. All rights reserved.
Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban
2013-09-20
Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.
Structural determinants of Kvbeta1.3-induced channel inactivation: a hairpin modulated by PIP2.
Decher, Niels; Gonzalez, Teresa; Streit, Anne Kathrin; Sachse, Frank B; Renigunta, Vijay; Soom, Malle; Heinemann, Stefan H; Daut, Jürgen; Sanguinetti, Michael C
2008-12-03
Inactivation of voltage-gated Kv1 channels can be altered by Kvbeta subunits, which block the ion-conducting pore to induce a rapid ('N-type') inactivation. Here, we investigate the mechanisms and structural basis of Kvbeta1.3 interaction with the pore domain of Kv1.5 channels. Inactivation induced by Kvbeta1.3 was antagonized by intracellular PIP(2). Mutations of R5 or T6 in Kvbeta1.3 enhanced Kv1.5 inactivation and markedly reduced the effects of PIP(2). R5C or T6C Kvbeta1.3 also exhibited diminished binding of PIP(2) compared with wild-type channels in an in vitro lipid-binding assay. Further, scanning mutagenesis of the N terminus of Kvbeta1.3 revealed that mutations of L2 and A3 eliminated N-type inactivation. Double-mutant cycle analysis indicates that R5 interacts with A501 and T480 of Kv1.5, residues located deep within the pore of the channel. These interactions indicate that Kvbeta1.3, in contrast to Kvbeta1.1, assumes a hairpin structure to inactivate Kv1 channels. Taken together, our findings indicate that inactivation of Kv1.5 is mediated by an equilibrium binding of the N terminus of Kvbeta1.3 between phosphoinositides (PIPs) and the inner pore region of the channel.
Mercado, Jose; Gordon-Shaag, Ariela; Zagotta, William N; Gordon, Sharona E
2010-10-06
TRPV2 is a member of the transient receptor potential family of ion channels involved in chemical and thermal pain transduction. Unlike the related TRPV1 channel, TRPV2 does not appear to bind either calmodulin or ATP in its N-terminal ankyrin repeat domain. In addition, it does not contain a calmodulin-binding site in the distal C-terminal region, as has been proposed for TRPV1. We have found that TRPV2 channels transiently expressed in F-11 cells undergo Ca(2+)-dependent desensitization, similar to the other TRPVs, suggesting that the mechanism of desensitization may be conserved in the subfamily of TRPV channels. TRPV2 desensitization was not altered in whole-cell recordings in the presence of calmodulin inhibitors or on coexpression of mutant calmodulin but was sensitive to changes in membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)), suggesting a role of membrane PIP(2) in TRPV2 desensitization. Simultaneous confocal imaging and electrophysiological recording of cells expressing TRPV2 and a fluorescent PIP(2)-binding probe demonstrated that TRPV2 desensitization was concomitant with depletion of PIP(2). We conclude that the decrease in PIP(2) levels on channel activation underlies a major component of Ca(2+)-dependent desensitization of TRPV2 and may play a similar role in other TRP channels.
Mercado, Jose; Gordon-Shaag, Ariela; Zagotta, William N.; Gordon, Sharona E.
2010-01-01
TRPV2 is a member of the transient receptor potential family of ion channels involved in chemical and thermal pain transduction. Unlike the related TRPV1 channel, TRPV2 does not appear to bind either calmodulin or ATP in its N-terminal ankyrin repeat domain. In addition, it does not contain a calmodulin-binding site in the distal C-terminal region, as has been proposed for TRPV1. We have found that TRPV2 channels transiently expressed in F-11 cells undergo Ca2+-dependent desensitization, similar to the other TRPV’s, suggesting that the mechanism of desensitization may be conserved in the subfamily of TRPV’s channels. TRPV2 desensitization was not altered in whole-cell recordings in the presence of calmodulin inhibitors or upon coexpression of mutant calmodulin but was sensitive to changes in membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) suggesting a role of membrane PIP2 in TRPV2 desensitization. Simultaneous confocal imaging and electrophysiological recording of cells expressing TRPV2 and a fluorescent PIP2-binding probe demonstrated that TRPV2 desensitization was concomitant with depletion of PIP2. We conclude that the decrease in PIP2 levels upon channel activation underlies a major component of Ca2+-dependent desensitization of TRPV2 and may play a similar role in other TRP channels. PMID:20926660
The signaling phospholipid PIP 3 creates a new interaction surface on the nuclear receptor SF-1
Blind, Raymond D.; Sablin, Elena P.; Kuchenbecker, Kristopher M.; ...
2014-10-06
We previously reported that lipids PI(4,5)P 2 (PIP 2) and PI(3,4,5)P 3 (PIP 3) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP 2 and PIP 3 bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIPn headgroups. We find that stabilization by the PIP 3 ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP 3 increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutationsmore » cripple SF-1 activity. Finally, we propose that this new surface acts as a PIP 3-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.« less
Vindu, Arya; Dandewad, Vishal; Seshadri, Vasudevan
2018-04-06
Plasmodium falciparum is a causative agent for malaria and has a complex life cycle in human and mosquito hosts. Translation repression of specific set of mRNA has been reported in gametocyte stages of this parasite. A conserved element present in the 3'UTR of some of these transcripts was identified. Biochemical studies have identified components of the RNA storage and/or translation inhibitor complex but it is not yet clear how the complex is specifically recruited on the RNA targeted for translation regulation. We used the 3'UTR region of translationally regulated transcripts to identify Phosphatidyl-inositol 5-phosphate 4-kinase (PIP4K2A) as the protein that associates with these RNAs. We further show that recombinant PIP4K2A has the RNA binding activity and can associate specifically with Plasmodium 3'UTR RNAs. Immunostainings show that hPIP4K2A is imported into the Plasmodium parasite from RBC. These results identify a novel RNA binding role for PIP4K2A that may play a role in Plasmodium propagation. Copyright © 2018 Elsevier Inc. All rights reserved.
Ziemba, Brian P.; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J.
2013-01-01
Phosphoinositide-Dependent Kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4-5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric state(s) of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. The present study investigates the binding of purified WT and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single molecule and ensemble measurements. Single molecule analysis of the brightness of fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric, while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single molecule analysis of 2-D diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little protein penetration into the bilayer as observed for other PH domains. The 2-D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that enables greater protein insertion into the viscous bilayer, thereby increasing the diffusional friction. Ensemble measurements of PH domain affinity for PIP3 on plasma membrane-like bilayers reveals that dimeric WT PH domain possesses a one-order of magnitude higher target membrane affinity than the previously characterized monomeric PH domains, consistent with a dimerization-triggered, allosterically-enhanced affinity for one PIP3 molecule (a much larger affinity enhancement would be expected for dimerization-triggered binding to two PIP3 molecules). The monomeric T513E PDK1 PH domain, like other monomeric PH domains, exhibits a PIP3 affinity and bound state lifetime that are each a full order of magnitude lower than dimeric WT PH domain, which is predicted to facilitate release of activated, monomeric PDK1 to cytoplasm. Overall, the study yields the first molecular picture of PH domain regulation via electrostatic control of dimer-monomer conversion. PMID:23745598
Ziemba, Brian P; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J
2013-07-16
Phosphoinositide-dependent kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology, this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric states of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. This study investigates the binding of purified wild-type (WT) and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single-molecule and ensemble measurements. Single-molecule analysis of the brightness of the fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single-molecule analysis of two-dimensional (2D) diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate as a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little penetration of the protein into the bilayer as observed for other PH domains. The 2D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that allows deeper insertion of the protein into the viscous bilayer, thereby increasing the diffusional friction. Ensemble measurements of PH domain affinity for PIP3 on plasma membrane-like bilayers reveal that the dimeric WT PH domain possesses a one order of magnitude higher target membrane affinity than the previously characterized monomeric PH domains, consistent with a dimerization-triggered, allosterically enhanced affinity for one PIP3 molecule (a much larger affinity enhancement would be expected for dimerization-triggered binding to two PIP3 molecules). The monomeric T513E PDK1 PH domain, like other monomeric PH domains, exhibits a PIP3 affinity and bound state lifetime that are each 1 order of magnitude lower than those of the dimeric WT PH domain, which is predicted to facilitate release of activated, monomeric PDK1 to the cytoplasm. Overall, the study yields the first molecular picture of PH domain regulation via electrostatic control of dimer-monomer conversion.
Coutinho-Budd, Jaeda C; Snider, Samuel B; Fitzpatrick, Brendan J; Rittiner, Joseph E; Zylka, Mark J
2013-09-08
Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons. We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12. Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.
Lucato, Christina M; Halls, Michelle L; Ooms, Lisa M; Liu, Heng-Jia; Mitchell, Christina A; Whisstock, James C; Ellisdon, Andrew M
2015-08-21
The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Thapa, Narendra; Sun, Yue; Schramp, Mark; Choi, Suyoung; Ling, Kun; Anderson, Richard A
2011-01-01
Summary Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP2 synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration PIPKIγi2 via PIP2 generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment(s) that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP2 requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP2 binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration. PMID:22264730
Salzer, Isabella; Erdem, Fatma Asli; Chen, Wei-Qiang; Heo, Seok; Koenig, Xaver; Schicker, Klaus W; Kubista, Helmut; Lubec, Gert; Boehm, Stefan; Yang, Jae-Won
2017-02-01
Phosphatidylinositol-4,5-bisphosphate (PIP 2 ) is a key regulator of many membrane proteins, including voltage-gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP 2 -binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP 2 . Dephosphorylation of Kv7.2 affected channel inhibition via M 1 muscarinic receptors, but not via bradykinin receptors. Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP 2 , thereby ensuring the tight regulation of the channel via G protein-coupled receptors. The function of numerous ion channels is tightly controlled by G protein-coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol-4,5-bisphosphate (PIP 2 ). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP 2 and through phosphorylation. Using liquid chromatography-coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2-binding domains. To evaluate the effect of phosphorylation on PIP 2 -mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A 5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP 2 depletion via the voltage-sensitive phosphatase Dr-VSP than were wild-type channels. In vitro phosphorylation assays with the purified C-terminus of Kv7.2 revealed that CDK5, p38 MAPK, CaMKIIα and PKA were able to phosphorylate the five serines. Inhibition of these protein kinases reduced the sensitivity of wild-type but not mutant Kv7.2 channels towards PIP 2 depletion via Dr-VSP. In superior cervical ganglion neurons, the protein kinase inhibitors attenuated Kv7 current regulation via M 1 receptors, but left unaltered the control by B2 receptors. Our results revealed that the phosphorylation status of serines located within a putative PIP 2 -binding domain determined the phospholipid sensitivity of Kv7.2 channels and supported GPCR-mediated channel regulation. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Salzer, Isabella; Erdem, Fatma Asli; Chen, Wei‐Qiang; Heo, Seok; Koenig, Xaver; Schicker, Klaus W.; Kubista, Helmut; Lubec, Gert; Boehm, Stefan
2016-01-01
Key points Phosphatidylinositol‐4,5‐bisphosphate (PIP2) is a key regulator of many membrane proteins, including voltage‐gated Kv7.2 channels.In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP2‐binding domains in Kv7.2.Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP2.Dephosphorylation of Kv7.2 affected channel inhibition via M1 muscarinic receptors, but not via bradykinin receptors.Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP2, thereby ensuring the tight regulation of the channel via G protein‐coupled receptors. Abstract The function of numerous ion channels is tightly controlled by G protein‐coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol‐4,5‐bisphosphate (PIP2). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP2 and through phosphorylation. Using liquid chromatography‐coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2‐binding domains. To evaluate the effect of phosphorylation on PIP2‐mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP2 depletion via the voltage‐sensitive phosphatase Dr‐VSP than were wild‐type channels. In vitro phosphorylation assays with the purified C‐terminus of Kv7.2 revealed that CDK5, p38 MAPK, CaMKIIα and PKA were able to phosphorylate the five serines. Inhibition of these protein kinases reduced the sensitivity of wild‐type but not mutant Kv7.2 channels towards PIP2 depletion via Dr‐VSP. In superior cervical ganglion neurons, the protein kinase inhibitors attenuated Kv7 current regulation via M1 receptors, but left unaltered the control by B2 receptors. Our results revealed that the phosphorylation status of serines located within a putative PIP2‐binding domain determined the phospholipid sensitivity of Kv7.2 channels and supported GPCR‐mediated channel regulation. PMID:27621207
A "turn-on" fluorescent microbead sensor for detecting nitric oxide.
Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae
2015-01-01
Nitric oxide (NO) is a messenger molecule involved in numerous physical and pathological processes in biological systems. Therefore, the development of a highly sensitive material able to detect NO in vivo is a key step in treating cardiovascular and a number of types of cancer-related diseases, as well as neurological dysfunction. Here we describe the development of a fluorescent probe using microbeads to enhance the fluorescence signal. Microbeads are infused with the fluorophore, dansyl-piperazine (Ds-pip), and quenched when the fluorophore is coordinated with a rhodium (Rh)-complex, ie, Rh2(AcO(-))4(Ds-pip). In contrast, they are able to fluoresce when the transition-metal complex is replaced by NO. To confirm the "on/off" mechanism for detecting NO, we investigated the structural molecular properties using the Fritz Haber Institute ab initio molecular simulations (FHI-AIMS) package. According to the binding energy calculation, NO molecules bind more strongly and rapidly with the Rh-core of the Rh-complex than with Ds-pip. This suggests that NO can bond strongly with the Rh-core and replace Ds-pip, even though Ds-pip is already near the Rh-core. However, the recovery process takes longer than the quenching process because the recovery process needs to overcome the energy barrier for formation of the transition state complex, ie, NO-(AcO(-))4-(Ds-pip). Further, we confirm that the Rh-complex with the Ds-pip structure has too small an energy gap to give off visible light from the highest unoccupied molecular orbital/lowest unoccupied molecular orbital energy level.
Morimura, Shigeru; Suzuki, Katsuo; Takahashi, Kazuhide
2011-01-21
Investigation of the mechanism underlying cell membrane-targeted WAVE2 capture by phosphatidylinositol 3,4,5-triphosphate (PIP(3)) through IRSp53 revealed an unidentified 250-kDa protein (p250) bound to PIP(3). We identified p250 as nonmuscle myosin IIA heavy chain (MYH9) by mass spectrometry and immunoblot analysis using anti-MYH9 antibody. After stimulation with insulin-like growth factor I (IGF-I), MYH9 colocalized with PIP(3) in lamellipodia at the leading edge of cells. Depletion of MYH9 expression by small interfering RNA (siRNA) and inhibition of myosin II activity by blebbistatin abrogated the formation of actin filament (F-actin) arcs and lamellipodia induced by IGF-I. MYH9 was constitutively associated with WAVE2, which was dependent on myosin II activity, and the MYH9-WAVE2 complex colocalized to PIP(3) at the leading edge after IGF-I stimulation. These results indicate that MYH9 is required for lamellipodia formation since it provides contractile forces and tension for the F-actin network to form convex arcs at the leading edge through constitutive binding to WAVE2 and colocalization with PIP(3) in response to IGF-I. Copyright © 2010 Elsevier Inc. All rights reserved.
Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.
Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G
2000-11-01
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.
Nomikos, Michail; Mulgrew-Nesbitt, Anna; Pallavi, Payal; Mihalyne, Gyongyi; Zaitseva, Irina; Swann, Karl; Lai, F Anthony; Murray, Diana; McLaughlin, Stuart
2007-06-01
Phospholipase C-zeta (PLC-zeta) is a sperm-specific enzyme that initiates the Ca2+ oscillations in mammalian eggs that activate embryo development. It shares considerable sequence homology with PLC-delta1, but lacks the PH domain that anchors PLC-delta1 to phosphatidylinositol 4,5-bisphosphate, PIP2. Thus it is unclear how PLC-zeta interacts with membranes. The linker region between the X and Y catalytic domains of PLC-zeta, however, contains a cluster of basic residues not present in PLC-delta1. Application of electrostatic theory to a homology model of PLC-zeta suggests this basic cluster could interact with acidic lipids. We measured the binding of catalytically competent mouse PLC-zeta to phospholipid vesicles: for 2:1 phosphatidylcholine/phosphatidylserine (PC/PS) vesicles, the molar partition coefficient, K, is too weak to be of physiological significance. Incorporating 1% PIP2 into the 2:1 PC/PS vesicles increases K about 10-fold, to 5x10(3) M-1, a biologically relevant value. Expressed fragments corresponding to the PLC-zeta X-Y linker region also bind with higher affinity to polyvalent than monovalent phosphoinositides on nitrocellulose filters. A peptide corresponding to the basic cluster (charge=+7) within the linker region, PLC-zeta-(374-385), binds to PC/PS vesicles with higher affinity than PLC-zeta, but its binding is less sensitive to incorporating PIP2. The acidic residues flanking this basic cluster in PLC-zeta may account for both these phenomena. FRET experiments suggest the basic cluster could not only anchor the protein to the membrane, but also enhance the local concentration of PIP2 adjacent to the catalytic domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo
Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonicalmore » PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo
Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less
Royal, Alice A.
2017-01-01
The slow delayed-rectifier potassium current (IKs) is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1) channel requires phosphatidylinositol-4,5-bisphosphate (PIP2) binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel–phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID) system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4)P) at the plasma membrane (PM) or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4)P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1). Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4)P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM. PMID:29020060
Royal, Alice A; Tinker, Andrew; Harmer, Stephen C
2017-01-01
The slow delayed-rectifier potassium current (IKs) is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1) channel requires phosphatidylinositol-4,5-bisphosphate (PIP2) binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel-phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID) system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4)P) at the plasma membrane (PM) or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4)P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1). Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4)P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM.
Ve, Thomas; Williams, Simon J; Catanzariti, Ann-Maree; Rafiqi, Maryam; Rahman, Motiur; Ellis, Jeffrey G; Hardham, Adrienne R; Jones, David A; Anderson, Peter A; Dodds, Peter N; Kobe, Bostjan
2013-10-22
Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system.
Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J. E.; Bu, Zimei
2015-01-01
The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. PMID:25572402
Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K; Stanley, Christopher B; Do, Changwoo; Heller, William T; Aggarwal, Aneel K; Callaway, David J E; Bu, Zimei
2015-03-06
The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico
2014-04-01
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4(Cdt2). Here we provide evidence that CRL4(Cdt2)-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4(Cdt2) as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4(Cdt2) pathway in the switch of PCNA partners on DNA damage.
Multivalent Cation-Bridged PI(4,5)P2 Clusters Form at Very Low Concentrations.
Wen, Yi; Vogt, Volker M; Feigenson, Gerald W
2018-06-05
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 or PIP2), is a key component of the inner leaflet of the plasma membrane in eukaryotic cells. In model membranes, PIP2 has been reported to form clusters, but whether these locally different conditions could give rise to distinct pools of unclustered and clustered PIP2 is unclear. By use of both fluorescence self-quenching and Förster resonance energy transfer assays, we have discovered that PIP2 self-associates at remarkably low concentrations starting below 0.05 mol% of total lipids. Formation of these clusters was dependent on physiological divalent metal ions, such as Ca 2+ , Mg 2+ , Zn 2+ , or trivalent ions Fe 3+ and Al 3+ . Formation of PIP2 clusters was also headgroup-specific, being largely independent of the type of acyl chain. The similarly labeled phospholipids phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol exhibited no such clustering. However, six phosphoinositide species coclustered with PIP2. The degree of PIP2 cation clustering was significantly influenced by the composition of the surrounding lipids, with cholesterol and phosphatidylinositol enhancing this behavior. We propose that PIP2 cation-bridged cluster formation, which might be similar to micelle formation, can be used as a physical model for what could be distinct pools of PIP2 in biological membranes. To our knowledge, this study provides the first evidence of PIP2 forming clusters at such low concentrations. The property of PIP2 to form such clusters at such extremely low concentrations in model membranes reveals, to our knowledge, a new behavior of PIP2 proposed to occur in cells, in which local multivalent metal ions, lipid compositions, and various binding proteins could greatly influence PIP2 properties. In turn, these different pools of PIP2 could further regulate cellular events. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp
Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; ...
2016-05-03
Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less
Mo, Gary; Bernier, Louis-Philippe; Zhao, Qi; Chabot-Doré, Anne-Julie; Ase, Ariel R; Logothetis, Diomedes; Cao, Chang-Qing; Séguéla, Philippe
2009-01-01
Background P2X3 and P2X2/3 purinergic receptor-channels, expressed in primary sensory neurons that mediate nociception, have been implicated in neuropathic and inflammatory pain responses. The phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) are involved in functional modulation of several types of ion channels. We report here evidence that these phospholipids are able to modulate the function of homomeric P2X3 and heteromeric P2X2/3 purinoceptors expressed in dorsal root ganglion (DRG) nociceptors and in heterologous expression systems. Results In dissociated rat DRG neurons, incubation with the PI3K/PI4K inhibitor wortmannin at 35 μM induced a dramatic decrease in the amplitude of ATP- or α,β-meATP-evoked P2X3 currents, while incubation with 100 nM wortmannin (selective PI3K inhibition) produced no significant effect. Intracellular application of PIP2 was able to fully reverse the inhibition of P2X3 currents induced by wortmannin. In Xenopus oocytes and in HEK293 cells expressing recombinant P2X3, 35 μM wortmannin incubation induced a significant decrease in the rate of receptor recovery. Native and recombinant P2X2/3 receptor-mediated currents were inhibited by incubation with wortmannin both at 35 μM and 100 nM. The decrease of P2X2/3 current amplitude induced by wortmannin could be partially reversed by application of PIP2 or PIP3, indicating a sensitivity to both phosphoinositides in DRG neurons and Xenopus oocytes. Using a lipid binding assay, we demonstrate that the C-terminus of the P2X2 subunit binds directly to PIP2, PIP3 and other phosphoinositides. In contrast, no direct binding was detected between the C-terminus of P2X3 subunit and phosphoinositides. Conclusion Our findings indicate a functional regulation of homomeric P2X3 and heteromeric P2X2/3 ATP receptors by phosphoinositides in the plasma membrane of DRG nociceptors, based on subtype-specific mechanisms of direct and indirect lipid sensing. PMID:19671169
Sarwar, Martuza; Semenas, Julius; Miftakhova, Regina; Simoulis, Athanasios; Robinson, Brian; Gjörloff Wingren, Anette; Mongan, Nigel P; Heery, David M; Johnsson, Heather; Abrahamsson, Per-Anders; Dizeyi, Nishtman; Luo, Jun; Persson, Jenny L
2016-09-27
One mechanism of resistance of prostate cancer (PCa) to enzalutamide (MDV3100) treatment is the increased expression of AR variants lacking the ligand binding-domain, the best characterized of which is AR-V7. We have previously reported that Phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), is a lipid kinase that links to CDK1 and AR pathways. The discovery of PIP5Kα inhibitor highlight the potential of PIP5K1α as a drug target in PCa. In this study, we show that AR-V7 expression positively correlates with PIP5K1α in tumor specimens from PCa patients. Overexpression of AR-V7 increases PIP5K1α, promotes rapid growth of PCa in xenograft mice, whereas inhibition of PIP5K1α by its inhibitor ISA-2011B suppresses the growth and invasiveness of xenograft tumors overexpressing AR-V7. PIP5K1α is a key co-factor for both AR-V7 and AR, which are present as protein-protein complexes predominantly in the nucleus of PCa cells. In addition, PIP5K1α and CDK1 influence AR-V7 expression also through AKT-associated mechanism dependent on PTEN-status. ISA-2011B disrupts protein stabilization of AR-V7 which is dependent on PIP5K1α, leading to suppression of invasive growth of AR-V7-high tumors in xenograft mice. Our study suggests that combination of enzalutamide and PIP5K1α may have a significant impact on refining therapeutic strategies to circumvent resistance to antiandrogen therapies.
Sarwar, Martuza; Semenas, Julius; Miftakhova, Regina; Simoulis, Athanasios; Robinson, Brian; Wingren, Anette Gjörloff; Mongan, Nigel P.; Heery, David M.; Johnsson, Heather; Abrahamsson, Per-Anders; Dizeyi, Nishtman; Luo, Jun; Persson, Jenny L.
2016-01-01
One mechanism of resistance of prostate cancer (PCa) to enzalutamide (MDV3100) treatment is the increased expression of AR variants lacking the ligand binding-domain, the best characterized of which is AR-V7. We have previously reported that Phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), is a lipid kinase that links to CDK1 and AR pathways. The discovery of PIP5Kα inhibitor highlight the potential of PIP5K1α as a drug target in PCa. In this study, we show that AR-V7 expression positively correlates with PIP5K1α in tumor specimens from PCa patients. Overexpression of AR-V7 increases PIP5K1α, promotes rapid growth of PCa in xenograft mice, whereas inhibition of PIP5K1α by its inhibitor ISA-2011B suppresses the growth and invasiveness of xenograft tumors overexpressing AR-V7. PIP5K1α is a key co-factor for both AR-V7 and AR, which are present as protein-protein complexes predominantly in the nucleus of PCa cells. In addition, PIP5K1α and CDK1 influence AR-V7 expression also through AKT-associated mechanism dependent on PTEN-status. ISA-2011B disrupts protein stabilization of AR-V7 which is dependent on PIP5K1α, leading to suppression of invasive growth of AR-V7-high tumors in xenograft mice. Our study suggests that combination of enzalutamide and PIP5K1α may have a significant impact on refining therapeutic strategies to circumvent resistance to antiandrogen therapies. PMID:27588408
Abd Halim, Khairul Bariyyah; Koldsø, Heidi; Sansom, Mark S.P.
2015-01-01
Background The epidermal growth factor receptor (EGFR) is the best characterised member of the receptor tyrosine kinases, which play an important role in signalling across mammalian cell membranes. The EGFR juxtamembrane (JM) domain is involved in the mechanism of activation of the receptor, interacting with the anionic lipid phosphatidylinositol 4,5-bisphosphate (PIP2) in the intracellular leaflet of the cell membrane. Methods Multiscale MD simulations were used to characterize PIP2–JM interactions. Simulations of the transmembrane helix plus JM region (TM–JM) dimer (PDB:2M20) in both PIP2-containing and PIP2-depleted lipid bilayer membranes revealed the interactions of the JM with PIP2 and other lipids. Results PIP2 forms strong interactions with the basic residues in the R645–R647 motif of the JM domain resulting in clustering of PIP2 around the protein. This association of PIP2 and the JM domain aids stabilization of JM-A dimer away from the membrane. Mutation (R645N/R646N/R647N) or PIP2-depletion results in deformation of the JM-A dimer and changes in JM–membrane interactions. Conclusions These simulations support the proposal that the positively charged residues at the start of the JM-A domain stabilize the JM-A helices in an orientation away from the membrane surface through binding to PIP2, thus promoting a conformation corresponding to an asymmetric (i.e. activated) kinase. General significance This study indicates that MD simulations may be used to characterise JM/lipid interactions, thus helping to define their role in the mechanisms of receptor tyrosine kinases. This article is part of a Special Issue entitled Recent developments of molecular dynamics. PMID:25219456
Abd Halim, Khairul Bariyyah; Koldsø, Heidi; Sansom, Mark S P
2015-05-01
The epidermal growth factor receptor (EGFR) is the best characterised member of the receptor tyrosine kinases, which play an important role in signalling across mammalian cell membranes. The EGFR juxtamembrane (JM) domain is involved in the mechanism of activation of the receptor, interacting with the anionic lipid phosphatidylinositol 4,5-bisphosphate (PIP2) in the intracellular leaflet of the cell membrane. Multiscale MD simulations were used to characterize PIP2-JM interactions. Simulations of the transmembrane helix plus JM region (TM-JM) dimer (PDB:2M20) in both PIP2-containing and PIP2-depleted lipid bilayer membranes revealed the interactions of the JM with PIP2 and other lipids. PIP2 forms strong interactions with the basic residues in the R645-R647 motif of the JM domain resulting in clustering of PIP2 around the protein. This association of PIP2 and the JM domain aids stabilization of JM-A dimer away from the membrane. Mutation (R645N/R646N/R647N) or PIP2-depletion results in deformation of the JM-A dimer and changes in JM-membrane interactions. These simulations support the proposal that the positively charged residues at the start of the JM-A domain stabilize the JM-A helices in an orientation away from the membrane surface through binding to PIP2, thus promoting a conformation corresponding to an asymmetric (i.e. activated) kinase. This study indicates that MD simulations may be used to characterise JM/lipid interactions, thus helping to define their role in the mechanisms of receptor tyrosine kinases. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico
2014-01-01
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence that CRL4Cdt2-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4Cdt2 as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4Cdt2 pathway in the switch of PCNA partners on DNA damage. PMID:24423875
Akieda-Asai, Sayaka; Zaima, Nobuhiro; Ikegami, Koji; Kahyo, Tomoaki; Yao, Ikuko; Hatanaka, Takahiro; Iemura, Shun-ichiro; Sugiyama, Rika; Yokozeki, Takeaki; Eishi, Yoshinobu; Koike, Morio; Ikeda, Kyoji; Chiba, Takuya; Yamaza, Haruyoshi; Shimokawa, Isao; Song, Si-Young; Matsuno, Akira; Mizutani, Akiko; Sawabe, Motoji; Chao, Moses V.; Tanaka, Masashi; Kanaho, Yasunori; Natsume, Tohru; Sugimura, Haruhiko; Date, Yukari; McBurney, Michael W.; Guarente, Leonard; Setou, Mitsutoshi
2010-01-01
Background SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. Methodology/Principal Findings Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5K)γ was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268) in PIP5Kγ and enhanced PIP5Kγ enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kγ knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kγ, PI(4,5)P2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. Conclusions/Significance Our findings indicated that the control of TSH release by the SIRT1-PIP5Kγ pathway is important for regulating the metabolism of the whole body. PMID:20668706
Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides.
Dai, Gucan; Peng, Changhong; Liu, Chunming; Varnum, Michael D
2013-04-01
Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIP(n)), including phosphatidylinositol 3,4,5-triphosphate (PIP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIP(n) application. However, PIP(n) induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIP(n)-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIP(n) application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIP(n) regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIP(n) sensitivity to heteromeric channels formed with PIP(n)-insensitive A subunits. Finally, channels formed by mixtures of PIP(n)-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIP(n) regulation, implying that intersubunit N-C interactions help control the phosphoinositide sensitivity of cone CNG channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Amy L.; Oda, Yasuhiro; Coutinho, Bruna Goncalves
Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides. Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae. OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities.more » A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. As a result, the identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins.« less
Schaefer, Amy L.; Oda, Yasuhiro; Coutinho, Bruna Goncalves; ...
2016-08-02
Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides. Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae. OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities.more » A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. As a result, the identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins.« less
Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; ...
2015-01-08
The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin.more » Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voleti, Rashmi; Tomchick, Diana R.; Südhof, Thomas C.
Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturatingmore » conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of L-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.« less
Zheng, Wang; Cai, Ruiqi; Hofmann, Laura; Nesin, Vasyl; Hu, Qiaolin; Long, Wentong; Fatehi, Mohammad; Liu, Xiong; Hussein, Shaimaa; Kong, Tim; Li, Jingru; Light, Peter E; Tang, Jingfeng; Flockerzi, Veit; Tsiokas, Leonidas; Chen, Xing-Zhen
2018-02-06
Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Insogna, K; Tanaka, S; Neff, L; Horne, W; Levy, J; Baron, R
1997-01-01
We and others have observed that in response to treatment with Colony Stimulating Factor-1 (CSF-1) neonatal rat osteoclasts demonstrate rapid cytoplasmic spreading. The receptor for CSF-1, c-Fms, is expressed in osteoclasts, possesses intrinsic tyrosine-kinase activity, and signals via rapid phosphorylation of selected proteins. It has been reported previously that c-Src becomes tyrosine phosphorylated following CSF-1 treatment of fibroblasts overexpressing c-Fms. We therefore examined the cellular events associated with CSF-1-induced spreading in osteoclasts and what role, if any, c-Src played in these processes. Confocal microscopic studies using phosphotyrosine (P-tyr) monoclonal antibodies demonstrated that CSF-1 induced a significant dose- and time-dependent increase in P-tyr labeling of neonatal rat osteoclasts. Phalloidin staining was consistent with partial to complete disassembly of the actin attachment ring with redistribution of actin to the spreading cytoplasmic edge of the cell. Quantitation of cellular F-actin using NBD-phallicidin confirmed a decrease in polymerized actin following exposure to CSF-1. In contrast, CSF-1 failed to induce any cytoplasmic spreading in osteoclasts isolated from mice with targeted disruption of the src gene. Further, in src- osteoclasts no well defined attachment ring could be identified. To investigate cell-signaling events associated with osteoclast spreading, detergent lysates were made from purified multinucleated osteoclast-like cells (OCLs) obtained by coculturing murine bone marrow and osteoblasts with calcitriol. Western blot analyses of lysates from control and CSF-1-treated normal cells indicated that several proteins were specifically phosphorylated in response to CSF-1, most notably proteins of 165, 60, and 85-90 kDa. Immunoprecipitation studies revealed that the 165 and 60 kDa proteins were, respectively, c-Fms and c-Src. The c-Src kinase activity was increased 2.9-fold following CSF-1 treatment. The 85-90 kDa protein is as yet unidentified. Since activated receptor tyrosine kinases may induce spreading in part by reducing phosphoinositol 4,5-bisphosphate (PIP2) binding to actin-associated proteins, a monoclonal antibody to PIP2 was used to assess the nature of PIP2 binding proteins in OCLs. Proteins of 85-90 kDa, 43 kDa, and 30 kDa were consistently demonstrated to bind PIP2. Further, the PIP2 content of the 85-90 kDa protein appeared to decrease with CSF-1 treatment. Whether this protein represents the phosphoprotein of the same M.W. is unclear. We also examined the effect of CSF-1 on the PIP2 content of alpha-actinin. Alpha-actinin showed low-level PIP2 binding, which was demonstrable only after immuno-precipitation and did not change with CSF-1 treatment. However, CSF-1 did cause a significant decline in the phosphotyrosine content of alpha-actinin. In contrast, in src- OCLs, CSF-1 induced more prolonged phosphorylation of c-Fms, and the 85-90 kDa protein was markedly hypophosphorylated. Further, alpha-actinin did not dephosphorylate in src- cells. We conclude that CSF-1-induced osteoclast spreading is accompanied by rapid reorganization of the actin cytoskeleton and phosphorylation of several cellular substrates, including c-Fms and c-Src. PIP2 binding to at least one protein appears to decrease with CSF-1 treatment, which may favor actin depolymerization. The reduced tyrosine phosphorylation of alpha-actinin could effect its ability to bind to actin. Thus c-Src may play an important role in these cellular events since in its absence, osteoclasts do not spread and signaling events downstream are altered. Whether these changes relate in part to the basal abnormalities in the cytoskeletal organization of src- osteoclasts remains to be determined.
Kienitz, Marie-Cécile; Vladimirova, Dilyana
2015-07-01
Cardiac KCNQ1/KCNE1 channels (IKs) are dependent on the concentration of membrane phosphatidylinositol-4,5-bisphosphate (PIP2) and on cytosolic ATP by two distinct mechanisms. In this study we measured IKs and FRET between PH-PLCδ-based fluorescent PIP2 sensors in a stable KCNQ1/KCNE1 CHO cell line. Effects of activating either a muscarinic M3 receptor or the switchable phosphatase Ci-VSP on IKs were analyzed. Recovery of IKs from inhibition induced by muscarinic stimulation was incomplete despite full PIP2 resynthesis. Recovery of IKs was completely suppressed under ATP-free conditions, but partially restored by the ATP analog AMP-PCP, providing evidence that depletion of intracellular ATP inhibits IKs independent of PIP2-depletion. Simultaneous patch-clamp and FRET measurements in cells co-expressing Ci-VSP and the PIP2-FRET sensor revealed a component of IKs inhibition directly related to dynamic PIP2-depletion. A second component of inhibition was independent of acute changes in PIP2 and could be mimicked by ATP-free pipette solution, suggesting that it results from intracellular ATP-depletion. The reduction of intracellular ATP upon Ci-VSP activation appears to be independent of its activity as a phosphoinositide phosphatase. Our data demonstrate that ATP-depletion slowed IKs activation but had no short-term effect on PIP2 regeneration, suggesting that impaired PIP2-resynthesis cannot account for the rapid IKs inhibition by ATP-depletion. Furthermore, the second component of IKs inhibition by Ci-VSP was reduced by AMP-PCP in the pipette filling solution, indicating that direct binding of ATP to the KCNQ1/KCNE1 complex is required for voltage activation of IKs. We suggest that fluctuations of the cellular metabolic state regulate IKs in parallel with Gq-coupled PLC activation and PIP2-depletion. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Hyun-Ji; Jeong, Myong-Ho; Kim, Kyung-Ran; Jung, Chang-Yun; Lee, Seul-Yi; Kim, Hanna; Koh, Jewoo; Vuong, Tuan Anh; Jung, Seungmoon; Yang, Hyunwoo; Park, Su-Kyung; Choi, Dahee; Kim, Sung Hun; Kang, KyeongJin; Sohn, Jong-Woo; Park, Joo Min; Jeon, Daejong; Koo, Seung-Hoi; Ho, Won-Kyung; Kang, Jong-Sun; Kim, Seong-Tae; Cho, Hana
2016-01-01
KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca2+/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures. DOI: http://dx.doi.org/10.7554/eLife.17159.001 PMID:27466704
PIP2-dependent coupling is prominent in Kv7.1 due to weakened interactions between S4-S5 and S6
NASA Astrophysics Data System (ADS)
Kasimova, Marina A.; Zaydman, Mark A.; Cui, Jianmin; Tarek, Mounir
2015-01-01
Among critical aspects of voltage-gated potassium (Kv) channels' functioning is the effective communication between their two composing domains, the voltage sensor (VSD) and the pore. This communication, called coupling, might be transmitted directly through interactions between these domains and, as recently proposed, indirectly through interactions with phosphatidylinositol-4,5-bisphosphate (PIP2), a minor lipid of the inner plasma membrane leaflet. Here, we show how the two components of coupling, mediated by protein-protein or protein-lipid interactions, both contribute in the Kv7.1 functioning. On the one hand, using molecular dynamics simulations, we identified a Kv7.1 PIP2 binding site that involves residues playing a key role in PIP2-dependent coupling. On the other hand, combined theoretical and experimental approaches have shown that the direct interaction between the segments of the VSD (S4-S5) and the pore (S6) is weakened by electrostatic repulsion. Finally, we conclude that due to weakened protein-protein interactions, the PIP2-dependent coupling is especially prominent in Kv7.1.
Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G
2000-01-18
ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.
Shyng, S.-L.; Barbieri, A.; Gumusboga, A.; Cukras, C.; Pike, L.; Davis, J. N.; Stahl, P. D.; Nichols, C. G.
2000-01-01
ATP-sensitive potassium channels (KATP channels) regulate cell excitability in response to metabolic changes. KATP channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K+ channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), activate KATP channels and antagonize ATP inhibition of KATP channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP2 levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed KATP channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K1/2, the half maximal inhibitory concentration, ≈ 60 μM) than the sensitivities from control cells (K1/2 ≈ 10 μM). An inactive form of the PIP5K had little effect on the K1/2 of wild-type channels but increased the ATP-sensitivity of a mutant KATP channel that has an intrinsically lower ATP sensitivity (from K1/2 ≈ 450 μM to K1/2 ≈ 100 μM), suggesting a decrease in membrane PIP2 levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP2 and PI-3,4,5-P3 levels, is a significant determinant of the physiological nucleotide sensitivity of KATP channels. PMID:10639183
Jung, Seung-Ryoung; Seo, Jong Bae; Deng, Yi; Asbury, Charles L; Hille, Bertil; Koh, Duk-Su
2016-03-01
Activated Gq protein-coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein-tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein-coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to secondary depletion of PIP2. Indeed, artificial recruitment of PIP5K removed the secondary loss of PIP2 completely. Altogether, our experimental and theoretical approaches demonstrate roles and dynamics of the protein kinases, β-arrestin, and PIP5K in the desensitization of PAR2. © 2016 Jung et al.
Jung, Seung-Ryoung; Seo, Jong Bae; Deng, Yi; Asbury, Charles L.; Hille, Bertil
2016-01-01
Activated Gq protein–coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein–tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein–coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to secondary depletion of PIP2. Indeed, artificial recruitment of PIP5K removed the secondary loss of PIP2 completely. Altogether, our experimental and theoretical approaches demonstrate roles and dynamics of the protein kinases, β-arrestin, and PIP5K in the desensitization of PAR2. PMID:26927499
Macdonald, Ian R; Reid, G Andrew; Pottie, Ian R; Martin, Earl; Darvesh, Sultan
2016-02-01
Acetylcholinesterase and butyrylcholinesterase accumulate with brain β-amyloid (Aβ) plaques in Alzheimer disease (AD). The overall activity of acetylcholinesterase is found to decline in AD, whereas butyrylcholinesterase has been found to either increase or remain the same. Although some cognitively normal older adults also have Aβ plaques within the brain, cholinesterase-associated plaques are generally less abundant in such individuals. Thus, brain imaging of cholinesterase activity associated with Aβ plaques has the potential to distinguish AD from cognitively normal older adults, with or without Aβ accumulation, during life. Current Aβ imaging agents are not able to provide this distinction. To address this unmet need, synthesis and evaluation of a cholinesterase-binding ligand, phenyl 4-(123)I-iodophenylcarbamate ((123)I-PIP), is described. Phenyl 4-iodophenylcarbamate was synthesized and evaluated for binding potency toward acetylcholinesterase and butyrylcholinesterase using enzyme kinetic analysis. This compound was subsequently rapidly radiolabeled with (123)I and purified by high-performance liquid chromatography. Autoradiographic analyses were performed with (123)I-PIP using postmortem orbitofrontal cortex from cognitively normal and AD human brains. Comparisons were made with an Aβ imaging agent, 2-(4'-dimethylaminophenyl)-6-(123)I-iodo-imidazo[1,2-a]pyridine ((123)I-IMPY), in adjacent brain sections. Tissues were also stained for Aβ and cholinesterase activity to visualize Aβ plaque load for comparison with radioligand uptake. Synthesized and purified PIP exhibited binding to cholinesterases. (123)I was successfully incorporated into this ligand. (123)I-PIP autoradiography with human tissue revealed accumulation of radioactivity only in AD brain tissues in which Aβ plaques had cholinesterase activity. (123)I-IMPY accumulated in brain tissues with Aβ plaques from both AD and cognitively normal individuals. Radiolabeled ligands specific for cholinesterases have potential for use in neuroimaging AD plaques during life. The compound herein described, (123)I-PIP, can detect cholinesterases associated with Aβ plaques and can distinguish AD brain tissues from those of cognitively normal older adults with Aβ plaques. Imaging cholinesterase activity associated with Aβ plaques in the living brain may contribute to the definitive diagnosis of AD during life. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Pip, a Novel Activator of Phenazine Biosynthesis in Pseudomonas chlororaphis PCL1391▿ †
Girard, Geneviève; Barends, Sharief; Rigali, Sébastien; van Rij, E. Tjeerd; Lugtenberg, Ben J. J.; Bloemberg, Guido V.
2006-01-01
Secondary metabolites are important factors for interactions between bacteria and other organisms. Pseudomonas chlororaphis PCL1391 produces the antifungal secondary metabolite phenazine-1-carboxamide (PCN) that inhibits growth of Fusarium oxysporum f. sp. radius lycopersici the causative agent of tomato foot and root rot. Our previous work unraveled a cascade of genes regulating the PCN biosynthesis operon, phzABCDEFGH. Via a genetic screen, we identify in this study a novel TetR/AcrR regulator, named Pip (phenazine inducing protein), which is essential for PCN biosynthesis. A combination of a phenotypical characterization of a pip mutant, in trans complementation assays of various mutant strains, and electrophoretic mobility shift assays identified Pip as the fifth DNA-binding protein so far involved in regulation of PCN biosynthesis. In this regulatory pathway, Pip is positioned downstream of PsrA (Pseudomonas sigma factor regulator) and the stationary-phase sigma factor RpoS, while it is upstream of the quorum-sensing system PhzI/PhzR. These findings provide further evidence that the path leading to the expression of secondary metabolism gene clusters in Pseudomonas species is highly complex. PMID:16997957
Vangaveti, S; Travesset, A
2014-12-28
We present here a method to separate the Stern and diffuse layer in general systems into two regions that can be analyzed separately. The Stern layer can be described in terms of Bjerrum pairing and the diffuse layer in terms of Poisson-Boltzmann theory (monovalent) or strong coupling theory plus a slowly decaying tail (divalent). We consider three anionic phospholipids: phosphatidyl serine, phosphatidic acid, and phosphatidylinositol(4,5)bisphosphate (PIP2), which we describe within a minimal coarse-grained model as a function of ionic concentration. The case of mixed lipid systems is also considered, which shows a high level of binding cooperativity as a function of PIP2 localization. Implications for existing experimental systems of lipid heterogeneities are also discussed.
NASA Astrophysics Data System (ADS)
Vangaveti, S.; Travesset, A.
2014-12-01
We present here a method to separate the Stern and diffuse layer in general systems into two regions that can be analyzed separately. The Stern layer can be described in terms of Bjerrum pairing and the diffuse layer in terms of Poisson-Boltzmann theory (monovalent) or strong coupling theory plus a slowly decaying tail (divalent). We consider three anionic phospholipids: phosphatidyl serine, phosphatidic acid, and phosphatidylinositol(4,5)bisphosphate (PIP2), which we describe within a minimal coarse-grained model as a function of ionic concentration. The case of mixed lipid systems is also considered, which shows a high level of binding cooperativity as a function of PIP2 localization. Implications for existing experimental systems of lipid heterogeneities are also discussed.
Verma, Ankit; Kushwaha, Hari N; Srivastava, Ajeet K; Srivastava, Saumya; Jamal, Naseem; Srivastava, Kriti; Ray, Ratan Singh
2017-07-01
Chronic ultraviolet radiation (UV-R) exposure causes skin disorders like erythema, edema, hyperpigmentation, photoaging and photocarcinogenesis. Recent research trends of researchers have focused more attention on the identification and use of photo stable natural agents with photoprotective properties. Piperine (PIP), as a plant alkaloid, is an important constituent present in black pepper (Piper nigrum), used widely in ayurvedic and other traditional medicines and has broad pharmacological properties. The study was planned to photoprotective efficacy of PIP in human keratinocyte (HaCaT) cell line. We have assessed the UV-R induced activation of transcription factor NF-κB in coordination with cell death modulators (Bax/Bcl-2 and p21). The LC-MS/MS analysis revealed that PIP was photostable under UV-A/UV-B exposure. PIP (10μg/ml) attenuates the UV-R (A and B) induced phototoxicity of keratinocyte cell line through the restoration of cell viability, inhibition of ROS, and malondialdehyde generation. Further, PIP inhibited UV-R mediated DNA damage, prevented micronuclei formation, and reduced sub-G1 phase in cell cycle, which supported against photogenotoxicity. This study revealed that PIP pretreatment strongly suppressed UV-R induced photodamages. Molecular docking studies suggest that PIP binds at the active site of NF-κB, and thus, preventing its translocation to nucleus. In addition, transcriptional and translational analysis advocate the increased expression of NF-κB and concomitant decrease in IkB-α expression under UV-R exposed cells, favouring the apoptosis via Bax/Bcl-2 and p21 pathways. However, PIP induced expression of IkB-α suppress the NF-κB activity which resulted in suppression of apoptotic marker genes and proteins that involved in photoprotection. Therefore, we suggest the applicability of photostable PIP as photoprotective agent for human use. Copyright © 2017. Published by Elsevier B.V.
Specific role of the cyanobacterial PipX factor in the heterocysts of Anabaena sp. strain PCC 7120.
Valladares, Ana; Rodríguez, Virginia; Camargo, Sergio; Martínez-Noël, Giselle M A; Herrero, Antonia; Luque, Ignacio
2011-03-01
The PipX factor is a regulatory protein that seems to occur only in cyanobacteria. In the filamentous, heterocyst-forming Anabaena sp. strain PCC 7120, open reading frame (ORF) asr0485, identified as the pipX gene, is expressed mainly under conditions of combined-nitrogen deprivation dependent on the global N regulator NtcA and the heterocyst-specific regulator HetR. Primer extension and 5' rapid amplification of cDNA ends (RACE) analyses detected three transcription start points corresponding to a canonical NtcA-activated promoter (to which direct binding of NtcA was observed), an NtcA- and HetR-dependent promoter, and a consensus-type promoter, the last with putative -35 and -10 determinants. Activation of pipX took place in cells differentiating into heterocysts at intermediate to late stages of the process. Accordingly, disruption of pipX led to impaired diazotrophic growth, reduced nitrogenase activity, and impaired activation of the nitrogenase structural genes. The nitrogenase activity of the mutant was low under oxic conditions, likely resulting from inefficient protection against oxygen. In line with this, the activation of the coxB2A2C2 and coxB3A3C3 operons, encoding heterocyst-specific terminal respiratory oxidases responsible for internal oxygen removal, was deficient in the pipX mutant. Therefore, the Anabaena PipX factor shows a spatiotemporal specificity contributing to normal heterocyst function, including full activation of the nitrogenase structural genes and genes of the nitrogenase-protective features of the heterocyst.
Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity
Yamamoto, Eiji; Akimoto, Takuma; Kalli, Antreas C.; Yasuoka, Kenji; Sansom, Mark S. P.
2017-01-01
Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:28116358
Analysis of the interactome of the Ser/Thr Protein Phosphatase type 1 in Plasmodium falciparum.
Hollin, Thomas; De Witte, Caroline; Lenne, Astrid; Pierrot, Christine; Khalife, Jamal
2016-03-17
Protein Phosphatase 1 (PP1) is an enzyme essential to cell viability in the malaria parasite Plasmodium falciparum (Pf). The activity of PP1 is regulated by the binding of regulatory subunits, of which there are up to 200 in humans, but only 3 have been so far reported for the parasite. To better understand the P. falciparum PP1 (PfPP1) regulatory network, we here report the use of three strategies to characterize the PfPP1 interactome: co-affinity purified proteins identified by mass spectrometry, yeast two-hybrid (Y2H) screening and in silico analysis of the P. falciparum predicted proteome. Co-affinity purification followed by MS analysis identified 6 PfPP1 interacting proteins (Pips) of which 3 contained the RVxF consensus binding, 2 with a Fxx[RK]x[RK] motif, also shown to be a PP1 binding motif and one with both binding motifs. The Y2H screens identified 134 proteins of which 30 present the RVxF binding motif and 20 have the Fxx[RK]x[RK] binding motif. The in silico screen of the Pf predicted proteome using a consensus RVxF motif as template revealed the presence of 55 potential Pips. As further demonstration, 35 candidate proteins were validated as PfPP1 interacting proteins in an ELISA-based assay. To the best of our knowledge, this is the first study on PfPP1 interactome. The data reports several conserved PP1 interacting proteins as well as a high number of specific interactors to PfPP1. Their analysis indicates a high diversity of biological functions for PP1 in Plasmodium. Based on the present data and on an earlier study of the Pf interactome, a potential implication of Pips in protein folding/proteolysis, transcription and pathogenicity networks is proposed. The present work provides a starting point for further studies on the structural basis of these interactions and their functions in P. falciparum.
Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.
Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin
2013-08-06
Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.
Phosphoinositides Regulate P2X4 ATP-Gated Channels through Direct Interactions
Bernier, Louis-Philippe; Ase, Ariel R.; Chevallier, Stéphanie; Blais, Dominique; Zhao, Qi; Boué-Grabot, Éric; Logothetis, Diomedes; Séguéla, Philippe
2008-01-01
P2X receptors are ATP-gated nonselective cation channels highly permeable to calcium that contribute to nociception and inflammatory responses. The P2X4 subtype, upregulated in activated microglia, is thought to play a critical role in the development of tactile allodynia following peripheral nerve injury. Posttranslational regulation of P2X4 function is crucial to the cellular mechanisms of neuropathic pain, however it remains poorly understood. Here, we show that the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), products of phosphorylation by wortmannin-sensitive phosphatidylinositol 4-kinases and phosphatidylinositol 3-kinases, can modulate the function of native and recombinant P2X4 receptor channels. In BV-2 microglial cells, depleting the intracellular levels of PIP2 and PIP3 with wortmannin significantly decreased P2X4 current amplitude and P2X4-mediated calcium entry measured in patch clamp recordings and ratiometric ion imaging, respectively. Wortmannin-induced depletion of phosphoinositides in Xenopus oocytes decreased the current amplitude of P2X4 responses by converting ATP into a partial agonist. It also decreased their recovery from desensitization and affected their kinetics. Injection of phosphoinositides in wortmannin-treated oocytes reversed these effects and application of PIP2 on excised inside-out macropatches rescued P2X4 currents from rundown. Moreover, we report the direct interaction of phospholipids with the proximal C-terminal domain of P2X4 subunit (Cys360-Val375) using an in vitro binding assay. These results demonstrate novel regulatory roles of the major signaling phosphoinositides PIP2 and PIP3 on P2X4 function through direct channel-lipid interactions. PMID:19036987
Takahashi, Kazuhide; Suzuki, Katsuo
2010-11-01
Membrane targeting of WAVE2 along microtubules to phosphatidylinositol 3,4,5-triphosphate (PIP(3)) in response to an extracellular stimulus requires Rac1, Pak1, stathmin, and EB1. However, whether WAVE2 interacts directly with PIP(3) or not remains unclear. We demonstrate that insulin-like growth factor I (IGF-I) induces WAVE2 membrane targeting, accompanied by phosphorylation of Pak1 at serine 199/204 (Ser199/204) and stathmin at Ser38 in the inner cytoplasmic region. This is spatially independent of the membrane region where the IGF-I receptor (IGF-IR) is locally activated. WAVE2, phosphorylated Pak1, and phosphorylated stathmin located at the microtubule ends began to accumulate at the leading edge of cells in close proximity to PIP(3) that was produced in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent manner. The PIP(3)-beads binding assay revealed that insulin receptor substrate p53 (IRSp53) and actin rather than WAVE2 bound to PIP(3). IRSp53 constitutively associated with WAVE2 and these two proteins colocalized with PIP(3) at the leading edge after IGF-I stimulation. Suppression of IRSp53 expression by two independent small interfering RNAs (siRNAs) completely inhibited IGF-I-induced membrane targeting and local accumulation of WAVE2 at the leading edge of cells. We propose that IRSp53 constitutively forms a complex with WAVE2 and is crucial for membrane targeting followed by local accumulation of WAVE2 at the leading edge of cells through linking WAVE2 to PIP(3) that is produced near locally activated IGF-IR in response to IGF-I. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen
2016-01-01
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. PMID:26672068
Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen
2016-01-01
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.
Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel
Tobelaim, William Sam; Dvir, Meidan; Lebel, Guy; Cui, Meng; Buki, Tal; Peretz, Asher; Marom, Milit; Haitin, Yoni; Logothetis, Diomedes E.; Hirsch, Joel Alan; Attali, Bernard
2017-01-01
Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current IKS that repolarizes the cardiac action potential. The physiological importance of the IKS channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP2), but the role of CaM in channel function is still unclear, and its possible interaction with PIP2 is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP2 and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP2 to stabilize the channel open state. Data indicate that both PIP2 and Ca2+-CaM perform the same function on IKS channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca2+-CaM. The results suggest that, after receptor-mediated PIP2 depletion and increased cytosolic Ca2+, calcified CaM N lobe interacts with helix B in place of PIP2 to limit excessive IKS current inhibition. PMID:28096388
Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel.
Tobelaim, William Sam; Dvir, Meidan; Lebel, Guy; Cui, Meng; Buki, Tal; Peretz, Asher; Marom, Milit; Haitin, Yoni; Logothetis, Diomedes E; Hirsch, Joel Alan; Attali, Bernard
2017-01-31
Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current I KS that repolarizes the cardiac action potential. The physiological importance of the I KS channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP 2 ), but the role of CaM in channel function is still unclear, and its possible interaction with PIP 2 is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP 2 and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP 2 to stabilize the channel open state. Data indicate that both PIP 2 and Ca 2+ -CaM perform the same function on I KS channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca 2+ -CaM. The results suggest that, after receptor-mediated PIP 2 depletion and increased cytosolic Ca 2+ , calcified CaM N lobe interacts with helix B in place of PIP 2 to limit excessive I KS current inhibition.
Ziemba, Brian P; Falke, Joseph J
2018-01-01
The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers.
Ziemba, Brian P.
2018-01-01
The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators—PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors—wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors—AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers. PMID:29715315
AROCA, RICARDO; FERRANTE, ANTONIO; VERNIERI, PAOLO; CHRISPEELS, MAARTEN J.
2006-01-01
• Background and Aims Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. • Methods Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. • Key Results None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. • Conclusions The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured. PMID:17028296
Protein Interaction Profile Sequencing (PIP-seq).
Foley, Shawn W; Gregory, Brian D
2016-10-10
Every eukaryotic RNA transcript undergoes extensive post-transcriptional processing from the moment of transcription up through degradation. This regulation is performed by a distinct cohort of RNA-binding proteins which recognize their target transcript by both its primary sequence and secondary structure. Here, we describe protein interaction profile sequencing (PIP-seq), a technique that uses ribonuclease-based footprinting followed by high-throughput sequencing to globally assess both protein-bound RNA sequences and RNA secondary structure. PIP-seq utilizes single- and double-stranded RNA-specific nucleases in the absence of proteins to infer RNA secondary structure. These libraries are also compared to samples that undergo nuclease digestion in the presence of proteins in order to find enriched protein-bound sequences. Combined, these four libraries provide a comprehensive, transcriptome-wide view of RNA secondary structure and RNA protein interaction sites from a single experimental technique. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Mercury increases water permeability of a plant aquaporin through a non-cysteine-related mechanism.
Frick, Anna; Järvå, Michael; Ekvall, Mikael; Uzdavinys, Povilas; Nyblom, Maria; Törnroth-Horsefield, Susanna
2013-09-15
Water transport across cellular membranes is mediated by a family of membrane proteins known as AQPs (aquaporins). AQPs were first discovered on the basis of their ability to be inhibited by mercurial compounds, an experiment which has followed the AQP field ever since. Although mercury inhibition is most common, many AQPs are mercury insensitive. In plants, regulation of AQPs is important in order to cope with environmental changes. Plant plasma membrane AQPs are known to be gated by phosphorylation, pH and Ca²⁺. We have previously solved the structure of the spinach AQP SoPIP2;1 (Spinacia oleracea plasma membrane intrinsic protein 2;1) in closed and open conformations and proposed a mechanism for how this gating can be achieved. To study the effect of mercury on SoPIP2;1 we solved the structure of the SoPIP2;1-mercury complex and characterized the water transport ability using proteoliposomes. The structure revealed mercury binding to three out of four cysteine residues. In contrast to what is normally seen for AQPs, mercury increased the water transport rate of SoPIP2;1, an effect which could not be attributed to any of the cysteine residues. This indicates that other factors might influence the effect of mercury on SoPIP2;1, one of which could be the properties of the lipid bilayer.
Devkota, Sujan; Joseph, Raji E; Boyken, Scott E; Fulton, D Bruce; Andreotti, Amy H
2017-06-13
Pleckstrin homology (PH) domains are well-known as phospholipid binding modules, yet evidence that PH domain function extends beyond lipid recognition is mounting. In this work, we characterize a protein binding function for the PH domain of interleukin-2-inducible tyrosine kinase (ITK), an immune cell specific signaling protein that belongs to the TEC family of nonreceptor tyrosine kinases. Its N-terminal PH domain is a well-characterized lipid binding module that localizes ITK to the membrane via phosphatidylinositol 3,4,5-trisphosphate (PIP 3 ) binding. Using a combination of nuclear magnetic resonance spectroscopy and mutagenesis, we have mapped an autoregulatory protein interaction site on the ITK PH domain that makes direct contact with the catalytic kinase domain of ITK, inhibiting the phospho-transfer reaction. Moreover, we have elucidated an important interplay between lipid binding by the ITK PH domain and the stability of the autoinhibitory complex formed by full length ITK. The ITK activation loop in the kinase domain becomes accessible to phosphorylation to the exogenous kinase LCK upon binding of the ITK PH domain to PIP 3 . By clarifying the allosteric role of the ITK PH domain in controlling ITK function, we have expanded the functional repertoire of the PH domain generally and opened the door to alternative strategies to target this specific kinase in the context of immune cell signaling.
Phosphoinositide signaling in sperm development.
Brill, Julie A; Yildirim, Sukriye; Fabian, Lacramioara
2016-11-01
Phosphatidylinositol phosphates (PIPs) 1 are membrane lipids with crucial roles during cell morphogenesis, including the establishment of cytoskeletal organization, membrane trafficking, cell polarity, cell-cycle control and signaling. Recent studies in mice (Mus musculus), fruit flies (Drosophila melanogaster) and other organisms have defined germ cell intrinsic requirements for these lipids and their regulatory enzymes in multiple aspects of sperm development. In particular, PIP levels are crucial in germline stem cell maintenance, spermatogonial proliferation and survival, spermatocyte cytokinesis, spermatid polarization, sperm tail formation, nuclear shaping, and production of mature, motile sperm. Here, we briefly review the stages of spermatogenesis and discuss the roles of PIPs and their regulatory enzymes in male germ cell development. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-01-01
Background Psychological flexibility has been suggested as a fundamental process in health. The Psychological Inflexibility in Pain Scale (PIPS) is one of the scales employed for assessing psychological inflexibility in pain patients. The aim of this study was to validate the Spanish version of the PIPS and secondly, to compare it to two other psychological constructs, the acceptance of pain and mindfulness scales. Methods The PIPS was translated into Spanish by two bilingual linguistic experts, and then, back-translated into English to assess for equivalence. The final Spanish version was administered along with the Pain Visual Analogue Scale, Fibromyalgia Impact Questionnaire, Hospital Anxiety Depression Scale, Pain Catastrophizing Scale, Chronic Pain Acceptance Questionnaire and the Mindful Attention Awareness Scale, to 250 Spanish patients with fibromyalgia. Face validity, construct validity, reliability (internal consistency and test-retest) and convergent validity were tested. Also a multiple regression analysis was carried out.The usual guidelines have been followed for cross-cultural adaptations. Results Data were very similar to the ones obtained in the original PIPS version. The construct validity confirmed the original two-components solution which explained 61.6% of the variance. The Spanish PIPS had good test-retest reliability (intraclass correlation coefficient 0.97) and internal consistency reliability (Cronbach’s alpha: 0.90). The Spanish PIPS’ score correlated significantly with worse global functioning (r = 0.55), anxiety (r = 0.54), depression (r = 0.66), pain catastrophizing (r = 0.62), pain acceptance (r = −0.72) and mindfulness (r = −0.47), as well as correlating modestly with pain intensity (r = 0.12). The multiple regression analyses showed that psychological inflexibility, acceptance and mindfulness are not overlapped. Conclusions The Spanish PIPS scale appears to be a valid and reliable instrument for the evaluation of psychological inflexibility among a sample of fibromyalgia patients. These results ensure the use of this scale in research as well as in clinical practice. Psychological inflexibility measures processes different from other related components such as acceptance and mindfulness. PMID:23594367
Su, Bing; Gao, Lingqiu; Baranowski, Catherine; Gillard, Bryan; Wang, Jianmin; Ransom, Ryan; Ko, Hyun-Kyung; Gelman, Irwin H.
2014-01-01
Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP), which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD) of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN) metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness. PMID:24983969
Clyne, Barbara; Cooper, Janine A; Hughes, Carmel M; Fahey, Tom; Smith, Susan M
2016-08-11
Potentially inappropriate prescribing (PIP) is common in older people in primary care, as evidenced by a significant body of quantitative research. However, relatively few qualitative studies have investigated the phenomenon of PIP and its underlying processes from the perspective of general practitioners (GPs). The aim of this paper is to explore qualitatively, GP perspectives regarding prescribing and PIP in older primary care patients. Semi-structured qualitative interviews were conducted with GPs participating in a randomised controlled trial (RCT) of an intervention to decrease PIP in older patients (≥70 years) in Ireland. Interviews were conducted with GP participants (both intervention and control) from the OPTI-SCRIPT cluster RCT as part of the trial process evaluation between January and July 2013. Interviews were conducted by one interviewer and audio recorded. Interviews were transcribed verbatim and a thematic analysis was conducted. Seventeen semi-structured interviews were conducted (13 male; 4 female). Three main, inter-related themes emerged (complex prescribing environment, paternalistic doctor-patient relationship, and relevance of PIP concept). Patient complexity (e.g. polypharmacy, multimorbidity), as well as prescriber complexity (e.g. multiple prescribers, poor communication, restricted autonomy) were all identified as factors contributing to a complex prescribing environment where PIP could occur, as was a paternalistic-doctor patient relationship. The concept of PIP was perceived to be of variable usefulness to GPs and the criteria to measure it may be at odds with the complex processes of prescribing for this patient population. Several inter-related factors contributing to the occurrence of PIP were identified, some of which may be amenable to intervention. Improvement strategies focused on improved management of polypharmacy and multimorbidity, and communication across primary and secondary care could result in substantial improvements in PIP. Current controlled trials ISRCTN41694007.
Chevalier, Adrien S; Chaumont, François
2015-05-01
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Phosphoinositides Regulate Membrane-dependent Actin Assembly by Latex Bead Phagosomes
Defacque, Hélène; Bos, Evelyne; Garvalov, Boyan; Barret, Cécile; Roy, Christian; Mangeat, Paul; Shin, Hye-Won; Rybin, Vladimir; Griffiths, Gareth
2002-01-01
Actin assembly on membrane surfaces is an elusive process in which several phosphoinositides (PIPs) have been implicated. We have reconstituted actin assembly using a defined membrane surface, the latex bead phagosome (LBP), and shown that the PI(4,5)P2-binding proteins ezrin and/or moesin were essential for this process (Defacque et al., 2000b). Here, we provide several lines of evidence that both preexisting and newly synthesized PI(4,5)P2, and probably PI(4)P, are essential for phagosomal actin assembly; only these PIPs were routinely synthesized from ATP during in vitro actin assembly. Treatment of LBP with phospholipase C or with adenosine, an inhibitor of type II PI 4-kinase, as well as preincubation with anti-PI(4)P or anti-PI(4,5)P2 antibodies all inhibited this process. Incorporation of extra PI(4)P or PI(4,5)P2 into the LBP membrane led to a fivefold increase in the number of phagosomes that assemble actin. An ezrin mutant mutated in the PI(4,5)P2-binding sites was less efficient in binding to LBPs and in reconstituting actin assembly than wild-type ezrin. Our data show that PI 4- and PI 5-kinase, and under some conditions also PI 3-kinase, activities are present on LBPs and can be activated by ATP, even in the absence of GTP or cytosolic components. However, PI 3-kinase activity is not required for actin assembly, because the process was not affected by PI 3-kinase inhibitors. We suggest that the ezrin-dependent actin assembly on the LBP membrane may require active turnover of D4 and D5 PIPs on the organelle membrane. PMID:11950931
Li, Zheng; Venable, Richard M.; Rogers, Laura A.; Murray, Diana; Pastor, Richard W.
2009-01-01
Abstract Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5–0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen. PMID:19580753
Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak
2016-05-01
Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less
Havens, Courtney G.; Shobnam, Nadia; Guarino, Estrella; Centore, Richard C.; Zou, Lee; Kearsey, Stephen E.; Walter, Johannes C.
2012-01-01
The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4Cdt2) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4Cdt2 substrates contain a “PIP degron,” which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4Cdt2 for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4Cdt2 substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4Cdt2 recruitment to chromatin. Our data show that the interaction of CRL4Cdt2 with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions. PMID:22303007
Mei, Yu; Jia, Wen-Jing; Chu, Yu-Jia; Xue, Hong-Wei
2012-03-01
Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport.
Agreement of Urine Specific Gravity Measurements Between Manual and Digital Refractometers
Minton, Dawn M.; O'Neal, Eric Kyle; Torres-McGehee, Toni Marie
2015-01-01
Context: Urine specific gravity (Usg), measured by a handheld manual refractometer (MAN), has been recognized as a valid and practical means of assessing hydration status. Newer, digital refractometers are faster and more user friendly but have not been validated against the traditional MAN. Objective: To compare the reliability and validity of 2 digital refractometer models and a MAN. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sample of convenience was recruited from the local university and surrounding community (n = 82). Intervention(s): Participants provided multiple urine samples (n = 124) over a 5-month period under various hydration conditions. Main Outcome Measure(s): Urine specific gravity was compared among a MAN, a digital refractometer requiring the prism to be dipped (DIP) into a urine sample, and a digital refractometer that requires urine to be pipetted (PIP) onto its prism for analysis. Results: The MAN measurements were strongly correlated with the DIP (r = 0.99, P < .001) and PIP (r = 0.97, P < .001) measurements. Bland-Altman analyses revealed slight mean underestimation (95% upper and lower levels of agreement) between MAN and DIP (−0.0012 [0.0028] and PIP −0.0011 [0.0035], respectively) and trends toward increased underestimation at higher Usg. Measurement error ≥ .005 was greater for PIP (4/124, 3.2%) than for DIP (2/124, 1.6%). Conclusions: Negligible differences were exhibited between PIP and DIP, with both displaying acceptable reliability and validity compared with the MAN. However, the Bland-Altman analysis suggests underestimation bias for the DIP and PIP as Usg increases, with the potential for rare but substantial underestimation when using PIP that should be recognized by clinicians, particularly when used as a screening measure in weight-class sports. PMID:25280126
Initial clinical results with a new needle screen storage phosphor system in chest radiograms.
Körner, M; Wirth, S; Treitl, M; Reiser, M; Pfeifer, K-J
2005-11-01
To evaluate image quality and anatomical detail depiction in dose-reduced digital plain chest radiograms using a new needle screen storage phosphor (NIP) in comparison to full dose conventional powder screen storage phosphor (PIP) images. 24 supine chest radiograms were obtained with PIP at standard dose and compared to follow-up studies of the same patients obtained with NIP with dose reduced to 50 % of the PIP dose (all imaging systems: AGFA-Gevaert, Mortsel, Belgium). In both systems identical versions of post-processing software supplied by the manufacturer were used with matched parameters. Six independent readers blinded to both modality and dose evaluated the images for depiction and differentiation of defined anatomical regions (peripheral lung parenchyma, central lung parenchyma, hilum, heart, diaphragm, upper mediastinum, and bone). All NIP images were compared to the corresponding PIP images using a five-point scale (- 2, clearly inferior to + 2, clearly superior). Overall image quality was rated for each PIP and NIP image separately (1, not usable to 5, excellent). PIP and dose reduced NIP images were rated equivalent. Mean image noise impression was only slightly higher on NIP images. Mean image quality for NIP showed no significant differences (p > 0.05, Mann-Whitney U test). With the use of the new needle structured storage phosphors in chest radiography, dose reduction of up to 50 % is possible without detracting from image quality or detail depiction. Especially in patients with multiple follow-up studies the overall dose can be decreased significantly.
Juvenile animal studies and pediatric drug development: a European regulatory perspective.
Carleer, Jacqueline; Karres, Janina
2011-08-01
During the workshop organized by ILSI/HESI on May 5-6, 2010 on the value of juvenile animal toxicity studies, the implementation of the European Pediatric Regulation and in particular the review process of the nonclinical part of the Pediatric Investigation Plan (PIP) were described. A PIP is intended to outline the development of a medicinal product in the pediatric population (i.e. quality, safety, efficacy of the medicine and timing of studies); it is reviewed and agreed by the Pediatric Committee (PDCO) of the European Medicines Agency (EMA). The Nonclinical Working Group (NcWG) supports the PDCO in the review process of the nonclinical part of a PIP and is composed of members from the PDCO, the EMA Safety Working Party, additional experts from national competent authorities and the FDA. This article summarizes the NcWG review process and outcomes of 97 approved or ongoing PIPs, from the establishment of the NcWG in November 2008 to May 2010, as presented during the workshop. Juvenile animal studies were proposed by the applicant in 33% or required by the NcWG in 26% of the PIPs. The requirements were mainly motivated by concerns regarding potential developmental toxicities, in view of the young age of the pediatric population to be investigated, the lack of knowledge concerning the maturation of the pharmacological target, the lack of sufficient (non)clinical data, observed toxicities in the adult (non)clinical studies and the long duration of the intended treatments. Most juvenile animal studies were in the therapeutic areas of oncology, infectious diseases and endocrinology. In about 14% of the PIPs submitted, the NcWG requested either justifications of, or amendments to the study designs proposed by the applicants (e.g. justification of endpoints, study duration, species selection and timing with regards to clinical pediatric studies). Generally, only one species was selected or proposed for the juvenile studies, the rat being the most prevalent. The number of juvenile studies initially proposed by the applicant plus those requested by the NcWG was higher than the number of studies included in the "key binding elements" of the PIP opinions. This apparent discrepancy was mainly due to additional information or justifications submitted by the applicant during the clock stop. It was noted that the PIPs initially submitted often lacked information relevant to the nonclinical evaluation. Therefore, during the workshop, the need to provide scientifically based justifications when no juvenile animal studies are proposed in the initial PIP submission was stressed. © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rane, Tejas
Proton Improvement Plant – II (PIP-II) has been planned at Fermilab for providing high-intensity proton beams to the laboratory’s experiments. Fermilab has undertaken the PIP-II Injector Test (PIP2IT) for integrated systems testing of critical components comprising the PIP-II front end. PIP2IT includes two cryomodules, to be tested using a pre-existing Supercritical helium refrigerator and distribution box. The PIP2IT transferline connects the Distribution box to the cryomodules of PI2IT. It contains 5 process lines as follows - supercritical 5K He supply and return lines, thermal shield supply(40K) and return(80K) lines and a sub-atmospheric 2K return line. Such cryogenic transferlines are generallymore » provided with cylindrical thermal shields at 80K, enclosing multiple process lines. The thermal shields are cooled by dedicated cooling lines welded/brazed to the shield at a single point along the circumference. Higher thermal diffusivity provides faster cooling and uniformity o f temperature along the shield surface. Hence, Copper/Aluminium is widely used to fabricate thermal shields. However, raw material price, the cost of fabrication depending on standard sizes of pipes/tubes, often drives up the final price of thermal shields. To reduce the cost by making use of easily available stock of standard pipe/tube, it is decided to use stainless steel as a material in thermal shields for the PIP2IT transferline. To this effect, a parametric study has been undertaken to evaluate the suitability of replacing Copper/Aluminium with stainless steel in thermal shields. The low thermal conductivity of steel results in bowing of the shield due to differential temperature distribution along the circumferential direction. The resulting suitable design has limiting parameters in terms of maximum allowable length of a shield section and the maximum allowable heat transfer coefficient for cooling flow. Starting with the design specific to PIP2IT transferline, an at tempt is made to have non-dimensionalised parameters for sim! ilar thermal shields.« less
Directional control of WAVE2 membrane targeting by EB1 and phosphatidylinositol 3,4,5-triphosphate.
Takahashi, Kazuhide; Tanaka, Tacu; Suzuki, Katsuo
2010-03-01
Membrane targeting of WAVE2 along microtubules is mediated by a motor protein kinesin and requires Pak1, a downstream effector of Rac1. However, the mechanism by which WAVE2 targeting to the leading edge is directionally controlled remains largely unknown. Here we demonstrate that EB1, a microtubule plus-end-binding protein, constitutively associates with stathmin, a microtubule-destabilizing protein, in human breast cancer cells. Stimulation of the cells with insulin-like growth factor I (IGF-I) induced Pak1-dependent binding of the EB1-stathmin complex to microtubules that bear WAVE2 and colocalization of the complex with WAVE2 at the leading edge. Depletion of EB1 by small interfering RNA (siRNA) abrogated the IGF-I-induced WAVE2 targeting and stathmin binding to microtubules. On the other hand, chemotaxis chamber assays indicated that the IGF-I receptor (IGF-IR) was locally activated in the region facing toward IGF-I. In addition, IGF-I caused phosphatidylinositol 3-kinase (PI 3-kinase)-dependent production of phosphatidylinositol 3,4,5-triphosphate (PIP3) near activated IGF-IR and WAVE2 colocalization with it. Collectively, WAVE2-membrane targeting is directionally controlled by binding of the EB1-stathmin complex to WAVE2-bearing microtubules and by the interaction between WAVE2 and PIP3 produced near IGF-IR that is locally activated by IGF-I.
Atkinson, Carter T.; Watcher-Weatherwax, William; Lapointe, Dennis
2016-01-01
Incompatible insect techniques are potential methods for controlling Culex quinquefasciatus and avian disease transmission in Hawai‘i without the use of pesticides or genetically modified organisms. The approach is based on naturally occurring sperm-egg incompatibilities within the Culex pipiens complex that are controlled by different strains of the bacterial endosymbiont Wolbachia pipientis (wPip). Incompatibilities can be unidirectional (crosses between males infected with strain A and females infected with strain B are fertile, while reciprocal crosses are not) or bidirectional (reciprocal crosses between sexes with different wPip strains are infertile). The technique depends on release of sufficient numbers of male mosquitoes infected with an incompatible wPip strain to suppress mosquito populations and reduce transmission of introduced avian malaria (Plasmodium relictum) and Avipoxvirus in native forest bird habitats. Both diseases are difficult to manage using more traditional methods based on removal and treatment of larval habitats and coordination of multiple approaches may be needed to control this vector. We characterized the diversity of Wolbachia strains in C. quinquefasciatus from Hawai‘i, Kaua‘i, Midway Atoll, and American Samoa with a variety of genetic markers to identify compatibility groups and their distribution within and between islands. We confirmed the presence of wPip with multilocus sequence typing, tested for local genetic variability using 16 WO prophage genes, and identified similarities to strains from other parts of the world with a transposable element (tr1). We also tested for genetic differences in ankyrin motifs (ank2 and pk1) which have been used to classify wPip strains into five worldwide groups (wPip1–wPip5) that vary in compatibility with each other based on experimental crosses. We found a mixture of both widely distributed and site specific genotypes based on presence or absence of WO prophage and transposable element markers on Hawai‘i Island (Volcano, Pu‘u Wa‘awa‘a, Laupāhoehoe, Kaumana, Kahuku, Nīnole, and Maulua Gulch), Kaua‘i Island (Kawaikōī, Mōhihi, Kalāheo, Lāwa‘i and Hanapepe) and Midway Atoll. Genotypes from American Samoa were unique and formed their own clade. Based on analysis of ankyrin motifs, wPip strains from Hawai‘i, Kaua‘i, and Midway Atoll were most similar to wPip5 strains of Australasian origin. By contrast, Wolbachia strains from Culex quinquefasciatus collected in American Samoa were most similar to wPip3 strains of American origin. We detected a single Culex mosquito from Pu‘u Wa‘awa‘a on Hawai‘i Island that was infected with a unique wPip3 genotype. This discovery, plus a rarefaction analysis of genotypes from Kaua‘i and Hawai‘i Islands suggests that limited sampling may have underestimated diversity of wPip in our study. Mosquitoes infected with wPip5 and wPip3 are bidirectionally compatible with each other based on prior studies, which would support their ability to coexist within the same population on Hawai‘i Island. Available evidence from prior studies suggests that genotype wPip4 from Africa, the Middle East, Europe, and Asia is bidirectionally incompatible with genotype wPip5 and varies in compatibility with genotype wPip3 depending on geographic origin. Since wPip5 appears to be the most common compatibility group in Hawai‘i based on limited sampling, logical next steps are to 1) expand the current survey to include additional islands and localities, 2) infect a laboratory colony of Hawaiian Culex with wPip4 through tetracycline treatment of Hawaiian mosquitoes and backcross with Culex from Europe, North Africa, and the Middle East that are naturally infected with wPip4, 3) conduct cage trials to confirm bidirectional incompatibilities between Hawaiian Culex infected with wPip4 and wPip5, and 4) conduct field trials to evaluate whether release of incompatible males can be applied at small scales to suppress local populations.
Banerjee, Sangeeta R.; Foss, Catherine A.; Castanares, Mark; Mease, Ronnie C.; Byun, Youngjoo; Fox, James J.; Hilton, John; Lupold, Shawn E.; Kozikowski, Alan P.; Pomper, Martin G.
2012-01-01
The prostate-specific membrane antigen (PSMA) is increasingly recognized as a viable target for imaging and therapy of cancer. We prepared seven 99mTc/Re-labeled compounds by attaching known Tc/Re chelating agents to an amino-functionalized PSMA inhibitor (lys-NHCONH-glu) with or without a variable length linker moiety. Ki values ranged from 0.17 to 199 nM. Ex vivo biodistribution and in vivo imaging demonstrated the degree of specific binding to engineered PSMA+ PC3 PIP tumors. PC3-PIP cells are derived from PC3 that have been transduced with the gene for PSMA. Despite demonstrating nearly the lowest PSMA inhibitory potency of this series, [99mTc(CO)3(L1)]+ (L1 = (2-pyridylmethyl)2N(CH2)4CH(CO2H)-NHCO-(CH2)6CO-NH-lys-NHCONH-glu) showed the highest, most selective PIP tumor uptake, at 7.9 ± 4.0% injected dose per gram of tissue at 30 min postinjection. Radioactivity cleared from nontarget tissues to produce a PIP to flu (PSMA-PC3) ratio of 44:1 at 120 min postinjection. PSMA can accommodate the steric requirements of 99mTc/Re complexes within PSMA inhibitors, the best results achieved with a linker moiety between the ε amine of the urea lysine and the chelator. PMID:18637669
Tania, Nessy; Prosk, Erin; Condeelis, John; Edelstein-Keshet, Leah
2011-01-01
Cofilin is an important regulator of actin polymerization, cell migration, and chemotaxis. Recent experimental data on mammary carcinoma cells reveal that stimulation by epidermal growth factor (EGF) generates a pool of active cofilin that results in a peak of actin filament barbed ends on the timescale of 1 min. Here, we present results of a mathematical model for the dynamics of cofilin and its transition between several pools in response to EGF stimulation. We describe the interactions of phospholipase C, membrane lipids (PIP2), and cofilin bound to PIP2 and to F-actin, as well as diffusible cofilin in active G-actin-monomer-bound or phosphorylated states. We consider a simplified representation in which the thin cell edge (lamellipod) and the cell interior are represented by two compartments that are linked by diffusion. We demonstrate that a high basal level of active cofilin stored by binding to PIP2, as well as the highly enriched local milieu of F-actin at the cell edge, is essential to capture the EGF-induced barbed-end amplification observed experimentally. PMID:21504724
The Use of Residual Collagenase for Single Digits With Multiple-Joint Dupuytren Contractures.
Grandizio, Louis C; Akoon, Anil; Heimbach, Janice; Graham, Jove; Klena, Joel C
2017-06-01
Standard 0.58 mg (0.25 mL) collagenase Clostridium histolyticum (CCH) preparations result in unused CCH that is often discarded. Our purpose was to assess the results on Dupuytren contractures affecting both the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints in the same digit utilizing an injection containing the maximum CCH volume that can be withdrawn from a single vial. A consecutive series of patients with MCP and PIP cords in the same digit received a single treatment with 2 injections totaling 0.30 mL distributed between the MCP and the PIP cords and underwent manipulation approximately 24 hours later. Reduction in contracture, clinical success, and complications were assessed 30 days after manipulation. Thirty-one patients (34 digits) had a mean preinjection flexion contracture of 50° at the MCP joint and 53° at the PIP joint. Clinical success (reduction in joint contracture to 0°-5° of full extension 30-days postmanipulation) was noted in 65% of MCP cords and 38% of PIP joint cords. We had a 24% incidence of skin tears, which correlated with the degree of preinjection contracture. For Dupuytren contractures involving the MCP and PIP joints in the same digit, distributing the maximum amount of CCH that can be withdrawn from a single vial provides efficacy at both joints that is similar to that reported in previously published series, with a comparable complication rate. Utilizing excess CCH typically discarded may provide cost savings. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
He, Wei-Di; Gao, Jie; Dou, Tong-Xin; Shao, Xiu-Hong; Bi, Fang-Cheng; Sheng, Ou; Deng, Gui-Ming; Li, Chun-Yu; Hu, Chun-Hua; Liu, Ji-Hong; Zhang, Sheng; Yang, Qiao-Song; Yi, Gan-Jun
2018-01-01
Banana is an important tropical fruit with high economic value. One of the main cultivars (‘Cavendish’) is susceptible to low temperatures, while another closely related specie (‘Dajiao’) has considerably higher cold tolerance. We previously reported that some membrane proteins appear to be involved in the cold tolerance of Dajiao bananas via an antioxidation mechanism. To investigate the early cold stress response of Dajiao, here we applied comparative membrane proteomics analysis for both cold-sensitive Cavendish and cold-tolerant Dajiao bananas subjected to cold stress at 10°C for 0, 3, and 6 h. A total of 2,333 and 1,834 proteins were identified in Cavendish and Dajiao, respectively. Subsequent bioinformatics analyses showed that 692 Cavendish proteins and 524 Dajiao proteins were predicted to be membrane proteins, of which 82 and 137 differentially abundant membrane proteins (DAMPs) were found in Cavendish and Dajiao, respectively. Interestingly, the number of DAMPs with increased abundance following 3 h of cold treatment in Dajiao (80) was seven times more than that in Cavendish (11). Gene ontology molecular function analysis of DAMPs for Cavendish and Dajiao indicated that they belong to eight categories including hydrolase activity, binding, transporter activity, antioxidant activity, etc., but the number in Dajiao is twice that in Cavendish. Strikingly, we found peroxidases (PODs) and aquaporins among the protein groups whose abundance was significantly increased after 3 h of cold treatment in Dajiao. Some of the PODs and aquaporins were verified by reverse-transcription PCR, multiple reaction monitoring, and green fluorescent protein-based subcellular localization analysis, demonstrating that the global membrane proteomics data are reliable. By combining the physiological and biochemical data, we found that membrane-bound Peroxidase 52 and Peroxidase P7, and aquaporins (MaPIP1;1, MaPIP1;2, MaPIP2;4, MaPIP2;6, MaTIP1;3) are mainly involved in decreased lipid peroxidation and maintaining leaf cell water potential, which appear to be the key cellular adaptations contributing to the cold tolerance of Dajiao. This membrane proteomics study provides new insights into cold stress tolerance mechanisms of banana, toward potential applications for ultimate genetic improvement of cold tolerance in banana. PMID:29568304
Molecular Basis of the Membrane Interaction of the β2e Subunit of Voltage-Gated Ca2+ Channels
Kim, Dong-Il; Kang, Mooseok; Kim, Sangyeol; Lee, Juhwan; Park, Yongsoo; Chang, Iksoo; Suh, Byung-Chang
2015-01-01
The auxiliary β subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels. Recently, it was revealed that β2e associates with the plasma membrane through an electrostatic interaction between N-terminal basic residues and anionic phospholipids. However, a molecular-level understanding of β-subunit membrane recruitment in structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays, and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the β2e subunit is recruited electrostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-terminal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1, Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the β2e subunit than distal residues from the N-terminus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attachment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects of a mutated β2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing phosphatase (VSP), a double mutation in the N-terminus of β2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3 channels by ∼3-fold compared with wild-type β2e subunit. Together, our results suggest that membrane targeting of the β2e subunit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-β2e interaction observed here provides a molecular insight into general principles for protein binding to the plasma membrane, as well as the regulatory roles of phospholipids in transporters and ion channels. PMID:26331250
Boursiac, Yann; Chen, Sheng; Luu, Doan-Trung; Sorieul, Mathias; van den Dries, Niels; Maurel, Christophe
2005-01-01
Aquaporins facilitate the uptake of soil water and mediate the regulation of root hydraulic conductivity (Lpr) in response to a large variety of environmental stresses. Here, we use Arabidopsis (Arabidopsis thaliana) plants to dissect the effects of salt on both Lpr and aquaporin expression and investigate possible molecular and cellular mechanisms of aquaporin regulation in plant roots under stress. Treatment of plants by 100 mm NaCl was perceived as an osmotic stimulus and induced a rapid (half-time, 45 min) and significant (70%) decrease in Lpr, which was maintained for at least 24 h. Macroarray experiments with gene-specific tags were performed to investigate the expression of all 35 genes of the Arabidopsis aquaporin family. Transcripts from 20 individual aquaporin genes, most of which encoded members of the plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP) subfamilies, were detected in nontreated roots. All PIP and TIP aquaporin transcripts with a strong expression signal showed a 60% to 75% decrease in their abundance between 2 and 4 h following exposure to salt. The use of antipeptide antibodies that cross-reacted with isoforms of specific aquaporin subclasses revealed that the abundance of PIP1s decreased by 40% as early as 30 min after salt exposure, whereas PIP2 and TIP1 homologs showed a 20% to 40% decrease in abundance after 6 h of treatment. Expression in transgenic plants of aquaporins fused to the green fluorescent protein revealed that the subcellular localization of TIP2;1 and PIP1 and PIP2 homologs was unchanged after 45 min of exposure to salt, whereas a TIP1;1-green fluorescent protein fusion was relocalized into intracellular spherical structures tentatively identified as intravacuolar invaginations. The appearance of intracellular structures containing PIP1 and PIP2 homologs was occasionally observed after 2 h of salt treatment. In conclusion, this work shows that exposure of roots to salt induces changes in aquaporin expression at multiple levels. These changes include a coordinated transcriptional down-regulation and subcellular relocalization of both PIPs and TIPs. These mechanisms may act in concert to regulate root water transport, mostly in the long term (≥6 h). PMID:16183846
PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry.
Jozefkowicz, Cintia; Sigaut, Lorena; Scochera, Florencia; Soto, Gabriela; Ayub, Nicolás; Pietrasanta, Lía Isabel; Amodeo, Gabriela; González Flecha, F Luis; Alleva, Karina
2016-03-29
Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The Btk-dependent PIP5K1γ lipid kinase activation by Fas counteracts FasL-induced cell death.
Rossin, Aurélie; Lounnas, Nadia; Durivault, Jérôme; Miloro, Giorgia; Gagnoux-Palacios, Laurent; Hueber, Anne-Odile
2017-11-01
The Fas/FasL system plays a critical role in death by apoptosis and immune escape of cancer cells. The Fas receptor being ubiquitously expressed in tissues, its apoptotic-inducing function, initiated upon FasL binding, is tightly regulated by several negative regulatory mechanisms to prevent inappropriate cell death. One of them, involving the non-receptor tyrosine kinase Btk, was reported mainly in B cells and only poorly described. We report here that Btk negatively regulates, through its tyrosine kinase activity, the FasL-mediated cell death in epithelial cell lines from colon cancer origin. More importantly, we show that Btk interacts not only with Fas but also with the phosphatidylinositol-4-phosphate 5-kinase, PIP5K1γ, which, upon stimulation by Fas ligand, is responsible of a rapid and transient synthesis of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ). This production requires both the presence and the tyrosine kinase activity of Btk, and participates in the negative regulation of FasL-mediated cell death since knocking down PIP5K1γ expression significantly strengthens the apoptotic signal upon FasL engagement. Altogether, our data demonstrate the cooperative role of Btk and PIP5K1γ in a FasL-induced PI(4,5)P 2 production, both proteins participating to the threshold setting of FasL-induced apoptotic commitment in colorectal cell lines.
Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey.
Altinli, Mine; Gunay, Filiz; Alten, Bulent; Weill, Mylene; Sicard, Mathieu
2018-03-20
Wolbachia are maternally transmitted bacteria that can manipulate their hosts' reproduction causing cytoplasmic incompatibility (CI). CI is a sperm-egg incompatibility resulting in embryonic death. Due to this sterilising effect on mosquitoes, Wolbachia are considered for vector control strategies. Important vectors for arboviruses, filarial nematodes and avian malaria, mosquitoes of Culex pipiens complex are suitable for Wolbachia-based vector control. They are infected with Wolbachia wPip strains belonging to five genetically distinct groups (wPip-I to V) within the Wolbachia B supergroup. CI properties of wPip strongly correlate with this genetic diversity: mosquitoes infected with wPip strains from a different wPip group are more likely to be incompatible with each other. Turkey is a critical spot for vector-borne diseases due to its unique geographical position as a natural bridge between Asia, Europe and Africa. However, general wPip diversity, distribution and CI patterns in natural Cx. pipiens (s.l.) populations in the region are unknown. In this study, we first identified wPip diversity in Turkish Cx. pipiens (s.l.) populations, by assigning them to one of the five groups within wPip (wPip-Ito V). We further investigated CI properties between different wPip strains from this region. We showed a wPip fixation in Cx. pipiens (s.l.) populations in Turkey by analysing 753 samples from 59 sampling sites. Three wPip groups were detected in the region: wPip-I, wPip-II and wPip-IV. The most dominant group was wPip-II. While wPip-IV was restricted to only two locations, wPip-I and wPip-II had wider distributions. Individuals infected with wPip-II were found co-existing with individuals infected with wPip-I or wPip-IV in some sampling sites. Two mosquito isofemale lines harbouring either a wPip-I or a wPip-II strain were established from a population in northwestern Turkey. Reciprocal crosses between these lines showed that they were fully compatible with each other but bidirectionally incompatible with wPip-IV Istanbul infected line. Our findings reveal a high diversity of wPip and CI properties in Cx. pipiens (s.l.) populations in Turkey. Knowledge on naturally occurring CI patterns caused by wPip diversity in Turkey might be useful for Cx. pipiens (s.l.) control in the region.
Bienert, Manuela D.; Diehn, Till A.; Richet, Nicolas; Chaumont, François; Bienert, Gerd P.
2018-01-01
Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for angiosperm PIP1 and PIP2 isoforms in terms of their water transport activity, trafficking, and interaction emerged already as early as in non-seed vascular plants. The existence and conservation of these characteristics may argue for the fact that PIP2s are indeed involved in the delivery of PIP1s to the plasma membrane and that the formation of functional heterotetramers is of biological relevance. PMID:29632543
Bienert, Manuela D; Diehn, Till A; Richet, Nicolas; Chaumont, François; Bienert, Gerd P
2018-01-01
Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for angiosperm PIP1 and PIP2 isoforms in terms of their water transport activity, trafficking, and interaction emerged already as early as in non-seed vascular plants. The existence and conservation of these characteristics may argue for the fact that PIP2s are indeed involved in the delivery of PIP1s to the plasma membrane and that the formation of functional heterotetramers is of biological relevance.
Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils
Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S.
2018-01-01
Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)–dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. PMID:29592875
Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils.
Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S; McEver, Rodger P
2018-04-10
Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)-dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. © 2018 by The American Society of Hematology.
Tania, Nessy; Prosk, Erin; Condeelis, John; Edelstein-Keshet, Leah
2011-04-20
Cofilin is an important regulator of actin polymerization, cell migration, and chemotaxis. Recent experimental data on mammary carcinoma cells reveal that stimulation by epidermal growth factor (EGF) generates a pool of active cofilin that results in a peak of actin filament barbed ends on the timescale of 1 min. Here, we present results of a mathematical model for the dynamics of cofilin and its transition between several pools in response to EGF stimulation. We describe the interactions of phospholipase C, membrane lipids (PIP(2)), and cofilin bound to PIP(2) and to F-actin, as well as diffusible cofilin in active G-actin-monomer-bound or phosphorylated states. We consider a simplified representation in which the thin cell edge (lamellipod) and the cell interior are represented by two compartments that are linked by diffusion. We demonstrate that a high basal level of active cofilin stored by binding to PIP(2), as well as the highly enriched local milieu of F-actin at the cell edge, is essential to capture the EGF-induced barbed-end amplification observed experimentally. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Optimization of WAVE2 complex–induced actin polymerization by membrane-bound IRSp53, PIP3, and Rac
Suetsugu, Shiro; Kurisu, Shusaku; Oikawa, Tsukasa; Yamazaki, Daisuke; Oda, Atsushi; Takenawa, Tadaomi
2006-01-01
WAVE2 activates the actin-related protein (Arp) 2/3 complex for Rac-induced actin polymerization during lamellipodium formation and exists as a large WAVE2 protein complex with Sra1/PIR121, Nap1, Abi1, and HSPC300. IRSp53 binds to both Rac and Cdc42 and is proposed to link Rac to WAVE2. We found that the knockdown of IRSp53 by RNA interference decreased lamellipodium formation without a decrease in the amount of WAVE2 complex. Localization of WAVE2 at the cell periphery was retained in IRSp53 knockdown cells. Moreover, activated Cdc42 but not Rac weakened the association between WAVE2 and IRSp53. When we measured Arp2/3 activation in vitro, the WAVE2 complex isolated from the membrane fraction of cells was fully active in an IRSp53-dependent manner but WAVE2 isolated from the cytosol was not. Purified WAVE2 and purified WAVE2 complex were activated by IRSp53 in a Rac-dependent manner with PIP3-containing liposomes. Therefore, IRSp53 optimizes the activity of the WAVE2 complex in the presence of activated Rac and PIP3. PMID:16702231
Suetsugu, Shiro; Kurisu, Shusaku; Oikawa, Tsukasa; Yamazaki, Daisuke; Oda, Atsushi; Takenawa, Tadaomi
2006-05-22
WAVE2 activates the actin-related protein (Arp) 2/3 complex for Rac-induced actin polymerization during lamellipodium formation and exists as a large WAVE2 protein complex with Sra1/PIR121, Nap1, Abi1, and HSPC300. IRSp53 binds to both Rac and Cdc42 and is proposed to link Rac to WAVE2. We found that the knockdown of IRSp53 by RNA interference decreased lamellipodium formation without a decrease in the amount of WAVE2 complex. Localization of WAVE2 at the cell periphery was retained in IRSp53 knockdown cells. Moreover, activated Cdc42 but not Rac weakened the association between WAVE2 and IRSp53. When we measured Arp2/3 activation in vitro, the WAVE2 complex isolated from the membrane fraction of cells was fully active in an IRSp53-dependent manner but WAVE2 isolated from the cytosol was not. Purified WAVE2 and purified WAVE2 complex were activated by IRSp53 in a Rac-dependent manner with PIP(3)-containing liposomes. Therefore, IRSp53 optimizes the activity of the WAVE2 complex in the presence of activated Rac and PIP(3).
Ayadi, Malika; Cavez, Damien; Miled, Nabil; Chaumont, François; Masmoudi, Khaled
2011-09-01
Plant plasma membrane intrinsic proteins (PIP) cluster in two phylogenetic groups, PIP1 and PIP2 that have different water channel activities when expressed in Xenopus oocytes. PIP2s induce a marked increase of the membrane osmotic water-permeability coefficient (P(f)), whereas PIP1s are generally inactive. Here we report the cloning of two durum wheat (Triticum turgidum L. subsp. durum) cDNAs encoding TdPIP1;1 and TdPIP2;1 belonging to the PIP1 and PIP2 subfamilies, respectively. Contrary to TdPIP1;1, expression of TdPIP2;1 in Xenopus oocytes resulted in an increase in P(f) compared to water-injected oocytes. Co-expression of the non-functional TdPIP1;1 and the functional TdPIP2;1 lead to a significant increase in P(f) compared with oocytes expressing TdPIP2;1 alone. A truncated form of TdPIP2;1, tdpip2;1, missing the first two transmembrane domains, had no water channel activity. Nonetheless, its co-expression with the functional TdPIP2;1 partially inhibits the P(f) and disrupt the activities of plant aquaporins. In contrast to the approach developed in Xenopus oocytes, phenotypic analyses of transgenic tobacco plants expressing TdPIP1;1 or TdPIP2;1 generated a tolerance phenotype towards osmotic and salinity stress. TdPIP1;1 and TdPIP2;1 are differentially regulated in roots and leaves in the salt-tolerant wheat variety when challenged with salt stress and abscisic acid. Confocal microscopy analysis of tobacco roots expressing TdPIP1;1 and TdPIP2;1 fused to the green fluorescent protein showed that the proteins were localized at the plasma membrane. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Sulfur K-Edge XAS Studies of the Effect of DNA Binding on the [Fe 4 S 4 ] Site in EndoIII and MutY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Yang; Arnold, Anna R.; Nuñez, Nicole N.
S K-edge X-ray absorption spectroscopy (XAS) was used to study the [Fe 4S 4] clusters in the DNA repair glycosylases EndoIII and MutY to evaluate the effects of DNA binding and solvation on Fe–S bond covalencies (i.e., the amount of S 3p character mixed into the Fe 3d valence orbitals). Increased covalencies in both iron–thiolate and iron–sulfide bonds would stabilize the oxidized state of the [Fe 4S 4] clusters. Our results are compared to those on previously studied [Fe 4S 4] model complexes, ferredoxin (Fd), and to new data on high-potential iron–sulfur protein (HiPIP). A limited decrease in covalency ismore » observed upon removal of solvent water from EndoIII and MutY, opposite to the significant increase observed for Fd, where the [Fe 4S 4] cluster is solvent exposed. Importantly, in EndoIII and MutY, a large increase in covalency is observed upon DNA binding, which is due to the effect of its negative charge on the iron–sulfur bonds. Furthermore, in EndoIII, this change in covalency can be quantified and makes a significant contribution to the observed decrease in reduction potential found experimentally in DNA repair proteins, enabling their HiPIP-like redox behavior.« less
Sulfur K-Edge XAS Studies of the Effect of DNA Binding on the [Fe 4 S 4 ] Site in EndoIII and MutY
Ha, Yang; Arnold, Anna R.; Nuñez, Nicole N.; ...
2017-07-18
S K-edge X-ray absorption spectroscopy (XAS) was used to study the [Fe 4S 4] clusters in the DNA repair glycosylases EndoIII and MutY to evaluate the effects of DNA binding and solvation on Fe–S bond covalencies (i.e., the amount of S 3p character mixed into the Fe 3d valence orbitals). Increased covalencies in both iron–thiolate and iron–sulfide bonds would stabilize the oxidized state of the [Fe 4S 4] clusters. Our results are compared to those on previously studied [Fe 4S 4] model complexes, ferredoxin (Fd), and to new data on high-potential iron–sulfur protein (HiPIP). A limited decrease in covalency ismore » observed upon removal of solvent water from EndoIII and MutY, opposite to the significant increase observed for Fd, where the [Fe 4S 4] cluster is solvent exposed. Importantly, in EndoIII and MutY, a large increase in covalency is observed upon DNA binding, which is due to the effect of its negative charge on the iron–sulfur bonds. Furthermore, in EndoIII, this change in covalency can be quantified and makes a significant contribution to the observed decrease in reduction potential found experimentally in DNA repair proteins, enabling their HiPIP-like redox behavior.« less
CO2 Transport by PIP2 Aquaporins of Barley
Mori, Izumi C.; Rhee, Jiye; Shibasaka, Mineo; Sasano, Shizuka; Kaneko, Toshiyuki; Horie, Tomoaki; Katsuhara, Maki
2014-01-01
CO2 permeability of plasma membrane intrinsic protein 2 (PIP2) aquaporins of Hordeum vulgare L. was investigated. Five PIP2 members were heterologously expressed in Xenopus laevis oocytes. CO2 permeability was determined by decrease of cytosolic pH in CO2-enriched buffer using a hydrogen ion-selective microelectrode. HvPIP2;1, HvPIP2;2, HvPIP2;3 and HvPIP2;5 facilitated CO2 transport across the oocyte cell membrane. However, HvPIP2;4 that is highly homologous to HvPIP2;3 did not. The isoleucine residue at position 254 of HvPIP2;3 was conserved in PIP2 aquaporins of barley, except HvPIP2;4, which possesses methionine instead. CO2 permeability was lost by the substitution of the Ile254 of HvPIP2;3 by methionine, while water permeability was not affected. These results suggest that PIP2 aquaporins are permeable to CO2. and the conserved isoleucine at the end of the E-loop is crucial for CO2 selectivity. PMID:24406630
Van Wilder, Valérie; Miecielica, Urszula; Degand, Hervé; Derua, Rita; Waelkens, Etienne; Chaumont, François
2008-09-01
Aquaporins are channel proteins that facilitate transmembrane water movement. In this study, we showed that plasma membrane intrinsic proteins (PIPs) from maize shoots are in vitro and in vivo phosphorylated on serine residues by a calcium-dependent kinase associated with the membrane fraction. Mass spectrometry identified phosphorylated peptides corresponding to the C-terminal region of (i) ZmPIP2;1, ZmPIP2;2 and/or ZmPIP2;7; (ii) ZmPIP2;3 and/or ZmPIP2;4; (iii) ZmPIP2;6; together with (iv) a phosphorylated peptide located in the N-terminal region of ZmPIP1;1, ZmPIP1;2, ZmPIP1;3 and/or ZmPIP1;4. The role of phosphorylation in the water channel activity of wild-type and mutant ZmPIP2;1 was studied in Xenopus laevis oocytes. Activation of endogenous protein kinase A increased the osmotic water permeability coefficient of ZmPIP2;1-expressing oocytes, suggesting that phosphorylation activates its channel activity. Mutation of S126 or S203, putative phosphorylated serine residues conserved in all plant PIPs, to alanine decreased ZmPIP2;1 activity by 30-50%, without affecting its targeting to the plasma membrane. Mutation of S285, which is phosphorylated in planta, to alanine or glutamate did not affect the water channel activity. These results indicate that, in oocytes, S126 and S203 play an important role in ZmPIP2;1 activity and that phosphorylation of S285 is not required for its activity.
Li, Ren; Wang, Jinfang; Li, Shuangtao; Zhang, Lei; Qi, Chuandong; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong
2016-08-22
The function of aquaporin (AQP) protein in transporting water is crucial for plants to survive in drought stress. With 47 homologues in tomato (Solanum lycopersicum) were reported, but the individual and integrated functions of aquaporins involved in drought response remains unclear. Here, three plasma membrane intrinsic protein genes, SlPIP2;1, SlPIP2;7 and SlPIP2;5, were identified as candidate aquaporins genes because of highly expressed in tomato roots. Assay on expression in Xenopus oocytes demonstrated that SlPIP2s protein displayed water channel activity and facilitated water transport into the cells. With real-time PCR and in situ hybridization analysis, SlPIP2s were considered to be involved in response to drought treatment. To test its function, transgenic Arabidopsis and tomato lines overexpressing SlPIP2;1, SlPIP2;7 or SlPIP2;5 were generated. Compared with wild type, the over-expression of SlPIP2;1, SlPIP2;7 or SlPIP2;5 transgenic Arabidopsis and tomato plants all showed significantly higher hydraulic conductivity levels and survival rates under both normal and drought conditions. Taken together, this study concludes that aquaporins (SlPIP2;1, SlPIP2;7 and SlPIP2;5) contribute substantially to root water uptake in tomato plants through improving plant water content and maintaining osmotic balance.
Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.
2013-01-01
Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093
Chaumont, François; Barrieu, François; Jung, Rudolf; Chrispeels, Maarten J.
2000-01-01
The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins. PMID:10759498
Kalli, Antreas C.; Morgan, Gareth; Sansom, Mark S.P.
2013-01-01
Auxilin-1 is a neuron-specific membrane-binding protein involved in a late stage of clathrin-mediated endocytosis. It recruits Hsc70, thus initiating uncoating of the clathrin-coated vesicles. Interactions of auxilin-1 with the vesicle membrane are crucial for this function and are mediated via an N-terminal PTEN-like domain. We have used multiscale molecular dynamics simulations to probe the interactions of the auxilin-1 PTEN-like domain with lipid bilayers containing differing phospholipid composition, including bilayers containing phosphatidyl inositol phosphates. Our results suggest a novel, to our knowledge, model for the auxilin/membrane encounter and subsequent interactions. Negatively charged lipids (especially PIP2) enhance binding of auxilin to lipid bilayers and facilitate its correct orientation relative to the membrane. Mutations in three basic residues (R301E/R307E/K311E) of the C2 subdomain of the PTEN-like domain perturbed its interaction with the bilayer, changing its orientation. The interaction of membrane-bound auxilin-1 PTEN-like domain with negatively charged lipid headgroups results in nanoclustering of PIP2 molecules in the adjacent bilayer leaflet. PMID:23823232
Azad, Abul Kalam; Katsuhara, Maki; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2008-08-01
We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.
Kumar, Kundan; Mosa, Kareem A; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash
2014-01-01
Boron (B) toxicity is responsible for low cereal crop production in a number of regions worldwide. In this report, we characterized two rice genes, OsPIP2;4 and OsPIP2;7, for their involvement in B permeability and tolerance. Transcript analysis demonstrated that the expression of OsPIP2;4 and OsPIP2;7 were downregulated in shoots and strongly upregulated in rice roots by high B treatment. Expression of both OsPIP2;4 and OsPIP2;7 in yeast HD9 strain lacking Fps1, ACR3, and Ycf1 resulted in an increased B sensitivity. Furthermore, yeast HD9 strain expressing OsPIP2;4 and OsPIP2;7 accumulated significantly higher B as compared to empty vector control, which suggests their involvement in B transport. Overexpression of OsPIP2;4 and OsPIP2;7 in Arabidopsis imparted higher tolerance under B toxicity. Arabidopsis lines overexpressing OsPIP2;4 and OsPIP2;7 showed significantly higher biomass production and greater root length, however there was no difference in B accumulation in long term uptake assay. Short-term uptake assay using tracer B (¹⁰B) in shoots and roots demonstrated increased ¹⁰B accumulation in Arabidopsis lines expressing OsPIP2;4 and OsPIP2;7, compare to wild type control plants. Efflux assay of B in the roots showed that ¹⁰B was effluxed from the Arabidopsis transgenic plants overexpressing OsPIP2;4 or OsPIP2;7 during the initial 1-h of assay. These data indicate that OsPIP2;4 and OsPIP2;7 are involved in mediating B transport in rice and provide tolerance via efflux of excess B from roots and shoot tissues. These genes will be highly useful in developing B tolerant crops for enhanced yield in the areas affected by high B toxicity.
ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.
Cecchini, Nicolás M; Jung, Ho Won; Engle, Nancy L; Tschaplinski, Timothy J; Greenberg, Jean T
2015-04-01
Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.
Extrinsic and intrinsic index finger muscle attachments in an OpenSim upper-extremity model.
Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L
2015-04-01
Musculoskeletal models allow estimation of muscle function during complex tasks. We used objective methods to determine possible attachment locations for index finger muscles in an OpenSim upper-extremity model. Data-driven optimization algorithms, Simulated Annealing and Hook-Jeeves, estimated tendon locations crossing the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints by minimizing the difference between model-estimated and experimentally-measured moment arms. Sensitivity analysis revealed that multiple sets of muscle attachments with similar optimized moment arms are possible, requiring additional assumptions or data to select a single set of values. The most smooth muscle paths were assumed to be biologically reasonable. Estimated tendon attachments resulted in variance accounted for (VAF) between calculated moment arms and measured values of 78% for flex/extension and 81% for ab/adduction at the MCP joint. VAF averaged 67% at the PIP joint and 54% at the DIP joint. VAF values at PIP and DIP joints partially reflected the constant moment arms reported for muscles about these joints. However, all moment arm values found through optimization were non-linear and non-constant. Relationships between moment arms and joint angles were best described with quadratic equations for tendons at the PIP and DIP joints.
Novel Enzyme Family Found in Filamentous Fungi Catalyzing trans-4-Hydroxylation of l-Pipecolic Acid
Hibi, Makoto; Mori, Ryosuke; Miyake, Ryoma; Kawabata, Hiroshi; Kozono, Shoko; Takahashi, Satomi
2016-01-01
Hydroxypipecolic acids are bioactive compounds widely distributed in nature and are valuable building blocks for the organic synthesis of pharmaceuticals. We have found a novel hydroxylating enzyme with activity toward l-pipecolic acid (l-Pip) in a filamentous fungus, Fusarium oxysporum c8D. The enzyme l-Pip trans-4-hydroxylase (Pip4H) of F. oxysporum (FoPip4H) belongs to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily, catalyzes the regio- and stereoselective hydroxylation of l-Pip, and produces optically pure trans-4-hydroxy-l-pipecolic acid (trans-4-l-HyPip). Amino acid sequence analysis revealed several fungal enzymes homologous with FoPip4H, and five of these also had l-Pip trans-4-hydroxylation activity. In particular, the homologous Pip4H enzyme derived from Aspergillus nidulans FGSC A4 (AnPip4H) had a broader substrate specificity spectrum than other homologues and reacted with the l and d forms of various cyclic and aliphatic amino acids. Using FoPip4H as a biocatalyst, a system for the preparative-scale production of chiral trans-4-l-HyPip was successfully developed. Thus, we report a fungal family of l-Pip hydroxylases and the enzymatic preparation of trans-4-l-HyPip, a bioactive compound and a constituent of secondary metabolites with useful physiological activities. PMID:26801577
Lu, Linghong; Dong, Changhe; Liu, Ruifang; Zhou, Bin; Wang, Chuang; Shou, Huixia
2018-01-01
Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP) genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG)-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO 2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9- overexpressing transgenic plants were less stressed than wild-type (WT) plants. Furthermore, field experiments showed that GmPIP2;9 -overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9 -overexpressing plants in drought stress tolerance and seed development.
Lu, Linghong; Dong, Changhe; Liu, Ruifang; Zhou, Bin; Wang, Chuang; Shou, Huixia
2018-01-01
Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP) genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG)-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9-overexpressing transgenic plants were less stressed than wild-type (WT) plants. Furthermore, field experiments showed that GmPIP2;9-overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9-overexpressing plants in drought stress tolerance and seed development. PMID:29755491
Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash
2016-02-23
High boron (B) concentration is toxic to plants that limit plant productivity. Recent studies have shown the involvement of the members of major intrinsic protein (MIP) family in controlling B transport. Here, we have provided experimental evidences showing the bidirectional transport activity of rice OsPIP1;3 and OsPIP2;6. Boron transport ability of OsPIP1;3 and OsPIP2;6 were displayed in yeast HD9 mutant strain (∆fps1∆acr3∆ycf1) as a result of increased B sensitivity, influx and accumulation by OsPIP1;3, and rapid efflux activity by OsPIP2;6. RT-PCR analysis showed strong upregulation of OsPIP1;3 and OsPIP2;6 transcripts in roots by B toxicity. Transgenic Arabidopsis lines overexpressing OsPIP1;3 and OsPIP2;6 exhibited enhanced tolerance to B toxicity. Furthermore, B concentration was significantly increased after 2 and 3 hours of tracer boron ((10)B) treatment. Interestingly, a rapid efflux of (10)B from the roots of the transgenic plants was observed within 1 h of (10)B treatment. Boron tolerance in OsPIP1;3 and OsPIP2;6 lines was inhibited by aquaporin inhibitors, silver nitrate and sodium azide. Our data proved that OsPIP1;3 and OsPIP2;6 are indeed involved in both influx and efflux of boron transport. Manipulation of these PIPs could be highly useful in improving B tolerance in crops grown in high B containing soils.
Mosa, Kareem A.; Kumar, Kundan; Chhikara, Sudesh; Musante, Craig; White, Jason C.; Dhankher, Om Parkash
2016-01-01
High boron (B) concentration is toxic to plants that limit plant productivity. Recent studies have shown the involvement of the members of major intrinsic protein (MIP) family in controlling B transport. Here, we have provided experimental evidences showing the bidirectional transport activity of rice OsPIP1;3 and OsPIP2;6. Boron transport ability of OsPIP1;3 and OsPIP2;6 were displayed in yeast HD9 mutant strain (∆fps1∆acr3∆ycf1) as a result of increased B sensitivity, influx and accumulation by OsPIP1;3, and rapid efflux activity by OsPIP2;6. RT-PCR analysis showed strong upregulation of OsPIP1;3 and OsPIP2;6 transcripts in roots by B toxicity. Transgenic Arabidopsis lines overexpressing OsPIP1;3 and OsPIP2;6 exhibited enhanced tolerance to B toxicity. Furthermore, B concentration was significantly increased after 2 and 3 hours of tracer boron (10B) treatment. Interestingly, a rapid efflux of 10B from the roots of the transgenic plants was observed within 1 h of 10B treatment. Boron tolerance in OsPIP1;3 and OsPIP2;6 lines was inhibited by aquaporin inhibitors, silver nitrate and sodium azide. Our data proved that OsPIP1;3 and OsPIP2;6 are indeed involved in both influx and efflux of boron transport. Manipulation of these PIPs could be highly useful in improving B tolerance in crops grown in high B containing soils. PMID:26902738
Ote, Manabu; Yamamoto, Daisuke
2018-04-27
The toxic manipulator of oogenesis (TomO) protein has been identified in the wMel strain of Wolbachia that symbioses with the vinegar fly Drosophila melanogaster, as a protein that affects host reproduction. TomO protects germ stem cells (GSCs) from degeneration, which otherwise occurs in ovaries of host females that are mutant for the gene Sex-lethal (Sxl). We isolated the TomO homologs from wPip, a Wolbachia strain from the mosquito Culex quinquefasciatus. One of the homologs, TomO w Pip 1, exerted the GSC rescue activity in fly Sxl mutants when lacking its hydrophobic stretches. The GSC-rescuing action of the TomO w Pip 1 variant was ascribable to its abilities to associate with Nanos (nos) mRNA and to enhance Nos protein expression. The analysis of structure-activity relationships with TomO homologs and TomO deletion variants revealed distinct modules in the protein that are each dedicated to different functions, i.e., subcellular localization, nos mRNA binding or Nos expression enhancement. We propose that modular reshuffling is the basis for structural and functional diversification of TomO protein members. © 2018 Wiley Periodicals, Inc.
Erdem, Fatma Asli; Salzer, Isabella; Heo, Seok; Chen, Wei-Qiang; Jung, Gangsoo; Lubec, Gert; Boehm, Stefan; Yang, Jae-Won
2017-10-01
Voltage-gated Kv7.2 potassium channels regulate neuronal excitability. The gating of these channels is tightly controlled by various mediators and neurotransmitters acting via G protein-coupled receptors; the underlying signaling cascades involve phosphatidylinositol-4,5-bisphosphate (PIP 2 ), Ca 2+ /calmodulin, and phosphorylation. Recent studies found that the PIP 2 sensitivity of Kv7.2 channels is affected by two posttranslational modifications, phosphorylation and methylation, harboured within putative PIP 2 -binding domains. In this study, we updated phosphorylation and methylation sites in Kv7.2 either heterologously expressed in mammalian cells or as GST-fusion proteins exposed to recombinant protein kinases by using LC-MS/MS. In vitro kinase assays revealed that CDK5, protein kinase C (PKC) alpha, PKA, p38 MAPK, CamKIIα, and GSK3β could mediate phosphorylation. Taken together, we provided a comprehensive map of phosphorylation and methylation in Kv7.2 within protein-protein and protein-lipid interaction domains. This may help to interpret the functional roles of individual PTM sites in Kv7.2 channels. All MS data are available via ProteomeXchange with the identifier PXD005567. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication.
Vannier, Jean-Baptiste; Sandhu, Sumit; Petalcorin, Mark I R; Wu, Xiaoli; Nabi, Zinnatun; Ding, Hao; Boulton, Simon J
2013-10-11
Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.
The “Electrostatic-Switch” Mechanism: Monte Carlo Study of MARCKS-Membrane Interaction
Tzlil, Shelly; Murray, Diana; Ben-Shaul, Avinoam
2008-01-01
The binding of the myristoylated alanine-rich C kinase substrate (MARCKS) to mixed, fluid, phospholipid membranes is modeled with a recently developed Monte Carlo simulation scheme. The central domain of MARCKS is both basic (ζ = +13) and hydrophobic (five Phe residues), and is flanked with two long chains, one ending with the myristoylated N-terminus. This natively unfolded protein is modeled as a flexible chain of “beads” representing the amino acid residues. The membranes contain neutral (ζ = 0), monovalent (ζ = −1), and tetravalent (ζ = −4) lipids, all of which are laterally mobile. MARCKS-membrane interaction is modeled by Debye-Hückel electrostatic potentials and semiempirical hydrophobic energies. In agreement with experiment, we find that membrane binding is mediated by electrostatic attraction of the basic domain to acidic lipids and membrane penetration of its hydrophobic moieties. The binding is opposed by configurational entropy losses and electrostatic membrane repulsion of the two long chains, and by lipid demixing upon adsorption. The simulations provide a physical model for how membrane-adsorbed MARCKS attracts several PIP2 lipids (ζ = −4) to its vicinity, and how phosphorylation of the central domain (ζ = +13 to ζ = +7) triggers an “electrostatic switch”, which weakens both the membrane interaction and PIP2 sequestration. This scheme captures the essence of “discreteness of charge” at membrane surfaces and can examine the formation of membrane-mediated multicomponent macromolecular complexes that function in many cellular processes. PMID:18502797
Park, Cheon-Gyu; Park, Yongsoo; Suh, Byung-Chang
2017-02-01
The β subunit of voltage-gated Ca 2+ (Ca V ) channels plays an important role in regulating gating of the α1 pore-forming subunit and its regulation by phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Subcellular localization of the Ca V β subunit is critical for this effect; N-terminal-dependent membrane targeting of the β subunit slows inactivation and decreases PIP 2 sensitivity. Here, we provide evidence that the HOOK region of the β subunit plays an important role in the regulation of Ca V biophysics. Based on amino acid composition, we broadly divide the HOOK region into three domains: S (polyserine), A (polyacidic), and B (polybasic). We show that a β subunit containing only its A domain in the HOOK region increases inactivation kinetics and channel inhibition by PIP 2 depletion, whereas a β subunit with only a B domain decreases these responses. When both the A and B domains are deleted, or when the entire HOOK region is deleted, the responses are elevated. Using a peptide-to-liposome binding assay and confocal microscopy, we find that the B domain of the HOOK region directly interacts with anionic phospholipids via polybasic and two hydrophobic Phe residues. The β2c-short subunit, which lacks an A domain and contains fewer basic amino acids and no Phe residues in the B domain, neither associates with phospholipids nor affects channel gating dynamically. Together, our data suggest that the flexible HOOK region of the β subunit acts as an important regulator of Ca V channel gating via dynamic electrostatic and hydrophobic interaction with the plasma membrane. © 2017 Park et al.
Schoch, Guillaume A.; Nikov, Georgi N.; Alworth, William L.; Werck-Reichhart, Danièle
2002-01-01
The cinnamate (CA) 4-hydroxylase (C4H) is a cytochrome P450 that catalyzes the second step of the main phenylpropanoid pathway, leading to the synthesis of lignin, pigments, and many defense molecules. Salicylic acid (SA) is an essential trigger of plant disease resistance. Some plant species can synthesize SA from CA by a mechanism not yet understood. A set of specific inhibitors of the C4H, including competitive, tight-binding, mechanism-based irreversible, and quasi-irreversible inhibitors have been developed with the main objective to redirect cinnamic acid to the synthesis of SA. Competitive inhibitors such as 2-hydroxy-1-naphthoic acid and the heme-coordinating compound 3-(4-pyridyl)-acrylic acid allowed strong inhibition of C4H activity in a tobacco (Nicotiana tabacum cv Bright Yellow [BY]) cell suspension culture. This inhibition was however rapidly relieved either because of substrate accumulation or because of inhibitor metabolism. Substrate analogs bearing a methylenedioxo function such as piperonylic acid (PIP) or a terminal acetylene such as 4-propynyloxybenzoic acid (4PB), 3-propynyloxybenzoic acid, and 4-propynyloxymethylbenzoic acid are potent mechanism-based inactivators of the C4H. PIP and 4PB, the best inactivators in vitro, were also efficient inhibitors of the enzyme in BY cells. Inhibition was not reversed 46 h after cell treatment. Cotreatment of BY cells with the fungal elicitor β-megaspermin and PIP or 4PB led to a dramatic increase in SA accumulation. PIP and 4PB do not trigger SA accumulation in nonelicited cells in which the SA biosynthetic pathway is not activated. Mechanism-based C4H inactivators, thus, are promising tools for the elucidation of the CA-derived SA biosynthetic pathway and for the potentiation of plant defense. PMID:12376665
Correlated waves of actin filaments and PIP3 in Dictyostelium cells.
Asano, Yukako; Nagasaki, Akira; Uyeda, Taro Q P
2008-12-01
Chemotaxis-deficient amiB-null mutant Dictyostelium cells show two distinct movements: (1) they extend protrusions randomly without net displacements; (2) they migrate persistently and unidirectionally in a keratocyte-like manner. Here, we monitored the intracellular distribution of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) to gain insight into roles PIP(3) plays in those spontaneous motilities. In keratocyte-like cells, PIP(3) showed convex distribution over the basal membrane, with no anterior enrichment. In stalled cells, as well as in wild type cells, PIP(3) repeated wave-like changes, including emergence, expansion and disappearance, on the basal membrane. The waves induced lamellipodia when they approached the cell edge, and the advancing speed of the waves was comparable to the migration speed of the keratocyte-like cells. LY294002, an inhibitor of PI3 kinase, abolished PIP(3) waves in stalled cells and stopped keratocyte-like cells. These results together suggested that keratocyte-like cells are "surfing" on the PIP(3) waves by coupling steady lamellipodial protrusions to the PIP(3) waves. Simultaneous live observation of actin filaments and PIP(3) in wild type or stalled amiB(-) cells indicated that the PIP(3) waves were correlated with wave-like distributions of actin filaments. Most notably, PIP(3) waves often followed actin waves, suggesting that PIP(3) induces local depolymerization of actin filaments. Consistent with this idea, cortical accumulation of PIP(3) was often correlated with local retraction of the periphery. We propose that the waves of PIP(3) and actin filaments are loosely coupled with each other and play important roles in generating spontaneous cell polarity. Copyright 2008 Wiley-Liss, Inc.
Bienert, Gerd P; Heinen, Robert B; Berny, Marie C; Chaumont, François
2014-01-01
Plant aquaporins play important roles in transmembrane water transport processes, but some also facilitate the diffusion of other small uncharged solutes ranging from gases to metalloids. Recent evidence suggests that the transmembrane movement of hydrogen peroxide, an intra- and intercellular multifunctional signaling and defense compound, can be regulated by aquaporins. We addressed the question whether maize aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily facilitate hydrogen peroxide diffusion using heterologous expression in the yeast Saccharomyces cerevisiae. We showed that ZmPIP proteins belonging to the PIP1 and PIP2 groups were significantly expressed in yeast cells only after codon optimization of their cDNA. In accordance with previous localization studies in oocytes and plants, ZmPIP1;2 was mainly retained in intracellular membranes, while ZmPIP2;5 was localized to the plasma membrane. However, upon co-expression with ZmPIP2;5, ZmPIP1;2 was re-localized to the plasma membrane. Using a non-functional plasma membrane-localized ZmPIP2;5 mutant to deliver ZmPIP1;2 to the plasma membrane, we demonstrated that, in contrast to wild type ZmPIP2;5, ZmPIP1;2 was not permeable to hydrogen peroxide. Our study further highlighted the fact that, when using the yeast system, which is widely employed to study substrates for plant aquaporins and other transporters, although positive transport assay results allow direct conclusions to be drawn regarding solute permeability, negative results require additional control experiments to show that the protein is expressed and localized correctly before concluding on the lack of transport activity. © 2013.
Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels
Cui, Jianmin
2016-01-01
Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications. PMID:26745405
Liu, Hong-Tao; Huang, Wei-Dong; Pan, Qiu-Hong; Weng, Fang-Hua; Zhan, Ji-Cheng; Liu, Yan; Wan, Si-Bao; Liu, Yan-Yan
2006-03-01
The relationship between the accumulation in endogenous free salicylic acid (SA) induced by heat acclimation (37 degrees C) and the activity of PIP(2)-phospholipase C (PIP(2)-PLC; EC 3.1.4.3) in the plasma membrane fraction was investigated in pea (Pisum sativum L.) leaves. We focused our attention on the hypothesis that positive SA signals induced by heat acclimation may be relayed by PIP(2)-PLC. Heat acclimation induced an abrupt elevation of free SA preceding the activation of PLC toward PIP(2). Immunoblotting indicated a molecular mass with 66.5kDa PLC plays key role in the development of thermotolerance in pea leaves. In addition, some characterizations of PLC toward PIP(2) isolated from pea leaves with two-phase purification containing calcium concentration, pH and a protein concentration were also studied. Neomycin sulfate, a well-known PIP(2)-PLC inhibitor, was employed to access the involvement of PIP(2)-PLC in the acquisition of heat acclimation induced-thermotolerance. We were able to identify a PIP(2)-PLC, which was similar to a conventional PIP(2)-PLC in higher plants, from pea leaves suggesting that PIP(2)-PLC was involved in the signal pathway that leads to the acquisition of heat acclimation induced-thermotolerance. On the basis of these results, we conclude that the involvement of free SA may function as the upstream event in the stimulation of PIP(2)-PLC in response to heat acclimation treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhiming; Radboud University/NIKHEF, NL-6525 ED Nijmegen
We report on an entropy analysis using Ma's coincidence method on {pi}+p and K+p collisions at {radical}(s) = 22 GeV. A scaling law and additivity properties of Renyi entropies and their charged-particle multiplicity dependence are investigated. The results are compared with those from the PYTHIA Monte Carlo model.
Choy, Cindy J.; Ling, Xiaoxi; Geruntho, Jonathan J.; ...
2017-04-27
Prostate-specific membrane antigen (PSMA) continues to be an active biomarker for small-molecule PSMA-targeted imaging and therapeutic agents for prostate cancer and various non-prostatic tumors that are characterized by PSMA expression on their neovasculature. One of the challenges for small-molecule PSMA inhibitors with respect to delivering therapeutic payloads is their rapid renal clearance. In order to overcome this pharmacokinetic challenge, we outfitted a 177Lu-labeled phosphoramidate-based PSMA inhibitor (CTT1298) with an albumin-binding motif (CTT1403) and compared its in vivo performance with that of an analogous compound lacking the albumin-binding motif (CTT1401). The radiolabeling of CTT1401 and CTT1403 was achieved using click chemistrymore » to connect 177Lu-DOTA-N3 to the dibenzocyclooctyne (DBCO)-bearing CTT1298 inhibitor cores. A direct comparison in vitro and in vivo performance was made for CTT1401 and CTT1403; the specificity and efficacy by means of cellular uptake and internalization, biodistribution, and therapeutic efficacy were determined for both compounds. And while both compounds displayed excellent uptake and rapid internalization in PSMA+ PC3-PIP cells, the albumin binding moiety in CTT1403 conferred clear advantages to the PSMA-inhibitor scaffold including increased circulating half-life and prostate tumor uptake that continued to increase up to 168 h post-injection. This then increased tumor uptake translated into superior therapeutic efficacy of CTT1403 in PSMA+ PC3-PIP human xenograft tumors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choy, Cindy J.; Ling, Xiaoxi; Geruntho, Jonathan J.
Prostate-specific membrane antigen (PSMA) continues to be an active biomarker for small-molecule PSMA-targeted imaging and therapeutic agents for prostate cancer and various non-prostatic tumors that are characterized by PSMA expression on their neovasculature. One of the challenges for small-molecule PSMA inhibitors with respect to delivering therapeutic payloads is their rapid renal clearance. In order to overcome this pharmacokinetic challenge, we outfitted a 177Lu-labeled phosphoramidate-based PSMA inhibitor (CTT1298) with an albumin-binding motif (CTT1403) and compared its in vivo performance with that of an analogous compound lacking the albumin-binding motif (CTT1401). The radiolabeling of CTT1401 and CTT1403 was achieved using click chemistrymore » to connect 177Lu-DOTA-N3 to the dibenzocyclooctyne (DBCO)-bearing CTT1298 inhibitor cores. A direct comparison in vitro and in vivo performance was made for CTT1401 and CTT1403; the specificity and efficacy by means of cellular uptake and internalization, biodistribution, and therapeutic efficacy were determined for both compounds. And while both compounds displayed excellent uptake and rapid internalization in PSMA+ PC3-PIP cells, the albumin binding moiety in CTT1403 conferred clear advantages to the PSMA-inhibitor scaffold including increased circulating half-life and prostate tumor uptake that continued to increase up to 168 h post-injection. This then increased tumor uptake translated into superior therapeutic efficacy of CTT1403 in PSMA+ PC3-PIP human xenograft tumors.« less
Sequential replication-coupled destruction at G1/S ensures genome stability
Coleman, Kate E.; Grant, Gavin D.; Haggerty, Rachel A.; Brantley, Kristen; Shibata, Etsuko; Workman, Benjamin D.; Dutta, Anindya; Varma, Dileep; Purvis, Jeremy E.; Cook, Jeanette Gowen
2015-01-01
Timely ubiquitin-mediated protein degradation is fundamental to cell cycle control, but the precise degradation order at each cell cycle phase transition is still unclear. We investigated the degradation order among substrates of a single human E3 ubiquitin ligase, CRL4Cdt2, which mediates the S-phase degradation of key cell cycle proteins, including Cdt1, PR-Set7, and p21. Our analysis of synchronized cells and asynchronously proliferating live single cells revealed a consistent order of replication-coupled destruction during both S-phase entry and DNA repair; Cdt1 is destroyed first, whereas p21 destruction is always substantially later than that of Cdt1. These differences are attributable to the CRL4Cdt2 targeting motif known as the PIP degron, which binds DNA-loaded proliferating cell nuclear antigen (PCNADNA) and recruits CRL4Cdt2. Fusing Cdt1's PIP degron to p21 causes p21 to be destroyed nearly concurrently with Cdt1 rather than consecutively. This accelerated degradation conferred by the Cdt1 PIP degron is accompanied by more effective Cdt2 recruitment by Cdt1 even though p21 has higher affinity for PCNADNA. Importantly, cells with artificially accelerated p21 degradation display evidence of stalled replication in mid-S phase and sensitivity to replication arrest. We therefore propose that sequential degradation ensures orderly S-phase progression to avoid replication stress and genome instability. PMID:26272819
Patil, Mayur J.; Belugin, Sergei; Akopian, Armen N.
2011-01-01
There is an agreement that acute (in minutes) hydrolysis and accumulation of phosphatidylinositol 4,5-bisphosphate (PIP2) modulate TRPV1 and TRPA1 activities. Since inflammation results in PIP2 depletion, persisting for long periods (hours-to-days) in pain models and in clinic, we examined whether chronic depletion and accumulation of PIP2 affects capsaicin and mustard oil responses. In addition we also wanted to evaluate whether the effects of PIP2 depend on TRPV1 and TRPA1 co-expression, and whether the PIP2 actions vary in expression cells versus sensory neurons. Chronic PIP2 production was stimulated by over-expression of phosphatidylinositol-4-phosphate-5-kinase, while PIP2-specific phospholipid 5′-phosphatase was selected to reduce plasma membrane levels of PIP2. Our results demonstrate that capsaicin (100 nM; CAP) responses and receptor tachyphylaxis are not significantly influenced by chronic changes in PIP2 levels in wild-type (WT) or TRPA1 null-mutant sensory neurons, as well as CHO cells expressing TRPV1 alone or with TRPA1. However, low concentrations of CAP (20 nM) produced a higher response after PIP2 depletion in cells containing TRPV1 alone, but not TRPV1 together with TRPA1. Mustard oil (25 μM; MO) responses were also not affected by PIP2 in WT sensory neurons and cells co-expressing TRPA1 and TRPV1. In contrast, PIP2 reduction leads to pronounced tachyphylaxis to MO in cells with both channels. Chronic effect of PIP2 on TRPA1 activity depends on presence of the TRPV1 channel and cell type (CHO vs. sensory neurons). In summary, chronic alterations in PIP2 levels regulate magnitude of CAP and MO responses, as well as MO-tachyphylaxis. This regulation depends on co-expression profile of TRPA1 and TRPV1 and cell type. PMID:21337373
Patil, Mayur J; Belugin, Sergei; Akopian, Armen N
2011-06-01
There is an agreement that acute (in minutes) hydrolysis and accumulation of phosphatidylinositol 4,5-bisphosphate (PIP(2) ) modulate TRPV1 and TRPA1 activities. Because inflammation results in PIP(2) depletion, persisting for long periods (hours to days) in pain models and in the clinic, we examined whether chronic depletion and accumulation of PIP(2) affect capsaicin (CAP) and mustard oil (MO) responses. In addition, we wanted to evaluate whether the effects of PIP(2) depend on TRPV1 and TRPA1 coexpression and whether the PIP(2) actions vary in expression cells vs. sensory neurons. Chronic PIP(2) production was stimulated by overexpression of phosphatidylinositol-4-phosphate-5-kinase, and PIP(2) -specific phospholipid 5'-phosphatase was selected to reduce plasma membrane levels of PIP(2) . Our results demonstrate that CAP (100 nM) responses and receptor tachyphylaxis are not significantly influenced by chronic changes in PIP(2) levels in wild-type (WT) or TRPA1 null-mutant sensory neurons as well as CHO cells expressing TRPV1 alone or with TRPA1. However, low concentrations of CAP (20 nM) produced a higher response after PIP(2) depletion in cells containing TRPV1 alone but not TRPV1 together with TRPA1. MO (25 μM) responses were also not affected by PIP(2) in WT sensory neurons and cells coexpressing TRPA1 and TRPV1. In contrast, PIP(2) reduction leads to pronounced tachyphylaxis to MO in cells with both channels. Chronic effect of PIP(2) on TRPA1 activity depends on presence of the TRPV1 channel and cell type (CHO vs. sensory neurons). In summary, chronic alterations in PIP(2) levels regulate magnitude of CAP and MO responses as well as MO tachyphylaxis. This regulation depends on coexpression profile of TRPA1 and TRPV1 and cell type. Copyright © 2011 Wiley-Liss, Inc.
Wang, Xi; Cai, Hua; Li, Yong; Zhu, Yanming; Ji, Wei; Bai, Xi; Zhu, Dan; Sun, Xiaoli
2015-01-01
Plasma membrane intrinsic proteins (PIPs) belong to the aquaporin family and facilitate water movement across plasma membranes. Existing data indicate that PIP genes are associated with the abilities of plants to tolerate certain stress conditions. A review of our Glycine soja expressed sequence tag (EST) dataset revealed that abiotic stress stimulated expression of a PIP, herein designated as GsPIP2;1 (GenBank_Accn: FJ825766). To understand the roles of this PIP in stress tolerance, we generated a coding sequence for GsPIP2;1 by in silico elongation and cloned the cDNA by 5'-RACE. Semiquantitative RT-PCR showed that GsPIP2;1 expression was stimulated in G. soja leaves by cold, salt, or dehydration stress, whereas the same stresses suppressed GsPIP2;1 expression in the roots. Transgenic Arabidopsis thaliana plants overexpressing GsPIP2;1 grew normally under unstressed and cold conditions, but exhibited depressed tolerance to salt and dehydration stresses. Moreover, greater changes in water potential were detected in the transgenic A. thaliana shoots, implying that GsPIP2;1 may negatively impact stress tolerance by regulating water potential. These results, deviating from those obtained in previous reports, provide new insights into the relationship between PIPs and abiotic stress tolerance in plants.
Prado, Karine; Boursiac, Yann; Tournaire-Roux, Colette; Monneuse, Jean-Marc; Postaire, Olivier; Da Ines, Olivier; Schäffner, Anton R; Hem, Sonia; Santoni, Véronique; Maurel, Christophe
2013-03-01
The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.
Prado, Karine; Boursiac, Yann; Tournaire-Roux, Colette; Monneuse, Jean-Marc; Postaire, Olivier; Da Ines, Olivier; Schäffner, Anton R.; Hem, Sonia; Santoni, Véronique; Maurel, Christophe
2013-01-01
The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics. PMID:23532070
Osmotically-induced tension and the binding of N-BAR protein to lipid vesicles.
Hutchison, Jaime B; Karunanayake Mudiyanselage, Aruni P K K; Weis, Robert M; Dinsmore, Anthony D
2016-02-28
The binding affinity of a curvature-sensing protein domain (N-BAR) is measured as a function of applied osmotic stress while the membrane curvature is nearly constant. Varying the osmotic stress allows us to control membrane tension, which provides a probe of the mechanism of binding. We study the N-BAR domain of the Drosophila amphiphysin and monitor its binding on 50 nm-radius vesicles composed of 90 mol% DOPC and 10 mol% PIP. We find that the bound fraction of N-BAR is enhanced by a factor of approximately 6.5 when the tension increases from zero to 2.6 mN m(-1). This tension-induced response can be explained by the hydrophobic insertion mechanism. From the data we extract a hydrophobic domain area that is consistent with known structure. These results indicate that membrane stress and strain could play a major role in the previously reported curvature-affinity of N-BAR.
Popowicz, Natalia D; O'Halloran, Sean J; Fitzgerald, Deirdre; Lee, Y C Gary; Joyce, David A
2018-04-01
Piperacillin, in combination with tazobactam is a common first-line antibiotic used for the treatment of pleural infection, however its pleural pharmacokinetics and penetration has not previously been reported. The objective of this work was to develop and validate a rapid and sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay for quantification of piperacillin (PIP) and tazobactam (TAZ). PIP and TAZ were extracted from both human plasma and pleural fluid samples by protein precipitation in methanol containing the internal standards (IS) piperacillin-d 5 (PIP-d 5 ) and sulbactam (SUL). Briefly, 5 μL of sample was mixed with 125 μL of methanol containing IS, vortexed and centrifuged. Supernatant (50 μL) was diluted into 500 μL of mobile phase containing 10 mM of ammonium bicarbonate in LCMS grade water and transferred to the autosampler tray. Electrospray ionization in positive mode and multiple reaction monitoring (MRM) were used for PIP and PIP-d 5 at the transitions m/z 518.2 → 143.2 and m/z 523.2 → 148.2 respectively, and electrospray ionization in negative mode and MRM were used for TAZ and SUL at the transitions m/z 299.1 → 138.1 and m/z 232.4 → 140.1. The chromatographic separation was achieved using an Acquity BEH C-18 column with gradient elution of mobile phase containing 10 mmol/L ammonium bicarbonate in water and methanol. A linear range was observed over the concentration range of 0.25-352 mg/L and 0.25-50.5 mg/L for PIP and TAZ respectively. Complete method validation was performed according to US FDA guidelines for selectivity, specificity, precision and accuracy, LLOQ, matrix effects, recovery and stability, with all results within acceptable limits. This method was successfully applied to two patients with pleural infection and is suitable for further pharmacokinetic studies and therapeutic drug monitoring. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Wang, Xing; Zhang, Ji-long; Feng, Xiu-xiu; Li, Hong-jie; Zhang, Gen-fa
2017-04-20
Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO 2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q.; Boss, W.F.
1989-04-01
The plasma membranes of carrot cells grown in suspension culture are enriched with PIP, lysoPIP, and PIP{sub 2}. To determine whether or not these lipids are involved in signal transduction, we have challenged the cells with a mixture of fungal cellulases, Driselase, and monitored the changes in the phosphoinositides and in the phosphoinositide kinase activity. With cell prelabeled with ({sup 3}H)inositol, two major changes are observed: (1) lysoPIP decreases 30% compared to the sorbitol control and (2) PIP{sub 2} doubles. There is no increase in IP, IP{sub 2}, or IP{sub 3}. In vitro phosphorylation studies using ({gamma}-{sup 32}P)ATP indicate thatmore » the increase in PIP{sub 2} is due in part to activation of the PIP kinase. These data suggest that the role of the polyphosphoinositides in signal transduction in plants may involve activation of the PIP kinase and/or activation of A type phospholipases rather than C type phospholipases.« less
Morningstar, Rebecca J; Hamer, Gabriel L; Goldberg, Tony L; Huang, Shaoming; Andreadis, Theodore G; Walker, Edward D
2012-05-01
Analysis of molecular genetic diversity in nine marker regions of five genes within the bacteriophage WO genomic region revealed high diversity of the Wolbachia pipentis strain wPip in a population of Culex pipiens L. sampled in metropolitan Chicago, IL. From 166 blood fed females, 50 distinct genetic profiles of wPip were identified. Rarefaction analysis suggested a maximum of 110 profiles out of a possible 512 predicted by combinations of the nine markers. A rank-abundance curve showed that few strains were common and most were rare. Multiple regression showed that markers associated with gene Gp2d, encoding a partial putative capsid protein, were significantly associated with ancestry of individuals either to form molestus or form pipiens, as determined by prior microsatellite allele frequency analysis. None of the other eight markers was associated with ancestry to either form, nor to ancestry to Cx. quinquefasciatus Say. Logistic regression of host choice (mammal vs. avian) as determined by bloodmeal analysis revealed that significantly fewer individuals that had fed on mammals had the Gp9a genetic marker (58.5%) compared with avian-fed individuals (88.1%). These data suggest that certain wPip molecular genetic types are associated with genetic admixturing in the Cx. pipiens complex of metropolitan Chicago, IL, and that the association extends to phenotypic variation related to host preference.
Blind, Raymond D.; Suzawa, Miyuki; Ingraham, Holly A.
2012-01-01
Phosphatidylinositol (4,5)-bisphosphate (PIP2) is best known as a plasma membrane-bound regulatory lipid. While PIP2 and phosphoinositide-modifying enzymes coexist in the nucleus, their roles in the nucleus remain unclear. Here we show that the nuclear inositol polyphosphate multikinase (IPMK), which functions both as an inositol- and a PI3-kinase, interacts with the nuclear receptor SF-1 (NR5A1) and phosphorylates its bound ligand, PIP2. IPMK failed to recognize SF-1/PIP2 after blocking or displacing PIP2 from SF-1’s large hydrophobic pocket. In contrast to IPMK, p110 catalytic subunits of type 1 PI3-kinases were inactive on SF-1/PIP2. These and other in vitro analyses demonstrated specificity of IPMK for the SF-1/PIP2 protein/lipid complex. Once generated, SF-1/PIP3 is readily dephosphorylated by the lipid phosphatase PTEN. Importantly, decreasing IPMK or increasing PTEN expression greatly reduced SF-1 transcriptional activity. This ability of lipid kinases and phosphatases to alter the activity and directly remodel a non-membrane protein/lipid complex such SF-1/PIP2, establishes a new pathway for promoting lipid-mediated signaling in the nucleus. PMID:22715467
Muries, Beatriz; Faize, Mohamed; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen
2011-04-01
Plant aquaporins belong to a large superfamily of conserved proteins called the major intrinsic proteins (MIPs). There is limited information about the diversity of MIPs and their water transport capacity in broccoli (Brassica oleracea) plants. In this study, the cDNAs of isoforms of Plasma Membrane Intrinsic Proteins (PIPs), a class of aquaporins, from broccoli roots have been partially sequenced. Thus, sequencing experiments led to the identification of eight PIP1 and three PIP2 genes encoding PIPs in B. oleracea plants. The occurrence of different gene products encoding PIPs suggests that they may play different roles in plants. The screening of their expression as well as the expression of two specific PIP2 isoforms (BoPIP2;2 and BoPIP2;3), in different organs and under different salt-stress conditions in two varieties, has helped to unravel the function and the regulation of PIPs in plants. Thus, a high degree of BoPIP2;3 expression in mature leaves suggests that this BoPIP2;3 isoform plays important roles, not only in root water relations but also in the physiology and development of leaves. In addition, differences between gene and protein patterns led us to consider that mRNA synthesis is inhibited by the accumulation of the corresponding encoded protein. Therefore, transcript levels, protein abundance determination and the integrated hydraulic architecture of the roots must be considered in order to interpret the response of broccoli to salinity.
Shi, Xiaojun; Kohram, Maryam; Zhuang, Xiaodong; Smith, Adam W
2016-02-23
Phosphatidylinositol phosphate (PIP) lipids are critical to many cell signaling pathways, in part by acting as molecular beacons that recruit peripheral membrane proteins to specific locations within the plasma membrane. Understanding the biophysics of PIP-protein interactions is critical to developing a chemically detailed model of cell communication. Resolving such interactions is challenging, even in model membrane systems, because of the difficulty in preparing PIP-containing membranes with high fluidity and integrity. Here we report on a simple, vesicle-based protocol for preparing asymmetric supported lipid bilayers in which fluorescent PIP lipid analogues are found only on the top leaflet of the supported membrane facing the bulk solution. With this asymmetric distribution of lipids between the leaflets, the fluorescent signal from the PIP lipid analogue reports directly on interactions between the peripheral molecules and the top leaflet of the membrane. Asymmetric PIP-containing bilayers are an ideal platform to investigate the interaction of PIP with peripheral membrane proteins using fluorescence-based imaging approaches. We demonstrate their usefulness here with a combined fluorescence correlation spectroscopy and single particle tracking study of the interaction between PIP2 lipids and a polycationic polymer, quaternized polyvinylpyridine (QPVP). With this approach we are able to quantify the microscopic features of the mobility coupling between PIP2 lipids and polybasic QPVP. With single particle tracking we observe individual PIP2 lipids switch from Brownian to intermittent motion as they become transiently trapped by QPVP.
ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira da Silva, Claudio; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sao Paulo, Rua Botucatu, 862, 6o andar, 04023-062 Sao Paulo, SP; Alves da Silva, Erika
2009-01-16
Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RHmore » strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnsson, Anna-Karin; Karlsson, Roger, E-mail: roger.karlsson@wgi.su.se
2012-01-15
Here we demonstrate that a dramatic actin polymerizing activity caused by ectopic expression of the synaptic vesicle protein synaptotagmin 1 that results in extensive filopodia formation is due to the presence of a lysine rich sequence motif immediately at the cytoplasmic side of the transmembrane domain of the protein. This polybasic sequence interacts with anionic phospholipids in vitro, and, consequently, the actin remodeling caused by this sequence is interfered with by expression of a phosphatidyl inositol (4,5)-bisphosphate (PIP2)-targeted phosphatase, suggesting that it intervenes with the function of PIP2-binding actin control proteins. The activity drastically alters the behavior of a rangemore » of cultured cells including the neuroblastoma cell line SH-SY5Y and primary cortical mouse neurons, and, since the sequence is conserved also in synaptotagmin 2, it may reflect an important fine-tuning role for these two proteins during synaptic vesicle fusion and neurotransmitter release.« less
Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2009-05-01
Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.
Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2009-01-01
Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885
Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.).
Yin, Yan-Xu; Wang, Shu-Bin; Zhang, Huai-Xia; Xiao, Huai-Juan; Jin, Jing-Hao; Ji, Jiao-Jiao; Jing, Hua; Chen, Ru-Gang; Arisha, Mohamed Hamed; Gong, Zhen-Hui
2015-05-25
Plant aquaporins are responsible for water transmembrane transport, which play an important role on abiotic and biotic stresses. A novel plasma membrane intrinsic protein of CaPIP1-1 was isolated from the pepper P70 according to transcriptome databases of Phytophthora capsici inoculation and chilling stress library. CaPIP1-1, which is 1155 bp in length with an open reading frame of 861 bp, encoded 286 amino acids. Three introns, exhibited CT/AC splice junctions, were observed in CaPIP1-1. The numbers and location of introns in CaPIP1-1 were the same as observed in tomato and potato. CaPIP1-1 was abundantly expressed in pepper fruit. Increased transcription levels of CaPIP1-1 were found in the different stresses, including chilling stress, salt stress, mannitol stress, salicylic acid, ABA treatment and Phytophthora capsici infection. The expression of CaPIP1-1 was downregulated by 50 μM HgCl2 and 100 μM fluridone. The pepper plants silenced CaPIP1-1 in cv. Qiemen showed growth inhibition and decreased tolerance to salt and mannitol stresses using detached leaf method. Copyright © 2015 Elsevier B.V. All rights reserved.
Dissection of the components for PIP2 activation and thermosensation in TRP channels
Brauchi, Sebastian; Orta, Gerardo; Mascayano, Carolina; Salazar, Marcelo; Raddatz, Natalia; Urbina, Hector; Rosenmann, Eduardo; Gonzalez-Nilo, Fernando; Latorre, Ramon
2007-01-01
Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel–PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis. PMID:17548815
2015-05-01
and phosphatidic acid .18,19 Akt activation is known to be dependent on the PIP3 generation. However, interaction between Akt and membrane PS is also...binding domains for phosphatidylserine and phosphatidic acid . Phosphatidic acid regulates the translocation of Raf-1 in 12-O- tetradecanoylphorbol-13...AWARD NUMBER: W81XWH-11-2-0074 TITLE: Neural Resilience to Traumatic Brain Injury: identification of Bioactive Metabolites of Docosahexaenoic Acids
Barbosa, Inês C R; Shikata, Hiromasa; Zourelidou, Melina; Heilmann, Mareike; Heilmann, Ingo; Schwechheimer, Claus
2016-12-15
Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases. © 2016. Published by The Company of Biologists Ltd.
Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing
2016-12-01
Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp r ), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lp rc ), and leaf cell hydraulic conductivity (Lp lc ) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp r and K leaf were reduced by 29 %, and Lp rc and Lp lc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.
The Practice Integration Profile: Rationale, development, method, and research.
Macchi, C R; Kessler, Rodger; Auxier, Andrea; Hitt, Juvena R; Mullin, Daniel; van Eeghen, Constance; Littenberg, Benjamin
2016-12-01
Insufficient knowledge exists regarding how to measure the presence and degree of integrated care. Prior estimates of integration levels are neither grounded in theory nor psychometrically validated. They provide scant guidance to inform improvement activities, compare integration efforts, discriminate among practices by degree of integration, measure the effect of integration on quadruple aim outcomes, or address the needs of clinicians, regulators, and policymakers seeking new models of health care delivery and funding. We describe the development of the Practice Integration Profile (PIP), a novel instrument designed to measure levels of integrated behavioral health care within a primary care clinic. The PIP draws upon the Agency for Health care Research & Quality's (AHRQ) Lexicon of Collaborative Care which provides theoretic justification for a paradigm case of collaborative care. We used the key clauses of the Lexicon to derive domains of integration and generate measures corresponding to those key clauses. After reviewing currently used methods for identifying collaborative care, or integration, and identifying the need to improve on them, we describe a national collaboration to describe and evaluate the PIP. We also describe its potential use in practice improvement, research, responsiveness to multiple stakeholder needs, and other future directions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Evolutionary inference via the Poisson Indel Process.
Bouchard-Côté, Alexandre; Jordan, Michael I
2013-01-22
We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.
Evolutionary inference via the Poisson Indel Process
Bouchard-Côté, Alexandre; Jordan, Michael I.
2013-01-01
We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114–124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments. PMID:23275296
Signals of Systemic Immunity in Plants: Progress and Open Questions
Ádám, Attila L.; Nagy, Zoltán Á.; Kátay, György; Mergenthaler, Emese; Viczián, Orsolya
2018-01-01
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens. PMID:29642641
NASA Astrophysics Data System (ADS)
Carpenter, Alexis Wells
Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to <7 days. An alternative strategy for increasing NO release duration involved directly stabilizing the N-diazeniumdiolate using O2-protecting groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered Streptococcus mutans was observed with the MOM-Pip/NO-doped composites compared to undoped controls. The greater chemical flexibility of macromolecular scaffolds is a major advantage over LMW NO donors as it allows for the incorporation of multiple functionalities onto a single scaffold. To demonstrate this advantage, dual functional particles were synthesized by covalently binding quaternary ammonium (QA) functionalities to the surface of NO-releasing silica particles. The QA functionality proved more effective against Staphylococcus aureus than P. aeruginosa, and increasing alkyl chain length correlated with increased efficacy. Nitric oxide-releasing QA-functionalized particles were found to be more effective against S. aureus compared to monofunctional particles.
Pip pin reliability and design
NASA Technical Reports Server (NTRS)
Skyles, Lane P.
1994-01-01
Pip pins are used in many engineering applications. Of particular interest to the aerospace industry is their use in various mechanism designs. Many payloads that fly aboard our nation's Space Shuttle have at least one actuated mechanism. Often these mechanisms incorporate pip pins in their design in order to fasten interfacing parts or joints. Pip pins are most often used when an astronaut will have a direct interface with the mechanism. This interfacing can be done during Space Shuttle mission EVA's (ExtraVehicular Activity). The main reason for incorporating pip pins is convenience and their ability to provide a quick release for interfacing parts. However, there are some issues that must be taken into account when using them in a design. These issues include documented failures and quality control problems when using substandard pip pins. A history of pip pins as they relate to the aerospace industry as well as general design features is discussed.
Role of Per1-interacting protein of the suprachiasmatic nucleus in NGF mediated neuronal survival.
Kiyama, Atsuko; Isojima, Yasushi; Nagai, Katsuya
2006-01-13
We previously identified Per1-interacting protein of the suprachiasmatic nucleus (PIPS) in rats. To reveal its role, its tissue distribution was examined by immunoblotting. PIPS-like immunoreactive substance (PIPSLS) was observed in the brain, adrenal gland, and PC12 cells. Since PIPS, which has no nuclear localization signal (NLS), is translocated into nuclei of COS-7 cells in the presence of mPer1, the effect of NGF on nuclear localization of PIPS was examined using PC12 cells. NGF caused nuclear translocation of either PIPSLS or GFP-PIPS. NGF mediated nuclear translocation of PIPSLS was blocked by K252a, a TrkA-inhibitor, or wortmannin, a PI3K-inhibitor. Gab1, which is implicated in TrkA signaling and has NLS, co-immunoprecipitated with PIPSLS from PC12 cells using an anti-PIPS antibody. Inhibition of PIPS expression by RNAi increased levels of apoptosis in PC12 cells. These findings suggest that nuclear translocation of PIPS is involved in NGF mediated neuronal survival via TrkA, PI3K, and Gab1 signaling pathway.
Dünner, B; Birrer, S; Nathues, C; Hässig, M; Stephan, R; Sidler, X
2017-08-01
The aim of the present study was to investigate the effect of Probiotics in Progress (PIP) on the establishment of a competitive flora as well as on antibiotic use and losses of suckling piglets in pig breeding farms. The tested products were PIP AHC® and PIP AHS® produced by "Chrisal AG" in Lommel, Belgium. PIP`s are cleaning products containing Bacillus spores. According to the manufacturer's specifications, they are able to establish a steady non-pathogenic stable flora. In a field trial in 19 pig breeding farms, the use of PIP-products did not lead to any reduction of antibiotic use or improvement of fertility parameters, especially in relation to losses of suckling piglets. In addition, we compared the bacterial flora using PIP products with the flora under conventional management conditions in a farrowing pen by means of swab samples. The use of PIP-products did not lead to any significant effect on the pen flora. Only very few swab samples contained a majority of probiotic Bacillus spp.
Secchi, Francesca; Zwieniecki, Maciej A.
2013-01-01
In order to study the role of PIP1 aquaporins in leaf water and CO2 transport, several lines of PIP1-deficient transgenic Populus tremula x alba were generated using a reverse genetic approach. These transgenic lines displayed no visible developmental or morphological phenotypes when grown under conditions of no water stress. Major photosynthetic parameters were also not affected by PIP1 down regulation. However, low levels of PIP1 expression resulted in greater leaf hydraulic resistance (an increase of 27%), which effectively implicated PIP1 role in water transport. Additionally, the expression level of PIP1 genes in the various transgenic lines was correlated with reductions in mesophyll conductance to CO2 (gm), suggesting that in poplar, these aquaporins influenced membrane permeability to CO2. Overall, although analysis showed that PIP1 genes contributed to the mass transfer of water and CO2 in poplar leaves, their down-regulation did not dramatically impair the physiological needs of this fast growing tree when cultivated under conditions of no stress. PMID:24379822
Analysis of plasma membrane phosphoinositides from fusogenic carrot cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, J.J.; Boss, W.F.
1987-04-01
Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP/sub 2/). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP/sub 2/ and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solventmore » system CHCl/sub 3/:MeOH:15N NH/sub 4/OH:H/sub 2/O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated /sup 32/P/sub i/, (/sup 3/H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ approx. 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids.« less
A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses
2014-01-01
Background Aquaporin (AQP) proteins function in transporting water and other small molecules through the biological membranes, which is crucial for plants to survive in drought or salt stress conditions. However, the precise role of AQPs in drought and salt stresses is not completely understood in plants. Results In this study, we have identified a PIP1 subfamily AQP (MaPIP1;1) gene from banana and characterized it by overexpression in transgenic Arabidopsis plants. Transient expression of MaPIP1;1-GFP fusion protein indicated its localization at plasma membrane. The expression of MaPIP1;1 was induced by NaCl and water deficient treatment. Overexpression of MaPIP1;1 in Arabidopsis resulted in an increased primary root elongation, root hair numbers and survival rates compared to WT under salt or drought conditions. Physiological indices demonstrated that the increased salt tolerance conferred by MaPIP1;1 is related to reduced membrane injury and high cytosolic K+/Na+ ratio. Additionally, the improved drought tolerance conferred by MaPIP1;1 is associated with decreased membrane injury and improved osmotic adjustment. Finally, reduced expression of ABA-responsive genes in MaPIP1;1-overexpressing plants reflects their improved physiological status. Conclusions Our results demonstrated that heterologous expression of banana MaPIP1;1 in Arabidopsis confers salt and drought stress tolerances by reducing membrane injury, improving ion distribution and maintaining osmotic balance. PMID:24606771
A Functional and Regulatory Network Associated with PIP Expression in Human Breast Cancer
Debily, Marie-Anne; Marhomy, Sandrine El; Boulanger, Virginie; Eveno, Eric; Mariage-Samson, Régine; Camarca, Alessandra; Auffray, Charles; Piatier-Tonneau, Dominique; Imbeaud, Sandrine
2009-01-01
Background The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. Principal Findings Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP−] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. Conclusions Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator. PMID:19262752
Perrone, Irene; Gambino, Giorgio; Chitarra, Walter; Vitali, Marco; Pagliarani, Chiara; Riccomagno, Nadia; Balestrini, Raffaella; Kaldenhoff, Ralf; Uehlein, Norbert; Gribaudo, Ivana; Schubert, Andrea; Lovisolo, Claudio
2012-10-01
We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.
Keune, Willem-Jan; Sims, Andrew H; Jones, David R; Bultsma, Yvette; Lynch, James T; Jirström, Karin; Landberg, Goran; Divecha, Nullin
2013-12-01
Phosphatidylinositol-5-phosphate (PtdIns5P) 4-kinase β (PIP4K2B) directly regulates the levels of two important phosphoinositide second messengers, PtdIns5P and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2]. PIP4K2B has been linked to the regulation of gene transcription, to TP53 and AKT activation, and to the regulation of cellular reactive oxygen accumulation. However, its role in human tumor development and on patient survival is not known. Here, we have interrogated the expression of PIP4K2B in a cohort (489) of patients with breast tumor using immunohistochemical staining and by a meta-analysis of gene expression profiles from 2,999 breast tumors, both with associated clinical outcome data. Low PIP4K2B expression was associated with increased tumor size, high Nottingham histological grade, Ki67 expression, and distant metastasis, whereas high PIP4K2B expression strongly associated with ERBB2 expression. Kaplan-Meier curves showed that both high and low PIP4K2B expression correlated with poorer patient survival compared with intermediate expression. In normal (MCF10A) and tumor (MCF7) breast epithelial cell lines, mimicking low PIP4K2B expression, using short hairpin RNA interference-mediated knockdown, led to a decrease in the transcription and expression of the tumor suppressor protein E-cadherin (CDH1). In MCF10A cells, knockdown of PIP4K2B enhanced TGF-β-induced epithelial to mesenchymal transition (EMT), a process required during the development of metastasis. Analysis of gene expression datasets confirmed the association between low PIP4K2B and low CDH1expression. Decreased CDH1 expression and enhancement of TGF-β-induced EMT by reduced PIP4K2B expression might, in part, explain the association between low PIP4K2B expression and poor patient survival.
Snow, P; Yim, D L; Leibow, J D; Saini, S; Nuccitelli, R
1996-11-25
Previous experiments from our lab have suggested that the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) is required for sperm-induced egg activation in Xenopus laevis. Here we measure the endogenous production of both Ins(1,4,5)P3 and PIP2 during the sperm-induced and ionomycin-induced calcium wave in the egg and find that both increase following fertilization. Ins(1,4,5)P3 increases 3.2-fold from an unfertilized egg level of 0.13 pmole per egg (0.29 microM) to a peak of 0.42 pmole per egg (0.93 microM) as the calcium wave reaches the antipode in the fertilized egg. This continuous production of Ins(1,4,5)P3 during the time that the Ca2+ wave is propagating across the egg suggests the involvement of Ins(1,4,5)P3 in wave propagation. This increase in Ins(1,4,5)P3 is smaller in ionomycin-activated eggs than in sperm-activated eggs, suggesting that the sperm-induced production of Ins(1,4,5)P3 involves a PIP2 hydrolysis pathway that is not simply raising intracellular Ca2+. While one might expect PIP2 levels to fall as a result of hydrolysis, we find that PIP2 actually increases 2-fold. The total lipid fraction in unfertilized egg exhibits 0.8 pmole PIP2 per egg and this increases to 1.5 pmole as the calcium wave reaches the antipode. The PIP2 concentration peaks 2 min after the completion of the calcium wave at 1.8 pmole per egg. The amount of PIP2 in the animal and vegetal hemispheres of the egg was also measured by cutting frozen eggs in half. The vegetal hemisphere contained twice the amount of PIP2 as the animal hemisphere but it also contained twice the amount of lipid. Thus, there was an equivalent amount of PIP2 normalized to lipid in each hemisphere. Isolated animal and vegetal hemisphere cortices exhibit similar PIP2 concentrations, suggesting that the 2-fold higher total PIP2 in the vegetal half is not due to a gradient of PIP2 in the plasma membrane, but rather implies that cytoplasmic organelle membranes also contain PIP2.
Corcoran, John R; Herbsman, Jodi M; Bushnik, Tamara; Van Lew, Steve; Stolfi, Angela; Parkin, Kate; McKenzie, Alison; Hall, Geoffrey W; Joseph, Waveney; Whiteson, Jonathan; Flanagan, Steven R
2017-02-01
Most early mobility studies focus on patients on mechanical ventilation and the role of physical and occupational therapy. This Performance Improvement Project (PIP) project examined early mobility and increased intensity of therapy services on patients in the intensive care unit (ICU) with and without mechanical ventilation. In addition, speech-language pathology rehabilitation was added to the early mobilization program. We sought to assess the efficacy of early mobilization of patients with and without mechanical ventilation in the ICU on length of stay (LOS) and patient outcomes and to determine the financial viability of the program. PIP. Prospective data collection in 2014 (PIP) compared with a historical patient population in 2012 (pre-PIP). Medical and surgical ICUs of a Level 2 trauma hospital. There were 160 patients in the PIP and 123 in the pre-PIP. Interprofessional training to improve collaboration and increase intensity of rehabilitation therapy services in the medical and surgical intensive care units for medically appropriate patients. Demographics; intensity of service; ICU and hospital LOS; medications; pain; discharge disposition; functional mobility; and average cost per day were examined. Rehabilitation therapy services increased from 2012 to 2014 by approximately 60 minutes per patient. The average ICU LOS decreased by almost 20% from 4.6 days (pre-PIP) to 3.7 days (PIP) (P = .05). A decrease of over 40% was observed in the floor bed average LOS from 6.0 days (pre-PIP) to 3.4 days (PIP) (P < .01). An increased percentage of PIP patients, 40.5%, were discharged home without services compared with 18.2% in the pre-PIP phase (P < .01). Average cost per day in the ICU and floor bed decreased in the PIP group, resulting in an annualized net cost savings of $1.5 million. The results of the PIP indicate that enhanced rehabilitation services in the ICU is clinically feasible, results in improved patient outcomes, and is fiscally sound. Most early mobility studies focus on patients on mechanical ventilation. The results of this PIP project demonstrate that there are significant benefits to early mobility and increased intensity of therapy services on ICU patients with and without mechanical ventilation. Benefits include reduced hospitalization LOS, decreased health care costs, and decreased need for postacute care services. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Mohamad Yusoff, Mohamad Ariff; Abdul Hamid, Azzmer Azzar; Mohammad Bunori, Noraslinda; Abd Halim, Khairul Bariyyah
2018-06-01
Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP 2 ) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP 2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP 2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP 2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane. Copyright © 2018 Elsevier Inc. All rights reserved.
Tewson, Paul H; Quinn, Anne Marie; Hughes, Thomas E
2013-08-01
There is a growing need in drug discovery and basic research to measure multiple second-messenger components of cell signaling pathways in real time and in relevant tissues and cell types. Many G-protein-coupled receptors activate the heterotrimeric protein, Gq, which in turn activates phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two second messengers: diacylglycerol (DAG), which remains in the plasma membrane, and inositol triphosphate (IP3), which diffuses through the cytosol to release stores of intracellular calcium ions (Ca(2+)). Our goal was to create a series of multiplex sensors that would make it possible to simultaneously measure two different components of the Gq pathway in living cells. Here we describe new fluorescent sensors for DAG and PIP2 that produce robust changes in green or red fluorescence and can be combined with one another, or with existing Ca(2+) sensors, in a live-cell assay. These assays can detect multiple components of Gq signaling, simultaneously in real time, on standard fluorescent plate readers or live-cell imaging systems.
Keefe, Francis J; Main, Chris J; George, Steven Z
2018-05-01
There has been growing interest in psychologically oriented pain management over the past 3 to 4 decades, including a 2011 description of psychologically informed practice (PIP) for low back pain. PIP requires a broader focus than traditional biomechanical and pathology-based approaches that have been traditionally used to manage musculoskeletal pain. A major focus of PIP is addressing the behavioral aspects of pain (ie, peoples' responses to pain) by identifying individual expectations, beliefs, and feelings as prognostic factors for clinical and occupational outcomes indicating progression to chronicity. Since 2011, the interest in PIP seems to be growing, as evidenced by its use in large trials, inclusion in scientific conferences, increasing evidence base, and expansion to other musculoskeletal pain conditions. Primary care physicians and physical therapists have delivered PIP as part of a stratified care approach involving screening and targeting of treatment for people at high risk for continued pain-associated disability. Furthermore, PIP is consistent with recent national priorities emphasizing nonpharmacological pain management options. In this perspective, PIP techniques that range in complexity are described, considerations for implementation in clinical practice are offered, and future directions that will advance the understanding of PIP are outlined.
van Rheenen, Jacco; Jalink, Kees
2002-09-01
Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) at the inner leaflet of the plasma membrane has been proposed to locally regulate the actin cytoskeleton. Indeed, recent studies that use GFP-tagged pleckstrin homology domains (GFP-PH) as fluorescent PIP(2) sensors suggest that this lipid is enriched in membrane microdomains. Here we report that this concept needs revision. Using three distinct fluorescent GFP-tagged pleckstrin homology domains, we show that highly mobile GFP-PH patches colocalize perfectly with various lipophilic membrane dyes and, hence, represent increased lipid content rather than PIP(2)-enriched microdomains. We show that bright patches are caused by submicroscopical folds and ruffles in the membrane that can be directly visualized at approximately 15 nm axial resolution with a novel numerically enhanced imaging method. F-actin motility is inhibited significantly by agonist-induced PIP(2) breakdown, and it resumes as soon as PIP(2) levels are back to normal. Thus, our data support a role for PIP(2) in the regulation of cortical actin, but they challenge a model in which spatial differences in PIP(2) regulation of the cytoskeleton exist at a micrometer scale.
Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex
Zha, Dongqing; Chen, Cheng; Liang, Wei; Chen, Xinghua; Ma, Tean; Yang, Hongxia; van Goor, Harry; Ding, Guohua
2013-01-01
Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-α-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism. [BMB Reports 2013; 46(4): 230-235] PMID:23615266
Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong
2015-11-01
Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Vivas, Oscar; Castro, Hector; Arenas, Isabel; Elías-Viñas, David; García, David E
2013-03-08
GPCRs regulate Ca(V)2.2 channels through both voltage dependent and independent inhibition pathways. The aim of the present work was to assess the phosphatidylinositol-4,5-bisphosphate (PIP2) as the molecule underlying the voltage independent inhibition of Ca(V)2.2 channels in SCG neurons. We used a double pulse protocol to study the voltage independent inhibition and changed the PIP(2) concentration by means of blocking the enzyme PLC, filling the cell with a PIP(2) analogue and preventing the PIP(2) resynthesis with wortmannin. We found that voltage independent inhibition requires the activation of PLC and can be hampered by internal dialysis of exogenous PIP(2). In addition, the recovery from voltage independent inhibition is blocked by inhibition of the enzymes involved in the resynthesis of PIP(2). These results support that the hydrolysis of PIP(2) is responsible for the voltage independent inhibition of Ca(V)2.2 channels. Copyright © 2013 Elsevier Inc. All rights reserved.
Inhibition of Pancreatic Cancer Cell Proliferation by LRH-1 Inhibitors
2014-12-01
coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org [ PDB ID codes 4QJR (SF-1/PIP3) and 4QK4 (SF-1/PIP2)]. 1To whom...with Rfree/Rcryst values of 23/19% (Table S2). The structure was deposited with the PDB ID code 4QJR. SF 1/PIP3 (Fig. 1C) adopts the classic NR LBD...PIP2) was solved by molecular replacement, using PDB ID code 1YOW as the search model, and compared with the SF 1/PIP3 structure (Table S2). The
Phosphoinositide function in cytokinesis.
Brill, Julie A; Wong, Raymond; Wilde, Andrew
2011-11-22
In systems as diverse as yeast, slime mold and animal cells, the levels and distribution of phosphatidylinositol phosphates (PIPs) must be strictly regulated for successful cell cleavage. The precise mechanism by which PIPs function in this process remains unknown. Recent experiments are beginning to shed light on the cellular pathways in which PIPs make key contributions during cytokinesis. In particular, PIPs promote proper actin cytoskeletal organization and direct membrane trafficking in dividing cells. Future research will uncover temporal and spatial regulation of the different PIPs, thus elucidating their role in cytoskeletal and membrane events that drive cell cleavage. Copyright © 2011 Elsevier Ltd. All rights reserved.
2013-01-01
This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions. PMID:23800232
Contrasting effects of phosphatidylinositol 4,5‐bisphosphate on cloned TMEM16A and TMEM16B channels
Ta, Chau M; Acheson, Kathryn E; Rorsman, Nils J G; Jongkind, Remco C
2017-01-01
Background and Purpose Ca2+‐activated Cl− channels (CaCCs) are gated open by a rise in intracellular Ca2+ concentration ([Ca2+]i), typically provoked by activation of Gq‐protein coupled receptors (GqPCR). GqPCR activation initiates depletion of plasmalemmal phosphatidylinositol 4,5‐bisphosphate (PIP2). Here, we determined whether PIP2 acts as a signalling lipid for CaCCs coded by the TMEM16A and TMEM16B genes. Experimental Approach Patch‐clamp electrophysiology, in conjunction with genetically encoded systems to control cellular PIP2 content, was used to define the mechanism of action of PIP2 on TMEM16A and TMEM16B channels. Key Results A water‐soluble PIP2 analogue (diC8‐PIP2) activated TMEM16A channels by up to fivefold and inhibited TMEM16B by ~0.2‐fold. The effects of diC8‐PIP2 on TMEM16A currents were especially pronounced at low [Ca2+]i. In contrast, diC8‐PIP2 modulation of TMEM16B channels did not vary over a broad [Ca2+]i range but was only detectable at highly depolarized membrane potentials. Modulation of TMEM16A and TMEM16B currents was due to changes in channel gating, while single channel conductance was unaltered. Co‐expression of TMEM16A or TMEM16B with a Danio rerio voltage‐sensitive phosphatase (DrVSP), which degrades PIP2, led to reduction and enhancement of TMEM16A and TMEM16B currents respectively. These effects were abolished by an inactivating mutation in DrVSP and antagonized by simultaneous co‐expression of a phosphatidylinositol‐4‐phosphate 5‐kinase that catalyses PIP2 formation. Conclusions and Implications PIP2 acts as a modifier of TMEM16A and TMEM16B channel gating. Drugs interacting with PIP2 signalling may affect TMEM16A and TMEM16B channel gating and have potential uses in basic science and implications for therapy. PMID:28616863
Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium
Sripathi, Srinivasa R.; Sylvester, O’Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S.; Bartoli, Manuela; Jahng, Wan Jin
2016-01-01
Previously, our study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate (PIP3) and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression. PMID:26661103
Bhonagiri, Padma; Pattar, Guruprasad R.; Habegger, Kirk M.; McCarthy, Alicia M.; Tackett, Lixuan
2011-01-01
Hyperinsulinemia is known to promote the progression/worsening of insulin resistance. Evidence reveals a hidden cost of hyperinsulinemia on plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure, components critical to the normal operation of the insulin-regulated glucose transport system. Here we delineated whether increased glucose flux through the hexosamine biosynthesis pathway (HBP) causes PIP2/F-actin dysregulation and subsequent insulin resistance. Increased glycosylation events were detected in 3T3-L1 adipocytes cultured under conditions closely resembling physiological hyperinsulinemia (5 nm insulin; 12 h) and in cells in which HBP activity was amplified by 2 mm glucosamine (GlcN). Both the physiological hyperinsulinemia and experimental GlcN challenge induced comparable losses of PIP2 and F-actin. In addition to protecting against the insulin-induced membrane/cytoskeletal abnormality and insulin-resistant state, exogenous PIP2 corrected the GlcN-induced insult on these parameters. Moreover, in accordance with HBP flux directly weakening PIP2/F-actin structure, pharmacological inhibition of the rate-limiting HBP enzyme [glutamine-fructose-6-phosphate amidotransferase (GFAT)] restored PIP2-regulated F-actin structure and insulin responsiveness. Conversely, overexpression of GFAT was associated with a loss of detectable PM PIP2 and insulin sensitivity. Even less invasive challenges with glucose, in the absence of insulin, also led to PIP2/F-actin dysregulation. Mechanistically we found that increased HBP activity increased PM cholesterol, the removal of which normalized PIP2/F-actin levels. Accordingly, these data suggest that glucose transporter-4 functionality, dependent on PIP2 and/or F-actin status, can be critically compromised by inappropriate HBP activity. Furthermore, these data are consistent with the PM cholesterol accrual/toxicity as a mechanistic basis of the HBP-induced defects in PIP2/F-actin structure and impaired glucose transporter-4 regulation. PMID:21712361
PIP breast implants: rupture rate and correlation with breast cancer
MOSCHETTA, M.; TELEGRAFO, M.; CORNACCHIA, I.; VINCENTI, L.; RANIERI, V.; CIRILLI, A.; RELLA, L.; IANORA, A.A. STABILE; ANGELELLI, G.
2014-01-01
Aim To evaluate the incidence of Poly Implant Prosthése (PIP) rupture as assessed by magnetic resonance imaging (MRI), the prevalence of the detected signs and the potential correlation with breast carcinoma. Patients and methods 67 patients with silicone breast implants and clinical indications for breast MRI were evaluated for a total of 125 implants: 40 (32%) PIP in 21 patients and 85 non-PIP in 46 patients (68%), the latest considered as control group. A 1.5-T MR imaging device was used in order to assess implant integrity with dedicated sequences and in 6 cases a dynamic study was performed for characterizing breast lesions. Two radiologists with more than 5 years’ experience in the field of MRI evaluated in consensus all MR images searching for the presence of clear signs of intra or extra-capsular implant rupture. Results 20/40 (50%) PIP implants presented signs of intra-capsular rupture: linguine sign in 20 cases (100%), tear-drop sign in 6 (30%). In 12/20 cases (60%), MRI signs of extra-capsular rupture were detected. In the control group, an intra-capsular rupture was diagnosed in 12/85 cases (14%) associated with extra-capsular one in 5/12 cases (42%). Among the six cases with suspected breast lesions, in 2/21 patients with PIP implants (10%) a breast carcinoma was diagnosed (mucinous carcinoma, n=1; invasive ductal carcinoma, n=1). In 4/46 patients (9%) with non-PIP implants, an invasive ductal carcinoma was diagnosed. Conclusion The rupture rate of PIP breast implants is significantly higher than non-PIP (50% vs 14%). MRI represents the most accurate imaging tool for evaluating breast prostheses and the linguine sign is the most common MRI sign to be searched. The incidence of breast carcinoma does not significantly differ between the PIP and non-PIP implants and a direct correlation with breast cancer can not been demonstrated. PMID:25644728
PIP breast implants: rupture rate and correlation with breast cancer.
Moschetta, M; Telegrafo, M; Cornacchia, I; Vincenti, L; Ranieri, V; Cirili, A; Rella, L; Stabile Ianora, A A; Angelelli, G
2014-01-01
To evaluate the incidence of Poly Implant Prosthése (PIP) rupture as assessed by magnetic resonance imaging (MRI), the prevalence of the detected signs and the potential correlation with breast carcinoma. 67 patients with silicone breast implants and clinical indications for breast MRI were evaluated for a total of 125 implants: 40 (32%) PIP in 21 patients and 85 non-PIP in 46 patients (68%), the latest considered as control group. A 1.5-T MR imaging device was used in order to assess implant integrity with dedicated sequences and in 6 cases a dynamic study was performed for characterizing breast lesions. Two radiologists with more than 5 years' experience in the field of MRI evaluated in consensus all MR images searching for the presence of clear signs of intra or extra-capsular implant rupture. 20/40 (50%) PIP implants presented signs of intra-capsular rupture: linguine sign in 20 cases (100%), tear-drop sign in 6 (30%). In 12/20 cases (60%), MRI signs of extra-capsular rupture were detected. In the control group, an intra-capsular rupture was diagnosed in 12/85 cases (14%) associated with extra-capsular one in 5/12 cases (42%). Among the six cases with suspected breast lesions, in 2/21 patients with PIP implants (10%) a breast carcinoma was diagnosed (mucinous carcinoma, n=1; invasive ductal carcinoma, n=1). In 4/46 patients (9%) with non-PIP implants, an invasive ductal carcinoma was diagnosed. The rupture rate of PIP breast implants is significantly higher than non-PIP (50% vs 14%). MRI represents the most accurate imaging tool for evaluating breast prostheses and the linguine sign is the most common MRI sign to be searched. The incidence of breast carcinoma does not significantly differ between the PIP and non-PIP implants and a direct correlation with breast cancer can not been demonstrated.
Ser123 Is Essential for the Water Channel Activity of McPIP2;1 from Mesembryanthemum crystallinum*
Amezcua-Romero, Julio C.; Pantoja, Omar; Vera-Estrella, Rosario
2010-01-01
The increased expression of McPIP2;1 (MipC), a root-specific aquaporin (AQP) from Mesembryanthemum crystallinum, under salt stress has suggested a role for this AQP in the salt tolerance of the plant. However, whether McPIP2;1 transports water or another solute and how its activity is regulated are so far unknown. Therefore, wild type (wt) or mutated McPIP2;1 protein was expressed in Xenopus laevis oocytes. Then, the osmotic water permeability (Pf) of the oocytes membrane was assessed by hypotonic challenges. Selectivity of McPIP2;1 to water was determined by radiolabeled glycerol or urea uptake assays. Moreover, swelling and in vitro phosphorylation assays revealed that both water permeation and phosphorylation status of McPIP2;1 were significantly increased by the phosphorylation agonists okadaic acid (OA), phorbol myristate acetate (PMA), and 8-Br-cAMP, and markedly decreased by the inhibitory peptides PKI 14-22 and PKC 20-28, inhibitors of protein kinases A (PKA) and C (PKC), respectively. Substitution of Ser123 or both, Ser123 and Ser282, abolished the water channel activity of McPIP2;1 while substitution of Ser282 only partially inhibited it (51.9% inhibition). Despite lacking Ser123 and/or Ser282, the McPIP2;1 mutant forms were still phosphorylated in vitro, which suggests that phosphorylation may have a dual role on this AQP. Our results indicate that McPIP2;1 water permeability depends completely on Ser123 and is positively regulated by PKA- and PKC-mediated phosphorylation. Regulation of the phosphorylation status of McPIP2;1 may contribute to control water transport through root cells when the plant is subjected to high salinity conditions. PMID:20332086
Surface and mechanical analysis of explanted Poly Implant Prosthèse silicone breast implants.
Yildirimer, L; Seifalian, A M; Butler, P E
2013-05-01
The recent events surrounding Poly Implant Prosthèse (PIP) breast implants have renewed the debate about the safety profile of silicone implants. The intentional use of industrial-grade instead of certified medical-grade silicone is thought to be responsible for reportedly higher frequencies of implant rupture in vivo. The differences in mechanical and viscoelastic properties between PIP and medical-grade silicone implant shells were investigated. Surface characterization of shells and gels was carried out to determine structural changes occurring after implantation. Breast implants were obtained from women at the Royal Free Hospital (London, UK). PIP implants were compared with medical-grade control silicone implants. Tensile strength, tear resistance and elongation at break were assessed using a tensile tester. Surfaces were analysed using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Spearman correlation analyses and Kruskal-Wallis one-way statistical tests were performed for mechanical data. There were 18 PIP and four medical-grade silicone implants. PIP silicone shells had significantly weaker mechanical strength than control shells (P < 0·009). There were negative correlations between mechanical properties of PIP shells and implantation times, indicative of deterioration of PIP shells over time in vivo (r(s) = -0·75, P = 0·009 for tensile strength; r(s) = -0·76, P = 0·001 for maximal strain). Comparison of ATR-FTIR spectra of PIP and control silicones demonstrated changes in material characteristics during the period of implantation suggestive of time-dependent bond breakage and degradation of the material. This study demonstrated an increased weakness of PIP shells with time and therefore supports the argument for prophylactic removal of PIP breast implants. © 2013 British Journal of Surgery Society Ltd. Published by John Wiley & Sons Ltd.
Responses of hybrid aspen over-expressing a PIP2;5 aquaporin to low root temperature.
Ranganathan, Kapilan; El Kayal, Walid; Cooke, Janice E K; Zwiazek, Janusz J
2016-03-15
Aquaporins mediate the movement of water across cell membranes. Plasma membrane intrinsic protein 2;5 from Populus trichocarpa×deltoides (PtdPIP2;5) was previously demonstrated to be a functionally important water conducting aquaporin. To study the relevance of aquaporin-mediated root water transport at low temperatures, we generated transgenic Populus tremula×alba over-expressing PtdPIP2;5 under control of the maize ubiquitin promoter, and compared the physiological responses and water transport properties of the PtdPIP2;5 over-expressing lines (PtdPIP2;5ox) with wild-type plants. We hypothesized that over-expression of PtdPIP2;5 would reduce temperature sensitivity of root water transport and gas exchange. Decreasing root temperatures to 10 and 5°C significantly decreased hydraulic conductivities (Lp) in wild-type plants, but had no significant effect on Lp in PtdPIP2;5ox plants. Recovery of Lp in the transgenic lines returned to 20°C from 5°C was faster than in the wild-type plants. Low root temperature did not induce major changes in transcript levels for other PIPs. When roots were exposed to 5°C in solution culture and shoots were exposed to 20°C, wild-type plants had significantly lower net photosynthetic and transpiration rates compared to PtdPIP2;5ox plants. Taken together, our results demonstrate that over-expression of PtdPIP2;5 in P. tremula×alba was effective in alleviating the effects of low root temperature on Lp and gas exchange. Copyright © 2016 Elsevier GmbH. All rights reserved.
Proximal Interphalangeal Joint Extension Block Splint
Abboudi, Jack; Jones, Christopher M.
2016-01-01
Background: Extension block splinting of the proximal interphalangeal (PIP) joint is a simple and useful treatment option although the practical application of this technique has remained undefined in the literature. Methods: This article provides a step-by-step technique for the construction of a reliable PIP extension block splint and also reviews basic indications for treatment with a PIP extension block splint as well as other PIP extension block splint designs. Results: The proposed splint design outlined in this article is reliable, easy to reproduce and easy for patients to manage when treated with a PIP extension block splint. Conclusions: PIP extension block splinting has a role for certain injuries and certain post-operative protocols. A reliable splint design that is easy to manage makes this treatment choice more attractive to the surgeon and the patient. PMID:27390555
Lee, Chien-Hsing; Huang, Po-Tsang; Liou, Horng-Huei; Lin, Mei-Ying; Lou, Kuo-Long; Chen, Chung-Yi
2016-04-22
The ROMK1 (Kir1.1) channel activity is predominantly regulated by intracellular pH (pHi) and phosphatidylinositol 4,5-bisphosphate (PIP2). Although several residues were reported to be involved in the regulation of pHi associated with PIP2 interaction, the detailed molecular mechanism remains unclear. We perform experiments in ROMK1 pHi-gating with electrophysiology combined with mutational and structural analysis. In the present study, non basic residues of C-terminal region (S219, N215, I192, L216 and L220) in ROMK1 channels have been found to mediate channel-PIP2 interaction and pHi gating. Further, our structural results show these residues with an appropriate distance to interact with membrane PIP2. Meanwhile, a cluster of basic residues (R188, R217 and K218), which was previously discovered regarding the interaction with PIP2, exists in this appropriate distance to discriminate the regulation of channel-PIP2 interaction and pHi-gating. This appropriate distance can be observed with high conservation in the Kir channel family. Our results provide insight that an appropriate distance cooperates with the electrostatics interaction of channel-PIP2 to regulate pHi-gating. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin
2018-01-01
Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.
Prediction of acute pancreatitis risk based on PIP score in children with cystic fibrosis.
Terlizzi, V; Tosco, A; Tomaiuolo, R; Sepe, A; Amato, N; Casale, A; Mercogliano, C; De Gregorio, F; Improta, F; Elce, A; Castaldo, G; Raia, V
2014-09-01
Currently no tools to predict risk of acute (AP) and recurrent pancreatitis (ARP) in children with cystic fibrosis (CF) are available. We assessed the prevalence of AP/ARP and tested the potential role of Pancreatic Insufficiency Prevalence (PIP) score in a cohort of children with CF. We identified two groups of children, on the basis of presence/absence of AP/ARP, who were compared for age at diagnosis, clinical features, genotypes and sweat chloride level. PIP score was calculated for each patient. 10/167 (5.9%) experienced at least one episode of AP during follow up; 10/10 were pancreatic sufficient (PS). Patients with AP/ARP showed a PIP score ≤0.25 more frequently (6/10) than patients without AP/ARP. The odds ratio (95% CI) of developing pancreatitis was 4.54 (1.22-16.92) for patients with PIP <0.25 when compared with those who have a PIP score >0.25 (p 0.0151). PIP score was correlated with sweat chloride test (p < 0.01). PIP score, PS status and normal/borderline sweat chloride levels could be applied to predict pancreatitis development in children with CF. ARP could lead to pancreatic insufficiency. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Modulation of the olfactory CNG channel by Ptdlns(3,4,5)P3.
Zhainazarov, A B; Spehr, M; Wetzel, C H; Hatt, H; Ache, B W
2004-09-01
Recent data suggest that the 3-phosphoinositides can modulate cyclic nucleotide signaling in rat olfactory receptor neurons (ORNs). Given the ability of diverse lipids to modulate ion channels, we asked whether phosphatidylinositol 3,4,5-trisphosphate (PIP3) can regulate the olfactory cyclic nucleotide-gated (CNG) channel as a possible mechanism for this modulation. We show that applying PIP3 to the intracellular side of inside-out patches from rat ORNs inhibits activation of the olfactory CNG channel by cAMP. The effect of PIP3 is immediate and partially reversible, and reflects an increase in the EC50 of cAMP, not a reduction in the single-channel current amplitude. The effect of PIP3 is significantly stronger than that of PIP2; other phospholipids tested have no appreciable effect on channel activity. PIP3 similarly inhibits the recombinant heteromeric (A2/A4) and homomeric (A2) olfactory CNG channel expressed in HEK293 cells, suggesting that PIP3 acts directly on the channel. These findings indicate that 3-phosphoinositides can be functionally important regulators of CNG channels.
Shivaraj, S. M.; Deshmukh, Rupesh K.; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K.; Dash, Prasanta K.
2017-01-01
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax. PMID:28447607
Shivaraj, S M; Deshmukh, Rupesh K; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K; Dash, Prasanta K
2017-04-27
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.
Bekker-Méndez, Vilma Carolina; Núñez-Enríquez, Juan Carlos; Torres Escalante, José Luis; Alvarez-Olmos, Enrique; González-Montalvoc, Pablo Miguel; Jiménez-Hernández, Elva; Sansón, Aurora Medina; Leal, Yelda A; Ramos-Cervantes, María Teresa; Guerra-Castillo, Francisco Xavier; Ortiz-Maganda, Mónica Patricia; Flores-Lujano, Janet; Pérez-Saldivar, Maria Luisa; Velazquez-Aviña, Martha Margarita; Bolea-Murga, Victoria; Torres-Nava, José Refugio; Amador-Sanchez, Raquel; Solis-Labastida, Karina Anastacia; Rámirez-Bello, Julian; Fragoso, José Manuel; Mejía-Aranguré, Juan Manuel
2016-11-01
Childhood acute lymphoblastic leukemia (ALL) is the leading cause of childhood cancer-related deaths worldwide. Multiples studies have shown that ALL seems to be originated by an interaction between environmental and genetic susceptibility factors. The ARID5B polymorphisms are among the most reproducible ALL associated-risk alleles in different populations. The aim of the present study was to examine the contribution of ARID5B, CEBPE, and PIP4K2 risk alleles for the development of ALL in children from Mexico City and Yucatan, Mexico. A study was conducted with a total of 761 unrelated subjects. Two hundred eighty five ALL cases (111 from Yucatan and 174 from Mexico City) and 476 healthy subjects. Genotyping included the rs7088318 (PIP4K2A), rs10821936 (ARID5B), rs7089424 (ARID5B) and rs2239633 (CEBPE) polymorphisms. Associations between ALL and rs10821936 and rs7089424 ARID5B SNPs were found (OR = 1.9, 95% CI (1.5-2.4) and OR = 2.0, 95% CI (1.6-2.5), respectively). Moreover, a higher risk was observed in the homozygous risk genotypes of carriers from Mexico City (OR = 3.1, 95% CI (2.0-4.9) and OR 3.1, CI 95% (2.0-4.8), respectively). Otherwise, the rs7088318 (PIP4K2A) and rs2239633 (CEBPE) polymorphisms were not associated with ALL risk. Our analysis suggests that ARID5B confers risk for childhood ALL in a Mexican population. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.
Advances in Proximal Interphalangeal Joint Arthroplasty: Biomechanics and Biomaterials.
Zhu, Andy F; Rahgozar, Paymon; Chung, Kevin C
2018-05-01
Proximal interphalangeal (PIP) joint arthritis is a debilitating condition. The complexity of the joint makes management particularly challenging. Treatment of PIP arthritis requires an understanding of the biomechanics of the joint. PIP joint arthroplasty is one treatment option that has evolved over time. Advances in biomaterials have improved and expanded arthroplasty design. This article reviews biomechanics and arthroplasty design of the PIP joint. Copyright © 2018 Elsevier Inc. All rights reserved.
Biomimetic Artificial Epigenetic Code for Targeted Acetylation of Histones.
Taniguchi, Junichi; Feng, Yihong; Pandian, Ganesh N; Hashiya, Fumitaka; Hidaka, Takuya; Hashiya, Kaori; Park, Soyoung; Bando, Toshikazu; Ito, Shinji; Sugiyama, Hiroshi
2018-06-13
While the central role of locus-specific acetylation of histone proteins in eukaryotic gene expression is well established, the availability of designer tools to regulate acetylation at particular nucleosome sites remains limited. Here, we develop a unique strategy to introduce acetylation by constructing a bifunctional molecule designated Bi-PIP. Bi-PIP has a P300/CBP-selective bromodomain inhibitor (Bi) as a P300/CBP recruiter and a pyrrole-imidazole polyamide (PIP) as a sequence-selective DNA binder. Biochemical assays verified that Bi-PIPs recruit P300 to the nucleosomes having their target DNA sequences and extensively accelerate acetylation. Bi-PIPs also activated transcription of genes that have corresponding cognate DNA sequences inside living cells. Our results demonstrate that Bi-PIPs could act as a synthetic programmable histone code of acetylation, which emulates the bromodomain-mediated natural propagation system of histone acetylation to activate gene expression in a sequence-selective manner.
Yaradanakul, Alp; Feng, Siyi; Shen, Chengcheng; Lariccia, Vincenzo; Lin, Mei-Jung; Yang, Jinsong; Kang, T M; Dong, Ping; Yin, Helen L; Albanesi, Joseph P; Hilgemann, Donald W
2007-01-01
Cardiac Na+–Ca2+ exchange (NCX1) inactivates in excised membrane patches when cytoplasmic Ca2+ is removed or cytoplasmic Na+ is increased. Exogenous phosphatidylinositol-4,5-bis-phosphate (PIP2) can ablate both inactivation mechanisms, while it has no effect on inward exchange current in the absence of cytoplasmic Na+. To probe PIP2 effects in intact cells, we manipulated PIP2 metabolism by several means. First, we used cell lines with M1 (muscarinic) receptors that couple to phospholipase C's (PLCs). As expected, outward NCX1 current (i.e. Ca2+ influx) can be strongly inhibited when M1 agonists induce PIP2 depletion. However, inward currents (i.e. Ca2+ extrusion) without cytoplasmic Na+ can be increased markedly in parallel with an increase of cell capacitance (i.e. membrane area). Similar effects are incurred by cytoplasmic perfusion of GTPγS or the actin cytoskeleton disruptor latrunculin, even in the presence of non-hydrolysable ATP (AMP-PNP). Thus, G-protein signalling may increase NCX1 currents by destabilizing membrane cytoskeleton–PIP2 interactions. Second, to increase PIP2 we directly perfused PIP2 into cells. Outward NCX1 currents increase as expected. But over minutes currents decline substantially, and cell capacitance usually decreases in parallel. Third, using BHK cells with stable NCX1 expression, we increased PIP2 by transient expression of a phosphatidylinositol-4-phosphate-5-kinase (hPIP5KIβ) and a PI4-kinase (PI4KIIα). NCX1 current densities were decreased by > 80 and 40%, respectively. Fourth, we generated transgenic mice with 10-fold cardiac-specific overexpression of PI4KIIα. This wortmannin-insensitive PI4KIIα was chosen because basal cardiac phosphoinositides are nearly insensitive to wortmannin, and surface membrane PI4-kinase activity, defined functionally in excised patches, is not blocked by wortmannin. Both phosphatidylinositol-4-phosphate (PIP) and PIP2 were increased significantly, while NCX1 current densities were decreased by 78% with no loss of NCX1 expression. Most mice developed cardiac hypertrophy, and immunohistochemical analysis suggests that NCX1 is redistributed away from the outer sarcolemma. Cholera toxin uptake was increased 3-fold, suggesting that clathrin-independent endocytosis is enhanced. We conclude that direct effects of PIP2 to activate NCX1 can be strongly modulated by opposing mechanisms in intact cells that probably involve membrane cytoskeleton remodelling and membrane trafficking. PMID:17540705
Are phloem sieve tubes leaky conduits supported by numerous aquaporins?
Stanfield, Ryan C; Hacke, Uwe G; Laur, Joan
2017-05-01
Aquaporin membrane water channels have been previously identified in the phloem of angiosperms, but currently their cellular characterization is lacking, especially in tree species. Pinpointing the cellular location will help generate new hypotheses of how membrane water exchange facilitates sugar transport in plants. We studied histological sections of balsam poplar ( Populus balsamifera L.) in leaf, petiole, and stem organs. Immuno-labeling techniques were used to characterize the distribution of PIP1 and PIP2 subfamilies of aquaporins along the phloem pathway. Confocal and super resolution microscopy (3D-SIM) was used to identify the localization of aquaporins at the cellular level. Sieve tubes of the leaf lamina, petiole, and stem were labeled with antibodies directed at PIP1s and PIP2s. While PIP2s were mostly observed in the plasma membrane, PIP1s showed both an internal membrane and plasma membrane labeling pattern. The specificity and consistency of PIP2 labeling in sieve element plasma membranes points to high water exchange rates between sieve tubes and adjacent cells. The PIP1s may relocate between internal membranes and the plasma membrane to facilitate dynamic changes in membrane permeability of sieve elements in response to changing internal or environmental conditions. Aquaporin-mediated changes in membrane permeability of sieve tubes would also allow for some control of radial exchange of water between xylem and phloem. © 2017 Botanical Society of America.
Pou, Alicia; Jeanguenin, Linda; Milhiet, Thomas; Batoko, Henri; Chaumont, François; Hachez, Charles
2016-12-01
Salt stress triggers a simultaneous transcriptional repression and aquaporin internalization to modify root cell water conductivity. Plasma membrane intrinsic proteins (PIPs) are involved in the adjustment of plant water balance in response to changing environmental conditions. In this study, Arabidopsis wild-type (Col-0) and transgenic lines overexpressing PIP2;7 were used to investigate and compare their response to salt stress. Hydraulic conductivity measurements using a high-pressure flowmeter (HPFM) revealed that overexpression of PIP2;7 induced a sixfold increase in root hydraulic conductivity of four week-old Arabidopsis thaliana plants compared to WT. Exposure to a high salt stress (150 mM NaCl) triggered a rapid repression of overall aquaporin activity in both genotypes. Response to salt stress was also investigated in 8 day-old seedlings. Exposure to salt led to a repression of PIP2;7 promoter activity and a significant decrease in PIP2;7 mRNA abundance within 2 h. Concomitantly, a rapid internalization of fluorescently-tagged PIP2;7 proteins was observed but removal from the cell membrane was not accompanied by further degradation of the protein within 4 h of exposure to salinity stress. These data suggest that PIP transcriptional repression and channel internalization act in concert during salt stress conditions to modulate aquaporin activity, thereby significantly altering the plant hydraulic parameters in the short term.
Combination Anticancer Nanopreparations of Novel Proapoptotic Drug, TRAIL and siRNA
NASA Astrophysics Data System (ADS)
Riehle, Robert D.
Development of drugs for the treatment of cancer is a challenging endeavor often hindered by the solubility and distribution of the drug in the body. Drug delivery systems have been used for many years to overcome these issues. Polyethylene glycol-phosphatidylethanolamine (PEG-PE) micelles in particular have shown utility as a nanosized drug delivery vehicle capable of incorporating poorly soluble drugs and preferentially delivering them to the tumor. Addition of PEG polymers to the surface prolongs the half-life of the particle in the blood by evading clearance by the reticuloendothelial system (RES) and increases tumor accumulation through the utilization of the enhanced permeability and retention (EPR) effect. Micelles have also been shown to successfully incorporate and protect modified siRNA, a notoriously challenging therapeutic to deliver. Additionally, co-delivery of multiple therapeutics in multifunctional micelles has emerged as an important area in combination therapy research. The main goal of this project was to develop a multifunctional PEG-PE micellar delivery system capable of delivering multiple therapeutics for increased anti-tumor activity. Previous studies have indicated the utility of a DM-PIT-1, a member of a class of novel PIP3-PH inhibitors, and its potential in the treatment of cancer. The PIP3-kinase (PI3K) pathway has been shown to have serious implications in cancer. Inhibiting this pathway has been shown to sensitize the cell to apoptosis. A second generation of more potent and druggable compounds has been developed based on the structure of DM- PIT-1. However, it has been difficult to develop successful compounds inhibiting PIP3 signaling while maintaining the physicochemical properties necessary for an effective drug. Many of these compounds are limited by their poor solubility and rapid clearance in vivo. Incorporating these compounds into PEG-PE micelles allows for increased solubility, prolonged half-life and tumor accumulation. The addition of TNFa-related apoptosis-inducing ligand (TRAIL) bound to the surface of the micelle creates a combination micelle with excellent cytotoxic effects. TRAIL has been shown to be an effective apoptosis inducing ligand in a variety of in vitro and in vivo studies. TRAIL receptors are preferentially expressed on many cancer cell types as compared to healthy cells making this ligand an intriguing potential therapy. The combination of TRAIL and PIP3-PH inhibitors in a micellar delivery system has the potential to create a powerful anti-cancer therapeutic. Including modified siRNA to down regulate cancer defense mechanisms can further sensitize the cell to apoptosis. siRNA delivery has been shown to be a difficult task. Rapid metabolism and clearance in the blood hinders their ability to reach the tumor. Additionally, their large size and negative charge prevents them from crossing the cell membrane to reach their location of action. Reversibly conjugating a modified siRNA to a lipid thereby creating an siRNA-S-S-PE, allows for their incorporation into PEG-PE micelles. These mixed micelles have been shown to protect the siRNA and successfully transfect cells. This study aimed to combine the aforementioned therapeutics into a multifunctional PEG-PE based micelle delivery system. Novel proapoptotic drugs targeting the PIP3-PH binding domain have been successfully incorporated into the lipid core of the micelle. These drugs were able to effectively sensitize the cell to the effects of surface-bound TRAIL. Additionally, siRNA targeting the anti-apoptotic protein survivin was shown to be incorporated into the micelles and further sensitize the tumor to the effects of the above compounds. Lastly, conjugating transferrin (TF) to the surface of the micelle was shown increase the tumor cell targeting and cytotoxicity in vitro. Critical evaluation of this system was performed along the following specific aims: (1) characterization of PIP3-PH inhibition and cytotoxicity of proapoptotic drug DM-PIT-1 and its novel analogs in vitro with and without TRAIL; (2) preparation and characterization of TRAIL-modified micelles loaded with DM-PIT-1 or its analogs; (3) evaluation of in vitro cytotoxicity of combination formulations across a range of tumor cell types; (4) characterization of TF-modified micelles targeting potential and their effects on cytotoxicity in vitro; (5) formulation and characterization of siRNA-S-S-PE mixed micelles and evaluation of gene silencing in vitro and in vivo; (6) evaluation of combination micelles as a multifunctional delivery system utilizing in vivo mouse models of human cancer.
González-Pizarro, Patricio; García-Fernández, Javier; Canfrán, Susana; Gilsanz, Fernando
2016-02-01
Causing pneumothorax is one of the main concerns of lung recruitment maneuvers in pediatric patients, especially newborns. Therefore, these maneuvers are not performed routinely during anesthesia. Our objective was to determine the pressures that cause pneumothorax in healthy newborns by a prospective experimental study of 10 newborn piglets (<48 h old) with healthy lungs under general anesthesia. The primary outcome was peak inspiratory pressure (PIP) causing pneumothorax. Animals under anesthesia and bilateral chest tube catheterization were randomly allocated to 2 groups: one with PEEP and fixed inspiratory driving pressure of 15 cm H2O (PEEP group) and the second one with PEEP = 0 cm H2O and non-fixed inspiratory driving pressure (zero PEEP group). In both groups, the ventilation mode was pressure-controlled, and PIP was raised at 2-min intervals, with steps of 5 cm H2O until air leak was observed through the chest tubes. The PEEP group raised PIP through 5-cm H2O PEEP increments, and the zero PEEP group raised PIP through 5-cm H2O inspiratory driving pressure increments. Pneumothorax was observed with a PIP of 90.5 ± 15.7 cm H2O with no statistically significant differences between the PEEP group (92 ± 14.8 cm H2O) and the zero PEEP group (89 ± 18.2 cm H2O). The zero PEEP group had hypotension, with a PIP of 35 cm H2O; the PEEP group had hypotension, with a PIP of 60 cm H2O (P = .01). The zero PEEP group presented bradycardia, with PIP of 40 cm H2O; the PEEP group presented bradycardia, with PIP of 70 cm H2O (P = .002). Performing recruitment maneuvers in newborns without lung disease is a safe procedure in terms of pneumothorax. Pneumothorax does not seem to occur in the clinically relevant PIPs of <50 cm H2O. Hemodynamic impairment may occur with high driving pressures. More studies are needed to determine the exact hemodynamic impact of these procedures and pneumothorax PIP in poorly compliant lungs. Copyright © 2016 by Daedalus Enterprises.
2013-01-01
Background Acute lymphoblastic leukemia (ALL) is the most common cancer in children and the incidence of ALL varies by ethnicity. Although accumulating evidence indicates inherited predisposition to ALL, the genetic basis of ALL susceptibility in diverse ancestry has not been comprehensively examined. Methods We performed a multiethnic genome-wide association study in 1605 children with ALL and 6661 control subjects after adjusting for population structure, with validation in three replication series of 845 case subjects and 4316 control subjects. Association was tested by two-sided logistic regression. Results A novel ALL susceptibility locus at 10p12.31-12.2 (BMI1-PIP4K2A, rs7088318, P = 1.1×10−11) was identified in the genome-wide association study, with independent replication in European Americans, African Americans, and Hispanic Americans (P = .001, .009, and .04, respectively). Association was also validated at four known ALL susceptibility loci: ARID5B, IKZF1, CEBPE, and CDKN2A/2B. Associations at ARID5B, IKZF1, and BMI1-PIP4K2A variants were consistent across ethnicity, with multiple independent signals at IKZF1 and BMI1-PIP4K2A loci. The frequency of ARID5B and BMI1-PIP4K2A variants differed by ethnicity, in parallel with ethnic differences in ALL incidence. Suggestive evidence for modifying effects of age on genetic predisposition to ALL was also observed. ARID5B, IKZF1, CEBPE, and BMI1-PIP4K2A variants cumulatively conferred strong predisposition to ALL, with children carrying six to eight copies of risk alleles at a ninefold (95% confidence interval = 6.9 to 11.8) higher ALL risk relative to those carrying zero to one risk allele at these four single nucleotide polymorphisms. Conclusions These findings indicate strong associations between inherited genetic variation and ALL susceptibility in children and shed new light on ALL molecular etiology in diverse ancestry. PMID:23512250
Skirven, Terri M; Bachoura, Abdo; Jacoby, Sidney M; Culp, Randall W; Osterman, A Lee
2013-04-01
To determine the effect of a specific orthotic intervention and therapy protocol on proximal interphalangeal (PIP) joint contractures of greater than 40° caused by Dupuytren disease and treated with collagenase injections. All patients with PIP joints contracted at least 40° by Dupuytren disease were prospectively invited to participate in the study. Following standard collagenase injection and cord rupture by a hand surgeon, a certified hand therapist evaluated and treated each patient based on a defined treatment protocol that consisted of orthotic intervention to address residual PIP joint contracture. In addition, exercises were initiated emphasizing reverse blocking for PIP joint extension and distal interphalangeal joint flexion exercises with the PIP joint held in extension to lengthen a frequently shortened oblique retinacular ligament. Patients were assessed before injection, immediately after injection, and 1 and 4 weeks later. There were 22 fingers in 21 patients. The mean age at treatment was 63 years (range, 37-80 y). The mean baseline passive PIP joint contracture was 56° (range, 40° to 80°). At cord rupture, the mean PIP joint contracture became 22° (range, 0° to 55°). One week after cord rupture and therapy, the contracture decreased further to a mean of 12° (range, 0° to 36°). By 4 weeks, the mean contracture was 7° (range, 0° to 35°). The differences in PIP joint contracture were statistically significant at all time points except when comparing the means at 1 week and 4 weeks. The results represent an 88% improvement of the PIP joint contracture. In the short term, it appears that severe PIP joint contractures benefit from specific, postinjection orthotic intervention and targeted exercises. Therapeutic IV. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Schuurmans, Jolanda A M J; van Dongen, Joost T; Rutjens, Bas P W; Boonman, Alex; Pieterse, Corné M J; Borstlap, Adrianus C
2003-11-01
Water and nutrients required by developing seeds are mainly supplied by the phloem and have to be released from a maternal parenchyma tissue before being utilized by the filial tissues of embryo and endosperm. To identify aquaporins that could be involved in this process four full-length cDNAs were cloned and sequenced from a cDNA library of developing seed coats of pea (Pisum sativum L.). The cDNA of PsPIP1-1 appeared to be identical to that of clone 7a/TRG-31, a turgor-responsive gene cloned previously from pea roots. PsPIP1-1, PsPIP2-1, and PsTIP1-1, or their possible close homologues, were also expressed in cotyledons of developing and germinating seeds, and in roots and shoots of seedlings, but transcripts of PsNIP-1 were only detected in the seed coat. In mature dry seeds, high hybridization signals were observed with the probe for PsPIP1-1, but transcripts of PsPIP2-1, PsTIP1-1, and PsNIP-1 were not detected. Functional characterization after heterologous expression in Xenopus oocytes showed that PsPIP2-1 and PsTIP1-1 are aquaporins whereas PsNIP-1 is an aquaglyceroporin. PsNIP-1, like several other NIPs, contains a tryptophan residue corresponding with Trp-48 in GlpF (the glycerol facilitator of Escherichia coli) that borders the selectivity filter in the permeation channel. It is suggested that PsPIP1-1 and/or its possible close homologues could play a role in water absorption during seed imbibition, and that PsPIP2-1, possibly together with PsPIP1-1, could be involved in the release of phloem water from the seed coat symplast, which is intimately connected with the release of nutrients for the embryo.
Sreedharan, Shareena; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R
2015-05-01
High soil salinity constitutes a major abiotic stress and an important limiting factor in cultivation of crop plants worldwide. Here, we report the identification and characterization of a aquaporin gene, MusaPIP2;6 which is involved in salt stress signaling in banana. MusaPIP2;6 was firstly identified based on comparative analysis of stressed and non-stressed banana tissue derived EST data sets and later overexpression in transgenic banana plants was performed to study its tangible functions in banana plants. The overexpression of MusaPIP2;6 in transgenic banana plants using constitutive or inducible promoter led to higher salt tolerance as compared to equivalent untransformed control plants. Cellular localization assay performed using transiently transformed onion peel cells indicated that MusaPIP2;6 protein tagged with green fluorescent protein was translocated to the plasma membrane. MusaPIP2;6-overexpressing banana plants displayed better photosynthetic efficiency and lower membrane damage under salt stress conditions. Our results suggest that MusaPIP2;6 is involved in salt stress signaling and tolerance in banana.
Parker, J C; Ivey, C L; Tucker, A
1998-11-01
We determined whether drugs which modulate the state of protein tyrosine phosphorylation could alter the threshold for high airway pressure-induced microvascular injury in isolated perfused rat lungs. Lungs were ventilated for successive 30-min periods with peak inflation pressures (PIP) of 7, 20, 30, and 35 cmH2O followed by measurement of the capillary filtration coefficient (Kfc), a sensitive index of hydraulic conductance. In untreated control lungs, Kfc increased by 1.3- and 3.3-fold relative to baseline (7 cmH2O PIP) after ventilation with 30 and 35 cmH2O PIP. However, in lungs treated with 100 microM phenylarsine oxide (a phosphotyrosine phosphatase inhibitor), Kfc increased by 4.7- and 16.4-fold relative to baseline at these PIP values. In lungs treated with 50 microM genistein (a tyrosine kinase inhibitor), Kfc increased significantly only at 35 cmH2O PIP, and the three groups were significantly different from each other. Thus phosphotyrosine phosphatase inhibition increased the susceptibility of rat lungs to high-PIP injury, and tyrosine kinase inhibition attenuated the injury relative to the high-PIP control lungs.
Povstyan, Oleksandr V; Barrese, Vincenzo; Stott, Jennifer B; Greenwood, Iain A
2017-02-01
Kv7.4 channels are key determinants of arterial contractility and cochlear mechanosensation that, like all Kv7 channels, have an obligatory requirement for phosphatidylinositol 4,5-bisphosphate (PIP 2 ). βγ G proteins (Gβγ) have been identified as novel positive regulators of Kv7.4. The present study ascertained whether Gβγ increased Kv7.4 open probability through an increased sensitivity to PIP 2 . In HEK cells stably expressing Kv7.4, PIP 2 or Gβγ increased open probability in a concentration dependent manner. Depleting PIP 2 prevented any Gβγ-mediated stimulation whilst an array of Gβγ inhibitors prohibited any PIP 2 -induced current enhancement. A combination of PIP 2 and Gβγ at sub-efficacious concentrations increased channel open probability considerably. The stimulatory effects of three Kv7.2-7.5 channel activators were also lost by PIP 2 depletion or Gβγ inhibitors. This study alters substantially our understanding of the fundamental processes that dictate Kv7.4 activity, revealing a more complex and subtle paradigm where the reliance on local phosphoinositide is dictated by interaction with Gβγ.
NASA Astrophysics Data System (ADS)
Steelman, Zachary A.; Tolstykh, Gleb P.; Estlack, Larry E.; Roth, Caleb C.; Ibey, Bennett L.
2015-03-01
Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.
Cooper, Janine A; Moriarty, Frank; Ryan, Cristín; Smith, Susan M; Bennett, Kathleen; Fahey, Tom; Wallace, Emma; Cahir, Caitriona; Williams, David; Teeling, Mary; Hughes, Carmel M
2016-05-01
The purpose of this study is to establish the prevalence of potentially inappropriate prescribing (PIP) in middle-aged adults (45-64 years) in two populations with differing socio-economic profiles, and to investigate factors associated with PIP, using the PROMPT (PRescribing Optimally in Middle-aged People's Treatments) criteria. A retrospective cross-sectional study was conducted using 2012 data from the Enhanced Prescribing Database (EPD), covering the full population in Northern Ireland and the Health Services Executive Primary Care Reimbursement Service (HSE-PCRS) database, covering the most socio-economically deprived third of the population in this age group in the Republic of Ireland. The prevalence for each PROMPT criterion and overall prevalence of PIP were calculated. Logistic regression was used to investigate the association between PIP and gender, age group and polypharmacy. This study included 441,925 patients from the EPD and 309,748 patients from the HSE-PCRS database. Polypharmacy was common in both datasets (46.7 % in the HSE-PCRS and 20.3 % in the EPD). The prevalence of PIP was 42.9 % (95%CI 42.7, 43.1) in the HSE-PCRS and 21.1 % (95%CI 21.0, 21.2) in the EPD. Age group, female gender and polypharmacy were significantly associated with PIP in both populations (p < 0.05) and polypharmacy had the strongest association. PIP is common amongst middle-aged people with the risk of PIP increasing with polypharmacy. Differences in the prevalence of polypharmacy and PIP between the two populations may relate to heterogeneity in healthcare services and different socio-economic profiles, with higher rates of multimorbidity and associated polypharmacy in more deprived groups.
Cell signalling and phospholipid metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, W.F.
1989-01-01
Our research for the past two years has involved the study of phosphoinositides and their potential role in regulating plant growth and development. Our initial goal was to document the sequence of events involved in inositol phospholipid metabolism in response to external stimuli. Our working hypothesis was that phosphatidylinositol bisphosphate (PIP/sub 2/) was in the plasma membrane of plants cells and would be hydrolyzed by phospholipase C to yield the second messengers inositol triphosphate (IP/sub 3/) and diacyglycerol (DAG) and that IP/sub 3/ would mobilize intracellular calcium as has been shown for animal cells. Our results with both carrot suspensionmore » culture cells and sunflower hypocotyl indicate that this paradigm is not the primary mechanism of signal transduction in these systems. We have observed very rapid, within 5 sec, stimulation of phosphatidylinositol monophosphate (PIP) kinase which resulted in an increase in PIP/sub 2/. However, there was no evidence for activation of phospholipase C. In addition, we have shown that PIP and PIP/sub 2/ can activate the plasma membrane ATPase. The results of these studies are described briefly in the paragraphs below. Inositol phospholipids are localized in distinct membrane fractions. If PIP and PIP/sub 2/ play a role in the transduction of external signals, they should be present in the plasma membrane. We used the fusogenic carrot suspension culture cells as a model system to study the distribution of inositol phospholipids in various membrane fractions and organelles. Cells were labeled 12 to 18 h with myo(2-/sup 3/H) inositol and the membranes were isolated by aqueous two-phase partitioning. The plasma membrane was enriched in PIP and PIP/sub 2/ compared to the intracellular membranes.« less
Chest wall restriction limits high airway pressure-induced lung injury in young rabbits.
Hernandez, L A; Peevy, K J; Moise, A A; Parker, J C
1989-05-01
High peak inspiratory pressures (PIP) during mechanical ventilation can induce lung injury. In the present study we compare the respective roles of high tidal volume with high PIP in intact immature rabbits to determine whether the increase in capillary permeability is the result of overdistension of the lung or direct pressure effects. New Zealand White rabbits were assigned to one of three protocols, which produced different degrees of inspiratory volume limitation: intact closed-chest animals (CC), closed-chest animals with a full-body plaster cast (C), and isolated excised lungs (IL). The intact animals were ventilated at 15, 30, or 45 cmH2O PIP for 1 h, and the lungs of the CC and C groups were placed in an isolated lung perfusion system. Microvascular permeability was evaluated using the capillary filtration coefficient (Kfc). Base-line Kfc for isolated lungs before ventilation was 0.33 +/- 0.31 ml.min-1.cmH2O-1.100g-1 and was not different from the Kfc in the CC group ventilated with 15 cmH2O PIP. Kfc increased by 850% after ventilation with only 15 cmH2O PIP in the unrestricted IL group, and in the CC group Kfc increased by 31% after 30 cmH2O PIP and 430% after 45 cmH2O PIP. Inspiratory volume limitation by the plaster cast in the C group prevented any significant increase in Kfc at the PIP values used. These data indicate that volume distension of the lung rather than high PIP per se produces microvascular damage in the immature rabbit lung.
Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity1[OPEN
Kim, Denis; Schreiber, Stefan; Zeier, Tatyana; Schuck, Stefan; Reichel-Deland, Vanessa
2017-01-01
The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (Arabidopsis thaliana), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since ald1 mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/μ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional SARD4 is required for proper basal immunity to the bacterial pathogen Pseudomonas syringae. Although SARD4 knockout plants show greatly reduced accumulation of Pip in leaves distal to P. syringae inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction. PMID:28330936
Pyrogallol-imprinted polymers with methyl methacrylate via precipitation polymerization
NASA Astrophysics Data System (ADS)
Mehamod, Faizatul Shimal; Othman, Nor Amira; Bulat, Ku Halim Ku; Suah, Faiz Bukhari Mohd
2018-06-01
Molecular simulation techniques are important to study the understanding of chemical and physical properties of any material. Computational modeling is considered as time reducer in finding the best recipes for Molecularly-Imprinted Polymers (MIPs). In this study, Pyrogallol-imprinted polymers (PIP) and non-imprinted polymers (NIPs) were synthesized via precipitation polymerization using Pyrogallol (Py), methyl methacrylate (MMA), divinylbenzene (DVB) as template, functional monomer and cross-linker, respectively. The recipe was according to the results from computational techniques. The synthesized PIP and NIPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and UV-visible spectroscopy (UV-vis). Studies on adsorption isotherm showed that PIP and NIPs follow Scatchard isotherm models. Sorption kinetic study found that PIP and NIPs follow pseudo-second order which indicates the rate-limiting step is the surface adsorption. The imprinting factor of PIP was determined by selectivity study and showed the value of k >1, which proved that PIP was selective toward Pyrogallol compared to NIP.
Allosteric substrate switching in a voltage-sensing lipid phosphatase.
Grimm, Sasha S; Isacoff, Ehud Y
2016-04-01
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.
Allosteric substrate switching in a voltage sensing lipid phosphatase
Grimm, Sasha S.; Isacoff, Ehud Y.
2016-01-01
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis. PMID:26878552
Maheshwari, Rajesh; Tracy, Mark; Hinder, Murray; Wright, Audrey
2017-08-01
The aim of this study was to compare mask leak with three different peak inspiratory pressure (PIP) settings during T-piece resuscitator (TPR; Neopuff) mask ventilation on a neonatal manikin model. Participants were neonatal unit staff members. They were instructed to provide mask ventilation with a TPR with three PIP settings (20, 30, 40 cm H 2 O) chosen in a random order. Each episode was for 2 min with 2-min rest period. Flow rate and positive end-expiratory pressure (PEEP) were kept constant. Airway pressure, inspiratory and expiratory tidal volumes, mask leak, respiratory rate and inspiratory time were recorded. Repeated measures analysis of variance was used for statistical analysis. A total of 12 749 inflations delivered by 40 participants were analysed. There were no statistically significant differences (P > 0.05) in the mask leak with the three PIP settings. No statistically significant differences were seen in respiratory rate and inspiratory time with the three PIP settings. There was a significant rise in PEEP as the PIP increased. Failure to achieve the desired PIP was observed especially at the higher settings. In a neonatal manikin model, the mask leak does not vary as a function of the PIP when the flow rate is constant. With a fixed rate and inspiratory time, there seems to be a rise in PEEP with increasing PIP. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Jürgen
2013-01-01
Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance. PMID:24025239
78 FR 69849 - Issuance of an Experimental Use Permit
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-21
... activities, e.g., collection of field data, harvesting, processing of corn plant incorporated protectants (PIPs) seeds containing active ingredients, corn PIPs with MON 87410 and MON 87411. The PIPs contain a..., Tennessee, and Wisconsin. Approximately 3,392,742 pounds (lb) of seed containing 48.41 lb (21,958 grams) of...
PIP2: choreographer of actin-adaptor proteins in the HIV-1 dance
Rocha-Perugini, Vera; Gordon-Alonso, Mónica; Sánchez-Madrid, Francisco
2014-01-01
The actin cytoskeleton plays a key role during the replication cycle of human immunodeficiency virus-1 (HIV-1). HIV-1 infection is affected by cellular proteins that influence the clustering of viral receptors or the subcortical actin cytoskeleton. Several of these actin-adaptor proteins are controlled by the second messenger phosphatidylinositol 4,5-biphosphate (PIP2), an important regulator of actin organization. PIP2 production is induced by HIV-1 attachment and facilitates viral infection. However, the importance of PIP2 in regulating cytoskeletal proteins and thus HIV-1 infection has been overlooked. This review examines recent reports describing the roles played by actin-adaptor proteins during HIV-1 infection of CD4+ T cells, highlighting the influence of the signaling lipid PIP2 in this process. PMID:24768560
Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics.
Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Brad G; Satyanarayana-Jois, Seetharama; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Siveen, Kodappully Sivaraman; Sikka, Sakshi; Kumar, Alan Prem; Sethi, Gautam; Lim, Lina Hsiu Kim
2015-04-01
Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000-3.125 μg/ml) effects evident on human cells in vitro. Copyright © 2015. Published by Elsevier B.V.
Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells
Falkenburger, Björn H.; Jensen, Jill B.
2010-01-01
G protein–coupled receptors (GPCRs) mediate responses to external stimuli in various cell types. Early events, such as the binding of ligand and G proteins to the receptor, nucleotide exchange (NX), and GTPase activity at the Gα subunit, are common for many different GPCRs. For Gq-coupled M1 muscarinic (acetylcholine) receptors (M1Rs), we recently measured time courses of intermediate steps in the signaling cascade using Förster resonance energy transfer (FRET). The expression of FRET probes changes the density of signaling molecules. To provide a full quantitative description of M1R signaling that includes a simulation of kinetics in native (tsA201) cells, we now determine the density of FRET probes and construct a kinetic model of M1R signaling through Gq to activation of phospholipase C (PLC). Downstream effects on the trace membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2-dependent KCNQ2/3 current are considered in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910345). By calibrating their fluorescence intensity, we found that we selected transfected cells for our experiments with ∼3,000 fluorescently labeled receptors, G proteins, or PLC molecules per µm2 of plasma membrane. Endogenous levels are much lower, 1–40 per µm2. Our kinetic model reproduces the time courses and concentration–response relationships measured by FRET and explains observed delays. It predicts affinities and rate constants that align well with literature values. In native tsA201 cells, much of the delay between ligand binding and PLC activation reflects slow binding of G proteins to receptors. With M1R and Gβ FRET probes overexpressed, 10% of receptors have G proteins bound at rest, rising to 73% in the presence of agonist. In agreement with previous work, the model suggests that binding of PLC to Gαq greatly speeds up NX and GTPase activity, and that PLC is maintained in the active state by cycles of rapid GTP hydrolysis and NX on Gαq subunits bound to PLC. PMID:20100890
Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy.
Li, Ke; Qiu, Ling; Liu, Qingzhu; Lv, Gaochao; Zhao, Xueyu; Wang, Shanshan; Lin, Jianguo
2017-09-01
In order to improve the efficacy of photodynamic therapy (PDT), biotin was axially conjugated with silicon(IV) phthalocyanine (SiPc) skeleton to develop a new tumor-targeting photosensitizer SiPc-biotin. The target compound SiPc-biotin showed much higher binding affinity toward BR-positive (biotin receptor overexpressed) HeLa human cervical carcinoma cells than its precursor SiPc-pip. However, when the biotin receptors of HeLa cells were blocked by free biotin, >50% uptake of SiPc-biotin was suppressed, demonstrating that SiPc-biotin could selectively accumulate in BR-positive cancer cells via the BR-mediated internalization. The confocal fluorescence images further confirmed the target binding ability of SiPc-biotin. As a consequence of specificity of SiPc-biotin toward BR-positive HeLa cells, the photodynamic effect was also largely dependent on the BR expression level of HeLa cells. The photodynamic activities of SiPc-biotin against HeLa cells were dramatically reduced when the biotin receptors were blocked by the free biotin (IC 50 : 0.18μM vs. 0.46μM). It is concluded that SiPc-biotin can selectively damage BR-positive cancer cells under irradiation. Furthermore, the dark toxicity of SiPc-biotin toward human normal liver cell lines LO2 was much lower than that of its precursor SiPc-pip. The targeting photodynamic activity and low dark toxicity suggest that SiPc-biotin is a promising photosensitizer for tumor-targeting photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Teasdale, Ashley; Limbers, Christine
2018-01-01
Fathers may experience greater parenting stress and anxiety when they are more involved in their child's type 1 diabetes (T1D) care. The present study evaluated whether seeking social support and avoidant coping strategies moderate the relationship between paternal involvement in the child's T1D care and parenting stress in an international sample. Two hundred forty-nine fathers of young children with T1D completed the Parenting Stress Index (PSI), Pediatric Inventory for Parents (PIP), Dads' Active Disease Support scale (DADS), COPE Inventory, Self-Care Inventory (SCI-R), and a demographic questionnaire online. Pearson's product moment correlations were computed, and multiple linear regression analysis was conducted with three separate models in which the PSI Child Domain, PIP Frequency, and PIP Difficulty scores represented different parenting stress outcomes. The interaction between use of denial coping and DADS Involvement was significantly correlated with general parenting stress ( p < .05). There were no significant interactions between instrumental social support and DADS Involvement; however, use of instrumental social support coping was significantly correlated with difficulty of pediatric parenting stress ( p < .05), DADS Involvement ( p < .001), and SCI-R better adherence to the child diabetes treatment regimen ( p < .001). Avoidant coping strategies are associated with more general parenting stress, especially when fathers are more involved in T1D management.
Yorio, T; DeLoach, G; Satumtira, N
1985-01-01
The effects of antiglaucoma drugs on [32P]-orthophosphate incorporation into phospholipids of iris and ciliary process were investigated. Both iris and ciliary process rapidly incorporated 32Pi into the major phospholipids, with the acidic phosphoinositides demonstrating a greater labelling than phosphatidylcholine, indicating a greater turnover. The muscarinic agonists, carbachol and pilocarpine, stimulated 32Pi-labelling of phosphatidylinositol (PI) and phosphatidic acid (PA) in both iris and ciliary process. These effects were blocked by atropine, suggesting that the response was mediated through muscarinic receptors. The beta blocking ocular hypotensive drugs, propranolol, timolol and atenolol, produced varying effects on 32P incorporation into phospholipids of iris and ciliary process. Propranolol stimulated 32Pi-labelling into phosphatidylinositol 4', 5' bisphosphate (PIP2), phosphatidylinositol 4' phosphate (PIP), PI and PA. Timolol decreased 32Pi-incorporation into PIP2 and PI, whereas atenolol, a selective beta 1 antagonist, had no significant effect on 32Pi-labelling of phospholipids. The above findings on propranolol agree with previous observations which demonstrated that propranolol redirects glycerolipid metabolism through multiple effects on the enzymes in phospholipid biosynthesis, particularly in stimulating phosphatidylinositol kinases. The results with timolol suggest that this drug may decrease phosphoinositide hydrolysis. The effects of these ocular hypotensive, non-selective beta blocking drugs on phospholipid turnover may ultimately limit the accumulation of breakdown products which could serve as cellular messengers.
Subbiya, Arunajatesan; Cherkas, Pavel S.; Vivekanandhan, Paramasivam; Geethapriya, Nagarajan; Malarvizhi, Dhakshinamoorthy; Mitthra, Suresh
2017-01-01
Background: Endodontic instrumentation is liable to cause some postinstrumentation pain (PIP). Rotary endodontic instruments differ in their design, metallurgy, surface treatment, etc. Aim: This randomized clinical trial aimed to assess the incidence of PIP after root canal instrumentation with three different rotary endodontic systems which differ in their design, namely, ProTaper, Mtwo, and K3. Materials and Methods: A total of 150 patients between the ages of 25 and 50 were chosen for the study. Teeth with asymptomatic irreversible pulpitis due to carious exposure were selected. The patients received local anesthesia by inferior alveolar nerve block. After preparing the access cavity, root canal instrumentation was done with one of the three instruments (n = 50) and closed dressing was given. PIP was assessed every 12 h for 5 days, and tenderness to percussion was analyzed at the end of 1, 3, and 7 days. Statistical Analysis: Mann–Whitney U-test to determine significant differences at P < 0.01. Results: The PIP and tenderness were less in Mtwo group when compared to ProTaper and K3 groups up to 84 h and 72 h respectively and statistically significant (P < 0.05). There was no statistically significant difference between ProTaper and K3 both in PIP and tenderness. Conclusion: Rotary endodontic instrumentation causes some degree of PIP and tenderness to percussion. Among the instruments used, Mtwo causes less PIP and tenderness when compared to ProTaper and K3, and there was no difference between ProTaper and K3. Clinical Relevance: PIP is highly subjective and may vary among different subjects. The apical (3 mm) taper of ProTaper was 0.08 followed by a smaller taper, whereas, the other two files were of a constant 0.06 taper, which means there could have been a greater apical extrusion and therefore more PIP. Despite, the mean of the age was similar, there could have been a difference in the size of the canal and therefore a difference in apical extrusion and PIP. PMID:29430103
Doody, Hannah K; Peterson, Gregory M; Watson, Danielle; Castelino, Ronald L
2015-03-01
Patients with chronic kidney disease require appropriate adjustment of nephrotoxic and renally cleared medications to ensure safe and effective pharmacotherapy. It is currently unclear how often appropriate medication selection and dosage adjustment occurs in practice. Therefore, this study aimed to evaluate the extent of potentially inappropriate prescribing (PIP) (the use of a contraindicated medication or inappropriately high dose according to the renal function) in patients with renal impairment from admission through to discharge from the Royal Hobart Hospital (RHH), Tasmania, Australia; to evaluate the medications most commonly implicated in PIP; and the factors associated with PIP in renal impairment. Medical records of 251 patients consecutively admitted to the RHH aged 40 years and above, with a creatinine clearance of ≤60 mL/min, and hypertension and/or diabetes mellitus in their medical history, were reviewed. PIP was assessed using the Australian Medicines Handbook and/or product information. Of the 251 patients, 81 (32.3%) were receiving a total of 116 potentially inappropriate medications (PIMs) at the time of admission. The number of patients receiving PIMs (81 vs. 44, p<0.001 chi-square test) as well as the total number of PIMs (116 vs. 63, p<0.001 Wilcoxon signed rank test) were significantly decreased at discharge. Metformin was the most common PIM at admission. However, PIP of metformin was reduced by approximately 50% by discharge. Logistic regression analysis revealed two significant independent risk factors for PIP: a higher number of medications at admission increased risk of PIP (OR 1.1, 95% CI 1.02-1.18, p=0.010), and higher initial estimated glomerular filtration rate (eGFR) decreased the risk of PIP (OR 0.9, 95% CI 0.96-0.99, p=0.011). Despite the limitations of lack of body weight documentation and lack of clear guidelines for dosage adjustment based on the eGFR, PIP in patients with renal impairment is common and admission to the hospital was associated with a significant reduction in PIP. More recognition of chronic kidney disease in the community and strategies to alert clinicians of the need for dosage adjustment in renal impairment are warranted.
Martinez-Ballesta, Maria del Carmen; Bastías, Elizabeth; Zhu, Chuanfeng; Schäffner, Anton R; González-Moro, Begoña; González-Murua, Carmen; Carvajal, Micaela
2008-04-01
Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole-plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L(0)), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron- and salt-tolerant Zea mays L. cv. amylacea, was evaluated. A downregulation of root ZmPIP1 and ZmPIP2 aquaporin contents were observed in NaCl-treated plants in agreement with the L(0) measurements. However, in the H3BO3-treated plants differences in the ZmPIP1 and ZmPIP2 abundance were observed. The ATPase activity was related directly to the amount of ATPase protein and Na+ concentration in the roots, for which an increase in NaCl- and H3BO3+ NaCl-treated plants was observed with respect to untreated and H3BO3-treated plants. Although nutrient imbalance may result from the effect of salinity or H3BO3 alone, an ameliorative effect was observed when both treatments were applied together. In conclusion, our results suggest that under salt stress, the activity of specific membrane components can be influenced directly by boric acid, regulating the functions of certain aquaporin isoforms and ATPase as possible components of the salinity tolerance mechanism.
Teaching residents about practice-based learning and improvement.
Morrison, Laura J; Headrick, Linda A
2008-08-01
The Accreditation Council for Graduate Medical Education has endorsed practice-based learning and improvement (PBLI) as a core competency for residents. Health professions educators have sought since the early 1990s to incorporate quality improvement principles, methods, and skills into training programs. A literature review indicates that questions remain regarding how to best train physicians to lead the improvement of patient care. The efficacy of two PBLI educational interventions was examined by comparing the performance of participating residents with that of controls. Personal improvement projects (PIPs) and a workshop were implemented to teach PBLI to internal medicine residents. Residents in an ambulatory block rotation were required to complete a PIP. All residents were invited to attend the workshop. Those participating in neither served as controls. An instrument was used to assess applied improvement knowledge for PIP participants at project completion and all residents six to eight months later. Analysis of variance showed no difference between the performance of PIP participants at project completion and PIP participants and controls six to eight months later. A second analysis compared six- to eight-month follow-up data for residents doing PIP only, workshop only, both PIP and workshop, and controls. No significant differences were detected among groups. Interrater reliability for the tool was good. No difference was found between intervention residents and controls in the assessment of their ability to apply improvement knowledge. This suggests that workshops and PIPs alone will not lead to competence in PBLI. Building this competency likely will require more emphasis on experiential learning and resident participation in health care improvement projects.
Hedger, George; Shorthouse, David; Koldsø, Heidi; Sansom, Mark S P
2016-08-25
Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. -40 to -4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins.
2016-01-01
Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. −40 to −4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins. PMID:27109430
This notice clarifies how EPA ensures the safety of residues of PIPs possibly present in food or feed and when a tolerance or tolerance exemption would be required for field tests for biotechnology-derived food and feed crop plants containing PIPs.
PIP₂ modulation of Slick and Slack K⁺ channels.
de los Angeles Tejada, Maria; Jensen, Lars Jørn; Klaerke, Dan A
2012-07-27
Slick and Slack are members of the Slo family of high-conductance potassium channels. These channels are activated by Na(+) and Cl(-) and are highly expressed in the CNS, where they are believed to contribute to the resting membrane potential of neurons and the control of excitability. Herein, we provide evidence that Slick and Slack channels are regulated by the phosphoinositide PIP(2). Two stereoisomers of PIP(2) were able to exogenously activate Slick and Slack channels expressed in Xenopus oocytes, and in addition, it is shown that Slick and Slack channels are modulated by endogenous PIP(2). The activating effect of PIP(2) appears to occur by direct interaction with lysine 306 in Slick and lysine 339 in Slack, located at the proximal C-termini of both channels. Overall, our data suggest that PIP(2) is an important regulator of Slick and Slack channels, yet it is not involved in the recently described cell volume sensitivity of Slick channels, since mutated PIP(2)-insensitive Slick channels retained their sensitivity to cell volume. Copyright © 2012 Elsevier Inc. All rights reserved.
Berk, B C; Corson, M A; Peterson, T E; Tseng, H
1995-12-01
Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.
Nam, Joo Hyun; Lee, Hoo-Se; Nguyen, Yen Hoang; Kang, Tong Mook; Lee, Sung Won; Kim, Hye-Young; Kim, Sang Jeong; Earm, Yung E; Kim, Sung Joon
2007-08-01
In various types of cells mechanical stimulation of the plasma membrane activates phospholipase C (PLC). However, the regulation of ion channels via mechanosensitive degradation of phosphatidylinositol 4,5-bisphosphate (PIP(2)) is not known yet. The mouse B cells express large conductance background K(+) channels (LK(bg)) that are inhibited by PIP(2). In inside-out patch clamp studies, the application of MgATP (1 mm) also inhibited LK(bg) due to the generation of PIP(2) by phosphoinositide (PI)-kinases. In the presence of MgATP, membrane stretch induced by negative pipette pressure activated LK(bg), which was antagonized by PIP(2) (> 1 microm) or higher concentration of MgATP (5 mm). The inhibition by PIP(2) was partially reversible. However, the application of methyl-beta-cyclodextrin, a cholesterol scavenger disrupting lipid rafts, induced the full recovery of LK(bg) activity and facilitated the activation by stretch. In cell-attached patches, LK(bg) were activated by hypotonic swelling of B cells as well as by negative pressure. The mechano-activation of LK(bg) was blocked by U73122, a PLC inhibitor. Neither actin depolymerization nor the inhibition of lipid phosphatase blocked the mechanical effects. Direct stimulation of PLC by m-3M3FBS or by cross-linking IgM-type B cell receptors activated LK(bg). Western blot analysis and confocal microscopy showed that the hypotonic swelling of WEHI-231 induces tyrosine phosphorylation of PLCgamma2 and PIP(2) hydrolysis of plasma membrane. The time dependence of PIP(2) hydrolysis and LK(bg) activation were similar. The presence of LK(bg) and their stretch sensitivity were also proven in fresh isolated mice splenic B cells. From the above results, we propose a novel mechanism of stretch-dependent ion channel activation, namely, that the degradation of PIP(2) caused by stretch-activated PLC releases LK(bg) from the tonic inhibition by PIP(2).
Li, Chenrui; Wang, Zhijun; Wang, Qian; Ka Yan Ho, Rebecca Lucinda; Huang, Ying; Chow, Moses S.S.; Kei Lam, Christopher Wai; Zuo, Zhong
2018-01-01
Docetaxel (DTX) is widely used for metastatic castrated resistant prostate cancer, but its efficacy is often compromised by drug resistance associated with low intracellular concentrations. Piperine (PIP) could enhance the bioavailability of other drugs via the inhibition of CYPs and P-gp activities. Thus, we hypothesize a positive effect with the DTX-PIP combination on the anti-tumor efficacy and intra-tumor DTX concentrations in taxane-resistant prostate cancer. ICR-NOD/SCID mice implanted with taxane-resistant human prostate cancer cells were administrated with saline as well as PIP and DTX separately or in combination. The tumor growth was monitored together with intra-tumor concentrations of DTX. The inhibitory effects on CYPs and P-gp were further assessed in mouse liver microsome and MDCK-MDR1 cells. Compared with DTX alone, DTX-PIP combination significantly inhibited the tumor growth (114% vs. 217%, p = 0.002) with corresponding significantly higher intra-tumor DTX concentrations (5.854 ± 5.510 ng/ml vs. 1.312 ± 0.754 ng/mg, p = 0.037). The percentage of DTX metabolism was significantly decreased from 28.94 ± 1.06% to 18.14 ± 2.22% in mouse liver microsome after administration of PIP for two weeks. DTX accumulation in MDCK-MDR1 cell was significantly enhanced in the presence of PIP. Further microarray analysis revealed that PIP inhibited P-gp as well as CYP1B1 gene expression and induced a significant gene expression change relating to inflammatory response, angiogenesis, cell proliferation, or cell migration. In conclusion, DTX-PIP combination significantly induces activity against taxane-resistant prostate tumor. Such effect appeared to be attributed to the inhibitory effect of PIP on CYPs and P-gp activity as well as gene expression changes relating to tumorigenesis and cellular responses. PMID:29423050
Atyame, Célestine M.; Pasteur, Nicole; Dumas, Emilie; Tortosa, Pablo; Tantely, Michaël Luciano; Pocquet, Nicolas; Licciardi, Séverine; Bheecarry, Ambicadutt; Zumbo, Betty; Weill, Mylène; Duron, Olivier
2011-01-01
The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p. quinquefasciatus populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic crash when LR[wPip(Is)] males were introduced into La Réunion laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control strategy on these islands. PMID:22206033
Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi
2016-11-01
Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.
AKAP150 mediates TRPV1 sensitivity to phosphatidylinositol-4, 5-bisphosphate
Jeske, Nathaniel A.; Por, Elaine D.; Belugin, Sergei; Chaudhury, Sraboni; Berg, Kelly A.; Akopian, Armen N.; Henry, Michael A.; Gomez, Ruben
2011-01-01
A-kinase anchoring protein 150 (AKAP150) is a scaffolding protein that controls protein kinase A- and C-mediated phosphorylation of the transient receptor potential family V type 1 (TRPV1), dictating receptor response to nociceptive stimuli. The phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) anchors AKAP150 to the plasma membrane in naïve conditions, and also affects TRPV1 activity. In the present study, we sought to determine whether the effects of PIP2 on TRPV1 are mediated through AKAP150. In trigeminal neurons and CHO cells, the manipulation of cellular PIP2 led to significant changes in the association of AKAP150 and TRPV1. Following PIP2 degradation, increased TRPV1:AKAP150 co-immunoprecipitation was observed, resulting in increased receptor response to capsaicin treatment. Phospholipase C activation in neurons isolated from AKAP150−/− animals indicated that PIP2 -mediated inhibition of TRPV1 in the whole cell environment requires expression of the scaffolding protein. Furthermore, the addition of PIP2 to neurons isolated from AKAP150 wild-type mice reduced PKA-sensitization of TRPV1 compared to isolated neurons from AKAP150−/− mice. These findings suggest that PIP2 degradation increases AKAP150 association with TRPV1 in the whole cell environment, leading to sensitization of the receptor to nociceptive stimuli. PMID:21653872
Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen
2012-12-01
Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid-induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR.
Inositol phosphate pathway controls transcription of telomeric expression sites in trypanosomes
Cestari, Igor; Stuart, Ken
2015-01-01
African trypanosomes evade clearance by host antibodies by periodically changing their variant surface glycoprotein (VSG) coat. They transcribe only one VSG gene at a time from 1 of about 20 telomeric expression sites (ESs). They undergo antigenic variation by switching transcription between telomeric ESs or by recombination of the VSG gene expressed. We show that the inositol phosphate (IP) pathway controls transcription of telomeric ESs and VSG antigenic switching in Trypanosoma brucei. Conditional knockdown of phosphatidylinositol 5-kinase (TbPIP5K) or phosphatidylinositol 5-phosphatase (TbPIP5Pase) or overexpression of phospholipase C (TbPLC) derepresses numerous silent ESs in T. brucei bloodstream forms. The derepression is specific to telomeric ESs, and it coincides with an increase in the number of colocalizing telomeric and RNA polymerase I foci in the nucleus. Monoallelic VSG transcription resumes after reexpression of TbPIP5K; however, most of the resultant cells switched the VSG gene expressed. TbPIP5K, TbPLC, their substrates, and products localize to the plasma membrane, whereas TbPIP5Pase localizes to the nucleus proximal to telomeres. TbPIP5Pase associates with repressor/activator protein 1 (TbRAP1), and their telomeric silencing function is altered by TbPIP5K knockdown. These results show that specific steps in the IP pathway control ES transcription and antigenic switching in T. brucei by epigenetic regulation of telomere silencing. PMID:25964327
Jeske, Nathaniel A; Por, Elaine D; Belugin, Sergei; Chaudhury, Sraboni; Berg, Kelly A; Akopian, Armen N; Henry, Michael A; Gomez, Ruben
2011-06-08
A-kinase anchoring protein 150 (AKAP150) is a scaffolding protein that controls protein kinase A- and C-mediated phosphorylation of the transient receptor potential family V type 1 (TRPV1), dictating receptor response to nociceptive stimuli. The phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)) anchors AKAP150 to the plasma membrane in naive conditions and also affects TRPV1 activity. In the present study, we sought to determine whether the effects of PIP(2) on TRPV1 are mediated through AKAP150. In trigeminal neurons and CHO cells, the manipulation of cellular PIP(2) led to significant changes in the association of AKAP150 and TRPV1. Following PIP(2) degradation, increased TRPV1:AKAP150 coimmunoprecipitation was observed, resulting in increased receptor response to capsaicin treatment. Phospholipase C activation in neurons isolated from AKAP150(-/-) animals indicated that PIP(2)-mediated inhibition of TRPV1 in the whole-cell environment requires expression of the scaffolding protein. Furthermore, the addition of PIP(2) to neurons isolated from AKAP150 wild-type mice reduced PKA sensitization of TRPV1 compared with isolated neurons from AKAP150(-/-) mice. These findings suggest that PIP(2) degradation increases AKAP150 association with TRPV1 in the whole-cell environment, leading to sensitization of the receptor to nociceptive stimuli.
Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen
2012-01-01
Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid–induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR. PMID:23221596
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
..., offering detailed data from, and analysis of, the PIP Pilot Program. Specifically, the Exchange believes... further analysis of the PIP Pilot Program and a determination of how the PIP Pilot Program shall be structured in the future. 2. Statutory Basis The Exchange believes that the proposal is consistent with the...
Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes
Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S.; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G.
2011-01-01
Background SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. Conclusion/Significance The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications. PMID:21339815
Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.
Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G
2011-02-14
SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.
Li, Qiu-Ping; Dai, Jun-Dong; Zhai, Wen-Wen; Jiang, Qiao-Li
2014-10-01
The objective of the study was to prepare and evaluate the quality of curcumin-piperinedual drug loaded self-microemulsifying drug delivery system(Cur-PIP-SMEDDS). Simplex lattice design was constructed using optimal oil phase, surfactant and co-surfactant concentration as independent variables, and the curcumin and piperine were used as model drugs to optimize Cur-PIP-SMEDDS formulation. In the present study, the drug loadings of curcumin and piperine, mean particle size of Cur-PIP-SMEDDS were made as indicators, and the experiment design, model building and response surface analysis were established using Design Expert 8. 06 software to optimize and verify the composition of SMEDDS formulation. The quality of Cur-PIP-SMEDDS was evaluated by observing the appearance status, transmission electron microscope micrographs and determining particle diameter, electric potential, drug entrapment efficiency and drug loading of it. As a result, the optimal formulation of SMEDDS was CapryoL 90-Cremophor RH40-TranscutoL HP (10:60:30). The appearance of Cur-PIP-SMEDDS remained clarified and transparent, and the microemulsion droplets appeared spherical without aggregation with uniform particle size distribution. The mean size of microemulsion droplet formed from Cur-PIP-SMEDDS was 15.33 nm, the drug loading of SMEDDS for Cur and PIP were 40.90 mg · g(-1) and 0.97 mg · g(-1), respectively, the drug entrapment efficiency were 94.98% and 90.96%, respectively. The results show that Cur-PIP-SMEDDS can increase the solubility and stability of curcumin significantly, in the expectation of enhancing the bioavailability of it. Taken together, these findings can provide the reference to a preferable choice of the Cur formulation and contribute to therapeutic application in clinical research.
Al Shahrani, Mohammed; DiVito, Enrico; Hughes, Christopher V; Nathanson, Dan; Huang, George T-J
2014-05-01
The purpose of this study was to determine the effectiveness of laser-activated irrigation by photon-induced photoacoustic streaming (PIPS) using Er:YAG laser energy in decontaminating heavily colonized root canal systems in vitro. Extracted single-rooted human teeth (n=60) were mechanically and chemically prepared, sterilized, inoculated with Enterococcus faecalis for 3 weeks, and randomly assigned to four groups (n=15): Group I (control, no decontamination), Group II (PIPS+6% NaOCl), Group III (PIPS+saline), and Group IV (6% NaOCl). PIPS settings were all preset to 50 μsec pulse, 20 mJ, 15 Hz, for an average power of 0.3 W. After decontamination, the remaining live microbes from all specimens were collected and recovered via plate counting of the colony-forming units (CFUs). Randomized root canal surfaces were examined with scanning electron microscopy and confocal laser microscopy. Mean variance and Dunnett's t test (post-hoc test) comparisons were used to compare mean scores for the three groups with the control group. The CFU analysis showed the following measurements (mean±SE): Group I (control), 336.8±1.8; Group II (PIPS+NaOCl), 0.27±0.21; Group III (PIPS+saline), 225.0±21; and Group IV (NaOCl), 46.9±20.29. Group II had significantly lower CFUs than any other groups (p<0.05). Both imaging analyses confirmed levels of remaining bacteria on examined root surfaces. The use of the PIPS system along with NaOCl showed the most efficient eradication of the bacterial biofilm. It appears that laser-activated irrigation (LAI) utilizing PIPS may enhance the disinfection of the root canal system.
Cohn, Stephen M.; Lipsett, Pamela A.; Buchman, Timothy G.; Cheadle, William G.; Milsom, Jeffery W.; O’Marro, Steven; Yellin, Albert E.; Jungerwirth, Steven; Rochefort, Estela V.; Haverstock, Daniel C.; Kowalsky, Steven F.
2000-01-01
Objective To compare the safety and efficacy of intravenous (IV) ciprofloxacin plus IV metronidazole (CIP+MET) with that of IV piperacillin/tazobactam (PIP/TAZO) in adults with complicated intraabdominal infections, and to compare the efficacy of sequential IV-to-oral CIP+MET therapy with that of the IV CIP-only regimen. Summary Background Data Treatment of intraabdominal infections remains a challenge, mainly because of their polymicrobial etiology and attendant death and complications. Antimicrobial regimens using sequential IV-to-oral therapy may reduce the length of hospital stay. Methods In this multicenter, randomized, double-blind trial involving 459 patients, clinically improved IV-treated patients were switched to oral therapy after 48 hours. Overall clinical response was the primary efficacy measurement. Results A total of 282 patients (151 CIP+MET, 131 PIP/TAZO) were valid for efficacy. Of these patients, 64% CIP+MET and 57% PIP/TAZO patients were considered candidates for oral therapy. Patients had a mean APACHE II score of 9.6. The most common diagnoses were appendicitis (33%), other intraabdominal infection (29%), and abscess (25%). Overall clinical resolution rates were statistically superior for CIP+MET (74%) compared with PIP/TAZO (63%). Corresponding rates in the subgroup suitable for oral therapy were 85% for CIP+MET and 70% for PIP/TAZO. Postsurgical wound infection rates were significantly lower in CIP+MET (11%) versus PIP/TAZO patients (19%). Mean length of stay was 14 days for CIP+MET and 17 days for PIP/TAZO patients. Conclusion CIP+MET, initially administered IV and followed by CIP+MET oral therapy, was clinically more effective than IV PIP/TAZO for the treatment of patients with complicated intraabdominal infections. PMID:10903605
Do Paediatric Investigation Plans (PIPs) Advance Paediatric Healthcare?
Rose, Klaus; Walson, Philip D
2017-12-01
Since 2007, new drugs need a paediatric investigation plan (PIP) for EU registration. The PIPs' justifications can be traced back to concerns expressed by Shirkey that label warnings against paediatric use made children "therapeutic orphans", and the American Academy of Pediatrics' claim that all children differ considerably from adults. US legislation first encouraged, then also required, separate, adult-style safety and efficacy studies in all paediatric subpopulations. This triggered paediatric regulatory studies by the pharmaceutical industry. There were also negative outcomes, as a result of using the legal definition of childhood as a medical/physiological term. The "therapeutic orphans" concept became dogma that supported/expanded adult-style regulatory testing into all age groups even when poorly justified in adolescents or where other methods are available to generate needed data. PIPs are especially problematic because they lack the limitations imposed on the Food and Drug Administration's (FDA's) regulatory actions and more practical approaches used in the USA. Many PIP studies are medically senseless or even questionable and/or unfeasible with poor risk/benefit ratios. For example, physiologically mature adolescents have been exposed to treatments and doses known to be suboptimal in adults. Unfeasible PIP studies in rare diseases may harm patients by preventing their participation in more beneficence-driven studies. PIP-required studies can prevent effective treatment of allergic rhinitis during years of placebo treatment, exposing minors to the risk of disease progression to asthma. The PIP system should be revised; more should be done by key players, including institutional review boards/ethics committees, to ensure that all paediatric clinical studies are medically justified, rather than legislation driven, and can produce scientifically valid results.
Ohrui, T; Nobira, H; Sakata, Y; Taji, T; Yamamoto, C; Nishida, K; Yamakawa, T; Sasuga, Y; Yaguchi, Y; Takenaga, H; Tanaka, Shigeo
2007-12-01
The atmospheric epiphyte Tillandsia ionantha is capable of surviving drought stress for 6 months or more without any exogenous water supply via an as of yet to be determined mechanism. When plants were soaked in water for 3 h, leaves absorbed a remarkably large amount of water (30-40% on the basis of fresh weight), exhibiting a bimodal absorption pattern. Radiolabeled water was taken up by the leaves by capillary action of the epidermal trichomes within 1 min (phase 1) and then transported intracellularly to leaf tissues over 3 h (phase 2). The removal of epidermal trichome wings from leaves as well as rinsing leaves with water significantly lowered the extracellular accumulation of water on leaf surfaces. The intracellular transport of water was inhibited by mercuric chloride, implicating the involvement of a water channel aquaporin in second-phase water absorption. Four cDNA clones (TiPIP1a, TiPIP1b, TiPIP1c, and TiPIP2a) homologous to PIP family aquaporins were isolated from the leaves, and RT-PCR showed that soaking plants in water stimulated the expression of TiPIP2a mRNA, suggesting the reinforcement in ability to rapidly absorb a large amount of water. The expression of TiPIP2a complementary RNA in Xenopus oocytes enhanced permeability, and treatment with inhibitors suggested that the water channel activity of TiPIP2a protein was regulated by phosphorylation. Thus, the high water uptake capability of T. ionantha leaves surviving drought is attributable to a bimodal trichome- and aquaporin-aided water uptake system based on rapid physical collection of water and subsequent, sustained chemical absorption.
Al Shahrani, Mohammed; DiVito, Enrico; Hughes, Christopher V.; Nathanson, Dan
2014-01-01
Abstract Objective: The purpose of this study was to determine the effectiveness of laser-activated irrigation by photon-induced photoacoustic streaming (PIPS) using Er:YAG laser energy in decontaminating heavily colonized root canal systems in vitro. Materials and methods: Extracted single-rooted human teeth (n=60) were mechanically and chemically prepared, sterilized, inoculated with Enterococcus faecalis for 3 weeks, and randomly assigned to four groups (n=15): Group I (control, no decontamination), Group II (PIPS+6% NaOCl), Group III (PIPS+saline), and Group IV (6% NaOCl). PIPS settings were all preset to 50 μsec pulse, 20 mJ, 15 Hz, for an average power of 0.3 W. After decontamination, the remaining live microbes from all specimens were collected and recovered via plate counting of the colony-forming units (CFUs). Randomized root canal surfaces were examined with scanning electron microscopy and confocal laser microscopy. Mean variance and Dunnett's t test (post-hoc test) comparisons were used to compare mean scores for the three groups with the control group. Results: The CFU analysis showed the following measurements (mean±SE): Group I (control), 336.8±1.8; Group II (PIPS+NaOCl), 0.27±0.21; Group III (PIPS+saline), 225.0±21; and Group IV (NaOCl), 46.9±20.29. Group II had significantly lower CFUs than any other groups (p<0.05). Both imaging analyses confirmed levels of remaining bacteria on examined root surfaces. Conclusions: The use of the PIPS system along with NaOCl showed the most efficient eradication of the bacterial biofilm. It appears that laser-activated irrigation (LAI) utilizing PIPS may enhance the disinfection of the root canal system. PMID:24717113
Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F.; Schroeder, Julian I.
2016-01-01
Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3− enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375
Choat, Brendan; Gambetta, Greg A.; Shackel, Kenneth A.; Matthews, Mark A.
2009-01-01
During the latter stages of development in fleshy fruit, water flow through the xylem declines markedly and the requirements of transpiration and further expansion are fulfilled primarily by the phloem. We evaluated the hypothesis that cessation of water transport through the xylem results from disruption or occlusion of pedicel and berry xylem conduits (hydraulic isolation). Xylem hydraulic resistance (Rh) was measured in developing fruit of grape (Vitis vinifera ‘Chardonnay’) 20 to 100 d after anthesis (DAA) and compared with observations of xylem anatomy by light and cryo-scanning electron microscopy and expression of six plasma membrane intrinsic protein (PIP) aquaporin genes (VvPIP1;1, VvPIP1;2, VvPIP1;3, VvPIP2;1, VvPIP2;2, VvPIP2;3). There was a significant increase in whole berry Rh and receptacle Rh in the latter stages of ripening (80–100 DAA), which was associated with deposition of gels or solutes in many receptacle xylem conduits. Peaks in the expression of some aquaporin isoforms corresponded to lower whole berry Rh 60 to 80 DAA, and the increase in Rh beginning at 80 DAA correlated with decreases in the expression of the two most predominantly expressed PIP genes. Although significant, the increase in berry Rh was not great enough, and occurred too late in development, to explain the decline in xylem flow that occurs at 60 to 75 DAA. The evidence suggests that the fruit is not hydraulically isolated from the parent plant by xylem occlusion but, rather, is “hydraulically buffered” by water delivered via the phloem. PMID:19741048
Rose, Klaus; Kopp, Matthias Volkmar
2015-12-01
Allergen-specific immunotherapy (SIT) is the only disease-modifying treatment for children, adolescents, and adults with allergic diseases. The EU has a combined system of national and EU-wide marketing authorization for all medicines. Germany introduced a new therapy allergen ordinance in 2008. Allergen products manufacturers had to apply for marketing authorization application for the major allergen groups (grass group, birch group, mites group, bee/wasp venom). Due to the EU pediatric regulation, in force since 2007, manufacturers had also to submit a pediatric investigation plan (PIP) for each allergen product. We investigated the allergic rhinoconjunctivitis (ARC) standard PIP, developed jointly by the European Medicines Agency (EMA) and the German Paul Ehrlich Institut (PEI). We analyzed the 118 EMA PIP decisions, looked for SIT trials in children in www.clinicaltrials.gov, and further analyzed EMA/EU justifications. The PIPs request a 1-year dose-finding study in adults, a 5-year placebo-controlled (PC) efficacy & safety (E&S) study in adults, and a 5-year PC E&S study in children. Fifty-eight PIP development programs will have to be performed until 2031. But children benefit even more from SIT for ARC than adults. There is no convincing medical/scientific justification for PC E&S studies in children in the relevant EMA documents. The PIP requirement to withhold effective treatment to thousands of children in the placebo group over a 5-year period raises profound concerns. The EMA justifications are formalistic and lack scientific foundation. A critical academic review of the ARC PIPs and the entire PIP system is urgently needed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The PIP-II Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, M.; Burov, A.; Chase, B.
2017-03-01
The Proton Improvement Plan-II (PIP-II) encompasses a set of upgrades and improvements to the Fermilab accelerator complex aimed at supporting a world-leading neutrino program over the next several decades. PIP-II is an integral part of the strategic plan for U.S. High Energy Physics as described in the Particle Physics Project Prioritization Panel (P5) report of May 2014 and formalized through the Mission Need Statement approved in November 2015. As an immediate goal, PIP-II is focused on upgrades to the Fermilab accelerator complex capable of providing proton beam power in excess of 1 MW on target at the initiation of themore » Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) program, currently anticipated for the mid- 2020s. PIP-II is a part of a longer-term goal of establishing a high-intensity proton facility that is unique within the world, ultimately leading to multi-MW capabilities at Fermilab....« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... against the customer order designated for the PIP (``PIP Order'') in price/time priority. The result of... PIP Broadcast: \\3\\ Capitalized terms not otherwise defined herein shall have the meaning as defined in the Exchange Rules. Public Customer to buy 30 contracts at $2.00; Market Maker A to buy 40 contracts...
The Poly Implant Prothèse breast prostheses scandal: Embodied risk and social suffering.
Greco, Cinzia
2015-12-01
This article examines the 2010 scandal surrounding the use and subsequent recall of adulterated Poly Implant Prothèse (PIP) silicone breast prostheses in France. It uses a mixed method approach that includes 12 interviews with French PIP prosthesis recipients, analyses of medical literature, policy documents of French and EU regulatory agencies, and an online forum for PIP recipients. These data are used to explain how the definition of "acceptable risk" in the silicone implants controversy of the 1990s in the US influenced the PIP scandal later on in France. Additionally, PIP recipients had an embodied experience of risk that clashed with the definition of risk used by authorities and some surgeons. The coverage of re-implantation was also defined at different policy levels, leading to variation in patients' suffering. The combination of fraud and lack of recognition from part of the medical system constitutes an example of social suffering for the patients involved. The PIP scandal is a useful case for analyzing the interconnection of embodied experience and professional and public policy definitions of medical risk through the concepts of moral economy and biological citizenship. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Enterobacteriaceae susceptibility to piperacillin/tazobactam in a Chilean pediatric hospital].
Vega, Juan Rojas De la; Benadof, Dona; Veas, Abigail; Acuña, Mirta
2017-12-01
Enterobacteriaceae are a group of gram-negative rods that can cause serious infections in humans. A susceptibility in Klebsiella pneumoniae of 79.4% to piperacillin/tazobactam (PIP/TAZO) is reported in pediatric hospitals in Chile. There is no published data published to date regarding PIP/TAZO susceptibility to other Enterobacteriaceae species in this population. To measure the in vitro PIP/TAZO susceptibility in Enterobacteriaceae isolates from patients in a pediatric hospital in Chile. Descriptive and prospective study of Enterobacteriaceae positive cultures from patients assisting to the "Hospital de niños Roberto del Río" (HRRIO) between January 2013 and August 2014. PIP/TAZO susceptibility was established by gradient diffusion method (E-test®) according to the 2014 CLSI standards. 163 cases were included. The average age was 4 years and 15 days. 70.6% were female. 79.7% of samples were urine cultures. PIP/TAZO susceptibility in Enterobacteriaceae was 95.1% (n = 155). The intermediate susceptibility was 1.8% (n = 3). The isolates studied present high susceptibility to PIP/TAZO. This finding could be explained by the fact that this population has not been exposed to this antimicrobial therapy and also the low rates for ESBL in pediatric infections.
Hartung, Julia C; Dold, Simone K; Thio, Marta; tePas, Arjan; Schmalisch, Gerd; Roehr, Charles Christoph
2014-06-01
Resuscitation guidelines give no preference over use of self-inflating bags (SIBs) or T-piece resuscitators (TPR) for manual neonatal ventilation. We speculated that devices would differ significantly regarding time required to adjust to changed ventilation settings. This was a laboratory study. Time to adjust from baseline peak inflation pressure (PIP) (20 cmH2O) to target PIP (25 and 40 cmH2O), ability to adhere to predefined ventilation settings (PIP, PEEP, and inflation rate [IR]), and the variability within and between operators were assessed for a SIB without manometer, SIB with manometer (SIBM), and two TPRs. Adjustment time was significantly longer with TPRs, compared with SIB and SIBM. The SIBM and TPRs were < 5% (median) off target PIP, and the SIB was 14% off target PIP. Significant variability between operators (interquartile range [IQR]: 71%) was seen with SIBs. PIP adjustment takes longer with TPRs, compared with SIB/SIBM. TPRs and SIBM allow satisfactory adherence to ventilation parameters. SIBs should only be used with manometer attached. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Wang, Lin; Li, Qingtian; Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin
2015-01-01
Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.
Sobol, Margarita; Yildirim, Sukriye; Philimonenko, Vlada V; Marášek, Pavel; Castaño, Enrique; Hozák, Pavel
2013-01-01
To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis. PMID:24513678
Hussain, Nasir; Siapkara, Angeliki; Branch, Sarah
2015-08-15
Since the advent of the EU Paediatric Regulation in 2007, 78 of the 1688 Paediatric Investigation Plans (PIPs) have been for monoclonal antibodies (Mabs). Of these, 22 have been assessed by the MHRA. The purpose of this mini-review is to aid those researching and developing this class of drugs to better understand regulatory concerns leading to improved medicinal products for children. Three principal quality issues were identified for PIPs under Article 7 and 8: i) the level of anti-aggregation stabilisers, ii) acceptability and tolerability of administration (i.e. multiple injections, infusion time and volume), and iii) the need to develop new presentational forms (e.g. pre-filled syringe). Overall, two types of concerns were ascertained - those which are potentially avoidable (e.g. through development of new presentational forms) and others which require the evolution of new technologies in the sector (e.g. production of concentrated, stabilised preparations). Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Defective prevention of immune precipitation in autoimmune diseases is independent of C4A*Q0
Arason, G J; Kolka, R; Hreidarsson, A B; Gudjonsson, H; Schneider, P M; Fry, L; Arnason, A
2005-01-01
Increased prevalence of C4 null alleles is a common feature of autoimmune diseases. We have shown previously that complement-dependent prevention of immune precipitation (PIP) is defective in patients with systemic lupus erythematosus (SLE), and correlated this defect with C4A*Q0 and low levels of the C4A isotype. To further clarify the role of C4A in the aetiology of SLE, we now extend our studies to other diseases which have been associated with C4A*Q0. The frequency of C4A*Q0 was increased in Icelandic patients with coeliac disease (0·50; P < 0·001), Grave's disease (0·30; P = 0·002) and insulin-dependent diabetes mellitus (0·23; P = 0·04) and in British patients with dermatitis herpetiformis (0·42; P = 0·002) and this was reflected in low levels of C4A. In spite of this, PIP was normal in these patients, and in marked contrast to our previous observations on connective tissue diseases, PIP measurements in these patient groups correlated more strongly with levels of C4B (r = 0·51, P = 0·0000004) than C4A. Patients with increased levels of anti-C1q antibodies had significantly lower PIP than patients without such antibodies (P < 0·01) and a negative association of PIP with anti-C1q antibodies was also reflected in an increased prevalence (P = 0·006) and levels (P = 0·006) of anti-C1q antibodies in patients with subnormal PIP, as well as a negative correlation between PIP and anti-C1q antibodies (r = − 0·25, P = 0·02). These results show that the PIP defect cannot be explained by low levels of C4A alone and suggest that measurements of anti-C1q antibodies may be useful in future studies on the molecular cause of the PIP defect in autoimmune connective tissue disease. PMID:15932521
The effects of a new constructivist science curriculum (PIPS) for prospective elementary teachers
NASA Astrophysics Data System (ADS)
Liang, Ling L.
This study examines the effectiveness of a new constructivist curriculum model (Powerful Ideas in Physical Science, PIPS) in promoting preservice teachers' understanding of science concepts, in fostering a learning environment supporting conceptual change, and in improving preservice teachers' attitudes toward science as well as their science teaching efficacy beliefs. The PIPS curriculum model integrates a conceptual change perspective with a hands-on, inquiry-based approach and other promising effective teaching strategies such as cooperative learning. Three instructors each taught one class section using the PIPS and one using the existing curriculum for an introductory science course. Their students were 121 prospective elementary teachers at a large mid-western university. ANCOVA and Repeated Measures Analyses of Variance were performed to analyze the scores on concept tests and attitude surveys. Data from videotaped observations of lab sessions and interviews of prospective teachers and their instructors were analyzed by employing a naturalistic inquiry method to get insights into the process of science learning and teaching for the prospective teachers. The interpretations were made based on the findings that could be corroborated by both methodologies. For the twelve prospective teachers interviewed, it was found that the PIPS model was more effective in promoting conceptual understanding and positive attitudes toward science learning for those with lower past science performance. The PIPS approach left more room for self-reflection on the development of understanding of science concepts in contrast to the lecture-lab type teaching. Factors that might have influenced the teacher trainees' attitudes and beliefs about learning and teaching science were identified and discussed. It was also found that better cooperative learning and a more supportive learning environment have been promoted in the PIPS classrooms. However, the differential treatment effects on learning outcomes for all participants of the study, as measured by the paper-pencil instruments, were not statistically significant. Both students' and instructors' perspectives of the PIPS approach are presented in the study. Limitations of the present study as well as recommendations for future revision of the PIPS curriculum and effective implementation of the constructivist teaching in general, are also included.
Wang, Zhantong; Jacobson, Orit; Tian, Rui; Mease, Ronnie C; Kiesewetter, Dale O; Niu, Gang; Pomper, Martin G; Chen, Xiaoyuan
2018-06-15
Several radioligands targeting prostate-specific membrane antigen (PSMA) have been clinically introduced as a new class of radiotheranostics for the treatment of prostate cancer. Among them, ((( R)-1-carboxy-2-mcercaptoethyl)carbamoyl)-l-glutamic acid (MCG) has been successfully labeled with radioisotopes for prostate cancer imaging. The aim of this study is to conjugate MCG with an albumin binding moiety to further improve the in vivo pharmacokinetics. MCG was conjugated with an Evans blue (EB) derivative for albumin binding and a DOTA chelator. PSMA positive (PC3-PIP) and PSMA negative (PC3) cells were used for both in vitro and in vivo studies. Longitudinal PET imaging was performed at 1, 4, 24, and 48 h post-injection to evaluate the biodistribution and tumor uptake of 86 Y-DOTA-EB-MCG. DOTA-EB-MCG was also labeled with 90 Y for radionuclide therapy. Besides tumor growth measurement, tumor response to escalating therapeutic doses were also evaluated by immunohistochemistry and fluorescence microscopy. Based on quantification from 86 Y-DOTA-EB-MCG PET images, the tracer uptake in PC3-PIP tumors increased from 22.33 ± 2.39%ID/g at 1 h post-injection (p.i.), to the peak of 40.40 ± 4.79%ID/g at 24 h p.i. Administration of 7.4 MBq of 90 Y-DOTA-EB-MCG resulted in significant regression of tumor growth in PSMA positive xenografts. No apparent toxicity or body weight loss was observed in all treated mice. Modification of MCG with an Evans blue derivative resulted in a highly efficient prostate cancer targeting agent (EB-MCG), which showed great potential in prostate cancer treatment after being labeled with therapeutic radioisotopes.
Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R; Russinova, Eugenia; Chaumont, François
2014-07-01
Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. © 2014 American Society of Plant Biologists. All rights reserved.
Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity.
Doignon, François; Laquel, Patricia; Testet, Eric; Tuphile, Karine; Fouillen, Laetitia; Bessoule, Jean-Jacques
2015-12-28
Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
R & D on Beam Injection and Bunching Schemes in the Fermilab Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, C. M.
2016-01-01
Fermilab is committed to upgrade its accelerator complex to support HEP experiments at the intensity frontier. The ongoing Proton Improvement Plan (PIP) enables us to reach 700 kW beam power on the NuMI neutrino targets. By the end of the next decade, the current 400 MeV normal conducting LINAC will be replaced by an 800 MeV superconducting LINAC (PIP-II) with an increased beam power >50% of the PIP design goal. Both in PIP and PIP-II era, the existing Booster is going to play a very significant role, at least for next two decades. In the meanwhile, we have recently developedmore » an innovative beam injection and bunching scheme for the Booster called "early injection scheme" that continues to use the existing 400 MeV LINAC and implemented into operation. This scheme has the potential to increase the Booster beam intensity by >40% from the PIP design goal. Some benefits from the scheme have already been seen. In this paper, I will describe the basic principle of the scheme, results from recent beam experiments, our experience with the new scheme in operation, current status, issues and future plans. This scheme fits well with the current and future intensity upgrade programs at Fermilab.« less
Zhang, Minhua; Lü, Shouqin; Li, Guowei; Mao, Zhilei; Yu, Xin; Sun, Weining; Tang, Zhangcheng; Long, Mian; Su, Weiai
2010-12-31
Molecular selection, ion exclusion, and water permeation are well known regulatory mechanisms in aquaporin. Water permeability was found to be diverse in different subgroups of plasma membrane intrinsic proteins (PIPs), even though the residues surrounding the water holes remained the same across the subgroups. Upon homology modeling and structural comparison, a conserved Ala/Ile(Val) residue difference was identified in helix 2 that affected the conformation of the NPA region and consequently influenced the water permeability. The residue difference was found to be conservative within the two subgroups of PIPs in rice as well as in other plants. Functional tests further confirmed the prediction via site-directed mutagenesis where replacement of Ala(103) or Ala(102) in respective OsPIP1;1 or OsPIP1;3 with Val yielded 7.0- and 2.2-fold increases in water transportation, and substitution of Ile(98) or Val(95) in respective OsPIP2;3 or OsPIP2;7 with Ala resulted in 73 or 52% reduction of water transportation. Based on structural analyses and molecular dynamics simulations, we proposed that the difference in water permeability was attributed to the orientation variations of helix 2 that modified water-water and water-protein interactions.
General practice after-hours incentive funding: a rationale for change.
Neil, Amanda L; Nelson, Mark R; Richardson, Tracy; Mann-Leonard, Meghan; Palmer, Andrew J
2015-07-20
After-hours incentive funding for general practice was introduced in 1998 through the introduction of the Practice Incentives Program (PIP). In 2010, a national audit of the PIP identified after-hours incentive funding as having the greatest levels of non-compliance across 12 PIP components. The audit specified the need for secondary data sources to ensure practice compliance. In this article, we examine the drivers of the 1998-2013 PIP mechanism to inform development of a fair, transparent and auditable after-hours incentive funding scheme for Tasmania. The PIP after-hours incentive funding mechanism paid, at diminishing levels, for anticipated burden of care (practice size), claimed method of providing care (stream) and remoteness of practice. Increasing remoteness rather than practice size or stream is the primary determinant of urgent after-hours attendances per practice in Tasmania; after-hours attendances to residential aged care facilities are unrelated to individual practice location or stream but concentrated in urban areas. The PIP after-hours incentive funding mechanism does not preferentially support practices that provide after-hours care and arguably led to perverse incentives. A new after-hours incentive funding mechanism embodying pre-specified objectives - such as support for (unavoidable) burden and/or provision of care to residential aged care facilities - is required. Claimed provision is considered an inappropriate funding determinant.
[Dislocation of the PIP-Joint - Treatment of a common (ball)sports injury].
Müller-Seubert, Wibke; Bührer, Gregor; Horch, Raymund E
2017-09-01
Background Fractures or fracture dislocations of the proximal interphalangeal joint often occur during sports or accidents. Dislocations of the PIP-joint are the most common ligamentary injuries of the hand. As this kind of injury is so frequent, hand surgeons and other physicians should be aware of the correct treatment. Objectives This paper summarises the most common injury patterns and the correct treatment of PIP-joint dislocations. Materials and Methods This paper reviews the current literature and describes the standardised treatment of PIP-joint dislocations. Results What is most important is that reposition is anatomically correct, and this should be controlled by X-ray examination. Depending on the instability and possible combination with other injuries (e. g. injury to the palmar plate), early functional physiotherapy of the joint or a short immobilisation period is indicated. Conclusions Early functional treatment of the injured PIP-joint, initially using buddy taping, is important to restore PIP-joint movement and function. Depending on the injury, joint immobilisation using a K-wire may be indicated. Detailed informed consent is necessary to explain to the patient the severity of the injury and possible complications, such as chronic functional disorders or development of arthrosis. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szymanska, Ewelina; Korzeniowski, Marek; Raynal, Patrick
Receptor Fc{gamma}IIA (Fc{gamma}RIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P{sub 2} and PI(4,5)P{sub 2}-synthesizing PIP5-kinase I{alpha} to rafts contributes to Fc{gamma}RIIA signaling. A fraction of PIP5-kinase I{alpha} was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P{sub 2}. PIP5-kinase I{alpha} bound PI(4,5)P{sub 2}, and depletion of the lipid displaced PIP5-kinase I{alpha} from the DRM. Activation of Fc{gamma}RIIA in BHK transfectants led to recruitment of the kinase to the plasma membranemore » and enrichment of DRM in PI(4,5)P{sub 2}. Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After Fc{gamma}RIIA activation, PIP5-kinase I{alpha} and PI(4,5)P{sub 2} co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase I{alpha} and PI(4,5)P{sub 2} were present at the edges of electron-dense assemblies containing activated Fc{gamma}RIIA in their core. The data suggest that activation of Fc{gamma}RIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase I{alpha} and PI(4,5)P{sub 2}.« less
A label-free fluorescent probe for Hg2+ and biothiols based on graphene oxide and Ru-complex
Wang, Linlin; Yao, Tianming; Shi, Shuo; Cao, Yanlin; Sun, Wenliang
2014-01-01
A novel, selective and sensitive switch-on fluorescent sensor for Hg2+ and switch-off fluorescent probe for biothiols was developed by using [Ru(bpy)2(pip)]2+ as the signal reporter and graphene oxide (GO) as the quencher. Due to the affinity of GO towards single-stranded DNA (ss-DNA) and [Ru(bpy)2(pip)]2+, the three components assembled, resulting in fluorescence quenching. Upon addition of Hg2+, a double-stranded DNA (ds-DNA) via T–Hg2+–T base pairs was formed, and [Ru(bpy)2(pip)]2+ intercalated into the newly formed ds-DNA. Then, [Ru(bpy)2(pip)]2+ and ds-DNA were removed from the surface of GO, resulting in the restoration of fluorescence. Subsequently, upon addition of biothiols, Hg2+ was released from ds-DNA, due to the higher affinity of Hg2+ to the sulfur atoms of biothiols, which could induce ds-DNA unwinding to form ss-DNA. Then ss-DNA and [Ru(bpy)2(pip)]2+ were adsorbed on the surface of GO, the fluorescence of [Ru(bpy)2(pip)]2+ was quenched again. Therefore, the changes in emission intensity of [Ru(bpy)2(pip)]2+ directly correlated to the amount of detection target (Hg2+ or biothiols) in solution. The assay exhibited high sensitivity and selectivity, with the limits of detection for Hg2+, cysteine (Cys) and glutathione (GSH) to be 2.34 nM, 6.20 nM and 4.60 nM, respectively. PMID:24936798
Rognstad, Sture; Brekke, Mette; Gjelstad, Svein; Straand, Jørund; Fetveit, Arne
2018-05-12
Potentially Inappropriate Prescriptions (PIP) is drug treatment, which in general, at the group level for a median/mean patient, can be considered unfavorable meaning that the risks commonly may outweigh the benefits. This MiniReview reports and discusses the main findings in a large cluster-randomized educational intervention in Norwegian general practice, aimed at reducing the prevalence of PIPs to patients ≥ 70 years (The Rx-PAD study). Targets for the intervention were general practitioners (GPs) in continuing medical education (CME) groups receiving educational outreach visits (i.e., peer academic detailing). A Delphi consensus process, with a panel of medical experts was undertaken to elaborate a list of explicit criteria defining PIPs for patients ≥ 70 years in general practice. Agreement was achieved for 36 explicit PIP criteria, the so-called Norwegian General Practice (NorGeP) criteria. Using a selection (n = 24) of these criteria during a one-year baseline period on the prescribing practice of 454 GPs (i.e., those enrolled to participate in the intervention trial), we found a prevalence rate of 24.7 PIPs per 100 patients ≥70 years per year. In the Rx-PAD study, 449 GPs completed an educational intervention (96.6% of the included GPs), 250 in the intervention group and 199 in the control arm. Following the intervention, PIPs were reduced by 13% (95% CI 8.6 - 17.3), and the number of patients who were no longer exposed to one or more PIPs was reduced by 1173 (8.1%). The GPs who responded most strongly to the educational intervention were the oldest GPs (57-68 years) and these were the GPs with the highest prevalence of PIPs at baseline before the intervention. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Oral Medicines for Children in the European Paediatric Investigation Plans
van Riet – Nales, Diana A.; Römkens, Erwin G. A. W.; Saint-Raymond, Agnes; Kozarewicz, Piotr; Schobben, Alfred F. A. M.; Egberts, Toine C. G.; Rademaker, Carin M. A.
2014-01-01
Introduction Pharmaceutical industry is no longer allowed to develop new medicines for use in adults only, as the 2007 Paediatric Regulation requires children to be considered also. The plans for such paediatric development called Paediatric Investigation Plans (PIPs) are subject to agreement by the European Medicines Agency (EMA) and its Paediatric Committee (PDCO). The aim of this study was to evaluate the key characteristics of oral paediatric medicines in the PIPs and the changes implemented as a result of the EMA/PDCO review. Methods All PIPs agreed by 31 December 2011 were identified through a proprietary EMA-database. PIPs were included if they contained an agreed proposal to develop an oral medicine for children 0 to 11 years. Information on the therapeutic area (EMA classification system); target age range (as defined by industry) and pharmaceutical characteristics (active substance, dosage form(s) as listed in the PIP, strength of each dosage form, excipients in each strength of each dosage form) was extracted from the EMA website or the EMA/PDCO assessment reports. Results A hundred and fifty PIPs were included corresponding to 16 therapeutic areas and 220 oral dosage forms in 431 strengths/compositions. Eighty-two PIPs (37%) included tablets, 44 (20%) liquids and 35 (16%) dosage forms with a specific composition/strength that were stored as a solid but swallowed as a liquid e.g. dispersible tablets. The EMA/PDCO review resulted in an increase of 13 (207 to 220) oral paediatric dosage forms and 44 (387 to 431) dosage forms with a specific composition/strength. For many PIPs, the target age range was widened and the excipient composition and usability aspects modified. Conclusion The EMA/PDCO review realized an increase in the number of requirements for the development of oral dosage forms and a larger increase in the number of dosage forms with a specific composition/strength, both targeting younger children. Changes to their pharmaceutical design were less profound. PMID:24897509
Oral medicines for children in the European paediatric investigation plans.
van Riet-Nales, Diana A; Römkens, Erwin G A W; Saint-Raymond, Agnes; Kozarewicz, Piotr; Schobben, Alfred F A M; Egberts, Toine C G; Rademaker, Carin M A
2014-01-01
Pharmaceutical industry is no longer allowed to develop new medicines for use in adults only, as the 2007 Paediatric Regulation requires children to be considered also. The plans for such paediatric development called Paediatric Investigation Plans (PIPs) are subject to agreement by the European Medicines Agency (EMA) and its Paediatric Committee (PDCO). The aim of this study was to evaluate the key characteristics of oral paediatric medicines in the PIPs and the changes implemented as a result of the EMA/PDCO review. All PIPs agreed by 31 December 2011 were identified through a proprietary EMA-database. PIPs were included if they contained an agreed proposal to develop an oral medicine for children 0 to 11 years. Information on the therapeutic area (EMA classification system); target age range (as defined by industry) and pharmaceutical characteristics (active substance, dosage form(s) as listed in the PIP, strength of each dosage form, excipients in each strength of each dosage form) was extracted from the EMA website or the EMA/PDCO assessment reports. A hundred and fifty PIPs were included corresponding to 16 therapeutic areas and 220 oral dosage forms in 431 strengths/compositions. Eighty-two PIPs (37%) included tablets, 44 (20%) liquids and 35 (16%) dosage forms with a specific composition/strength that were stored as a solid but swallowed as a liquid e.g. dispersible tablets. The EMA/PDCO review resulted in an increase of 13 (207 to 220) oral paediatric dosage forms and 44 (387 to 431) dosage forms with a specific composition/strength. For many PIPs, the target age range was widened and the excipient composition and usability aspects modified. The EMA/PDCO review realized an increase in the number of requirements for the development of oral dosage forms and a larger increase in the number of dosage forms with a specific composition/strength, both targeting younger children. Changes to their pharmaceutical design were less profound.
Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana
2007-05-01
Alpha-melanotropin, Ac-Ser(1)-Tyr-Ser-Met-Glu-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2)(1), is a non-selective endogenous agonist for the melanocortin receptor 5; the receptor present in various peripheral tissues and in the brain, cortex and cerebellum. Most of the synthetic analogs of alphaMSH, including a broadly used and more potent the NDP-alphaMSH peptide, Ac-Ser(1)-Tyr-Ser-Nle(4)-Glu-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2), are also not particularly selective for MC5R. To elucidate physiological functions of the melanocortin receptor 5 in rodents and humans, the receptor subtype selective research tools are needed. We report herein syntheses and pharmacological evaluation in vitro of several analogs of NDP-alphaMSH which are highly potent and specific agonists for the human MC5R. The new linear peptides, of structures and solubility properties similar to those of the endogenous ligand alphaMSH, are exemplified by compound 7, Ac-Ser(1)-Tyr-Ser-Met-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2) (Oic: octahydroindole-2-COOH, 4,4'-Bip: 4,4'-biphenylalanine, Pip: pipecolic acid), shortly NODBP-alphaMSH, which has an IC(50)=0.74 nM (binding assay) and EC(50)=0.41 (cAMP production assay) at hMC5R nM and greater than 3500-fold selectivity with respect to the melanocortin receptors 1b, 3 and 4. A shorter peptide derived from NODBP-alphaMSH: Ac-Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9) -NH(2) (17) was measured to be an agonist only 10-fold less potent at hMC5R than the full length parent peptide. In the structure of this smaller analog, the Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8) segment was found to be critical for high agonist potency, while the C-terminal Trp(9) residue was shown to be required for high hMC5R selectivity versus hMC1b,3,4R.
Fatigue Behavior of a SiC/SiC Composite at 1000 deg C in Air and in Steam
2010-12-01
SiC dual-layer interphase. The composite was manufactured by a Polymer Infiltration and Pyrolysis (PIP... Polymer Infiltration and Pyrolysis (PIP) process. A seal coat of SiC and elemental boron was applied to the test specimens after machining. The tensile...manufactured by a Polymer Infiltration and Pyrolysis (PIP) process. A seal coat of SiC and elemental boron was applied to the test specimens
Insights into plant plasma membrane aquaporin trafficking.
Hachez, Charles; Besserer, Arnaud; Chevalier, Adrien S; Chaumont, François
2013-06-01
Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rapid increase of inositol 1,4,5-trisphosphate in the HeLa cells after hypergravity exposure
NASA Technical Reports Server (NTRS)
Kumei, Yasuhiro; Whitson, Peggy A.; Cintron, Nitza M.; Sato, Atsushige
1990-01-01
The IP3 level in HeLa cells has been elevated through the application in hypergravity in a time-dependent manner. The data obtained for the hydrolytic products of PIP2, IP3, and DG are noted to modulate c-myc gene expression. It is also established that the cAMP accumulation by the IBMX in hypergravity-exposed cells was suppressed relative to the control. In light of IP3 increase and cAMP decrease results, a single GTP-binding protein may play a role in the hypergravity signal transduction of HeLa cells by stimulating PLC while inhibiting adenylate cyclase.
Yamamoto, Eiji
2017-01-01
Many cellular functions, including cell signaling and related events, are regulated by the association of peripheral membrane proteins (PMPs) with biological membranes containing anionic lipids, e.g., phosphatidylinositol phosphate (PIP). This association is often mediated by lipid recognition modules present in many PMPs. Here, I summarize computational and theoretical approaches to investigate the molecular details of the interactions and dynamics of a lipid recognition module, the pleckstrin homology (PH) domain, on biological membranes. Multiscale molecular dynamics simulations using combinations of atomistic and coarse-grained models yielded results comparable to those of actual experiments and could be used to elucidate the molecular mechanisms of the formation of protein/lipid complexes on membrane surfaces, which are often difficult to obtain using experimental techniques. Simulations revealed some modes of membrane localization and interactions of PH domains with membranes in addition to the canonical binding mode. In the last part of this review, I address the dynamics of PH domains on the membrane surface. Local PIP clusters formed around the proteins exhibit anomalous fluctuations. This dynamic change in protein-lipid interactions cause temporally fluctuating diffusivity of proteins, i.e., the short-term diffusivity of the bound protein changes substantially with time, and may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:29159013
Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris
2017-01-01
M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2. Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes. PMID:28716904
Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita
2017-08-01
M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.
Regulation of the putative TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate.
Lyall, Vijay; Phan, Tam-Hao T; Ren, ZuoJun; Mummalaneni, Shobha; Melone, Pamela; Mahavadi, Sunila; Murthy, Karnam S; DeSimone, John A
2010-03-01
Regulation of the putative amiloride and benzamil (Bz)-insensitive TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate (PIP(2)) was studied by monitoring chorda tympani (CT) taste nerve responses to 0.1 M NaCl solutions containing Bz (5 x 10(-6) M; a specific ENaC blocker) and resiniferatoxin (RTX; 0-10 x 10(-6) M; a specific TRPV1 agonist) in Sprague-Dawley rats and in wildtype (WT) and TRPV1 knockout (KO) mice. In rats and WT mice, RTX elicited a biphasic effect on the NaCl + Bz CT response, increasing the CT response between 0.25 x 10(-6) and 1 x 10(-6) M. At concentrations >1 x 10(-6) M, RTX inhibited the CT response. An increase in PIP(2) by topical lingual application of U73122 (a phospholipase C blocker) or diC8-PIP(2) (a short chain synthetic PIP(2)) inhibited the control NaCl + Bz CT response and decreased its sensitivity to RTX. A decrease in PIP(2) by topical lingual application of phenylarsine oxide (a phosphoinositide 4 kinase blocker) enhanced the control NaCl + Bz CT response, increased its sensitivity to RTX stimulation, and inhibited the desensitization of the CT response at RTX concentrations >1 x 10(-6) M. The ENaC-dependent NaCl CT responses were not altered by changes in PIP(2). An increase in PIP(2) enhanced CT responses to sweet (0.3 M sucrose) and bitter (0.01 M quinine) stimuli. RTX produced the same increase in the Bz-insensitive Na(+) response when present in salt solutions containing 0.1 M NaCl + Bz, 0.1 M monosodium glutamate + Bz, 0.1 M NaCl + Bz + 0.005 M SC45647, or 0.1 M NaCl + Bz + 0.01 M quinine. No effect of RTX was observed on CT responses in WT mice and rats in the presence of the TRPV1 blocker N-(3-methoxyphenyl)-4-chlorocinnamide (1 x 10(-6) M) or in TRPV1 KO mice. We conclude that PIP(2) is a common intracellular effector for sweet, bitter, umami, and TRPV1t-dependent salt taste, although in the last case, PIP(2) seems to directly regulate the taste receptor protein itself, i.e., the TRPV1 ion channel or its taste receptor variant, TRPV1t.
WNK1 Promotes PIP2 Synthesis to Coordinate Growth Factor and GPCR-Gq Signaling
An, Sung-Wan; Cha, Seung-Kuy; Yoon, Joonho; Chang, Seungwoo; Ross, Elliott M.; Huang, Chou-Long
2011-01-01
Summary Background PLC-β signaling is generally thought to be mediated by allosteric activation by G proteins and Ca2+. While availability of the PIP2 substrate is limiting in some cases, its production has not been shown to be independently regulated as a signaling mechanism. WNK1 protein kinase is known to regulate ion homeostasis and cause hypertension when expression is increased by gene mutations. However, its signaling functions remain largely elusive. Results Using diacylglycerol-stimulated TRPC6 and inositol trisphosphate-mediated Ca2+ transients as cellular biosensors, we show that WNK1 stimulates PLC-β signaling in cells by promoting the synthesis of PIP2 via stimulation of phosphatidylinositol 4-kinase IIIα. WNK1 kinase activity is not required. Stimulation of PLC-β by WNK1 and by Gαq are synergistic; WNK1 activity is essential for regulation of PLC-β signaling by Gq-coupled receptors and basal input from Gq is necessary for WNK1 signaling via PLC-β. WNK1 further amplifies PLC-β signaling when it is phosphorylated by Akt kinase in response to insulin-like growth factor. Conclusions WNK1 is a novel regulator of PLC-β that acts by controlling substrate availability. WNK1 thereby coordinates signaling between G protein and Akt kinase pathways. Because PIP2 is itself a signaling molecule, regulation of PIP2 synthesis by WNK1 also allows the cell to initiate PLC signaling while independently controlling the effects of PIP2 on other targets. These findings describe a new signaling pathway for Akt-activating growth factors, a mechanism for G protein-growth factor crosstalk and a means to independently control PLC signaling and PIP2 availability. PMID:22119528
Dickson, Eamonn J.; Falkenburger, Björn H.
2013-01-01
Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5′-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition. PMID:23630337
Baaziz, Khaoula Ben; Lopez, David; Rabot, Amelie; Combes, Didier; Gousset, Aurelie; Bouzid, Sadok; Cochard, Herve; Sakr, Soulaiman; Venisse, Jean-Stephane
2012-04-01
Understanding the response of leaf hydraulic conductance (K(leaf)) to light is a challenge in elucidating plant-water relationships. Recent data have shown that the effect of light on K(leaf) is not systematically related to aquaporin regulation, leading to conflicting conclusions. Here we investigated the relationship between light, K(leaf), and aquaporin transcript levels in five tree species (Juglans regia L., Fagus sylvatica L., Quercus robur L., Salix alba L. and Populus tremula L.) grown in the same environmental conditions, but differing in their K(leaf) responses to light. Moreover, the K(leaf) was measured by two independent methods (high-pressure flow metre (HPFM) and evaporative flux method (EFM)) in the most (J. regia) and least (S. alba) responsive species and the transcript levels of aquaporins were analyzed in perfused and unperfused leaves. Here, we found that the light-induced K(leaf) value was closely related to stronger expression of both the PIP1 and PIP2 aquaporin genes in walnut (J. regia), but to stimulation of PIP1 aquaporins alone in F. sylvatica and Q. robur. In walnut, all newly identified aquaporins were found to be upregulated in the light and downregulated in the dark, further supporting the relationship between the light-mediated induction of K(leaf) and aquaporin expression in walnut. We also demonstrated that the K(leaf) response to light was quality-dependent, K(leaf) being 60% lower in the absence of blue light. This decrease in K(leaf) was correlated with strong downregulation of three PIP2 aquaporins and of all the PIP1 aquaporins tested. These data support a relationship between light-mediated K(leaf) regulation and the abundance of aquaporin transcripts in the walnut tree.
Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil
2013-05-01
Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5'-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.
Poly Implants Prosthèse Breast Implants: A Case Series and Review of the Literature.
Klein, Doron; Hadad, Eran; Wiser, Itay; Wolf, Omer; Itzhaki Shapira, Ortal; Fucks, Shir; Heller, Lior
2018-01-01
Silicone breast implants from the French manufacturer Poly Implants Prosthèse (PIP) were recalled from the European market after the French regulator has revealed the implants contain non-medical-grade silicone filler. In December 2011, following a large increase in reported rupture rate and a possible cancer risk, the French Ministry of Health recommended consideration of the PIP explantation, regardless of their condition. In 2012, the Israel Ministry of Health recommended to replace the implants only upon suspected implant rupture. The aims of this study were to characterize breast-augmented Israeli patients with PIP implants, compare their outcomes with those of breast-augmented patients with different implant types, and review the current PIP literature. Breast-augmented patients who underwent an elective breast implant exchange in Israel between January 2011 and January 2017 were included in the study. Data were collected from electronic and physical medical files. There were 73 breast-augmented female patients with 146 PIP breast implants included in this study. Average implant age was 6.7 ± 2.79 years. Mean implant size was 342.8 ± 52.9 mL. Fourteen women (19 implants [16%]) had a high-grade capsular contracture (Baker grade 3-4). During exchange, 28 implants were found to be ruptured (19.2%). Less than 10 years following breast augmentation, PIP implants demonstrated higher rupture rate compared with other implants. Our data are comparable to overall available rupture rate. Among patients with definitive rupture diagnosis, an elective implant removal should be recommended. In cases of undamaged implants, plastic surgeons should also seriously consider PIP implant explantation. When the patient does not desire to remove the implant, an annual physical examination and breast ultrasound are recommended, beginning a year after augmentation.
Muries, Beatriz; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen
2013-05-01
The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na(+) concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.
Low Level RF Control for the PIP-II Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.; Cullerton, E.
The PIP-II accelerator is a proposed upgrade to the Fermilab accelerator complex that will replace the existing, 400 MeV room temperature LINAC with an 800 MeV superconducting LINAC. Part of this upgrade includes a new injection scheme into the booster that levies tight requirements on the LLRF control system for the cavities. In this paper we discuss the challenges of the PIP-II accelerator and the present status of the LLRF system for this project.
Wang, Xiaoyang; Barrett, Matthew; Sondek, John; Harden, T. Kendall; Zhang, Qisheng
2013-01-01
The capacity to monitor spatiotemporal activity of phospholipase C (PLC) isozymes with a PLC-selective sensor would dramatically enhance understanding of the physiological function and disease relevance of these signaling proteins. Previous structural and biochemical studies defined critical roles for several of the functional groups of the endogenous substrate of PLC isozymes, phosphatidylinositol 4,5-bisphosphate (PIP2), indicating that these sites cannot be readily modified without compromising interactions with the lipase active site. However, the role of the 6-hydroxy group of PIP2 for interaction and hydrolysis by PLC has not been explored, possibly due to challenges in synthesizing 6-hydroxy derivatives. Here, we describe an efficient route for the synthesis of novel, fluorescent PIP2 derivatives modified at the 6-hydroxy group. Two of these derivatives were used in assays of PLC activity in which the fluorescent PIP2 substrates were separated from their diacylglycerol products and reaction rates quantified by fluorescence. Both PIP2 analogues effectively function as substrates of PLC-δ1, and the KM and Vmax values obtained with one of these are similar to those observed with native PIP2 substrate. These results indicate that the 6-hydroxy group can be modified to develop functional substrates for PLC isozymes, thereby serving as the foundation for further development of PLC-selective sensors. PMID:22703043
The clinical implications of poly implant prothèse breast implants: an overview.
Wazir, Umar; Kasem, Abdul; Mokbel, Kefah
2015-01-01
Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage.
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua
2014-01-01
Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.
Blus, L J; Melancon, M J; Hoffman, D J; Henny, C J
1998-10-01
Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7, 8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994.
Blus, L.J.; Melancon, M.J.; Hoffman, D.J.; Henny, C.J.
1998-01-01
Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994.
Skin strain patterns provide kinaesthetic information to the human central nervous system.
Edin, B B; Johansson, N
1995-01-01
1. We investigated the contribution of skin strain-related sensory inputs to movement perception and execution in five normal volunteers. The dorsal and palmar skin of the middle phalanx and the proximal interphalangeal (PIP) joint were manipulated to generate specific strain patterns in the proximal part of the index finger. To mask sensations directly related to this manipulation, skin and deeper tissues were blocked distal to the mid-portion of the proximal phalanx of the index finger by local anaesthesia. 2. Subjects were asked to move their normal right index finger either to mimic any perceived movements of the anaesthetized finger or to touch the tip of the insentient finger. 3. All subjects readily reproduced actual movements induced by the experimenter at the anaesthetized PIP joint. However, all subjects also generated flexion movements when the experimenter did not induce actual movement but produced deformations in the sentient proximal skin that were similar to those observed during actual PIP joint flexion. Likewise, the subjects indicated extension movement at the PIP joint when strain patterns corresponding to extension movements were induced. 4. In contrast, when the skin strain in the proximal part of the index finger was damped by a ring applied just proximal to the PIP joint within the anaesthetized skin area, both tested subjects failed to perceive PIP movements that actually took place.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7473253
Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S.; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R.; Chaumont, François
2012-01-01
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K+ channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K+ channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383
Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François
2012-08-01
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.
The Clinical Implications of Poly Implant Prothèse Breast Implants: An Overview
Wazir, Umar; Kasem, Abdul
2015-01-01
Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage. PMID:25606483
1990-02-01
copies Pl ,...,P. of a multiple module fp resolve nondeterminism (local or global) in an identical manner. 5. The copies PI,...,P, axe physically...recovery block. A recovery block consists of a conventional block (like in ALGOL or PL /I) which is provided with a means of error detection, called an...improved failures model for communicating processes. In Proceeding. NSF- SERC Seminar on Concurrency, volume 197 of Lecture Notes in Computer Science
Walter, Emily M.; Henderson, Charles R.; Beach, Andrea L.; Williams, Cody T.
2016-01-01
Researchers, administrators, and policy makers need valid and reliable information about teaching practices. The Postsecondary Instructional Practices Survey (PIPS) is designed to measure the instructional practices of postsecondary instructors from any discipline. The PIPS has 24 instructional practice statements and nine demographic questions. Users calculate PIPS scores by an intuitive proportion-based scoring convention. Factor analyses from 72 departments at four institutions (N = 891) support a 2- or 5-factor solution for the PIPS; both models include all 24 instructional practice items and have good model fit statistics. Factors in the 2-factor model include (a) instructor-centered practices, nine items; and (b) student-centered practices, 13 items. Factors in the 5-factor model include (a) student–student interactions, six items; (b) content delivery, four items; (c) formative assessment, five items; (d) student-content engagement, five items; and (e) summative assessment, four items. In this article, we describe our development and validation processes, provide scoring conventions and outputs for results, and describe wider applications of the instrument. PMID:27810868
First Performance Results of the PIP2IT MEBT 200 Ohm Kicker Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saewert, G.; Awida, M. H.; Chase, B. E.
The PIP-II project is a program to upgrade the Fermilab accelerator complex. The PIP-II linac includes a 2.1 MeV Medium Energy Beam Transport (MEBT) section that incorporates a unique chopping system to perform arbitrary, bunch-by-bunch removal of 162.5 MHz structured beam. The MEBT chopping system will consist of two identical kickers working together and a beam absorber. One design of two having been proposed has been a 200 Ohm characteristic impedance traveling wave dual-helix kicker driven with custom designed high-speed switches. This paper reports on the first performance results of one prototype kicker built, installed and tested with beam at the PIP-II Injector Test (PIP2IT) facility. The helix deflector design details are discussed. The electrical performance of the high-speed switch driver operating at 500 V bias is presented. Tests performed were chopping beam at 81.25 MHz for microseconds as well as with a truly arbitrary pattern for 550more » $$\\mu$$s bursts having a 45 MHz average switching rate and repeating at 20 Hz.« less
Li, Liang; Wang, Hao; Gago, Jorge; Cui, Haiying; Qian, Zhengjiang; Kodama, Naomi; Ji, Hongtao; Tian, Shan; Shen, Dan; Chen, Yanjuan; Sun, Fengli; Xia, Zhonglan; Ye, Qing; Sun, Wei; Flexas, Jaume; Dong, Hansong
2015-11-26
Harpin proteins produced by plant-pathogenic Gram-negative bacteria are the venerable player in regulating bacterial virulence and inducing plant growth and defenses. A major gap in these effects is plant sensing linked to cellular responses, and plant sensor for harpin Hpa1 from rice bacterial blight pathogen points to plasma membrane intrinsic protein (PIP). Here we show that Arabidopsis AtPIP1;4 is a plasma membrane sensor of Hpa1 and plays a dual role in plasma membrane permeability of CO2 and H2O. In particular, AtPIP1;4 mediates CO2 transport with a substantial contribute to photosynthesis and further increases this function upon interacting with Hpa1 at the plasma membrane. As a result, leaf photosynthesis rates are increased and the plant growth is enhanced in contrast to the normal process without Hpa1-AtPIP1;4 interaction. Our findings demonstrate the first case that plant sensing of a bacterial harpin protein is connected with photosynthetic physiology to regulate plant growth.
Li, Liang; Wang, Hao; Gago, Jorge; Cui, Haiying; Qian, Zhengjiang; Kodama, Naomi; Ji, Hongtao; Tian, Shan; Shen, Dan; Chen, Yanjuan; Sun, Fengli; Xia, Zhonglan; Ye, Qing; Sun, Wei; Flexas, Jaume; Dong, Hansong
2015-01-01
Harpin proteins produced by plant-pathogenic Gram-negative bacteria are the venerable player in regulating bacterial virulence and inducing plant growth and defenses. A major gap in these effects is plant sensing linked to cellular responses, and plant sensor for harpin Hpa1 from rice bacterial blight pathogen points to plasma membrane intrinsic protein (PIP). Here we show that Arabidopsis AtPIP1;4 is a plasma membrane sensor of Hpa1 and plays a dual role in plasma membrane permeability of CO2 and H2O. In particular, AtPIP1;4 mediates CO2 transport with a substantial contribute to photosynthesis and further increases this function upon interacting with Hpa1 at the plasma membrane. As a result, leaf photosynthesis rates are increased and the plant growth is enhanced in contrast to the normal process without Hpa1-AtPIP1;4 interaction. Our findings demonstrate the first case that plant sensing of a bacterial harpin protein is connected with photosynthetic physiology to regulate plant growth. PMID:26607179
Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, J.J.; Boss, W.F.
1987-10-01
Fusogenic carrot cells grown in suspension culture were labeled 12 hours with myo-(2-/sup 3/H)inositol. Plasma membranes were isolated from the prelabeled fusogenic carrot cells by both aqueous polymer two-phase partitioning and Renografin density gradients. With both methods, the plasma membrane-enriched fractions, as identified by marker enzymes, were enriched in (/sup 3/H)inositol-labeled phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/). An additional (/sup 3/H)inositol-labeled lipid, lysophosphatidylinositol monophosphate, which migrated between PIP and PIP/sub 2/ on thin layer plates, was found primarily in the plasma membrane-rich fraction of the fusogenic cells. This was in contrast to lysophosphatidylinositol which is found primarily inmore » the lower phase, microsomal/mitchrondrial-rich fraction.« less
Follow-the-Leader Control for the PIPS Prototype Hardware
NASA Technical Reports Server (NTRS)
Williams, Robert L. II; Lippitt, Thimas
1996-01-01
This report describes the payload inspection and processing system (PIPS), an automated system programmed off-line for inspection of space shuttle payloads after integration and prior to launch. PIPS features a hyper-redundant 18-degree of freedom (DOF) serpentine truss manipulator capable of snake like motions to avoid obstacles. During the summer of 1995, the author worked on the same project, developing a follow-the-leader (FTL) algorithm in graphical simulation which ensures whole arm collision avoidance by forcing ensuing links to follow the same tip trajectory. The summer 1996 work was to control the prototype PIPS hardware in follow-the-leader mode. The project was successful in providing FTL control in hardware. The STS-82 payload mockup was used in the laboratory to demonstrate serpentine motions to avoid obstacles in a realistic environment.
Umbricht, Christoph A; Benešová, Martina; Schibli, Roger; Müller, Cristina
2018-06-04
The treatment of metastatic castration-resistant prostate cancer (mCRPC) remains challenging with current treatment options. The development of more effective therapies is, therefore, urgently needed. Targeted radionuclide therapy with prostate-specific membrane antigen (PSMA)-targeting ligands has revealed promising clinical results. In an effort to optimize this concept, it was the aim of this study to design and investigate PSMA ligands comprising different types of albumin binders. PSMA-ALB-53 and PSMA-ALB-56 were designed by combining the glutamate-urea-based PSMA-binding entity, a DOTA chelator and an albumin binder based on the 4-( p-iodophenyl)-moiety or p-(tolyl)-moiety. The compounds were labeled with 177 Lu (50 MBq/nmol) resulting in radioligands of high radiochemical purity (≥98%). Both radioligands were stable (≥98%) over 24 h in the presence of l-ascorbic acid. The uptake into PSMA-positive PC-3 PIP tumor cells in vitro was in the same range (54-58%) for both radioligands; however, 177 Lu-PSMA-ALB-53 showed a 15-fold enhanced binding to human plasma proteins. Biodistribution studies performed in PC-3 PIP/flu tumor-bearing mice revealed high tumor uptake of 177 Lu-PSMA-ALB-53 and 177 Lu-PSMA-ALB-56, respectively, demonstrated by equal areas under the curves (AUCs) for both radioligands. The increased retention of 177 Lu-PSMA-ALB-53 in the blood resulted in almost 5-fold lower tumor-to-blood AUC ratios when compared to 177 Lu-PSMA-ALB-56. Kidney clearance of 177 Lu-PSMA-ALB-56 was faster, and hence, the tumor-to-kidney AUC ratio was 3-fold higher than in the case of 177 Lu-PSMA-ALB-53. Due to the more favorable tissue distribution profile, 177 Lu-PSMA-ALB-56 was selected for a preclinical therapy study in PC-3 PIP tumor-bearing mice. The tumor growth delay after application of 177 Lu-PSMA-ALB-56 and 177 Lu-PSMA-617 applied at the same activities (2 or 5 MBq per mouse) revealed better antitumor effects in the case of 177 Lu-PSMA-ALB-56. As a consequence, the survival of mice treated with 177 Lu-PSMA-ALB-56 was prolonged when compared to the mice, which received the same activity of 177 Lu-PSMA-617. Our results demonstrated the superiority of 177 Lu-PSMA-ALB-56 over 177 Lu-PSMA-ALB-53 indicating that the p-(tolyl)-moiety was more suited as an albumin binder to optimize the tissue distribution profile. 177 Lu-PSMA-ALB-56 was more effective to treat tumors than 177 Lu-PSMA-617 resulting in complete tumor remission in four out of six mice. This promising results warrant further investigations to assess the potential for clinical application of 177 Lu-PSMA-ALB-56.
Kanayet, Frank J; Mattarella-Micke, Andrew; Kohler, Peter J; Norcia, Anthony M; McCandliss, Bruce D; McClelland, James L
2018-02-01
Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a "mental number line" and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory-motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (-100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.
Yagnik, Lokesh; Graves, Angela; Thong, Ken
2017-01-01
Peripheral intravenous cannula (PIVC) insertion is a universal intervention for inpatients and is associated with multiple complications. Effective, simple, reproducible interventions specific to PIVC complication prevention are few and often extrapolated from central venous catheter complication prevention strategies. The objective of this study is to improve compliance with documentation and monitoring PIVC guidelines in the medical ward of a secondary care center. This study is a prospective run-in audit of adherence to PIVC documentation and monitoring guidelines between the dates of August 30-November 14, 2014, with data recollection from December 25, 2014-January 30, 2015, after intervention implementation. Three interventions were implemented. The Plastic in Patient (PIP) strip is a dedicated column on the journey board, identifying inpatients with PIVCs, prompting assessment of indication at daily multidisciplinary meetings. PIP row is a prompt in the medical admission proforma to review PIVC indication. PIP poster is a visual cue on PIVC trolleys highlighting PIVC management practices. Baseline demographics were similar in the pre- and postintervention groups. Documentation significantly improved in the postintervention group (36.4 vs 50%, P = .025). Early identification of nonindicated PIVCs improved in the postintervention group (88.8% vs 97.1%, P = .018) and a trend toward a reduced PIVC-related early phlebitis rate (3.7% vs 0, P = .08). Simple, cost-effective interventions result in improvements in adherence to practice guidelines. Our results suggest a trend toward reduction in phlebitis rates. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Loudness enhancement following contralateral stimulation.
NASA Technical Reports Server (NTRS)
Galambos, R.; Bauer, J.; Picton, T.; Squires, K.; Squires , N.
1972-01-01
The apparent loudness of a tone pip can be increased by 15 dB or more if it is preceded by a tone burst to the contralateral ear. The experiment is done by delaying the pip, S1, by a variable time, Delta-T, after the offset of a contralateral tone; the listener assesses the loudness of S1 by adjusting the intensity of a second tone pip, S2, that follows S1 by 1500 msec. Some parametric explorations of the phenomenon are reported here.
Honkanen, R E; Abdel-Latif, A A
1989-01-01
The effect of short-term cholinergic desensitization on muscarinic acetylcholine receptor (mAChR)-mediated activation of phospholipase C was investigated in membranes isolated from the bovine iris sphincter smooth muscle. Membranes prepared from normal or desensitized muscles, prelabeled with either [3H]myo-inositol or 32P from [gamma-32P]ATP, were incubated with a hydrolysis-resistant analogue of GTP, GTP gamma S, or GTP gamma S plus carbachol (CCh), and the production of [3H]myo-inositol 1,4,5-trisphosphate (IP3) and the breakdown of polyphosphoinositides were assessed. In normal membranes, GTP (greater than or equal to 1 mM), GTP gamma S (greater than 10 microM) and GTP gamma S (1 microM) plus CCh (10 microM), but not GDP or GDP beta S, increased phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and IP3 production. GTP gamma S increased IP3 accumulation in a time- and dose-dependent manner, and CCh, which had no effect on phospholipase C activity in the absence of GTP gamma S, potentiated the effects of GTP gamma S. The effect of CCh plus GTP gamma S on IP3 production was inhibited by atropine, had an absolute requirement for nM amounts of Ca2+ and was not affected by pertussis toxin. At higher concentrations (greater than 1 microM), Ca2+ alone induced PIP2 hydrolysis. Short-term exposure (less than 60 min) of the muscle to CCh (100 microM) did not affect the total number (Bmax) of mAChRs nor their affinity (KD) for [3H]-N-methylscopolamine. Desensitization did, however, result in: (1) a loss of the CCh-high affinity binding state of the sphincter mAChRs in a manner analogous to that produced by GTP gamma S; (2) a loss of the ability of GTP gamma S to affect CCh binding to the receptors; and (3) an attenuation of the GTP gamma S plus CCh-stimulated PIP2 hydrolysis. In conclusion, the data presented suggest that, in the iris smooth muscle, G-proteins are involved in the coupling of mAChRs to phospholipase C and that short-term cholinergic desensitization results in (1) the uncoupling of the receptor-G-protein complex and (2) the attenuation of mAChR-activation of phospholipase C.
Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways.
Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei; Shen, Dan; Dong, Hansong
2016-07-01
Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2 As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. © 2016 American Society of Plant Biologists. All Rights Reserved.
Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways1[OPEN
Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei
2016-01-01
Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2. As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. PMID:26945050
Casting for infantile scoliosis: the pitfall of increased peak inspiratory pressure.
Dhawale, Arjun A; Shah, Suken A; Reichard, Samantha; Holmes, Laurens; Brislin, Robert; Rogers, Kenneth; Mackenzie, William G
2013-01-01
Serial cast correction is a popular treatment option for progressive infantile scoliosis. Body casting can lead to chest and abdominal expansion restriction and result in decreased chest wall compliance. There are no studies evaluating the effects of casting on ventilation in infantile scoliosis. This study examines changes in peak inspiratory pressure (PIP) during serial casting for infantile scoliosis. We retrospectively reviewed data obtained from 37 serial Cotrel elongation, derotation, and flexion cast corrections in patients with infantile scoliosis. Patient demographics, radiographic measurements, and anesthesia data were recorded. Anesthesia technique was standardized: children were intubated with rigid endotracheal tubes (ETTs); tidal volume was held constant at 8 to 10 cm(3)/kg using volume control ventilation; and PIP was recorded at baseline, after cast application before window cutout, and after window cutout before extubation. Any complications were documented. We assessed the PIP changes with a repeated measures analysis of variance (ANOVA). The mean age at first casting was 21.8 months (range, 12 to 42 mo) and mean follow-up since first casting was 22.4 months (range, 13 to 40 mo) with mean major Cobb angle of 53±15 degrees. The mean PIP was 15.5±4.9 cm H(2)O before casting, 31.9±7.9 cm H(2)O after cast application, and 20.4±5.6 cm H2O after making windows. There was a 106% increase after casting and 32% increase after window cutout from the baseline PIP levels. There was a significant difference in PIP on repeated measures ANOVA (P<0.0001). Intraoperatively, there was difficulty in maintaining ventilation during 2 procedures and 1 hypotensive episode. One patient developed hypoxemia after casting and another had delayed difficulty in breathing. Casting resulted in an increased PIP due to transient restrictive pulmonary process; after windows were cut out, the PIP reduced but not to baseline. In patients with underlying pulmonary disease, the casting process may induce respiratory complications, and a proper period of observation after casting is necessary. Case series, level 4.
Improved C/SiC Ceramic Composites Made Using PIP
NASA Technical Reports Server (NTRS)
Easler, Timothy
2007-01-01
Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber reinforcement in a material of this type can be in any of several alternative forms, including tow, fabric, or complex preforms containing fibers oriented in multiple directions.
Qiao, Jing; Alali, Walid Q; Liu, Jiangshan; Wang, Yaping; Chen, Sheng; Cui, Shenghui; Yang, Baowei
2018-04-01
Extended-spectrum β-lactamases (ESBLs)-producing Salmonella is a tremendous hazard to food safety and public health. The objective of this study was to determine the prevalence of 30 virulence genes (avrA, sipA, sseC, marT, rhuM, siiE, pipA, pipD, envR, gogB, gtgA, sodC1, sseI, irsA, sopE2, spvC, rck, spvR, fhuA, msgA, pagK, srfj, stkc, fimA, lpfD, pefA, stcC, steB, stjB, and tcfA) in 156 ESBLs-producing Salmonella isolates that belonged to 21 serotypes. These isolates were recovered from retail raw chicken samples collected from 5 provinces and 2 national cities in China between 2007 and 2012. The results indicated that 154 (98.7%) ESBLs-producing Salmonella isolates carried at least 1 virulence gene, 138 (88.5%) simultaneously carried at least 5 virulence genes, 107 (68.6%) carried 10 or more, and 20 (12.8%) carried 15 or more virulence genes. The most frequently detected virulence genes were marT (n = 127, 81.4%), siiE (n = 126, 80.8%), msgA (n = 121, 77.6%), and sipA (n = 121, 77.6%). Significant difference was identified between detection percentages of virulence genes of rhuM, pipD, envR, sopE2, pagK, lpfD, steB, and stjB in S. Indiana, S. Thompson, S. Enteritidis, S. Typhimurium, S. Shubra, S. Edinburg, and S. Agona isolates. Distribution of virulence genes were significantly influenced by sampling districts (P < 0.01), especially for sodC1 and pipD, and then were msgA and sopE2. The heatmap showed the frequencies of virulence genes in ESBLs-producing isolates from retail chickens in southern, central, and northern regions of China were completely different from each other. Based on our findings, ESBLs-producing Salmonella of retail chicken origin were common carriers of multiple virulence genes and were regionally distributed. © 2018 Institute of Food Technologists®.
Corbett, Blythe A; Muscatello, Rachael A; Blain, Scott D
2016-01-01
For many children with Autism Spectrum Disorder (ASD), social interactions can be stressful. Previous research shows that youth with ASD exhibit greater physiological stress response during peer interaction, compared to typically developing (TD) peers. Heightened sensory sensitivity may contribute to maladaptive patterns of stress and anxiety. The current study investigated between-group differences in stress response to peer interaction, as well as the role of sensory sensitivity. Participants included 80 children (40 ASD) between 8 and 12 years. Children participated in the peer interaction paradigm (PIP), an ecologically valid protocol that simulates real-world social interaction. Salivary cortisol was collected before and after the 20 min PIP. Parents completed questionnaires pertaining to child stress (Stress Survey Schedule) and sensory sensitivity (Short Sensory Profile). Statistical analyses included t-tests and ANCOVA models to examine between-group differences in cortisol and play; Pearson correlations to determine relations between cortisol, play, and questionnaire scores; and moderation analyses to investigate interactions among variables. Controlling for baseline cortisol values, children with ASD showed significantly higher cortisol levels than TD peers, in response to the PIP [F (1, 77) = 5.77, p = 0.02]. Cortisol during play was negatively correlated with scores on the SSP (r = -0.242, p = 0.03), and positively correlated with SSS (r = 0.273, p = 0.02) indicating that higher cortisol was associated with greater sensory sensitivity (lower SSP reflects more impairment) and enhanced stress in various contexts (higher SSS reflects more stress). Furthermore, diagnosis was a significant moderator of the relation between cortisol and SSP, at multiple time points during the PIP (p < 0.05). The current study extends previous findings by showing that higher physiological arousal during play is associated with heightened sensory sensitivity and a pattern of increased stress in various contexts. RESULTS are discussed in a broader context, emphasizing the need to examine relationships between social, behavioral, and physiological profiles in ASD to enhance understanding and improve treatments aimed at ameliorating stress and sensory dysfunction, while enhancing social skills.
Tips for Plant-Incorporated Protectant (PIP) Experimental Use Permit (EUP) Program Submission
Includes information to include in program description and final program report, recommendations for calculating acreage, use of seed produced under PIP EUPs, consultation with Biopesticides and Pollution Prevention Division.
Photoinduced phase separation with local structural ordering in organic molecular conductors
NASA Astrophysics Data System (ADS)
Tsuchiya, S.; Nakagawa, K.; Yamada, J.; Taniguchi, H.; Toda, Y.
2017-10-01
In this work, polarized pump-probe spectroscopy was carried out to investigate the effects of a structural ordering of molecules on photoinduced phase separation (PIPS) in the organic conductors κ -(BEDT-TTF ) 2X [X =Cu [N (CN) 2]Br (κ -B r ) and Cu (NCS) 2 (κ -NCS)]. We found that the anisotropic response for the probe polarization appeared at around Tg, where the glasslike structural transition occurs. The anisotropy can be a result of a transient destruction of the local ordering of molecules, indicating a connection between the glasslike transition and PIPS. Moreover, we found that the PIPS response gradually develops with decreasing temperature in κ -Br, whereas it steeply increases in κ -NCS. This qualitative difference suggests that the structural ordering caused by a PIPS is more crucial in κ -NCS than in κ -Br.
Is the European pediatric medicine regulation working for children and adolescents with cancer?
Vassal, Gilles; Geoerger, Birgit; Morland, Bruce
2013-03-15
The European Pediatric Medicine Regulation was launched in 2007 to provide better medicines for children. Five years later, the number of new anticancer drugs in early development in the pediatric population remains low, and most children with cancer are still largely denied access to innovative drugs in Europe, as compared with the United States. We analyzed individual pediatric investigation plan (PIP) and waiver decisions for oncology drugs and all oncology drugs that have been approved for marketing authorization since 2007 in Europe. Among the 45 approved PIPs, 33% concern leukemias and lymphomas, 29% solid tumors, 13% brain tumors, and 20% a drug for supportive care. No specific PIP exists for life-threatening diseases such as high-risk neuroblastoma, whereas there are several PIPs in extremely rare malignancies in children and adolescents such as gastrointestinal stromal tumor, melanoma, thyroid cancer, and chronic myeloid leukemia. This paradoxical situation is due to approval of a PIP being driven by the adult indication. Twenty-six of 28 authorized new oncology drugs have a potentially relevant mechanism of action for pediatric malignancies, but 50% have been waived because the adult condition does not occur in children. The most striking example is crizotinib. Implementation of the pediatric regulation should no longer be driven by the adult indication but should be guided instead by the biology of pediatric tumors and the mechanism of action of a drug. This change will be achievable through voluntary PIPs submitted by Pharma or revocation of the oncology class waiver list.
Leduey, Alexandre; Mazouni, Chafika; Leymarie, Nicolas; Alkhashnam, Heba; Sarfati, Benjamin; Garbay, Jean-Rémi; Gaudin, Amélie; Kolb, Frédéric; Rimareix, Françoise
2015-01-01
Background. In March 2010, ANSM (Agence Nationale de Sécurité du Medicament), the French Medical Regulatory Authority, withdrew Poly Implant Prothèse (PIP) breast implants from the market due to the use of non-medical-grade silicone gel. The aim of this study was to compare the removal rate (and reasons thereof) of breast implants produced by different manufacturers before the ANSM alert. Materials and Methods. From October 2006 to January 2010, 652 women received 944 implants after breast cancer surgery at the Gustave Roussy Comprehensive Cancer Center, Paris (France). The complications and removal rates of the different implant brands used (PIP, Allergan, and Pérouse) were evaluated and compared. Results. PIP implants represented 50.6% of the used implants, Allergan 33.4%, and Pérouse 16%. The main reasons for implant removal were patient dissatisfaction due to aesthetic problems (43.2%), infection (22.2%), and capsular contracture (13.6%). Two years after implantation, 82% of Pérouse implants, 79% of PIP, and 79% of Allergan were still in situ. There was no difference in removal rate among implant brands. Conclusion. Before the ANSM alert concerning the higher rupture rate of PIP breast implants, our implant removal rate did not predict PIP implant failure related to the use of nonapproved silicone gel.
Leduey, Alexandre; Mazouni, Chafika; Leymarie, Nicolas; Alkhashnam, Heba; Sarfati, Benjamin; Garbay, Jean-Rémi; Gaudin, Amélie; Kolb, Frédéric; Rimareix, Françoise
2015-01-01
Background. In March 2010, ANSM (Agence Nationale de Sécurité du Medicament), the French Medical Regulatory Authority, withdrew Poly Implant Prothèse (PIP) breast implants from the market due to the use of non-medical-grade silicone gel. The aim of this study was to compare the removal rate (and reasons thereof) of breast implants produced by different manufacturers before the ANSM alert. Materials and Methods. From October 2006 to January 2010, 652 women received 944 implants after breast cancer surgery at the Gustave Roussy Comprehensive Cancer Center, Paris (France). The complications and removal rates of the different implant brands used (PIP, Allergan, and Pérouse) were evaluated and compared. Results. PIP implants represented 50.6% of the used implants, Allergan 33.4%, and Pérouse 16%. The main reasons for implant removal were patient dissatisfaction due to aesthetic problems (43.2%), infection (22.2%), and capsular contracture (13.6%). Two years after implantation, 82% of Pérouse implants, 79% of PIP, and 79% of Allergan were still in situ. There was no difference in removal rate among implant brands. Conclusion. Before the ANSM alert concerning the higher rupture rate of PIP breast implants, our implant removal rate did not predict PIP implant failure related to the use of nonapproved silicone gel. PMID:26543648
Karunarathne, W. K. Ajith; Giri, Lopamudra; Patel, Anilkumar K.; Venkatesh, Kareenhalli V.; Gautam, N.
2013-01-01
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein–coupled receptor network control of other cell behaviors. PMID:23569254
Karunarathne, W K Ajith; Giri, Lopamudra; Patel, Anilkumar K; Venkatesh, Kareenhalli V; Gautam, N
2013-04-23
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein-coupled receptor network control of other cell behaviors.
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Glaser, John A.; Copenhaver, Kenneth L.; May, George
2009-01-01
In recent years, the use of Plant Incorporated Protectant (PIP) corn by American producers has been increasing dramatically. PIP corn contains genetically inserted traits that produce toxins in the plant that provide narrowly targeted protection against specific insect pests. The plant producing t oxms can offer significant reductions in the application of broad -spectrum pesticides that have ecological and human health consequences. PIP corn as a percentage of total corn acreage planted in the US is expected to continue to increase as these protective traits are "stacked" with other desirable traits by seed companies, and producers are seeing considerable increases in corn yield as a result. The introduction of corn as a bio-fuel source for ethanol has increased production by over 6 million hectares in 2007. The United States Environmental Protection Agency (USEPA), which is responsible for the registration of PIP crops under the Federal Insecticide, Fungicide and Rodenticide Act, views the use of PIP corn as positive. Broad spectrum pesticide use has declined since the PIP traits have been introduced. As the agricultural landscape sees a higher percentage of corn acres using the PIP technology, the risk of the targeted insect pest populations developing resistance to the toxins, thereby rendering the in will increase as well. This result would negate the effectiveness of the PIP corn traits and could reduce production of a US field corn crop valued at $33 billion dollars in 2006 and place US food and now energy security at risk. Concerns over insect pest resistance development to PIP traits have led the USEPA to team with NASA and the Institute for Technology Development (ITD) to develop geo-spatial technologies designed to proactively monitor the corn production landscape for insect pest infestation and possible resistance development. USEPA resistance management simulation models are combined with NASA remote sensi ng products to monitor the corn landscape for resistance development. The two agencies have entered into an agreement which could potentially lead to the development of next generation NASA sensors that will more specifically address the requirements of the USEPA's resistance development strategy and offer opportunities to study the ever changing ecosystem complexities. The USEPA/NASA/ITD team has developed a broad research project entitled CERES (Crop Evaluation Research for Environmental Strategies). CERES is a research effort leading to decision support system tools that are designed to integrate multi-resolution NASA remote sensing data products and USEPA geo -spatial models to monitor the potential for insect pest resistance development from the regional to the landscape and then to the field level.
Coleman, Stephen; Gilpin, David; Kaplan, F Thomas D; Houston, Anthony; Kaufman, Gregory J; Cohen, Brian M; Jones, Nigel; Tursi, James P
2014-01-01
To assess the safety and efficacy of 2 concurrent injections of collagenase clostridium histolyticum (CCH) in the same hand to treat multiple Dupuytren flexion contractures. In a multicenter, open-label phase IIIb study, 60 patients received two 0.58-mg CCH doses injected into cords affecting 2 joints in the same hand during 1 visit, followed by finger extension approximately 24 hours later. Efficacy at postinjection day 30 (change in flexion contracture and active range of motion, patient satisfaction, physician-rated improvement, and rates of clinical success [flexion contracture 5° or less]) and adverse events were summarized. The concurrent injections were most commonly administered in cords affecting metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints on the same finger (47%) or 2 MCP joints on different fingers of the same hand (37%). Mean total (sum of the 2 treated joints) flexion contracture decreased 76%, from 87° to 24° (MCP joints: 86%; PIP joints: 66%). Mean total range of motion increased from 100° to 161°. Clinical success was 76% for MCP joints and 33% for PIP joints. Most patients were very satisfied (60%) or quite satisfied (28%) with treatment. Most investigators rated treated joints as very much improved (55%) or much improved (37%). The most common treatment-related adverse events (> 75% of patients) were contusion, pain in extremity, and edema peripheral (local edema). Most adverse events were mild to moderate in severity. Serious complications included 1 pulley rupture related to study medication and 1 flexor tendon rupture (following conclusion of the study). There were no systemic complications. Results suggest that 2 affected joints can be effectively and safely treated with concurrent CCH injections. There was an increased incidence of some adverse events with concurrent treatment (pruritus, lymphadenopathy, blood blister, and skin laceration) compared with treatment of a single joint. High degrees of patient satisfaction and physician-rated improvement were reported. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J
2012-12-15
The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.
Carbon dioxide and water transport through plant aquaporins.
Groszmann, Michael; Osborn, Hannah L; Evans, John R
2017-06-01
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO 2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO 2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency. © 2016 John Wiley & Sons Ltd.
Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja
2015-10-14
Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.
Structural study of salt forms of amides; paracetamol, benzamide and piperine
NASA Astrophysics Data System (ADS)
Kennedy, Alan R.; King, Nathan L. C.; Oswald, Iain D. H.; Rollo, David G.; Spiteri, Rebecca; Walls, Aiden
2018-02-01
Single crystal x-ray diffraction has been used to investigate the structures of six complexes containing O-atom protonated cations derived from the pharmaceutically relevant amides benzamide (BEN), paracetamol (PAR) and piperine (PIP). The structures of the salt forms [PAR(H)][SO3C6H4Cl], [BEN(H)][O3SC6H4Cl] and [BEN(H)][Br]·H2O are reported along with those of the hemi-halide salt forms [PAR(H)][I3]. PAR, [PIP(H)][I3]·PIP and [PIP(H)][I3]0·5[I]0.5. PIP. The structure of the cocrystal BEN. HOOCCH2Cl is also presented for comparison. The geometry of the amide group is found to systematically change upon protonation, with the Cdbnd O distance increasing and the Csbnd N distance decreasing. The hemi-halide species all feature strongly hydrogen bonded amide(H)/amide pairs. The amide group Cdbnd O and Csbnd N distances for both elements of each such pair are intermediate between those found for simple neutral amide and protonated amide forms. It was found that crystallising paracetamol from aqueous solutions containing Ba2+ ions gave orthorhombic paracetamol.
Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng
2015-01-01
We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828
Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng
2016-01-01
We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy.
Decarboxylation of bovine prothrombin fragment 1 and prothrombin.
Tuhy, P M; Bloom, J W; Mann, K G
1979-12-25
Bovine prothrombin fragment 1 and prothrombin undergo decarboxylation of their gamma-carboxyglutamic acid residues when the lyophilized proteins are heated in vacuo at 110 degrees C for several hours. The fully decarboxylated fragment 1 product has lost its barium-binding ability as well as the calcium-binding function which causes fluorescence quenching in the presence of 2 mM Ca2+. There is no sign of secondary structure alteration in solution upon analysis by fluorescence emission and circular dichroic spectroscopy. A family of partially decarboxylated fragment 1 species generated by heating for shorter periods shows that the initial decrease in calcium-binding ability occurs almost twice as rapidly as the loss of gamma-carboxyglutamic acid. This is consistent with the idea that differential functions can be ascribed to the 10 gamma-carboxyglutamic acid residues in fragment 1, including both high- and low-affinity metal ion binding sites. Prothrombin itself also undergoes total decarboxylation without any apparent alteration in secondary structure. However, in this case the latent thrombin activity is progressively diminished during the heating process in terms of both clotting activity and hydrolysis of the amide substrate H-D-Phe-Pip-Arg-pNA. The present results indicate that in vitro decarboxylation of gamma-carboxyglutamic acid in dried proteins is useful for analyzing the detailed calcium-binding proteins of vitamin K dependent coagulation factors.
76 FR 55656 - Notice of Submission for OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
... Administration (RSA) approval a program improvement plan (PIP) using the on-line form located on the RSA...(c), RSA reviews an agency's progress toward achieving the goals established in the PIP. For this...
Plant-Incorporated Protectants Data Symposium
EPA held a public symposium on data that support registration of plant incorporated protectants (PIPs). It provided firsthand information on the scope of the scientific review process regarding the safety of PIPs and on the pesticide registration process.
PIP-II Cryogenic System and the Evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-01-01
PIP-II cryogenic system: Superfluid Helium Cryogenic Plant (SHCP) and Cryogenic Distribution System (CDS) connecting the SHCP and the SC Linac (25 cryomodules) PIP-II Cryogenic System Static and dynamic heat loads for the SC Linac and static load of CDS listed out Simulation study carried out to compute SHe flow requirements for each cryomodule Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation presented From computed heat load and pressure drop values, SHCP basic specifications evolved.
Dokter, Andrea; Horst, Brigitte
2014-09-01
Developing a Program Impact Pathways (PIP) diagram helps identify and clarify the key objectives, processes, activities, and evaluation indicators of school-based nutrition programs. The Mondelēz International Foundation has recently supported the development of PIP analyses for programs in seven countries around the world. The results were shared with other project organizers at a Healthy Lifestyles Program Evaluation Workshop held in Granada, Spain, 13-14 September 2013, under the auspices of the Mondelēz International Foundation. The objectives were to develop the PIP assessment of the Strong and Healthy in Primary School Klasse2000 Program in order to refine the primary, secondary, and tertiary objectives of the program; identify Critical Quality Control Points (CCPs); and identify core indicators of the program's impact on healthy lifestyles. The PIP report was developed based on detailed instructions provided prior to the workshop, taking into account the Klasse2000 Program evaluation reports. The following CCPs were identified: monitoring the qualifications and motivation of teaching staff (external health promoters and schoolteachers); assessing involvement of the students' environmental influences, including families, schools, and sponsors; and assessing the children's healthy lifestyle knowledge, attitudes, and behaviors before and after program exposure. The healthy lifestyle indicators identified were children's knowledge of healthy diets and health-enhancing physical activities; the availability of healthy breakfast and snacks; the frequency of consumption of fruits, vegetables, sweetened and unsweetened drinks,fast food, and sweets, as well as attitudes toward physical activity; and the frequency and extent of physical activity in school and during free time. Body mass index (BMI) was identified as the final outcome indicator. Developing a PIP report helped to focus the objectives of the program. Identifying CCPs helped draw attention to the processes linking critical program activities. As a result, plans for the upcoming school year include conducting a PIP-informed survey of participating parents and children to gauge their satisfaction with the program.
Zhu, Xiaofei; Yin, Xingzhe; Chang, Jeffrey W.W.; Wang, Yu; Cheung, Gary S.P.
2013-01-01
Abstract Objective: The Er:YAG laser with photon-induced photoacoustic streaming (PIPS) technique was reported to be effective in root canal disinfection. This study attempted to further investigate the antibacterial efficacy and smear layer removal ability of PIPS in comparison with conventional syringe irrigation in vitro. Methods: For antibacterial analysis, 48 single-rooted human teeth were prepared and inoculated with Enterococcus faecalis, and then divided into six groups of eight roots each. The colony-forming units (CFUs) per milliliter were determined after infection as the baseline. Then, the teeth were subjected to either PIPS plus 3% sodium hypochlorite (PIPS+NaOCl) or conventional syringe irrigation with 0.9% saline, 3% NaOCl, 17% ethylenediaminetetraacetic acid (EDTA), 0.2% chlorhexidine gluconate (CHX), or 3% NaOCl alternating with 17% EDTA. The reduction of CFUs in the individual group was determined. Additionally, scanning electron microscopy (SEM) examination of the canal walls for E. faecalis colonization was performed. For comparing the smear removal efficacy, another 48 single-rooted teeth, assigned to different groups as mentioned, were irrigated after mechanical instrumentation. The presence of a smear layer at different levels of the root canal was scored by SEM examination. Results: No significant differences were found in CFU reduction. No bacteria could be observed by SEM in the NaOCl, NaOCl+EDTA, and PIPS+NaOCl groups. The scores of smear layer of the NaOCl+EDTA and PIPS+NaOCl groups were significantly lower than those of the other groups in the coronal and middle third of the root canal. None of the methods can effectively remove smear layer in the apical third. Conclusions: PIPS system supplied with NaOCl and conventional syringe irrigation with NaOCl+EDTA are comparable in their ability to remove E. faecalis and smear layer in single-rooted canals. PMID:23863104
Roles of Plasmalemma Aquaporin Gene StPIP1 in Enhancing Drought Tolerance in Potato
Wang, Li; Liu, Yuhui; Feng, Shoujiang; Yang, Jiangwei; Li, Dan; Zhang, Junlian
2017-01-01
Survival and mortality of plants in response to severe drought may be related to carbon starvation, but little is known about how plasma membrane intrinsic proteins may help alleviate the drought-induced damage. Here, we determined the roles of plasmalemma aquaporin gene in improving plant water status, maintaining carbon accumulation, and thereby enhancing drought tolerance. Seven StPIP1 transformed potato (Solanum tuberosum L.) lines (namely T1, T2…T7) were compared with non-transgenic control plant at molecule and whole-plant levels. The relative expression of StPIP1 gene was found in leaves, stems and roots, with the most abundant expression being in the roots. The transgenic lines T6 and T7 had the highest StPIP1 expression, averaging 7.2 times that of the control and the greatest differences occurred 48 h after mannitol osmotic stress treatment. Using an evaluation index to quantifying the degree of drought tolerance, we found that the StPIP1 transgenic lines T6 and T7 had the highest drought tolerance, averaging 8.5 times that of the control. Measured at 30 days in drought stress treatment, the control plant decreased net photosynthetic rate by 33 and 56%, respectively, under moderate and severe stresses; also decreased stomatal conductance by 39 and 65%; and lowered transpiration rate by 49 and 69%, compared to the no-stress treatment, whereas the transgenic lines T6 and T7 maintained a relatively stable level with slight decreases in these properties. The constitutive overexpression of StPIP1 in potato improved plant water use efficiency and increased nonstructural carbohydrate concentration, which helped alleviate carbon starvation and minimized the loss of biomass and tuber yield due to drought stress. We conclude that the expression of StPIPs improves overall water relations in the plant and helps maintain photosynthesis and stomatal conductance; these help minimize carbon starvation and enhance the whole plant tolerance to drought stress. PMID:28487712
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Albert F., E-mail: wagner@anl.gov; Dawes, Richard; Continetti, Robert E.
The measured H(D)OCO survival fractions of the photoelectron-photofragment coincidence experiments by the Continetti group are qualitatively reproduced by tunneling calculations to H(D) + CO{sub 2} on several recent ab initio potential energy surfaces for the HOCO system. The tunneling calculations involve effective one-dimensional barriers based on steepest descent paths computed on each potential energy surface. The resulting tunneling probabilities are converted into H(D)OCO survival fractions using a model developed by the Continetti group in which every oscillation of the H(D)-OCO stretch provides an opportunity to tunnel. Four different potential energy surfaces are examined with the best qualitative agreement with experimentmore » occurring for the PIP-NN surface based on UCCSD(T)-F12a/AVTZ electronic structure calculations and also a partial surface constructed for this study based on CASPT2/AVDZ electronic structure calculations. These two surfaces differ in barrier height by 1.6 kcal/mol but when matched at the saddle point have an almost identical shape along their reaction paths. The PIP surface is a less accurate fit to a smaller ab initio data set than that used for PIP-NN and its computed survival fractions are somewhat inferior to PIP-NN. The LTSH potential energy surface is the oldest surface examined and is qualitatively incompatible with experiment. This surface also has a small discontinuity that is easily repaired. On each surface, four different approximate tunneling methods are compared but only the small curvature tunneling method and the improved semiclassical transition state method produce useful results on all four surfaces. The results of these two methods are generally comparable and in qualitative agreement with experiment on the PIP-NN and CASPT2 surfaces. The original semiclassical transition state theory method produces qualitatively incorrect tunneling probabilities on all surfaces except the PIP. The Eckart tunneling method uses the least amount of information about the reaction path and produces too high a tunneling probability on PIP-NN surface, leading to survival fractions that peak at half their measured values.« less
Revision Proximal Interphalangeal Arthroplasty: An Outcome Analysis of 75 Consecutive Cases.
Wagner, Eric R; Luo, T David; Houdek, Matthew T; Kor, Daryl J; Moran, Steven L; Rizzo, Marco
2015-10-01
To examine the outcomes and complications associated with revision proximal interphalangeal (PIP) joint arthroplasty. An analysis of 75 consecutive revision PIP joint arthroplasties in 49 patients, performed between 1998 to 2012, was performed. The mean age at the time of surgery was 58 years. Thirty-two patients had a history of prior PIP joint trauma, and 18 patients had rheumatoid arthritis. There were 12 constrained (silicone) implants and 63 nonconstrained implants (34 pyrocarbon and 29 metal-plastic). Over the 14-year period, 19 (25%) fingers underwent a second revision surgery. Second revision surgeries were performed for infection, instability, flexion contracture, and heterotopic ossification. The 2-, 5-, and 10-year survival rates were 80%, 70%, and 70%, respectively, for patients requiring a second revision for PIP joint arthroplasty. Worse outcomes were seen with postoperative dislocations, pyrocarbon implants, and when bone grafting was required. Two operations were complicated by intraoperative fractures, but neither required stabilization. Sixteen patients undergoing revision surgery experienced a postoperative complication, including 2 infections, 1 postoperative fracture, 3 cases of heterotopic ossification, and 10 PIP joint dislocations. The volar approach and the use of a pyrocarbon implant was associated with increased rates of heterotopic ossification, whereas preoperative instability increased the rates of PIP joint dislocation following revision. At a mean of 5.3 years (range, 2-10 years) follow-up, 98% of patients had good pain relief but decreased PIP joint total arc of motion. Proximal interphalangeal joint arthroplasty in the revision setting represents a challenge for surgeons. Revision arthroplasty was associated with a 70% 5-year survival but with a high incidence of complications. Instability was associated with worse outcomes. In this series, silicone and metal-polyethylene implants had lower rates of implant failure and postoperative complications than ones made from pyrocarbon. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Kaska, Milan; Havel, Eduard; Selke-Krulichova, Iva; Safranek, Petr; Bezouska, Jan; Martinkova, Jirina
2018-03-27
Critically ill patients undergoing aggressive fluid resuscitation and treated empirically with hydrosoluble time-dependent beta-lactam antibiotics are at risk for sub-therapeutic plasma concentrations. The aim of this study was to assess the impact of two covariates - creatinine clearance (Cl cr ) and cumulative fluid balance (CFB) on pharmacokinetics/pharmacodynamics (PK/PD) target attainment within a week of treatment with meropenem (ME) or piperacillin/tazobactam (PIP/TZB). In this prospective observational pharmacokinetic (PK) study, 18 critically ill patients admitted to a surgical Intensive Care Unit (ICU) were enrolled. The primary PK/PD target was free antibiotic concentrations above MIC at 100% of the dosing interval (100%fT>MIC) to obtain maximum bactericidal activity. Drug concentration was measured using liquid chromatography-tandem mass spectrometry. The treatment of both 8 septic patients with IV extended ME dosing 2 g/3 h q8 h and 10 polytraumatized patients with IV intermittent PIP/TZB dosing 4.0/0.5 g q8 h was monitored. 8/18 patients (44%) manifested augmented renal clearence (ARC) where Cl cr ≥130 mL/min/1.73m 2 . Maximum changes were reported on days 2-3: the median positive CFB followed by the large median volume of distribution: Vd me =70.3 L (41.9-101.5), Vd pip = 46.8 L (39.7-60.0). 100%fT me >MIC was achieved in all patients on ME (aged ≥60 years), and only in two patients (non-ARC, aged ≥65 years) out of 10 on PIP/TZB. A mixed model analysis revealed positive relationship of CFB pip with Vd pip (P=0.021). Assuming that the positive correlation between CFB and Vd exists for piperacillin in the setting of the pathological state, then CFB should predict Vd pip across subjects at each and every time point.
Origin of Enantioselectivity in CF3-PIP-Catalyzed Kinetic Resolution of Secondary Benzylic Alcohols
Li, Ximin; Liu, Peng; Houk, K. N.; Birman, Vladimir B.
2009-01-01
Computational studies provide support for the involvement of intermolecular π–interactions in the chiral recognition of secondary benzylic alcohols by the enantioselective acyl transfer catalyst CF3-PIP. PMID:18817392
Wozniak, Chris A; Martinez, Jeannette C
2011-06-08
The U.S. Environmental Protection Agency licenses pesticide-expressing plants under the authority of the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). Transgenes and their pesticidal products represent pesticides under FIFRA and are referred to as plant-incorporated protectants (PIPs). When sexually compatible wild relatives (SCWR) are sympatric with PIP crops, there is a need to assess the potential for adverse effects to man and the environment resulting from transgene introgression in accord with FIFRA requirements. Genetic compatibility, introgression, weediness of SCWR × PIP hybrids, seed dispersal, and dormancy, among other parameters, as well as effects on other species (herbivores and beneficial insects), all need to be considered as part of the risk assessment for experimental use under Section 5 or registration under Section 3 of FIFRA. EPA is currently developing data requirements and guidance toward addressing potential gene flow impacts from PIPs.
Surgical Approaches to the Proximal Interphalangeal Joint.
Cheah, Andre Eu-Jin; Yao, Jeffrey
2016-02-01
The proximal interphalangeal (PIP) joint may be affected by many conditions such as arthropathy, fractures, dislocations, and malunions. Whereas some of these conditions may be treated nonsurgically, many require open surgical intervention. Open interventions include implant arthroplasty or arthrodesis for arthropathy, open reduction internal fixation, or hemi-hamate arthroplasty for dorsal fracture-dislocations. Volar plate arthroplasty and corrective osteotomy for malunion about the PIP joint are also surgeries that may be required. The traditional approach to the PIP joint has been dorsal, which damages the delicate extensor apparatus with subsequent development of an extensor lag. This has led surgeons to explore volar and lateral approaches to the PIP joint. In this article, we describe each of these surgical approaches, discuss their advantages and disadvantages, and provide some guidance on which approach to choose based on the surgery that is to be performed. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bie Haiying; Lu Jing; Yu Jiehui
Three novel thiocyanate supramolecular compounds have been synthesized and characterized by X-ray diffraction and fluorescent spectra. Compound [pipH]{sub 2}[Co(NCS){sub 4}] (pip=piperazine) 1 possesses a two-dimensional layer connected by the combination of N-H...N hydrogen bonds and weak S...S contacts. Under the same conditions, using nickel salt instead of cobalt salt as a starting material, we obtained a different two-dimensional supramolecular layer [pipH]{sub 2}[Ni(NCS){sub 4}] 2 connected by unusual N-H...S hydrogen bonds and weak S...S contacts. In order to observe the influence of the dimension of ligand on the self-assembly structure, dabco was used for substituting pip, and compound [dabcoH]{sub 2}[Ni(NCS){sub 4}]more » (dabco=1,4-Diazabicyclo[2.2.2] octane) 3 was gained, which constructed two-dimensional, highly wavy network with hourglass-shaped cavities only through N-H...S hydrogen bonds.« less
PIP3-independent activation of TorC2 and PKB at the cell’s leading edge mediates chemotaxis
Kamimura, Yoichiro; Xiong, Yuan; Iglesias, Pablo A.; Hoeller, Oliver; Bolourani, Parvin; Devreotes, Peter N.
2008-01-01
Summary Background Studies show that high phosphotidylinositol 3,4,5 tris phosphate (PIP3) promotes cytoskeletal rearrangements and alters cell motility and chemotaxis, possibly through activation of PKBs. However, chemotaxis can still occur in the absence of PIP3 and the identities of the PIP3 independent pathways remain unknown. Results Here, we outline a PIP3-independent pathway linking temporal and spatial activation of PKBs by Tor complex 2 (TorC2) to the chemotactic response. Within seconds of stimulating Dictyostelium cells with chemoattractant, two PKB homologs, PKBA and PKBR1, mediate transient phosphorylation of at least eight proteins, including Talin, PI4P 5-kinase, two RasGefs, and a RhoGap. Surprisingly, all of the substrates are phosphorylated with normal kinetics in cells lacking PI 3-kinase activity. Cells deficient in TorC2 or PKB activity show reduced phosphorylation of the endogenous substrates and are impaired in chemotaxis. The PKBs are activated through phosphorylation of their hydrophobic motifs via TorC2 and subsequent phosphorylation of their activation loops. These chemoattractant-inducible events restricted to the cell’s leading edge even in the absence of PIP3. Activation of TorC2 depends on heterotrimeric G-protein function and intermediate G-proteins, including Ras GTPases. Conclusions The data lead to a model where cytosolic TorC2, encountering locally activated small G-protein(s) at the leading of the cell, becomes activated and phosphorylates PKBs. These in turn phosphorylate a series of signaling and cytoskeletal proteins, thereby regulating directed migration. PMID:18635356
Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern.
Peevy, K J; Hernandez, L A; Moise, A A; Parker, J C
1990-06-01
To study the pulmonary microvascular injury produced by ventilation barotrauma, the isolated perfused lungs of 4 to 6-wk-old New Zealand white rabbits were ventilated by one of the following methods: peak inspiratory pressure (PIP) 23 cm H2O, gas flow rate 1.1 L/min (group 1); PIP 27 cm H2O, gas flow rate 6.9 L/min (group 2); PIP 50 cm H2O, gas flow rate 1.9 L/min (group 3); or PIP 53 cm H2O, gas flow rate 8.3 L/min (group 4). Microvascular permeability was assessed using the capillary filtration coefficient (Kfc) before and 5, 30, and 60 min after a 15-min period of ventilation. Baseline Kfc was not significantly different between groups. A significant increase over the baseline Kfc was noted at 60 min in group 2 and in all postventilation Kfc values in groups 3 and 4 (p less than .05). Group 1 Kfc values did not change significantly after ventilation. At all post-ventilation times, values for Kfc were significantly greater in groups 3 and 4 than in group 1 (p less than .05). Group 4 Kfc values were significantly greater than those in group 2 at 5 and 30 min postventilation. These data indicate that high PIP, and to a lesser extent, high gas flow rates cause microvascular injury in the compliant nonadult lung and suggest that the combination of high PIP and high gas flow rates are the most threatening to microvascular integrity.
Chang, Hao-Xun; Yendrek, Craig R; Caetano-Anolles, Gustavo; Hartman, Glen L
2016-07-12
Plant cell wall degrading enzymes (PCWDEs) are a subset of carbohydrate-active enzymes (CAZy) produced by plant pathogens to degrade plant cell walls. To counteract PCWDEs, plants release PCWDEs inhibitor proteins (PIPs) to reduce their impact. Several transgenic plants expressing exogenous PIPs that interact with fungal glycoside hydrolase (GH)11-type xylanases or GH28-type polygalacturonase (PG) have been shown to enhance disease resistance. However, many plant pathogenic Fusarium species were reported to escape PIPs inhibition. Fusarium virguliforme is a soilborne pathogen that causes soybean sudden death syndrome (SDS). Although the genome of F. virguliforme was sequenced, there were limited studies focused on the PCWDEs of F. virguliforme. Our goal was to understand the genomic CAZy structure of F. viguliforme, and determine if exogenous PIPs could be theoretically used in soybean to enhance resistance against F. virguliforme. F. virguliforme produces diverse CAZy to degrade cellulose and pectin, similar to other necrotorphic and hemibiotrophic plant pathogenic fungi. However, some common CAZy of plant pathogenic fungi that catalyze hemicellulose, such as GH29, GH30, GH44, GH54, GH62, and GH67, were deficient in F. virguliforme. While the absence of these CAZy families might be complemented by other hemicellulases, F. virguliforme contained unique families including GH131, polysaccharide lyase (PL) 9, PL20, and PL22 that were not reported in other plant pathogenic fungi or oomycetes. Sequence analysis revealed two GH11 xylanases of F. virguliforme, FvXyn11A and FvXyn11B, have conserved residues that allow xylanase inhibitor protein I (XIP-I) binding. Structural modeling suggested that FvXyn11A and FvXyn11B could be blocked by XIP-I that serves as good candidate for developing transgenic soybeans. In contrast, one GH28 PG, FvPG2, contains an amino acid substitution that is potentially incompatible with the bean polygalacturonase-inhibitor protein II (PvPGIP2). Identification and annotation of CAZy provided advanced understanding of genomic composition of PCWDEs in F. virguliforme. Sequence and structural analyses of FvXyn11A and FvXyn11B suggested both xylanases were conserved in residues that allow XIP-I inhibition, and expression of both xylanases were detected during soybean roots infection. We postulate that a transgenic soybean expressing wheat XIP-I may be useful for developing root rot resistance to F. virguliforme.
EPA Registers Innovative Tool to Control Corn Rootworm
Ribonucleic acid interference (RNAi) based Plant Incorporated Protectant (PIP) technology is a new and innovative scientific tool utilized by U.S. growers. Learn more about RNAi technology and the 4 new products containing the RNAi based PIP called SMARTST
Research on probabilistic information processing
NASA Technical Reports Server (NTRS)
Edwards, W.
1973-01-01
The work accomplished on probabilistic information processing (PIP) is reported. The research proposals and decision analysis are discussed along with the results of research on MSC setting, multiattribute utilities, and Bayesian research. Abstracts of reports concerning the PIP research are included.
Quiroga, Gabriela; Erice, Gorka; Aroca, Ricardo; Chaumont, François; Ruiz-Lozano, Juan M.
2017-01-01
The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrasting drought sensitivity. This information would help to identify key aquaporin genes involved in the enhanced drought tolerance by the AM symbiosis. Results showed that when plants were subjected to drought stress the AM symbiosis induced a higher improvement of physiological parameters in drought-sensitive plants than in drought-tolerant plants. These include efficiency of photosystem II, membrane stability, accumulation of soluble sugars and plant biomass production. Thus, drought-sensitive plants obtained higher physiological benefit from the AM symbiosis. In addition, the genes ZmPIP1;1, ZmPIP1;3, ZmPIP1;4, ZmPIP1;6, ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, and ZmTIP2;3 were down-regulated by the AM symbiosis in the drought-sensitive cultivar and only ZmTIP4;1 was up-regulated. In contrast, in the drought-tolerant cultivar only three of the studied aquaporin genes (ZmPIP1;6, ZmPIP2;2, and ZmTIP4;1) were regulated by the AM symbiosis, resulting induced. Results in the drought-sensitive cultivar are in line with the hypothesis that down-regulation of aquaporins under water deprivation could be a way to minimize water loss, and the AM symbiosis could be helping the plant in this regulation. Indeed, during drought stress episodes, water conservation is critical for plant survival and productivity, and is achieved by an efficient uptake and stringently regulated water loss, in which aquaporins participate. Moreover, the broader and contrasting regulation of these aquaporins by the AM symbiosis in the drought-sensitive than the drought-tolerant cultivar suggests a role of these aquaporins in water homeostasis or in the transport of other solutes of physiological importance in both cultivars under drought stress conditions, which may be important for the AM-induced tolerance to drought stress. PMID:28674550
Fukumoto, Miki; Ijuin, Takeshi; Takenawa, Tadaomi
2017-05-01
Phosphoinositides play pivotal roles in the regulation of cancer cell phenotypes. Among them, phosphatidylinositol 3,4-bisphosphate (PI(3,4)P 2 ) localizes to the invadopodia, and positively regulates tumor cell invasion. In this study, we examined the effect of PI(3,4)P 2 on focal adhesion dynamics in MDA-MB-231 basal breast cancer cells. Knockdown of SHIP2, a phosphatidylinositol 3,4,5-trisphosphatase (PIP 3 ) 5-phosphatase that generates PI(3,4)P 2 , in MDA-MB-231 breast cancer cells, induced the development of focal adhesions and cell spreading, leading to the suppression of invasion. In contrast, knockdown of PTEN, a 3-phosphatase that de-phosphorylates PIP 3 and PI(3,4)P 2 , induced cell shrinkage and increased cell invasion. Interestingly, additional knockdown of SHIP2 rescued these phenotypes. Overexpression of the TAPP1 PH domain, which binds to PI(3,4)P 2 , and knockdown of Lpd, a downstream effector of PI(3,4)P 2 , resulted in similar phenotypes to those induced by SHIP2 knockdown. Taken together, our results suggest that inhibition of PI(3,4)P 2 generation and/or downstream signaling could be useful for inhibiting breast cancer metastasis. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.
2008-01-01
Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-β-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly highlight the reversible nature of this abnormality. PMID:18165437
The Importance of Soil Protein Fate to PIP Crop Registration
Plant Incorporated Protectant (PIP) crops are registered under the authority of the Federal Insecticide Fungicide and Rodenticide Act (FIFRA) and as part of this registration certain environmental fate information is required to properly judge the environmental compatibility of n...
Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2
NASA Technical Reports Server (NTRS)
Perkey, John K.
1992-01-01
The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.
Preliminary Modelling of Radiation Levels at the Fermilab PIP-II Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lari, L.; Cerutti, F.; Esposito, L. S.
PIP-II is the Fermilab's flagship project for providing powerful, high-intensity proton beams to the laboratory's experiments. The heart of PIP-II is an 800-MeV superconducting linac accelerator. It will be located in a new tunnel with new service buildings and connected to the present Booster through a new transfer line. To support the design of civil engineering and mechanical integration, this paper provides preliminary estimation of radiation level in the gallery at an operational beam loss limit of 0.1 W/m, by means of Monte Carlo calculations with FLUKA and MARS15 codes.
Treating the Proximal Interphalangeal Joint in Swan Neck and Boutonniere Deformities.
Fox, Paige M; Chang, James
2018-05-01
Swan neck and boutonniere deformities of the proximal interphalangeal (PIP) joint are challenging to treat. In a swan neck deformity, the PIP joint is hyperextended with flexion at the distal interphalangeal (DIP) joint. In a boutonniere deformity, there is flexion the PIP joint with hyperextension of the DIP joint. When the deformities are flexible, treatment begins with splinting. However, when the deformity is fixed, serial casting or surgery is often necessary to restore joint motion before surgical correction. Many surgical techniques have been described to treat both conditions. Unfortunately, incomplete correction and deformity recurrence are common. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowling, J.N.; Saha, A.K.; Glew, R.H.
1987-05-01
Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP3) was explored. When neutrophil phosphoinositides were labeled with TSP, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP2) over 2 h. Treatment of (TH)inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP2. Following fMLPmore » stimulation, the fractional reduction in PIP2 and the fractional increase in IP3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP3 was reduced by ACP pre-treatment. The reduction in IP3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP2 available for hydrolysis. However, some loss of IP3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP2, the prognitor of IP3, and by hydrolyzing IP3 itself.« less
Hernández-Sotomayor, S.M. Teresa; De Los Santos-Briones, César; Muñoz-Sánchez, J. Armando; Loyola-Vargas, Victor M.
1999-01-01
The properties of phospholipase C (PLC) partially purified from Catharanthus roseus transformed roots were analyzed using substrate lipids dispersed in phospholipid vesicles, phospholipid-detergent mixed micelles, and phospholipid monolayers spread at an air-water interface. Using [33P]phosphatidylinositol 4,5-bisphosphate (PIP2) of high specific radioactivity, PLC activity was monitored directly by measuring the loss of radioactivity from monolayers as a result of the release of inositol phosphate and its subsequent dissolution on quenching in the subphase. PLC activity was markedly affected by the surface pressure of the monolayer, with reduced activity at extremes of initial pressure. The optimum surface pressure for PIP2 hydrolysis was 20 mN/m. Depletion of PLC from solution by incubation with sucrose-loaded PIP2 vesicles followed by ultracentrifugation demonstrated stable attachment of PLC to the vesicles. A mixed micellar system was established to assay PLC activity using deoxycholate. Kinetic analyses were performed to determine whether PLC activity was dependent on both bulk PIP2 and PIP2 surface concentrations in the micelles. The interfacial Michaelis constant was calculated to be 0.0518 mol fraction, and the equilibrium dissociation constant of PLC for the lipid was 45.5 μm. These findings will add to our understanding of the mechanisms of regulation of plant PLC. PMID:10444091
Beltrán, Aldo G.; Romero, Camilo J.
2016-01-01
Background: The management of contractures and soft tissue defects in the proximal interphalangeal (PIP) finger joint remains a challenge. We report a transposition flap from the lateral skin of the proximal phalanx that is based on perforating branches of the digital arteries and can be used safely for both palmar and dorsal cover defects. Methods: We first completed an anatomic study, dissecting 20 fingers in fresh cadavers with arterial injections and made the new flap in patients with dorsal or palmar defects in PIP joints. Results: In cadavers, we can reveal 4 constant branches from each digital artery in the proximal phalanx, with the more distal just in the PIP joint constituting the flap pedicle. Between February 2010 and February 2015, we designed 33 flaps in 29 patients, 7 for dorsal and 26 for palmar defects, with no instances of flap necrosis and 4 distal epidermolysis. The patients were between 4 and 69 years with no major complications, and all of the skin defects in the PIP joint were resolved satisfactorily without any relevant sequelae at the donor site. Conclusions: This flap procedure is an easy, reliable, versatile, and safe technique, and could be an important tool for the management of difficult skin defects and contractures at the PIP joint level. PMID:28082850
Ferm, Inga; Lightfoot, Guy; Stevens, John
2013-06-01
To evaluate the auditory brainstem response (ABR) amplitudes evoked by tone pip and narrowband chirp (NB CE-Chirp) stimuli when testing post-screening newborns and to determine the difference in estimated hearing level correction values. Tests were performed with tone pips and NB CE-Chirps at 4 kHz or 1 kHz. The response amplitude, response quality (Fmp), and residual noise were compared for both stimuli. Thirty babies (42 ears) who passed our ABR discharge criterion at 4 kHz following referral from their newborn hearing screen. Overall, NB CE-Chirp responses were 64% larger than the tone pip responses, closer to those evoked by clicks. Fmp was significantly higher for NB CE-Chirps. It is anticipated that there could be significant reductions in test time for the same signal to noise ratio by using NB CE-Chirps when testing newborns. This effect may vary in practice and is likely to be most beneficial for babies with low amplitude ABR responses. We propose that the ABR nHL threshold to eHL correction for NB CE-Chirps should be approximately 5 dB less than the corrections for tone pips at 4 and 1 kHz.
Szczepanski, Caroline R.; Pfeifer, Carmem S.; Stansbury, Jeffrey W.
2012-01-01
Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced phase separation (PIPS). PIPS creates networks with distinct phase structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously. The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. Phase separation, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of phase-separated materials, indicating one phase rich in prepolymer and another depleted form upon phase separation. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials. PMID:23109733
The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity.
Li, Guowei; Boudsocq, Marie; Hem, Sonia; Vialaret, Jérôme; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique
2015-07-01
The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins. © 2014 John Wiley & Sons Ltd.
Fujiwara, Yuichiro; Kubo, Yoshihiro
2006-01-01
Phosphoinositides (PIPns) are known to regulate the activity of some ion channels. Here we determined that ATP-gated P2X2 channels also are regulated by PIPns, and investigated the structural background and the unique features of this regulation. We initially used two-electrode voltage clamp to analyse the electrophysiological properties of P2X2 channels expressed in Xenopus oocytes, and observed that preincubation with wortmannin or LY294002, two PI3K inhibitors, accelerated channel desensitization. K365Q or K369Q mutation of the conserved, positively charged, amino acid residues in the proximal region of the cytoplasmic C-terminal domain also accelerated desensitization, whereas a K365R or K369R mutation did not. We observed that the permeability of the channel to N-methyl-d-glucamine (NMDG) transiently increased and then decreased after ATP application, and that the speed of the decrease was accelerated by K365Q or K369Q mutation or PI3K inhibition. Using GST-tagged recombinant proteins spanning the proximal C-terminal region, we then analysed their binding of the P2X2 cytoplasmic domain to anionic lipids using PIPns-coated nitrocellulose membranes. We found that the recombinant proteins that included the positively charged region bound to PIPs and PIP2s, and that this binding was eliminated by the K365Q and K369Q mutations. We also used a fluorescence assay to confirm that fusion proteins comprising the proximal C-terminal region of P2X2 with EGFP expressed in COS-7 cells closely associated with the membrane. Taken together, these results show that membrane-bound PIPns play a key role in maintaining channel activity and regulating pore dilation through electrostatic interaction with the proximal region of the P2X2 cytoplasmic C-terminal domain. PMID:16857707
Asamitsu, Sefan; Obata, Shunsuke; Phan, Anh Tuân; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2018-03-20
A G-quadruplex (quadruplex) is a nucleic acid secondary structure adopted by guanine-rich sequences and is considered to be relevant to various pharmacological and biological contexts. Although a number of researchers have endeavored to discover and develop quadruplex-interactive molecules, poor ligand designability originating from topological similarity of the skeleton of diverse quadruplexes has remained a bottleneck for gaining specificity for individual quadruplexes. This work reports on hybrid molecules that were constructed with dual DNA-binding components, a cyclic imidazole/lysine polyamide (cIKP), and a hairpin pyrrole/imidazole polyamide (hPIP), with the aim toward specific quadruplex targeting by reading out the local duplex DNA sequence adjacent to designated quadruplexes in the genome. By means of circular dichroism (CD), fluorescence resonance energy transfer (FRET), surface plasmon resonance (SPR), and NMR techniques, we showed the dual and simultaneous recognition of the respective segment via hybrid molecules, and the synergistic and mutual effect of each binding component that was appropriately linked on higher binding affinity and modest sequence specificity. Monitoring quadruplex and duplex imino protons of the quadruplex/duplex motif titrated with hybrid molecules clearly revealed distinct features of the binding of hybrid molecules to the respective segments upon their simultaneous recognition. A series of the systematic and detailed binding assays described here showed that the concept of simultaneous recognition of quadruplex and its proximal duplex by hybrid molecules constructed with the dual DNA-binding components may provide a new strategy for ligand design, enabling targeting of a large variety of designated quadruplexes at specific genome locations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koch, Jon D; Jaramillo, David E; DiVito, Enrico; Peters, Ove A
2016-03-01
This study aimed to compare fluid movements generated from photon-induced photoacoustic streaming (PIPS) and passive ultrasonic irrigation (PUI). Particle Image Velocimetry (PIV) was performed using 6-μm melamine spheres in water. Measurement areas were 3-mm-long sections of the canal in the coronal, midroot and apical regions for PIPS (erbium/yttrium-aluminium garnet (Er:YAG) laser set at 15 Hz with 20 mJ), or passive ultrasonic irrigation (PUI, non-cutting insert at 30% unit power) was performed in simulated root canals prepared to an apical size #30/0.04 taper. Fluid movement was analysed directly subjacent to the apical ends of ultrasonic insert or fiber optic tips as well as at midroot and apically. During PUI, measured average velocities were around 0.03 m/s in the immediate vicinity of the sides and tip of the ultrasonic file. Speeds decayed to non-measureable values at a distance of about 2 mm from the sides and tip. During PIPS, typical average speeds were about ten times higher than those measured for PUI, and they were measured throughout the length of the canal, at distances up to 20 mm away. PIPS caused higher average fluid speeds when compared to PUI, both close and distant from the instrument. The findings of this study could be relevant to the debriding and disinfecting stage of endodontic therapy. Irrigation enhancement beyond needle irrigation is relevant to more effectively eradicate microorganisms from root canal systems. PIPS may be an alternative approach due to its ability to create high streaming velocities further away from the activation source compared to ultrasonic activation.
Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R
2013-10-01
Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fisher, L. E.; Lynch, K. A.; Fernandes, P. A.; Bekkeng, T. A.; Moen, J.; Zettergren, M.; Miceli, R. J.; Powell, S.; Lessard, M. R.; Horak, P.
2016-04-01
The interpretation of planar retarding potential analyzers (RPA) during ionospheric sounding rocket missions requires modeling the thick 3D plasma sheath. This paper overviews the theory of RPAs with an emphasis placed on the impact of the sheath on current-voltage (I-V) curves. It then describes the Petite Ion Probe (PIP) which has been designed to function in this difficult regime. The data analysis procedure for this instrument is discussed in detail. Data analysis begins by modeling the sheath with the Spacecraft Plasma Interaction System (SPIS), a particle-in-cell code. Test particles are traced through the sheath and detector to determine the detector's response. A training set is constructed from these simulated curves for a support vector regression analysis which relates the properties of the I-V curve to the properties of the plasma. The first in situ use of the PIPs occurred during the MICA sounding rocket mission which launched from Poker Flat, Alaska in February of 2012. These data are presented as a case study, providing valuable cross-instrument comparisons. A heritage top-hat thermal ion electrostatic analyzer, called the HT, and a multi-needle Langmuir probe have been used to validate both the PIPs and the data analysis method. Compared to the HT, the PIP ion temperature measurements agree with a root-mean-square error of 0.023 eV. These two instruments agree on the parallel-to-B plasma flow velocity with a root-mean-square error of 130 m/s. The PIP with its field of view aligned perpendicular-to-B provided a density measurement with an 11% error compared to the multi-needle Langmuir Probe. Higher error in the other PIP's density measurement is likely due to simplifications in the SPIS model geometry.
Wimmer, Stefan; Rascher, Wolfgang; McCarthy, Suzanne; Neubert, Antje
2014-10-01
Prior to the implementation of the EU Paediatric Regulation, the European Medicines Agency (EMA) defined unmet paediatric needs for active substances already available on the market. Seven years after the Paediatric Regulation came into force, we investigated the extent to which previously identified needs have led to programmes for generating evidence necessary for the regulatory approval of medicines for managing childhood conditions. The websites of the EMA and the European Commission Community Research and Development Information Service (CORDIS) were systematically screened to identify active substances from the assessment of paediatric needs, off-patent priority list, agreed Paediatric Investigation Plans (PIP) and 7th Framework Programme (FP7) projects related to paediatric medicines. A total of 357 active substances with paediatric needs were identified by June 2013. 511 PIPs were agreed by the Paediatric Committee at the EMA (PDCO), including 51 (14.3 %) PIPs for a previously identified need. Amongst those, 21 were off-patent at the time of the PIP approval, 15 of which received funding from the European Commission's FP7. According to the assessment of paediatric needs, evidence is particularly needed for active substances treating cardiovascular diseases (n = 61), cancer (n = 40) and in the field of anaesthesiology (n = 38). Whereas oncology drugs (n = 66) were frequently represented in PIPs, drugs for cardiovascular diseases (n = 39) and anaesthesiology (n = 3) rarely were. Most PIPs are attributable to marketing authorisations of new active substances, whereas off-patent drugs which are commonly used off-label remain unstudied to a large extent. More effort including ongoing research funding is essential to further regularise and standardise paediatric pharmacotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, M.; Field, J.B.
Thyrotropin (TSH) and carbachol stimulated in a dose-dependent manner the accumulation of 3H-glycerophosphoinositol (GPI), 3H-inositol monophosphate (IP1), 3H-inositol bisphosphate (IP2) and 3H-inositol trisphosphate (IP3) in primary cultures of dog thyroid cells prelabeled with myo-(2-3H)inositol. TSH, 250 mU/mL, stimulated 3H-IP3 level after a 10-minute incubation while 10 mU/mL TSH increased it during a 60-minute incubation. The effect of carbachol was more rapid and greater than that of TSH. Carbachol, 100 mumol/L, elevated 3H-IP3 after a 2-minute incubation and 3H-IP3 formation was increased by as little as 1 mumol/L carbachol. TSH stimulation was observed only if the cells were deprived of TSHmore » for 5 days before being labeled with 3H-inositol. Prolongation of the labeling period or addition of TSH, (Bu)2cAMP or carbachol during the labeling increased 3H-inositol incorporation into polyphoinositides (PIPs). When the cells were labeled without any other addition, control and TSH-stimulated 3H-IP3 levels increased in parallel with 3H-PIP levels. However, TSH or carbachol-stimulated 3H-IP3 levels did not increase in proportion to 3H-PIPs level when the cells were labeled with TSH or (Bu)2cAMP. Thus, the ratio of 3H-IP3/3H-PIPs (both control and TSH or carbachol-stimulated) decreased in the cells labeled with TSH or (Bu)2cAMP, which might reflect TSH stimulation of 3H-inositol incorporation into PIPs pool(s) that do not participate in hormone-induced hydrolysis of PIPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quist, E.E.; Kriewaldt, S.D.; Powell, P.B.
1989-01-01
To study polyphosphoinositide phospholipase (PL) C, isolated sarcolemmal membranes were preincubated with Mg({sup 32}P)-ATP to label phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-diphosphate (PIP{sub 2}). After washing, PLC activity was determined by measuring the release of {sup 32}P-labeled inositol diphosphate (IP{sub 2}) and/or inositol trisphospate (IP{sub 3}) from membrane PIP and PIP{sub 2} during incubation at 25{degree}C and pH 7.4. Increasing concentrations of Ca{sup 2+} (0-100 {mu}M) increased IP{sub 2} by 100% over the 0 Ca{sup 2+} control levels. Ca{sup 2+} dependent PLC hydrolyzed both PIP and PIP{sub 2} with apparent D{sub A}'s of approximately 0.5 and 70 {mu}M. Addition ofmore » dialyzed cytosol further increased IP{sub 2} release by 250% without affecting the K{sub A}'s for Ca{sup 2+} activation. The cytosolic activator was partially purified by DEAE Sephacel chromatography was heat labile and sensitive to trypsin pretreatment identifying it as a protein. In contrast, 10 mM NaF increased the Ca{sup 2+} affinity for PLC 2-fold. These results show that cardiac sarcolemma possess a membrane bound Ca{sup 2+} dependent PLC activity which is regulated by a cytosolic protein activator and a G protein. The cytosolic activator would potentially amplify the amount of sarcolemmal polyphosphoinositides hydrolyzed by PLC in response to muscarinic receptor activation by acetylcholine. In addition, activation of PLC by NaF or other G protein activators could result from increasing the Ca{sup 2+} affinity of PLC to physiological intracellular Ca{sup 2+} levels.« less
Karaman, Serap; Vural, Sema; Yildirmak, Yildiz; Emecen, Merve; Erdem, Ela; Kebudi, Rejin
2012-04-01
Monotherapy has tended to replace the combination therapy in emprical treatment of febrile neutropenia. There is no reported trial which compares the efficacy of cefoperazone-sulbactam (CS) and piperacillin-tazobactam (PIP/TAZO) monotherapies in the treatment of febrile neutropenia. In this prospective randomized study, we aimed to compare the safety and efficacy of CS versus PIP/TAZO as empirical monotherapies in febrile neutropenic children with cancer. The study included febrile, neutropenic children hospitalized at our center for cancer. They were randomly selected to receive CS 100 mg/kg/day or PIP/TAZO 360 mg/kg/day. Duration of fever and neutropenia, absolute neutrophil count, modification, and success rate were compared between the two groups. Resolution of fever without antibiotic change was defined as success and resolution of fever with antibiotic change or death of a patient was defined as failure. Modification was defined as changing the empirical antimicrobial agent during a febrile episode. One hundred and two febrile neutropenic episodes were documented in 55 patients with a median age of 4 years. In 50 episodes CS and in 52 episodes PIP/TAZO was used. Duration of fever and neutropenia, neutrophil count, age, sex, and primary disease were not different between two groups. Success rates in the CS and PIP/TAZO groups were respectively 56 and 62% (P > 0.05). Modification rate between two groups showed no significant difference (P > 0.05). No serious adverse effect occurred in either of the groups. CS and PIP/TAZO monotherapy are both safe and effective in the initial treatment of febrile neutropenia in children with cancer. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook
2014-09-03
A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulsemore » voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.« less
Machine Protection System Research and Development for the Fermilab PIP-II Proton Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Arden; Carmichael, Linden; Harrison, Beau
PIP-II is a high intensity proton linac being design to support a world-leading physics program at Fermilab. Initially it will provide high intensity beams for Fermilab's neutrino program with a future extension to other applications requiring an upgrade to CW linac operation (e.g. muon experiments). The machine is conceived to be 2 mA CW, 800 MeV H⁻ linac capable of working initially in a pulse (0.55 ms, 20 Hz) mode for injection into the existing Booster. The planned upgrade to CW operation implies that the total beam current and damage potential will be greater than in any present HEP hadronmore » linac. To mitigate the primary technical risk and challenges associated PIP-II an integrated system test for the PIP-II front-end technology is being developed. As part of the R&D a robust machine protection system (MPS) is being designed. This paper describes the progress and challenges associated with the MPS.« less
NASA Astrophysics Data System (ADS)
Marks, Ann
2009-04-01
The Physicists in Primary Schools (PIPS) project is a joint venture initiated by the UK Women in Physics Group. A team from the University of Sheffield, with Engineering and Physical Sciences Research Council funding, has developed fun presentations and novel class activities using everyday articles for physicists to take into primary schools. The objectives are to instill enthusiasm in young children-including girls-through the enjoyment and excitement of physics, and support primary school teachers with a curriculum which includes many abstract concepts. All PIPS material is free to download from the Institute of Physics website (www.iop.org/pips), providing PowerPoint presentations and detailed explanations, as well as videos of the activities in classrooms. The topics are suitable for children age 4 to 11 years. There is interest in translating the presentations into other languages as there are few words on the slides and the material is likely valuable for older age groups. The presentations therefore have the potential to be useful worldwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivoli, A.
The U.S. Particle Physics Project Prioritization Panel (P5) report encouraged the realization of Fermilab's Proton Improvement Plan II (PIP-II) to support future neutrino programs in the United States. PIP-II aims at enhancing the capabilities of the Fermilab existing accelerator complex while simultaneously providing a flexible platform for its future upgrades. The central part of PIP-II project is the construction of a new 800 MeV H- Superconducting (SC) Linac together with upgrades of the Booster and Main Injector synchrotrons. New transfer lines will also be needed to deliver beam to the down-stream accelerators and facilities. In this paper we present themore » recent development of the design of the transfer lines discussing the principles that guided their design, the constraints and requirements imposed by the existing accelerator complex and the following modifications implemented to comply with a better understanding of the limitations and further requirements that emerged during the development of the project.« less
NASA Astrophysics Data System (ADS)
Duan, Xiaozheng; Li, Yunqi; Zhang, Ran; Shi, Tongfei; An, Lijia; Huang, Qingrong
2013-06-01
We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a binary fluid membrane. The membrane contains neutral phosphatidyl-choline, PC) and multivalent anionic (phosphatidylinositol, PIP2) lipids. We systematically study the influences of the solution ionic strength, the chain length and the bead charge density of the polyelectrolyte on the lateral rearrangement and the restricted mobility of the multivalent anionic lipids in the membrane. Our findings show that, the cooperativity effect and the electrostatic interaction of the polyelectrolyte beads can significantly affect the segregation extent and the concentration gradients of the PIP2 molecules, and further cooperate to induce the complicated hierarchical mobility behaviors of PIP2 molecules. In addition, when the polyelectrolyte brings a large amount of charges, it can form a robust electrostatic well to trap all PIP2 and results in local overcharge of the membrane. This work presents a mechanism to explain the membrane heterogeneity formation induced by the adsorption of charged macromolecule.
Degroeve, Sven; Maddelein, Davy; Martens, Lennart
2015-07-01
We present an MS(2) peak intensity prediction server that computes MS(2) charge 2+ and 3+ spectra from peptide sequences for the most common fragment ions. The server integrates the Unimod public domain post-translational modification database for modified peptides. The prediction model is an improvement of the previously published MS(2)PIP model for Orbitrap-LTQ CID spectra. Predicted MS(2) spectra can be downloaded as a spectrum file and can be visualized in the browser for comparisons with observations. In addition, we added prediction models for HCD fragmentation (Q-Exactive Orbitrap) and show that these models compute accurate intensity predictions on par with CID performance. We also show that training prediction models for CID and HCD separately improves the accuracy for each fragmentation method. The MS(2)PIP prediction server is accessible from http://iomics.ugent.be/ms2pip. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kimata, Tsubasa; Tanizawa, Yoshinori; Can, Yoko; Ikeda, Shingo; Kuhara, Atsushi; Mori, Ikue
2012-01-01
Although neurons are highly polarized, how neuronal polarity is generated remains poorly understood. An evolutionarily conserved inositol-producing enzyme myo-inositol monophosphatase (IMPase) is essential for polarized localization of synaptic molecules in Caenorhabditis elegans and can be inhibited by lithium, a drug for bipolar disorder. The synaptic defect of IMPase mutants causes defects in sensory behaviors including thermotaxis. Here we show that the abnormalities of IMPase mutants can be suppressed by mutations in two enzymes, phospholipase Cβ or synaptojanin, which presumably reduce the level of membrane phosphatidylinositol 4,5-bisphosphate (PIP2). We also found that mutations in phospholipase Cβ conferred resistance to lithium treatment. Our results suggest that reduction of PIP2 on plasma membrane is a major cause of abnormal synaptic polarity in IMPase mutants and provide the first in vivo evidence that lithium impairs neuronal PIP2 synthesis through inhibition of IMPase. We propose that the PIP2 signaling regulated by IMPase plays a novel and fundamental role in the synaptic polarity. PMID:22446320
Badalamente, Marie A; Hurst, Lawrence C; Benhaim, Prosper; Cohen, Brian M
2015-05-01
To examine the results of proximal interphalangeal (PIP) joint contractures from 4 phase 3 clinical trials of collagenase clostridium histolyticum (CCH) injection for Dupuytren contracture. Patients enrolled in Collagenase Option for Reduction of Dupuytren I/II and JOINT I/II with one or more PIP joint contractures (20° to 80°) received CCH 0.58 mg/0.20 mL or placebo (Collagenase Option for Reduction of Dupuytren I/II only) injected directly into a palpable cord. The percentage of PIP joints achieving clinical success (0° to 5° of full extension), clinical improvement (50% or more reduction in baseline contracture), and range of motion improvement at 30 days after the first and last CCH injections was assessed. The PIP joint contractures were classified into low (40° or less) and high (more than 40°) baseline severity. Adverse events were recorded. A total of 506 adults (mean age, 63 ± 10 y; 80% male) received 1,165 CCH injections in 644 PIP joint cords (mean, 1.6 injections/cord). Most patients (60%) received 1 injection, with 24%, 16%, and 1% receiving 2, 3, and 4 injections, respectively. Clinical success and clinical improvement occurred in 27% and 49% of PIP joints after one injection and in 34% and 58% after the last injection. Patients with lower baseline severity showed greater improvement and response was comparable between fingers, as were improvements in range of motion. Adverse events occurring in more than 10% of patients were peripheral edema (58%), contusion (38%), injection site hemorrhage (23%), injection site pain (21%), injection site swelling (16%), and tenderness (13%). This incidence was consistent with data reported in phase 3 trials. Two tendon ruptures occurred. No further ruptures occurred after a modified injection technique was adopted. Collagenase clostridium histolyticum was effective and well tolerated in the short term in patients with Dupuytren PIP joint contractures. Therapeutic II. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Theoretical/experimental comparison of deep tunneling decay of quasi-bound H(D)OCO to H(D) + CO₂.
Wagner, Albert F; Dawes, Richard; Continetti, Robert E; Guo, Hua
2014-08-07
The measured H(D)OCO survival fractions of the photoelectron-photofragment coincidence experiments by the Continetti group are qualitatively reproduced by tunneling calculations to H(D) + CO2 on several recent ab initio potential energy surfaces for the HOCO system. The tunneling calculations involve effective one-dimensional barriers based on steepest descent paths computed on each potential energy surface. The resulting tunneling probabilities are converted into H(D)OCO survival fractions using a model developed by the Continetti group in which every oscillation of the H(D)-OCO stretch provides an opportunity to tunnel. Four different potential energy surfaces are examined with the best qualitative agreement with experiment occurring for the PIP-NN surface based on UCCSD(T)-F12a/AVTZ electronic structure calculations and also a partial surface constructed for this study based on CASPT2/AVDZ electronic structure calculations. These two surfaces differ in barrier height by 1.6 kcal/mol but when matched at the saddle point have an almost identical shape along their reaction paths. The PIP surface is a less accurate fit to a smaller ab initio data set than that used for PIP-NN and its computed survival fractions are somewhat inferior to PIP-NN. The LTSH potential energy surface is the oldest surface examined and is qualitatively incompatible with experiment. This surface also has a small discontinuity that is easily repaired. On each surface, four different approximate tunneling methods are compared but only the small curvature tunneling method and the improved semiclassical transition state method produce useful results on all four surfaces. The results of these two methods are generally comparable and in qualitative agreement with experiment on the PIP-NN and CASPT2 surfaces. The original semiclassical transition state theory method produces qualitatively incorrect tunneling probabilities on all surfaces except the PIP. The Eckart tunneling method uses the least amount of information about the reaction path and produces too high a tunneling probability on PIP-NN surface, leading to survival fractions that peak at half their measured values.
Ehama, Makoto; Hashihama, Fuminori; Kinouchi, Shinko; Kanda, Jota; Saito, Hiroaki
2016-06-01
Determining the total particulate phosphorus (TPP) and particulate inorganic phosphorus (PIP) in oligotrophic oceanic water generally requires the filtration of a large amount of water sample. This paper describes methods that require small filtration volumes for determining the TPP and PIP concentrations. The methods were devised by validating or improving conventional sample processing and by applying highly sensitive liquid waveguide spectrophotometry to the measurements of oxidized or acid-extracted phosphate from TPP and PIP, respectively. The oxidation of TPP was performed by a chemical wet oxidation method using 3% potassium persulfate. The acid extraction of PIP was initially carried out based on the conventional extraction methodology, which requires 1M HCl, followed by the procedure for decreasing acidity. While the conventional procedure for acid removal requires a ten-fold dilution of the 1M HCl extract with purified water, the improved procedure proposed in this study uses 8M NaOH solution for neutralizing 1M HCl extract in order to reduce the dilution effect. An experiment for comparing the absorbances of the phosphate standard dissolved in 0.1M HCl and of that dissolved in a neutralized solution [1M HCl: 8M NaOH=8:1 (v:v)] exhibited a higher absorbance in the neutralized solution. This indicated that the improved procedure completely removed the acid effect, which reduces the sensitivity of the phosphate measurement. Application to an ultraoligotrophic water sample showed that the TPP concentration in a 1075mL-filtered sample was 8.4nM with a coefficient of variation (CV) of 4.3% and the PIP concentration in a 2300mL-filtered sample was 1.3nM with a CV of 6.1%. Based on the detection limit (3nM) of the sensitive phosphate measurement and the ambient TPP and PIP concentrations of the ultraoligotrophic water, the minimum filtration volumes required for the detection of TPP and PIP were estimated to be 15 and 52mL, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Processing of uranium oxide and silicon carbide based fuel using polymer infiltration and pyrolysis
NASA Astrophysics Data System (ADS)
Singh, Abhishek K.; Zunjarrao, Suraj C.; Singh, Raman P.
2008-09-01
Ceramic composite pellets consisting of uranium oxide, UO 2, contained within a silicon carbide matrix, were fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, particles of depleted uranium oxide, in the form of U 3O 8, were dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900 °C under a continuous flow of ultra high purity argon. The pyrolysis of AHPCS, at these temperatures, produced near-stoichiometric amorphous silicon carbide ( a-SiC). Multiple polymer infiltration and pyrolysis (PIP) cycles were performed to minimize open porosity and densify the silicon carbide matrix. Analytical characterization was conducted to investigate chemical interaction between U 3O 8 and SiC. It was observed that U 3O 8 reacted with AHPCS during the very first pyrolysis cycle, and was converted to UO 2. As a result, final composition of the material consisted of UO 2 particles contained in an a-SiC matrix. The physical and mechanical properties were also quantified. It is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix.
Fisher, J; Kinnear, M; Reid, F; Souter, C; Stewart, D
2018-05-01
While approximately half of all qualified hospital pharmacist independent prescribers (PIPs) in Scotland are active prescribers, there are major differences in prescribing activity across geographical areas. This study aimed to explore, through focus groups, interviews and a questionnaire, hospital PIPs' perceptions of factors associated with prescribing activity and to investigate the infrastructure required to better support active prescribing by PIPs. Findings reinforced the perceived positive impact of supportive pharmacy leadership within the organisation, recognition that prescribing is integral to the clinical pharmacist role and a work environment conducive to prescribing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
PACE and the Medicare+Choice risk-adjusted payment model.
Temkin-Greener, H; Meiners, M R; Gruenberg, L
2001-01-01
This paper investigates the impact of the Medicare principal inpatient diagnostic cost group (PIP-DCG) payment model on the Program of All-Inclusive Care for the Elderly (PACE). Currently, more than 6,000 Medicare beneficiaries who are nursing home certifiable receive care from PACE, a program poised for expansion under the Balanced Budget Act of 1997. Overall, our analysis suggests that the application of the PIP-DCG model to the PACE program would reduce Medicare payments to PACE, on average, by 38%. The PIP-DCG payment model bases its risk adjustment on inpatient diagnoses and does not capture adequately the risk of caring for a population with functional impairments.
Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Easler, T. E.
2004-01-01
NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at high temperatures of high environmental resistance and high creep resistance, which in turn will result in long component life. Data are presented from a variety of laboratory tests on simple two-dimensional panels that examine these properties and compare the performance of the optimized full PIP system with those of the full CVI and CVI + PIP hybrid systems. Underlying mechanisms for performance differences in the various systems are discussed. Remaining issues for further property enhancement and for application of the full PIP approach for engine components are also discussed, as well as on-going approaches at NASA to solve these issues.
Rose, Klaus; Spigarelli, Michael G
2015-03-23
The European Pediatric Pharmaceutical Legislation wants children to benefit more from pharmaceutical progress. In rare diseases, concerns have been raised that this legislation might damage research and stymie drug development. We discuss the role of the European Medicines Agency (EMA) and its Pediatric Committee (PDCO) in the development of ivacaftor, first-in-class for cystic fibrosis (CF) patients with the G551D mutation (and eight other mutations later) and of lumacaftor and ataluren, two more potential break-through CF medications. Ivacaftor was USA-approved early 2012 and six months later in the EU. Registration was based on the same data. We analyzed these drugs' EU pediatric investigation plans (PIPs) and compared the PIP-studies with the pediatric CF studies listed in www.clinicaltrials.gov. The ivacaftor PIP studies appear to reflect what the developer planned anyway, apart from a study in 1-23-month-olds, which has not yet started. The total negotiation time for the current PIP version was approximately 5.5 years. For companies that develop drugs in pediatric diseases, e.g., CF, PIPs represent considerable additional procedural workload with minimal or no additional benefit for the patients. New drugs for pediatric diseases should not be hampered by additional, unnecessary and costly bureaucracy, but be registered as rapidly as possible without compromising safety.
Autophagy-Related Protein ATG18 Regulates Apicoplast Biogenesis in Apicomplexan Parasites
Bansal, Priyanka; Tripathi, Anuj; Thakur, Vandana; Mohmmed, Asif
2017-01-01
ABSTRACT Mechanisms by which 3′-phosphorylated phosphoinositides (3′-PIPs) regulate the development of apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are poorly understood. The catabolic process of autophagy, which is dependent on autophagy-related proteins (ATGs), is one of the major targets of 3′-PIPs in yeast and mammals. In the present study, we identified autophagy-related protein ATG18 as an effector of 3′-PIPs in these parasites. P. falciparum ATG18 (PfATG18) and T. gondii ATG18 (TgATG18) interact with 3′-PIPs but exhibited differences in their specificity of interaction with the ligand PIP. The conditional knockdown of T. gondii or P. falciparum ATG18 (Tg/PfATG18) impaired replication of parasites and resulted in their delayed death. Intriguingly, ATG18 depletion resulted in the loss of the apicomplexan parasite-specific nonphotosynthetic plastid-like organelle apicoplast, which harbors the machinery for biosynthesis of key metabolites, and the interaction of ATG18 to phosphatidylinositol 3-phosphate (PI3P) was critical for apicoplast inheritance. Furthermore, ATG18 regulates membrane association and apicoplast localization of ATG8. These findings provide insights into a novel noncanonical role of ATG18 in apicoplast inheritance. This function of ATG18 in organelle biogenesis is unprecedented in any organism and may be conserved across most apicomplexan parasites. PMID:29089429
Walter, Emily M; Henderson, Charles R; Beach, Andrea L; Williams, Cody T
Researchers, administrators, and policy makers need valid and reliable information about teaching practices. The Postsecondary Instructional Practices Survey (PIPS) is designed to measure the instructional practices of postsecondary instructors from any discipline. The PIPS has 24 instructional practice statements and nine demographic questions. Users calculate PIPS scores by an intuitive proportion-based scoring convention. Factor analyses from 72 departments at four institutions (N = 891) support a 2- or 5-factor solution for the PIPS; both models include all 24 instructional practice items and have good model fit statistics. Factors in the 2-factor model include (a) instructor-centered practices, nine items; and (b) student-centered practices, 13 items. Factors in the 5-factor model include (a) student-student interactions, six items; (b) content delivery, four items; (c) formative assessment, five items; (d) student-content engagement, five items; and (e) summative assessment, four items. In this article, we describe our development and validation processes, provide scoring conventions and outputs for results, and describe wider applications of the instrument. © 2016 E. M. Walter et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Monneuse, Jean-Marc; Sugano, Madeleine; Becue, Thierry; Santoni, Véronique; Hem, Sonia; Rossignol, Michel
2011-05-01
Plant membranes bear a variety of transporters belonging to multigene families that are affected by environmental and nutritional conditions. In addition, they often display high-sequence identity, making difficult in-depth investigation by current shot-gun strategies. In this study, we set up a targeted proteomics approach aimed at identifying and quantifying within single experiments the five major proton pumps of the autoinhibited H(+) ATPases (AHA) family, the 13 plasma membrane intrinsic proteins (PIP) water channels (PIPs), and ten members of ammonium transporters (AMTs) and nitrate transporter (NRT) families. Proteotypic peptides were selected and isotopically labeled heavy versions were used for technical optimization and for quantification of the corresponding light version in biological samples. This approach allowed to quantify simultaneously nine PIPs in leaf membranes and 13 PIPs together with three autoinhibited H(+) ATPases, two ammonium transporters, and two NRTs in root membranes. Similarly, it was used to investigate the effect of a salt stress on the expression of these latter 20 transporters in roots. These novel isoform-specific data were compared with published transcriptome information and revealed a close correlation between PIP isoforms and transcripts levels. The obtained resource is reusable and can be expanded to other transporter families for large-scale profiling of membrane transporters. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rose, Klaus; Spigarelli, Michael G.
2015-01-01
The European Pediatric Pharmaceutical Legislation wants children to benefit more from pharmaceutical progress. In rare diseases, concerns have been raised that this legislation might damage research and stymie drug development. We discuss the role of the European Medicines Agency (EMA) and its Pediatric Committee (PDCO) in the development of ivacaftor, first-in-class for cystic fibrosis (CF) patients with the G551D mutation (and eight other mutations later) and of lumacaftor and ataluren, two more potential break-through CF medications. Ivacaftor was USA-approved early 2012 and six months later in the EU. Registration was based on the same data. We analyzed these drugs’ EU pediatric investigation plans (PIPs) and compared the PIP-studies with the pediatric CF studies listed in www.clinicaltrials.gov. The ivacaftor PIP studies appear to reflect what the developer planned anyway, apart from a study in 1–23-month-olds, which has not yet started. The total negotiation time for the current PIP version was approximately 5.5 years. For companies that develop drugs in pediatric diseases, e.g., CF, PIPs represent considerable additional procedural workload with minimal or no additional benefit for the patients. New drugs for pediatric diseases should not be hampered by additional, unnecessary and costly bureaucracy, but be registered as rapidly as possible without compromising safety. PMID:27417354
Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.
Parker, J C; Ivey, C L; Tucker, J A
1998-04-01
To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.
Beltrán, Aldo G; Romero, Camilo J
2017-01-01
Background: The management of contractures and soft tissue defects in the proximal interphalangeal (PIP) finger joint remains a challenge. We report a transposition flap from the lateral skin of the proximal phalanx that is based on perforating branches of the digital arteries and can be used safely for both palmar and dorsal cover defects. Methods: We first completed an anatomic study, dissecting 20 fingers in fresh cadavers with arterial injections and made the new flap in patients with dorsal or palmar defects in PIP joints. Results: In cadavers, we can reveal 4 constant branches from each digital artery in the proximal phalanx, with the more distal just in the PIP joint constituting the flap pedicle. Between February 2010 and February 2015, we designed 33 flaps in 29 patients, 7 for dorsal and 26 for palmar defects, with no instances of flap necrosis and 4 distal epidermolysis. The patients were between 4 and 69 years with no major complications, and all of the skin defects in the PIP joint were resolved satisfactorily without any relevant sequelae at the donor site. Conclusions: This flap procedure is an easy, reliable, versatile, and safe technique, and could be an important tool for the management of difficult skin defects and contractures at the PIP joint level.
Software organization for a prolog-based prototyping system for machine vision
NASA Astrophysics Data System (ADS)
Jones, Andrew C.; Hack, Ralf; Batchelor, Bruce G.
1996-11-01
We describe PIP (prolog image processing)--a prototype system for interactive image processing using Prolog, implemented on an Apple Macintosh computer. PIP is the latest in a series of products that the third author has been involved in the implementation of, under the collective title Prolog+. PIP differs from our previous systems in two particularly important respects. The first is that whereas we previously required dedicated image processing hardware, the present system implements image processing routines using software. The second difference is that our present system is hierarchical in structure, where the top level of the hierarchy emulates Prolog+, but there is a flexible infrastructure which supports more sophisticated image manipulation which we will be able to exploit in due course . We discuss the impact of the Apple Macintosh operating system upon the implementation of the image processing functions, and the interface between these functions and the Prolog system. We also explain how the existing set of Prolog+ commands has been implemented. PIP is now nearing maturity, and we will make a version of it generally available in the near future. However, although the represent version of PIP constitutes a complete image processing tool, there are a number of ways in which we are intending to enhance future versions, with a view to added flexibility and efficiency: we discuss these ideas briefly near the end of the present paper.
Bharill, Puneet; Shmookler Reis, Robert J.
2009-01-01
Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP2 to form PIP3, a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust—implying that maternally contributed trace amounts of PI3K activity or of PIP3 block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP3-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO–dependent and –independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves transcriptional as well as kinase regulation in a positive-feedback circuit, favoring either survival or reproduction. Hyperlongevity of strong age-1(mg44) mutants may result from their inability to reset this molecular switch to the reproductive mode. PMID:19360094
2013-01-01
Background Ontario’s 36 Public Health Units (PHUs) were responsible for implementing the H1N1 Pandemic Influenza Plans (PIPs) to address the first pandemic influenza virus in over 40 years. It was the first under conditions which permitted mass immunization. This is therefore the first opportunity to learn and document what worked well, and did not work well, in Ontario’s response to pH1N1, and to make recommendations based on experience. Methods Our objectives were to: describe the PIP models, obtain perceptions on outcomes, lessons learned and to solicit policy suggestions for improvement. We conducted a 3-phase comparative analysis study comprised of semi-structured key informant interviews with local Medical Officers of Health (n = 29 of 36), and Primary Care Physicians (n = 20) and in Phase 3 with provincial Chief-Medical Officers of Health (n = 6) and a provincial Medical Organization. Phase 2 data came from a Pan-Ontario symposium (n = 44) comprised leaders representing: Public Health, Primary Care, Provincial and Federal Government. Results PIPs varied resulting in diverse experiences and lessons learned. This was in part due to different PHU characteristics that included: degree of planning, PHU and Primary Care capacity, population, geographic and relationships with Primary Care. Main lessons learned were: 1) Planning should be more comprehensive and operationalized at all levels. 2) Improve national and provincial communication strategies and eliminate contradictory messages from different sources. 3) An integrated community-wide response may be the best approach to decrease the impact of a pandemic. 4) The best Mass Immunization models can be quickly implemented and have high immunization rates. They should be flexible and allow for incremental responses that are based upon: i) pandemic severity, ii) local health system, population and geographic characteristics, iii) immunization objectives, and iv) vaccine supply. Conclusion “We were very lucky that pH1N1 was not more severe.” Consensus existed for more detailed planning and the inclusion of multiple health system and community stakeholders. PIPs should be flexible, allow for incremental responses and have important decisions (E.g., under which conditions Public Health, Primary Care, Pharmacists or others act as vaccine delivery agents.) made prior to a crisis. PMID:23890226
PIP-II Injector Test’s Low Energy Beam Transport: Commissioning and Selected Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemyakin, A.; Alvarez, M.; Andrews, R.
2016-09-16
The PIP2IT test accelerator is under construction at Fermilab. Its ion source and Low Energy Beam Transport (LEBT) in its initial (straight) configuration have been commissioned to full specification parameters. This paper introduces the LEBT design and summarizes the outcome of the commissioning activities.
The risk of unintended and unexpected adverse impacts on non-target organisms and ecosystems is a key issue in environmental risk assessment of PIP crop plants. While there has been considerable examination of the effects of insect resistant crops on certain non-target organisms...
Conserved and divergent features of the structure and function of La and La-related proteins (LARPs)
Bayfield, Mark A.; Yang, Ruiqing; Maraia, Richard J.
2010-01-01
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3’OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3’OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3’OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNA assembly by hLARP7/PIP7S). Analyses of other LARP family members (i.e., hLARP4, hLARP6) suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs. PMID:20138158
Bayfield, Mark A; Yang, Ruiqing; Maraia, Richard J
2010-01-01
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Transition Crossing in the Main Injector for PIP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, R.; Chaurize, S.; Kourbanis, I.
2017-05-01
Proton Improvement Plan-II (PIP-II) [1] is Fermilab’s plan for providing powerful, high-intensity proton beams to the laboratory’s experiments. PIP II will include upgrades to the Booster, Recycler and Main Injector which will be required to accelerate 50% more beam as well as increasing the Booster repetition rate from 15 to 20 Hz. To accommodate the faster rate, the momentum separation of the slip stacking beams in the Recycler must increase which will result in in larger longitudinal emittance bunches in MI. In order to cross transition without losses, it is expected a gamma-t jump will be needed. Gamma-t jump schemesmore » for the MI are investigated.« less
Transition Crossing in the Main Injector for PIP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, R.; Chaurize, S.; Kourbanis, I.
2017-01-01
Proton Improvement Plan-II (PIP-II) is Fermilab’s plan for providing powerful, high-intensity proton beams to the laboratory’s experiments. PIP II will include upgrades to the Booster, Recycler and Main Injector which will be required to accelerate 50% more beam as well as increasing the Booster repetition rate from 15 to 20 Hz. To accommodate the faster rate, the momentum separation of the slip stacking beams in the Recycler must increase which will result in in larger longitudinal emittance bunches in MI. In order to cross transition without losses, it is expected a gammat jump will be needed. Gamma-t jump schemes formore » the MI are investigated« less
Structure at 1.3 A resolution of Rhodothermus marinus caa(3) cytochrome c domain.
Srinivasan, Vasundara; Rajendran, Chitra; Sousa, Filipa L; Melo, Ana M P; Saraiva, Lígia M; Pereira, Manuela M; Santana, Margarida; Teixeira, Miguel; Michel, Hartmut
2005-02-04
The cytochrome c domain of subunit II from the Rhodothermus marinus caa(3) HiPIP:oxygen oxidoreductase, a member of the superfamily of heme-copper-containing terminal oxidases, was produced in Escherichia coli and characterised. The recombinant protein, which shows the same optical absorption and redox properties as the corresponding domain in the holo enzyme, was crystallized and its structure was determined to a resolution of 1.3 A by the multiwavelength anomalous dispersion (MAD) technique using the anomalous dispersion of the heme iron atom. The model was refined to final R(cryst) and R(free) values of 13.9% and 16.7%, respectively. The structure reveals the insertion of two short antiparallel beta-strands forming a small beta-sheet, an interesting variation of the classical all alpha-helical cytochrome c fold. This modification appears to be common to all known caa(3)-type terminal oxidases, as judged by comparative modelling and by analyses of the available amino acid sequences for these enzymes. This is the first high-resolution crystal structure reported for a cytochrome c domain of a caa(3)-type terminal oxidase. The R.marinus caa(3) uses HiPIP as the redox partner. The calculation of the electrostatic potential at the molecular surface of this extra C-terminal domain provides insights into the binding to its redox partner on one side and its interaction with the remaining subunit II on the other side.
NASA Astrophysics Data System (ADS)
Gill, Martin R.; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A.; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A.
2016-08-01
Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)]2+ before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
Gill, Martin R; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A
2016-08-25
Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
quantify module degradation rates. Statistical analysis of reported degradation rates of PV modules degradation rates," Prog. in PV 24(7), 2016, DOI: 10.1002/pip.2744 Jordan D.C., Silverman T.J PV, 2017, DOI: 10.1002/pip.2866 Jordan D.C., Silverman T.J., Sekulic B., Kurtz S.R., "PV
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... interests of investors to have lower Auction Transaction costs for non-Professional, Public Customers, and that the BOX fee structure will continue to attract this customer order flow to these auction... simple fact that price improvement occurs in the PIP. Since the PIP began in 2004, customers have...
Connecting: A Resource Guide for the Primary Intervention Program.
ERIC Educational Resources Information Center
Prusso, Laurie Kay
This thesis is the result of a study to develop and evaluate a resource guide for use by paraprofessionals implementing the Primary Intervention Program (PIP) in public school settings. PIP is used to detect and prevent school adjustment problems in primary school students through observations of their play behaviors. The resource guide was…
ERIC Educational Resources Information Center
Chachere, Ernest G.; Nowatny, Franz A.
1982-01-01
Louisiana's Educational Employees' Professional Improvement Program (PIP) is described. The voluntary statewide program features: (1) use of individual professional development plans submitted by school staff participants; (2) a combination of academic work, inservice training, workshops, and conferences over a five-year period; and (3) salary…
Index pregnancy versus post-index pregnancy in patients with recurrent pregnancy loss.
Greenberg, Tzlil; Tzivian, Liliana; Harlev, Avi; Serjienko, Ruslan; Mazor, Moshe; Bashiri, Asher
2015-01-01
To compare pregnancy outcomes of two consecutive pregnancies in a cohort of women with recurrent pregnancy loss (RPL), in order to determine the long-term prognosis of women with RPL managed in a dedicated RPL clinic. A retrospective cohort study including 262 patients with two or more consecutive pregnancy losses followed by two subsequent pregnancies--index pregnancy (IP) and post-index pregnancy (PIP). All patients were evaluated and treated in the RPL clinic in the Soroka University Medical Center. Comparing IP with PIP, no significant difference in perinatal outcome was observed. The perinatal outcome remained encouraging with approximately 73% birth rate (73.7% versus 72.5%; p=0.83). Only 11% of the women with RPL continued to experience pregnancy losses for two subsequent pregnancies. In a multivariate logistic regression analysis, number of miscarriages pre-Index was the only factor independently associated with birth in the PIP. There is no significant difference between IP and PIP regarding perinatal outcome. Appropriate management in the RPL clinic conferred a significant beneficial effect on long-term pregnancy outcome of a cohort of women with RPL.
Small deformation viscoelastic and thermal behaviours of pomegranate seed pips CMC gels.
Savadkoohi, Sobhan; Farahnaky, Asgar
2015-07-01
The current investigation presents an exploration in phase behaviour of carboxymethyl cellulose (CMC) produced from pomegranate seed pips compared to low and high viscosity CMCs (LMCMC and HMCMC) primarily at low solid concentrations. Cellulose was extracted with 10 % NaOH at 35 °C for 22 h from pomegranate seed pips and converted to CMC by etherification process. Thermomechanical analysis and micro-imaging were carried out using small deformation dynamic oscillation in shear, modulated differential scanning calorimetry (MDSC) and scanning electron microscopy (SEM). The results emphasize the importance of molecular interaction and the degree of substitution in produced CMC. Thermal gravimetric analysis (TGA) thermograms showed an initial weight loss in pomegranate seed pips CMC (PSCMC) sample, which we attribute to presence of amount of moisture in sample powder. MDSC analysis of PSCMC showed five different peaks at 84, 104, 173, 307 and 361 °C. Moreover, G' and G" changes were found to be dependent on both concentration and frequency. The results of frequency sweep and tan δ indicate that PSCMC solutions can be classified as weak gels.
NASA Astrophysics Data System (ADS)
Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia
2009-09-01
Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Kiser, J. D.
2017-01-01
SiC/SiC composites fabricated by melt infiltration are being considered as potential candidate materials for next generation turbine components. However these materials are limited to 2400 F application because of the presence of residual silicon in the SiC matrix. Currently there is an increasing interest in developing and using silicon free SiC/SiC composites for structural aerospace applications above 2400 F. Full PIP or full CVI or CVI + PIP hybrid SiC/SiC composites can be fabricated without excess silicon, but the upper temperature stress capabilities of these materials are not fully known. In this study, the on-axis creep and rupture properties of the state-of-the-art full CVI and full PIP SiC/SiC composites with Sylramic-iBN fibers were measured at temperatures to 2700 F in air and their failure modes examined. In this presentation creep rupture properties, failure mechanisms and upper temperature capabilities of these two systems will be discussed and compared with the literature data.
Umbricht, Christoph A; Benešová, Martina; Schmid, Raffaella M; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P; Müller, Cristina
2017-12-01
The targeting of the prostate-specific membrane antigen (PSMA) is of particular interest for radiotheragnostic purposes of prostate cancer. Radiolabeled PSMA-617, a 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-functionalized PSMA ligand, revealed favorable kinetics with high tumor uptake, enabling its successful application for PET imaging ( 68 Ga) and radionuclide therapy ( 177 Lu) in the clinics. In this study, PSMA-617 was labeled with cyclotron-produced 44 Sc (T 1/2 = 4.04 h) and investigated preclinically for its use as a diagnostic match to 177 Lu-PSMA-617. 44 Sc was produced at the research cyclotron at PSI by irradiation of enriched 44 Ca targets, followed by chromatographic separation. 44 Sc-PSMA-617 was prepared under standard labeling conditions at elevated temperature resulting in a radiochemical purity of >97% at a specific activity of up to 10 MBq/nmol. 44 Sc-PSMA-617 was evaluated in vitro and compared to the 177 Lu- and 68 Ga-labeled match, as well as 68 Ga-PSMA-11 using PSMA-positive PC-3 PIP and PSMA-negative PC-3 flu prostate cancer cells. In these experiments it revealed similar in vitro properties to that of 177 Lu- and 68 Ga-labeled PSMA-617. Moreover, 44 Sc-PSMA-617 bound specifically to PSMA-expressing PC-3 PIP tumor cells, while unspecific binding to PC-3 flu cells was not observed. The radioligands were investigated with regard to their in vivo properties in PC-3 PIP/flu tumor-bearing mice. 44 Sc-PSMA-617 showed high tumor uptake and a fast renal excretion. The overall tissue distribution of 44 Sc-PSMA-617 resembled that of 177 Lu-PSMA-617 most closely, while the 68 Ga-labeled ligands, in particular 68 Ga-PSMA-11, showed different distribution kinetics. 44 Sc-PSMA-617 enabled distinct visualization of PC-3 PIP tumor xenografts shortly after injection, with increasing tumor-to-background contrast over time while unspecific uptake in the PC-3 flu tumors was not observed. The in vitro characteristics and in vivo kinetics of 44 Sc-PSMA-617 were more similar to 177 Lu-PSMA-617 than to 68 Ga-PSMA-617 and 68Ga-PSMA-11. Due to the almost four-fold longer half-life of 44 Sc as compared to 68 Ga, a centralized production of 44 Sc-PSMA-617 and transport to satellite PET centers would be feasible. These features make 44 Sc-PSMA-617 particularly appealing for clinical application.
Giugale, Juan Marcelo; Wang, Juntian; Kaufmann, Robert A.; Fowler, John R.
2017-01-01
Background: Proximal interphalangeal (PIP) fracture dislocations remain a complex injury pattern to treat. There are several treatment methods available aimed to restore stability, preserve range of motion, and reconstitute the articular surface. This study looked at the mid-term clinical and radiographic results of open reduction internal fixation through a shotgun approach of comminuted PIP fracture dislocations. Methods: A retrospective review was conducted of all PIP fracture dislocations treated through a volar, shotgun approach at a single institution over a 15-year period. Patients identified were contacted and asked to return to the office for clinical and radiographic evaluation. Patient reported outcomes were assessed with the Michigan hand questionnaire (MHQ) and visual analog scale (VAS) for pain. Results: 5 patients returned to the office for further evaluation with average follow-up of 69 months (range, 33-133 months). 3 patients were found to have post traumatic arthritis on radiographs. 1 case had recurrent instability and one case had a deep infection, both necessitating further surgical intervention. Average PIP arc of motion was found to be 79°. Average VAS score of 0 and MHQ result of 95 (out of a possible score of 100) indicating no residual pain and excellent functionality of the affected hand. Conclusion: Open reduction internal fixation of comminuted PIP fracture dislocations utilizing the volar, shotgun approach provides excellent mid-term functional results despite the high incidence of post traumatic arthritis. PMID:29151999
Alguacil, Maria Del Mar; Kohler, Josef; Caravaca, Fuensanta; Roldán, Antonio
2009-11-01
Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.
Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum.
Vera-Estrella, Rosario; Barkla, Bronwyn J; Amezcua-Romero, Julio C; Pantoja, Omar
2012-03-01
Mesembryanthemum crystallinum exhibits induction of Crassulacean acid metabolism (CAM) after a threshold stage of development, by exposure to long days with high light intensities or by water and salt stress. During the CAM cycle, fluctuations in carbon partitioning within the cell lead to transient drops in osmotic potential, which are likely stabilized/balanced by passive movement of water via aquaporins (AQPs). Protoplast swelling assays were used to detect changes in water permeability during the day/night cycle of CAM. To assess the role of AQPs during the same period, we followed transcript accumulation and protein abundance of four plasma membrane intrinsic proteins (PIPs) and one tonoplast intrinsic protein (TIP). CAM plants showed a persistent rhythm of specific AQP protein abundance changes throughout the day/night cycle, including changes in amount of McPIP2;1, McTIP1;2, McPIP1;4 and McPIP1;5, while the abundance of McPIP1;2 was unchanged. These protein changes did not appear to be coordinated with transcript levels for any of the AQPs analysed; however, they did occur in parrallel to alterations in water permeability, as well as variations in cell osmolarity, pinitol, glucose, fructose and phosphoenolpyruvate carboxylase (PEPc) levels measured throughout the day/night CAM cycle. Results suggest a role for AQPs in maintaining water balance during CAM and highlight the complexity of protein expression during the CAM cycle. © 2011 Blackwell Publishing Ltd.
Cruz-Esteve, Inés; Marsal-Mora, Josep Ramón; Galindo-Ortego, Gisela; Galván-Santiago, Leonardo; Serrano-Godoy, Marcos; Ribes-Murillo, Esther; Real-Gatius, Jordi
2017-03-01
Rational prescribing in older people is a priority for health care organizations. The STOPP/START screening tool has been developed to identify potentially inappropriate prescribing (PIP) in individuals. In a primary care setting, STOPP/START can estimate PIP prevalence and related factors at population level. The aim of this study is to measure the prevalence rates of PPI in elderly population using clinical and prescription claim databases. Cross-sectional population study. Primary Care, Lleida Health Region, Spain. 45.408 patients 70 years old and over, attended in the primary health care centers at least once the last year. 43 STOPP and 12 START criteria are applied to their 2012 clinical and prescription records. Logistic regression models are adjusted to determine PIP association with several factors. 45,408 patients are included. The mean age is 79.7 years, 58% being female. The overall prevalence of PPI is 58.1%. According to STOPP, the most common drugs identified are benzodiazepines, non-steroidal anti-inflammatory drugs and proton pump inhibitors; according to START, osteoporosis treatments, antiplatelet agents, statins, metformin and beta blockers. PIP increases with age and polypharmacy and it is higher in long-term care facilities residents and patients receiving home health care. In our Health Region, at least 50% of the population aged 70 or older has one or more PIP, according to STOPP/START criteria. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Tadaki, Daisuke; Ma, Teng; Zhang, Jinyu; Iino, Shohei; Hirano-Iwata, Ayumi; Kimura, Yasuo; Rosenberg, Richard A.; Niwano, Michio
2016-04-01
Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p+-i-p+ type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p+) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) was used as the p-type dopant. A fabricating method of p+-i-p+ OTFTs has been developed by using SiO2 and aluminum films as capping layers for micro-scaled patterning of the p+-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p+-i-p+ OTFTs work with carrier injection through a built-in potential at p+/i interfaces. We found that the p+-i-p+ OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p+-P3HT layers.
The role of a conserved tyrosine residue in high-potential iron sulfur proteins.
Iwagami, S. G.; Creagh, A. L.; Haynes, C. A.; Borsari, M.; Felli, I. C.; Piccioli, M.; Eltis, L. D.
1995-01-01
Conserved tyrosine-12 of Ectothiorhodospira halophila high-potential iron sulphur protein (HiPIP) iso-I was substituted with phenylalanine (Y12F), histidine (Y12H), tryptophan (Y12W), isoleucine (Y12I), and alanine (Y12A). Variants Y12A and Y12I were expressed to reasonable levels in cells grown at lower temperatures, but decomposed during purification. Variants Y12F, Y12H, and Y12W were substantially destabilized with respect to the recombinant wild-type HiPIP (rcWT) as determined by differential scanning calorimetry over a pH range of 7.0-11.0. Characterization of the Y12F variant by NMR indicates that the principal structural differences between this variant and the rcWT HiPIP result from the loss of the two hydrogen bonds of the Tyr-12 hydroxyl group with Asn-14 O delta 1 and Lys-59 NH, respectively. The effect of the loss of the latter interaction is propagated through the Lys-59/Val-58 peptide bond, thereby perturbing Gly-46. The delta delta GDapp of Y12F of 2.3 kcal/mol with respect to rcWT HiPIP (25 degrees C, pH 7.0) is entirely consistent with the contribution of these two hydrogen bonds to the stability of the latter. CD measurements show that Tyr-12 influences several electronic transitions within the cluster. The midpoint reduction potentials of variants Y12F, Y12H, and Y12W were 17, 19, and 22 mV (20 mM MOPS, 0.2 M sodium chloride, pH 6.98, 25 degrees C), respectively, higher than that of rcWT HiPIP. The current results indicate that, although conserved Tyr-12 modulates the properties of the cluster, its principle function is to stabilize the HiPIP through hydrogen bonds involving its hydroxyl group and electrostatic interactions involving its aromatic ring. PMID:8580847
Hashizume, Masahiro; Mouner, Marc; Chouteau, Joshua M; Gorodnya, Olena M; Ruchko, Mykhaylo V; Potter, Barry J; Wilson, Glenn L; Gillespie, Mark N; Parker, James C
2013-02-15
This study tested the hypothesis that oxidative mitochondrial-targeted DNA (mtDNA) damage triggered ventilator-induced lung injury (VILI). Control mice and mice infused with a fusion protein targeting the DNA repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) to mitochondria were mechanically ventilated with a range of peak inflation pressures (PIP) for specified durations. In minimal VILI (1 h at 40 cmH(2)O PIP), lung total extravascular albumin space increased 2.8-fold even though neither lung wet/dry (W/D) weight ratios nor bronchoalveolar lavage (BAL) macrophage inflammatory protein (MIP)-2 or IL-6 failed to differ from nonventilated or low PIP controls. This increase in albumin space was attenuated by OGG1. Moderately severe VILI (2 h at 40 cmH(2)O PIP) produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio and marked increases in BAL MIP-2 and IL-6, accompanied by oxidative mitochondrial DNA damage, as well as decreases in the total tissue glutathione (GSH) and GSH/GSSH ratio compared with nonventilated lungs. All of these injury indices were attenuated in OGG1-treated mice. At the highest level of VILI (2 h at 50 cmH(2)O PIP), OGG1 failed to protect against massive lung edema and BAL cytokines or against depletion of the tissue GSH pool. Interestingly, whereas untreated mice died before completing the 2-h protocol, OGG1-treated mice lived for the duration of observation. Thus mitochondrially targeted OGG1 prevented VILI over a range of ventilation times and pressures and enhanced survival in the most severely injured group. These findings support the concept that oxidative mtDNA damage caused by high PIP triggers induction of acute lung inflammation and injury.
Reoperations following proximal interphalangeal joint nonconstrained arthroplasties.
Pritsch, Tamir; Rizzo, Marco
2011-09-01
To retrospectively analyze the reasons for reoperations following primary nonconstrained proximal interphalangeal (PIP) joint arthroplasty and review clinical outcomes in this group of patients with 1 or more reoperations. Between 2001 and 2009, 294 nonconstrained (203 pyrocarbon and 91 metal-plastic) PIP joint replacements were performed in our institution. A total of 76 fingers (59 patients) required reoperation (50 pyrocarbon and 26 metal-plastic). There were 40 women and 19 men with an average age of 51 years (range, 19-83 y). Primary diagnoses included osteoarthritis in 35, posttraumatic arthritis in 24, and inflammatory arthritis in 17 patients. There were 21 index, 27 middle, 18 ring, and 10 small fingers. The average number of reoperations per PIP joint was 1.6 (range, 1-4). A total of 45 joints had 1 reoperation, 19 had 2, 11 had 3, and 1 had 4. Extensor mechanism dysfunction was the most common reason for reoperation; it involved 51 of 76 fingers and was associated with Chamay or tendon-reflecting surgical approaches. Additional etiologies included component loosening in 17, collateral ligament failure in 10, and volar plate contracture in 8 cases. Inflammatory arthritis was associated with collateral ligament failure. Six fingers were eventually amputated, 9 had PIP joint arthrodeses, and 2 had resection arthroplasties. The arthrodesis and amputation rates correlated with the increased number of reoperations per finger. Clinically, most patients had no or mild pain at the most recent follow-up, and the PIP joint range-of-motion was not significantly different from preoperative values. Pain levels improved with longer follow-up. Reoperations following primary nonconstrained PIP joint arthroplasties are common. Extensor mechanism dysfunction was the most common reason for reoperation. The average reoperation rate was 1.6, and arthrodesis and amputation are associated with an increasing number of operations. Overall clinical outcomes demonstrated no significant change in range of motion, and most patients had mild or no pain. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Tamoxifen Inhibition of Kv7.2/Kv7.3 Channels
Ferrer, Tania; Aréchiga-Figueroa, Ivan Arael; Shapiro, Mark S.; Tristani-Firouzi, Martin; Sanchez-Chapula, José A.
2013-01-01
KCNQ genes encode five Kv7 K+ channel subunits (Kv7.1–Kv7.5). Four of these (Kv7.2–Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which regulates neuronal excitability. In this study, we demonstrate that tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits Kv7.2/Kv7.3 currents heterologously expressed in human embryonic kidney HEK-293 cells. Current inhibition by tamoxifen was voltage independent but concentration-dependent. The IC50 for current inhibition was 1.68 ± 0.44 µM. The voltage-dependent activation of the channel was not modified. Tamoxifen inhibited Kv7.2 homomeric channels with a higher potency (IC50 = 0.74 ± 0.16 µM). The mutation Kv7.2 R463E increases phosphatidylinositol- 4,5-bisphosphate (PIP2) - channel interaction and diminished dramatically the inhibitory effect of tamoxifen compared with that for wild type Kv7.2. Conversely, the mutation Kv7.2 R463Q, which decreases PIP2 -channel interaction, increased tamoxifen potency. Similar results were obtained on the heteromeric Kv7.2 R463Q/Kv7.3 and Kv7.2 R463E/Kv7.3 channels, compared to Kv7.2/Kv7.3 WT. Overexpression of type 2A PI(4)P5-kinase (PIP5K 2A) significantly reduced tamoxifen inhibition of Kv7.2/Kv7.3 and Kv7.2 R463Q channels. Our results suggest that tamoxifen inhibited Kv7.2/Kv7.3 channels by interfering with PIP2-channel interaction because of its documented interaction with PIP2 and the similar effect of tamoxifen on various PIP2 sensitive channels. PMID:24086693
Tamoxifen inhibition of kv7.2/kv7.3 channels.
Ferrer, Tania; Aréchiga-Figueroa, Ivan Arael; Shapiro, Mark S; Tristani-Firouzi, Martin; Sanchez-Chapula, José A
2013-01-01
KCNQ genes encode five Kv7 K(+) channel subunits (Kv7.1-Kv7.5). Four of these (Kv7.2-Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which regulates neuronal excitability. In this study, we demonstrate that tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits Kv7.2/Kv7.3 currents heterologously expressed in human embryonic kidney HEK-293 cells. Current inhibition by tamoxifen was voltage independent but concentration-dependent. The IC50 for current inhibition was 1.68 ± 0.44 µM. The voltage-dependent activation of the channel was not modified. Tamoxifen inhibited Kv7.2 homomeric channels with a higher potency (IC50 = 0.74 ± 0.16 µM). The mutation Kv7.2 R463E increases phosphatidylinositol- 4,5-bisphosphate (PIP2) - channel interaction and diminished dramatically the inhibitory effect of tamoxifen compared with that for wild type Kv7.2. Conversely, the mutation Kv7.2 R463Q, which decreases PIP2 -channel interaction, increased tamoxifen potency. Similar results were obtained on the heteromeric Kv7.2 R463Q/Kv7.3 and Kv7.2 R463E/Kv7.3 channels, compared to Kv7.2/Kv7.3 WT. Overexpression of type 2A PI(4)P5-kinase (PIP5K 2A) significantly reduced tamoxifen inhibition of Kv7.2/Kv7.3 and Kv7.2 R463Q channels. Our results suggest that tamoxifen inhibited Kv7.2/Kv7.3 channels by interfering with PIP2-channel interaction because of its documented interaction with PIP2 and the similar effect of tamoxifen on various PIP2 sensitive channels.
Sanders, Jessica R.; Ashley, Bethany; Moon, Anna; Woolley, Thomas E.; Swann, Karl
2018-01-01
Egg activation at fertilization in mammalian eggs is caused by a series of transient increases in the cytosolic free Ca2+ concentration, referred to as Ca2+ oscillations. It is widely accepted that these Ca2+ oscillations are initiated by a sperm derived phospholipase C isoform, PLCζ that hydrolyses its substrate PIP2 to produce the Ca2+ releasing messenger InsP3. However, it is not clear whether PLCζ induced InsP3 formation is periodic or monotonic, and whether the PIP2 source for generating InsP3 from PLCζ is in the plasma membrane or the cytoplasm. In this study we have uncaged InsP3 at different points of the Ca2+ oscillation cycle to show that PLCζ causes Ca2+ oscillations by a mechanism which requires Ca2+ induced InsP3 formation. In contrast, incubation in Sr2+ media, which also induces Ca2+ oscillations in mouse eggs, sensitizes InsP3-induced Ca2+ release. We also show that the cytosolic level Ca2+ is a key factor in setting the frequency of Ca2+ oscillations since low concentrations of the Ca2+ pump inhibitor, thapsigargin, accelerates the frequency of PLCζ induced Ca2+ oscillations in eggs, even in Ca2+ free media. Given that Ca2+ induced InsP3 formation causes a rapid wave during each Ca2+ rise, we use a mathematical model to show that InsP3 generation, and hence PLCζ's substate PIP2, has to be finely distributed throughout the egg cytoplasm. Evidence for PIP2 distribution in vesicles throughout the egg cytoplasm is provided with a rhodamine-peptide probe, PBP10. The apparent level of PIP2 in such vesicles could be reduced by incubating eggs in the drug propranolol which also reversibly inhibited PLCζ induced, but not Sr2+ induced, Ca2+ oscillations. These data suggest that the cytosolic Ca2+ level, rather than Ca2+ store content, is a key variable in setting the pace of PLCζ induced Ca2+ oscillations in eggs, and they imply that InsP3 oscillates in synchrony with Ca2+ oscillations. Furthermore, they support the hypothesis that PLCζ and sperm induced Ca2+ oscillations in eggs requires the hydrolysis of PIP2 from finely spaced cytoplasmic vesicles. PMID:29666796
Dynamics of polymerization induced phase separation in reactive polymer blends
NASA Astrophysics Data System (ADS)
Lee, Jaehyung
Mechanisms and dynamics of phase decomposition following polymerization induced phase separation (PIPS) of reactive polymer blends have been investigated experimentally and theoretically. The phenomenon of PIPS is a non-equilibrium and non-linear dynamic process. The mechanism of PIPS has been thought to be a nucleation and growth (NG) type originally, however, newer results indicate spinodal decomposition (SD). In PIPS, the coexistence curve generally passes through the reaction temperature at off-critical compositions, thus phase separation has to be initiated first in the metastable region where nucleation occurs. When the system farther drifts from the metastable to unstable region, the NG structure transforms to the SD bicontinuous morphology. The crossover behavior of PIPS may be called nucleation initiated spinodal decomposition (NISD). The formation of newer domains between the existing ones is responsible for the early stage of PIPS. Since PIPS is non- equilibrium kinetic process, it would not be surprising to discern either or both structures. The phase separation dynamics of DGEBA/CTBN mixtures having various kinds of curing agents from low reactivity to high reactivity and various amount of curing agents were examined at various reaction temperatures. The phase separation behavior was monitored by a quantity of scattered light intensity experimentally and by a quantity of collective structure factor numerically. Prior to the study of phase separation dynamics, a preliminary investigation on the isothermal cure behavior of the mixtures were executed in order to determine reaction kinetics parameters. The cure behavior followed the overall second order reaction kinetics. Next, based on the knowledge obtained from the phase separation dynamics study of DGEBA/CTBN mixtures, the phase separation dynamics of various composition of DGEBA/R45EPI mixtures having MDA as a curing agent were investigated. The phase separation behavior was quite dependent upon the composition variation. R45EPI itself can react with itself or with DGEBA without curing, therefore three-component system was considered in this mixture. For the numerical studies of this three- component mixture, a system that is composed of a reactive component-1 that is miscible with its growing molecules and another reactive component-2 that is not miscible with its growing molecules was considered with crosslinking reaction kinetics of the each component.
Sunk, Ilse-Gerlinde; Amoyo-Minar, Love; Stamm, Tanja; Haider, Stefanie; Niederreiter, Birgit; Supp, Gabriela; Soleiman, Afschin; Kainberger, Franz; Smolen, Josef S; Bobacz, Klaus
2014-11-01
To develop a radiographic score for assessment of hand osteoarthritis (OA) that is based on histopathological alterations of the distal (DIP) and proximal (PIP) interphalangeal joints. DIP and PIP joints were obtained from corpses (n=40). Plain radiographies of these joints were taken. Joint samples were prepared for histological analysis; cartilage damage was graded according to the Mankin scoring system. A 2×2 Fisher's exact test was applied to define those radiographic features most likely to be associated with histological alterations. Receiver operating characteristic curves were analysed to determine radiographic thresholds. Intraclass correlation coefficients (ICC) estimated intra- and inter-reader variability. Spearman's correlation was applied to examine the relationship between our score and histopathological changes. Differences between groups were determined by a Student's t test. The Interphalangeal Osteoarthritis Radiographic Simplified (iOARS) score is presented. The score is based on histopathological changes of DIP and PIP joints and follows a simple dichotomy whether OA is present or not. The iOARS score relies on three equally ranked radiographic features (osteophytes, joint space narrowing and subchondral sclerosis). For both DIP and PIP joints, the presence of one x-ray features reflects interphalangeal OA. Sensitivity and specificity for DIP joints were 92.3% and 90.9%, respectively, and 75% and 100% for PIP joints. All readers were able to reproduce their own readings in DIP and PIP joints after 4 weeks. The overall agreement between the three readers was good; ICCs ranged from 0.945 to 0.586. Additionally, outcomes of the iOARS score in a hand OA cohort revealed a higher prevalence of interphalangeal joint OA compared with the Kellgren and Lawrence score. The iOARS score is uniquely based on histopathological alterations of the interphalangeal joints in order to reliably determine OA of the DIP and PIP joints radiographically. Its high specificity and sensitivity together with the dichotomous approach renders the iOARS score reliable, fast to perform and easy to apply. This tool may not only be valuable in daily clinical practice but also in clinical and epidemiological trials. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Monitoring All Weather Precipitation Using PIP and MRR
NASA Astrophysics Data System (ADS)
Bliven, Francis; Petersen, Walter; Kulie, Mark; Pettersen, Claire; Wolff, David; Dutter, Michael
2015-04-01
The objective of this study is to demonstrate the science benefit of monitoring all weather precipitation for the Global Precipitation Measurement (GPM) Mission Ground Validation Program using a combination of two instruments: the Precipitation Imaging Package (PIP) and a Microwave Rain Radar-II (MRR). The PIP is a new ground based precipitation imaging instrument that uses a high speed camera and advanced processing software to image individual hydrometeors, measure hydrometeor size distributions, track individual hydrometeors and compute fall velocities. PIP hydrometeor data are also processed using algorithms to compute precipitation rates in one-minute time increments, and to discriminate liquid, mixed and frozen (e.g., snow) precipitation. The MRR, a vertically-pointing 24 GHz radar, is well documented in the literature and monitors hydrometeor vertical profile characteristics such as Doppler fall-speed spectra, radar reflectivity, size distribution and precipitation rate. Of interest to GPM direct and physical ground validation are collections of robust, satellite overpass-coincident, long-duration datasets consisting of observations of the aforementioned hydrometeor characteristics for falling snow and mixes of falling-snow and rain, as there are relatively few instruments that provide continuous observations of coincident hydrometeor image, size, and fall velocity in cold regions due to harsh environmental conditions. During extended periods of 2013 and 2014, concurrent PIP and MRR data sets were obtained at the National Weather Service station in Marquette, Michigan (2014), and at the NASA Wallops Flight Facility in Wallops Island, Virginia (2013,14). Herein we present examples of those data sets for a variety of weather conditions (rain, snow, frontal passages, lake effect snow events etc.). The results demonstrate 1) that the PIP and MRR are well-suited to long term operation in cold regions; 2) PIP and MRR data products are useful for characterizing a wide variety of precipitation types and conditions; 3) systematic variability in bulk snow characteristics such as fall speed and size distributions can be observed between event types, but also within individual event types (e.g., within a given synoptic or lake effect storm). The observed behavior suggests that added information on environmental or cloud parameters may be necessary to further define snowfall types/regimes or to estimate snow water equivalent rates using satellite or ground-based active or passive remote sensing tools.
Shelden, Megan C; Vandeleur, Rebecca; Kaiser, Brent N; Tyerman, Stephen D
2017-01-01
We report physiological, anatomical and molecular differences in two economically important grapevine ( Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent loss of conductance of potted grapevines subject to the onset of water-stress. Leaf (ψ L ) and stem water potential (ψ S ), stomatal conductance ( g s ), transpiration ( E ), petiole hydraulics ( K Pet ), and xylem diameter were also measured. Chardonnay displayed hydraulic segmentation based on UAE, with cavitation occurring at a less negative ψ L in the petiole than in the stem. Vulnerability segmentation was not observed in Grenache, with both petioles and stems equally vulnerable to cavitation. Leaf water potential that induced 50% of maximum UAE was significantly different between petioles and stems in Chardonnay (ψ 50Petiole = -1.14 and ψ 50Stem = -2.24 MPa) but not in Grenache (ψ 50Petiole = -0.73 and ψ 50Stem = -0.78 MPa). Grenache stems appeared more susceptible to water-stress induced cavitation than Chardonnay stems. Grenache displayed (on average) a higher K Pet likely due to the presence of larger xylem vessels. A close relationship between petiole hydraulic properties and vine water status was observed in Chardonnay but not in Grenache. Transcriptional analysis of aquaporins in the petioles and leaves ( VvPIP1;1, VvPIP2;1, VvPIP2;2 VvPIP2;3, VvTIP1;1 , and VvTIP2;1 ) showed differential regulation diurnally and in response to water-stress. VvPIP2;1 showed strong diurnal regulation in the petioles and leaves of both cultivars with expression highest predawn. Expression of VvPIP2;1 and VvPIP2;2 responded to ψ L and ψ S in both cultivars indicating the expression of these two genes are closely linked to vine water status. Expression of several aquaporin genes correlated with gas exchange measurements, however, these genes differed between cultivars. In summary, the data shows two contrasting responses in petiole hydraulics and aquaporin expression between the near-isohydric cultivar, Grenache and anisohydric cultivar, Chardonnay.
Shelden, Megan C.; Vandeleur, Rebecca; Kaiser, Brent N.; Tyerman, Stephen D.
2017-01-01
We report physiological, anatomical and molecular differences in two economically important grapevine (Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent loss of conductance of potted grapevines subject to the onset of water-stress. Leaf (ψL) and stem water potential (ψS), stomatal conductance (gs), transpiration (E), petiole hydraulics (KPet), and xylem diameter were also measured. Chardonnay displayed hydraulic segmentation based on UAE, with cavitation occurring at a less negative ψL in the petiole than in the stem. Vulnerability segmentation was not observed in Grenache, with both petioles and stems equally vulnerable to cavitation. Leaf water potential that induced 50% of maximum UAE was significantly different between petioles and stems in Chardonnay (ψ50Petiole = -1.14 and ψ50Stem = -2.24 MPa) but not in Grenache (ψ50Petiole = -0.73 and ψ50Stem = -0.78 MPa). Grenache stems appeared more susceptible to water-stress induced cavitation than Chardonnay stems. Grenache displayed (on average) a higher KPet likely due to the presence of larger xylem vessels. A close relationship between petiole hydraulic properties and vine water status was observed in Chardonnay but not in Grenache. Transcriptional analysis of aquaporins in the petioles and leaves (VvPIP1;1, VvPIP2;1, VvPIP2;2 VvPIP2;3, VvTIP1;1, and VvTIP2;1) showed differential regulation diurnally and in response to water-stress. VvPIP2;1 showed strong diurnal regulation in the petioles and leaves of both cultivars with expression highest predawn. Expression of VvPIP2;1 and VvPIP2;2 responded to ψL and ψS in both cultivars indicating the expression of these two genes are closely linked to vine water status. Expression of several aquaporin genes correlated with gas exchange measurements, however, these genes differed between cultivars. In summary, the data shows two contrasting responses in petiole hydraulics and aquaporin expression between the near-isohydric cultivar, Grenache and anisohydric cultivar, Chardonnay. PMID:29163613
Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging.
Platre, Matthieu Pierre; Jaillais, Yvon
2016-01-01
Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS), and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach.
Powers, Kyle T; Washington, M Todd
2018-01-01
Abstract Eukaryotic DNA polymerase η catalyzes translesion synthesis of thymine dimers and 8-oxoguanines. It is comprised of a polymerase domain and a C-terminal region, both of which are required for its biological function. The C-terminal region mediates interactions with proliferating cell nuclear antigen (PCNA) and other translesion synthesis proteins such as Rev1. This region contains a ubiquitin-binding/zinc-binding (UBZ) motif and a PCNA-interacting protein (PIP) motif. Currently little structural information is available for this region of polymerase η. Using a combination of approaches—including genetic complementation assays, X-ray crystallography, Langevin dynamics simulations, and small-angle X-ray scattering—we show that the C-terminal region is partially unstructured and has high conformational flexibility. This implies that the C-terminal region acts as a flexible tether linking the polymerase domain to PCNA thereby increasing its local concentration. Such tethering would facilitate the sampling of translesion synthesis polymerases to ensure that the most appropriate one is selected to bypass the lesion. PMID:29385534
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... (``PIP'') from one second to one hundred milliseconds. The PIP allows BOX Options Participants to... the BOX Book at the NBBO for a period of one second. If the order is not executed during the one... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-66982; File No. SR-BOX-2012-001] Self...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Participants (excluding the Initiating Participant) was zero, one, two, three, four, etc. Finally, during the... improvement provided to the PIP Order when the PIP runs for one hundred milliseconds. 2. Statutory Basis The... efficiently, please use only one method. The Commission will post all comments on the Commission's Internet...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... Customers in Section 1c is $0.07 per executed contract for all non-PIP transactions. The Exchange proposes to amend Section 1c to expand this applicable fee to all non-Auction Transactions and define the term ``Auction Transactions'' to include all transactions executed through PIP, the Solicitation Auction...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... Exemptions for PIPs; Notification to the Secretaries of Agriculture and Health and Human Services AGENCY... to the Secretaries of Agriculture and Health and Human Services a draft proposed rule under sections... provide the Secretary of Health and Human Services with a copy of any draft proposed rule pertaining to a...
Measuring What High-Achieving Students Know and Can Do on Entry to School: PIPS 2002-2008
ERIC Educational Resources Information Center
Wildy, Helen; Styles, Irene
2011-01-01
Anecdotal evidence from teachers in Western Australia suggested that increasing numbers of on-entry students have been performing at high levels over recent years on the Performance Indicators in Primary Schools Baseline Assessment (PIPS-BLA). This paper reports the results of an investigation into the performance of high-scoring students. Data…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-17
... transactions in the BOX Price Improvement Period (``PIP'') on the BOX Market LLC (``BOX'') options facility... to a PIP auction, and the retention rates of Initiating Participants and those market makers who... believes that in the aggregate, the long term data trends demonstrate there has not been a decline in...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... PIP Order which may result in greater opportunity for price improvement for customers. B. Self... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-69135; File No. SR-BOX-2013-11] Self-Regulatory... Amend the BOX Price Improvement Period (``PIP'') Rule 7150 March 14, 2013. Pursuant to Section 19(b)(1...
77 FR 26547 - Amendment/Extension of an Experimental Use Permit
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
...-incorporated protectant (PIP) [Event 5307] Bacillus thuringiensis eCry3.1Ab protein and the genetic material necessary for its production (vector pSYN12274) in Event 5307 corn (SYN-[Oslash]53[Oslash]7-1) and combined and single trait hybrids with one or more of the following additional PIPs: (1) [Bt11] Bacillus...
Measuring What Students Entering School Know and Can Do: PIPS Australia 2006-2007
ERIC Educational Resources Information Center
Wildy, Helen; Styles, Irene
2008-01-01
This paper reports analysis of 2006-2007 on-entry assessment data from the Performance Indicators in Primary Schools Baseline Assessment (PIPS-BLA) of random samples of students in England, Scotland, New Zealand and Australia. The analysis aimed, first, to investigate the validity and reliability of that instrument across countries and sexes, and,…
Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts's-Law-Inspired Approach
Lin, Hsien-I; George Lee, C. S.
2013-01-01
Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly. PMID:23820745
Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.
Lin, Hsien-I; Lee, C S George
2013-07-02
Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.
Rajebhosale, Bharati S; Dongre, Shivali N; Deshpande, Sameer S; Kate, Anup N; Kumbhar, Anupa A
2017-10-01
The reaction of aryl imidazo[4,5f] [1,10]phenanthrolines with Cu(NO 3 ) 2 lead to the formation of Cu(II) complexes of the type [Cu(L)(NO 3 ) 2 ] where L=PIP, 2-(phenyl) [4,5f] imidazo phenanthroline; HPIP=2-(2-hydroxyphenyl)imidazo [4,5f] phenanthroline and NIP=2-(naphthyl) [4,5f] imidazo phenanthroline. The interaction of these complexes with calf thymus DNA has been studied using viscosity measurements, UV-visible and fluorescence spectroscopy. Chemical nuclease activity of these complexes has also been investigated. All complexes cleave DNA via oxidative pathway involving singlet oxygen. Molecular docking studies revealed that these complexes bind to DNA through minor groove. Copyright © 2017 Elsevier Inc. All rights reserved.
Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillett, D.E.
1993-01-01
Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from undisturbed (Chincoteague National Wildlife Refuge, VA) and industrialized (Cat Island, Green Bay, WI; San Francisco Bay, CA) locations. Hepatic P450 associated monooxygenases (AHH, EROD, BROD, ECOD) and P450 proteins (CYP1A, CYP2B) were induced up to 85-fold, and were associated with burdens of total PCBs and 11 AHH-active PCB congeners. Dioxin equivalents (TCDD-EQs) of sample extracts, derived by bioassay (H4I1E rat hepatoma cell) and mathematically (product of PCB congener concentration and relative TCDD potency), revealed greatest TCDD-EQs in Cat Island samples. TCDD-EQs were associated with P450s, especially BROD, EROD and CYP1A (r2 = 0.35 to 0.66). TCDD-EQs derived by bioassay were highly correlated with TCDD-EQs derived mathematically (r2 = 0.58 to 0.67) . Multiple regressions were also performed to investigate relationships among P450s and PCB congeners. In summary, these data demonstrate that hepatic P450s of heron embryos are biomarkers of exposure to dioxin-like compounds and provide further evidence that this species has considerable value for assessing wetland and estuarine contamination.
Valentine, Pamela A; Eggermont, Jos J
2003-09-01
Intracortical microstimulation (ICMS), consisting of a 40 ms burst (rate 300 Hz) of 10 microA pulses, repetitively administered once per second, for a total duration of 1 h, induced cortical reorganization in the primary auditory cortical field of the anesthetized cat. Multiple single-unit activity was simultaneously recorded from three to nine microelectrodes. Spiking activity was recorded from the same units prior to and following the application of ICMS in conjunction with tone pips at the characteristic frequency (CF) of the stimulus electrode. ICMS produced a significant increase in the mean firing rate, and in the occurrence of burst activity. There was an increase in the cross-correlation coefficient (R) for unit pairs recorded from sites distant from the ICMS site, and a decrease in R for unit pairs that were recorded at the stimulation site. ICMS induced a shift in the CF, dependent on the difference between the baseline CF and the ICMS-paired tone pip frequency. ICMS also resulted in broader tuning curves, increased driven peak firing rate and reduced response latency. This suggests a lasting reduction in inhibition in a small region surrounding the ICMS site that allows expansion of the frequency range normally represented in the vicinity of the stimulation electrode.
Bloch, Daria; Pleskot, Roman; Vukašinović, Nemanja
2016-01-01
Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2. However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes. PMID:27516531
Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth.
Bloch, Daria; Pleskot, Roman; Pejchar, Přemysl; Potocký, Martin; Trpkošová, Pavlína; Cwiklik, Lukasz; Vukašinović, Nemanja; Sternberg, Hasana; Yalovsky, Shaul; Žárský, Viktor
2016-10-01
Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP 2 ) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP 2 However, the interaction with PIP 2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes. © 2016 American Society of Plant Biologists. All Rights Reserved.
Ready, Steady, Go! Program, Italy: a Program Impact Pathways (PIP) analysis.
Veracini, Giordana; Leonardi, Elisabetta; Girotti, Rita; Thrasher, Erika Willumsen
2014-09-01
Ready, Steady, Go! promotes proper nutrition and physical activity among people of all ages in targeted neighborhoods and encourages social integration and children's participation in decisions that affect their lives. It also seeks to involve parents in activities so that they can influence their children's attitudes toward lifestyles and personal development. This partnership has reached 70,000 Italian children and adults with new opportunities for physical activities and social experiences that help them improve nutritional behaviors while having fun with their peers. To assess the Ready, Steady, Go! Program logic and to identify Critical Quality Control Points (CCPs) and a core suite of impact indicators based on a Program Impact Pathways (PIP) analysis. The PIP analysis team reviewed the key activities and processes that form Ready, Steady, Go! and then identified key CCPs for the project. The findings were presented at the Healthy Lifestyles Program Evaluation Workshop held in Granada, Spain, 13-14 September 2013, under the auspices of the Mondelēz International Foundation. The PIP analysis confirmed that Ready, Steady, Go! has a structure that is likely to support the primary aims of the program. The CCPs identified are training of teachers in healthy lifestyles, teachers' active participation in the program, access to remodeled and well-equipped sports and recreational centers, participation of parents and grandparents, and involvement of local institutions and networks. A suite of impact indicators for changes in healthy lifestyle knowledge, attitudes, and behavior was identified. Project staff are now more aware of the importance of carefully monitoring the CCPs and have decided to conduct quarterly PIP-informed quality control evaluations.
Saborido, C Martin; Hockenhull, J; Bagust, A; Boland, A; Dickson, R; Todd, D
2010-06-01
Atrial fibrillation (AF) is a tachyarrhythmia characterised by uncoordinated atrial activation with consequent deterioration of impairment of atrial function and a rapid, irregular heartbeat. The annual incidence rate of paroxysmal AF (PAF) has been estimated at 1.0 per 1000 person-years (95% confidence interval 0.9 to 1.1), and reported prevalence rates show wide variations depending on age and country. Conventional treatment strategies for PAF focus on the suppression of paroxysms of AF and return to normal sinus rhythm. To summarise the results of the rapid reviews of the clinical effectiveness and cost-effectiveness literature describing the pill-in-the-pocket (PiP) approach for the treatment of patients with PAF; and to develop an economic model to assess the cost-effectiveness of PiP compared with in-hospital treatment (IHT) or continuous antiarrhythmic drugs (AADs) for the treatment of patients with PAF. Ovid MEDLINE and Ovid OLDMEDLINE 1950 to present with Daily Update were searched. The following electronic databases were searched for ongoing trials: Health Services Research Projects in Progress, ClinicalTrials.gov, metaRegister of Current Controlled Trials, BioMed Central, World Health Organization International Clinical Trials Registry Platform, ClinicalStudyResults.org and the National Library of Medicine Gateway. Inclusion criteria, which included patients suffering from PAF, were independently applied to all identified references by two reviewers (JH and CMS). Electronic searches were conducted to identify clinical effectiveness and cost-effectiveness evidence describing the use of a PiP strategy for the treatment of PAF, published since the release of the Royal College of Physicians' national guidelines on AF in June 2006. A Markov model was constructed to examine differences between three PAF strategies (PiP, AAD and IHT) in terms of cost per quality-adjusted life-year (QALY). A Markov model structure was chosen because it is assumed that PAF is a condition that causes patients to move between a limited number of relevant health states during their lives. The search strategies for clinical studies identified 201 randomised controlled trials (RCTs). Of the 201 RCTs identified, 12 were deemed to be relevant to the decision problem as they included drugs used to treat PAF; summary data were abstracted from these studies in order to inform the development of the economic model only. The model results indicate that the PiP strategy is slightly less effective than the other two strategies, but also less costly (incremental cost-effectiveness ratio of 45,916 pounds per QALY when compared to AAD, and 12,424 pounds per QALY when compared to IHT). The one-way sensitivity analyses performed do not show substantial changes in relative cost-effectiveness except in relation to the age of patients, where PiP dominates AAD in men over 65 years and in women over 70 years. At a threshold of 25,000 pounds per QALY, IHT has the maximum probability of being cost-effective at this threshold. For threshold values between 0 pounds and 9266 pounds per QALY, PiP is the option exhibiting the maximum probability of being cost-effective. The AAD strategy has a very poor probability of being cost-effective under any threshold. However, none of the strategies considered has more than a 40% probability of being cost-effective at a threshold of 25,000 pounds per QALY at any threshold level. This demonstrates the uncertainty around the parameters and its effect on the decision to choose any one strategy over the others. Most of the data used to populate the model have been taken from studies with populations that do not match the patient population specified in the decision problem. Populating the model in this way was unavoidable as there was a paucity of published clinical effectiveness and cost-effectiveness data describing a PiP strategy for this highly specific group of patients. Overall, a PiP strategy seems to be slightly less effective (i.e. fewer QALYs gained) than AAD and IHT, but is associated with cost savings. A PiP strategy seems to be more efficacious and cost-effective than an AAD strategy in men over 65 years and women over 70 years, but this is principally due to a very slight difference in QALY gained by the PiP strategy. A change in clinical practice that includes the introduction of PiP may save costs, but also involves a reduction in clinical effectiveness compared to existing approaches used to treat patients with PAF. Uncertainty in the available clinical data means there was insufficient evidence to support a recommendation for the use of PiP strategy in patients with PAF. Further research should identify outcomes of interest such as adverse events and recurrent AF episodes in an RCT setting because the only clinical study addressing these issues, even partially, is not an RCT but a descriptive analysis. Patient preferences also need to be considered in any future research designs.
Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association
2016-01-01
Potential of mean force (PMF) calculations are used to characterize the free energy landscape of protein–lipid and protein–protein association within membranes. Coarse-grained simulations allow binding free energies to be determined with reasonable statistical error. This accuracy relies on defining a good collective variable to describe the binding and unbinding transitions, and upon criteria for assessing the convergence of the simulation toward representative equilibrium sampling. As examples, we calculate protein–lipid binding PMFs for ANT/cardiolipin and Kir2.2/PIP2, using umbrella sampling on a distance coordinate. These highlight the importance of replica exchange between windows for convergence. The use of two independent sets of simulations, initiated from bound and unbound states, provide strong evidence for simulation convergence. For a model protein–protein interaction within a membrane, center-of-mass distance is shown to be a poor collective variable for describing transmembrane helix–helix dimerization. Instead, we employ an alternative intermolecular distance matrix RMS (DRMS) coordinate to obtain converged PMFs for the association of the glycophorin transmembrane domain. While the coarse-grained force field gives a reasonable Kd for dimerization, the majority of the bound population is revealed to be in a near-native conformation. Thus, the combination of a refined reaction coordinate with improved sampling reveals previously unnoticed complexities of the dimerization free energy landscape. We propose the use of replica-exchange umbrella sampling starting from different initial conditions as a robust approach for calculation of the binding energies in membrane simulations. PMID:27807980
Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association.
Domański, Jan; Hedger, George; Best, Robert B; Stansfeld, Phillip J; Sansom, Mark S P
2017-04-20
Potential of mean force (PMF) calculations are used to characterize the free energy landscape of protein-lipid and protein-protein association within membranes. Coarse-grained simulations allow binding free energies to be determined with reasonable statistical error. This accuracy relies on defining a good collective variable to describe the binding and unbinding transitions, and upon criteria for assessing the convergence of the simulation toward representative equilibrium sampling. As examples, we calculate protein-lipid binding PMFs for ANT/cardiolipin and Kir2.2/PIP 2 , using umbrella sampling on a distance coordinate. These highlight the importance of replica exchange between windows for convergence. The use of two independent sets of simulations, initiated from bound and unbound states, provide strong evidence for simulation convergence. For a model protein-protein interaction within a membrane, center-of-mass distance is shown to be a poor collective variable for describing transmembrane helix-helix dimerization. Instead, we employ an alternative intermolecular distance matrix RMS (D RMS ) coordinate to obtain converged PMFs for the association of the glycophorin transmembrane domain. While the coarse-grained force field gives a reasonable K d for dimerization, the majority of the bound population is revealed to be in a near-native conformation. Thus, the combination of a refined reaction coordinate with improved sampling reveals previously unnoticed complexities of the dimerization free energy landscape. We propose the use of replica-exchange umbrella sampling starting from different initial conditions as a robust approach for calculation of the binding energies in membrane simulations.
Designing Polyamide Inhibitors of TWIST 1 for Prosenescence Therapy
2014-09-01
Pyrrole -Imidazole Polyamides; TWIST1; KRAS; non-small cell lung cancer (NSCLC); senescence 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... Pyrrole -Imidazole Polyamides (PIP) are a class of cell permeable programmable small-molecule heterocyclic amino acid oligomers that can be designed...The original specific aims are below: Specific Aim#1. Design and synthesize a TWIST1-inhibitory specific Pyrrole -Imidazole Polyamides (PIP
ERIC Educational Resources Information Center
Klitmøller, Jacob
2016-01-01
The focus of the present paper is a critical discussion of the recently developed concept Pedagogy in Practice (PiP) with the intention of improving the concept for future research. PiP aims to understand ongoing educational practice from the students' perspective by interviewing groups of students about their understanding of learning. By…
ERIC Educational Resources Information Center
Styles, Irene; Wildy, Helen; Pepper, Vivienne; Faulkner, Joanne; Berman, Ye'Elah
2014-01-01
The assessment of literacy and numeracy skills of students as they enter school for the first time is not yet established nation-wide in Australia. However, a large proportion of primary schools have chosen to assess their starting students on the Performance Indicators in Primary Schools-Baseline Assessment (PIPS-BLA). This series of three…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Program That Permits BOX to Have No Minimum Size Requirement for Orders Entered Into the Price Improvement Period (PIP) Process Until July 18, 2012 June 30, 2011. Pursuant to Section 19(b)(1) of the Securities... Supplementary Material to Chapter V, Section 18 (The Price Improvement Period ``PIP'') of the Rules of the...
Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology.
Galneder, R; Kahl, V; Arbuzova, A; Rebecchi, M; Rädler, J O; McLaughlin, S
2001-05-01
We describe an apparatus that combines microelectrophoresis and laser trap technologies to monitor the activity of phosphoinositide-specific phospholipase C-delta1 (PLC-delta) on a single bilayer-coated silica bead with a time resolution of approximately 1 s. A 1-microm-diameter bead was coated with a phospholipid bilayer composed of electrically neutral phosphatidylcholine (PC) and negatively charged phosphatidylinositol 4,5-bisphosphate (2% PIP2) and captured in a laser trap. When an AC field was applied (160 Hz, 20 V/cm), the electrophoretic force produced a displacement of the bead, Delta(x), from its equilibrium position in the trap; Delta(x), which was measured using a fast quadrant diode detector, is proportional to the zeta potential and thus to the number of PIP2 molecules on the outer leaflet (initially, approximately 10(5)). When a solution containing PLC-delta flows past the bead, the enzyme adsorbs to the surface and hydrolyzes PIP2 to form the neutral lipid diacylglycerol. We observed a nonexponential decay of PIP2 on the bead with time that is consistent with a model based on the known structural properties of PLC-delta.
Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana.
Kaldenhoff, R; Grote, K; Zhu, J J; Zimmermann, U
1998-04-01
The plant plasma membrane intrinsic protein, PIP1b, facilitates water transport. These features were characterized in Xenopus oocytes and it has asked whether aquaporins are relevant for water transport in plants. In order to elucidate this uncertainty Arabidopsis thaliana was transformed with an anti-sense construct targeted to the PIP1b gene. Molecular analysis revealed that the anti-sense lines have reduced steady-state levels of PIP1b and the highly homologous PIP1a mRNA. The cell membrane water permeability was analyzed by swelling of protoplasts, which had been transferred into hypotonic conditions. The results indicate that the reduced expression of the specific aquaporins decreases the cellular osmotic water permeability coefficient approximately three times. The morphology and development of the anti-sense lines resembles that of control plants, with the exception of the root system, which is five times as abundant as that of control plants. Xylem pressure measurement suggests that the increase of root mass compensates the reduced cellular water permeability in order to ensure a sufficient water supply to the plant. The results obtained by this study, therefore, clearly demonstrate that aquaporins are important for plant water transport.
Cytochrome P450 induction in mallard duck (MD), black-crowned night heron (BCNH) and Fisher-344 rat
Melancon, M.J.; Rattner, B.A.; Stegeman, John J.
1991-01-01
P450 induction was studied in adult and pipping MDs, pipping BCNHs, and rats. Adult MDs and rats received i.p. injection of corn oil, 3-methylcholanthrene (MC) in corn oil (20 mg/kg), saline or phenobarbital (PB) in saline (80 mg/kg) for 3 days. MD and BCNH embryos received MC and PB by injection into the aircell approximately 2 days before pipping and were sacrificed at pipping. Hepatic microsomes were assayed for protein, arylhydrocarbon hydroxylase (AHH), benzphetamine-N-demethylase (BEND), ethoxy-resorufin-O-dealkylase (EROD), pentoxyresorufin-O-dealkylase (PROD), benzyloxyresorufin-O-dealkylase (BROD), ethoxycoumarin-O-dealkylase (ECOD), and by SDS-PAGE with western blot using a polyclonal anti-P4S0IIB antibody and a monoclonal anti-P450IA antibody (MAb 1-12-3). Although species and age caused substantial differences in responses, all treated groups showed an increase in one or more monooxygenase assays. All animals treated with MC showed a strong induction of a protein recognized by anti-P450IA, and all those treated with PB showed strong induction of a band recognized by anti-P450IIB.
Gray, Wendy N; Graef, Danielle M; Schuman, Shana S; Janicke, David M; Hommel, Kevin A
2013-05-01
Parenting stress in pediatric inflammatory bowel disease (IBD) has been under-examined. Data validating use of the Pediatric Inventory for Parents (PIP), a measure of parenting stress associated with caring for a chronically ill child, in chronic diseases with intermittent, unpredictable disease courses, such as IBD, are needed. This study presents validity data in support of the PIP in pediatric IBD and examines relations between parenting stress and important psychosocial and medical outcomes. Adolescents (N = 130) with IBD and their caregivers across 3 sites completed measures of parenting stress, family functioning, and emotional/behavioral functioning. Disease severity was also assessed for each participant. The PIP demonstrates excellent internal consistency. Parenting stress was significantly higher among those with unhealthy general family functioning and those with children with borderline or clinically elevated internalizing symptoms. Caregiving stress was greater among parents of youth with more active Crohn's disease. Results supported the reliability and validity of the PIP for assessing caregiving stress in pediatric IBD. Routine assessment of parenting stress is recommended, particularly among parents reporting unhealthy family functioning and parents of youth with borderline or clinically elevated internalizing symptoms and more active disease.
Balzamo, E; Joanny, P; Steinberg, J G; Oliver, C; Jammes, Y
1996-01-01
Substance P (SP), a neurotransmitter localized to primary sensory neurons, is found in the vagus nerve, nodose ganglion, sympathetic chain, and phrenic nerve in various animal species. However, the changes in endogeneous SP concentration under various circumstances that involve the participation of cardiorespiratory afferent nerves are still unexplored. In the present study, attention was focused on the variations in SP content measured by radioimmunoassay (RIA) in respiratory afferent nerves (vagus nerve, cervical sympathetic chain, phrenic nerve) and respiratory muscles (diaphragm, intercostal muscles) during positive inspiratory pressure (PIP) breathing alone or PIP with an expiratory threshold load (ETL) in rabbits. SP was found in all sampled structures in spontaneously breathing control animals, prevailing in the nodose ganglion. Left-versus right-sided differences were noticed in nerves. As compared with that in control animals, the SP concentration was markedly higher in vagal and sympathetic nervous structures during PIP or PIP with ETL, and also in the phrenic nerve during ETL breathing. The SP content did not vary in respiratory muscles. These observations suggest that two very common circumstances of mechanical ventilation are associated with an increased SP concentration in nervous structures participating in the control of breathing.