DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei
2014-08-20
Almost half of the stellar systems in the solar neighborhood are made up of multiple stars. In multiple-star systems, planet formation is under the dynamical influence of stellar companions, and the planet occurrence rate is expected to be different from that of single stars. There have been numerous studies on the planet occurrence rate of single star systems. However, to fully understand planet formation, the planet occurrence rate in multiple-star systems needs to be addressed. In this work, we infer the planet occurrence rate in multiple-star systems by measuring the stellar multiplicity rate for planet host stars. For a subsamplemore » of 56 Kepler planet host stars, we use adaptive optics (AO) imaging and the radial velocity (RV) technique to search for stellar companions. The combination of these two techniques results in high search completeness for stellar companions. We detect 59 visual stellar companions to 25 planet host stars with AO data. Three stellar companions are within 2'' and 27 within 6''. We also detect two possible stellar companions (KOI 5 and KOI 69) showing long-term RV acceleration. After correcting for a bias against planet detection in multiple-star systems due to flux contamination, we find that planet formation is suppressed in multiple-star systems with separations smaller than 1500 AU. Specifically, we find that compared to single star systems, planets in multiple-star systems occur 4.5 ± 3.2, 2.6 ± 1.0, and 1.7 ± 0.5 times less frequently when a stellar companion is present at a distance of 10, 100, and 1000 AU, respectively. This conclusion applies only to circumstellar planets; the planet occurrence rate for circumbinary planets requires further investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei
2014-03-01
The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K{sub P} < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamicalmore » stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.« less
Exoplanet orbital eccentricity: multiplicity relation and the Solar System.
Limbach, Mary Anne; Turner, Edwin L
2015-01-06
The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity-multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼ 80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets.
Exoplanet orbital eccentricity: Multiplicity relation and the Solar System
Limbach, Mary Anne; Turner, Edwin L.
2015-01-01
The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity−multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index –1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets. PMID:25512527
NASA Astrophysics Data System (ADS)
Marcy, G. W.; Fischer, D. A.; Butler, R. P.; Vogt, S. S.
To date, 10 stars are known which harbor two or three planets. These systems reveal secular and mean motion resonances in some systems and consist of widely separated, eccentric orbits in others. Both of the triple planet systems, namely Upsilon And and 55 Cancri, exhibit evidence of resonances. The two planets orbiting GJ 876 exhibit both mean-motion and secular resonances and they perturb each other so strongly that the evolution of the orbits is revealed in the Doppler measurements. The common occurrence of resonances suggests that delicate dynamical processes often shape the architecture of planetary systems. Likely processes include planet migration in a viscous disk, eccentricity pumping by the planet-disk interaction, and resonance capture of two planets. We find a class of "hierarchical" double-planet systems characterized by two planets in widely separated orbits, defined to have orbital period ratios greater than 5 to 1. In such systems, resonant interactions are weak, leaving high-order interactions and Kozai resonances plausibly important. We compare the planets that are single with those in multiple systems. We find that neither the two mass distributions nor the two eccentricity distributions are significantly different. This similarity in single and multiple systems suggests that similar dynamical processes may operate in both. The origin of eccentricities may stem from a multi-planet past or from interactions between planets and disk. Multiple planets in resonances can pump their eccentricities pumping resulting in one planet being ejected from the system or sent into the star, leaving a (more massive) single planet in an eccentric orbit. The distribution of semimajor axes of all known extrasolar planets shows a rise toward larger orbits, portending a population of gas-giant planets that reside beyond 3 AU, arguably in less perturbed, more circular orbits.
TRANSIT TIMING OBSERVATIONS FROM KEPLER. I. STATISTICAL ANALYSIS OF THE FIRST FOUR MONTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Eric B.; Rowe, Jason F.; Caldwell, Douglas A.
The architectures of multiple planet systems can provide valuable constraints on models of planet formation, including orbital migration, and excitation of orbital eccentricities and inclinations. NASA's Kepler mission has identified 1235 transiting planet candidates. The method of transit timing variations (TTVs) has already confirmed seven planets in two planetary systems. We perform a transit timing analysis of the Kepler planet candidates. We find that at least {approx}11% of planet candidates currently suitable for TTV analysis show evidence suggestive of TTVs, representing at least {approx}65 TTV candidates. In all cases, the time span of observations must increase for TTVs to providemore » strong constraints on planet masses and/or orbits, as expected based on N-body integrations of multiple transiting planet candidate systems (assuming circular and coplanar orbits). We find the fraction of planet candidates showing TTVs in this data set does not vary significantly with the number of transiting planet candidates per star, suggesting significant mutual inclinations and that many stars with a single transiting planet should host additional non-transiting planets. We anticipate that Kepler could confirm (or reject) at least {approx}12 systems with multiple transiting planet candidates via TTVs. Thus, TTVs will provide a powerful tool for confirming transiting planets and characterizing the orbital dynamics of low-mass planets. If Kepler observations were extended to at least seven years, then TTVs would provide much more precise constraints on the dynamics of systems with multiple transiting planets and would become sensitive to planets with orbital periods extending into the habitable zone of solar-type stars.« less
NASA Astrophysics Data System (ADS)
Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders
2017-07-01
We study how close-in systems such as those detected by Kepler are affected by the dynamics of bodies in the outer system. We consider two scenarios: outer systems of giant planets potentially unstable to planet-planet scattering and wide binaries that may be capable of driving Kozai or other secular variations of outer planets' eccentricities. Dynamical excitation of planets in the outer system reduces the multiplicity of Kepler-detectable planets in the inner system in ˜20-25 per cent of our systems. Accounting for the occurrence rates of wide-orbit planets and binary stars, ≈18 per cent of close-in systems could be destabilized by their outer companions in this way. This provides some contribution to the apparent excess of systems with a single transiting planet compared to multiple; however, it only contributes at most 25 per cent of the excess. The effects of the outer dynamics can generate systems similar to Kepler-56 (two coplanar planets significantly misaligned with the host star) and Kepler-108 (two significantly non-coplanar planets in a binary). We also identify three pathways to the formation of eccentric warm Jupiters resulting from the interaction between outer and inner systems: direct inelastic collision between an eccentric outer and an inner planet; secular eccentricity oscillations that may 'freeze out' when scattering resolves in the outer system; and scattering in the inner system followed by 'uplift', where inner planets are removed by interaction with the outer planets. In these scenarios, the formation of eccentric warm Jupiters is a signature of a past history of violent dynamics among massive planets beyond ˜1 au.
Stability and Evolution of Multiple Planet and Satellite Systems
NASA Astrophysics Data System (ADS)
Quillen, Alice
Numerous multiple planet systems have recently been discovered with the Kepler Mission, suggesting that multiple planet systems are common. Multiple- body nearly coplanar satellite systems are also found in the Solar system. Multiple planet and satellite systems exhibit rich dynamics as they are affected by three-body and secular resonances affecting short timescale behavior and long timescale stability. Interactions with debris disks and planetesimal belts and tidal interactions can both reduce and induce instability. Using both numerical and analytical studies, we propose to develop a broadly applicable framework to estimate diffusion rates and stability regimes both in resonant and non- resonant configurations. Understanding of resonant dynamics is needed to understand each of these systems and a broader general theory would cover scenarios and mechanisms that are relevant for all of them. Architectures and dynamical mechanisms will be used to test scenarios for formation and evolution of multiple body systems and constrain poorly known quantities such as masses, eccentricities, inclinations, radii, and the existence of undetected bodies.
Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis.
Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong
2016-10-11
The nearly circular (mean eccentricity [Formula: see text]) and coplanar (mean mutual inclination [Formula: see text]) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits ([Formula: see text]). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with [Formula: see text] 0.3, whereas the multiples are on nearly circular [Formula: see text] and coplanar [Formula: see text] degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [[Formula: see text](1-2)[Formula: see text
Discovery of a Jupiter/Saturn analog with gravitational microlensing.
Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B
2008-02-15
Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.
Forever Alone? Testing Single Eccentric Planetary Systems for Multiple Companions
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Wang, Songhu; Horner, Jonathan; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Salter, G. S.; Wright, D.; Zhou, Ji-Lin
2013-09-01
Determining the orbital eccentricity of an extrasolar planet is critically important for understanding the system's dynamical environment and history. However, eccentricity is often poorly determined or entirely mischaracterized due to poor observational sampling, low signal-to-noise, and/or degeneracies with other planetary signals. Some systems previously thought to contain a single, moderate-eccentricity planet have been shown, after further monitoring, to host two planets on nearly circular orbits. We investigate published apparent single-planet systems to see if the available data can be better fit by two lower-eccentricity planets. We identify nine promising candidate systems and perform detailed dynamical tests to confirm the stability of the potential new multiple-planet systems. Finally, we compare the expected orbits of the single- and double-planet scenarios to better inform future observations of these interesting systems.
ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissauer, Jack J.; Jenkins, Jon M.; Borucki, William J.
About one-third of the {approx}1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to bemore » in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.« less
Architectures of planetary systems and implications for their formation.
Ford, Eric B
2014-09-02
Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade.
Architectures of planetary systems and implications for their formation
Ford, Eric B.
2014-01-01
Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA’s Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade. PMID:24778212
THE EFFECT OF PLANET-PLANET SCATTERING ON THE SURVIVAL OF EXOMOONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Yanxiang; Zhou Jilin; Xie Jiwei
2013-05-20
Compared to the giant planets in the solar system, exoplanets have many remarkable properties, such as the prevalence of giant planets on eccentric orbits and the presence of hot Jupiters. Planet-planet scattering (PPS) between giant planets is a possible mechanism to interpret the above and other observed properties. If the observed giant planet architectures are indeed outcomes of PPS, such a drastic dynamical process must affect their primordial moon systems. In this Letter, we discuss the effect of PPS on the survival of exoplanets' regular moons. From an observational viewpoint, some preliminary conclusions are drawn from the simulations. (1) PPSmore » is a destructive process to the moon systems; single planets on eccentric orbits are not ideal moon-search targets. (2) If hot Jupiters formed through PPS, their original moons have little chance of survival. (3) Planets in multiple systems with small eccentricities are more likely to hold their primordial moons. (4) Compared with lower-mass planets, massive planets in multiple systems may not be the preferred moon-search targets if the system underwent a PPS history.« less
Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis
NASA Astrophysics Data System (ADS)
Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong
2016-10-01
The nearly circular (mean eccentricity e¯≈0.06) and coplanar (mean mutual inclination i¯≈3°) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits (e¯≈0.3). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with e¯≈0.3, whereas the multiples are on nearly circular (e¯=0.04-0.04+0.03) and coplanar (i¯=1.4-1.1+0.8 degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [×i¯] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.
Exoplanet orbital eccentricities derived from LAMOST–Kepler analysis
Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong
2016-01-01
The nearly circular (mean eccentricity e¯≈0.06) and coplanar (mean mutual inclination i¯≈3°) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits (e¯≈0.3). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with e¯≈ 0.3, whereas the multiples are on nearly circular (e¯=0.04−0.04+0.03) and coplanar (i¯=1.4−1.1+0.8 degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [e¯≈(1–2)×i¯] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all. PMID:27671635
NASA Astrophysics Data System (ADS)
Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei
2015-06-01
As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Petrovich, Cristobal; Wu, Yanqin; Dong, Subo; Xie, Jiwei
2018-06-01
We constrain the intrinsic architecture of Kepler planetary systems by modeling the observed multiplicities of the transiting planets (tranets) and their transit timing variations (TTVs). We robustly determine that the fraction of Sun-like stars with Kepler-like planets, η Kepler, is 30 ± 3%. Here, Kepler-like planets are planets that have radii R p ≳ R ⊕ and orbital periods P < 400 days. Our result thus significantly revises previous claims that more than 50% of Sun-like stars have such planets. Combined with the average number of Kepler planets per star (∼0.9), we obtain that on average each planetary system has 3.0 ± 0.3 planets within 400 days. We also find that the dispersion in orbital inclinations of planets within a given planetary system, σ i,k , is a steep function of its number of planets, k. This can be parameterized as {σ }i,k\\propto {k}α and we find that ‑4 < α < ‑2 at the 2σ level. Such a distribution well describes the observed multiplicities of both transits and TTVs with no excess of single-tranet systems. Therefore we do not find evidence supporting the so-called “Kepler dichotomy.” Together with a previous study on orbital eccentricities, we now have a consistent picture: the fewer planets in a system, the hotter it is dynamically. We discuss briefly possible scenarios that lead to such a trend. Despite our solar system not belonging to the Kepler club, it is interesting to notice that the solar system also has three planets within 400 days and that the inclination dispersion is similar to Kepler systems of the same multiplicity.
A SEARCH FOR MULTI-PLANET SYSTEMS USING THE HOBBY-EBERLY TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittenmyer, Robert A.; Endl, Michael; Cochran, William D.
Extrasolar multiple-planet systems provide valuable opportunities for testing theories of planet formation and evolution. The architectures of the known multiple-planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investigation of 22 planetary systems in an effort to answer three questions: (1) are there additional planets? (2) where could additional planets reside in stable orbits? and (3) what limits can these observations place on such objects? We find no evidence for additional bodies in any of thesemore » systems; indeed, these new data do not support three previously announced planets (HD 20367 b: Udry et al.; HD 74156 d: Bean et al.; and 47 UMa c: Fischer et al.). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these nondetections.« less
No Metallicity Correlation Associated with the Kepler Dichotomy
NASA Astrophysics Data System (ADS)
Munoz Romero, Carlos Eduardo; Kempton, Eliza
2018-01-01
NASA’s Kepler mission has discovered thousands of planetary systems, ∼ 20% of which are found to host multiple transiting planets. This relative paucity (compared to the high fraction of single transiting systems) is postulated to result from a distinction in the architecture between multi-transiting systems and those hosting a single transiting planet: a phenomenon usually referred to as the Kepler dichotomy. We investigate the hypothesis that external giant planets are the main cause behind the over-abundance of single- relative to multi-transiting systems, which would be signaled by higher metallicities in the former sample. To this end, we perform a statistical analysis on the stellar metallicity distribution with respect to planet multiplicity in the Kepler data. We perform our analysis on a variety of samples taken from a population of 1062 Kepler main sequence planetary hosts, using precisely determined metallicities from the California-Kepler survey. Contrary to some predictions, we do not find a significant difference between the stellar metallicities of the single- and multiple-transiting planet systems. However, we do find a 43% upper bound for systems with a single non-giant planet that could also host a hidden giant planet, based on metallicity considerations. While the presence of external giant planets might be one factor behind the Kepler dichotomy, our results also favor alternative explanations. We suggest that additional radial velocity and direct imaging measurements are necessary to constrain the presence of gas giants in systems with a single transiting planet.
Kepler Planetary Systems in Motion Artist Concept
2012-01-26
This artist concept shows an overhead view of the orbital position of the planets in systems with multiple transiting planets discovered by NASA Kepler mission. All the colored planets have been verified.
NASA's Kepler Mission Discovers Multiple Planets Orbiting Twin Suns (Reporter Pkg)
2012-08-28
NASA's Kepler mission has discovered the first transiting circumbinary system -- multiple planets orbiting two suns -- 4,900 light-years from Earth, in the constellation Cygnus, proving that more than one planets can form and survive in orbit around a binary star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrycky, Daniel C.; Lissauer, Jack J.; Rowe, Jason F.
We report on the orbital architectures of Kepler systems having multiple-planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ∼96% of the candidate planetary systems are correctly interpreted as true systems. We findmore » that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.°0-2.°2, for the packed systems of small planets probed by these observations.« less
The Anglo-Australian Planet Search. XXII. Two New Multi-planet Systems
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Horner, J.; Tuomi, Mikko; Salter, G. S.; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Jenkins, J. S.; Zhang, Z.; Vogt, S. S.; Rivera, Eugenio J.
2012-07-01
We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 ± 427 days, and a minimum mass of 5.3 M Jup. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 ± 0.07). The second planet in the HD 159868 system has a period of 352.3 ± 1.3 days and m sin i = 0.73 ± 0.05 M Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.
THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittenmyer, Robert A.; Horner, J.; Salter, G. S.
2012-07-10
We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of thesemore » systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com
2012-08-20
A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less
Binary catalogue of exoplanets
NASA Astrophysics Data System (ADS)
Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara
2016-02-01
Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.
Spacing of Kepler Planets: Sculpting by Dynamical Instability
NASA Astrophysics Data System (ADS)
Pu, Bonan; Wu, Yanqin
2015-07-01
We study the orbital architecture of multi-planet systems detected by the Kepler transit mission using N-body simulations, focusing on the orbital spacing between adjacent planets in systems showing four or more transiting planets. We find that the observed spacings are tightly clustered around 12 mutual Hill radii, when transit geometry and sensitivity limits are accounted for. In comparison, dynamical integrations reveal that the minimum spacing required for systems of similar masses to survive dynamical instability for as long as 1 billion yr is ∼10 if all orbits are circular and coplanar and ∼12 if planetary orbits have eccentricities of ∼0.02 (a value suggested by studies of planet transit-time variations). This apparent coincidence, between the observed spacing and the theoretical stability threshold, leads us to propose that typical planetary systems were formed with even tighter spacing, but most, except for the widest ones, have undergone dynamical instability, and are pared down to a more anemic version of their former selves, with fewer planets and larger spacings. So while the high-multiple systems (five or more transiting planets) are primordial systems that remain stable, the single or double planetary systems, abundantly discovered by the Kepler mission, may be the descendants of more closely packed high-multiple systems. If this hypothesis is correct, we infer that the formation environment of Kepler systems should be more dissipative than that of the terrestrial planets.
NASA Astrophysics Data System (ADS)
Nagasawa, M.; Lin, D. N. C.; Ida, S.
2003-04-01
Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semimajor axis ratios. However, prior to the disk depletion, self-gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self-gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapsis is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around υ Andromedae and HD 168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.
TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ida, S.; Lin, D. N. C.; Nagasawa, M., E-mail: ida@geo.titech.ac.jp, E-mail: lin@ucolick.org, E-mail: nagasawa.m.ad@m.titech.ac.jp
2013-09-20
The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamicalmore » interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits.« less
Computer simulations of planetary accretion dynamics: Sensitivity to initial conditions
NASA Technical Reports Server (NTRS)
Isaacman, R.; Sagan, C.
1976-01-01
The implications and limitations of program ACRETE were tested. The program is a scheme based on Newtonian physics and accretion with unit sticking efficiency, devised to simulate the origin of the planets. The dependence of the results on a variety of radial and vertical density distribution laws, the ratio of gas to dust in the solar nebula, the total nebular mass, and the orbital eccentricity of the accreting grains was explored. Only for a small subset of conceivable cases are planetary systems closely like our own generated. Many models have tendencies towards one of two preferred configurations: multiple star systems, or planetary systems in which Jovian planets either have substantially smaller masses than in our system or are absent altogether. But for a wide range of cases recognizable planetary systems are generated - ranging from multiple star systems with accompanying planets, to systems with Jovian planets at several hundred AU, to single stars surrounded only by asteroids.
NASA Astrophysics Data System (ADS)
Moriarty, John; Ballard, Sarah
2016-11-01
NASA’s Kepler Mission uncovered a wealth of planetary systems, many with planets on short-period orbits. These short-period systems reside around 50% of Sun-like stars and are similarly prevalent around M dwarfs. Their formation and subsequent evolution is the subject of active debate. In this paper, we simulate late-stage, in situ planet formation across a grid of planetesimal disks with varying surface density profiles and total mass. We compare simulation results with observable characteristics of the Kepler sample. We identify mixture models with different primordial planetesimal disk properties that self-consistently recover the multiplicity, radius, period and period ratio, and duration ratio distributions of the Kepler planets. We draw three main conclusions. (1) We favor a “frozen-in” narrative for systems of short-period planets, in which they are stable over long timescales, as opposed to metastable. (2) The “Kepler dichotomy,” an observed phenomenon of the Kepler sample wherein the architectures of planetary systems appear to either vary significantly or have multiple modes, can naturally be explained by formation within planetesimal disks with varying surface density profiles. Finally, (3) we quantify the nature of the “Kepler dichotomy” for both GK stars and M dwarfs, and find that it varies with stellar type. While the mode of planet formation that accounts for high multiplicity systems occurs in 24% ± 7% of planetary systems orbiting GK stars, it occurs in 63% ± 16% of planetary systems orbiting M dwarfs.
The Possibility of Multiple Habitable Worlds Orbiting Binary Stars
NASA Astrophysics Data System (ADS)
Mason, P. A.
2014-03-01
Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a lower mass companion provide enhanced habitable zones as well as improved photosynthetic flux for habitable zone worlds.
Dynamics of exoplanetary systems, links to their habitability
NASA Astrophysics Data System (ADS)
Bolmont, E.; Raymond, S. N.; Selsis, F.
2014-12-01
Our knowledge of planets' orbital dynamics, which was based on Solar System studies, has been challenged by the diversity of exoplanetary systems. Around cool and ultra cool dwarfs, the influence of tides on the orbital and spin evolution of planets can strongly affect their climate and their capacity to host surface liquid water. We illustrate the role of tides and dynamics with the extreme case of planets orbiting around brown dwarfs. In multiple planet systems, the eccentricity is excited by planet-planet interactions. Planets are therefore heated up from the inside by the tidally-induced friction. This process can heat a habitable zone planet to such a level that surface liquid water cannot exist. We also talk about the newly discovered potentially habitable Earth-sized planet Kepler-186f. Given the poorly estimated age of the system, the planet could still be evolving towards synchronization and have a high obliquity or be pseudo-synchronized with a zero obliquity. These two configurations would have a different effect on the climate of this planet.
Direct imaging of exoplanets around multiple star systems
NASA Astrophysics Data System (ADS)
Thomas, Sandrine
2015-01-01
Direct imaging of extra-solar planets is now a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the Gemini Planet Imager and SPHERE. These systems will allow detection of Jupiter-like planets 10^7 times fainter than their host star. Obtaining this contrast level and beyond requires the combination of a coronagraph to suppress light coming from the host star and a wavefront control system including a deformable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around a single host star or unresolved binaries/multiples, while several targets or planet candidates are located around nearby binary stars such as our neighboring star Alpha Centauri.Here, we present a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.
Magnetour: Surfing planetary systems on electromagnetic and multi-body gravity fields
NASA Astrophysics Data System (ADS)
Lantoine, Gregory; Russell, Ryan P.; Anderson, Rodney L.; Garrett, Henry B.
2017-09-01
A comprehensive tour of the complex outer planet systems is a central goal in space science. However, orbiting multiple moons of the same planet would be extremely prohibitive using traditional propulsion and power technologies. In this paper, a new mission concept, named Magnetour, is presented to facilitate the exploration of outer planet systems and address both power and propulsion challenges. This approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, without significant propellant or onboard power source. To achieve this free-lunch 'Grand Tour', Magnetour exploits the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare electrodynamic tether for power and propulsion. Preliminary results indicate that the Magnetour concept is sound and is potentially highly promising at Jupiter.
A Search for Strong Radio Emission from the Magnetic Interactions of Trappist-1 and its Satellites
NASA Astrophysics Data System (ADS)
Pineda, J. Sebastian; Hallinan, Gregg
2018-06-01
The first nearby very-low mass star planet-host discovered, Trappist-1, presents not only a unique opportunity for studying a system of multiple terrestrial planets, but a means to examine the possibility of significant star-planet magnetic interactions at the end of the main sequence. These very-low mass stars and brown dwarfs have been observationally confirmed as capable of generating strong radio emissions produced by the electron cyclotron maser instability as a consequence of currents coupling the magnetospheric environment to the stellar atmosphere. However, multiple electrodynamic mechanisms have been proposed to power these magnetospheric processes, including a potentially significant role for short-period satellites analogous to the auroral interactions between Jupiter and its moons or the Sun and the solar system planets. With multiple close in terrestrial satellites, the Trappist-1 system is an important test case of these potential theories. We present a search for these radio emissions from the seven-planet Trappist-1 system using the Karl G. Jansky Very Large Array, looking for both highly circularly polarized radio emission and persistent quiescent emissions at GHz frequencies. We place these observations in the context of the possible electrodynamic engines driving radio emissions in very-low mass stars and brown dwarfs, and their relation to magnetic field topology, with implications for future radio surveys of planet-hosts at the end of the main sequence.
NASA Astrophysics Data System (ADS)
Ofir, Aviv; Dreizler, Stefan; Zechmeister, Mathias; Husser, Tim-Oliver
2014-01-01
Context. The primary goal of the Kepler mission is the measurement of the frequency of Earth-like planets around Sun-like stars. However, the confirmation of the smallest of Kepler's candidates in long periods around FGK dwarfs is extremely difficult or even beyond the limit of current radial velocity technology. Transit timing variations (TTVs) may offer the possibility for these confirmations of near-resonant multiple systems by the mutual gravitational interaction of the planets. Aims: We previously detected the second planet candidate in the KOI 1574 system. The two candidates have relatively long periods (about 114 d and 191 d) and are in 5:3 resonance. We therefore searched for TTVs in this particularly promising system. Methods: The full Kepler data was detrended with the proven SARS pipeline. The entire data allowed one to search for TTVs of the above signals, and to search for additional transit-like signals. Results: We detected strong anti-correlated TTVs of the 114 d and 191 d signals, dynamically confirming them as members of the same system. Dynamical simulations reproducing the observed TTVs allowed us to also determine the masses of the planets. We found KOI 1574.01 (hereafter Kepler-87 b) to have a radius of 13.49 ± 0.55 R⊕ and a mass of 324.2 ± 8.8 M⊕, and KOI 1574.02 (Kepler-87 c) to have a radius of 6.14 ± 0.29 R⊕ and a mass of 6.4 ± 0.8 M⊕. Both planets have low densities of 0.729 and 0.152 g cm-3, respectively, which is non-trivial for such cold and old (7-8 Gyr) planets. Specifically, Kepler-87 c is the lowest-density planet in the super-Earth mass range. Both planets are thus particularly amenable to modeling and planetary structure studies, and also present an interesting case where ground-based photometric follow-up of Kepler planets is very desirable. Finally, we also detected two more short-period super-Earth sized (<2 R⊕) planetary candidates in the system, making the relatively high multiplicity of this system notable against the general paucity of multiple systems in the presence of giant planets like Kepler-87 b.
The Resilience of Kepler Multi-systems to Stellar Obliquity
NASA Astrophysics Data System (ADS)
Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin
2018-04-01
The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.
On the potentially dramatic history of the super-Earth ρ 55 Cancri e
NASA Astrophysics Data System (ADS)
Hansen, Bradley M. S.; Zink, Jonathon
2015-07-01
We demonstrate that tidal evolution of the inner planet (`e') of the system orbiting the star ρ 55 Cancri could have led to passage through two secular resonances with other planets in the system. The consequence of this evolution is excitation of both the planetary eccentricity and inclination relative to the original orbital plane. The large mass ratio between the innermost planet and the others means that these excitations can be of substantial amplitude and can have dramatic consequences for the system organization. Such evolution can potentially explain the large observed mutual inclination between the innermost and outermost planets in the system, and implies that tidal heating could have substantially modified the structure of planet e, and possibly reduced its mass by Roche lobe overflow. Similar inner secular resonances may be found in many multiple planet systems and suggest that many of the innermost planets in these systems could have suffered similar evolutions.
Hydrodynamic outcomes of planet scattering in transitional discs
NASA Astrophysics Data System (ADS)
Moeckel, Nickolas; Armitage, Philip J.
2012-01-01
A significant fraction of unstable multiple planet systems are likely to scatter during the transitional disc phase as gas damping becomes ineffectual. Using a large ensemble of FARGO hydrodynamic simulations and MERCURY N-body integrations, we directly follow the dynamics of planet-disc and planet-planet interactions through the clearing phase and through 50 Myr of planetary system evolution. Disc clearing is assumed to occur as a result of X-ray-driven photoevaporation. We find that the hydrodynamic evolution of individual scattering systems is complex, and can involve phases in which massive planets orbit within eccentric gaps, or accrete directly from the disc without a gap. Comparing the results to a reference gas-free model, we find that the N-body dynamics and hydrodynamics of scattering into one- and two-planet final states are almost identical. The eccentricity distributions in these channels are almost unaltered by the presence of gas. The hydrodynamic simulations, however, also form a population of low-eccentricity three-planet systems in long-term stable configurations, which are not found in N-body runs. The admixture of these systems results in modestly lower eccentricities in hydrodynamic as opposed to gas-free simulations. The precise incidence of these three-planet systems is likely a function of the initial conditions; different planet set-ups (number or spacing) may change the quantitative character of this result. We analyse the properties of surviving multiple planet systems, and show that only a small fraction (a few per cent) enter mean motion resonances after scattering, while a larger fraction form stable resonant chains and avoid scattering entirely. Our results remain consistent with the hypothesis that exoplanet eccentricity results from scattering, though the detailed agreement between observations and gas-free simulation results is likely coincidental. We discuss the prospects for further tests of scattering models by observing planets or non-axisymmetric gas structure in transitional discs.
Stability of Multi-Planet Systems Orbiting in the Alpha Centauri AB System
NASA Astrophysics Data System (ADS)
Lissauer, Jack
2018-04-01
We evaluate how closely-spaced planetary orbits in multiple planet systems can be and still survive for billion-year timescales within the alpha Centauri AB system. Although individual planets on nearly circular, coplanar orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of such planets in multi-planet systems must be significantly larger than the spacing of similar systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon circumstellar planets, stable orbits with small initial eccentricities aligned with the binary orbit are possible to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to the appropriate forced eccentricity can have a much larger affect on how closely planetary orbits can be spaced, on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.
A Population of planetary systems characterized by short-period, Earth-sized planets.
Steffen, Jason H; Coughlin, Jeffrey L
2016-10-25
We analyze data from the Quarter 1-17 Data Release 24 (Q1-Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined ([Formula: see text]17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.
A Population of planetary systems characterized by short-period, Earth-sized planets
Steffen, Jason H.; Coughlin, Jeffrey L.
2016-01-01
We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. PMID:27790984
Astrometric Planet Searches with SIM PlanetQuest
NASA Technical Reports Server (NTRS)
Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.
2007-01-01
SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.
Dynamical Stability and Evolution of Kepler’s compact inner multi-planet systems
NASA Astrophysics Data System (ADS)
Pu, Bonan
2017-06-01
NASA’s Kepler mission has revealed a population of highly compact inner multi-planet systems. These systems, typically consisting of 4-6 super-Earths, feature tight orbital spacing between planets as well as low orbital inclinations (~2 deg. ) and eccentricities (~2%). This stands in contrast to Kepler’s singles population, which appears to feature higher orbital obliquities and eccentricities, as well as a lower transit timing variation fraction indicative of lower true planet multiplicities.In this talk, I will present some previous and ongoing research aimed at understanding the dynamical evolution of these Kepler systems. First, I will present numerical N-body investigations on the long-term stability of multi-planet systems, the results of which suggest that Kepler’s systems are near the edge of stability. Next, I will discuss some current research on the dynamics of planetary close encounters and collisions, and their implications for the ultimate fate of dynamically unstable multi-planet systems. Finally, I will highlight some recent results on the dynamical stability and evolution of inner multi-planet systems when they are accompanied by external giant planet and/or stellar companions.
A Likely Detection of a Two-planet System in a Low-magnification Microlensing Event
NASA Astrophysics Data System (ADS)
Suzuki, D.; Bennett, D. P.; Udalski, A.; Bond, I. A.; Sumi, T.; Han, C.; Kim, Ho-il.; Abe, F.; Asakura, Y.; Barry, R. K.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Onishi, K.; Oyokawa, H.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Tristram, P. J.; Yonehara, A.; MOA Collaboration; Poleski, R.; Mróz, P.; Skowron, J.; Szymański, M. K.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Wyrzykowski, Ł.; Ulaczyk, K.; OGLE Collaboration
2018-06-01
We report on the analysis of a microlensing event, OGLE-2014-BLG-1722, that showed two distinct short-term anomalies. The best-fit model to the observed light curves shows that the two anomalies are explained with two planetary mass ratio companions to the primary lens. Although a binary-source model is also able to explain the second anomaly, it is marginally ruled out by 3.1σ. The two-planet model indicates that the first anomaly was caused by planet “b” with a mass ratio of q=({4.5}-0.6+0.7)× {10}-4 and projected separation in units of the Einstein radius, s = 0.753 ± 0.004. The second anomaly reveals planet “c” with a mass ratio of {q}2=({7.0}-1.7+2.3)× {10}-4 with Δχ 2 ∼ 170 compared to the single-planet model. Its separation has two degenerated solutions: the separation of planet c is s 2 = 0.84 ± 0.03 and 1.37 ± 0.04 for the close and wide models, respectively. Unfortunately, this event does not show clear finite-source and microlensing parallax effects; thus, we estimated the physical parameters of the lens system from Bayesian analysis. This gives the masses of planets b and c as {m}{{b}}={56}-33+51 and {m}{{c}}={85}-51+86 {M}\\oplus , respectively, and they orbit a late-type star with a mass of {M}host} ={0.40}-0.24+0.36 {M}ȯ located at {D}{{L}}={6.4}-1.8+1.3 {kpc} from us. The projected distances between the host and planets are {r}\\perp ,{{b}}=1.5+/- 0.6 {au} for planet b and {r}\\perp ,{{c}}={1.7}-0.6+0.7 {au} and {r}\\perp ,{{c}}={2.7}-1.0+1.1 {au} for the close and wide models of planet c. If the two-planet model is true, then this is the third multiple-planet system detected using the microlensing method and the first multiple-planet system detected in low-magnification events, which are dominant in the microlensing survey data. The occurrence rate of multiple cold gas giant systems is estimated using the two such detections and a simple extrapolation of the survey sensitivity of the 6 yr MOA microlensing survey combined with the 4 yr μFUN detection efficiency. It is estimated that 6% ± 2% of stars host two cold giant planets.
Simulation of a method to directly image exoplanets around multiple stars systems
NASA Astrophysics Data System (ADS)
Thomas, Sandrine J.; Bendek, Eduardo; Belikov, Ruslan
2014-08-01
Direct imaging of extra-solar planets has now become a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the GPI, SPHERE, P1640 and SCExAO. These systems will allow detection of planets 107 times fainter than their host star. For space- based missions, such as EXCEDE, EXO-C, EXO-S, WFIRST/AFTA, different teams have shown in laboratories contrasts reaching 10-10 within a few diffraction limits from the star using a combination of a coronagraph to suppress light coming from the host star and a wavefront control system. These demonstrations use a de- formable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around a single host star or unresolved bi- naries/multiples, while several targets or planet candidates are located around nearby binary stars such as our neighbor star Alpha Centauri. Until now, it has been thought that removing the light of a companion star is impossible with current technology, excluding binary star systems from target lists of direct imaging missions. Direct imaging around binaries/multiple systems at a level of contrast allowing Earth-like planet detection is challenging because the region of interest, where a dark zone is essential, is contaminated by the light coming from the hosts star companion. We propose a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.
On the Possibility of Habitable Trojan Planets in Binary Star Systems.
Schwarz, Richard; Funk, Barbara; Bazsó, Ákos
2015-12-01
Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.
The Pan-Pacific Planet Search. II. Confirmation of a Two-planet System around HD 121056
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Wang, Liang; Liu, Fan; Horner, Jonathan; Endl, Michael; Johnson, John Asher; Tinney, C. G.; Carter, B. D.
2015-02-01
Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 MJup. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 MJup and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.
Direct imaging of multiple planets orbiting the star HR 8799.
Marois, Christian; Macintosh, Bruce; Barman, Travis; Zuckerman, B; Song, Inseok; Patience, Jennifer; Lafrenière, David; Doyon, René
2008-11-28
Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.
SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems
NASA Technical Reports Server (NTRS)
Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud
2010-01-01
Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.
A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets
NASA Astrophysics Data System (ADS)
MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi; Rogers, Leslie; Rowe, Jason F.; Steffen, Jason H.; Torres, Guillermo
2016-10-01
Kepler has discovered hundreds of systems with multiple transiting exoplanets which hold tremendous potential both individually and collectively for understanding the formation and evolution of planetary systems. Many of these systems consist of multiple small planets with periods less than ∼50 days known as Systems with Tightly spaced Inner Planets, or STIPs. One especially intriguing STIP, Kepler-80 (KOI-500), contains five transiting planets: f, d, e, b, and c with periods of 1.0, 3.1, 4.6, 7.1, and 9.5 days, respectively. We provide measurements of transit times and a transit timing variation (TTV) dynamical analysis. We find that TTVs cannot reliably detect eccentricities for this system, though mass estimates are not affected. Restricting the eccentricity to a reasonable range, we infer masses for the outer four planets (d, e, b, and c) to be {6.75}-0.51+0.69, {4.13}-0.95+0.81, {6.93}-0.70+1.05, and {6.74}-0.86+1.23 Earth masses, respectively. The similar masses but different radii are consistent with terrestrial compositions for d and e and ∼2% H/He envelopes for b and c. We confirm that the outer four planets are in a rare dynamical configuration with four interconnected three-body resonances that are librating with few degree amplitudes. We present a formation model that can reproduce the observed configuration by starting with a multi-resonant chain and introducing dissipation. Overall, the information-rich Kepler-80 planets provide an important perspective into exoplanetary systems.
A Bewildering and Dynamic Picture of Exoplanetary Systems Identified by the Kepler Mission (Invited)
NASA Astrophysics Data System (ADS)
Jenkins, J. M.
2013-12-01
Kepler vaulted into the heavens on March 7, 2009, initiating NASA's search for Earth-size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on a rocky planetary surface. In the 4 years since, a flood of photometric data of unprecedented precision and continuity on more than 190,000 stars has provoked a watershed of 134+ confirmed or validated planets, 3200+ planetary candidates (most sub-Neptune in size and many comparable to or smaller than Earth), and a revolution in asteroseismology and astrophysics. Recent discoveries include Kepler-62 with 5 planets total, of which 2 are in the habitable zone with radii of 1.4 and 1.7 Re. Approximately 500 of the stars in the Kepler survey with planets host multiple transiting planets: 43% of planet candidates have transiting siblings. Many of these multiple transiting planet systems are dynamically packed and are unlikely, therefore, to have formed in situ. These systems experienced strong migration and evolution to arrive at the configurations we observe today, with important implications for the time-variable habitability of these planets over their histories. The half dozen circumbinary transiting planet systems discovered by Kepler to date highlight the dynamic nature of the habitable zone in systems with multiple host stars where the habitable zone may change significantly on timescales commensurate with the orbital period of the binary. While the catalog of circumbinary planets is small at this point, it already possesses at least one example of an exoplanet in the habitable zone. This implies that the majority of habitable zone planets may be circumbinary planets given the high frequency of multiple star systems and the early detection of Kepler-47b. KIC-12557548 is most likely a disintegrating sub-Mercury-sized planet. While it was probably never habitable, it represents a unique example of the dynamic nature of planetary systems. These amazing discoveries challenge our conventional notion of the habitable zone for single stars and static planetary system configurations. This talk will provide an overview of the science results from the Kepler Mission and the work ahead to derive the frequency of Earth-size planets in the habitable zone of solar-like stars from the treasure trove of Kepler data. NASA's quest for exoplanets continues with the Transiting Exoplanet Survey Satellite (TESS) mission, slated for launch in May 2017 by NASA's Explorer Program. TESS will conduct an all- sky transit survey to identify the 1000 best small exoplanets in the solar neighborhood for follow up observations and characterization. TESS's targets will include all F, G, K dwarfs from +4 to +12 magnitude and all M dwarfs known within ~200 light-years. 500,000 target stars will be observed over two years with ~500 square degrees observed continuously for a year in each hemisphere in the James Webb Space Telescopes continuously viewable zones. Since the typical TESS target star is 5 magnitudes brighter than that of Kepler and 10 times closer, TESS discoveries will afford significant opportunities to measure the masses of the exoplanets and to characterize their atmospheres with JWST, ELTs and other exoplanet explorers. TESS' discoveries will raise new questions regarding habitability that will be open to investigation through active efforts to characterize their atmospheres and search for biomarkers. Funding for this mission is provided by NASA's Science Mission Directorate.
A common mass scaling for satellite systems of gaseous planets.
Canup, Robin M; Ward, William R
2006-06-15
The Solar System's outer planets that contain hydrogen gas all host systems of multiple moons, which notably each contain a similar fraction of their respective planet's mass (approximately 10(-4)). This mass fraction is two to three orders of magnitude smaller than that of the largest satellites of the solid planets (such as the Earth's Moon), and its common value for gas planets has been puzzling. Here we model satellite growth and loss as a forming giant planet accumulates gas and rock-ice solids from solar orbit. We find that the mass fraction of its satellite system is regulated to approximately 10(-4) by a balance of two competing processes: the supply of inflowing material to the satellites, and satellite loss through orbital decay driven by the gas. We show that the overall properties of the satellite systems of Jupiter, Saturn and Uranus arise naturally, and suggest that similar processes could limit the largest moons of extrasolar Jupiter-mass planets to Moon-to-Mars size.
Life and light: exotic photosynthesis in binary and multiple-star systems.
O'Malley-James, J T; Raven, J A; Cockell, C S; Greaves, J S
2012-02-01
The potential for Earth-like planets within binary/multiple-star systems to host photosynthetic life was evaluated by modeling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in (i) close-binary systems; (ii) wide-binary systems, and (iii) three-star systems were investigated, and a range of stable radiation environments were found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic, forms of photosynthetic life, such as IR photosynthesizers and organisms that are specialized for specific spectral niches.
Chaos in Kepler's Multiple Planet Systems and K2s Observations of the Atmospheres of Uranus Neptune
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2016-01-01
More than one-third of the 4700 planet candidates found by NASA's Kepler spacecraft during its prime mission are associated with target stars that have more than one planet candidate, and such "multis" account for the vast majority of candidates that have been verified as true planets. The large number of multis tells us that flat multiplanet systems like our Solar System are common. Virtually all of the candidate planetary systems are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship, but some of the systems lie in chaotic regions close to instability. The characteristics of some of the most interesting confirmed Kepler multi-planet systems will be discussed. The Kepler spacecraft's 'second life' in theK2 mission has allowed it to obtain long time-series observations of Solar System targets, including the giant planets Uranus & Neptune. These observations show variability caused by the chaotic weather patterns on Uranus & Neptune.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timpe, Miles; Barnes, Rory; Kopparapu, Ravikumar
2013-09-15
If mutual gravitational scattering among exoplanets occurs, then it may produce unique orbital properties. For example, two-planet systems that lie near the boundary between circulation and libration of their periapses could result if planet-planet scattering ejected a former third planet quickly, leaving one planet on an eccentric orbit and the other on a circular orbit. We first improve upon previous work that examined the apsidal behavior of known multiplanet systems by doubling the sample size and including observational uncertainties. This analysis recovers previous results that demonstrated that many systems lay on the apsidal boundary between libration and circulation. We thenmore » performed over 12,000 three-dimensional N-body simulations of hypothetical three-body systems that are unstable, but stabilize to two-body systems after an ejection. Using these synthetic two-planet systems, we test the planet-planet scattering hypothesis by comparing their apsidal behavior, over a range of viewing angles, to that of the observed systems and find that they are statistically consistent regardless of the multiplicity of the observed systems. Finally, we combine our results with previous studies to show that, from the sampled cases, the most likely planetary mass function prior to planet-planet scattering follows a power law with index -1.1. We find that this pre-scattering mass function predicts a mutual inclination frequency distribution that follows an exponential function with an index between -0.06 and -0.1.« less
A Six-planet System around the Star HD 34445
NASA Astrophysics Data System (ADS)
Vogt, Steven S.; Butler, R. Paul; Burt, Jennifer; Tuomi, Mikko; Laughlin, Gregory; Holden, Brad; Teske, Johanna K.; Shectman, Stephen A.; Crane, Jeffrey D.; Díaz, Matías; Thompson, Ian B.; Arriagada, Pamela; Keiser, Sandy
2017-11-01
We present a new precision radial velocity (RV) data set that reveals a multi-planet system orbiting the G0V star HD 34445. Our 18-year span consists of 333 precision RV observations, 56 of which were previously published and 277 of which are new data from the Keck Observatory, Magellan at Las Campanas Observatory, and the Automated Planet Finder at Lick Observatory. These data indicate the presence of six planet candidates in Keplerian motion about the host star with periods of 1057, 215, 118, 49, 677, and 5700 days, and minimum masses of 0.63, 0.17, 0.1, 0.05, 0.12, and 0.38 M J, respectively. The HD 34445 planetary system, with its high degree of multiplicity, its long orbital periods, and its induced stellar RV half-amplitudes in the range 2 m s-1 ≲ K ≲ 5 m s-1 is fundamentally unlike either our own solar system (in which only Jupiter and Saturn induce significant reflex velocities for the Sun), or the Kepler multiple-transiting systems (which tend to have much more compact orbital configurations).
Transit visibility zones of the Solar system planets
NASA Astrophysics Data System (ADS)
Wells, R.; Poppenhaeger, K.; Watson, C. A.; Heller, R.
2018-01-01
The detection of thousands of extrasolar planets by the transit method naturally raises the question of whether potential extrasolar observers could detect the transits of the Solar system planets. We present a comprehensive analysis of the regions in the sky from where transit events of the Solar system planets can be detected. We specify how many different Solar system planets can be observed from any given point in the sky, and find the maximum number to be three. We report the probabilities of a randomly positioned external observer to be able to observe single and multiple Solar system planet transits; specifically, we find a probability of 2.518 per cent to be able to observe at least one transiting planet, 0.229 per cent for at least two transiting planets, and 0.027 per cent for three transiting planets. We identify 68 known exoplanets that have a favourable geometric perspective to allow transit detections in the Solar system and we show how the ongoing K2 mission will extend this list. We use occurrence rates of exoplanets to estimate that there are 3.2 ± 1.2 and 6.6^{+1.3}_{-0.8} temperate Earth-sized planets orbiting GK and M dwarf stars brighter than V = 13 and 16, respectively, that are located in the Earth's transit zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrycky, Daniel C.; Lissauer, Jack J.; Ragozzine, Darin
Having discovered 885 planet candidates in 361 multiple-planet systems, Kepler has made transits a powerful method for studying the statistics of planetary systems. The orbits of only two pairs of planets in these candidate systems are apparently unstable. This indicates that a high percentage of the candidate systems are truly planets orbiting the same star, motivating physical investigations of the population. Pairs of planets in this sample are typically not in orbital resonances. However, pairs with orbital period ratios within a few percent of a first-order resonance (e.g. 2:1, 3:2) prefer orbital spacings just wide of the resonance and avoidmore » spacings just narrow of the resonance. Finally, we investigate mutual inclinations based on transit duration ratios. We infer that the inner planets of pairs tend to have a smaller impact parameter than their outer companions, suggesting these planetary systems are typically coplanar to within a few degrees.« less
SPIN–ORBIT MISALIGNMENT AS A DRIVER OF THE KEPLER DICHOTOMY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spalding, Christopher; Batygin, Konstantin
2016-10-10
During its five-year mission, the Kepler spacecraft has uncovered a diverse population of planetary systems with orbital configurations ranging from single-transiting planets to systems of multiple planets co-transiting the parent star. By comparing the relative occurrences of multiple to single-transiting systems, recent analyses have revealed a significant over-abundance of singles. Dubbed the “ Kepler Dichotomy,” this feature has been interpreted as evidence for two separate populations of planetary systems: one where all orbits are confined to a single plane, and a second where the constituent planetary orbits possess significant mutual inclinations, allowing only a single member to be observed inmore » transit at a given epoch. In this work, we demonstrate that stellar obliquity, excited within the disk-hosting stage, can explain this dichotomy. Young stars rotate rapidly, generating a significant quadrupole moment, which torques the planetary orbits, with inner planets influenced more strongly. Given nominal parameters, this torque is sufficiently strong to excite significant mutual inclinations between planets, enhancing the number of single-transiting planets, sometimes through a dynamical instability. Furthermore, as hot stars appear to possess systematically higher obliquities, we predict that single-transiting systems should be relatively more prevalent around more massive stars. We analyze the Kepler data and confirm this signal to be present.« less
An Analytical Method To Compute Comet Cloud Formation Efficiency And Its Application
NASA Astrophysics Data System (ADS)
Brasser, Ramon; Duncan, M. J.
2007-07-01
A quick analytical method is presented for calculating comet cloud formation efficiency in the case of a single planet or multiple-planet system for planets that are not too eccentric (e_p < 0.2). A method to calculate the fraction of comets that stay under the control of each planet is also presented. The location of the planet(s) in mass-semi-major axis space to form a comet cloud is constrained based on the conditions developed by Tremaine (1993) together with estimates of the likelihood of passing comets between planets; and, in the case of a single, eccentric planet, the additional constraint that it is, by itself, able to accelerate material to lower values of Tisserand parameter within the age of the stellar system without sweeping up the majority of the material beforehand. For a single planet, it turns out the efficiency is mainly a function of planetary mass and semi-major axis of the planet and density of the stellar environment. The theory has been applied to some extrasolar systems and compared to numerical simulations for both these systems and the Solar system, as well as a diffusion scheme based on the energy kick distribution of Everhart (1968). Results agree well with analytical predictions.
THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittenmyer, Robert A.; Tinney, C. G.; Wang, Liang
2015-02-10
Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M{sub Jup}. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M{sub Jup} and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period andmore » a long-period planet.« less
The Anglo-Australian Planet Search. XXIII. Two New Jupiter Analogs
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; Tuomi, Mikko; Salter, G. S.; Carter, B. D.; Koch, F. Elliott; O'Toole, S. J.; Bailey, J.; Wright, D.
2014-03-01
We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P = 10.5 yr, and a minimum mass msin i of 0.48 M Jup; HD 154857c has P = 9.5 yr and msin i = 2.6 M Jup. These new data confirm the planetary nature of the previously unconstrained long-period object in the HD 154857 system. We have performed detailed dynamical stability simulations which show that the HD 154857 two-planet system is stable on timescales of at least 108 yr. These results highlight the continued importance of "legacy" surveys with long observational baselines; these ongoing campaigns are critical for determining the population of Jupiter analogs, and hence of those planetary systems with architectures most like our own solar system.
Kepler-424 b: A 'lonely' hot Jupiter that found A companion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas
Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). Inmore » stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to υ Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ⊕}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yan-Xiang, E-mail: yxgong@sina.com
A hydrodynamical simulation shows that a circumbinary planet will migrate inward to the edge of the disk cavity. If multiple planets form in a circumbinary disk, successive migration will lead to planet–planet scattering (PPS). PPS of Kepler -like circumbinary planets is discussed in this paper. The aim of this paper is to answer how PPS affects the formation of these planets. We find that a close binary has a significant influence on the scattering process. If PPS occurs near the unstable boundary of a binary, about 10% of the systems can be completely destroyed after PPS. In more than 90%more » of the systems, there is only one planet left. Unlike the eccentricity distribution produced by PPS in a single star system, the surviving planets generally have low eccentricities if PPS take place near the location of the currently found circumbinary planets. In addition, the ejected planets are generally the innermost of two initial planets. The above results depend on the initial positions of the two planets. If the initial positions of the planets are moved away from the binary, the evolution tends toward statistics similar to those around single stars. In this process, the competition between the planet–planet force and the planet-binary force makes the eccentricity distribution of surviving planets diverse. These new features of P-type PPS will deepen our understanding of the formation of these circumbinary planets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson-Robinson, Sarah E.; Salyk, Colette, E-mail: sdr@astro.as.utexas.edu
Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiplemore » planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.« less
Full-lifetime simulations of multiple planets across all phases of stellar evolution
NASA Astrophysics Data System (ADS)
Veras, D.; Mustill, A. J.; Gänsicke, B. T.; Redfield, S.; Georgakarakos, N.; Bowler, A. B.; Lloyd, M. J. S.
2017-09-01
We know that planetary systems are just as common around white dwarfs as around main-sequence stars. However, self-consistently linking a planetary system across these two phases of stellar evolution through the violent giant branch poses computational challenges, and previous studies restricted architectures to equal-mass planets. Here, we remove this constraint and perform over 450 numerical integrations over a Hubble time (14 Gyr) of packed planetary systems with unequal-mass planets. We characterize the resulting trends as a function of planet order and mass. We find that intrusive radial incursions in the vicinity of the white dwarf become less likely as the dispersion amongst planet masses increases. The orbital meandering which may sustain a sufficiently dynamic environment around a white dwarf to explain observations is more dependent on the presence of terrestrial-mass planets than any variation in planetary mass. Triggering unpacking or instability during the white dwarf phase is comparably easy for systems of unequal-mass planets and systems of equal-mass planets; instabilities during the giant branch phase remain rare and require fine-tuning of initial conditions. We list the key dynamical features of each simulation individually as a potential guide for upcoming discoveries.
Protoplanetary Disks in Multiple Star Systems
NASA Astrophysics Data System (ADS)
Harris, Robert J.
Most stars are born in multiple systems, so the presence of a stellar companion may commonly influence planet formation. Theory indicates that companions may inhibit planet formation in two ways. First, dynamical interactions can tidally truncate circumstellar disks. Truncation reduces disk lifetimes and masses, leaving less time and material for planet formation. Second, these interactions might reduce grain-coagulation efficiency, slowing planet formation in its earliest stages. I present three observational studies investigating these issues. First is a spatially resolved Submillimeter Array (SMA) census of disks in young multiple systems in the Taurus-Auriga star-forming region to study their bulk properties. With this survey, I confirmed that disk lifetimes are preferentially decreased in multiples: single stars have detectable millimeter-wave continuum emission twice as often as components of multiples. I also verified that millimeter luminosity (proportional to disk mass) declines with decreasing stellar separation. Furthermore, by measuring resolved-disk radii, I quantitatively tested tidal-truncation theories: results were mixed, with a few disks much larger than expected. I then switch focus to the grain-growth properties of disks in multiple star systems. By combining SMA, Combined Array for Research in Millimeter Astronomy (CARMA), and Jansky Very Large Array (VLA) observations of the circumbinary disk in the UZ Tau quadruple system, I detected radial variations in the grain-size distribution: large particles preferentially inhabit the inner disk. Detections of these theoretically predicted variations have been rare. I related this to models of grain coagulation in gas disks and find that our results are consistent with growth limited by radial drift. I then present a study of grain growth in the disks of the AS 205 and UX Tau multiple systems. By combining SMA, Atacama Large Millimeter/submillimeter Array (ALMA), and VLA observations, I detected radial variations of the grain-size distribution in the AS 205 A disk, but not in the UX Tau A disk. I find that some combination of radial drift and fragmentation limits growth in the AS 205 A disk. In the final chapter, I summarize my findings that, while multiplicity clearly influences bulk disk properties, it does not obviously inhibit grain growth. Other investigations are suggested.
Follow-up of K2 planet candiates with the LCOGT network
NASA Astrophysics Data System (ADS)
Dragomir, Diana; Bayliss, Daniel; Colón, Knicole; Cochran, William; Zhou, George; Brown, Timothy; Shporer, Avi; Espinoza, Nestor; Fulton, Benjamin
2015-12-01
K2 has proven to be an outstanding successor to the Kepler mission. It has already revealed dozens of new planet candidates, and unlike those found by the primary mission, many of these systems’ host stars are sufficiently bright to allow extensive follow-up observations. This is especially important since each of the K2 observing campaigns are only ~80 days long, leaving the community with the discovery of exciting new systems but often not enough time coverage to enable a thorough characterization of these systems.We are leading a large effort to observe K2 transiting planet candidates with the LCOGT telescope network. LCOGT’s longitudinal coverage, multiple identical telescopes per site and automated queue observing make it an ideal facility for fast, high-precision and multi-color follow-up. Our program focuses on specific aspects of K2 follow-up for which the network is especially powerful: period determination for candidates with fewer than three K2 transits; transit timing variation monitoring to measure planetary masses, orbital parameters and to search for additional planets in multiple systems; and multi-color photometry to vet planet candidates and carry-out preliminary atmospheric spectroscopy.We will present new results for a selection of systems observed so far through this program. These include K2-19, a multi-planet system extremely close to 3:2 resonance and experiencing transit timing variations with amplitudes as large as one hour; EPIC201702477, a long-period planet with only two K2 transits; WASP-47, a system hosting a hot Jupiter and two K2-discovered small planets; and EPIC201637175b, a disintegrating rocky planet.Our program demonstrates that LCOGT is uniquely positioned to be the primary ground-based photometric follow-up resource for K2 exoplanet discoveries, but also for the numerous bright systems that will result from the TESS mission. LCOGT photometry complements ongoing radial velocity and atmospheric spectroscopy efforts to reveal a more complete picture of the bright, nearby exoplanet systems discovered by these missions.
SPOTS: Search for Planets Orbiting Two Stars A Direct Imaging Survey for Circumbinary Planets
NASA Astrophysics Data System (ADS)
Thalmann, C.; Desidera, S.; Bergfors, C.; Boccaletti, A.; Bonavita, M.; Carson, J. C.; Feldt, M.; Goto, M.; Henning, T.; Janson, M.; Mordasini, C.
2013-09-01
Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the fre- quency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.
TESTING IN SITU ASSEMBLY WITH THE KEPLER PLANET CANDIDATE SAMPLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Brad M. S.; Murray, Norm, E-mail: hansen@astro.ucla.edu, E-mail: murray@cita.utoronto.ca
2013-09-20
We present a Monte Carlo model for the structure of low-mass (total mass <25 M{sub ⊕}) planetary systems that form by the in situ gravitational assembly of planetary embryos into final planets. Our model includes distributions of mass, eccentricity, inclination, and period spacing that are based on the simulation of a disk of 20 M{sub ⊕}, forming planets around a solar-mass star, and assuming a power-law surface density distribution that drops with distance a as ∝ a {sup –1.5}. The output of the Monte Carlo model is then subjected to the selection effects that mimic the observations of a transitingmore » planet search such as that performed by the Kepler satellite. The resulting comparison of the output to the properties of the observed sample yields an encouraging agreement in terms of the relative frequencies of multiple-planet systems and the distribution of the mutual inclinations when moderate tidal circularization is taken into account. The broad features of the period distribution and radius distribution can also be matched within this framework, although the model underpredicts the distribution of small period ratios. This likely indicates that some dissipation is still required in the formation process. The most striking deviation between the model and observations is in the ratio of single to multiple systems in that there are roughly 50% more single-planet candidates observed than are produced in any model population. This suggests that some systems must suffer additional attrition to reduce the number of planets or increase the range of inclinations.« less
RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. I. NEAR-INFRARED SPECTROSCOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oppenheimer, B. R.; Beichman, C.; Brenner, D.
2013-05-01
We obtained spectra in the wavelength range {lambda} = 995-1769 nm of all four known planets orbiting the star HR 8799. Using the suite of instrumentation known as Project 1640 on the Palomar 5 m Hale Telescope, we acquired data at two epochs. This allowed for multiple imaging detections of the companions and multiple extractions of low-resolution (R {approx} 35) spectra. Data reduction employed two different methods of speckle suppression and spectrum extraction, both yielding results that agree. The spectra do not directly correspond to those of any known objects, although similarities with L and T dwarfs are present, asmore » well as some characteristics similar to planets such as Saturn. We tentatively identify the presence of CH{sub 4} along with NH{sub 3} and/or C{sub 2}H{sub 2}, and possibly CO{sub 2} or HCN in varying amounts in each component of the system. Other studies suggested red colors for these faint companions, and our data confirm those observations. Cloudy models, based on previous photometric observations, may provide the best explanation for the new data presented here. Notable in our data is that these presumably co-eval objects of similar luminosity have significantly different spectra; the diversity of planets may be greater than previously thought. The techniques and methods employed in this paper represent a new capability to observe and rapidly characterize exoplanetary systems in a routine manner over a broad range of planet masses and separations. These are the first simultaneous spectroscopic observations of multiple planets in a planetary system other than our own.« less
NASA Astrophysics Data System (ADS)
Brakensiek, Joshua; Ragozzine, D.
2012-10-01
The transit method for discovering extra-solar planets relies on detecting regular diminutions of light from stars due to the shadows of planets passing in between the star and the observer. NASA's Kepler Mission has successfully discovered thousands of exoplanet candidates using this technique, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, our research concerns the efficient calculation of geometric probabilities for detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods (e.g., Ragozzine & Holman 2010, Tremaine & Dong 2011), we have constructed an efficient, analytical algorithm which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets are transiting. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere (see Ragozzine & Holman 2010). The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparison with Monte Carlo simulations. Expanding this work, we have also developed semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability two planets will transit each other (Planet-Planet Occultation) and the probability that this transit occurs simultaneously as they transit their star (Overlapping Double Transits; see Ragozzine & Holman 2010). The latter algorithm can also be applied to calculating the probability of observing transiting circumbinary planets (Doyle et al. 2011, Welsh et al. 2012). All of these algorithms have been coded in C and will be made publicly available. We will present and advertise these codes and illustrate their value for studying exoplanetary systems.
LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey
NASA Astrophysics Data System (ADS)
Baranec, Christoph; Law, Nicholas; Morton, Timothy; Ziegler, Carl; Nofi, Larissa; Atkinson, Dani; Riddle, Reed
2015-12-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets. We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys. Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss plans to extend the survey to other transiting planet missions such as K2 and TESS as Robo-AO is in the process of being re-deployed to the 2.1-m telescope at Kitt Peak for 3 years and a higher-contrast Robo-AO system is being developed for the 2.2-m UH telescope on Maunakea.
NASA Astrophysics Data System (ADS)
Faedi, F.; Gómez Maqueo Chew, Y.; Fossati, L.; Pollacco, D.; McQuillan, A.; Hebb, L.; Chaplin, W. J.; Aigrain, S.
2013-04-01
The wealth of information rendered by Kepler planets and planet candidates is indispensable for statistically significant studies of distinct planet populations, in both single and multiple systems. Empirical evidences suggest that Kepler's planet population shows different physical properties as compared to the bulk of known exoplanets. The SOAPS project, aims to shed light on Kepler's planets formation, their migration and architecture. By measuring v sini accurately for Kepler hosts with rotation periods measured from their high-precision light curves, we will assess the alignment of the planetary orbit with respect to the stellar spin axis. This degree of alignment traces the formation history and evolution of the planetary systems, and thus, allows to distinguish between different proposed migration theories. SOAPS will increase by a factor of 2 the number of spin-orbit alignment measurements pushing the parameters space down to the SuperEarth domain. Here we present our preliminary results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Teruyuki; Masuda, Kento; Suto, Yasushi
We report a joint analysis of the Rossiter-McLaughlin (RM) effect with Subaru and the Kepler photometry for the Kepler Object of Interest (KOI) 94 system. The system is comprised of four transiting planet candidates with orbital periods of 22.3 (KOI-94.01), 10.4 (KOI-94.02), 54.3 (KOI-94.03), and 3.7 (KOI-94.04) days from the Kepler photometry. We performed the radial velocity (RV) measurement of the system with the Subaru 8.2 m telescope on UT 2012 August 10, covering a complete transit of KOI-94.01 for {approx}6.7 hr. The resulting RV variation due to the RM effect spectroscopically confirms that KOI-94.01 is indeed the transiting planetmore » and implies that its orbital axis is well aligned with the stellar spin axis; the projected spin-orbit angle {lambda} is estimated as -6{sup +13}{sub -11} deg. This is the first measurement of the RM effect for a multiple transiting system. Remarkably, the archived Kepler light curve around BJD = 2455211.5 (date in UT 2010 January 14/15) indicates a 'double-transit' event of KOI-94.01 and KOI-94.03, in which the two planets transit the stellar disk simultaneously. Moreover, the two planets partially overlap with each other, and exhibit a 'planet-planet eclipse' around the transit center. This provides a rare opportunity to put tight constraints on the configuration of the two transiting planets by joint analysis with our Subaru RM measurement. Indeed, we find that the projected mutual inclination of KOI-94.01 and KOI-94.03 is estimated to be {delta} = -1.{sup 0}15 {+-} 0.{sup 0}55. Implications for the migration model of multiple planet systems are also discussed.« less
International Deep Planet Survey, 317 stars to determine the wide-separated planet frequency
NASA Astrophysics Data System (ADS)
Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Song, I.; Barman, T.; Patience, J.
2013-09-01
Since 2000, more than 300 nearby young stars were observed for the International Deep Planet Survey with adaptive optics systems at Gemini (NIRI/NICI), Keck (Nirc2), and VLT (Naco). Massive young AF stars were included in our sample whereas they have generally been neglected in first generation surveys because the contrast and target distances are less favorable to image substellar companions. The most significant discovery of the campaign is the now well-known HR 8799 multi-planet system. This remarkable finding allows, for the first time, an estimate of the Jovians planet population at large separations (further than a few AUs) instead of deriving upper limits. During my presentation, I will present the survey showing images of multiple stars and planets. I will then propose a statistic study of the observed stars deriving constraints on the Jupiter-like planet frequency at large separations.
An analytical method to compute comet cloud formation efficiency and its application
NASA Astrophysics Data System (ADS)
Brasser, Ramon; Duncan, Martin J.
2008-01-01
A quick analytical method is presented for calculating comet cloud formation efficiency in the case of a single planet or multiple-planet system for planets that are not too eccentric ( e p ≲ 0.3). A method to calculate the fraction of comets that stay under the control of each planet is also presented, as well as a way to determine the efficiency in different star cluster environments. The location of the planet(s) in mass-semi-major axis space to form a comet cloud is constrained based on the conditions developed by Tremaine (1993) together with estimates of the likelyhood of passing comets between planets; and, in the case of a single, eccentric planet, the additional constraint that it is, by itself, able to accelerate material to relative encounter velocity U ~ 0.4 within the age of the stellar system without sweeping up the majority of the material beforehand. For a single planet, it turns out the efficiency is mainly a function of planetary mass and semi-major axis of the planet and density of the stellar environment. The theory has been applied to some extrasolar systems and compared to numerical simulations for both these systems and the Solar System, as well as a diffusion scheme based on the energy kick distribution of Everhart (Astron J 73:1039 1052, 1968). The analytic results are in good agreement with the simulations.
Vega's hot dust from icy planetesimals scattered inwards by an outward-migrating planetary system
NASA Astrophysics Data System (ADS)
Raymond, Sean N.; Bonsor, Amy
2014-07-01
Vega has been shown to host multiple dust populations, including both hot exozodiacal dust at sub-au radii and a cold debris disc extending beyond 100 au. We use dynamical simulations to show how Vega's hot dust can be created by long-range gravitational scattering of planetesimals from its cold outer regions. Planetesimals are scattered progressively inwards by a system of 5-7 planets from 30 to 60 au to very close-in. In successful simulations, the outermost planets are typically Neptune mass. The back-reaction of planetesimal scattering causes these planets to migrate outwards and continually interact with fresh planetesimals, replenishing the source of scattered bodies. The most favourable cases for producing Vega's exozodi have negative radial mass gradients, with sub-Saturn- to Jupiter-mass inner planets at 5-10 au and outer planets of 2.5 - 20 M⊕ . The mechanism fails if a Jupiter-sized planet exists beyond ˜15 au because the planet preferentially ejects planetesimals before they can reach the inner system. Direct-imaging planet searches can therefore directly test this mechanism.
Enhanced interplanetary panspermia in the TRAPPIST-1 system.
Lingam, Manasvi; Loeb, Abraham
2017-06-27
We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.
Enhanced interplanetary panspermia in the TRAPPIST-1 system
NASA Astrophysics Data System (ADS)
Lingam, Manasvi; Loeb, Abraham
2017-06-01
We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.
Long-Term Stability of Planets in the Alpha Centauri System
NASA Technical Reports Server (NTRS)
Lissauer, Jack; Quarles, Billy
2015-01-01
The alpha Centauri system is billions of years old, so planets are only expected to be found in regions where their orbits are long-lived. We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales, and we map the positions in the sky plane where planets on stable orbits about either stellar component may appear. We confirm the qualitative results of Wiegert & Holman (Astron. J. 113, 1445, 1997) regarding the approximate size of the regions of stable orbits of a single planet, which are larger for retrograde orbits relative to the binary than for pro-grade orbits. Additionally, we find that mean motion resonances with the binary orbit leave an imprint on the limits of orbital stability, and the effects of the Lidov-Kozai mechanism are also readily apparent. Overall, orbits of a single planet in the habitable zones near the plane of the binary are stable, whereas high-inclination orbits are short-lived. However, even well within regions where single planets are stable, multiple planet systems must be significantly more widely-spaced than they need to be around an isolated star in order to be long-lived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at
2013-02-20
Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery ofmore » {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.« less
Origin scenarios for the Kepler 36 planetary system
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Bodman, Eva; Moore, Alexander
2013-11-01
We explore scenarios for the origin of two different density planets in the Kepler 36 system in adjacent orbits near the 7:6 mean motion resonance. We find that fine tuning is required in the stochastic forcing amplitude, the migration rate and planet eccentricities to allow two convergently migrating planets to bypass mean motion resonances such as the 4:3, 5:4 and 6:5, and yet allow capture into the 7:6 resonance. Stochastic forcing can eject the system from resonance causing a collision between the planets, unless the disc causing migration and stochastic forcing is depleted soon after resonance capture. We explore a scenario with approximately Mars mass embryos originating exterior to the two planets and migrating inwards towards two planets. We find that gravitational interactions with embryos can nudge the system out of resonances. Numerical integrations with about a half dozen embryos can leave the two planets in the 7:6 resonance. Collisions between planets and embryos have a wide distribution of impact angles and velocities ranging from accretionary to disruptive. We find that impacts can occur at sufficiently high impact angle and velocity that the envelope of a planet could have been stripped, leaving behind a dense core. Some of our integrations show the two planets exchanging locations, allowing the outer planet that had experienced multiple collisions with embryos to become the innermost planet. A scenario involving gravitational interactions and collisions with embryos may account for both the proximity of the Kepler 36 planets and their large density contrast.
Catalogue of Exoplanets in Multiple-Star-Systems
NASA Astrophysics Data System (ADS)
Schwarz, Richard; Funk, Barbara; Bazsó, Ákos; Pilat-Lohinger, Elke
2017-07-01
Cataloguing the data of exoplanetary systems becomes more and more important, due to the fact that they conclude the observations and support the theoretical studies. Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia is available at http://exoplanet.eu/ and described at Schneider et al. 2011). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database. Therefore we started to compile a catalogue for binary and multiple star systems. Since 2013 the catalogue can be found at http://www.univie.ac.at/adg/schwarz/multiple.html (description can be found at Schwarz et al. 2016) which will be updated regularly and is linked to the Extrasolar Planets Encyclopaedia. The data of the binary catalogue can be downloaded as a file (.csv) and used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. Every columns of the list can be sorted in two directions: ascending, meaning from the lowest value to the highest, or descending. In addition an introduction and help is also given in the menu bar of the catalogue including an example list.
Lucky imaging multiplicity studies of exoplanet host stars
NASA Astrophysics Data System (ADS)
Ginski, C.; Mugrauer, M.; Neuhäuser, R.
2014-03-01
The multiplicity of stars is an important parameter in order to understand star and planet formation. In the past decades extrasolar planets have been discovered around more than 600 stars with the radial velocity and transit techniques. Many of these systems present extreme cases of massive planetary objects at very close separations to their primary stars. To explain the configurations of such systems is hence a continued challenge in the development of formation theories. It will be very interesting to determine if there are significant differences between planets in single and multiple star systems. In our ongoing study we use high resolution imaging techniques to clarify the multiplicity status of nearby (within 250 pc) planet host stars. For targets on the northern hemisphere we employ the lucky imaging instrument Astralux at the 2.2 m telescope of the Calar Alto Observatory. The lucky imaging approach consists of taking several thousand short images with integration times shorter than the speckle coherence time, to sample the speckle variations during the observation window. We then only choose the so called "lucky shots" with a very high Strehl ratio in one of the speckles, to shift and add, resulting in a final image with the highest possible Strehl ratio and therefore highest possible angular resolution. We will present recent results of our study at the Calar Alto Observatory, as well as observations undertaken with the RTK camera at the 20 cm guiding telescope in our own observatory in Großschwabhausen.
Kepler-424 b: A "Lonely" Hot Jupiter that Found a Companion
NASA Astrophysics Data System (ADS)
Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Isaacson, Howard; Buchhave, Lars A.; Brugamyer, Erik; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Havel, Mathieu; Lucas, Phillip; Howell, Steve B.; Fischer, Debra; Quintana, Elisa; Ciardi, David R.
2014-11-01
Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be "lonely". This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to \\upsilon Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M ⊕. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko
2013-04-20
The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a resultmore » of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.« less
SPOTS: The Search for Planets Orbiting Two Stars
NASA Astrophysics Data System (ADS)
Thalmann, Christian; Desidera, Silvano; Bergfors, Carolina; Boccaletti, Anthony; Bonavita, Mariangela; Carson, Joseph; Feldt, Markus; Goto, Miwa; Henning, Thomas; Janson, Markus; Klahr, Hubert; Marzari, Francesco; Mordasini, Christoph
2013-07-01
Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the frequency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.
A septet of Earth-sized planets
NASA Astrophysics Data System (ADS)
Triaud, Amaury; SPECULOOS Team; TRAPPIST-1 Team
2017-10-01
Understanding the astronomical requirements for life to emerge, and to persist, on a planet is one of the most important and exciting scientific endeavours, yet without empirical answers. To resolve this, multiple planets whose sizes and surface temperatures are similar to the Earth, need to be discovered. Those planets also need to possess properties enabling detailed atmospheric characterisation with forthcoming facilities, from which chemical traces produced by biological activity can in principle be identified.I will describe a dedicated search for such planets called SPECULOOS. Our first detection is the TRAPPIST-1 system. Intensive ground-based and space-based observations have revealed that at least seven planets populate this system. We measured their radii and obtained first estimates of their masses thanks to transit-timing variations. I will describe our on-going observational efforts aiming to reduce our uncertainties on the planet properties. The incident flux on the planets ranges from Mercury to Ceres, comprising the Earth, and permitting climatic comparisons between each of those worlds such as is not possible within our Solar system. All seven planets have the potential to harbour liquid water on at least a fraction of their surfaces, given some atmospheric and geological conditions.
2011-01-20
of 2009, was de- signed to address the important question of the frequency of Earth -size planets around Sun -like stars, and to characterize ex...physically associated with the candidate (hierarchical triple systems) and in a long-period orbit around their common center of mass would often be spatially...positive scenar- ios that is complementary to other diagnostics, and should play an important role in the discovery of Earth -size planets around other
Outer-planet scattering can gently tilt an inner planetary system
NASA Astrophysics Data System (ADS)
Gratia, Pierre; Fabrycky, Daniel
2017-01-01
Chaotic dynamics are expected during and after planet formation, and a leading mechanism to explain large eccentricities of gas giant exoplanets is planet-planet gravitational scattering. The same scattering has been invoked to explain misalignments of planetary orbital planes with respect to their host star's spin. However, an observational puzzle is presented by Kepler-56, which has two inner planets (b and c) that are nearly coplanar with each other, yet are more than 45° inclined to their star's equator. Thus, the spin-orbit misalignment might be primordial. Instead, we further develop the hypothesis in the discovery paper, that planets on wider orbits generated misalignment through scattering, and as a result gently torqued the inner planets away from the equator plane of the star. We integrated the equations of motion for Kepler-56 b and c along with an unstable outer system initialized with either two or three Jupiter-mass planets. We address here whether the violent scattering that generates large mutual inclinations can leave the inner system intact, tilting it gently. In almost all of the cases initially with two outer planets, either the inner planets remain nearly coplanar with each other in the star's equator plane, or they are scattered violently to high mutual inclination and high spin-orbit misalignment. On the contrary, of the systems with three unstable outer planets, a spin-orbit misalignment large enough to explain the observations is generated 28 per cent of the time for coplanar inner planets, which is consistent with the observed frequency of this phenomenon reported so far. We conclude that multiple-planet scattering in the outer parts of the system may account for this new population of coplanar planets hosted by oblique stars.
The anglo-australian planet search. XXIII. Two new Jupiter analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.
2014-03-10
We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P = 10.5 yr, and a minimum mass msin i of 0.48 M {sub Jup}; HD 154857c has P = 9.5 yr and msin i = 2.6 M {sub Jup}. These new data confirm the planetary nature of the previously unconstrained long-period object in the HD 154857 system. We have performed detailed dynamical stability simulations which show that the HD 154857 two-planet system is stable onmore » timescales of at least 10{sup 8} yr. These results highlight the continued importance of 'legacy' surveys with long observational baselines; these ongoing campaigns are critical for determining the population of Jupiter analogs, and hence of those planetary systems with architectures most like our own solar system.« less
Enhanced interplanetary panspermia in the TRAPPIST-1 system
Lingam, Manasvi; Loeb, Abraham
2017-01-01
We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems. PMID:28611223
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-08-01
Whats the latest from the Kepler K2 mission? K2 has found its first planetary system containing more than three planets an exciting five-planet system located ~380 light-years from Earth!Opportunities From K2Raw K2 light curve (blue, top) and systematic corrected light curve (orange, bottom) for HIP 41378. The three deepest transits are single transits from the three outermost planet candidates. [Vanderburg et al. 2016]The original Kepler mission was enormously successful, discovering thousands of planet candidates. But one side effect of Keplers original observing technique, in which it studied the same field for four years, is that it was very good at detecting extremely faint systems systems that were often too faint to be followed up with other techniques.After Keplers mechanical failure in 2013, the K2 mission was launched, in which the spacecraft uses solar pressure to stabilize it long enough to perform an 80-day searches of each region it examines. Over the course of the K2 mission, Kepler could potentially survey up to 20 times the sky area of the original mission, providing ample opportunity to find planetary systems around bright stars. These stars may be bright enough to be followed up with other techniques.Multi-Planet SystemsTheres a catch to the 80-day observing program: the K2 mission is less likely to detect multiple planets orbiting the same star, due to the short time spent observing the system. While the original Kepler mission detected systems with up to seven planets, K2 had yet to detect systems with more than three candidates until now.Led by Andrew Vanderburg (NSF Graduate Research Fellow at the Harvard-Smithsonian Center for Astrophysics), a team of scientists recentlyanalyzed K2 observations ofthe bright star HIP 41378. Theteamfound that this F-type star hosts five potential planetary candidates!Phase-folded light curve for each of the five transiting planets in the HIP 41378 system. The outermost planet (bottom panel) may provide an excellent target for transmission spectroscopy, to examine its atmosphere. [Vanderburg et al. 2016]Newly Discovered CandidatesThe systems candidates include two sub-Neptune-sized planets, which were both observed over multiple transits. They orbit in what is nearly a 2:1 resonance, with periods of 31.7 and 15.6 days. Based on modeling of their transits, Vanderburg and collaborators estimate that they have radii of 2.6 and 2.9 Earth radii.The system also contains three larger outer-planet candidates: one Neptune-sized (~4 Earth radii), one sub-Saturn-sized (~5 Earth radii), and one Jupiter-sized (~10 Earth radii). These planets were detected with only a single transit each, so their properties are harder to determine with certainty. The authors models, however, suggest that their periods are ~160 days, ~130 days, and ~1 year.This systems brightness, the accessible size of its planets, and its rich architecture make it an excellent target for follow-up observations. In particular, the brightness of the host star and the transit depth of the outermost planet, HIP 41378 f, make this candidate an ideal target for future transit transmission spectroscopy measurements.Since past observations of exoplanet atmospheres have been primarily of short-period, highly irradiated planets, being able to examine the atmosphere of such a long-period gas giant could open up a new regime of exoplanet atmospheric studies.CitationAndrew Vanderburg et al 2016 ApJ 827 L10. doi:10.3847/2041-8205/827/1/L10
Terrestrial Planet Formation Around Close Binary Stars
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Quintana, Elisa V.
2003-01-01
Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.
Prevalence and Properties of Planets from Kepler and K2
NASA Astrophysics Data System (ADS)
Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew; Crossfield, Ian; Beichman, Charles; Sinukoff, Evan
2015-12-01
Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation around G, K, and M stars. While Kepler detected many such planets, all but a handful orbit faint, distant stars, which are not amenable to precise follow up measurements. NASA's K2 mission has the potential to increase the number of known small, transiting planets around bright stars by an order of magnitude. I will present the latest results from my team's efforts to detect, confirm, and characterize planets using the K2 mission. I will highlight some of the progress and remaining challenges involved with generating denoised K2 photometry and with detecting planets in the presence of severe instrument systematics. Among our recent discoveries are the K2-3 and K2-21 planetary systems: M dwarfs hosting multiple transiting Earth-size planets with low equilibrium temperatures. These systems offer a convenient laboratory for studying the bulk composition and atmospheric properties of small planets receiving low levels of stellar irradiation, where processes such as mass loss by photo-evaporation could play a weaker role.
Terrestrial Planet Formation in Binary Star Systems
NASA Technical Reports Server (NTRS)
Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.
2006-01-01
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.
Exploring the Effects of Stellar Multiplicity on Exoplanet Occurrence Rates
NASA Astrophysics Data System (ADS)
Barclay, Thomas; Shabram, Megan
2017-06-01
Determining the frequency of habitable worlds is a key goal of the Kepler mission. During Kepler's four year investigation it detected thousands of transiting exoplanets with sizes varying from smaller than Mercury to larger than Jupiter. Finding planets was just the first step to determining frequency, and for the past few years the mission team has been modeling the reliability and completeness of the Kepler planet sample. One effect that has not typically been built into occurrence rate statistics is that of stellar multiplicity. If a planet orbits the primary star in a binary or triple star system then the transit depth will be somewhat diluted resulting in a modest underestimation in the planet size. However, if a detected planet orbits a fainter star then the error in measured planet radius can be very significant. We have taken a hypothetical star and planet population and passed that through a Kepler detection model. From this we have derived completeness corrections for a realistic case of a Universe with binary stars and compared that with a model Universe where all stars are single. We report on the impact that binaries have on exoplanet population statistics.
Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions
NASA Astrophysics Data System (ADS)
Unterborn, Cayman T.; Desch, Steven J.; Hinkel, Natalie R.; Lorenzo, Alejandro
2018-04-01
Multiple planet systems provide an ideal laboratory for probing exoplanet composition, formation history and potential habitability. For the TRAPPIST-1 planets, the planetary radii are well established from transits1,2, with reasonable mass estimates coming from transit timing variations2,3 and dynamical modelling4. The low bulk densities of the TRAPPIST-1 planets demand substantial volatile content. Here we show, using mass-radius-composition models, that TRAPPIST-1f and g probably contain substantial (≥50 wt%) water/ice, with TRAPPIST-1 b and c being significantly drier (≤15 wt%). We propose that this gradient of water mass fractions implies that planets f and g formed outside the primordial snow line whereas b and c formed within it. We find that, compared with planets in our Solar System that also formed within the snow line, TRAPPIST-1b and c contain hundreds more oceans of water. We demonstrate that the extent and timescale of migration in the TRAPPIST-1 system depends on how rapidly the planets formed and the relative location of the primordial snow line. This work provides a framework for understanding the differences between the protoplanetary disks of our Solar System versus M dwarfs. Our results provide key insights into the volatile budgets, timescales of planet formation and migration history of M dwarf systems, probably the most common type of planetary host in the Galaxy.
On the Detection of Non-transiting Hot Jupiters in Multiple-planet Systems
NASA Astrophysics Data System (ADS)
Millholland, Sarah; Wang, Songhu; Laughlin, Gregory
2016-05-01
We outline a photometric method for detecting the presence of a non-transiting short-period giant planet in a planetary system harboring one or more longer-period transiting planets. Within a prospective system of the type that we consider, a hot Jupiter on an interior orbit inclined to the line of sight signals its presence through approximately sinusoidal full-phase photometric variations in the stellar light curve, correlated with astrometrically induced transit timing variations for exterior transiting planets. Systems containing a hot Jupiter along with a low-mass outer planet or planets on inclined orbits are a predicted hallmark of in situ accretion for hot Jupiters, and their presence can thus be used to test planetary formation theories. We outline the prospects for detecting non-transiting hot Jupiters using photometric data from typical Kepler objects of interest (KOIs). As a demonstration of the technique, we perform a brief assessment of Kepler candidates and identify a potential non-transiting hot Jupiter in the KOI-1822 system. Candidate non-transiting hot Jupiters can be readily confirmed with a small number of Doppler velocity observations, even for stars with V ≳ 14.
NASA Astrophysics Data System (ADS)
Marino, Sebastian; Bonsor, Amy; Wyatt, Mark C.; Kral, Quentin
2018-06-01
Exocomets scattered by planets have been invoked to explain observations in multiple contexts, including the frequently found near- and mid-infrared excess around nearby stars arising from exozodiacal dust. Here we investigate how the process of inward scattering of comets originating in an outer belt, is affected by the architecture of a planetary system, to determine whether this could lead to observable exozodi levels or deliver volatiles to inner planets. Using N-body simulations, we model systems with different planet mass and orbital spacing distributions in the 1-50 AU region. We find that tightly packed (Δap < 20RH, m) low mass planets are the most efficient at delivering material to exozodi regions (5-7% of scattered exocomets end up within 0.5 AU at some point), although the exozodi levels do not vary by more than a factor of ˜7 for the architectures studied here. We suggest that emission from scattered dusty material in between the planets could provide a potential test for this delivery mechanism. We show that the surface density of scattered material can vary by two orders of magnitude (being highest for systems of low mass planets with medium spacing), whilst the exozodi delivery rate stays roughly constant, and that future instruments such as JWST could detect it. In fact for η Corvi, the current Herschel upper limit rules our the scattering scenario by a chain of ≲30 M⊕ planets. Finally, we show that exocomets could be efficient at delivering cometary material to inner planets (0.1-1% of scattered comets are accreted per inner planet). Overall, the best systems at delivering comets to inner planets are the ones that have low mass outer planets and medium spacing (˜20RH, m).
Double-blind test program for astrometric planet detection with Gaia
NASA Astrophysics Data System (ADS)
Casertano, S.; Lattanzi, M. G.; Sozzetti, A.; Spagna, A.; Jancart, S.; Morbidelli, R.; Pannunzio, R.; Pourbaix, D.; Queloz, D.
2008-05-01
Aims: The scope of this paper is twofold. First, it describes the simulation scenarios and the results of a large-scale, double-blind test campaign carried out to estimate the potential of Gaia for detecting and measuring planetary systems. The identified capabilities are then put in context by highlighting the unique contribution that the Gaia exoplanet discoveries will be able to bring to the science of extrasolar planets in the next decade. Methods: We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms for single and multiple Keplerian orbit fitting that use no a priori knowledge of the true orbital parameters of the systems. Results: 1) Planets with astrometric signatures α≃ 3 times the assumed single-measurement error σ_ψ and period P≤ 5 yr can be detected reliably and consistently, with a very small number of false positives. 2) At twice the detection limit, uncertainties in orbital parameters and masses are typically 15-20%. 3) Over 70% of two-planet systems with well-separated periods in the range 0.2≤ P≤ 9 yr, astrometric signal-to-noise ratio 2≤α/σ_ψ≤ 50, and eccentricity e≤ 0.6 are correctly identified. 4) Favorable orbital configurations (both planets with P≤ 4 yr and α/σ_ψ≥ 10, redundancy over a factor of 2 in the number of observations) have orbital elements measured to better than 10% accuracy > 90% of the time, and the value of the mutual inclination angle i_rel determined with uncertainties ≤ 10°. 5) Finally, nominal uncertainties obtained from the fitting procedures are a good estimate of the actual errors in the orbit reconstruction. Extrapolating from the present-day statistical properties of the exoplanet sample, the results imply that a Gaia with σ_ψ = 8 μas, in its unbiased and complete magnitude-limited census of planetary systems, will discover and measure several thousands of giant planets out to 3-4 AUs from stars within 200 pc, and will characterize hundreds of multiple-planet systems, including meaningful coplanarity tests. Finally, we put Gaia's planet discovery potential into context, identifying several areas of planetary-system science (statistical properties and correlations, comparisons with predictions from theoretical models of formation and evolution, interpretation of direct detections) in which Gaia can be expected, on the basis of our results, to have a relevant impact, when combined with data coming from other ongoing and future planet search programs.
NASA Technical Reports Server (NTRS)
Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.
1988-01-01
This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined.
ECCENTRICITY TRAP: TRAPPING OF RESONANTLY INTERACTING PLANETS NEAR THE DISK INNER EDGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogihara, Masahiro; Ida, Shigeru; Duncan, Martin J., E-mail: ogihara@geo.titech.ac.j, E-mail: ida@geo.titech.ac.j, E-mail: duncan@astro.queensu.c
2010-10-01
Using orbital integration and analytical arguments, we have found a new mechanism (an 'eccentricity trap') to halt type I migration of planets near the inner edge of a protoplanetary disk. Because asymmetric eccentricity damping due to disk-planet interaction on the innermost planet at the disk edge plays a crucial role in the trap, this mechanism requires continuous eccentricity excitation and hence works for a resonantly interacting convoy of planets. This trap is so strong that the edge torque exerted on the innermost planet can completely halt type I migrations of many outer planets through mutual resonant perturbations. Consequently, the convoymore » stays outside the disk edge, as a whole. We have derived a semi-analytical formula for the condition for the eccentricity trap and predict how many planets are likely to be trapped. We found that several planets or more should be trapped by this mechanism in protoplanetary disks that have cavities. It can be responsible for the formation of non-resonant, multiple, close-in super-Earth systems extending beyond 0.1 AU. Such systems are being revealed by radial velocity observations to be quite common around solar-type stars.« less
Exploring exoplanet populations with NASA's Kepler Mission
NASA Astrophysics Data System (ADS)
Batalha, Natalie M.
2014-09-01
The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.
Exploring exoplanet populations with NASA's Kepler Mission.
Batalha, Natalie M
2014-09-02
The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.
NASA Astrophysics Data System (ADS)
Tran, Debby; Konopacky, Quinn; GPIES Team
2018-01-01
The Gemini Planet Imager (GPI), housed on the 8-meter Gemini South telescope in Chile, is an instrument designed to detect Jupiter-like extrasolar planets by direct imaging. It relies on adaptive optics to correct the effects of atmospheric turbulence, along with an advanced coronagraph and calibration system. One of the scientific goals of GPI is to measure the orbital properties of the planets it discovers. Because these orbits have long periods, precise measurements of the relative position between the star and the planet (relative astrometry) are required. In this poster, I will present the astrometric calibration of GPI. We constrain the plate scale and orientation of the camera by observing different binary star systems with both GPI and another well-calibrated instrument, NIRC2, at the Keck telescope in Hawaii. We measure their separations with both instruments and use that information to calibrate the plate scale. By taking these calibration measurements over the course of three years, we have measured the plate scale to 0.05% and shown that it is stable across multiple epochs. One of the calibrators for GPI is Theta1 Orionis B, one of the star systems in the Trapezium Cluster in Orion. Using GPI and Keck measurements taken over the past several years combined with astrometry from the literature spanning two decades, we can place new constraints on the orbital properties of this massive multiple system. We will present the best fit orbital properties for these objects, including updated mass estimates for the components.
ARE THE KEPLER NEAR-RESONANCE PLANET PAIRS DUE TO TIDAL DISSIPATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Man Hoi; Fabrycky, D.; Lin, D. N. C., E-mail: mhlee@hku.hk, E-mail: daniel.fabrycky@gmail.com, E-mail: lin@ucolick.org
The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider a widely held scenario in which pairs of planets were captured into first-order resonances by migration due to planet-disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in themore » planets. In the context of this scenario, we find a constraint on the ratio of the planet's tidal dissipation function and Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are at play.« less
Terrestrial Planet Formation in Binary Star Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred
2003-01-01
Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.
An estimate of the prevalence of biocompatible and habitable planets.
Fogg, M J
1992-01-01
A Monte Carlo computer model of extra-solar planetary formation and evolution, which includes the planetary geochemical carbon cycle, is presented. The results of a run of one million galactic disc stars are shown where the aim was to assess the possible abundance of both biocompatible and habitable planets. (Biocompatible planets are defined as worlds where the long-term presence of surface liquid water provides environmental conditions suitable for the origin and evolution of life. Habitable planets are those worlds with more specifically Earthlike conditions). The model gives an estimate of 1 biocompatible planet per 39 stars, with the subset of habitable planets being much rarer at 1 such planet per 413 stars. The nearest biocompatible planet may thus lie approximately 14 LY distant and the nearest habitable planet approximately 31 LY away. If planets form in multiple star systems then the above planet/star ratios may be more than doubled. By applying the results to stars in the solar neighbourhood, it is possible to identify 28 stars at distances of < 22 LY with a non-zero probability of possessing a biocompatible planet.
The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn
Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio andmore » the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.« less
Correcting Estimates of the Occurrence Rate of Earth-like Exoplanets for Stellar Multiplicity
NASA Astrophysics Data System (ADS)
Cantor, Elliot; Dressing, Courtney D.; Ciardi, David R.; Christiansen, Jessie
2018-06-01
One of the most prominent questions in the exoplanet field has been determining the true occurrence rate of potentially habitable Earth-like planets. NASA’s Kepler mission has been instrumental in answering this question by searching for transiting exoplanets, but follow-up observations of Kepler target stars are needed to determine whether or not the surveyed Kepler targets are in multi-star systems. While many researchers have searched for companions to Kepler planet host stars, few studies have investigated the larger target sample. Regardless of physical association, the presence of nearby stellar companions biases our measurements of a system’s planetary parameters and reduces our sensitivity to small planets. Assuming that all Kepler target stars are single (as is done in many occurrence rate calculations) would overestimate our search completeness and result in an underestimate of the frequency of potentially habitable Earth-like planets. We aim to correct for this bias by characterizing the set of targets for which Kepler could have detected Earth-like planets. We are using adaptive optics (AO) imaging to reveal potential stellar companions and near-infrared spectroscopy to refine stellar parameters for a subset of the Kepler targets that are most amenable to the detection of Earth-like planets. We will then derive correction factors to correct for the biases in the larger set of target stars and determine the true frequency of systems with Earth-like planets. Due to the prevalence of stellar multiples, we expect to calculate an occurrence rate for Earth-like exoplanets that is higher than current figures.
The dynamical evolution of transiting planetary systems including a realistic collision prescription
NASA Astrophysics Data System (ADS)
Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders
2018-05-01
Planet-planet collisions are a common outcome of instability in systems of transiting planets close to the star, as well as occurring during in-situ formation of such planets from embryos. Previous N-body studies of instability amongst transiting planets have assumed that collisions result in perfect merging. Here, we explore the effects of implementing a more realistic collision prescription on the outcomes of instability and in-situ formation at orbital radii of a few tenths of an au. There is a strong effect on the outcome of the growth of planetary embryos, so long as the debris thrown off in collisions is rapidly removed from the system (which happens by collisional processing to dust, and then removal by radiation forces) and embryos are small (<0.1 M⊕). If this is the case, then systems form fewer detectable (≥1 M⊕) planets than systems evolved under the assumption of perfect merging in collisions. This provides some contribution to the "Kepler Dichotomy": the observed over-abundance of single-planet systems. The effects of changing the collision prescription on unstable mature systems of super-Earths are less pronounced. Perfect mergers only account for a minority of collision outcomes in such systems, but most collisions resulting in mass loss are grazing impacts in which only a few per cent. of mass is lost. As a result, there is little impact on the final masses and multiplicities of the systems after instability when compared to systems evolved under the assumption that collisions always result in perfect merging.
The Constraint of Coplanarity: Compact multi-planet system outer architectures and formation.-UP
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel
The Kepler mission discovered 92 systems with 4 or more transiting exoplanets. Systems like Kepler-11 with six "mini-Neptunes" on orbital periods well inside that of Venus pose a challenge to planet formation theory which is broadly split into two competing paradigms. One theory invokes the formation of Neptunes beyond the "snow line", followed by inward migration and assembly into compact configurations near the star. The alternative is that low density planets form in situ at all distances in the protoplanetary nebula. The two paradigms disagree on the occurrence of Jovian planets at longer orbital periods than the transiting exoplanets since such massive planets would impede the inward migration of multiple volatile-rich planets to within a fraction of 1 AU. The likelihood of all the known planets at systems like Kepler-11 to be transiting is very sensitive to presence of outer Jovian planets for a wide range in orbital distance and relative inclination of the Jovian planet. This can put upper limits on the occurrence of Jovian planets by the condition that the six known planets have to have low mutual inclinations most of the time in order for their current cotransiting state to be plausible. Most of these systems have little or no RV data. Hence, our upper limits may be the best constraints on the occurrence of Jovian planets in compact co-planar systems for years to come, and may help distinguish the two leading paradigms of planet formation theory. Methodology. We propose to use an established n-body code (MERCURY) to perform long-term simulations of systems like Kepler-11 with the addition of a putative Jovian planet considering a range of orbital distances. These simulations will test for which initial conditions a Jovian planet would prevent the known planets from all transiting at the same time. We will 1) determine at what orbital distances and inclinations an outer Jovian planet would make the observed configuration of Kepler-11 very unlikely. 2) Test the effect of an undetected planet in the large dynamical space between Kepler-11 f and Kepler 11 g on our upper limits on a Jovian outer planet. 3) Repeat the analysis for all compact systems of 4 or more transiting planets with published planetary masses (including Kepler-79, Kepler-33, and Kepler-80) 5) Repeat the analysis for all systems of 4 or more transiting planets where the condition of long-term orbital stability provides useful upper limits on planetary masses, using their orbital periods and an appropriate mass-radius relation. 6) Measure an upper limit on the occurrence rate of outer Jovian planets. If we find an occurrence rate significantly lower than the known occurrence rate of Jovian planets from RV surveys, this would be evidence in support of the migration model as Jovian planets are expected impede the assembly of compact coplanar systems of low-density planets close to the host star. Relevance. According to the XRP Solicitation, investigations are expected to directly support the goal of "understanding exoplanetary systems", by doing one or more of the following..."improve understanding of the origins of exoplanetary systems". This proposal will help distinguish between competing paradigms in planet formation with dynamical modeling, and hence will improve our understanding of the origins of exoplanetary systems. This proposal will in no way require analysis of archival Kepler data, and relies only on the published masses, radii and orbital periods of high muliplicity systems discovered by Kepler. Therefore, our proposal is not appropriate for ADAP.
NASA Astrophysics Data System (ADS)
Lo Curto, G.; Mayor, M.; Benz, W.; Bouchy, F.; Hébrard, G.; Lovis, C.; Moutou, C.; Naef, D.; Pepe, F.; Queloz, D.; Santos, N. C.; Segransan, D.; Udry, S.
2013-03-01
The vast diversity of planetary systems detected to date is defying our capability of understanding their formation and evolution. Well-defined volume-limited surveys are the best tool at our disposal to tackle the problem, via the acquisition of robust statistics of the orbital elements. We are using the HARPS spectrograph to conduct our survey of ≈850 nearby solar-type stars, and in the course of the past nine years we have monitored the radial velocity of HD 103774, HD 109271, and BD-061339. In this work we present the detection of five planets orbiting these stars, with msin (i) between 0.6 and 7 Neptune masses, four of which are in two multiple systems, comprising one super-Earth and one planet within the habitable zone of a late-type dwarf. Although for strategic reasons we chose efficiency over precision in this survey, we have the capability to detect planets down to the Neptune and super-Earth mass range as well as multiple systems, provided that enough data points are made available. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla (Chile), under the GTO program ID 072.C-0488 and the regular programs: 085.C-0019, 087.C-0831 and 089.C-0732. RV data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A59
Using Approximate Bayesian Computation to Probe Multiple Transiting Planet Systems
NASA Astrophysics Data System (ADS)
Morehead, Robert C.
2015-08-01
The large number of multiple transiting planet systems (MTPS) uncovered with Kepler suggest a population of well-aligned planetary systems. Previously, the distribution of transit duration ratios in MTPSs has been used to place constraints on the distributions of mutual orbital inclinations and orbital eccentricities in these systems. However, degeneracies with the underlying number of planets in these systems pose added challenges and make explicit likelihood functions intractable. Approximate Bayesian computation (ABC) offers an intriguing path forward. In its simplest form, ABC proposes from a prior on the population parameters to produce synthetic datasets via a physically-motivated model. Samples are accepted or rejected based on how close they come to reproducing the actual observed dataset to some tolerance. The accepted samples then form a robust and useful approximation of the true posterior distribution of the underlying population parameters. We will demonstrate the utility of ABC in exoplanet populations by presenting new constraints on the mutual inclination and eccentricity distributions in the Kepler MTPSs. We will also introduce Simple-ABC, a new open-source Python package designed for ease of use and rapid specification of general models, suitable for use in a wide variety of applications in both exoplanet science and astrophysics as a whole.
NASA Astrophysics Data System (ADS)
Niedzielski, A.; Villaver, E.; Wolszczan, A.; Adamów, M.; Kowalik, K.; Maciejewski, G.; Nowak, G.; García-Hernández, D. A.; Deka, B.; Adamczyk, M.
2015-01-01
Context. Stars that have evolved off the main sequence are crucial for expanding the frontiers of knowledge on exoplanets toward higher stellar masses and for constraining star-planet interaction mechanisms. These stars have an intrinsic activity, however, which complicates the interpretation of precise radial velocity (RV) measurements, and therefore they are often avoided in planet searches. Over the past ten years, we have monitored about 1000 evolved stars for RV variations in search for low-mass companions under the Penn State - Toruń Centre for Astronomy Planet Search program with the Hobby-Eberly Telescope. Selected prospective candidates that required higher RV precision measurements have been followed with HARPS-N at the 3.6 m Telescopio Nazionale Galileo. Aims: We aim to detect planetary systems around evolved stars, to be able to build sound statistics on the frequency and intrinsic nature of these systems, and to deliver in-depth studies of selected planetary systems with evidence of star-planet interaction processes. Methods: We obtained 69 epochs of precise RV measurements for TYC 1422-614-1 collected over 3651 days with the Hobby-Eberly Telescope, and 17 epochs of ultra-precise HARPS-N data collected over 408 days. We complemented these RV data with photometric time-series from the All Sky Automatic Survey archive. Results: We report the discovery of a multiple planetary system around the evolved K2 giant star TYC 1422-614-1. The system orbiting the 1.15 M⊙ star is composed of a planet with mass msini = 2.5 MJ in a 0.69 AU orbit, and a planet or brown dwarf with msini = 10 MJ in an orbit of 1.37 AU. The multiple planetary system orbiting TYC 1422-614-1 is the first finding of the TAPAS project, a HARPS-N monitoring of evolved planetary systems identified with the Hobby-Eberly Telescope. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Tables 2 and 3 are available in electronic form at http://www.aanda.org
Stability Limits of Circumbinary Planets: Is There a Pile-up in the Kepler CBPs?
NASA Astrophysics Data System (ADS)
Quarles, B.; Satyal, S.; Kostov, V.; Kaib, N.; Haghighipour, N.
2018-04-01
The stability limit for circumbinary planets (CBPs) is not well defined and can depend on initial parameters defining either the planetary orbit and/or the inner binary orbit. We expand on the work of Holman & Wiegert (1999) to develop numerical tools for quick, easy, and accurate determination of the stability limit. The results of our simulations, as well as our numerical tools, are available to the community through Zenodo and GitHub, respectively. We employ a grid interpolation method based on ∼150 million full N-body simulations of initially circular, coplanar systems and compare to the nine known Kepler CBP systems. Using a formalism from planet packing studies, we find that 55% of the Kepler CBP systems allow for an additional equal-mass planet to potentially exist on an interior orbit relative to the observed planet. Therefore, we do not find strong evidence for a pile-up in the Kepler CBP systems and more detections are needed to adequately characterize the formation mechanisms for the CBP population. Observations from the Transiting Exoplanet Survey Satellite are expected to substantially increase the number of detections using the unique geometry of CBP systems, where multiple transits can occur during a single conjunction.
FORMING HABITABLE PLANETS AROUND DWARF STARS: APPLICATION TO OGLE-06-109L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Su; Zhou Jilin, E-mail: suwang@nju.edu.cn, E-mail: zhoujl@nju.edu.cn
2011-02-01
Dwarf stars are believed to have a small protostar disk where planets may grow up. During the planet formation stage, embryos undergoing type I migration are expected to be stalled at an inner edge of the magnetically inactive disk (a{sub crit} {approx} 0.2-0.3 AU). This mechanism makes the location around a{sub crit} a 'sweet spot' for forming planets. In dwarf stars with masses {approx}0.5 M{sub sun}, a{sub crit} is roughly inside the habitable zone of the system. In this paper, we study the formation of habitable planets due to this mechanism using model system OGLE-06-109L, which has a 0.51 M{submore » sun} dwarf star with two giant planets in 2.3 and 4.6 AU observed by microlensing. We model the embryos undergoing type I migration in the gas disk with a constant disk-accretion rate ( M-dot ). Giant planets in outside orbits affect the formation of habitable planets through secular perturbations at the early stage and secular resonance at the late stage. We find that the existence and the masses of the habitable planets in the OGLE-06-109L system depend on both M-dot and the speed of type I migration. If planets are formed earlier, so that M-dot is larger ({approx}10{sup -7} M{sub sun} yr{sup -1}), terrestrial planets cannot survive unless the type I migration rate is an order of magnitude less. If planets are formed later, so that M-dot is smaller ({approx}10{sup -8} M{sub sun} yr{sup -1}), single and high-mass terrestrial planets with high water contents ({approx}5%) will be formed by inward migration of outer planet cores. A slower-speed migration will result in several planets via collisions of embryos, and thus their water contents will be low ({approx}2%). Mean motion resonances or apsidal resonances among planets may be observed if multiple planets survive in the inner system.« less
NASA Astrophysics Data System (ADS)
Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.
2012-05-01
We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of plausible initial conditions for planetary systems. However, among the configurations explored, the best candidates for hosting terrestrial planets at ~1 AU are stars older than 0.1-1 Gyr with bright debris disks at 70 μm but with no currently-known giant planets. These systems combine evidence for the presence of ample rocky building blocks, with giant planet properties that are least likely to undergo destructive dynamical evolution. Thus, we predict two correlations that should be detected by upcoming surveys: an anti-correlation between debris disks and eccentric giant planets and a positive correlation between debris disks and terrestrial planets. Three movies associated to Figs. 1, 3, and 7 are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Vinson, Alec M.; Hansen, Brad M. S.
2017-12-01
One long-standing problem for the potential habitability of planets within M dwarf systems is their likelihood to be tidally locked in a synchronously rotating spin state. This problem thus far has largely been addressed only by considering two objects: the star and the planet itself. However, many systems have been found to harbour multiple planets, with some in or very near to mean motion resonances. The presence of a planetary companion near a mean motion resonance can induce oscillatory variations in the mean motion of the planet, which we demonstrate can have significant effects on the spin state of an otherwise synchronously rotating planet. In particular, we find that a planetary companion near a mean motion resonance can excite the spin states of planets in the habitable zone of small, cool stars, pushing otherwise synchronously rotating planets into higher amplitude librations of the spin state, or even complete circulation resulting in effective stellar days with full surface coverage on the order of years or decades. This increase in illuminated area can have potentially dramatic influences on climate, and thus on habitability. We also find that the resultant spin state can be very sensitive to initial conditions due to the chaotic nature of the spin state at early times within certain regimes. We apply our model to two hypothetical planetary systems inspired by the K00255 and TRAPPIST-1 systems, both of which have Earth-sized planets in mean motion resonances orbiting cool stars.
Architectures of Kepler Planet Systems with Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Morehead, Robert C.; Ford, Eric B.
2015-12-01
The distribution of period normalized transit duration ratios among Kepler’s multiple transiting planet systems constrains the distributions of mutual orbital inclinations and orbital eccentricities. However, degeneracies in these parameters tied to the underlying number of planets in these systems complicate their interpretation. To untangle the true architecture of planet systems, the mutual inclination, eccentricity, and underlying planet number distributions must be considered simultaneously. The complexities of target selection, transit probability, detection biases, vetting, and follow-up observations make it impractical to write an explicit likelihood function. Approximate Bayesian computation (ABC) offers an intriguing path forward. In its simplest form, ABC generates a sample of trial population parameters from a prior distribution to produce synthetic datasets via a physically-motivated forward model. Samples are then accepted or rejected based on how close they come to reproducing the actual observed dataset to some tolerance. The accepted samples form a robust and useful approximation of the true posterior distribution of the underlying population parameters. We build on the considerable progress from the field of statistics to develop sequential algorithms for performing ABC in an efficient and flexible manner. We demonstrate the utility of ABC in exoplanet populations and present new constraints on the distributions of mutual orbital inclinations, eccentricities, and the relative number of short-period planets per star. We conclude with a discussion of the implications for other planet occurrence rate calculations, such as eta-Earth.
Exploring exoplanet populations with NASA’s Kepler Mission
Batalha, Natalie M.
2014-01-01
The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system. PMID:25049406
SDSS-III MARVELS Planet Candidate RV Follow-up
NASA Astrophysics Data System (ADS)
Ge, Jian; Thomas, Neil; Ma, Bo; Li, Rui; SIthajan, Sirinrat
2014-02-01
Planetary systems, discovered by the radial velocity (RV) surveys, reveal strong correlations between the planet frequency and stellar properties, such as metallicity and mass, and a greater diversity in planets than found in the solar system. However, due to the sample sizes of extant surveys (~100 to a few hundreds of stars) and their heterogeneity, many key questions remained to be addressed: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate- mass stars and binaries? Is the ``planet desert'' within 0.6 AU in the planet orbital distribution of intermediate-mass stars real? The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars. The latest data pipeline effort at UF has been able to remove long term systematic errors suffered in the earlier data pipeline. 18 high confident giant planet candidates have been identified among newly processed data. We propose to follow up these giant planet candidates with the KPNO EXPERT instrument to confirm the detection and also characterize their orbits. The confirmed planets will be used to measure occurrence rates, distributions and multiplicity of giants planets around F,G,K stars with a broad range of mass (~0.6-2.5 M_⊙) and metallicity ([Fe/H]~-1.5-0.5). The well defined MARVELS survey cadence allows robust determinations of completeness limits for rigorously testing giant planet formation theories and constraining models.
On the Obliquities of Planets in Close-in, Compact Systems
NASA Astrophysics Data System (ADS)
Millholland, Sarah; Laughlin, Gregory
2018-04-01
Secular spin-orbit resonances can be encountered when planets sweep through commensurabilities between nodal and spin-axis precession frequencies, for example, during disk-driven migration. These encounters can induce significant planetary spin-axis misalignment and capture into a “Cassini state”, a configuration involving synchronous precession of the planetary spin and orbital angular momentum vectors. We show that typical extrasolar systems – exemplified by the Kepler close-in, coplanar multiple-planet systems – frequently have nodal and spin-axis precession frequencies that are near-commensurable. This implies that obliquity-pumping should be common if the planets undergo any migration. We present analytic and numerical models of the spin evolution of typical Kepler-multi-type systems subject to the influences of disk migration, the quadrupole potential of an oblate young star, and tidal dissipation. Among other consequences of large obliquities, we find that the several orders of magnitude enhancement in tidal dissipation strength at non-zero obliquity may be able to generate the observed excess of planet pairs with period ratios just wide of 2:1 and 3:2. Though tidal origins of these excesses have previously been discussed, tidal dissipation is insufficient to reproduce the observations unless planets have non-negligible obliquities at some time in their history.
Characterizing K2 Planetary Systems Orbiting Cool Dwarfs
NASA Astrophysics Data System (ADS)
Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua; Vanderburg, Andrew; Charbonneau, David; Knutson, Heather; K2C2
2017-01-01
The NASA K2 mission is using the repurposed Kepler spacecraft to search for transiting planets in multiple fields along the ecliptic plane. K2 observes 10,000 - 30,000 stars in each field for roughly 80 days, which is too short to observe multiple transits of planets in the habitable zones of Sun-like stars, but long enough to detect potentially habitable planets orbiting low-mass dwarfs. Accordingly, M and K dwarfs are frequently nominated as K2 Guest Observer targets and K2 has already observed significantly more low-mass stars than the original Kepler mission. While the K2 data are therefore an enticing resource for studying the properties and frequency of planetary systems orbiting low-mass stars, many K2 cool dwarfs are not well-characterized. We are refining the properties of K2 planetary systems orbiting cool dwarfs by acquiring medium-resolution NIR spectra with SpeX on the IRTF and TripleSpec on the Palomar 200". In our initial sample of 144 potential cool dwarfs hosting candidate planetary systems detected by K2, we noted a high contamination rate from giants (16%) and reddened hotter dwarfs (31%). After employing empirically-based relations to determine the temperatures, radii, masses, luminosities, and metallicities of K2 planet candidate host stars, we found that our new cool dwarf radius estimates were 10-40% larger than the initial values, indicating that the radii of the associated planet candidates were also underestimated. Refining the stellar parameters allows us to identify astrophysical false positives and better constrain the radii and insolation flux environments of bona fide transiting planets. I will present our resulting catalog of system properties and highlight the most attractive K2 planets for radial velocity mass measurement and atmospheric characterization with Spitzer, HST, JWST, and the next generation of extremely large ground- and space-based telescopes. We gratefully acknowledge funding from the NASA Sagan Fellowship Program, the NASA K2 Guest Observer Program, the NASA XRP Program, the John Templeton Foundation, the National Science Foundation Astronomy & Astrophysics Postdoctoral Program, and the National Science Foundation Graduate Research Fellowship Program.
Planet Hunters 2 in the K2 Era
NASA Astrophysics Data System (ADS)
Schwamb, Megan E.; Fischer, Debra; Boyajian, Tabetha S.; Giguere, Matthew J.; Ishikawa, Sascha; Lintott, Chris; Lynn, Stuart; Schmitt, Joseph; Snyder, Chris; Wang, Ji; Barclay, Thomas
2015-01-01
Planet Hunters (http://www.planethunters.org) is an online citizen science project enlisting hundreds of thousands of people to search for planet transits in the publicly released Kepler data. Volunteers mark the locations of visible transits in a web interface, with multiple independent classifiers reviewing a randomly selected ~30-day light curve segment. In September 2014, Planet Hunters entered a new phase. The project was relaunched with a brand new online classification interface and discussion tool built using the Zooniverse's (http://www.zooniverse.org) latest technology and web platform. The website has been optimized for the rapid discovery and identification of planet candidates in the light curves from K2, the two-wheeled ecliptic plane Kepler mission. We will give an overview of the new Planet Hunters classification interface and Round 2 review system in context of the K2 data. We will present the first results from the Planet Hunters 2 search of K2 Campaigns 0 and 1 including a summary of new planet candidates.
NASA Astrophysics Data System (ADS)
Granados Contreras, A. P.; Boley, A. C.
2018-03-01
We explore the effects of an undetected outer giant planet on the dynamics, observability, and stability of Systems with Tightly-packed Inner Planets (STIPs). We use direct numerical simulations along with secular theory and synthetic secular frequency spectra to analyze how analogues of Kepler-11 and Kepler-90 behave in the presence of a nearly co-planar, Jupiter-like outer perturber with semimajor axes between 1 and 5.2 au. Most locations of the outer perturber do not affect the evolution of the inner planetary systems, apart from altering precession frequencies. However, there are locations at which an outer planet causes system instability due to, in part, secular eccentricity resonances. In Kepler-90, there is a range of orbital distances for which the outer perturber drives planets b and c, through secular interactions, onto orbits with inclinations that are ∼16° away from the rest of the planets. Kepler-90 is stable in this configuration. Such secular resonances can thus affect the observed multiplicity of transiting systems. We also compare the synthetic apsidal and nodal precession frequencies with the secular theory and find some misalignment between principal frequencies, indicative of strong interactions between the planets (consistent with the system showing TTVs). First-order libration angles are calculated to identify MMRs in the systems, for which two near-MMRs are shown in Kepler-90, with a 5:4 between b and c, as well as a 3:2 between g and h.
NASA Technical Reports Server (NTRS)
Torres, Guillermo; Fressin, Francois; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Bryson, Stephen T.; Buchhave, Lars A.; Charbonneau, David; Ciardi, David R.; Dunham, Edward W.;
2011-01-01
Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive we describe a procedure (BLENDER) to model the photometry in terms of a blend rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64(exp)(sub-14),R, and current spectroscopic observations are as yet insufficient to establish its mass.
Planet-driven Spiral Arms in Protoplanetary Disks. I. Formation Mechanism
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-06-01
Protoplanetary disk simulations show that a single planet can excite more than one spiral arm, possibly explaining the recent observations of multiple spiral arms in some systems. In this paper, we explain the mechanism by which a planet excites multiple spiral arms in a protoplanetary disk. Contrary to previous speculations, the formation of both primary and additional arms can be understood as a linear process when the planet mass is sufficiently small. A planet resonantly interacts with epicyclic oscillations in the disk, launching spiral wave modes around the Lindblad resonances. When a set of wave modes is in phase, they can constructively interfere with each other and create a spiral arm. More than one spiral arm can form because such constructive interference can occur for different sets of wave modes, with the exact number and launching position of the spiral arms being dependent on the planet mass as well as the disk temperature profile. Nonlinear effects become increasingly important as the planet mass increases, resulting in spiral arms with stronger shocks and thus larger pitch angles. This is found to be common for both primary and additional arms. When a planet has a sufficiently large mass (≳3 thermal masses for (h/r) p = 0.1), only two spiral arms form interior to its orbit. The wave modes that would form a tertiary arm for smaller mass planets merge with the primary arm. Improvements in our understanding of the formation of spiral arms can provide crucial insights into the origin of observed spiral arms in protoplanetary disks.
Location of Nearest Rocky Exoplanet Known
2015-07-30
This sky map shows the location of the star HD 219134 (circle), host to the nearest confirmed rocky planet found to date outside of our solar system. The star lies just off the "W" shape of the constellation Cassiopeia and can be seen with the naked eye in dark skies. It actually has multiple planets, none of which are habitable. http://photojournal.jpl.nasa.gov/catalog/PIA19832
Towards an initial mass function for giant planets
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders
2018-07-01
The distribution of exoplanet masses is not primordial. After the initial stage of planet formation, gravitational interactions between planets can lead to the physical collision of two planets, or the ejection of one or more planets from the system. When this occurs, the remaining planets are typically left in more eccentric orbits. In this report we demonstrate how the present-day eccentricities of the observed exoplanet population can be used to reconstruct the initial mass function of exoplanets before the onset of dynamical instability. We developed a Bayesian framework that combines data from N-body simulations with present-day observations to compute a probability distribution for the mass of the planets that were ejected or collided in the past. Integrating across the exoplanet population, one can estimate the initial mass function of exoplanets. We find that the ejected planets are primarily sub-Saturn-type planets. While the present-day distribution appears to be bimodal, with peaks around ˜1MJ and ˜20M⊕, this bimodality does not seem to be primordial. Instead, planets around ˜60M⊕ appear to be preferentially removed by dynamical instabilities. Attempts to reproduce exoplanet populations using population synthesis codes should be mindful of the fact that the present population may have been depleted of sub-Saturn-mass planets. Future observations may reveal that young giant planets have a more continuous size distribution with lower eccentricities and more sub-Saturn-type planets. Lastly, there is a need for additional data and for more research on how the system architecture and multiplicity might alter our results.
Toward an initial mass function for giant planets
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders
2018-05-01
The distribution of exoplanet masses is not primordial. After the initial stage of planet formation, gravitational interactions between planets can lead to the physical collision of two planets, or the ejection of one or more planets from the system. When this occurs, the remaining planets are typically left in more eccentric orbits. In this report we demonstrate how the present-day eccentricities of the observed exoplanet population can be used to reconstruct the initial mass function of exoplanets before the onset of dynamical instability. We developed a Bayesian framework that combines data from N-body simulations with present-day observations to compute a probability distribution for the mass of the planets that were ejected or collided in the past. Integrating across the exoplanet population, one can estimate the initial mass function of exoplanets. We find that the ejected planets are primarily sub-Saturn type planets. While the present-day distribution appears to be bimodal, with peaks around ˜1MJ and ˜20M⊕, this bimodality does not seem to be primordial. Instead, planets around ˜60M⊕ appear to be preferentially removed by dynamical instabilities. Attempts to reproduce exoplanet populations using population synthesis codes should be mindful of the fact that the present population may have been been depleted of sub-Saturn-mass planets. Future observations may reveal that young giant planets have a more continuous size distribution with lower eccentricities and more sub-Saturn type planets. Lastly, there is a need for additional data and for more research on how the system architecture and multiplicity might alter our results.
High-resolution multi-band imaging for validation and characterization of small Kepler planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, Mark E.; Silva, David R.; Barclay, Thomas
2015-02-01
High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting amore » total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.« less
NASA Astrophysics Data System (ADS)
Makarov, Valeri V.; Berghea, Ciprian; Efroimsky, Michael
2012-12-01
GJ 581d is a potentially habitable super-Earth in the multiple system of exoplanets orbiting a nearby M dwarf. We investigate this planet's long-term dynamics with an emphasis on its probable final rotation states acquired via tidal interaction with the host. The published radial velocities for the star are re-analyzed with a benchmark planet detection algorithm to confirm that there is no evidence for the recently proposed two additional planets (f and g). Limiting the scope to the four originally detected planets, we assess the dynamical stability of the system and find bounded chaos in the orbital motion. For the planet d, the characteristic Lyapunov time is 38 yr. Long-term numerical integration reveals that the system of four planets is stable, with the eccentricity of the planet d changing quasi-periodically in a tight range around 0.27, and with its semimajor axis varying only a little. The spin-orbit interaction of GJ 581d with its host star is dominated by the tides exerted by the star on the planet. We model this interaction, assuming a terrestrial composition of the mantle. Besides the triaxiality-caused torque and the secular part of the tidal torque, which are conventionally included in the equation of motion, we also include the tidal torques' oscillating components. It turns out that, depending on the mantle temperature, the planet gets trapped into the 2:1 or an even higher spin-orbit resonance. It is very improbable that the planet could have reached the 1:1 resonance. This improves the possibility of the planet being suitable for sustained life.
NASA Technical Reports Server (NTRS)
Marley, Mark Scott; Hammel, Heidi
2014-01-01
A space based coronagraph, whether as part of the WFIRST/AFTA mission or on a dedicated space telescope such as Exo-C or -S, will be able to obtain photometry and spectra of multiple gas giant planets around nearby stars, including many known from radial velocity detections. Such observations will constrain the masses, atmospheric compositions, clouds, and photochemistry of these worlds. Giant planet albedo models, such as those of Cahoy et al. (2010) and Lewis et al. (this meeting), will be crucial for mission planning and interpreting the data. However it is equally important that insights gleaned from decades of solar system imaging and spectroscopy of giant planets be leveraged to optimize both instrument design and data interpretation. To illustrate these points we will draw on examples from solar system observations, by both HST and ground based telescopes, as well as by Voyager, Galileo, and Cassini, to demonstrate the importance clouds, photochemical hazes, and various molecular absorbers play in sculpting the light scattered by solar system giant planets. We will demonstrate how measurements of the relative depths of multiple methane absorption bands of varying strengths have been key to disentangling the competing effects of gas column abundances, variations in cloud height and opacity, and scattering by high altitude photochemical hazes. We will highlight both the successes, such as the accurate remote determination of the atmospheric methane abundance of Jupiter, and a few failures from these types of observations. These lessons provide insights into technical issues facing spacecraft designers, from the selection of the most valuable camera filters to carry to the required capabilities of the flight spectrometer, as well as mission design questions such as choosing the most favorable phase angles for atmospheric characterization.
NASA Astrophysics Data System (ADS)
Hirsch, Lea A.; Ciardi, David R.; Howard, Andrew W.; Everett, Mark E.; Furlan, Elise; Saylors, Mindy; Horch, Elliott P.; Howell, Steve B.; Teske, Johanna; Marcy, Geoffrey W.
2017-03-01
We report on 176 close (<2″) stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). These Kepler targets were prioritized for imaging follow-up based on the presence of small planets, so most of the KOIs in these systems (176 out of 204) have nominal radii <6 {R}\\oplus . Each KOI in our sample was observed in at least two filters with adaptive optics, speckle imaging, lucky imaging, or the Hubble Space Telescope. Multi-filter photometry provides color information on the companions, allowing us to constrain their stellar properties and assess the probability that the companions are physically bound. We find that 60%-80% of companions within 1″ are bound, and the bound fraction is >90% for companions within 0.″5 the bound fraction decreases with increasing angular separation. This picture is consistent with simulations of the binary and background stellar populations in the Kepler field. We also reassess the planet radii in these systems, converting the observed differential magnitudes to a contamination in the Kepler bandpass and calculating the planet radius correction factor, X R = R p (true)/R p (single). Under the assumption that planets in bound binaries are equally likely to orbit the primary or secondary, we find a mean radius correction factor for planets in stellar multiples of X R = 1.65. If stellar multiplicity in the Kepler field is similar to the solar neighborhood, then nearly half of all Kepler planets may have radii underestimated by an average of 65%, unless vetted using high-resolution imaging or spectroscopy.
NASA Astrophysics Data System (ADS)
Moutou, C.; Vigan, A.; Mesa, D.; Desidera, S.; Thébault, P.; Zurlo, A.; Salter, G.
2017-06-01
We explore the multiplicity of exoplanet host stars with high-resolution images obtained with VLT/SPHERE. Two different samples of systems were observed: one containing low-eccentricity outer planets, and the other containing high-eccentricity outer planets. We find that 10 out of 34 stars in the high-eccentricity systems are members of a binary, while the proportion is 3 out of 27 for circular systems. Eccentric-exoplanet hosts are, therefore, significantly more likely to have a stellar companion than circular-exoplanet hosts. The median magnitude contrast over the 68 data sets is 11.26 and 9.25, in H and K, respectively, at 0.30 arcsec. The derived detection limits reveal that binaries with separations of less than 50 au are rarer for exoplanet hosts than for field stars. Our results also imply that the majority of high-eccentricity planets are not embedded in multiple stellar systems (24 out of 34), since our detection limits exclude the presence of a stellar companion. We detect the low-mass stellar companions of HD 7449 and HD 211847, both members of our high-eccentricity sample. HD 7449B was already detected and our independent observation is in agreement with this earlier work. HD 211847's substellar companion, previously detected by the radial velocity method, is actually a low-mass star seen face-on. The role of stellar multiplicity in shaping planetary systems is confirmed by this work, although it does not appear as the only source of dynamical excitation. Based on observations collected with SPHERE on the Very Large Telescope (ESO, Chile).
Kepler Planets Tend to Have Siblings of the Same Size
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-11-01
After 8.5 years of observations with the Kepler space observatory, weve discovered a large number of close-in, tightly-spaced, multiple-planet systems orbiting distant stars. In the process, weve learned a lot about the properties about these systems and discovered some unexpected behavior. A new study explores one of the properties that has surprised us: planets of the same size tend to live together.Orbital architectures for 25 of the authors multiplanet systems. The dots are sized according to the planets relative radii and colored according to mass. Planets of similar sizes and masses tend to live together in the same system. [Millholland et al. 2017]Ordering of SystemsFrom Keplers observations of extrasolar multiplanet systems, we have seen that the sizes of planets in a given system arent completely random. Systems that contain a large planet, for example, are more likely to contain additional large planets rather than additional planets of random size. So though there is a large spread in the radii weve observed for transiting exoplanets, the spread within any given multiplanet system tends to be much smaller.This odd behavior has led us to ask whether this clustering occurs not just for radius, but also for mass. Since the multiplanet systems discovered by Kepler most often contain super-Earths and mini-Neptunes, which have an extremely large spread in densities, the fact that two such planets have similar radii does not guarantee that they have similar masses.If planets dont cluster in mass within a system, this would raise the question of why planets coordinate only their radii within a given system. If they do cluster in mass, it implies that planets within the same system tend to have similar densities, potentially allowing us to predict the sizes and masses of planets we might find in a given system.Insight into MassesLed by NSF graduate research fellow Sarah Millholland, a team of scientists at Yale University used recently determined masses for planets in 37 Kepler multiplanet systems to explore this question of whether exoplanets in a multiplanet system are more likely to have similar masses rather than random ones.Millholland and collaborators find that the masses do show the same clustering trend as radii in multiplanet systems i.e., sibling planets in the same system tend to have both masses and radii that are more similar than if the system were randomly assembled from the total population of planets weve observed. Furthermore, the masses and radii tend to be ordered within a system when the planets are ranked by their periods.The host stars metallicity is correlated with the median planetary radius for a system. [Adapted from Millholland et al. 2017]The authors note two important implications of these results:The scatter in the relation between mass and radius of observed exoplanets is primarily due to system-to-system variability, rather than the variability within each system.Knowing the properties of a star and its primordial protoplanetary disk might allow us to predict the outcome of the planet formation process for the system.Following up on the second point, the authors test whether certain properties of the host star correlate with properties of the planets. They find that the stellar mass and metallicity have a significant effect on the planet properties and the structure of the system.Continuing to explore multiplanet systems like these appears to be an excellent path forward for understanding the hidden order in the broad variety of exoplanets weve observed.CitationSarah Millholland et al 2017 ApJL 849 L33. doi:10.3847/2041-8213/aa9714
DISTINGUISHING A HYPOTHETICAL ABIOTIC PLANET–MOON SYSTEM FROM A SINGLE INHABITED PLANET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tong; Tian, Feng; Wei, Wanjing
It has recently been suggested that an exomoon with a CH{sub 4} atmosphere, orbiting an abiotic Earth-mass planet with an O{sub 2}-rich atmosphere, can produce a false positive biosignature at a low–moderate spectral resolution (R = λ/Δλ ≤ 2000). If this were true, inferring the presence of life on exoplanets will be beyond our reach in the next several decades. Here we use a line-by-line radiative transfer model to compute the relevant reflection spectrum between 1 and 3.3 μm. We show that it is possible to separate the combined spectra of such planet–moon systems from an inhabited planet by multiple-band NIR observations.more » We suggest that future observations near the 2.3 μm CH{sub 4} absorption band at a resolution of 100 and an SNR of 10 or more may be a good way to distinguish an abiotic planet–moon system from a inhabited single planet.« less
Architectural and chemical insights into the origin of hot Jupiters
NASA Astrophysics Data System (ADS)
Schlaufman, Kevin C.
2015-10-01
The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of ``lore" to have accumulated about the properties of these planets. Among this lore is the widespread belief that hot Jupiters are less likely to be in multiple giant planet systems than longer-period giant planets. I will show that in this case the lore is not supported by the best data available today: hot Jupiters are not lonely. I will also show that stellar sodium abundance is inversely proportional to the probability that a star hosts a short-period giant planet. This observation is best explained by the effect of decreasing sodium abundance on protoplanetary disk structure and reveals that planetesimal-disk or planet-disk interactions are critical for the existence of short-period giant planets.
Jupiter: Cosmic Jekyll and Hyde.
Grazier, Kevin R
2016-01-01
It has been widely reported that Jupiter has a profound role in shielding the terrestrial planets from comet impacts in the Solar System, and that a jovian planet is a requirement for the evolution of life on Earth. To evaluate whether jovians, in fact, shield habitable planets from impacts (a phenomenon often referred to as the "Jupiter as shield" concept), this study simulated the evolution of 10,000 particles in each of the jovian inter-planet gaps for the cases of full-mass and embryo planets for up to 100 My. The results of these simulations predict a number of phenomena that not only discount the "Jupiter as shield" concept, they also predict that in a Solar System like ours, large gas giants like Saturn and Jupiter had a different, and potentially even more important, role in the evolution of life on our planet by delivering the volatile-laden material required for the formation of life. The simulations illustrate that, although all particles occupied "non-life threatening" orbits at their onset of the simulations, a significant fraction of the 30,000 particles evolved into Earth-crossing orbits. A comparison of multiple runs with different planetary configurations revealed that Jupiter was responsible for the vast majority of the encounters that "kicked" outer planet material into the terrestrial planet region, and that Saturn assisted in the process far more than has previously been acknowledged. Jupiter also tends to "fix" the aphelion of planetesimals at its orbit irrespective of their initial starting zones, which has the effect of slowing their passages through the inner Solar System, and thus potentially improving the odds of accretion of cometary material by terrestrial planets. As expected, the simulations indicate that the full-mass planets perturb many objects into the deep outer Solar System, or eject them entirely; however, planetary embryos also did this with surprising efficiency. Finally, the simulations predict that Jupiter's capacity to shield or intercept Earth-bound comets originating in the outer Solar System is poor, and that the importance of jovian planets on the formation of life is not that they act as shields, but rather that they deliver life-enabling volatiles to the terrestrial planets.
DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Gregory, E-mail: kbatygin@gps.caltech.ed
Tidal dissipation within a short-period transiting extrasolar planet perturbed by a companion object can drive orbital evolution of the system to a so-called tidal fixed point, in which the apses of the transiting planet and its perturber are aligned, and variations in orbital eccentricities vanish. Significant contribution to the apsidal precession rate is made by gravitational quadrupole fields, created by the transiting planets tidal and rotational distortions. The fixed-point orbital eccentricity of the inner planet is therefore a strong function of its interior structure. We illustrate these ideas in the specific context of the recently discovered HAT-P-13 exoplanetary system, andmore » show that one can already glean important insights into the physical properties of the inner transiting planet. We present structural models of the planet, which indicate that its observed radius can be maintained for a one-parameter sequence of models that properly vary core mass and tidal energy dissipation in the interior. We use an octupole-order secular theory of the orbital dynamics to derive the dependence of the inner planet's eccentricity, e{sub b} , on its tidal Love number, k {sub 2b}. We find that the currently measured eccentricity, e{sub b} = 0.021 +- 0.009, implies 0.116 < k {sub 2b} < 0.425, 0 M {sub +} < M {sub core} < 120 M {sub +}, and 10, 000 < Q{sub b} < 300, 000. Improved measurement of the eccentricity will soon allow for far tighter limits to be placed on all of these quantities, and will provide an unprecedented probe into the interior structure of an extrasolar planet.« less
NASA Astrophysics Data System (ADS)
Lineweaver, Charles H.
2015-08-01
The Titius-Bode (TB) relation’s successful prediction of the period of Uranus was the main motivation that led to the search for another planet between Mars and Jupiter. This search led to the discovery of the asteroid Ceres and the rest of the asteroid belt. The TB relation can also provide useful hints about the periods of as-yet-undetected planets around other stars. In Bovaird & Lineweaver (2013) [1], we used a generalized TB relation to analyze 68 multi-planet systems with four or more detected exoplanets. We found that the majority of exoplanet systems in our sample adhered to the TB relation to a greater extent than the Solar System does. Thus, the TB relation can make useful predictions about the existence of as-yet-undetected planets in Kepler multi-planet systems. These predictions are one way to correct for the main obstacle preventing us from estimating the number of Earth-like planets in the universe. That obstacle is the incomplete sampling of planets of Earth-mass and smaller [2-5]. In [6], we use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, 2±1 planets in the habitable zone of each star. We also estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15 per cent, ~3 times higher than the detection rate of our previous Titius-Bode-based predictions.References: [1] Bovaird, T. & Lineweaver, C.H (2013) MNRAS, 435, 1126-1138. [2] Dong S. & Zhu Z. (2013) ApJ, 778, 53 [3] Fressin F. et al. (2013) ApJ, 766, 81 [4] Petigura E. A. et al. (2013) PNAS, 110, 19273 [5] Silburt A. et al. (2014), ApJ (arXiv:1406.6048v2) [6] Bovaird, T., Lineweaver, C.H. & Jacobsen, S.K. (2015, in press) MNRAS, arXiv:14126230v3.
Identifying Young Kepler Planet Host Stars from Keck–HIRES Spectra of Lithium
NASA Astrophysics Data System (ADS)
Berger, Travis A.; Howard, Andrew W.; Boesgaard, Ann Merchant
2018-03-01
The lithium doublet at 6708 Å provides an age diagnostic for main sequence FGK dwarfs. We measured the abundance of lithium in 1305 stars with detected transiting planets from the Kepler mission using high-resolution spectroscopy. Our catalog of lithium measurements from this sample has a range of abundance from A(Li) = 3.11 ± 0.07 to an upper limit of ‑0.84 dex. For a magnitude-limited sample that comprises 960 of the 1305 stars, our Keck–HIRES spectra have a median signal-to-noise ratio of 45 per pixel at ∼6700 Å with spectral resolution \\tfrac{λ }{{{Δ }}λ } = R = 55,000. We identify 80 young stars that have A(Li) values greater than the Hyades at their respective effective temperatures; these stars are younger than ∼650 Myr, the approximate age of the Hyades. We then compare the distribution of A(Li) with planet size, multiplicity, orbital period, and insolation flux. We find larger planets preferentially in younger systems, with an A–D two-sided test p-value = 0.002, a > 3σ confidence that the older and younger planet samples do not come from the same parent distribution. This is consistent with planet inflation/photoevaporation at early ages. The other planet parameters (Kepler planet multiplicity, orbital period, and insolation flux) are uncorrelated with age. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by the University of Hawaii, the University of California, and Caltech.
Dynamical Studies of N-Body Gravity and Tidal Dissipation in the TRAPPIST-1 Star System
NASA Astrophysics Data System (ADS)
Nayak, Michael; Kuettel, Donald H.; Stebler, Shane T.; Udrea, Bogdan
2018-01-01
To date, we have discovered a total of 2,729 planetary systems that contain more than 3,639 known exoplanets [1]. A majority of these are defined as compact systems, containing multiple exoplanets within 0.25 AU of the central star. It has been shown that tightly packed exoplanets avoid colliding due to long-term resonance-induced orbit stability [2]. However, due to extreme proximity, these planets experience intense gravitational forces from each other that are unprecedented within our own solar system, which makes the existence of exomoons doubtful. We present the results of an initial study evaluating dynamical stability of potential exomoons within such highly compact systems.This work is baselined around TRAPPIST-1, an ultra-cool dwarf star that hosts seven temperate terrestrial planets, three of which are in the habitable zone, orbiting within 0.06 AU [3]. N-body simulations place a grid of test particles varying semi-major axis, eccentricity, and inclination around the three habitable zone planets. We find that most exomoons with semi-major axes less than half the Hill sphere of their respective planet are stable over 10 kyrs, with several stable over 300 kyrs.However, in compact systems, tidal influences from other planets can compete with tidal effects from the primary planet, resulting in possible instabilities and massive amounts of tidal dissipation. We investigate these effects with a large grid search that incorporates exomoon radius, tidal quality factor and a range of planet rigidities. Results of simulations that combine n-body gravity effects with both planetary and satellite tides are presented and contrasted with n-body results. Finally, we examine long-term stability (> 1Myrs) of the stable subset of test particles from the n-body simulation with the addition of tidal dissipation, to determine if exomoons can survive around planets e, f, and g in the TRAPPIST-1 system.[1] Schneider (2017). The Extrasolar Planets Encyclopedia. http://exoplanet.eu/catalog/.[2] Tamayo et al (2017). Convergent Migration Renders TRAPPIST-1 Long-lived. ApJL, 840(2), L19.[3] Gillon et al (2016). Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature, 533 (7602), 221-224.
The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa
2016-07-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5+/-0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.
The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.
2016-01-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.
How does a planet excite multiple spiral arms?
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-01-01
Protoplanetary disk simulations show that a single planet excites multiple spiral arms in the background disk, potentially supported by the multi-armed spirals revealed with recent high-resolution observations in some disks. The existence of multiple spiral arms is of importance in many aspects. It is empirically found that the arm-to-arm separation increases as a function of the planetary mass, so one can use the morphology of observed spiral arms to infer the mass of unseen planets. In addition, a spiral arm opens a radial gap as it steepens into a shock, so when a planet excites multiple spiral arms it can open multiple gaps in the disk. Despite the important implications, however, the formation mechanism of multiple spiral arms has not been fully understood by far.In this talk, we explain how a planet excites multiple spiral arms. The gravitational potential of a planet can be decomposed into a Fourier series, a sum of individual azimuthal modes having different azimuthal wavenumbers. Using a linear wave theory, we first demonstrate that appropriate sets of Fourier decomposed waves can be in phase, raising a possibility that constructive interference among the waves can produce coherent structures - spiral arms. More than one spiral arm can form since such constructive interference can occur at different positions in the disk for different sets of waves. We then verify this hypothesis using a suite of two-dimensional hydrodynamic simulations. Finally, we present non-linear behavior in the formation of multiple spiral arms.
Proposed Missions - Terrestrial Planet Finder
2003-06-20
NASA Terrestrial Planet Finder will use multiple telescopes working together to take family portraits of stars and their orbiting planets and determine which planets may have the right chemistry to sustain life.
The Development of the Planet Formation Concept Inventory: A Preliminary Analysis of Version 1
NASA Astrophysics Data System (ADS)
Simon, Molly; Impey, Chris David; Buxner, Sanlyn
2018-01-01
The topic of planet formation is poorly represented in the educational literature, especially at the college level. As recently as 2014, when developing the Test of Astronomy Standards (TOAST), Slater (2014) noted that for two topics (formation of the Solar System and cosmology), “high quality test items that reflect our current understanding of students’ conceptions were not available [in the literature]” (Slater,2014, p. 8). Furthermore, nearly half of ASTR 101 enrollments are at 2 year/community colleges where both instructors and students have little access to current research and models of planet formation. In response, we administered six student replied response (SSR) short answer questions on the topic of planet formation to n = 1,050 students enrolled in introductory astronomy and planetary science courses at The University of Arizona in the Fall 2016 and Spring 2017 semesters. After analyzing and coding the data from the SSR questions, we developed a preliminary version of the Planet Formation Concept Inventory (PFCI). The PFCI is a multiple-choice instrument with 20 planet formation-related questions, and 4 demographic-related questions. We administered version 1 of the PFCI to six introductory astronomy and planetary science courses (n ~ 700 students) during the Fall 2017 semester. We provided students with 7-8 multiple-choice with explanation of reasoning (MCER) questions from the PFCI. Students selected an answer (similar to a traditional multiple-choice test), and then briefly explained why they chose the answer they did. We also conducted interviews with ~15 students to receive feedback on the quality of the questions and clarity of the instrument. We will present an analysis of the MCER responses and student interviews, and discuss any modifications that will be made to the instrument as a result.
The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f.
Shields, Aomawa L; Barnes, Rory; Agol, Eric; Charnay, Benjamin; Bitz, Cecilia; Meadows, Victoria S
2016-06-01
As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013 ), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of orbital and atmospheric properties that permit surface liquid water on Kepler-62f. Extrasolar planets-Habitability-Planetary environments. Astrobiology 16, 443-464.
N-body simulations of terrestrial planet formation under the influence of a hot Jupiter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogihara, Masahiro; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro, E-mail: omasahiro@oca.eu, E-mail: ogihara@nagoya-u.jp
We investigate the formation of multiple-planet systems in the presence of a hot Jupiter (HJ) using extended N-body simulations that are performed simultaneously with semianalytic calculations. Our primary aims are to describe the planet formation process starting from planetesimals using high-resolution simulations, and to examine the dependences of the architecture of planetary systems on input parameters (e.g., disk mass, disk viscosity). We observe that protoplanets that arise from oligarchic growth and undergo type I migration stop migrating when they join a chain of resonant planets outside the orbit of an HJ. The formation of a resonant chain is almost independentmore » of our model parameters, and is thus a robust process. At the end of our simulations, several terrestrial planets remain at around 0.1 AU. The formed planets are not equal mass; the largest planet constitutes more than 50% of the total mass in the close-in region, which is also less dependent on parameters. In the previous work of this paper, we have found a new physical mechanism of induced migration of the HJ, which is called a crowding-out. If the HJ opens up a wide gap in the disk (e.g., owing to low disk viscosity), crowding-out becomes less efficient and the HJ remains. We also discuss angular momentum transfer between the planets and disk.« less
NASA Astrophysics Data System (ADS)
Ford, Eric B.
2009-05-01
We present the results of a highly parallel Kepler equation solver using the Graphics Processing Unit (GPU) on a commercial nVidia GeForce 280GTX and the "Compute Unified Device Architecture" (CUDA) programming environment. We apply this to evaluate a goodness-of-fit statistic (e.g., χ2) for Doppler observations of stars potentially harboring multiple planetary companions (assuming negligible planet-planet interactions). Given the high-dimensionality of the model parameter space (at least five dimensions per planet), a global search is extremely computationally demanding. We expect that the underlying Kepler solver and model evaluator will be combined with a wide variety of more sophisticated algorithms to provide efficient global search, parameter estimation, model comparison, and adaptive experimental design for radial velocity and/or astrometric planet searches. We tested multiple implementations using single precision, double precision, pairs of single precision, and mixed precision arithmetic. We find that the vast majority of computations can be performed using single precision arithmetic, with selective use of compensated summation for increased precision. However, standard single precision is not adequate for calculating the mean anomaly from the time of observation and orbital period when evaluating the goodness-of-fit for real planetary systems and observational data sets. Using all double precision, our GPU code outperforms a similar code using a modern CPU by a factor of over 60. Using mixed precision, our GPU code provides a speed-up factor of over 600, when evaluating nsys > 1024 models planetary systems each containing npl = 4 planets and assuming nobs = 256 observations of each system. We conclude that modern GPUs also offer a powerful tool for repeatedly evaluating Kepler's equation and a goodness-of-fit statistic for orbital models when presented with a large parameter space.
NASA Astrophysics Data System (ADS)
Moro-Martín, A.; Marshall, J. P.; Kennedy, G.; Sibthorpe, B.; Matthews, B. C.; Eiroa, C.; Wyatt, M. C.; Lestrade, J.-F.; Maldonado, J.; Rodriguez, D.; Greaves, J. S.; Montesinos, B.; Mora, A.; Booth, M.; Duchêne, G.; Wilner, D.; Horner, J.
2015-03-01
The study of the planet-debris disk connection can shed light on the formation and evolution of planetary systems and may help “predict” the presence of planets around stars with certain disk characteristics. In preliminary analyses of subsamples of the Herschel DEBRIS and DUNES surveys, Wyatt et al. and Marshall et al. identified a tentative correlation between debris and the presence of low-mass planets. Here we use the cleanest possible sample out of these Herschel surveys to assess the presence of such a correlation, discarding stars without known ages, with ages \\lt 1 Gyr, and with binary companions \\lt 100 AU to rule out possible correlations due to effects other than planet presence. In our resulting subsample of 204 FGK stars, we do not find evidence that debris disks are more common or more dusty around stars harboring high-mass or low-mass planets compared to a control sample without identified planets. There is no evidence either that the characteristic dust temperature of the debris disks around planet-bearing stars is any different from that in debris disks without identified planets, nor that debris disks are more or less common (or more or less dusty) around stars harboring multiple planets compared to single-planet systems. Diverse dynamical histories may account for the lack of correlations. The data show a correlation between the presence of high-mass planets and stellar metallicity, but no correlation between the presence of low-mass planets or debris and stellar metallicity. Comparing the observed cumulative distribution of fractional luminosity to those expected from a Gaussian distribution in logarithmic scale, we find that a distribution centered on the solar system’s value fits the data well, while one centered at 10 times this value can be rejected. This is of interest in the context of future terrestrial planet detection and characterization because it indicates that there are good prospects for finding a large number of debris disk systems (i.e., with evidence of harboring planetesimals, the building blocks of planets) with exozodiacal emission low enough to be appropriate targets for an ATLAST-type mission to search for biosignatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurzem, R.; Giersz, M.; Heggie, D. C.
At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We showmore » that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay, tidal inflation, and even disruption of the close-in planets.« less
Architectural and Chemical Insights into the Origin of Hot Jupiters
NASA Astrophysics Data System (ADS)
Schlaufman, Kevin C.
2015-08-01
The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of "lore" to have accumulated about the properties of these planets. Among this lore are the widespread beliefs that hot Jupiters are less likely be in multiple giant planet systems than longer-period giant planets, and that there is an excess of close-in giant planets with orbital periods near three days. I will show that in these cases the lore is not supported by the best data available today: hot Jupiters are not lonely and there is no evidence of a three-day pile-up. I will also show that stellar sodium abundance is inversely proportional to the probability that a star hosts a short-period giant planet. This observation is best explained by the effect of decreasing sodium abundance on protoplanetary disk structure and reveals that planet-disk interactions are critical for the existence of short-period giant planets. Collectively, these results support the importance of disk migration for the origin of short-period giant planets.
NASA Astrophysics Data System (ADS)
Apai, Dániel; Kasper, Markus; Skemer, Andrew; Hanson, Jake R.; Lagrange, Anne-Marie; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Vigan, Arthur
2016-03-01
Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (˜3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b-c planet pair agrees to about 1%.
Planetary mass function and planetary systems
NASA Astrophysics Data System (ADS)
Dominik, M.
2011-02-01
With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.
Architectural Insights into the Origin of Hot Jupiters
NASA Astrophysics Data System (ADS)
Schlaufman, Kevin C.; Winn, Joshua
2015-12-01
The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of "lore" to have accumulated about the properties of these planets. Among this lore is the widespread belief that hot Jupiters are less likely be in multiple giant planet systems than longer-period giant planets. We will show that in this case the lore is not supported by the best data available today: hot Jupiters are no more or less likely than warm or cool Jupiters to have additional Jupiter-mass companions. In contrast to the expectation from the simplest models of high-eccentricity migration, the result holds for Jupiter-mass companions both inside and outside of the water-ice line. This support the importance of disk migration for the origin of short-period giant planets.
Comparative Planetology - Atmospheres and Aeronomy
NASA Astrophysics Data System (ADS)
Huestis, D. L.
2006-05-01
The Earth, planets, moons, comets, and other small bodies in the solar system are quite diverse, yet share a number of characteristics. Each has something to teach us about the others and about the extrasolar planets we are now discovering. Having multiple examples of similar phenomena under different local conditions provides the best means of identifying the underlying mechanisms and of quantitative testing of our understanding. This special session is one of a sequence of events attempting to define and document the comparative planetology vision and provide specific recommendations for actions by the research community and the funding agencies. This presentation will summarize the progress so far and solicit additional ideas and suggestions from the research community, with an emphasis on the atmosphere and aeronomy of the Earth, planets, moons, and comets in the solar system.
A survey of stellar families: Multiplicity of solar-type stars
NASA Astrophysics Data System (ADS)
Raghavan, Deepak
I present the results of a comprehensive assessment of companions to 454 solar- type stars within 25 pc. New observational aspects of this work include surveys for (1) very close companions with long-baseline interferometry at the Center for High Angular Resolution Astronomy (CHARA) Array, (2) close companions with speckle interferometry, and (3) wide proper motion companions identified by blinking multi-epoch archival images. I have also obtained and included unpublished results from extensive radial velocity monitoring programs. The many sources utilized enable a thorough evaluation of stellar and brown dwarf companions. The results presented here include eight new companion discoveries, four of which are wide common proper motion pairs discovered by blinking archival images, and four more are from the spectroscopic data. The overall observed fractions of single, double, triple, and higher order systems are 57%±3%, 33%±2%, 8%±1%, and 3%±1%, respectively, counting all stellar and brown dwarf companions. The incompleteness analysis indicates that only a few undiscovered companions remain in this well-studied sample, showing that a majority of the solar-type stars are single. Bluer, more massive stars are more likely to have companions than redder, less massive ones. I confirm earlier expectations that more active stars are more likely to have companions. A preliminary, but important indication is that brown dwarfs, like planets, prefer stars with higher metallicity, tentatively suggesting that brown dwarfs may form like planets when they are companions to stars. The period distribution is unimodal and roughly Gaussian with peak and median values of about 300 years. The period-eccentricity relation shows a roughly flat distribution beyond the circularization limit of about 12 days. The mass- ratio distribution shows a clear discontinuity near a value of one, indicating a preference for twins, which are not confined to short orbital periods, suggesting that stars form by multiple formation mechanisms. The ratio of planet hosts among single, binary, and multiple systems are statistically indistinguishable, suggesting that planets are as likely to form around single stars as they are around components of binary or multiple systems at sufficiently wide separations. INDEX WORDS: Stellar multiplicity, Binary stars, Solar-type stars, Solar neighborhood, Exoplanet systems, Brown dwarfs, Survey, Long baseline interferometry, Radial velocity
NASA Technical Reports Server (NTRS)
Heller, Rene; Hippke, Michael; Placek, Ben; Angerhausen, Daniel; Agol, Eric
2016-01-01
We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet's orbit around the planet-moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multiple moons in orbital mean motion resonance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. Exomoons in MMR can also form closed, predictable TTV-TDV figures, as long as the drift of the moons' pericenters is suciently slow.We find that MMR exomoons produce loops in the TTV-TDV diagram and that the number of these loops is equal to the order of the MMR, or the largest integer in the MMR ratio.We use a Bayesian model and Monte Carlo simulations to test the discoverability of exomoons using TTV-TDV diagrams with current and near-future technology. In a blind test, two of us (BP, DA) successfully retrieved a large moon from simulated TTV-TDV by co-authors MH and RH, which resembled data from a known Kepler planet candidate. Single exomoons with a 10 percent moon-to-planet mass ratio, like to Pluto-Charon binary, can be detectable in the archival data of the Kepler primary mission. Multi-exomoon systems, however, require either larger telescopes or brighter target stars. Complementary detection methods invoking a moon's own photometric transit or its orbital sampling effect can be used for validation or falsification. A combination of TESS, CHEOPS, and PLATO data would offer a compelling opportunity for an exomoon discovery around a bright star.
ScienceCast 136: A Sudden Multiplication of Planets
2014-02-26
Today, NASA announced a breakthrough addition to the catalog of new planets. Researchers using Kepler have confirmed 715 new worlds, almost quadrupling the number of planets previously confirmed by the planet-hunting spacecraft.
NASA Astrophysics Data System (ADS)
Trifonov, T.; Kürster, M.; Zechmeister, M.; Tal-Or, L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt, R.; Henning, Th.; Montes, D.; Béjar, V. J. S.; Mundt, R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.; Jeffers, S. V.; Rodríguez-López, C.; del Burgo, C.; Anglada-Escudé, G.; López-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther, E. W.; Barrado, D.; González Hernández, J. I.; Mancini, L.; Stürmer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; Cano, J.; Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Gómez Galera, V.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guàrdia, J.; Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Lafarga, M.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, M.; López-González, M. J.; López-Puertas, M.; López Salas, J. F.; Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez Trinidad, A.; Rohloff, R.-R.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schöfer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.
2018-02-01
Context. The main goal of the CARMENES survey is to find Earth-mass planets around nearby M-dwarf stars. Seven M dwarfs included in the CARMENES sample had been observed before with HIRES and HARPS and either were reported to have one short period planetary companion (GJ 15 A, GJ 176, GJ 436, GJ 536 and GJ 1148) or are multiple planetary systems (GJ 581 and GJ 876). Aims: We aim to report new precise optical radial velocity measurements for these planet hosts and test the overall capabilities of CARMENES. Methods: We combined our CARMENES precise Doppler measurements with those available from HIRES and HARPS and derived new orbital parameters for the systems. Bona-fide single planet systems were fitted with a Keplerian model. The multiple planet systems were analyzed using a self-consistent dynamical model and their best fit orbits were tested for long-term stability. Results: We confirm or provide supportive arguments for planets around all the investigated stars except for GJ 15 A, for which we find that the post-discovery HIRES data and our CARMENES data do not show a signal at 11.4 days. Although we cannot confirm the super-Earth planet GJ 15 Ab, we show evidence for a possible long-period (Pc = 7030-630+970 d) Saturn-mass (mcsini = 51.8M⊕) planet around GJ 15 A. In addition, based on our CARMENES and HIRES data we discover a second planet around GJ 1148, for which we estimate a period Pc = 532.6 days, eccentricity ec = 0.342 and minimum mass mcsini = 68.1M⊕. Conclusions: The CARMENES optical radial velocities have similar precision and overall scatter when compared to the Doppler measurements conducted with HARPS and HIRES. We conclude that CARMENES is an instrument that is up to the challenge of discovering rocky planets around low-mass stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 072.C-0488, 072.C-0513, 074.C-0012, 074.C-0364, 075.D-0614, 076.C-0878, 077.C-0364, 077.C-0530, 078.C-0044, 078.C-0833, 079.C-0681, 183.C-0437, 60.A-9036, 082.C-0718, 183.C-0972, 085.C-0019, 087.C-0831, 191.C-0873. The appendix tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A117
The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f
Barnes, Rory; Agol, Eric; Charnay, Benjamin; Bitz, Cecilia; Meadows, Victoria S.
2016-01-01
Abstract As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of orbital and atmospheric properties that permit surface liquid water on Kepler-62f. Key Words: Extrasolar planets—Habitability—Planetary environments. Astrobiology 16, 443–464. PMID:27176715
Orbital stability analysis and chaotic dynamics of exoplanets in multi-stellar systems
NASA Astrophysics Data System (ADS)
Satyal, Suman
The advancement in detection technology has substantially increased the discovery rate of exoplanets in the last two decades. The confirmation of thousands of exoplanets orbiting the solar type stars has raised new astrophysical challenges, including the studies of orbital dynamics and long-term stability of such planets. Continuous orbital stability of the planet in stellar habitable zone is considered vital for life to develop. Hence, these studies furthers one self-evident aim of mankind to find an answer to the century old question: Are we alone?. This dissertation investigates the planetary orbits in single and binary star systems. Within binaries, a planet could orbit either one or both stars as S-type or P-type, respectively. I have considered S-type planets in two binaries, gamma Cephei and HD 196885, and compute their orbits by using various numerical techniques to assess their periodic, quasi-periodic or chaotic nature. The Hill stability (HS) function, which measures the orbital perturbation induced by the nearby companion, is calculated for each system and then its efficacy as a new chaos indicator is tested against Maximum Lyapunov Exponents (MLE) and Mean Exponential Growth factor of Nearby Orbits (MEGNO). The dynamics of HD 196885 AB is further explored with an emphasis on the planet's higher orbital inclination relative to the binary plane. I have quantitatively mapped out the chaotic and quasi-periodic regions of the system's phase space, which indicates a likely regime of the planet's inclination. In, addition, the resonant angle is inspected to determine whether alternation between libration and circulation occurs as a consequence of Kozai oscillations, a probable mechanism that can drive the planetary orbit to a large inclination. The studies of planetary system in GJ 832 shows potential of hosting multiple planets in close orbits. The phase space of GJ 832c (inner planet) and the Earth-mass test planet(s) are analyzed for periodic-aperiodic orbits. The stability of the system is defined in terms of its lifetime and maximum eccentricity during the integration period then a regime is established for the known and injected planet's orbital parameters. The de-stabilizing resonances due to the outer planet extend by 1.36 AU towards the star, nonetheless, existence of two Earth-mass planets seems plausible. The radial velocity (RV) curves generated for the test planets reveals a weak RV signal that cannot be measured by currently available instruments. A theory has been developed by extrapolating the radio emission processes in the Jupiter-Io system, which could reveal the presence of exomoons around the giant exoplanets. Based on this theory, maximum distance, radius and masses of exoplanets and exomoons are calculated that could be detected by the available radio telescopes. Observation time at the Low Frequency Array (LOFAR) radio telescope has been proposed to detect exomoon in five different stellar systems. Subjects of my future studies include analysis of the data from LOFAR, search for the additional transiting planets in Kepler 47 circumbinary system and observation at the Subaru telescope to verify the predicted planets in GJ 832 system by the method of direct imaging.
The Fate of Unstable Circumbinary Planets
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet onto the star. Only rarely do unstable planets make it through the 10,000-yr integration without being removed from the system via ejection or collision.Tidal EffectsAs a final experiment, the authors also added the effects of tidal stripping, which occurs when the stars of the binary tear away some of the planets mass during close encounters. They found that this alters the orbit of the planets that have close encounters with one of the stars, making it slightly more likely that they can be captured around a star.How can we test these models? When a star tidally strips a planet or accretes a planet in a collision, this process leaves its mark on the star in the form of stellar pollution. By comparing the amount of planetary material in the two stars of a binary, it may be possible to confirm the rates predicted here thereby answering the question of what happens to unstable Tattooines.CitationAdam P. Sutherland and Daniel C. Fabrycky 2016 ApJ 818 6. doi:10.3847/0004-637X/818/1/6
The dynamics of post-main sequence planetary systems
NASA Astrophysics Data System (ADS)
Mustill, Alexander James
2017-06-01
The study of planetary systems after their host stars have left the main sequence is of fundamental importance for exoplanet science, as the most direct determination of the compositions of extra-Solar planets, asteroids and comets is in fact made by an analysis of the elemental abundances of the remnants of these bodies accreted into the atmospheres of white dwarfs.To understand how the accreted bodies relate to the source populations in the planetary system, and to model their dynamical delivery to the white dwarf, it is necessary to understand the effects of stellar evolution on bodies' orbits. On the red giant branch (RGB) and asymptotic giant branch (AGB) prior to becoming a white dwarf, stars expand to a large size (>1 au) and are easily deformed by orbiting planets, leading to tidal energy dissipation and orbital decay. They also lose half or more of their mass, causing the expansion of bodies' orbits. This mass loss increases the planet:star mass ratio, so planetary systems orbiting white dwarfs can be much less stable than those orbiting their main-sequence progenitors. Finally, small bodies in the system experience strong non-gravitational forces during the RGB and AGB: aerodynamic drag from the mass shed by the star, and strong radiation forces as the stellar luminosity reaches several thousand Solar luminosities.I will review these effects, focusing on planet--star tidal interactions and planet--asteroid interactions, and I will discuss some of the numerical challenges in modelling systems over their entire lifetimes of multiple Gyr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Ji-Wei, E-mail: jwxie@nju.edu.cn, E-mail: jwxie@astro.utoronto.ca
2014-05-10
Many multiple-planet systems have been found by the Kepler transit survey and various radial velocity (RV) surveys. Kepler planets show an asymmetric feature, namely, there are small but significant deficits/excesses of planet pairs with orbital period spacing slightly narrow/wide of the exact resonance, particularly near the first order mean motion resonance (MMR), such as 2:1 and 3:2 MMR. Similarly, if not exactly the same, an asymmetric feature (pileup wide of 2:1 MMR) is also seen in RV planets, but only for massive ones. We analytically and numerically study planets' orbital evolutions near and in the MMR. We find that theirmore » orbital period ratios could be asymmetrically distributed around the MMR center regardless of dissipation. In the case of no dissipation, Kepler planets' asymmetric orbital distribution could be partly reproduced for 3:2 MMR but not for 2:1 MMR, implying that dissipation might be more important to the latter. The pileup of massive RV planets just wide of 2:1 MMR is found to be consistent with the scenario that planets formed separately then migrated toward the MMR. The location of the pileup infers a K value of 1-100 on the order of magnitude for massive planets, where K is the damping rate ratio between orbital eccentricity and semimajor axis during planet migration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soummer, Remi; Hagan, J. Brendan; Pueyo, Laurent
2011-11-01
HR 8799 is currently the only multiple-planet system that has been detected with direct imaging, with four giant planets of masses 7-10 M{sub Jup} orbiting at large separations (15-68 AU) from this young late A star. Orbital motion provides insight into the stability and possible formation mechanisms of this planetary system. Dynamical studies can also provide constraints on the planets' masses, which help calibrate evolutionary models, yet measuring the orbital motion is a very difficult task because the long-period orbits (50-500 yr) require long time baselines and high-precision astrometry. This paper studies the three planets HR 8799b, c, and dmore » in the archival data set of HR 8799 obtained with the Hubble Space Telescope (HST) NICMOS coronagraph in 1998. The detection of all three planets is made possible by a careful optimization of the Locally Optimized Combination of Images algorithm, and we used a statistical analysis of a large number of reduced images. This work confirms previous astrometry for planet b and presents new detections and astrometry for planets c and d. These HST images provide a ten-year baseline with the discovery images from 2008, and therefore offer a unique opportunity to constrain their orbital motion now. Recent dynamical studies of this system show the existence of a few possible stable solutions involving mean motion resonances (MMRs), where the interaction between c and d plays a major role. We study the compatibility of a few of these stable scenarios (1d:1c, 1d:2c, or 1d:2c:4d) with the new astrometric data from HST. In the hypothesis of a 1d:2c:4b MMR our best orbit fit is close to the stable solution previously identified for a three-planet system and involves low eccentricity for planet d (e{sub d} = 0.10) and moderate inclination of the system (i = 28.0 deg), assuming a coplanar system, circular orbits for b and c, and exact resonance with integer period ratios. Under these assumptions, we can place strong constraints on the inclination of the system (27.3-31.4 deg) and on the eccentricity for d e{sub d} < 0.46. Our results are robust to small departures from exact integer period ratios and consistent with previously published results based on dynamical studies for a three-planet system prior to the discovery of the fourth planet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berta, Zachory K.; Charbonneau, David; Bean, Jacob
2011-07-20
The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. Wemore » analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 {+-} 0.03.« less
NASA Astrophysics Data System (ADS)
Rizzuto, Aaron C.; Mann, Andrew W.; Vanderburg, Andrew; Kraus, Adam L.; Covey, Kevin R.
2017-12-01
Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ({P}{rot}< 2 days) we model the variability using a linear combination of observed rotations of each star. To maximally exploit our new pipeline, we update the membership for four stellar populations observed by K2 (Upper Scorpius, Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ˜4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apai, Dániel; Skemer, Andrew; Hanson, Jake R.
Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysismore » approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (∼3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b–c planet pair agrees to about 1%.« less
NASA Astrophysics Data System (ADS)
Nicholson, Arwen E.; Wilkinson, David M.; Williams, Hywel T. P.; Lenton, Timothy M.
2018-06-01
The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple `planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a `star' that provides incoming radiation, and atmospheric chemicals have either an albedo or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of `Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.
Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali
2018-01-09
We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.
RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Fabrycky, Daniel C., E-mail: rdawson@cfa.harvard.ed, E-mail: daniel.fabrycky@gmail.co
2010-10-10
Radial velocity measurements of stellar reflex motion have revealed many extrasolar planets, but gaps in the observations produce aliases, spurious frequencies that are frequently confused with the planets' orbital frequencies. In the case of Gl 581 d, the distinction between an alias and the true frequency was the distinction between a frozen, dead planet and a planet possibly hospitable to life. To improve the characterization of planetary systems, we describe how aliases originate and present a new approach for distinguishing between orbital frequencies and their aliases. Our approach harnesses features in the spectral window function to compare the amplitude andmore » phase of predicted aliases with peaks present in the data. We apply it to confirm prior alias distinctions for the planets GJ 876 d and HD 75898 b. We find that the true periods of Gl 581 d and HD 73526 b/c remain ambiguous. We revise the periods of HD 156668 b and 55 Cnc e, which were afflicted by daily aliases. For HD 156668 b, the correct period is 1.2699 days and the minimum mass is (3.1 {+-} 0.4) M{sub +}. For 55 Cnc e, the correct period is 0.7365 days-the shortest of any known planet-and the minimum mass is (8.3 {+-} 0.3) M{sub +}. This revision produces a significantly improved five-planet Keplerian fit for 55 Cnc, and a self-consistent dynamical fit describes the data just as well. As radial velocity techniques push to ever-smaller planets, often found in systems of multiple planets, distinguishing true periods from aliases will become increasingly important.« less
NASA Astrophysics Data System (ADS)
Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali
2018-01-01
We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period 1d
Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Nicholas M.; Ziegler, Carl; Morton, Tim
2014-08-10
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results from the 2012 observing season, searching for stars close to 715 Kepler planet candidate hosts. We find 53 companions, 43 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designedmore » for large adaptive optics surveys. Our survey is sensitive to objects from ≈0.''15 to 2.''5 separation, with magnitude differences up to Δm ≈ 6. We measure an overall nearby-star probability for Kepler planet candidates of 7.4% ± 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several Kepler Objects of Interest (KOIs) of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are 'coincident multiple' systems, with several transiting planets shared between the two stars. Finally, we find 98% confidence evidence that short-period giant planets are two to three times more likely than longer-period planets to be found in wide stellar binaries.« less
2014-01-10
observed trend is consistent with a gravitational acceleration exerted by the inner pair of stars (A and B) in this multiple star system. Our planet...the other hand, the observed trend in the RV of the C component can be caused by its orbital acceleration around the AB pair. 3. LONG-TERM EVOLUTION...polar torque acting on a rotating planet is the sum of the gravitational torque, caused by the triaxial permanent shape and the corresponding quadrupole
Comparing HARPS and Kepler surveys. The alignment of multiple-planet systems
NASA Astrophysics Data System (ADS)
Figueira, P.; Marmier, M.; Boué, G.; Lovis, C.; Santos, N. C.; Montalto, M.; Udry, S.; Pepe, F.; Mayor, M.
2012-05-01
Context. The recent results of the HARPS and Kepler surveys provided us with a bounty of extrasolar systems. While the two teams extensively analyzed each of their data-sets, little work has been done comparing the two. Aims: We study a subset of the planetary population whose characterization is simultaneously within reach of both instruments. We compare the statistical properties of planets in systems with msini > 5-10 M⊕ and R > 2 R⊕, as inferred from the HARPS and Kepler surveys, respectively. If we assume that the underlying population has the same characteristics, the different detection sensitivity to the orbital inclination relative to the line of sight allows us to probe the planets' mutual inclination. Methods: We considered the frequency of systems with one, two, and three planets as dictated by HARPS data. We used Kepler's planetary period and host mass and radius distributions (corrected from detection bias) to model planetary systems in a simple, yet physically plausible way. We then varied the mutual inclination between planets in a system according to different prescriptions (completely aligned, Rayleigh distributions, and isotropic) and compared the transit frequencies with one, two, or three planets with those measured by Kepler. Results: The results show that the two datasets are compatible, a remarkable result especially because there are no tunable knobs other than the assumed inclination distribution. For msini cutoffs of 7-10 M⊕, which are those expected to correspond to the radius cutoff of 2 R⊕, we conclude that the results are better described by a Rayleigh distribution with a mode of 1° or smaller. We show that the best-fit scenario only becomes a Rayleigh distribution with a mode of 5° if we assume a quite extreme mass-radius relationship for the planetary population. Conclusions: These results have important consequences for our understanding of the role of several proposed formation and evolution mechanisms. They confirm that planets are likely to have been formed in a disk and show that most planetary systems evolve quietly without strong angular momentum exchanges such as those produced by Kozai mechanism or planet scattering.
Consequences of eccentricity and inclination damping for the in-situ formation of STIPs
NASA Astrophysics Data System (ADS)
Granados Contreras, Agueda Paula
2018-01-01
In Boley, Granados, and Gladman (2016), we proposed that hot and warm Jupiters could form in-situ from the consolidation of planets in meta-stable, high-multiplicity System with Tightly-packed Inner Planets (STIPs) in the presence of gas. Under this hypothesis, the timing of instability within the STIP relative to the gas depletion timescale can lead to a wide range of planetary diversity, from short-orbital period gas giants to high-density, massive planets. The simulations used Kepler-11 as a base and assumed that a gas giant could form if instability in the gaseous disc led to the consolidation of a 10 Mearth core. The results showed that such consolidation could work, in principle. However, in the simulations we excluded the effects of eccentricity and inclination damping. We present new simulations that explore this effect on the consolidation paradigm. For the parameters so far explored, gas damping significantly increases the stability of the system, although consolidation does occur in some cases. We further find that the eccentricity damping can lead to the formation of stable co-orbiting planets, although this is a rare outcome. Briefly, we explore the implications of the detection of transiting co-orbital planets.
NASA Astrophysics Data System (ADS)
Skemer, Andrew J.; Hinz, Philip M.; Esposito, Simone; Burrows, Adam; Leisenring, Jarron; Skrutskie, Michael; Desidera, Silvano; Mesa, Dino; Arcidiacono, Carmelo; Mannucci, Filippo; Rodigas, Timothy J.; Close, Laird; McCarthy, Don; Kulesa, Craig; Agapito, Guido; Apai, Daniel; Argomedo, Javier; Bailey, Vanessa; Boutsia, Konstantina; Briguglio, Runa; Brusa, Guido; Busoni, Lorenzo; Claudi, Riccardo; Eisner, Joshua; Fini, Luca; Follette, Katherine B.; Garnavich, Peter; Gratton, Raffaele; Guerra, Juan Carlos; Hill, John M.; Hoffmann, William F.; Jones, Terry; Krejny, Megan; Males, Jared; Masciadri, Elena; Meyer, Michael R.; Miller, Douglas L.; Morzinski, Katie; Nelson, Matthew; Pinna, Enrico; Puglisi, Alfio; Quanz, Sascha P.; Quiros-Pacheco, Fernando; Riccardi, Armando; Stefanini, Paolo; Vaitheeswaran, Vidhya; Wilson, John C.; Xompero, Marco
2012-07-01
As the only directly imaged multiple planet system, HR 8799 provides a unique opportunity to study the physical properties of several planets in parallel. In this paper, we image all four of the HR 8799 planets at H band and 3.3 μm with the new Large Binocular Telescope adaptive optics system, PISCES, and LBTI/LMIRCam. Our images offer an unprecedented view of the system, allowing us to obtain H and 3.3 μm photometry of the innermost planet (for the first time) and put strong upper limits on the presence of a hypothetical fifth companion. We find that all four planets are unexpectedly bright at 3.3 μm compared to the equilibrium chemistry models used for field brown dwarfs, which predict that planets should be faint at 3.3 μm due to CH4 opacity. We attempt to model the planets with thick-cloudy, non-equilibrium chemistry atmospheres but find that removing CH4 to fit the 3.3 μm photometry increases the predicted L' (3.8 μm) flux enough that it is inconsistent with observations. In an effort to fit the spectral energy distribution of the HR 8799 planets, we construct mixtures of cloudy atmospheres, which are intended to represent planets covered by clouds of varying opacity. In this scenario, regions with low opacity look hot and bright, while regions with high opacity look faint, similar to the patchy cloud structures on Jupiter and L/T transition brown dwarfs. Our mixed-cloud models reproduce all of the available data, but self-consistent models are still necessary to demonstrate their viability. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are as follows: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di AstroÞsica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.
Hybrid rocket propulsion systems for outer planet exploration missions
NASA Astrophysics Data System (ADS)
Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott
2016-11-01
Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batalha, Natalie M.; /San Jose State U.; Rowe, Jason F.
New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T{submore » 0}, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R{sub P}/R{sub {star}}), reduced semi-major axis (d/R{sub {star}}), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2R{sub {circle_plus}} compared to 52% for candidates larger than 2R{sub {circle_plus}}) and those at longer orbital periods (123% for candidates outside of 50 day orbits versus 85% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1 - Quarter 5) to sixteen months (Quarter 1 - Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.« less
NASA Astrophysics Data System (ADS)
Astudillo-Defru, N.; Díaz, R. F.; Bonfils, X.; Almenara, J. M.; Delisle, J.-B.; Bouchy, F.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Murgas, F.; Pepe, F.; Santos, N. C.; Ségransan, D.; Udry, S.; Wünsche, A.
2017-09-01
Exoplanet surveys have shown that systems with multiple low-mass planets on compact orbits are common. Except for a few cases, however, the masses of these planets are generally unknown. At the very end of the main sequence, host stars have the lowest mass and hence offer the largest reflect motion for a given planet. In this context, we monitored the low-mass (0.13 M⊙) M dwarf YZ Cet (GJ 54.1, HIP 5643) intensively and obtained radial velocities and stellar-activity indicators derived from spectroscopy and photometry, respectively. We find strong evidence that it is orbited by at least three planets in compact orbits (POrb = 1.97, 3.06, 4.66 days), with the inner two near a 2:3 mean-motion resonance. The minimum masses are comparable to the mass of Earth (M sin I = 0.75 ± 0.13, 0.98 ± 0.14, and 1.14 ± 0.17 M⊕), and they are also the lowest masses measured by radial velocity so far. We note the possibility for a fourth planet with an even lower mass of M sin I = 0.472 ± 0.096 M⊕ at POrb = 1.04 days. An n-body dynamical model is used to place further constraints on the system parameters. At 3.6 parsecs, YZ Cet is the nearest multi-planet system detected to date. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 180.C-0886(A), 183.C-0437(A), and 191.C-0873(A) at Cerro La Silla (Chile).Radial velocity data (Table B.4) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/L11
NASA Astrophysics Data System (ADS)
Thebault, P.; Haghighipour, N.
Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.
Differential rotation of stars with multiple transiting planets
NASA Astrophysics Data System (ADS)
Netto, Yuri; Valio, Adriana
2017-10-01
If a star hosts a planet in an orbit such that it eclipses the star periodically, can be estimated the rotation profile of this star. If planets in multiplanetary system occult different stellar areas, spots in more than one latitude of the stellar disc can be detected. The monitored study of theses starspots in different latitudes allow us to infer the rotation profile of the star. We use the model described in Silva (2003) to characterize the starspots of Kepler-210, an active star with two planets. Kepler-210 is a late K star with an estimated age of 350 +/- 50 Myrs, average rotation period of 12.33 days, mass of 0.63 M⊙ and radius of 0.69 R⊙. The planets that eclipses this star have radii of 0.0498 R s and 0.0635 R s with orbital periods of 2.4532 +/- 0.0007 days and 7.9725 +/- 0.0014 days, respectively, where R s is the star radius.
The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.
Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B
2015-06-18
Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.
NASA Astrophysics Data System (ADS)
Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; Fassett, C. I.; Fischer, W. W.; Fraeman, A. A.; Golombek, M. P.; Hamilton, V. E.; Hayes, A. G.; Herd, C. D. K.; Horgan, B.; Hu, R.; Jakosky, B. M.; Johnson, J. R.; Kasting, J. F.; Kerber, L.; Kinch, K. M.; Kite, E. S.; Knutson, H. A.; Lunine, J. I.; Mahaffy, P. R.; Mangold, N.; McCubbin, F. M.; Mustard, J. F.; Niles, P. B.; Quantin-Nataf, C.; Rice, M. S.; Stack, K. M.; Stevenson, D. J.; Stewart, S. T.; Toplis, M. J.; Usui, T.; Weiss, B. P.; Werner, S. C.; Wordsworth, R. D.; Wray, J. J.; Yingst, R. A.; Yung, Y. L.; Zahnle, K. J.
2016-10-01
What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extrasolar planets yet to be discovered.
NASA Technical Reports Server (NTRS)
Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.;
2016-01-01
What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extra solar planets yet to be discovered.
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.; O'Neill, C.
2015-06-01
We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.
Robo-AO KOI Survey: LGS-AO imaging of every Kepler planetary candidate host star
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas; Baranec, Christoph; Riddle, Reed
2018-01-01
Robo-AO is observing every Kepler planetary candidate host star (KOI) in high resolution, made possible using the unprecedented efficiency provided by automation of LGS adaptive optics. Nearby contaminating stars may be the source of false positive transit signals or, if a bona fide planet is in the system, dilute the observed transit signal, resulting in underestimated planet radii. In 3857 observations, we find 632 stars within 4" (approximately the Kepler pixel scale) of KOIs. In particular, we find 26 rocky, habitable zone planets with contaminating nearby stars, 8 of which are now more likely to have large gaseous envelopes. We present evidence that the majority of these nearby stars are unbound, and use the likely bound stars to test theories of planetary formation and evolution within multiple star systems. Finally, we discuss future all-sky, kilo-target surveys made possible by the construction of a Southern Robo-AO analog.
The effects of circumstellar gas on terrestrial planet formation: Theory and observation
NASA Astrophysics Data System (ADS)
Mandell, Avram M.
Our understanding of the evolution of circumstellar material from dust and gas to fully-formed planets has taken dramatic steps forward in the last decade, driven by rapid improvements in our ability to study gas- and dust-rich disks around young stars and the discovery of more than 200 extra-solar planetary systems around other stars. In addition, our ability to model the formation of both terrestrial and giant planets has improved significantly due to new computing techniques and the continued exponential increase in computing power. In this dissertation I expand on existing theories of terrestrial planet formation to include systems similar to those currently being detected around nearby stars, and I develop new observational techniques to probe the chemistry of gas-rich circumstellar disks where such planetary systems may be forming. One of the most significant characteristics of observed extrasolar planetary systems is the presence of giant planets located much closer to their parent star than was thought to be possible. The presence of "Hot Jupiters", Jovian-mass planets with very short orbital periods detected around nearby main sequence stars, has been proposed to be primarily due to the inward migration of planets formed in orbits initially much further from the parent star. Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own Solar System; the migration of these planets would have profound effects on the evolution of inner terrestrial planets in these systems. I first explore this scenario with numerical simulations showing that a significant fraction of terrestrial planets could survive the migration process; damping forces could then eventually re-circularize the orbits at distances relatively close to their original positions. Calculations suggest that the final orbits of a significant fraction of the remaining planets would be located in the Habitable Zone, suggesting that planetary systems with close-in giant planets are viable targets for searches for Earth-like habitable planets around other stars. I then present more realistic dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material embedded in a gaseous disk, and the subsequent post-scattering evolution of the planetary system. I numerically investigate the dynamics of several types of post-migration planetary systems over 200 million years: a model with a single migrating giant planet, a model with one migrating and one nonmigrating giant planet, and a model excluding the effects of the gas disk. Material that is shepherded in front of the migrating giant planet by moving mean motion resonances accretes into "hot Earths", but survival of these bodies is strongly dependent on dynamical damping. Furthermore, a significant amount of material scattered outward by the giant planet survives in highly excited orbits; the orbits of these scattered bodies are then damped by gas drag and dynamical friction over the remaining accretion time. In all simulations Earth-mass planets accrete on approximately 100 Myr timescales, often with orbits in the Habitable Zone. These planets range in mass and water content, with both quantities increasing with the presence of a gas disk and decreasing with the presence of an outer giant planet. I use scaling arguments and previous results to derive a simple recipe that constrains which giant planet systems are able to form and harbor Earth-like planets in the Habitable Zone, demonstrating that roughly one third of the known planetary systems are potentially habitable. Finally, I present results from a search for new molecular tracers of warm gas in circumstellar disks using the NIRSPEC instrument on the Keck II telescope. I have detected emission from multiple ro-vibrational transitions in the v = 1--0 band of hydroxyl (OH) located in the inner circumstellar regions of two Herbig Ae stars, AB Aurigae and MWC 758. I analyze the temperature of the emitting gas by constructing rotational diagrams, showing that the temperature of the gas in both systems is approximately 700K. I calculate a secure abundance of emitting OH molecules in the upper vibrational state, and discuss the ramifications of various excitation processes on the extrapolation to the total number of OH molecules. I also calculate an inner radius for the emitting gas, showing that the derived Rin is equivalent to that found by near-IR imaging. I compare these results to models of circumstellar disk chemistry as well as observations of other chemical diagnostics, and discuss further improvements to excitation models that are necessary to fully understand the formation and thermal conditions of the detected OH gas.
Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun
NASA Astrophysics Data System (ADS)
Buchhave, Lars A.; Bitsch, Bertram; Johansen, Anders; Latham, David W.; Bizzarro, Martin; Bieryla, Allyson; Kipping, David M.
2018-03-01
Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet–planet scatterings producing highly eccentric cool Jupiters could be more common in metal-rich environments. To investigate a possible explanation for these metallicity trends, we compare the observations to numerical simulations, which indicate that metal-rich stars typically form multiple Jupiters, leading to planet–planet interactions and, hence, a prevalence of either eccentric cool Jupiters or hot Jupiters with circularized orbits. Although the samples are small and exhibit variations in their metallicities, suggesting that numerous processes other than metallicity affect the formation of planetary systems, the data in hand suggests that Jupiter analogs and terrestrial-sized planets form around stars with average metallicities close to solar, whereas high-metallicity systems preferentially host eccentric cool Jupiter or hot Jupiters, indicating that higher metallicity systems may not be favorable for the formation of planetary systems akin to the Solar System.
Planetary Formation and Dynamics in Binary Systems
NASA Astrophysics Data System (ADS)
Xie, J. W.
2013-01-01
As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a dissipating gas disk, all the planetesimals eventually converge toward the same forced orbits regardless of their size, leading to the much lower impact velocities. This process progressively increases the net mass accretion and can even trigger the runaway growth for large planetesimals. In chapter 3, for the first time, we adopt a 3-dimensional approach to investigate the planetesimals' mutual accretion in binary systems. We find that the inclusion of a small inclination between the binary orbital plane and the circumstellar disk plane leads to the realization of the differential orbital phasing in 3-dimensional space. In such a case, impacts mainly occur between similar-sized bodies with the impact velocities being significantly reduced, and thus the planetesimal accretion is more favored. In chapter 4, we investigate the planet formation in a specific system, the habitable zone of Alpha Centauri B. For the first time, we develop a scaling method to estimate the planetesimal collisional timescale in binary systems. We find that the accretion-favorable conditions satisfied at 1˜2 AU from Alpha Centauri B after the first 10^5 years. However, the planetesimal accretion is significantly less efficient as compared to the single star case. Our results suggest that the formation of Earth-like planets through the accretion of km-sized planetesimals is possible in Alpha Centauri B, while the formation of gaseous giant planets is not favorable. In chapter 5, we outline a new concept, which we call the ``snowball'' growth mode. In this snowball phase, the isolated planetesimals move in the Keplerian orbits, and grow solely via the direct accretion of subcentimeter-sized dust entrained with the gas in the protoplanetary disk. Using a simplified model in which the planetesimals are progressively produced from the dust, we find that the snowball growth phase can be the dominant mode to transfer mass from the dust to planetesimals. The snowball growth mode could provide an alternative explanation for the turnover point in the size distribution of the present-day asteroid belt. For the specific case of close binaries such as Alpha Centauri, the snowball growth mode provides a safe way for the bodies to grow through the problematic range with a size of 1˜50 km. In chapter 6, we investigate the intermediate stages of the planet formation in highly inclined cases. We find that the gas drag plays a crucial role in the evolution of the planetesimals' semi-major axis, and the results can be generally divided into two categories, i.e., the Kozai-on regime and the Kozai-off regime. For both regimes, a robust outcome over a wide range of parameters is that, the planetesimals migrate/jump inwards and pile up, leading to a severely truncated and dense planetesimal disk around the primary. In this compact and dense disk, the collision rates are high but the relative velocities are low, providing conditions which are favorable for the planetesimal growth, and potentially allow for the subsequent formation of planets. Finally, we summarize this thesis in chapter 7. Many open questions still remain in current research field of planet formation in binary systems, and the current Kepler project provides an unprecedented opportunity for such researches. A comprehensive understanding of planets in binaries requires placing them in a bigger context to include the formation and evolution of stars and/or clusters.
NASA Astrophysics Data System (ADS)
Unterborn, C. T.; Desch, S. J.; Johnson, J. A.; Panero, W. R.; Teske, J. K.; Hinkel, N. R.
2016-12-01
The Earth is unique in our Solar System. It is the only planet known to undergo plate tectonics. It has a magnetic field as result of an outer liquid iron core that protects the surface from Solar radiation. What is not known, however, is whether the Earth is unique among all terrestrial planets outside our Solar System. The population of potentially Earth-like planets will only continue to grow. The TESS mission, launching in 2017, is designed to identify rocky planets around bright, nearby stars across the whole sky. Of the 5,000 potential transit-like signals detected, only 100 will be selected for follow-up spectroscopy. From this subsample, only 50 planets are expected to have both mass and radius measurements, thus allowing for detailed modeling of the planetary interior and potential surface processes. As we search for habitable worlds within this sample, then, understanding which TESS objects of interest (TOI) warrant detailed and time-intensive follow-up observations is of paramount importance. Recent surveys of dwarf planetary host and non-host stars find variations in the major terrestrial planet element abundances (Mg, Fe, Si) of between 10% and 400% of Solar. Additionally, the terrestrial exoplanet record shows planets ranging in size from sub-Mercury to super-Earth. How this stellar compositional diversity is translated into resultant exoplanet physical properties including its mineralogy and structure is not known. Here, we present results of models blending equilibrium condensation sequence computations for determining initial planetesimal composition with geophysical interior calculations for multiple stellar abundance catalogues. This benchmarked and generalized approach allows us to predict the mineralogy and structure of an "average" exoplanet in these planetary systems, thus informing their potential to be "Earth-like." This combination of astro- and geophysical models provides us with a self-consistent method with which to compare planetary systems, thus improving our ability to prioritize "Earth-like" targets for follow-up observations within the TOI dataset. Furthermore, the methods described herein afford us an opportunity to explore rocky planet diversity as a whole and truly begin to answer the question, "Is the Earth special?"
NASA Technical Reports Server (NTRS)
Howell, Steve B.
2011-01-01
The NASA Kepler mission recently announced over 1200 exoplanet candidates. While some are common Hot Jupiters, a large number are Neptune size and smaller, transit depths suggest sizes down to the radius of Earth. The Kepler project has a fairly high confidence that most of these candidates are real exoplanets. Many analysis steps and lessons learned from Kepler light curves are used during the vetting process. This talk will cover some new results in the areas of stellar variability, solar systems with multiple planets, and how transit-like signatures are vetted for false positives, especially those indicative of small planets.
TECHNIQUES FOR HIGH-CONTRAST IMAGING IN MULTI-STAR SYSTEMS. I. SUPER-NYQUIST WAVEFRONT CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, S.; Belikov, R.; Bendek, E.
2015-09-01
Direct imaging of extra-solar planets is now a reality with the deployment and commissioning of the first generation of specialized ground-based instruments (GPI, SPHERE, P1640, and SCExAO). These systems allow of planets 10{sup 7} times fainter than their host star. For space-based missions (EXCEDE, EXO-C, EXO-S, WFIRST), various teams have demonstrated laboratory contrasts reaching 10{sup −10} within a few diffraction limits from the star. However, all of these current and future systems are designed to detect faint planets around a single host star, while most non-M-dwarf stars such as Alpha Centauri belong to multi-star systems. Direct imaging around binaries/multiple systemsmore » at a level of contrast allowing detection of Earth-like planets is challenging because the region of interest is contaminated by the host star's companion in addition to the host itself. Generally, the light leakage is caused by both diffraction and aberrations in the system. Moreover, the region of interest usually falls outside the correcting zone of the deformable mirror (DM) with respect to the companion. Until now, it has been thought that removing the light of a companion star is too challenging, leading to the exclusion of many binary systems from target lists of direct imaging coronographic missions. In this paper, we will show new techniques for high-contrast imaging of planets around multi-star systems and detail the Super-Nyquist Wavefront Control (SNWC) method, which allows wavefront errors to be controlled beyond the nominal control region of the DM. Our simulations have demonstrated that, with SNWC, raw contrasts of at least 5 × 10{sup −9} in a 10% bandwidth are possible.« less
Outcomes of Grazing Impacts between Sub-Neptunes in Kepler Multis
NASA Astrophysics Data System (ADS)
Hwang, Jason; Chatterjee, Sourav; Lombardi, James, Jr.; Steffen, Jason H.; Rasio, Frederic
2018-01-01
Studies of high-multiplicity, tightly packed planetary systems suggest that dynamical instabilities are common and affect both the orbits and planet structures, where the compact orbits and typically low densities make physical collisions likely outcomes. Since the structure of many of these planets is such that the mass is dominated by a rocky core, but the volume is dominated by a tenuous gas envelope, the sticky-sphere approximation, used in dynamical integrators, may be a poor model for these collisions. We perform five sets of collision calculations, including detailed hydrodynamics, sampling mass ratios, and core mass fractions typical in Kepler Multis. In our primary set of calculations, we use Kepler-36 as a nominal remnant system, as the two planets have a small dynamical separation and an extreme density ratio. We use an N-body code, Mercury 6.2, to integrate initially unstable systems and study the resultant collisions in detail. We use these collisions, focusing on grazing collisions, in combination with realistic planet models created using gas profiles from Modules for Experiments in Stellar Astrophysics and core profiles using equations of state from Seager et al. to perform hydrodynamic calculations, finding scatterings, mergers, and even a potential planet–planet binary. We dynamically integrate the remnant systems, examine the stability, and estimate the final densities, finding that the remnant densities are sensitive to the core masses, and collisions result in generally more stable systems. We provide prescriptions for predicting the outcomes and modeling the changes in mass and orbits following collisions for general use in dynamical integrators.
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Johnson, R. Wayne
2005-01-01
Next generation space-based robotics systems will be constructed using distributed architectures where electronics capable of working in the extreme environments of the planets of the solar system are integrated with the sensors and actuators in plug-and-play modules and are connected through common multiple redundant data and power buses.
Nearby Red Dwarfs are Sexy for Planets and Life
NASA Astrophysics Data System (ADS)
Henry, T. J.; Jao, W.-C.; Subasavage, J. P.; RECONS Team
2005-12-01
The RECONS group continues to discover many nearby red dwarfs in the southern sky through a combination of proper motion surveys, literature review, and ultimately, our parallax program CTIOPI. Already, we have measured the first accurate parallaxes for 11 of the nearest 100 stellar systems, including four within 5 parsecs of the Sun. These nearby red dwarfs are prime candidates for NASA's Space Interferometry Mission (SIM) because the astrometric perturbations are largest for planets orbiting stars of low mass that are nearby. In addition, new multiple red dwarf systems can be targeted for mass determinations, thereby providing points on a comprehensive mass-luminosity relation for the most populous members of the Galaxy. Recent atmospheric modeling of planets orbiting red dwarfs indicates that even if the planets are tidally locked, heat distribution is highly effective in keeping the worlds balmy over the entire surface. Red dwarfs are therefore "back on the table" as viable hosts of life-bearing planets. Given their ubiquity, red dwarfs are being seriously considered as prime SETI targets, and will allow us to answer not only the question "Are We Alone?" but "Just How Alone Are We?" This work has been supported by the National Science Foundation, NASA's Space Interferometry Mission, and Georgia State University.
Atmospheric circulations of terrestrial planets orbiting low-mass stars
NASA Astrophysics Data System (ADS)
Edson, Adam; Lee, Sukyoung; Bannon, Peter; Kasting, James F.; Pollard, David
2011-03-01
Circulations and habitable zones of planets orbiting low-mass stars are investigated. Many of these planets are expected to rotate synchronously relative to their parent stars, thereby raising questions about their surface temperature distributions and habitability. We use a global circulation model to study idealized, synchronously rotating (tidally locked) planets of various rotation periods, with surfaces of all land or all water, but with an Earth-like atmosphere and solar insolation. The dry planets exhibit wide variations in surface temperature: >80 °C on the dayside to <-110 °C on the nightside for the 240-h rotator, for example. The water-covered aquaplanets are warmer and exhibit narrower ranges of surface temperatures, e.g., ∼40 °C to >-60 °C for the 240-h orbiter. They also have a larger habitable area, defined here as the region where average surface temperatures are between 0 °C and 50 °C. This concept has little relevance for either dry or aquaplanets, but might become relevant on a planet with both land area and oceans. The circulations on these tidally locked planets exhibit systematic changes as the rotation period is varied. However, they also reveal abrupt transitions between two different circulation regimes and multiple equilibria. For the dry planet, the transition occurs between a 4-day and a 5-day period, while for the aquaplanet, it occurs between a 3-day and a 4-day period. For both dry and aqua planets, this transition occurs when the Rossby deformation radius exceeds half the planetary radius. Further investigation on the dry planet reveals that multiple equilibria exist between 100- and 221-h periods. These multiple equilibria may be relevant for real planets within the habitable zones of late K and M stars, because these planets are expected to have rotation periods between 8 and 100 Earth days.
The First Thousand Exoplanets: Twenty Years of Excitement and Discovery
NASA Astrophysics Data System (ADS)
Impey, Chris
The recent "explosion" in the number of extrasolar planets, or exoplanets, is perhaps the most exciting phenomenon in all of science. Two decades ago, no planets were known beyond the Solar System, and now there are more than 770 confirmed exoplanets and several thousand more candidates, while the mass detection limit has marched steadily downwards from Jupiter mass in 1995 to Neptune mass in the early 2000s to Earth mass now. The vast majority of these exoplanets are detected indirectly, by their gravitational influence on the parent star or the partial eclipse they cause when they periodically pass in front of it. Doppler detection of the planet's reflex motion yields a period and an estimate of the mass, while transits or eclipses yield the size. Exoplanet detection taxes the best observatories in space, yet useful contributions can be made by amateur astronomers armed with 6-inch telescopes. The early discoveries were surprising; no one predicted "hot Jupiters" or the wild diversity of exoplanet properties that has been seen. It is still unclear if the Solar System is "typical" or not, but at current detection limits at least 10 % of Sun-like stars harbor planets and architectures similar to the Solar System are now being found. Over a hundred multiple planet systems are known and the data are consistent with every star in the Milky Way having at least one planet, with an implication of millions of habitable, Earth-like planets, and of which could harbor life. Doppler and transit data can be combined to give average density, and additional methods are beginning to give diagnostics of atmospheric composition. When this work can be extended to rocky and low mass exoplanets, and the imprint of biology on a global atmosphere can be measured, this might be the way that life beyond Earth is finally detected for the first time.
NASA Astrophysics Data System (ADS)
Gale, Joseph; Wandel, Amri
2017-01-01
We review the latest findings on extra-solar planets and their potential of having environmental conditions that could support Earth-like life. Focusing on planets orbiting red dwarf (RD) stars, the most abundant stellar type in the Milky Way, we show that including RDs as potential life supporting host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbour by up to 10. We argue that binary and multiple star systems need to be taken into account when discussing habitability and the abundance of biotic exoplanets, in particular RDs in such systems. Early considerations indicated that conditions on RD planets would be inimical to life, as their habitable zones would be so close to the host star as to make planets tidally locked. This was thought to cause an erratic climate and expose life forms to flares of ionizing radiation. Recent calculations show that these negative factors are less severe than originally thought. It has also been argued that the lesser photon energy of the radiation of the relatively cool RDs would not suffice for oxygenic photosynthesis (OP) and other related energy expending reactions. Numerous authors suggest that OP on RD planets may evolve to utilize photons in the infrared. We however argue, by analogy to the evolution of OP and the environmental physiology and distribution of land-based vegetation on Earth, that the evolutionary pressure to utilize infrared radiation would be small. This is because vegetation on RD planets could enjoy continuous illumination of moderate intensity, containing a significant component of photosynthetic 400-700 nm radiation. We conclude that conditions for OP could exist on RD planets and consequently the evolution of complex life might be possible. Furthermore, the huge number and the long lifetime of RDs make it more likely to find planets with photosynthesis and life around RDs than around Solar type stars.
Characterising Hot-Jupiters' atmospheres with observations and modelling
NASA Astrophysics Data System (ADS)
Tinetti, G.
2007-08-01
Exoplanet transit photometry and spectroscopy are currently the best techniques to probe the atmospheres of extrasolar worlds. The best targets to be observed with these methods, are the planets that orbit very close to their parent star, both because their probability to transit grows and their atmospheres are warmer and more expanded, hence easier to probe. These characteristics are met by the so called Hot-Jupiters, massive low-density gaseous planets orbiting very close-in. Phase-curves allow to observe the change in brightness in the combined light of the planet-star system, also for non-transiting exoplanets. We review here the most crucial observations performed with the Hubble and Spitzer Space Telescopes at multiple wavelenghts, and the most successful models proposed in the literature to plan and interpret those observations. In particular we will focus on most recent observations and modelling claiming the detection of water vapour in the atmospheres of these planets. Further into the future, the JamesWebb Space Telescope will allow to probe the atmospheres of smaller size-planets with the same techniques. We briefly report here the results expected for hot and warm Neptunes, or transiting terrestrial planets.
Taking the Measure of the Universe : Precision Astrometry with SIM PlanetQuest
NASA Technical Reports Server (NTRS)
Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Allen, Ronald J.; Beichman, Charles A.; Boboltz, David; Catanzarite, Joseph H.; Chaboyer, Brian C.; Ciardi, David R.; Edberg, Stephen J.;
2008-01-01
Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument with flexible scheduling that delivers parallaxes at about 4 microarcsec (microns)as) on targets as faint as V = 20, and differential accuracy of 0.6 (microns)as on bright targets. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed in 2005 all of the enabling technologies needed for the flight instrument. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. Using differential astrometry SIM will search for planets with masses as small as an Earth orbiting in the 'habitable zone' around the nearest stars, and could discover many dozen if Earth-like planets are common. It will characterize the multiple-planet systems that are now known to exist, and it will be able to search for terrestrial planets around all of the candidate target stars in the Terrestrial Planet Finder and Darwin mission lists. It will be capable of detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. Precision astrometry allows the measurement of accurate dynamical masses for stars in binary systems. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion measurements, SIM will probe the Galactic mass distribution, and through studies of tidal tails, the formation and evolution of the Galactic halo. SIM will contribute to cosmology through improved accuracy of the Hubble Constant. With repeated astrometric measurements of the nuclei of active galaxies, SIM will probe the dynamics of accretion disks around supermassive black holes, and the relativistic jets that emerge from them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Brian K.; Lewis, Nikole K.; Showman, Adam P.
2012-06-01
We present a new model for Ellipsoidal Variations Induced by a Low-Mass Companion, the EVIL-MC model. We employ several approximations appropriate for planetary systems to substantially increase the computational efficiency of our model relative to more general ellipsoidal variation models and improve upon the accuracy of simpler models. This new approach gives us a unique ability to rapidly and accurately determine planetary system parameters. We use the EVIL-MC model to analyze Kepler Quarter 0-2 (Q0-2) observations of the HAT-P-7 system, an F-type star orbited by a {approx} Jupiter-mass companion. Our analysis corroborates previous estimates of the planet-star mass ratio qmore » = (1.10 {+-} 0.06) Multiplication-Sign 10{sup -3}, and we have revised the planet's dayside brightness temperature to 2680{sup +10}{sub -20} K. We also find a large difference between the day- and nightside planetary flux, with little nightside emission. Preliminary dynamical+radiative modeling of the atmosphere indicates that this result is qualitatively consistent with high altitude absorption of stellar heating. Similar analyses of Kepler and CoRoT photometry of other planets using EVIL-MC will play a key role in providing constraints on the properties of many extrasolar systems, especially given the limited resources for follow-up and characterization of these systems. However, as we highlight, there are important degeneracies between the contributions from ellipsoidal variations and planetary emission and reflection. Consequently, for many of the hottest and brightest Kepler and CoRoT planets, accurate estimates of the planetary emission and reflection, diagnostic of atmospheric heat budgets, will require accurate modeling of the photometric contribution from the stellar ellipsoidal variation.« less
NASA Astrophysics Data System (ADS)
Johnson, Catherine L.; Hauck, , Steven A.
2016-11-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission yielded a wealth of information about the innermost planet. For the first time, visible images of the entire planet, absolute altimetry measurements and a global gravity field, measurements of Mercury's surface composition, magnetic field, exosphere, and magnetosphere taken over more than four Earth years are available. From these data, two overarching themes emerge. First, multiple data sets and modeling efforts point toward a dynamic ancient history. Signatures of graphite in the crust suggest solidification of an early magma ocean, image data show extensive volcanism and tectonic features indicative of subsequent global contraction, and low-altitude measurements of magnetic fields reveal an ancient magnetic field. Second, the present-day Mercury environment is far from quiescent. Convective motions in the outer core support a modern magnetic field whose strength and geometry are unique among planets with global magnetic fields. Furthermore, periodic and aperiodic variations in the magnetosphere and exosphere have been observed, some of which couple to the surface and the planet's deep interior. Finally, signatures of geologically recent volatile activity at the surface have been detected. Mercury's early history and its present-day environment have common elements with the other inner solar system bodies. However, in each case there are also crucial differences and these likely hold the key to further understanding of Mercury and terrestrial planet evolution. MESSENGER's exploration of Mercury has enabled a new view of the innermost planet, and more importantly has set the stage for much-needed future exploration.
The habitability of planets orbiting M-dwarf stars
NASA Astrophysics Data System (ADS)
Shields, Aomawa L.; Ballard, Sarah; Johnson, John Asher
2016-12-01
The prospects for the habitability of M-dwarf planets have long been debated, due to key differences between the unique stellar and planetary environments around these low-mass stars, as compared to hotter, more luminous Sun-like stars. Over the past decade, significant progress has been made by both space- and ground-based observatories to measure the likelihood of small planets to orbit in the habitable zones of M-dwarf stars. We now know that most M dwarfs are hosts to closely-packed planetary systems characterized by a paucity of Jupiter-mass planets and the presence of multiple rocky planets, with roughly a third of these rocky M-dwarf planets orbiting within the habitable zone, where they have the potential to support liquid water on their surfaces. Theoretical studies have also quantified the effect on climate and habitability of the interaction between the spectral energy distribution of M-dwarf stars and the atmospheres and surfaces of their planets. These and other recent results fill in knowledge gaps that existed at the time of the previous overview papers published nearly a decade ago by Tarter et al. (2007) and Scalo et al. (2007). In this review we provide a comprehensive picture of the current knowledge of M-dwarf planet occurrence and habitability based on work done in this area over the past decade, and summarize future directions planned in this quickly evolving field.
A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Events
NASA Astrophysics Data System (ADS)
Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John
2015-08-01
Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, we present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows us to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration.
Dynamical models to explain observations with SPHERE in planetary systems with double debris belts
NASA Astrophysics Data System (ADS)
Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.
2018-03-01
Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aim. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods: The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results: For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits. Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and 198.C-0209.
CORRELATIONS BETWEEN COMPOSITIONS AND ORBITS ESTABLISHED BY THE GIANT IMPACT ERA OF PLANET FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Lee, Eve J.; Chiang, Eugene, E-mail: rdawson@psu.edu
The giant impact phase of terrestrial planet formation establishes connections between super-Earths’ orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N -body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surfacemore » density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of both populations can reproduce the observed distributions of spacings, period ratios, transiting planet multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations, both formed in situ, also help to explain observed trends of eccentricity versus planet size, and bulk density versus method of mass measurement (radial velocities versus transit timing variations). Simplifications made in this study—including the limited time span of the simulations, and the approximate treatments of gas dynamical friction and gas depletion history—should be improved on in future work to enable a detailed quantitative comparison to the observations.« less
Entry Probe Missions to the Giant Planets
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.
2009-12-01
The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition, returning to Jupiter with a follow-on probe mission, possibly with technological advances allowing a multiple-probe mission, would make use of data from the Juno mission to guide entry location and measurement suite selection. This poster summarizes a white paper prepared for the Space Studies Board’s 2013-2022 Planetary Science Decadal Survey. It discusses specific measurements to be made by planetary probes at the giant planets, rationales and priorities for those measurements, and locations within the destination atmospheres where the measurements are best made.
Producing Distant Planets by Mutual Scattering of Planetary Embryos
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Tremaine, Scott
2018-02-01
It is likely that multiple bodies with masses between those of Mars and Earth (“planetary embryos”) formed in the outer planetesimal disk of the solar system. Some of these were likely scattered by the giant planets into orbits with semimajor axes of hundreds of au. Mutual torques between these embryos may lift the perihelia of some of them beyond the orbit of Neptune, where they are no longer perturbed by the giant planets, so their semimajor axes are frozen in place. We conduct N-body simulations of this process and its effect on smaller planetesimals in the region of the giant planets and the Kuiper Belt. We find that (i) there is a significant possibility that one sub-Earth mass embryo, or possibly more, is still present in the outer solar system; (ii) the orbit of the surviving embryo(s) typically has perihelion of 40–70 au, semimajor axis less than 200 au, and inclination less than 30° (iii) it is likely that any surviving embryos could be detected by current or planned optical surveys or have a significant effect on solar system ephemerides; (iv) whether or not an embryo has survived to the present day, its dynamical influence earlier in the history of the solar system can explain the properties of the detached disk (defined in this paper as containing objects with perihelia >38 au and semimajor axes between 80 and 500 au).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narita, Norio; Hori, Yasunori; Kusakabe, Nobuhiko
2015-12-10
K2-19 (EPIC201505350) is an interesting planetary system in which two transiting planets with radii ∼7 R{sub ⊕} (inner planet b) and ∼4 R{sub ⊕} (outer planet c) have orbits that are nearly in a 3:2 mean-motion resonance. Here, we present results of ground-based follow-up observations for the K2-19 planetary system. We have performed high-dispersion spectroscopy and high-contrast adaptive-optics imaging of the host star with the HDS and HiCIAO on the Subaru 8.2 m telescope. We find that the host star is a relatively old (≥8 Gyr) late G-type star (T{sub eff} ∼ 5350 K, M{sub s} ∼ 0.9 M{sub ⊙}, and R{sub s} ∼ 0.9 R{submore » ⊙}). We do not find any contaminating faint objects near the host star that could be responsible for (or dilute) the transit signals. We have also conducted transit follow-up photometry for the inner planet with KeplerCam on the FLWO 1.2 m telescope, TRAPPISTCAM on the TRAPPIST 0.6 m telescope, and MuSCAT on the OAO 1.88 m telescope. We confirm the presence of transit timing variations (TTVs), as previously reported by Armstrong and coworkers. We model the observed TTVs of the inner planet using the synodic chopping formulae given by Deck and Agol. We find two statistically indistinguishable solutions for which the period ratios (P{sub c}/P{sub b}) are located slightly above and below the exact 3:2 commensurability. Despite the degeneracy, we derive the orbital period of the inner planet P{sub b} ∼ 7.921 days and the mass of the outer planet M{sub c} ∼ 20 M{sub ⊕}. Additional transit photometry (especially for the outer planet) as well as precise radial-velocity measurements would be helpful to break the degeneracy and to determine the mass of the inner planet.« less
Understanding exoplanet populations with simulation-based methods
NASA Astrophysics Data System (ADS)
Morehead, Robert Charles
The Kepler candidate catalog represents an unprecedented sample of exoplanet host stars. This dataset is ideal for probing the populations of exoplanet systems and exploring their architectures. Confirming transiting exoplanets candidates through traditional follow-up methods is challenging, especially for faint host stars. Most of Kepler's validated planets relied on statistical methods to separate true planets from false-positives. Multiple transiting planet systems (MTPS) have been previously shown to have low false-positive rates and over 850 planets in MTPSs have been statistically validated so far. We show that the period-normalized transit duration ratio (xi) offers additional information that can be used to establish the planetary nature of these systems. We briefly discuss the observed distribution of xi for the Q1-Q17 Kepler Candidate Search. We also use xi to develop a Bayesian statistical framework combined with Monte Carlo methods to determine which pairs of planet candidates in an MTPS are consistent with the planet hypothesis for a sample of 862 MTPSs that include candidate planets, confirmed planets, and known false-positives. This analysis proves to be efficient and advantageous in that it only requires catalog-level bulk candidate properties and galactic population modeling to compute the probabilities of a myriad of feasible scenarios composed of background and companion stellar blends in the photometric aperture, without needing additional observational follow-up. Our results agree with the previous results of a low false-positive rate in the Kepler MTPSs. This implies, independently of any other estimates, that most of the MTPSs detected by Kepler are planetary in nature, but that a substantial fraction could be orbiting stars other than then the putative target star, and therefore may be subject to significant error in the inferred planet parameters resulting from unknown or mismeasured stellar host attributes. We also apply approximate Bayesian computation (ABC) using forward simulations of the Kepler planet catalog to simultaneously constrain the distributions of mutual inclination between the planets, orbital eccentricity, the underlying number of planets per planetary system, and the fraction of stars that host planet systems in a subsample of Kepler candidate planets using SimpleABC, a Python package we developed that is a general-purpose framework for ABC analysis. For our investigation into planet architectures, we limit our investigation to candidates in orbits from 10 to 320 days, where the false-positive contamination rate is expected to be low. We test two models, the first is an independent eccentricity ( e) model where mutual inclination and e are drawn from Rayleigh distributions with dispersions sigmaim and sigmae, planets per planetary system is drawn from a Poisson distribution with mean lambda, and the fraction of stars with planetary systems is drawn from two-state categorical distribution parameterized by etap. We also test an Equipartition Model identical to the Independent e Model, except that sigmae is linked to sigmaim by a scaling factor gammae. For the Independent e Model, we find sigmaim = 5.51° +8.00-3.35, sigmae = 0.03+0.05-0.01, lambda = 6.62+7.74 -3.36, and etap = 0.20 +0.18-0.11. For the Equipartition Model, we find sigmaim = 1.15°+0.56-0.33 , gammae = 1.38+1.89 -0.93, lambda = 2.25+0.56-0.29, and etap = 0.56+0.08-0.11 . These results, especially the Equipartition Model, are in good agreement with previous studies. However, deficiencies in our single population models suggest that at least one additional subpopulation of planet systems is needed to explain the Kepler sample, providing more confirmation of the so-called "Kepler Dichotomy".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Nicholas M.; Kraus, Adam L.; Street, Rachel
2012-10-01
We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decomposemore » low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing binary systems can have arbitrarily small eclipse depths in red bands and generate plausible small-planet-transit light curves. As such, these systems are a source of false positives for M-dwarf transiting planet searches. We present several ways to rapidly distinguish these binaries from transiting planet systems.« less
A Model for Astrometric Detection and Characterization of Multi-Exoplanet Systems
NASA Astrophysics Data System (ADS)
April Thompson, Maggie; Spergel, David N.
2017-01-01
In this thesis, we develop an approximate linear model of stellar motion in multi- planet systems as an aid to observers using the astrometric method to detect and characterize exoplanets. Recent and near-term advances in satellite and ground-based instruments are on the threshold of achieving sufficient (~10 micro-arcsecond) angular accuracies to allow astronomers to measure and analyze the transverse mo- tion of stars about the common barycenter in single- and multi-planet systems due to the gravitational influence of companion planets. Given the emerging statistics of extrasolar planetary systems and the long observation periods required to assess exoplanet influences, astronomers should find an approximate technique for preliminary estimates of multiple planet numbers, masses and orbital parameters useful in determining the most likely stellar systems for follow-up studies. In this paper, we briefly review the history of astrometry and discuss its advantages and limitations in exoplanet research. In addition, we define the principal astrometric signature and describe the main variables affecting it, highlighting astrometry’s complementary role to radial velocity and photometric transit exoplanet detection techniques. We develop and test a Python computer code using actual data and projections of the Sun’s motion due to the influence of the four gas giants in the solar system. We then apply this model to over 50 hypothetical massive two- and three-exoplanet systems to discover useful general patterns by employing a heuristic examination of key aspects of the host star’s motion over long observation intervals. Finally, we modify the code by incorporating an inverse least-squares fit program to assess its efficiency in identifying the main characteristics of multi-planet systems based on observational records over 5-, 10- and 20-year periods for a variety of actual and hypothetical exoplanetary systems. We also explore the method’s sensitivity to measurement frequencies, intervals and errors.
Terraforming planet Dune: Climate-vegetation interactions on a sandy planet
NASA Astrophysics Data System (ADS)
Cresto Aleina, F.; Baudena, M.; D'Andrea, F.; Provenzale, A.
2012-04-01
The climate and the biosphere of planet Earth interact in multiple, complicated ways and on many spatial and temporal scales. Some of these processes can be studied with the help of simple mathematical models, as done for the effects of vegetation on albedo in desert areas and for the mechanisms by which terrestrial vegetation affects water fluxes in arid environments. Conceptual models of this kind do not attempt at providing quantitative descriptions of the climate-biosphere interaction, but rather to explore avenues and mechanisms which can play a role in the real system, providing inspiration for further research. In this work, we develop a simple conceptual box model in the spirit illustrated above, to explore whether and how vegetation affects the planetary hydrologic cycle. We imagine a planet with no oceans and whose surface is entirely covered with sand, quite similar to planet Dune of the science-fiction series by Frank Herbert (1965). We suppose that water is entirely in the sand, below the surface. Without vegetation, only evaporation takes place, affecting the upper sand layer for a maximum depth of a few cm. The amount of water that is evaporated in the atmosphere is relatively small, and not sufficient to trigger a full hydrologic cycle. The question is what happens to this planet when vegetation is introduced: the root depth can reach a meter or more, and plant transpiration can then transfer a much larger amount of water to the atmosphere. One may wonder whether the presence of vegetation is sufficient to trigger a hydrologic cycle with enough precipitation to sustain the vegetation itself and, if the answer is positive, what is the minimum vegetation cover that is required to maintain the cycle active. In more precise terms, we want to know whether the introduction of vegetation and of the evapotranspiration feedback allows for the existence of multiple equilibria (or solutions) in the soil-vegetation-atmosphere system. Although the box model introduced here is best formulated in terms of a hypothetical sandy planet, the results can be used to study the hydrologic cycle on wide continental regions of the Earth. On the other hand, our findings show how the definition of a habitable climate may also depend on surface characteristics, and in particular on biosphere and climate interactions.
NASA Astrophysics Data System (ADS)
Bailey, M. E.; Christou, A. A.; Asher, D. J.
2005-08-01
The Human Orrery is a dynamic model of the solar system, where people play the role of the moving planets. The users' interactions with the model lead to greater awareness of their place in space and understanding of our planet's changing position with time. It is an innovative concept, the first example in the world to show with precision the elliptical orbits and changing positions of the main bodies in the solar system. It engages the general public in science and mathematics, and introduces key concepts in astronomy and space science in a fun and entertaining way. The model shows the orbits of the six classical planets, a main-belt asteroid (Ceres) and two comets (Halley and Encke) at a scale of 1 metre to 1 AU. It contains more than 200 individually inscribed discs showing the positions of objects at intervals of 16 days or multiples thereof. The region beyond Saturn shows the thirteen ecliptic constellations and directions to more distant objects in the Universe. Activities include `walking the orrery' (moving around the orbits in lockstep from one disc to the next to illustrate Kepler's third law of planetary motion); identifying which planets are visible tonight (or at any other time); and discovering phenomena such as planetary alignments, conjunctions and transits. Younger users can run the orrery; measure the distance between planets or a planet's speed in different parts of its orbit; or use the open space for to create a `dance of the planets'. Advanced users can investigate Kepler's laws by direct measurement; modular arithmetic; properties of ellipses; and calendrical concepts such as leap years and the need for the Gregorian reform. For more information, see http://star.arm.ac.uk/orrery/. The Human Orrery's construction was funded by the Northern Ireland Department of Culture, Arts and Leisure.
Groupies and Loners: The Population of Multi-planet Systems
NASA Astrophysics Data System (ADS)
Van Laerhoven, Christa L.; Greenberg, Richard
2014-11-01
Observational surveys with Kepler and other telescopes have shown that multi-planet systems are very numerous. Considering the secular dynamcis of multi-planet systems provides substantial insight into the interactions between planets in those systems. Since the underlying secular structure of a multi-planet system (the secular eigenmodes) can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in those systems even without knowing the planets' current eccentricities and inclinations. We have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. We will discuss the commonality of dynamically grouped planets ('groupies') vs dynamically uncoupled planets ('loners'), and compare to what would be expected from randomly generated systems with the same overall distribution of masses and semi-major axes. We will also discuss the occurrence of planets that strongly influence the behavior of other planets without being influenced by those others ('overlords'). Examples will be given and general trends will be discussed.
Grounded Eyes on Distant Watery Skies
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-08-01
What can we learn about exoplanets from high-resolution, ground-based observations? A new view of the nearby upsilon Andromedae system has revealed a great deal about the systems closest-in exoplanet including the presence of water vapor in its atmosphere.Search for WobblesIllustration of how spectral lines shift when observing two objects that orbit each other. Click here to see a simulation of this process. [R. Pogge, OSU]The upsilon Andromedae system is located roughly 44 light-years from Earth. In 1997, a hot Jupiter exoplanet was discovered orbiting the primary star, and more planets were found not long after making this the first multiple-planet system discovered around a main-sequence star.These planets, however, were not discovered due to transits; their orbital planes are not aligned with our line of sight to the star. Instead, the hiddenplanets were first detected via the stars spectrum. The radial velocity method of detecting exoplanets searches for telltale periodic shifts of a stars spectral lines, which are induced by the orbiting planets gravitational tugs.In recent years, ground-based spectroscopy has become ever more powerful; thus revisiting old systems with higher resolution instruments can often open a whole new world of data to us. In the case of a recent study, a team of astronomers led by Danielle Piskorz (California Institute of Technology) revisited upsilon Andromedae with the high-resolution Near Infrared Spectrometer (NIRSPEC) at the Keck telescope in Hawaii. Their goal: to gather data about upsilon Andromedae b, the closest-in planet in the system.Top-down schematic of the orbit of upsilon Andromedae b around its star and the location in the orbit of the authors observations. [Piskorz et al. 2017]An Unusual ArchitecturePiskorz and collaborators obtained 13 different sets of observations of upsilon Andromedae with NIRSPEC across three different wavelength bands. By treating the starplanet system as though it were a spectroscopic binary, the authorshigh-resolution observations allowed them to resolve not only the stellar spectrum, but also the spectral lines fromthe hot Jupiter exoplanet itself.Obtaining a thermal spectrum of the planet permitted the team to break the usual observational degeneracy that occurs with exoplanet observations: they were able to disentangle the planet mass and its orbital inclination angle. Piskorz and collaborators found that the planet is roughly 1.7 Jupiter masses and its orbit is inclined 24 relative to our line of sight.Artists illustration of the closest three planets in the upsilon Andromedae system. The system also has a distant red-dwarf binary companion, as well as a possible fourth planet. [NASA/ESA/A. Feild (STScI)]These measurements of the orbital structure of upsilon Andromedae are critical for understanding this unusual system. With non-coplanar planets and a distant red-dwarf companion, the upsilon Andromedae system has long been suspected to lie on the precipice of instability. The new measurements of upsilon Andromeda bs orbital properties will help us to better understand how the system may have formed, evolved, and survived to today.Water FoundOne of the biggest benefits of spectroscopy of an exoplanet is the potentialto learn about its atmospheric composition. Using their NIRSPEC observations of upsilon Andromedae b and detailed atmospheric modeling, Piskorz and collaborators found that the planets opacity structure is dominated by water vapor at the wavelengths they probed.This detection of water vapor in upsilon Andromedae bs atmosphere and the constraints on the planets orbital properties demonstrate the power and potential of ground-based, high-resolution spectroscopy for characterizing exoplanets and constraining the architecture of distantsolar systems.CitationDanielle Piskorz et al 2017 AJ 154 78. doi:10.3847/1538-3881/aa7dd8
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.
2017-12-01
Of all the Solar System bodies, the Earth is the only one for which significant observation and constraints are accessible such that they can be used to discriminate between competing models of Earth's tectonic evolution. Therefore, it is a natural tendency to use these observations to inform more general models of planetary evolution. Yet, our understating of Earth's evolution is far from complete. Geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain. In recent years, the potential of tectonic bi-stability (multiple stable, energetically allowed solutions) has been shown to be dynamically viable, both from analytical analysis and through numeric experiments in two and three dimensions. The indication is that multiple tectonic modes may operate on a single planetary body at different times within its temporal evolution. Further, there exists the potential that feedback mechanisms between the internal dynamics and surface processes (e.g., surface temperature changes driven by long term climate evolution), acting at different thermal evolution times, can cause terrestrial worlds to alternate between multiple tectonic states over giga-year timescales. Implied here is that terrestrial planets have the potential to migrate through tectonic regimes at similar `thermal evolutionary times' - points were planets have a similar bulk mantle temperature and energies -, but at very different `temporal times' - time since planetary formation. It can then be shown that identical planets at similar stages of their evolution may exhibit different tectonic regimes due to random fluctuations. A new framework of planetary evolution that moves toward probabilistic arguments based on general physical principals, as opposed to particular rheologies, and incorporates the potential of tectonic regime transitions and multiple tectonics states being viable at equivalent physical and chemical conditions, will be discussed.
MECHANISM FOR EXCITING PLANETARY INCLINATION AND ECCENTRICITY THROUGH A RESIDUAL GAS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yuanyuan; Liu Huigen; Zhao Gang
2013-05-20
According to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as {approx}39. Degree-Sign 2 for pumping the eccentricity of the inner small body. Here we show that with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced to as low as a few degrees. The presence of the disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonancemore » (VSR) occurs so that the mutual inclination of the two planets will be excited, which might further trigger the Kozai resonance between the two planets. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but can be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that a massive planet (10 M{sub J} ) at 30 AU with an inclination of 6 Degree-Sign to a massive disk (50 M{sub J} ) can finally enter the Kozai resonance with an inner Jupiter around the snowline. An inclination of 20 Degree-Sign of the outer planet to the disk is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets or can inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot Jupiters in close-in, retrograde orbits after tidal damping.« less
The Concise Knowledge Astronomy
NASA Astrophysics Data System (ADS)
Clerke, Agnes Mary; Fowler, Alfred; Ellard Gore, John
2011-01-01
Preface; Section I. History Agnes M. Clerke: 1. From Hipparchus to Laplace; 2. A century of progress; Section II. Geometrical Astronomy and Astronomical Instruments A. Fowler: 1. The Earth and its rotation; 2. The Earth's revolution round the Sun; 3. How the positions of the heavenly bodies are defined; 4. The Earth's orbit; 5. Mean solar time; 6. The movements of the Moon; 7. Movements of planets, satellites, and comets; 8. Eclipses and occultations; 9. How to find our situation on the Earth; 10. The exact size and shape of the earth; 11. The distances and dimensions of the heavenly bodies; 12. The masses of celestial bodies; 13. Gravitational effects of Sun and moon upon the Earth; 14. Instrumental measurement of angles and time; 15. Telescopes; 16. Instruments of precision; 17. Astrophysical instruments; Section III. The Solar System Agnes M. Clerke: 1. The solar system as a whole; 2. The Sun; 3. The Sun's surroundings; 4. The interior planets; 5. The Earth and Moon; 6. The planet Mars; 7. The asteroids; 8. The planet Jupiter; 9. The Saturnian system; 10. Uranus and Neptune; 11. Famous comets; 12. Nature and origin of comets; 13. Meteorites and shooting stars; Section IV. The Sidereal Heavens J.E. Gore: 1. The stars and constellations; 2. Double, multiple, and coloured stars; 3. The distances and motions of the stars; 4. Binary stars; 5. Variable and temporary stars; 6. Clusters and nebulae; 7. The construction of the heavens; Index.
NASA Astrophysics Data System (ADS)
Fedele, D.; Tazzari, M.; Booth, R.; Testi, L.; Clarke, C. J.; Pascucci, I.; Kospal, A.; Semenov, D.; Bruderer, S.; Henning, Th.; Teague, R.
2018-02-01
This paper presents new high angular resolution ALMA 1.3 mm dust continuum observations of the protoplanetary system AS 209 in the Ophiuchus star forming region. The dust continuum emission is characterized by a main central core and two prominent rings at r = 75 au and r = 130 au intervaled by two gaps at r = 62 au and r = 103 au. The two gaps have different widths and depths, with the inner one being narrower and shallower. We determined the surface density of the millimeter dust grains using the 3D radiative transfer disk code DALI. According to our fiducial model the inner gap is partially filled with millimeter grains while the outer gap is largely devoid of dust. The inferred surface density is compared to 3D hydrodynamical simulations (FARGO-3D) of planet-disk interaction. The outer dust gap is consistent with the presence of a giant planet (Mplanet 0.7 MSaturn); the planet is responsible for the gap opening and for the pile-up of dust at the outer edge of the planet orbit. The simulations also show that the same planet could be the origin of the inner gap at r = 62 au. The relative position of the two dust gaps is close to the 2:1 resonance and we have investigated the possibility of a second planet inside the inner gap. The resulting surface density (including location, width and depth of the two dust gaps) are in agreement with the observations. The properties of the inner gap pose a strong constraint to the mass of the inner planet (Mplanet < 0.1 MJ). In both scenarios (single or pair of planets), the hydrodynamical simulations suggest a very low disk viscosity (α < 10‑4). Given the young age of the system (0.5-1 Myr), this result implies that the formation of giant planets occurs on a timescale of ≲1 Myr. The reduced image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A24
Formation of terrestrial planets in eccentric and inclined giant planet systems
NASA Astrophysics Data System (ADS)
Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.
2018-06-01
Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems emerging from the disc phase.
The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory
NASA Technical Reports Server (NTRS)
Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen;
2012-01-01
The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il
Studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases are not yet understood. Several previous works studied the possibility of water surviving inside minor planets around evolving stars. However, they all focused on small, comet-sized to moonlet-sized minor planets, when the inferred mass inside the convection zones of He-dominated WDs could actually be compatible with much more massive minor planets. Here we explore for the first time, the water retention inside exoplanetary dwarf planets, ormore » moderate-sized moons, with radii of the order of hundreds of kilometers. This paper concludes a series of papers that has now covered nearly the entire potential mass range of minor planets, in addition to the full mass range of their host stars. We find that water retention is (a) affected by the mass of the WD progenitor, and (b) it is on average at least 5%, irrespective of the assumed initial water composition, if it came from a single accretion event of an icy dwarf planet or moon. The latter prediction strengthens the possibility of habitability in WD planetary systems, and it may also be used in order to distinguish between pollution originating from multiple small accretion events and singular large accretion events. To conclude our work, we provide a code that calculates ice and water retention by interpolation and may be freely used as a service to the community.« less
NASA Astrophysics Data System (ADS)
Mason, Paul A.; Zuluaga, Jorge I.; Clark, Joni M.; Cuartas-Restrepo, Pablo A.
2013-09-01
We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.
A Planet Hunters Search of the Kepler TCE Inventory
NASA Astrophysics Data System (ADS)
Schwamb, Meg; Lintott, Chris; Fischer, Debra; Smith, Arfon; Boyajian, Tabetha; Brewer, John; Giguere, Matt; Lynn, Stuart; Schawinski, Kevin; Simpson, Rob; Wang, Ji
2013-07-01
NASA's Kepler spacecraft has spent the past 4 years monitoring ~160,000 stars for the signatures of transiting exoplanets. Planet Hunters (http://www.planethunters.org), part of the Zooniverse (http://www.zooniverse.org) collection of citizen science projects, uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. We have demonstrated the success of a citizen science approach with the project's discoveries including PH1 b, a transiting circumbinary planet in a four star system., and over 20 previously unknown planet candidates. The Kepler team has released the list of 18,406 potential transit signals or threshold-crossing events (TCEs) identified in Quarters 1-12 (~1000 days) by their automated Transit Planet Search (TPS) algorithm. The majority of these detections found by TPS are triggered by transient events and are not valid planet candidates. To identify planetary candidates from the detected TCEs, a human review of the validation reports, generated by the Kepler pipeline for each TCE, is performed by several Kepler team members. We have undertaken an independent crowd-sourced effort to perform a systematic search of the Kepler Q1-12 TCE list. With the Internet we can obtain multiple assessments of each TCE's data validation report. Planet Hunters volunteers evaluate whether a transit is visible in the Kepler light curve folded on the expected period identified by TPS. We present the first results of this analysis.
NASA Astrophysics Data System (ADS)
Wolfgang, Angie K.
With the advent of large, dedicated planet hunting surveys, the search for extrasolar planets has evolved into an effort to understand the properties and formation of a planet population whose characteristics continue to surprise the provincial perspective we've derived from our own Solar System. The Kepler Mission in particular has enabled a large number of these studies, as it was designed to stare simultaneously at thousands of stars for several years and its automated transit search pipeline enables fairly uniform detection criteria and characterizable completeness and false positive rates. With the detection of nearly 5000 planet candidates, 80% of which are smaller than 4 REarth, Kepler has especially illuminated the unexpectedly vast sub-Neptune population. Such a rich dataset provides an unprecedented opportunity for rigorous statistical study of the physics of these planets that have no analogs in our Solar System. Contributing to this endeavor, I present the statistical characterization of several aspects of this population, including the comparison between Kepler's planet candidates and low-mass occurrence rates inferred from radial velocity detections, the relationship between a sub-Neptune's mass and its radius, the frequency of Kepler planet candidate host stars which have nearby visual companions as revealed by follow-up high resolution imaging, and the distribution of gaseous mass fractions that these sub-Neptunes could possess given a rock-plus-hydrogen composition. To do so, I have used sophisticated statistical analyses such as Monte Carlo simulations and hierarchical Bayesian modeling to tie theory more closely to observations and have acquired near infrared laser guide star adaptive optics imaging of 196 Kepler Objects of Interest. I find that even within this sub-Neptune population these planets are very diverse in nature: there is intrinsic scatter in masses at a given radius, the planet host stars have visual companions at a wide range of separations, and the composition distribution spans two orders of magnitude, with a peak at 1% hydrogen and helium by mass. There is much work to be done to explain this diversity quantitatively, and especially to tie these results to various planet formation scenarios; I have no doubt that many more surprises await us.
NASA Astrophysics Data System (ADS)
Beisser, K.; Cruikshank, D. P.; McFadden, T.
2013-12-01
Is Pluto a planet? Some creative low income Bay-area middle-schoolers put a musical spin on this hot science debate with a video rap ';battle' over tiny Pluto's embattled planetary standing. The students' timing was perfect, with NASA's New Horizons mission set to conduct the first reconnaissance of Pluto and its moons in July 2015. Pluto - the last of the nine original planets to be explored by spacecraft - has been the subject of scientific study and speculation since Clyde Tombaugh discovered it in 1930, orbiting the Sun far beyond Neptune. Produced by the students and a very creative educator, the video features students 'battling' back and forth over the idea of Pluto being a planet. The group collaborated with actual space scientists to gather information and shot their video before a 'green screen' that was eventually filled with animations and visuals supplied by the New Horizons mission team. The video debuted at the Pluto Science Conference in Maryland in July 2013 - to a rousing response from researchers in attendance. The video marks a nontraditional approach to the ongoing 'great planet debate' while educating viewers on a recently discovered region of the solar system. By the 1990s, researchers had learned that Pluto possessed multiple exotic ices on its surface, a complex atmosphere and seasonal cycles, and a large moon (Charon) that likely resulted from a giant impact on Pluto itself. It also became clear that Pluto was no misfit among the planets - as had long been thought - but the largest and brightest body in a newly discovered 'third zone' of our planetary system called the Kuiper Belt. More recent observations have revealed that Pluto has a rich system of satellites - five known moons - and a surface that changes over time. Scientists even speculate that Pluto may possess an internal ocean. For these and other reasons, the 2003 Planetary Decadal Survey ranked a Pluto/Kuiper Belt mission as the highest priority mission for NASA's newly created New Frontiers program - and that mission is New Horizons. This effort was funded by a Hewlett Packard Sustainability and Social Innovation grant, the Silicon Valley Education Foundation and a Kickstarter campaign to expand this effort to multiple schools. This process and product are great examples of teamwork between scientists and science educators - and show how we can use the appeal of video to communicate science to diverse audiences.
NASA Astrophysics Data System (ADS)
Raymond, Sean; Mandell, A.; Sigurdsson, S.
2006-12-01
Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the final stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We combine two recent studies (1,2) and establish rough inner and outer limits for the giant planet orbits that allow terrestrial planets of at least 0.3 Earth masses to form in the habitable zone (HZ). For a star like the Sun, potentially habitable planets can form in systems with relatively low-eccentricity giant planets inside 0.5 Astronomical Units (AU) or outside 2.5 AU. More than one third of the currently known giant planet systems could have formed and now harbor a habitable planet. We thank NASA Astrobiology Institute for funding, through the Penn State, NASA Goddard, Virtual Planetary Laboratory, and University of Colorado lead teams. (1. Raymond, S.N., 2006, ApJ, 643, L131.; 2. Raymond, S.N., Mandell, A.M., Sigurdsson, S. 2006, Science, 313, 1413).
NASA Astrophysics Data System (ADS)
Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.
2016-10-01
Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A63
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Van Laerhoven, Christa; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi
2016-03-01
We infer dynamical masses in eight multiplanet systems using transit times measured from Kepler's complete data set, including short-cadence data where available. Of the 18 dynamical masses that we infer, 10 pass multiple tests for robustness. These are in systems Kepler-26 (KOI-250), Kepler-29 (KOI-738), Kepler-60 (KOI-2086), Kepler-105 (KOI-115), and Kepler-307 (KOI-1576). Kepler-105 c has a radius of 1.3 R⊕ and a density consistent with an Earth-like composition. Strong transit timing variation (TTV) signals were detected from additional planets, but their inferred masses were sensitive to outliers or consistent solutions could not be found with independently measured transit times, including planets orbiting Kepler-49 (KOI-248), Kepler-57 (KOI-1270), Kepler-105 (KOI-115), and Kepler-177 (KOI-523). Nonetheless, strong upper limits on the mass of Kepler-177 c imply an extremely low density of ˜0.1 g cm-3. In most cases, individual orbital eccentricities were poorly constrained owing to degeneracies in TTV inversion. For five planet pairs in our sample, strong secular interactions imply a moderate to high likelihood of apsidal alignment over a wide range of possible eccentricities. We also find solutions for the three planets known to orbit Kepler-60 in a Laplace-like resonance chain. However, nonlibrating solutions also match the transit timing data. For six systems, we calculate more precise stellar parameters than previously known, enabling useful constraints on planetary densities where we have secure mass measurements. Placing these exoplanets on the mass-radius diagram, we find that a wide range of densities is observed among sub-Neptune-mass planets and that the range in observed densities is anticorrelated with incident flux.
NASA Technical Reports Server (NTRS)
2007-01-01
Our solitary sunsets here on Earth might not be all that common in the grand scheme of things. New observations from NASA's Spitzer Space Telescope have revealed that mature planetary systems -- dusty disks of asteroids, comets and possibly planets -- are more frequent around close-knit twin, or binary, stars than single stars like our sun. That means sunsets like the one portrayed in this artist's photo concept, and more famously in the movie 'Star Wars,' might be quite commonplace in the universe. Binary and multiple-star systems are about twice as abundant as single-star systems in our galaxy, and, in theory, other galaxies. In a typical binary system, two stars of roughly similar masses twirl around each other like pair-figure skaters. In some systems, the two stars are very far apart and barely interact with each other. In other cases, the stellar twins are intricately linked, whipping around each other quickly due to the force of gravity. Astronomers have discovered dozens of planets that orbit around a single member of a very wide stellar duo. Sunsets from these worlds would look like our own, and the second sun would just look like a bright star in the night sky. But do planets exist in the tighter systems, where two suns would dip below a planet's horizon one by one? Unveiling planets in these systems is tricky, so astronomers used Spitzer to look for disks of swirling planetary debris instead. These disks are made of asteroids, comets and possibly planets. The rocky material in them bangs together and kicks up dust that Spitzer's infrared eyes can see. Our own solar system is swaddled in a similar type of disk. Surprisingly, Spitzer found more debris disks around the tightest binaries it studied (about 20 stars) than in a comparable sample of single stars. About 60 percent of the tight binaries had disks, while the single stars only had about 20 percent. These snug binary systems are as close or closer than just three times the distance between Earth and the sun. And the disks in these systems were found to circumnavigate both members of the star pair, rather than just one. Though follow-up studies are needed, the results could mean that planet formation is more common around extra-tight binary stars than single stars. Since these types of systems would experience double sunsets, the artistic view portrayed here might not be fiction. The original sunset photo used in this artist's concept was taken by Robert Hurt of the Spitzer Science Center at the California Institute of Technology, Pasadena, Calif.A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Transit Events
NASA Astrophysics Data System (ADS)
Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John Asher
2015-12-01
Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, I present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows one to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration. I will also present our open-source N-body photodynamical modeling code, which integrates planetary and stellar orbits accounting for the effects of GR, tidal effects, and Doppler beaming.
NASA Astrophysics Data System (ADS)
Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel
2010-03-01
We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable of detecting planets with K ≈ 5 m s-1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ~ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive planets in outer planetary systems.
Massive stars, disks, and clustered star formation
NASA Astrophysics Data System (ADS)
Moeckel, Nickolas Barry
The formation of an isolated massive star is inherently more complex than the relatively well-understood collapse of an isolated, low-mass star. The dense, clustered environment where massive stars are predominantly found further complicates the picture, and suggests that interactions with other stars may play an important role in the early life of these objects. In this thesis we present the results of numerical hydrodynamic experiments investigating interactions between a massive protostar and its lower-mass cluster siblings. We explore the impact of these interactions on the orientation of disks and outflows, which are potentially observable indications of encounters during the formation of a star. We show that these encounters efficiently form eccentric binary systems, and in clusters similar to Orion they occur frequently enough to contribute to the high multiplicity of massive stars. We suggest that the massive protostar in Cepheus A is currently undergoing a series of interactions, and present simulations tailored to that system. We also apply the numerical techniques used in the massive star investigations to a much lower-mass regime, the formation of planetary systems around Solar- mass stars. We perform a small number of illustrative planet-planet scattering experiments, which have been used to explain the eccentricity distribution of extrasolar planets. We add the complication of a remnant gas disk, and show that this feature has the potential to stabilize the system against strong encounters between planets. We present preliminary simulations of Bondi-Hoyle accretion onto a protoplanetary disk, and consider the impact of the flow on the disk properties as well as the impact of the disk on the accretion flow.
Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems
NASA Astrophysics Data System (ADS)
Van Laerhoven, Christa
2015-12-01
Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods and have used this to predict what range of pericenter precession (and nodal regression) rates the planets may have. One might have assumed that in any given system the planets with shorter periods would have faster precession rates, but I show that this is not necessarily the case. Planets that are 'loners' have narrow ranges of possible precession rates, while planets that are 'groupies' can have a wider range of possible precession rates. Several planets are expected to undergo significant precession on few-year timescales and many planets (though not the majority of planets) will undergo significant precession on decade timescales.
NASA Astrophysics Data System (ADS)
Weiss, Lauren M.; Marcy, Geoffrey W.; Petigura, Erik A.; Fulton, Benjamin J.; Howard, Andrew W.; Winn, Joshua N.; Isaacson, Howard T.; Morton, Timothy D.; Hirsch, Lea A.; Sinukoff, Evan J.; Cumming, Andrew; Hebb, Leslie; Cargile, Phillip A.
2018-01-01
We have established precise planet radii, semimajor axes, incident stellar fluxes, and stellar masses for 909 planets in 355 multi-planet systems discovered by Kepler. In this sample, we find that planets within a single multi-planet system have correlated sizes: each planet is more likely to be the size of its neighbor than a size drawn at random from the distribution of observed planet sizes. In systems with three or more planets, the planets tend to have a regular spacing: the orbital period ratios of adjacent pairs of planets are correlated. Furthermore, the orbital period ratios are smaller in systems with smaller planets, suggesting that the patterns in planet sizes and spacing are linked through formation and/or subsequent orbital dynamics. Yet, we find that essentially no planets have orbital period ratios smaller than 1.2, regardless of planet size. Using empirical mass–radius relationships, we estimate the mutual Hill separations of planet pairs. We find that 93% of the planet pairs are at least 10 mutual Hill radii apart, and that a spacing of ∼20 mutual Hill radii is most common. We also find that when comparing planet sizes, the outer planet is larger in 65% ± 0.4% of cases, and the typical ratio of the outer to inner planet size is positively correlated with the temperature difference between the planets. This could be the result of photo-evaporation. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by the University of California, and California Institute of Technology, and the University of Hawaii.
Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems
NASA Astrophysics Data System (ADS)
Van Laerhoven, Christa L.
2015-11-01
Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog, and assuming a Gausian distribution for the eigenmode amplitudes and a uniform distribution for the eigenmode phases, I have predicted what range of precession rates the planets may have. Generally, planets that have more than one eigenmode significantly contribute to their eccentricity ('groupies') can have a wide range of possible precession rates, while planets that are 'loners' have a narrow range of possible precession rates. One might have assumed that in any given system, the planets with shorter periods would have faster precession rates. However, I show that in systems where the planets suffer strong secular interactions this is not necessarily the case.
VizieR Online Data Catalog: Kepler multiple transiting planet systems (Wang+, 2015)
NASA Astrophysics Data System (ADS)
Wang, J.; Fischer, D. A.; Xie, J.-W.; Ciardi, D. R.
2017-10-01
The sample of MTPSs remains the same as that in Wang et al. (2014, J/ApJ/783/4). From the NASA Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu), we select Kepler objects of interest (KOIs) that satisfy the following criteria: (1) disposition of either Candidate or Confirmed; (2) with at least two planet candidates; (3) Kepler magnitude (KP) brighter than 13.5. The above selection criteria resulted in 138 MTPSs in Wang et al. (2014, J/ApJ/783/4). With the updated Exoplanet Archive, the selection criteria resulted in 208 MTPSs. In this paper, we focus on the 138 MTPSs to be consistent with previous work. (4 data files).
Orbits and Interiors of Planets
NASA Astrophysics Data System (ADS)
Batygin, Konstantin
2012-05-01
The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally, we considered planetary formation in highly inclined binary systems, where orbital excitation due to the Kozai resonance apparently implies destructive collisions among planetesimals. Through a proper account of gravitational interactions within the protoplanetary disk, we showed that fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained, resolving the difficulty in planet-formation. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.
2017-04-01
The vast majority of the 4700 confirmed planets (CPs) and planet candidates discovered by the Kepler mission were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a “Swiss cheese”-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or “lost”). We examine a sample of 114 stars with 3+ CPs to evaluate the effect of this “Swiss cheesing.” A simulation determines that the probability that a transiting planet is lost due to the transit masking is low, but non-negligible, reaching a plateau at ˜3.3% lost in the period range of P = 400-500 days. We then model all planet transits and subtract out the transit signals for each star, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (I.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline’s choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet (Kepler-150 f) and a potential single transit of a likely false positive (FP) (Kepler-208). Kepler-150 f (P = 637.2 days, {R}{{P}}={3.64}-0.39+0.52 R⊕) is confirmed with >99.998% confidence using a combination of the planet multiplicity argument, an FP probability analysis, and a transit duration analysis.
NASA Technical Reports Server (NTRS)
Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.
2017-01-01
The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a Swiss cheese-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or lost). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this Swiss cheesing may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at approximately 3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipelines choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f (P = 637.2 days, RP = 3.86 R earth) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.
Schmitt, Joseph R; Jenkins, Jon M; Fischer, Debra A
2017-04-01
The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a "Swiss cheese"-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or "lost"). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this "Swiss cheesing" may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at ~3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline's choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f ( P = 637.2 days, R P = 3.86 R ⊕ ) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.
Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.
2018-01-01
The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a “Swiss cheese”-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or “lost”). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this “Swiss cheesing” may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at ~3.3% lost in the period range of P = 400 – 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline’s choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f (P = 637.2 days, RP = 3.86 R⊕) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument. PMID:29375142
Planet formation in transition disks: Modeling, spectroscopy, and theory
NASA Astrophysics Data System (ADS)
Liskowsky, Joseph Paul
An important field of modern astronomy is the study of planets. Literally for millennia, careful observers of the night sky have tracked these 'wanderers', with their peculiar motions initiating avenues of inquiry not able to elucidated by a study of the stars alone: we have discovered that the planets (as well as Earth) orbit the sun and that the stars are so far away, even their relative positions do not seem to shift perceptibly when Earth's position moves hundreds of millions of miles. With the advent of the telescope, and subsequent improvements upon it over the course of centuries, accelerating to the dramatically immense telescopes available today and those on the horizon, we have been able to continuously probe farther and in more detail than the previous generation of scientists and telescopes allowed. Now, we are just entering the time when detection of planets outside of our own solar system has become possible, and we have found that planets are extraordinarily common in the galaxy (and by extrapolation, the universe). At the time of this document's composition, there are several thousand such examples of planets around other stars (being dubbed 'exoplanets'). We have discovered that planets are plentiful, but multiple open questions remain which are relevant to this work: How do planets form and, when a planet does form from its circumstellar envelope, what are the important processes that influence its formation? This work adds to the understanding of circumstellar disks, the intermediate stage between a cold collapsing cloud (of gas and dust) and a mature planetary system. Specifically, we study circumstellar disks in an evolved state termed 'transition disks'. This state corresponds to a time period where the dust in the disk has either undergone grain growth—where the microscopic grains have clumped together to form far fewer dust particles of much higher mass, or the inner portion (or an inner annulus) of the disk has lost a large amount of gas due to either a massive planet accreting the material onto it or via a photoevaporation process whereby the central star's radiation field ejects material from the inner disk out of the bound system in the the interstellar medium. It is presumed that this phase is the last gasp of the planetary disk's evolution before the debris disk stage and before a fully formed solar system evolves. Our work specifically focuses on one object of this transition disk class: HD100546. We add to the understanding of transition disks by showing that a model where ro-vibrational OH emission in the NIR is preferentially emitted along the 'wall' of the disk is consistent with observations, and furthermore that adding an eccentricity to this `wall' component is required to generate the necessary observed line shape. In conjunction with this observation we present supporting material which motivates the usage of such an eccentric wall component in light of predictions of the influence of giant planet formation occurring within the disk.
On the Formation of Multiple Concentric Rings and Gaps in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan; Hartmann, Lee
2017-12-01
As spiral waves driven by a planet in a gaseous disk steepen into a shock, they deposit angular momentum, opening a gap in the disk. This has been well studied using both linear theory and numerical simulations, but so far only for the primary spiral arm: the one directly attached to the planet. Using 2D hydrodynamic simulations, we show that the secondary and tertiary arms driven by a planet can also open gaps as they steepen into shocks. The depths of the secondary/tertiary gaps in surface density grow with time in a low-viscosity disk (α =5× {10}-5), so even low-mass planets (e.g., super-Earth or mini-Neptune-mass) embedded in the disk can open multiple observable gaps, provided that sufficient time has passed. Applying our results to the HL Tau disk, we show that a single 30 Earth-mass planet embedded in the ring at 68.8 au (B5) can reasonably well reproduce the positions of the two major gaps at 13.2 and 32.3 au (D1 and D2), and roughly reproduce two other major gaps at 64.2 and 74.7 au (D5 and D6) seen in the mm continuum. The positions of secondary/tertiary gaps are found to be sensitive to the planetary mass and the disk temperature profile, so with accurate observational measurements of the temperature structure, the positions of multiple gaps can be used to constrain the mass of the planet. We also comment on the gaps seen in the TW Hya and HD 163296 disk.
Circus Family of Stars (Artist's Concept)
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Quick Time Movie for PIA03521 Circus Family of Stars This artist's animation shows the clockwork-like orbits of a triple-star system called HD 188753, which was discovered to harbor a gas giant, or 'hot Jupiter,' planet. The planet zips around the system's main star (yellow, center) every 3.3 days, while the main star is circled every 25.7 years by a dancing duo of stars (yellow and orange, outer orbit). The star pair is locked in a 156-day orbit. This eccentric star family is a cramped bunch; the distance between the main star and the outer pair of stars is about the same as that between the Sun and Saturn. Though multiple-star systems like this one are common in the universe, astronomers were surprised to find a planet living in such tight quarters. One reason for the surprise has to do with theories of hot Jupiter formation. Astronomers believe that these planets begin life at the outer fringes of their stars, in thick dusty disks called protoplanetary disks, before migrating inward. The discovery of a world under three suns throws this theory into question. As seen in this animation, there is not much room at this system's outer edges for a hot Jupiter to grow. The discovery was made using the Keck I telescope atop Mauna Kea mountain in Hawaii. The triple-star system is located 149 light-years away in the constellation Cygnus. The sizes and orbital periods in the animation are not shown to scale. The relative motions are shown with respect to the main star.DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.
2013-09-10
We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in somemore » cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.« less
Gemini Planet Imager Spectroscopy of the HR 8799 Planets c and d
Ingraham, Patrick; Marley, Mark S.; Saumon, Didier; ...
2014-09-30
During the first-light run of the Gemini Planet Imager we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets’ spectral energy distributions.When combined with the 3 to 4μm photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. Lastly, the data also provide further evidence that future modeling efforts mustmore » include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.« less
The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks
NASA Astrophysics Data System (ADS)
Morrison, Sarah Jane
Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.
NASA Astrophysics Data System (ADS)
Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio
2012-03-01
Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang Quntao; Gao Xun; Yu Qingjuan, E-mail: yuqj@pku.edu.cn
In this paper, we study possible signatures of binary planets or exomoons on the Rossiter-McLaughlin (R-M) effect. Our analyses show that the R-M effect for a binary planet or an exomoon during its complete transit phase can be divided into two parts. The first is the conventional one similar to the R-M effect from the transit of a single planet, of which the mass and the projected area are the combinations of the binary components; the second is caused by the orbital rotation of the binary components, which may add a sine- or linear-mode deviation to the stellar radial velocitymore » curve. We find that the latter effect can be up to several ten m s{sup -1}. Our numerical simulations as well as analyses illustrate that the distribution and dispersion of the latter effects obtained from multiple transit events can be used to constrain the dynamical configuration of the binary planet, such as how the inner orbit of the binary planet is inclined to its orbit rotating around the central star. We find that the signatures caused by the orbital rotation of the binary components are more likely to be revealed if the two components of a binary planet have different masses and mass densities, especially if the heavy one has a high mass density and the light one has a low density. Similar signatures on the R-M effect may also be revealed in a hierarchical triple star system containing a dark compact binary and a tertiary star.« less
Survival of habitable planets in unstable planetary systems
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders
2016-12-01
Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces these scatterings may also cause habitable planets in interior orbits to become ejected, destroyed, or be transported out of the habitable zone. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Equal-mass planetary systems are far more destructive than systems with giant planets of unequal masses. We also establish a link with observation; we find that giant planets with present-day eccentricities higher than 0.4 almost never have a habitable interior planet. For a giant planet with a present-day eccentricity of 0.2 and semimajor axis of 5 au orbiting a Sun-like star, 50 per cent of the orbits in the habitable zone are resilient to the instability. As semimajor axis increases and eccentricity decreases, a higher fraction of habitable planets survive and remain habitable. However, if the habitable planet has rocky siblings, there is a significant risk of rocky planet collisions that would sterilize the planet.
System Architectures Near the 2:1 Resonance
NASA Astrophysics Data System (ADS)
Boisvert, John; Steffen, Jason H.; Nelson, Benjamin E.
2018-01-01
Uncovering the architectures of planetary systems give insight into their formation and evolution. For example, the protoplanetary disk in multi-planet systems can drive adjacent planets into mean-motion resonances (such as the 2:1), while simultaneously damping their eccentricities. On the other hand, planet-planet scattering will produce single planets with eccentric orbits.In the RV signal, there is a degeneracy between models with two planets on circular orbits near the 2:1 period ratio and single planets on eccentric orbits. Historically, single planet models have been favored on simplicity grounds. However, the prominence of the 2:1 period ratio for systems observed by Kepler motivates additional scrutiny for single eccentric systems.We analyzed 95 planetary systems from the NASA Exoplanet Archive that are reported as single planet systems. We fit models of single eccentrics, circular doubles with a period ratio of 2:1, and circular doubles with a period ratio near 2.17:1 to the data. We computed the Bayes factors between each model in order to determine which is more likely given the current data. We find a significant fraction of these systems prefer double planet models. New observations are being planned to further break the degeneracy for these systems. This fraction suggests that disk-migration may be more important than the currently reported parameters propose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katherina Feng, Y.; Wright, Jason T.; Nelson, Benjamin
2015-02-10
We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative of an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1more » M {sub Jup} planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2 M {sub Jup} planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period greater than 5 yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.« less
Absolute densities in exoplanetary systems. Photodynamical modelling of Kepler-138.
NASA Astrophysics Data System (ADS)
Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.
2018-04-01
In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of two more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138 b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138 b and Kepler-138 d have significantly thick volatile layers, and that the gas layer of Kepler-138 b is likely enriched. On the other hand, Kepler-138 c can be purely rocky.
Absolute densities in exoplanetary systems: photodynamical modelling of Kepler-138
NASA Astrophysics Data System (ADS)
Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.
2018-07-01
In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of 2 more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138b and Kepler-138 d have significantly thick volatile layers and that the gas layer of Kepler-138b is likely enriched. On the other hand, Kepler-138c can be purely rocky.
Saturn’s Formation and Early Evolution at the Origin of Jupiter’s Massive Moons
NASA Astrophysics Data System (ADS)
Ronnet, T.; Mousis, O.; Vernazza, P.; Lunine, J. I.; Crida, A.
2018-05-01
The four massive Galilean satellites are believed to have formed within a circumplanetary disk during the last stages of Jupiter’s formation. While the existence of a circum-Jovian disk is supported by hydrodynamic simulations, no consensus exists regarding the origin and delivery mechanisms of the building blocks of the forming satellites. The opening of a gap in the circumsolar disk would have efficiently isolated Jupiter from the main sources of solid material. However, a reservoir of planetesimals should have existed at the outer edge of Jupiter’s gap, where solids were trapped and accumulated over time. Here we show that the formation of Saturn’s core within this reservoir, or its prompt inward migration, allows planetesimals to be redistributed from this reservoir toward Jupiter and the inner Solar System, thereby providing enough material to form the Galilean satellites and to populate the Main Belt with primitive asteroids. We find that the orbit of planetesimals captured within the circum-Jovian disk are circularized through friction with gas in a compact system comparable to the current radial extent of the Galilean satellites. The decisive role of Saturn in the delivery mechanism has strong implications for the occurrence of massive moons around extrasolar giant planets as they would preferentially form around planets within multiple planet systems.
The Resilience of Kepler Systems to Stellar Obliquity
NASA Astrophysics Data System (ADS)
Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin
2018-04-01
The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple members, but a large fraction possess only a single transiting example. This overabundance of singles has led to the suggestion that up to half of Kepler systems might possess significant mutual inclinations between orbits, reducing the transiting number (the so-called “Kepler Dichotomy”). In a recent paper, Spalding & Batygin demonstrated that the quadrupole moment arising from a young, oblate star is capable of misaligning the constituent orbits of a close-in planetary system enough to reduce their transit number, provided that the stellar spin axis is sufficiently misaligned with respect to the planetary orbital plane. Moreover, tightly packed planetary systems were shown to be susceptible to becoming destabilized during this process. Here, we investigate the ubiquity of the stellar obliquity-driven instability within systems with a range of multiplicities. We find that most planetary systems analyzed, including those possessing only two planets, underwent instability for stellar spin periods below ∼3 days and stellar tilts of order 30°. Moreover, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity ≲20°), where other methods of measuring the spin–orbit misalignment are not currently available. Given the known parameters of T-Tauri stars, we predict that up to one-half of super-Earth-mass systems may encounter the instability, in general agreement with the fraction typically proposed to explain the observed abundance of single-transiting systems.
Calculating the habitable zones of multiple star systems with a new interactive Web site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Tobias W. A.; Haghighipour, Nader
We have developed a comprehensive methodology and an interactive Web site for calculating the habitable zone (HZ) of multiple star systems. Using the concept of spectral weight factor, as introduced in our previous studies of the calculations of HZ in and around binary star systems, we calculate the contribution of each star (based on its spectral energy distribution) to the total flux received at the top of the atmosphere of an Earth-like planet, and use the models of the HZ of the Sun to determine the boundaries of the HZ in multiple star systems. Our interactive Web site for carryingmore » out these calculations is publicly available at http://astro.twam.info/hz. We discuss the details of our methodology and present its application to some of the multiple star systems detected by the Kepler space telescope. We also present the instructions for using our interactive Web site, and demonstrate its capabilities by calculating the HZ for two interesting analytical solutions of the three-body problem.« less
NASA Astrophysics Data System (ADS)
Smallwood, Jeremy L.; Martin, Rebecca G.; Lepp, Stephen; Livio, Mario
2018-01-01
With N-body simulations of a planetary system with an asteroid belt, we investigate how the asteroid impact rate on the Earth is affected by the architecture of the planetary system. We find that the ν6 secular resonance plays an important role in the asteroid collision rate with the Earth. Compared to exoplanetary systems, the Solar system is somewhat special in its lack of a super-Earth mass planet in the inner Solar system. We therefore first consider the effects of the presence of a super-Earth in the terrestrial planet region. We find a significant effect for super-Earths with a mass of around 10 M⊕ and a separation greater than about 0.7 au. For a super-Earth which is interior to the Earth's orbit, the number of asteroids colliding with Earth increases the closer the super-Earth is to the Earth's orbit. This is the result of multiple secular resonance locations causing more asteroids to be perturbed on to Earth-crossing orbits. When the super-Earth is placed exterior to Earth's orbit, the collision rate decreases substantially because the ν6 resonance no longer exists in the asteroid belt region. We also find that changing the semimajor axis of Saturn leads to a significant decrease in the asteroid collision rate, though increasing its mass increases the collision rate. These results may have implications for the habitability of exoplanetary systems.
The Terrestrial Planets Formation in the Solar-System Analogs
NASA Astrophysics Data System (ADS)
Ji, Jianghui; Liu, L.; Chambers, J. E.; Butler, R. P.
2006-09-01
In this work, we numerically studied the terrestrial planets formation in the Solar-Systems Analogs using MERCURY (Chambers 1999). The Solar-System Analogs are herein defined as a solar-system like planetary system, where the system consists of two wide-separated Jupiter-like planets (e.g., 47 UMa, Ji et al. 2005) move about the central star on nearly circular orbits with low inclinations, then low-mass terrestrial planets can be formed there, and life would be possibly evolved. We further explored the terrestrial planets formation due to the current uncertainties of the eccentricities for two giant planets. In addition, we place a great many of the planetesimals between two Jupiter-like planets to investigate the potential asteroidal structure in such systems. We showed that the secular resonances and mean motion resonances can play an important role in shaping the asteroidal structure. We acknowledge the financial support by National Natural Science Foundation of China (Grant No.10573040, 10233020, 10203005) and Foundation of Minor Planets of Purple Mountain Observatory.
Planet Formation Instrument for the Thirty Meter Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macintosh, B; Troy, M; Graham, J
2006-02-22
In the closing years of the 20th Century humankind began its exploration of the planetary systems in the solar neighborhood. Precision radial velocity measurements have now yielded the discovery of over 160 planets. Direct imaging of these planets, as opposed to detection of the effects of orbital motion on their parent star, is now feasible, and the first young planet in a wide orbit may have been detected using adaptive optics systems. Gemini and the VLT are building the first generation of high contrast adaptive optics systems, which deliver planet-imaging performance within few Airy rings of the host star. Thesemore » systems will make the first surveys of the outer regions of solar systems by detecting the self-luminous radiation of young planets. These instruments will establish whether Jovian planets form predominantly through 'top-down' (global gravitational instability) or 'bottom-up' (core accretion) processes. The 8-m 'extreme' AO systems cannot see close enough to the host stars to image Doppler planets, and they cannot reach the relatively distant, young clusters and associations where planets are forming. The Planet Formation Instrument will use the nearly four-fold improved angular resolution of TMT to peer into the inner solar systems of Doppler-planet bearing stars to yield a unified sample of planets with known Keplerian orbital elements and atmospheric properties. In star formation regions, where T Tauri stars (young solar type stars) are found in abundance, PFI can see into the snow line, where the icy cores of planets like Jupiter must have formed. Thus, TMT will be the first facility to witness the formation of new planets.« less
Formation and Detection of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)
1999-01-01
Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.
The Ongoing Evolution of the K2-22 System
NASA Astrophysics Data System (ADS)
Colon, Knicole D.; Zhou, George; Shporer, Avi; Collins, Karen A.; Bieryla, Allyson; Latham, David W.; Espinoza, Nestor; Murgas, Felipe; Pattarakijwanich, Petchara; Awiphan, Supachai; TECH Collaboration
2018-06-01
Of the thousands of exoplanets known, only three disintegrating planets have been identified. These disintegrating planets appear to have tails of dusty material that produce asymmetric transit shapes. K2-22b is one of these few disintegrating planets discovered to date, and its light curve not only displays highly variable transit depths but also uniquely displays evidence of a leading dust tail. Here, we present results from a large ground-based photometric observing campaign of the K2-22 system that took place between December 2016 and May 2017, which we use to investigate the evolution of the transit of K2-22b. Last observed in early 2015, in these new observations we recover the transit around the expected time and measure a typical depth of <1%. We find that the transit depth has decreased compared to observations from 2014 and 2015, where the maximum transit depth measured at that time was ~1.3%. These new observations support ongoing variability in the transit depth, shape, and time of K2-22b, although the overall shallowness of the transit makes a detailed analysis of the transit shape and timing difficult. In addition, we find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths. Given the observed decrease in the transit depth between 2015 and 2017, we encourage continued high-precision photometric monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few disintegrating planets known.
Growth and evolution of satellites in a Jovian massive disc
NASA Astrophysics Data System (ADS)
Moraes, R. A.; Kley, W.; Vieira Neto, E.
2018-03-01
The formation of satellite systems in circum-planetary discs is considered to be similar to the formation of rocky planets in a proto-planetary disc, especially super-Earths. Thus, it is possible to use systems with large satellites to test formation theories that are also applicable to extrasolar planets. Furthermore, a better understanding of the origin of satellites might yield important information about the environment near the growing planet during the last stages of planet formation. In this work, we investigate the formation and migration of the Jovian satellites through N-body simulations. We simulated a massive, static, low-viscosity, circum-planetary disc in agreement with the minimum mass sub-nebula model prescriptions for its total mass. In hydrodynamic simulations, we found no signs of gaps, therefore type II migration is not expected. Hence, we used analytic prescriptions for type I migration, eccentricity and inclination damping, and performed N-body simulations with damping forces added. Detailed parameter studies showed that the number of final satellites is strong influenced by the initial distribution of embryos, the disc temperature, and the initial gas density profile. For steeper initial density profiles, it is possible to form systems with multiple satellites in resonance while a flatter profile favours the formation of satellites close to the region of the Galilean satellites. We show that the formation of massive satellites such as Ganymede and Callisto can be achieved for hotter discs with an aspect ratio of H/r ˜ 0.15 for which the ice line was located around 30RJ.
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Fonda, Mark (Technical Monitor)
2002-01-01
Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.
On the Diversity of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1997-01-01
Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.
The Birth of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
1997-01-01
Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaib, Nathan A.; Duncan, Martin J.; Raymond, Sean N., E-mail: nkaib@astro.queensu.ca
Although the 55 Cnc system contains multiple, closely packed planets that are presumably in a coplanar configuration, we use numerical simulations to demonstrate that they are likely to be highly inclined to their parent star's spin axis. Due to perturbations from its distant binary companion, this planetary system precesses like a rigid body about its parent star. Consequently, the parent star's spin axis and the planetary orbit normal likely diverged long ago. Because only the projected separation of the binary is known, we study this effect statistically, assuming an isotropic distribution for wide binary orbits. We find that the mostmore » likely projected spin-orbit angle is {approx}50 Degree-Sign , with a {approx}30% chance of a retrograde configuration. Transit observations of the innermost planet-55 Cnc e-may be used to verify these findings via the Rossiter-McLaughlin effect. 55 Cancri may thus represent a new class of planetary systems with well-ordered, coplanar orbits that are inclined with respect to the stellar equator.« less
Stability considerations of packed multi-planet systems
NASA Astrophysics Data System (ADS)
Gratia, Pierre; Lissauer, Jack
2018-04-01
I will present our first results of the outcomes of five packed, Earth-mass planetary simulations around a Sun-like star, whose initial separations in terms of their semi-major axes is determined by a multiple of their mutual Hill radius, the parameter beta. In our simulations, we will vary beta between 3.5 and and 9, with a special emphasis on the region around 8.5, where stability times are wildly different for small increments of beta. While the zero initial eccentricity case has been investigated before, we expand on it by allowing for initial nonzero eccentricities of one or more planets. Furthermore, we increase the simulated time by up to one order of magnitude reaching billions of orbits. This of course will determine more accurately the fate of systems that take a long time to go unstable. Both of these investigations have not been done before, thus our findings improve our understanding of the stabilities of closely-spaced planetary systems.
Disk-integrated reflection light curves of planets
NASA Astrophysics Data System (ADS)
Garcia Munoz, A.
2014-03-01
The light scattered by a planet atmosphere contains valuable information on the planet's composition and aerosol content. Typically, the interpretation of that information requires elaborate radiative transport models accounting for the absorption and scattering processes undergone by the star photons on their passage through the atmosphere. I have been working on a particular family of algorithms based on Backward Monte Carlo (BMC) integration for solving the multiple-scattering problem in atmospheric media. BMC algorithms simulate statistically the photon trajectories in the reverse order that they actually occur, i.e. they trace the photons from the detector through the atmospheric medium and onwards to the illumination source following probability laws dictated by the medium's optical properties. BMC algorithms are versatile, as they can handle diverse viewing and illumination geometries, and can readily accommodate various physical phenomena. As will be shown, BMC algorithms are very well suited for the prediction of magnitudes integrated over a planet's disk (whether uniform or not). Disk-integrated magnitudes are relevant in the current context of exploration of extrasolar planets because spatial resolution of these objects will not be technologically feasible in the near future. I have been working on various predictions for the disk-integrated properties of planets that demonstrate the capacities of the BMC algorithm. These cases include the variability of the Earth's integrated signal caused by diurnal and seasonal changes in the surface reflectance and cloudiness, or by sporadic injection of large amounts of volcanic particles into the atmosphere. Since the implemented BMC algorithm includes a polarization mode, these examples also serve to illustrate the potential of polarimetry in the characterization of both Solar System and extrasolar planets. The work is complemented with the analysis of disk-integrated photometric observations of Earth and Venus drawn from various sources.
NASA Astrophysics Data System (ADS)
Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N.; Mao, Shude; Zhang, Xiaojia
2017-11-01
Extended gaps in the debris disks of both Vega and Fomalhaut have been observed. These structures have been attributed to tidal perturbations by multiple super-Jupiter gas giant planets. Within the current observational limits, however, no such massive planets have been detected. Here we propose a less stringent “lone-planet” scenario to account for the observed structure with a single eccentric gas giant and suggest that clearing of these wide gaps is induced by its sweeping secular resonance. With a series of numerical simulations, we show that the gravitational potential of the natal disk induces the planet to precess. At the locations where its precession frequency matches the precession frequency the planet imposes on the residual planetesimals, their eccentricity is excited by its resonant perturbation. Due to the hydrodynamic drag by the residual disk gas, the planetesimals undergo orbital decay as their excited eccentricities are effectively damped. During the depletion of the disk gas, the planet’s secular resonance propagates inward and clears a wide gap over an extended region of the disk. Although some residual intermediate-size planetesimals may remain in the gap, their surface density is too low to either produce super-Earths or lead to sufficiently frequent disruptive collisions to generate any observable dusty signatures. The main advantage of this lone-planet sweeping-secular-resonance model over the previous multiple gas giant tidal truncation scenario is the relaxed requirement on the number of gas giants. The observationally inferred upper mass limit can also be satisfied provided the hypothetical planet has a significant eccentricity. A significant fraction of solar or more massive stars bear gas giant planets with significant eccentricities. If these planets acquired their present-day kinematic properties prior to the depletion of their natal disks, their sweeping secular resonance would effectively impede the retention of neighboring planets and planetesimals over a wide range of orbital semimajor axes.
Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity
Oliver, J. B.
2017-06-12
Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.
Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity.
Oliver, J B
2017-06-20
Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. This systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.
Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, J. B.
Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.
Eccentricities and Inclinations of Multi-Planet Systems with External Perturbers
NASA Astrophysics Data System (ADS)
Pu, Bonan; Lai, Dong
2018-05-01
Compact multi-planet systems containing super-Earths or sub-Neptunes, commonly found around solar-type stars, may be surrounded by external giant planet or stellar companions, which can shape the architechture and observability of the inner systems. We present a comprehensive study on the evolution of the inner planetary system subject to the gravitational influence of an eccentric, misaligned outer perturber. Analytic results are derived for the inner planet eccentricities (ei) and mutual inclination (θ12) of the "2-planet + perturber" system, calibrated with numerical secular and N-body integrations, as a function of the perturber mass mp, semi-major axis ap and inclination angle θp. We find that the dynamics of the inner system is determined by the dimensionless parameter ɛ12, given by the ratio between the differential precession rate driven by the perturber and the mutual precession rate of the inner planets. Loosely packed systems (corresponding to ɛ12 ≫ 1) are more susceptible to eccentricity/inclination excitations by the perturber than tightly packed inner systems (with ɛ12 ≪ 1) (or singletons), although resonance may occur around ɛ12 ˜ 1, leading to large ei and θ12. Dynamical instability may set in for inner planet systems with large excited eccentricities and mutual inclinations. We present a formalism to extend our analytical results to general inner systems with N > 2 planets and apply our results to constrain possible external companions to the Kepler-11 system. Eccentricity and inclination excitation by external companions may help explain the observational trend that systems with fewer transiting planets are dynamically hotter than those with more transiting planets.
NASA Astrophysics Data System (ADS)
Van Laerhoven, Christa L.
2015-05-01
Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog of secular character, I will discuss the prevalence of dynamically grouped planets ('groupies') versus dynamically uncoupled planets ('loners') and how this relates to the exoplanets' long-term eccentricity and inclination behavior. I will also touch on the distribution of the secular eigenfreqiencies.
Tidal Barrier and the Asymptotic Mass of Proto-Gas Giant Planets
NASA Astrophysics Data System (ADS)
Dobbs-Dixon, Ian; Li, Shu Lin; Lin, D. N. C.
2007-05-01
According to the conventional sequential accretion scenario, observed extrasolar planets acquired their current masses via efficient gas accretion onto super-Earth cores with accretion timescales that rapidly increase with mass. Gas accretion in weak-line T Tauri disks may be quenched by global depletion of gas, but such a mechanism is unlikely to have stalled the growth in planetary systems that contain relatively low-mass, close-in planets together with more massive, longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both its Bondi and Roche radii. Above the critical mass where the Roche and Bondi radii are equal to the disk thickness, the protoplanet's tidal perturbation induces the formation of a gap. However, despite continued diffusion into the gap, the azimuthal flux across the protoplanet's Roche lobe will be quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. Gas accretion is quenched, yielding relatively low protoplanetary masses, in regions with low aspect ratios. This becomes important for determining the gas giant planet's mass function, the distribution of their masses within multiple-planet systems, and for suppressing the emergence of gas giants around low-mass stars. Finally, we find that accretion rates onto protoplanets declines gradually on a characteristic timescale of a few Myr, during which the protracted accretion timescale onto circumplanetary disks may allow for the formation and retention of regular satellites.
Stable habitable zones of single Jovian planet systems
NASA Astrophysics Data System (ADS)
Agnew, Matthew T.; Maddison, Sarah T.; Thilliez, Elodie; Horner, Jonathan
2017-11-01
With continued improvement in telescope sensitivity and observational techniques, the search for rocky planets in stellar habitable zones is entering an exciting era. With so many exoplanetary systems available for follow-up observations to find potentially habitable planets, one needs to prioritize the ever-growing list of candidates. We aim to determine which of the known planetary systems are dynamically capable of hosting rocky planets in their habitable zones, with the goal of helping to focus future planet search programmes. We perform an extensive suite of numerical simulations to identify regions in the habitable zones of single Jovian planet systems where Earth-mass planets could maintain stable orbits, specifically focusing on the systems in the Catalog of Earth-like Exoplanet Survey Targets (CELESTA). We find that small, Earth-mass planets can maintain stable orbits in cases where the habitable zone is largely, or partially, unperturbed by a nearby Jovian, and that mutual gravitational interactions and resonant mechanisms are capable of producing stable orbits even in habitable zones that are significantly or completely disrupted by a Jovian. Our results yield a list of 13 single Jovian planet systems in CELESTA that are not only capable of supporting an Earth-mass planet on stable orbits in their habitable zone, but for which we are also able to constrain the orbits of the Earth-mass planet such that the induced radial velocity signals would be detectable with next generation instruments.
On the possibility of Earth-type habitable planets in the 55 Cancri system.
von Bloh, W; Cuntz, M; Franck, S; Bounama, C
2003-01-01
We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions.
Dynamical habitability of planetary systems.
Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J
2010-01-01
The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).
ORBITAL STABILITY OF MULTI-PLANET SYSTEMS: BEHAVIOR AT HIGH MASSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Sarah J.; Kratter, Kaitlin M., E-mail: morrison@lpl.arizona.edu, E-mail: kkratter@email.arizona.edu
2016-06-01
In the coming years, high-contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR 8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an ordermore » of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean-motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at high planet–star mass ratios. We use our tailored high mass planet results to estimate the maximum number of planets that might reside in double component debris disk systems, whose gaps may indicate the presence of massive bodies.« less
Exploiting physical constraints for multi-spectral exo-planet detection
NASA Astrophysics Data System (ADS)
Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth
2016-07-01
We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation based on the singular value decomposition of the rescaled images. We show how the difficult problem to fitting a bilinear model on the can be solved in practise. The results are promising for further developments including application to real data and joint planet detection in multi-variate data (multi-spectral and multiple exposures images).
Stability of Multi-Planet Systems in the Alpha Centauri System
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2017-01-01
We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales (Quarles & Lissauer 2016, Astron. J. 151, 111), as well as how closely-spaced planetary orbits can be within those regions in which individual planets can survive. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of planets in multi-planet systems within the habitable zones of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star, appropriately-aligned circumstellar orbits with small initial eccentricities are stable to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to forced eccentricities can have a much larger affect on how closely planetary orbits can be spaced, and therefore on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.
Resonance capture and dynamics of three-planet systems
NASA Astrophysics Data System (ADS)
Charalambous, C.; Martí, J. G.; Beaugé, C.; Ramos, X. S.
2018-06-01
We present a series of dynamical maps for fictitious three-planet systems in initially circular coplanar orbits. These maps have unveiled a rich resonant structure involving two or three planets, as well as indicating possible migration routes from secular to double resonances or pure three-planet commensurabilities. These structures are then compared to the present-day orbital architecture of observed resonant chains. In a second part of the paper, we describe N-body simulations of type-I migration. Depending on the orbital decay time-scale, we show that three-planet systems may be trapped in different combinations of independent commensurabilities: (i) double resonances, (ii) intersection between a two-planet and a first-order three-planet resonances, and (iii) simultaneous libration in two first-order three-planet resonances. These latter outcomes are found for slow migrations, while double resonances are almost always the final outcome in high-density discs. Finally, we discuss an application to the TRAPPIST-1 system. We find that, for low migration rates and planetary masses of the order of the estimated values, most three-planet sub-systems are able to reach the observed double resonances after following evolutionary routes defined by pure three-planet resonances. The final orbital configuration shows resonance offsets comparable with present-day values without the need of tidal dissipation. For the 8/5 resonance proposed to dominate the dynamics of the two inner planets, we find little evidence of its dynamical significance; instead, we propose that this relation between mean motions could be a consequence of the interaction between a pure three-planet resonance and a two-planet commensurability between planets c and d.
Development and Application of the Transit Timing Planet Detection Technique
NASA Astrophysics Data System (ADS)
Steffen, J. H.; Agol, E.
2005-12-01
We present the development and application of a new planet detection technique that uses the transit timing of a known, transiting planet. The transits of a solitary planet orbiting a star occur at equally spaced intervals in time. If a second planet is present, then dynamical interactions within the system will cause the time interval between transits to vary. These transit time variations (TTV) can be used to infer the orbital elements and mass of the unseen, perturbing planet. In some cases, particularly near mean-motion resonances, this technique could detect planets with masses less than the mass of the Earth---a capability not yet achieved by other planet detection schemes. We present an analysis of the set of transit times of the TrES-1 system given by Charbonneau et al. (2005). While no convincing evidence for a second planet in the TrES-1 system was found from that data, we constrain the mass that a perturbing planet could have as a function of the semi-major axis ratio of the two planets and the eccentricity of the perturbing planet. Near low-order, mean-motion resonances (within about 1% fractional deviation), we find that a secondary planet must generally have a mass comparable to or less than the mass of the Earth--showing that this data is the first to have sensitivity to sub Earth-mass planets. We present results from our studies that use simulated data and from an ongoing analysis of the HD209458 system. These results show that TTV will be an important tool in the detection and characterization of extrasolar planetary systems.
An Earth-sized exoplanet with a Mercury-like composition
NASA Astrophysics Data System (ADS)
Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.
2018-05-01
Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.
Astrophysics with Microarcsecond Accuracy Astrometry
NASA Technical Reports Server (NTRS)
Unwin, Stephen C.
2008-01-01
Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.
Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp
2014-08-01
We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less
Planet Formation and the Characteristics of Extrasolar Planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.
A Ninth Planet in Our Solar System?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-01-01
The recent discovery that the orbits of some Kuiper belt objects (KBOs) share properties has proved puzzling. A pair of scientists have now proposed a bold explanation: there may be a planet-sized object yet undetected in our solar system.Mysterious ClusteringKBOs, the population of mainly small objects beyond Neptune, have proven an especially interesting subject of study in the last decade as many small, distant bodies (such as Eris, the object that led to the demotion of Pluto to dwarf planet) have been discovered.Previous studies have recently discovered that some especially distant KBOs those that orbit with semimajor axes of a 150 AU, nearly four times that of Pluto all cross the ecliptic at a similar phase in their elliptical trajectories. This is unexpected, since gravitational tugs from the giant planets should have randomized this parameter over our solar systems multi-billion-year lifespan.Physical alignment of the orbits of Kuiper belt objects with a 250 AU (and two objects with a 150 AU that are dynamically stable). [Batygin Brown 2016]Two scientists at California Institute of Technology, Konstantin Batygin and Michael Brown (you might recognize Brown as the man who killed Pluto) have now increased the mystery. In a recently published a study, they demonstrate that for KBOs that have orbits with a 250 AU, the orbits are actually physically aligned.To explain this unexpected alignment which Batygin and Brown calculate has only a 0.007% probability of having occurred by chance the authors ask an exciting question: could this be caused by the presence of an unseen, large, perturbing body further out in the solar system?Simulating a Ninth PlanetThe authors test this hypothesis by carrying out both analytical calculations and numerical N-body simulations designed to determine if the gravitational influence of a distant, planetary-mass companion can explain the behavior we observe from the large-orbit KBOs.Simulation of the effect of a distant planet (M = 10 M, a = 700 AU, and e = 0.6) on KBOs; click for a better look! The perihelion position of KBOs with a 250 AU clusters around 180 from the perihelion position of the perturbing planet. More-transparent points are less observable. [Batygin Brown 2016]The result? It turns out that such a distant planet can cause the orbits of KBOs with a 250 AU to all align in the opposite direction of the orbit of the planet. Whats more, the gravitational pull of this planet can also explain other unresolved puzzles about the Kuiper belt, such as the presence of high-perihelion Sedna-like objects, as well as a population of KBOs weve observed that have misaligned orbits.Unfortunately, Batygin and Brown found it isnt possible to exactly determine the properties of the possible planet, since multiple combinations of its mass, eccentricity, and semimajor axis can create the same observational results. That said, they believe the distant perturbers orbit is highly eccentric, its orbital inclination is low, and its fairly massive (since anything less than an Earth-mass wont create the observed clustering of KBO orbits within the age of the solar system).As an example, one possible set of parameters that approximately reproduces the observed KBO orbits is the following:planet mass of 10 Earth-massessemi-major axis of a = 700 AUeccentricity of e = 0.6This would correspond to a perihelion distance of 280 AU and an aphelion distance of 1,120 AU.The authors speculate such a planet might have been formed closer in to the Sun, but it was ejected later on during our solar systems evolution. Interactions with the Suns birth cluster could have then caused the planet to be retained in a bound orbit.Future TestsOur solar system on a logarithmic scale (click for the full view). KBOs with a semimajor axis of a 250 AU may be being aligned by a planetary-mass body with an even more distant orbit. [NASA]How can we test this hypothesis of a ninth planet? Obviously, directly observing the planet would confirm its presence. But the authors model has an additional testable hypothesis: if its correct, there should be a population of high-perihelion Kuiper belt objects that dont exhibit the same alignment of their orbits as the KBOs we know about, but instead have opposite-aligned orbits. If we discover such a collection of objects, that would be an excellent confirmation of this model.The authors caution that their work is preliminary, and additional investigation will be required to better understand the possibilities presented here. But with any luck, future theoretical work, as well as observational tests of this models predictions, will help us determine whether there might be a distant ninth planet in our solar system!BonusCheck out this video (created with WWT!), which walks us first through a view of the six aligned KBO orbits, then shows a possible orbit for the hypothesized planet, and then shows an additional population of already-discovered objects (also predicted by the model) that have orbits perpendicular both to the plane of the solar system and to the planets orbit. [Caltech/Robert Hurt]http://aasnova.org/wp-content/uploads/2016/01/Planet9_anim_720.m4vCitationKonstantin Batygin and Michael E. Brown 2016 AJ 151 22. doi:10.3847/0004-6256/151/2/22
NASA Astrophysics Data System (ADS)
Ofir, A.; Dreizler, S.
2013-07-01
Aims: We present first results of our efforts to re-analyze the Kepler photometric dataset, searching for planetary transits using an alternative processing pipeline to the one used by the Kepler mission Methods: The SARS pipeline was tried and tested extensively by processing all available CoRoT mission data. For this first paper of the series we used this pipeline to search for (additional) planetary transits only in a small subset of stars - the Kepler objects of interest (KOIs), which are already known to include at least one promising planet candidate. Results: Although less than 1% of the Kepler dataset are KOIs we are able to significantly update the overall statistics of planetary multiplicity: we find 84 new transit signals on 64 systems on these light curves (LCs) only, nearly doubling the number of transit signals in these systems. Forty-one of the systems were singly-transiting systems that are now multiply-transiting. This significantly reduces the chances of false positive in them. Notable among the new discoveries are KOI 435 as a new six-candidate system (of which kind only Kepler-11 was known before), KOI 277 (which includes two candidates in a 6:7 period commensurability that has anti-correlated transit timing variations) - all but validating the system, KOIs 719, 1574, and 1871 that have small planet candidates (1.15,2.05 and 1.71 R⊕) in the habitable zone of their host star, and KOI 1843 that exhibits the shortest period (4.25 h) and is among the smallest (0.63 R⊕) of all planet candidates. We are also able to reject 11 KOIs as eclipsing binaries based on photometry alone, update the ephemeris for five KOIs and otherwise discuss a number of other objects, which brings the total of new signals and revised KOIs in this study to more than one hundred. Interestingly, a large fraction, about ~1/3, of the newly detected candidates participate in period commensurabilities. Finally, we discuss the possible overestimation of parameter errors in the current list of KOIs and point out apparent problems in at least two of the parameters. Conclusions: Our results strengthen previous analyses of the multi-transiting ensemble, and again highlight the great importance of this dataset. Nevertheless, we conclude that despite the phenomenal success of the Kepler mission, parallel analysis of the data by multiple teams is required to make full use of the data.
The Formation of the Earth-Moon System and the Planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1998-01-01
An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.
NASA Astrophysics Data System (ADS)
Gong, Yan-Xiang; Ji, Jianghui
2018-05-01
Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.
NASA Astrophysics Data System (ADS)
Weiss, Lauren M.; Deck, Katherine M.; Sinukoff, Evan; Petigura, Erik A.; Agol, Eric; Lee, Eve J.; Becker, Juliette C.; Howard, Andrew W.; Isaacson, Howard; Crossfield, Ian J. M.; Fulton, Benjamin J.; Hirsch, Lea; Benneke, Björn
2017-06-01
Measuring precise planet masses, densities, and orbital dynamics in individual planetary systems is an important pathway toward understanding planet formation. The WASP-47 system has an unusual architecture that motivates a complex formation theory. The system includes a hot Jupiter (“b”) neighbored by interior (“e”) and exterior (“d”) sub-Neptunes, and a long-period eccentric giant planet (“c”). We simultaneously modeled transit times from the Kepler K2 mission and 118 radial velocities to determine the precise masses, densities, and Keplerian orbital elements of the WASP-47 planets. Combining RVs and TTVs provides a better estimate of the mass of planet d (13.6+/- 2.0 {M}\\oplus ) than that obtained with only RVs (12.75+/- 2.70 {M}\\oplus ) or TTVs (16.1+/- 3.8 {M}\\oplus ). Planets e and d have high densities for their size, consistent with a history of photoevaporation and/or formation in a volatile-poor environment. Through our RV and TTV analysis, we find that the planetary orbits have eccentricities similar to the solar system planets. The WASP-47 system has three similarities to our own solar system: (1) the planetary orbits are nearly circular and coplanar, (2) the planets are not trapped in mean motion resonances, and (3) the planets have diverse compositions. None of the current single-process exoplanet formation theories adequately reproduce these three characteristics of the WASP-47 system (or our solar system). We propose that WASP-47, like the solar system, formed in two stages: first, the giant planets formed in a gas-rich disk and migrated to their present locations, and second, the high-density sub-Neptunes formed in situ in a gas-poor environment.
Early Adolescence: Celestial Meetings - Synodic Periods.
ERIC Educational Resources Information Center
Science and Children, 1985
1985-01-01
Rather than memorize numbers for sidereal periods of planets (time to orbit the sun), students can learn to determine these times through simple calculations. Comparison of a planet's synodic period to earth's year of 365 days is made, then multiplication to derive a full circle of 360 degrees establishes the sidereal period. (DH)
A resonant chain of four transiting, sub-Neptune planets.
Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard
2016-05-26
Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.
Planetary Magnetic Fields: Planetary Interiors and Habitability
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Shkolnik, Evgenya; Hallinan, Gregg; Planetary Habitability Study Team
2016-06-01
The W. M. Keck Institute for Space Studies (KISS) sponsored the Planetary Magnetic Fields: Planetary Interiors and Habitability Study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection. There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process. This report presents the findings from the Study, including potential mission concepts that emerged and future work in both modeling and observations. There was also an identification of that radio wavelength observations would likely be key to making significant progress in this field. The entire Study program would not have been possible without the generous support of the W. M. Keck Foundation. We thank Michele Judd, Tom Prince, and the staff of the W. M. Keck Institute for Space Studies for their hospitality and attention to detail, such that the Study participants could turn their attention to focused discussions and innovative ideas. We also thank Charles ("Chuck") Carter of Eagre Games, Inc., for his assistance with graphics.
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg
2017-05-01
The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
On the Nature and Timing of Giant Planet Migration in the Solar System
NASA Astrophysics Data System (ADS)
Agnor, Craig B.
2016-05-01
Giant planet migration is a natural outcome of gravitational scattering and planet formation processes (Fernandez & Ip 1984). There is compelling evidence that the solar system's giant planets experienced large-scale migration involving close approaches between planets as well as smooth radial migration via planetesimal scattering. Aspects of giant planet migration have been invoked to explain many features of the outer solar system including the resonant structure of the Kuiper Belt (e.g., Malhotra 1993, Levison et al. 2008), the eccentricities of Jupiter and Saturn (Tsiganis et al. 2005, Morbidelli et al. 2009), the capture of Jupiter's Trojan companions (Morbidelli et al. 2005) and the capture of irregular planetary satellites (e.g., Nesvorny et al. 2007) to name a few. If this migration epoch occurred after the formation of the inner planets, then it may also explain the so-called lunar Late Heavy Bombardment (Gomes et al. 2005). This scenario necessarily requires coeval terrestrial and migrating giant planets. Recent N-body integrations exploring this issue have shown that giant planet migration may excite the terrestrial system via nodal and apsidal secular resonances (e.g., Brasser et al. 2013), may drive the terrestrial planets to crossing orbits (Kaib & Chambers 2016) or alternatively leave the inner solar system in a state closely resembling the observed one (Roig et al. 2016). The factors accounting for the large range of outcomes remain unclear. Using linear secular models and N-body simulations I am identifying and characterising the principal aspects of giant planet migration that excite the terrestrial planets' orbits. I will present these results and discuss how they inform the nature and timing of giant planet migration in the solar system.
NASA Technical Reports Server (NTRS)
2007-01-01
This artist's concept illustrates two planetary systems -- 55 Cancri (top) and our own. Blue lines show the orbits of planets, including the dwarf planet Pluto in our solar system. The 55 Cancri system is currently the closest known analogue to our solar system, yet there are some fundamental differences. The similarities begin with the stars themselves, which are about the same mass and age. Both stars also host big families of planets. Our solar system has eight planets, while 55 Cancri has five, making it the record-holder for having the most known exoplanets. In fact, 55 Cancri could have additional planets, possibly even rocky ones that are too small to be seen with current technologies. All of the planets in the two systems have nearly circular orbits. In addition, both planetary systems have giant planets in their outer regions. The giant located far away from 55 Cancri is four times the mass of our Jupiter, and completes one orbit every 14 years at a distance of five times that between Earth and the sun (about 868 million kilometers or 539 million miles). Our Jupiter completes one orbit around the sun every 11.9 years, also at about five times the Earth-sun distance (778 million kilometers or 483 million miles). Fifty-five Cancri is still the only known star besides ours with a planet in a distant Jupiter-like orbit. Both systems also contain inner planets that are less massive than their outer planets. The differences begin with the planets' masses. The planets orbiting 55 Cancri are all larger than Earth, and represent a 'souped-up' version of our own solar system. In fact, this is the first star that boasts more giant planets than our sun! The arrangement of the planetary systems is also different. The inner four planets of 55 Cancri are all closer to the star than Earth is to the sun. The closest, about the mass of Uranus, whips around the star in just under three days at a distance of approximately 5.6 million kilometers (3.5 million miles). The second planet out from the star is a little smaller than Jupiter and completes one orbit every 14.7 days at a distance of approximately 17.9 million kilometers (11.2 million miles). The third planet out from the star is similar in mass to Saturn and completes one orbit every 44 days at a distance of approximately 35.9 million kilometers (22.3 million miles). The fourth planet is about half the mass of Saturn, orbits every 260 days and is approximately 116.7 million kilometers (72.5 million miles) away from the star.Performance of advanced missions using fusion propulsion
NASA Technical Reports Server (NTRS)
Friedlander, Alan; Mcadams, Jim; Schulze, Norm
1989-01-01
A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.
Direct Imaging of Warm Extrasolar Planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macintosh, B
2005-04-11
One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different frommore » our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the field of young-star identification, we carried out a systematic near-infrared search for young planetary companions to {approx}200 young stars. We also carried out targeted high-sensitivity observations of selected stars surrounded by circumstellar dust rings. We developed advanced image processing techniques to allow detection of even fainter sources buried in the noisy halo of scattered starlight. Even with these techniques, around most of our targets our search was only sensitive to planets in orbits significantly wider than our solar system. With some carefully selected targets--very young dusty stars in the solar neighborhood--we reach sensitivities sufficient to see solar systems like our own. Although we discovered no unambiguous planets, we can significantly constrain the frequency of such planets in wide (>50 AU) orbits, which helps determine which models of planet formation remain plausible. Successful modeling of our observations has led us to the design of a next-generation AO system that will truly be capable of exploring solar systems resembling our own.« less
Homes for extraterrestrial life: extrasolar planets.
Latham, D W
2001-12-01
Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.
Detection of Extrasolar Planets by Transit Photometry
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the technology exists to find such small planets, our group has conducted an end-to-end system test. The results of the laboratory tests are presented and show that we are ready to start the search for Earth-size planets.
Origin and Diversity of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1997-01-01
Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form around most single stars, although it is possible that most such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models for the formation of the giant planets found in recent radial velocity searches are discussed.
Analysis of a planetary-rotation system for evaporated optical coatings.
Oliver, J B
2016-10-20
The impact of planetary design considerations for optical coating deposition is analyzed, including the ideal number of planets, variations in system performance, and the deviation of planet motion from the ideal. System capacity is maximized for four planets, although substrate size can significantly influence this result. Guidance is provided in the design of high-performance deposition systems based on the relative impact of different error modes. Errors in planet mounting such that the planet surface is not perpendicular to the axis of rotation are particularly problematic, suggesting planetary design modifications would be appropriate.
PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinse, Tobias C.; Haghighipour, Nader; Kostov, Veselin B.
2015-01-20
We have studied the possibility that a third circumbinary planet in the Kepler-47 planetary system is the source of the single unexplained transiting event reported during the discovery of these planets. We applied the MEGNO technique to identify regions in the phase space where a third planet can maintain quasi-periodic orbits, and assessed the long-term stability of the three-planet system by integrating the entire five bodies (binary + planets) for 10 Myr. We identified several stable regions between the two known planets as well as a region beyond the orbit of Kepler-47c where the orbit of the third planet could bemore » stable. To constrain the orbit of this planet, we used the measured duration of the unexplained transit event (∼4.15 hr) and compared that with the transit duration of the third planet in an ensemble of stable orbits. To remove the degeneracy among the orbits with similar transit durations, we considered the planet to be in a circular orbit and calculated its period analytically. The latter places an upper limit of 424 days on the orbital period of the third planet. Our analysis suggests that if the unexplained transit event detected during the discovery of the Kepler-47 circumbinary system is due to a planetary object, this planet will be in a low eccentricity orbit with a semi-major axis smaller than 1.24 AU. Further constraining of the mass and orbital elements of this planet requires a re-analysis of the entire currently available data, including those obtained post-announcement of the discovery of this system. We present details of our methodology and discuss the implication of the results.« less
NASA Astrophysics Data System (ADS)
Quarles, B.; Lissauer, Jack J.
2018-03-01
We perform long-term simulations, up to ten billion years, of closely spaced configurations of 2–6 planets, each as massive as the Earth, traveling on nested orbits about either stellar component in α Centauri AB. The innermost planet initially orbits at either the inner edge of its star’s empirical habitable zone (HZ) or the inner edge of its star’s conservative HZ. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the HZs of both stars, perturbations from the companion star require that the minimum spacing of planets in multi-planet systems within the HZs of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. The binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star. Planets on appropriately phased circumstellar orbits with initial eccentricities equal to their forced eccentricities can survive on more closely spaced orbits than those with initially circular orbits, although the required spacing remains higher than for planets orbiting single stars. A total of up to nine planets on nested prograde orbits can survive for the current age of the system within the empirical HZs of the two stars, with five of these orbiting α Centauri B and four orbiting α Centauri A.
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.
2018-01-01
The geometric arrangement of planet and moon orbits into a regularly spaced pattern of distances is the result of a self-organizing system. The positive feedback mechanism that operates a self-organizing system is accomplished by harmonic orbit resonances, leading to long-term stable planet and moon orbits in solar or stellar systems. The distance pattern of planets was originally described by the empirical Titius-Bode law, and by a generalized version with a constant geometric progression factor (corresponding to logarithmic spacing). We find that the orbital periods Ti and planet distances Ri from the Sun are not consistent with logarithmic spacing, but rather follow the quantized scaling (Ri + 1 /Ri) =(Ti + 1 /Ti) 2 / 3 =(Hi + 1 /Hi) 2 / 3 , where the harmonic ratios are given by five dominant resonances, namely (Hi + 1 :Hi) =(3 : 2) ,(5 : 3) ,(2 : 1) ,(5 : 2) ,(3 : 1) . We find that the orbital period ratios tend to follow the quantized harmonic ratios in increasing order. We apply this harmonic orbit resonance model to the planets and moons in our solar system, and to the exo-planets of 55 Cnc and HD 10180 planetary systems. The model allows us a prediction of missing planets in each planetary system, based on the quasi-regular self-organizing pattern of harmonic orbit resonance zones. We predict 7 (and 4) missing exo-planets around the star 55 Cnc (and HD 10180). The accuracy of the predicted planet and moon distances amounts to a few percents. All analyzed systems are found to have ≈ 10 resonant zones that can be occupied with planets (or moons) in long-term stable orbits.
Dynamics of the Final Stages of Terrestrial Planet Growth and the Formation of the Earth-Moon System
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.
Exploring the Dynamics of Exoplanetary Systems in a Young Stellar Cluster
NASA Astrophysics Data System (ADS)
Thornton, Jonathan Daniel; Glaser, Joseph Paul; Wall, Joshua Edward
2018-01-01
I describe a dynamical simulation of planetary systems in a young star cluster. One rather arbitrary aspect of cluster simulations is the choice of initial conditions. These are typically chosen from some standard model, such as Plummer or King, or from a “fractal” distribution to try to model young clumpy systems. Here I adopt the approach of realizing an initial cluster model directly from a detailed magnetohydrodynamical model of cluster formation from a 1000-solar-mass interstellar gas cloud, with magnetic fields and radiative and wind feedback from massive stars included self-consistently. The N-body simulation of the stars and planets starts once star formation is largely over and feedback has cleared much of the gas from the region where the newborn stars reside. It continues until the cluster dissolves in the galactic field. Of particular interest is what would happen to the free-floating planets created in the gas cloud simulation. Are they captured by a star or are they ejected from the cluster? This method of building a dynamical cluster simulation directly from the results of a cluster formation model allows us to better understand the evolution of young star clusters and enriches our understanding of extrasolar planet development in them. These simulations were performed within the AMUSE simulation framework, and combine N-body, multiples and background potential code.
Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System
NASA Technical Reports Server (NTRS)
Lissauer, Jack
2016-01-01
Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.
Planet Formation in Binary Star Systems
NASA Astrophysics Data System (ADS)
Martin, Rebecca
About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.
Homogeneous Photodynamical Analysis of Kepler's Multiply-Transiting Systems
NASA Astrophysics Data System (ADS)
Ragozzine, Darin
To search for planets more like our own, NASA s Kepler Space Telescope ( Kepler ) discovered thousands of exoplanet candidates that cross in front of ( transit ) their parent stars (e.g., Twicken et al. 2016). The Kepler exoplanet data represent an incredible observational leap forward as evidenced by hundreds of papers with thousands of citations. In particular, systems with multiple transiting planets combine the determination of physical properties of exoplanets (e.g., radii), the context provided by the system architecture, and insights from orbital dynamics. Such systems are the most information-rich exoplanetary systems (Ragozzine & Holman 2010). Thanks to Kepler s revolutionary dataset, understanding these Multi-Transiting Systems (MTSs) enables a wide variety of major science questions. In conclusion, existing analyses of MTSs are incomplete and suboptimal and our efficient and timely proposal will provide significant scientific gains ( 100 new mass measurements and 100 updated mass measurements). Furthermore, our homogeneous analysis enables future statistical analyses, including those necessary to characterize the small planet mass-radius relation with implications for understanding the formation, evolution, and habitability of planets. The overarching goal of this proposal is a complete homogeneous investigation of Kepler MTSs to provide detailed measurements (or constraints) on exoplanetary physical and orbital properties. Current investigations do not exploit the full power of the Kepler data; here we propose to use better data (Short Cadence observations), better methods (photodynamical modeling), and a better statistical method (Bayesian Differential Evolution Markov Chain Monte Carlo) in a homogenous analysis of all 700 Kepler MTSs. These techniques are particularly valuable for understanding small terrestrial planets. We propose to extract the near-maximum amount of information from these systems through a series of three research objectives. Research Objective 1 (RO1) Gather and detrend publicly-available light curves for Kepler MTSs; gather starting guesses of preliminary planetary and stellar parameters from the Kepler pipeline (e.g., Rowe et al. 2014) and other studies; and expand our existing photodynamical code (e.g., Mills & Fabrycky 2017) to handle all Kepler MTSs. All required data are publicly available and our significant past expertise demonstrates our ability to complete these tasks. The new photodynamical code will be called the PhotoDynamical Multi-planet Model (PhoDyMM) and described in a paper. Research Objective 2 (RO2) Apply PhoDyMM to the 600 known systems with 2-3 transiting planets; publish these results, including full posterior distributions for all systems (to be housed at the NASA Exoplanet Archive). Research Objective 3 (RO3) Apply PhoDyMM to the 100 Kepler MTSs with 4 or more planets. This astrophysics data analysis is a major step beyond existing efforts and will provide the definitive physical and orbital properties for Kepler MTSs. It is clearly responsive to the Astrophysics Data Analysis Program and relevant to NASA Astrophysics Goals. PI Ragozzine and Co-I Fabrycky have participated in the Kepler prime science mission since its inception and have significant experience in all required areas. Co-I Mills has the most published uses of a photodynamical model on some of the most difficult to analyze exoplanetary systems (Kepler-11, Kepler-108 Kepler-223, Kepler-444). We will employ best practices for Data Management such as archiving posterior distributions and providing open access to PhoDyMM. PI Ragozzine s startup provided sufficient computational resources to perform the extensive analyses. He will be supported by a graduate student and unfunded undergraduates.
Photometric Exoplanet Characterization and Multimedia Astronomy Communication
NASA Astrophysics Data System (ADS)
Cartier, Kimberly M. S.
The transit method of detecting exoplanets has dominated the search for distant worlds since the success of the Kepler space telescope and will continue to lead the field after the launch of the Transiting Exoplanet Survey Satellite in 2018. But detections are just the beginning. Transit light curves can only reveal a limited amount of information about a planet, and that information is almost entirely dependent on the properties of the host star or stars. This dissertation discusses follow-up techniques to more precisely characterize transiting planets using photometric observations. A high-resolution follow-up imaging program using the Hubble Space Telescope (HST) searched for previously unknown stars nearby the hosts of small and cool Kepler exoplanets and observed a higher-than-expected occurrence rate of stellar multiplicity. The rate of previously unknown stellar multiples has strong implications for the size and habitability of the orbiting planets. Three systems with newly discovered stellar multiplicity, Kepler-296 (2 stars, 5 planets), KOI-2626 (3 stars, 1 planet), and KOI-3049 (2 stars, 1 planet), were characterized in more detail. In the cases of Kepler-296 and KOI-2626, some of the planets lost their previous habitable zone status because of host star ambiguity. Next, the ultra-short period, ultra-hot Jupiter WASP-103b was used as a casestudy to test for the presence of a stratospheric temperature inversion through dayside emission spectroscopy using HST. WASP-103b's near-infrared emission spectrum is consistent with an isothermal or thermally-inverted atmosphere and shows no significant broadband water absorption feature. Detection of an anomalously strong "super- Rayleigh" slope in its optical transmission spectrum prompted follow-up transmission spectroscopy of WASP-103b's atmosphere using the MINiature Radial Velocity Array (MINERVA), which tentatively verified the unexplained "super-Rayleigh" spectral slope. The final follow-up technique for transiting planets presented in this work quantifies the information contained in a sequence of transit depths using a normalized information content metric. The normalized information content metric can distinguish between naturally occurring, regular transits of real exoplanets detected via Kepler (low information content) and simulated artificial beacons whose depth and timing vary in a prime number sequence (high information content). Highly variable transit sequences with natural explanations--as seen with KIC 12557548, for example--can only be distinguished from artificial beacons when observed at a high signal-to-noise ratio (moderate information content) and may otherwise be confused with a more information-rich sequence. This dissertation also presents a review of effective methods for communicating science to various audiences, with specific applications to astronomy. That chapter highlights the necessity of integrating formal communications training into the early stages of a career in astronomy, explains why and how to apply story telling techniques to astronomy communication, and details specific strategies to apply when using common communication media. Examples are given for effectively communicating astronomy through academic research papers, slides for an oral presentation, and academic research posters, as well as examples of popular science blogs, feature articles, and news stories.
The Exoplanet Migration Timescale from K2 Young Clusters
NASA Astrophysics Data System (ADS)
Rizzuto, Aaron
A significant fraction of exoplanets orbit within 0.1 AU of their host star, with periods of <20 days. The discovery of these close-in planets has defied conventional models of planet formation and evolution based on our own solar system. It is widely accepted that these close-in planets did not form in such close proximity to their host stars (both rocky planets and hot Jupiters), but rather that dynamical or interactive processes caused them to migrate inwards from larger orbital semimajor axes and periods. There are multiple planet migration scenarios proposed in the literature, though it is unclear how much of the known planet population is attributable to each mechanism. Planetary migration models can be loosely divided into two categories: disk-driven migration and dynamical migration. Disk migration occurs over the lifetime of the protoplanetary disk (<5 Myr), while migration involving dynamical multi-body interactions operates on timescales of 100 Myr to 1Gyr, a lengthier process than disk migration. The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key ages. Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the <120 Myr Pleiades cluster, to the ,600-800 Myr Hyades and Praesepe clusters. Upcoming data from more recent campaigns include the 2Myr Taurus region and significantly more Upper Scorpius members in C13 and 15. The frequency, orbital properties, and compositions of the exoplanet population in these samples of different age, with careful treatment of detection completeness, distinguish these scenarios of exoplanet migration as their host stars are settling onto the main sequence. We have pioneered efforts to identify transiting exoplanets in the K2 data for young clusters and moving groups, and have developed a new, highly complete, detrending algorithm for rotational induced variability that is commonly seen in the light curves of young, active stars (Rizzuto et al. in prep). We have identified 11 candidate planets in Praesepe, Hyades, Upper Sco, and the Pleiades using these methods, the first of which has now been published with follow-up (Mann et al. 2016abc; Gaidos et al. 2016). This sample of detected planet candidates gives a promising first indication of the timescale over which planet migration occurs, favoring dynamical multi-body processes. However, because rotational activity in young stars makes detection of exoplanet transits more difficult for the younger clusters (e.g, Upper Sco, Pleiades), to robustly prove that these frequencies are true representations of the short-period planet occurrence rate at different PMS ages will require robust determination of detection limits in these highly variable young-star lightcurves. We propose to address the question of planet migration with a uniform injection-recovery test of young cluster members, to robustly measure the detectability of planets of differing size and orbit. This will involve detrending the light curve data of instrumental and rotational systematics, injecting a synthetic transit signature from a grid of planetary and orbital parameters, reversing the detrending, and then executing our transit search pipeline (which is tuned for highly active young stars) and mapping the recovery rate as a function of planet parameters for every individual light curve. With this map of detectability as a function of planet properties for each light curve and a full program of detected exoplanet follow-up, we can then directly confirm any change in the occurrence rates of close-in (P<20 day) planets with cluster age and identify the most significant migration mechanism.
CHROMOSPHERIC EMISSION OF PLANET CANDIDATE HOST STARS: A WAY TO IDENTIFY FALSE POSITIVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karoff, Christoffer; Knudsen, Mads Faurschou; Albrecht, Simon
2016-10-10
It has been hypothesized that the presence of closely orbiting giant planets is associated with enhanced chromospheric emission of their host stars. The main cause for such a relation would likely be enhanced dynamo action induced by the planet. We present measurements of chromospheric emission in 234 planet candidate systems from the Kepler mission. This ensemble includes 37 systems with giant-planet candidates, which show a clear emission enhancement. The enhancement, however, disappears when systems that are also identified as eclipsing binary candidates are removed from the ensemble. This suggests that a large fraction of the giant-planet candidate systems with chromosphericmore » emission stronger than the Sun are not giant-planet systems, but false positives. Such false-positive systems could be tidally interacting binaries with strong chromospheric emission. This hypothesis is supported by an analysis of 188 eclipsing binary candidates that show increasing chromospheric emission as function of decreasing orbital period.« less
Transit Illustration of TRAPPIST-1
2017-02-22
This illustration shows the seven TRAPPIST-1 planets as they might look as viewed from Earth using a fictional, incredibly powerful telescope. The sizes and relative positions are correctly to scale: This is such a tiny planetary system that its sun, TRAPPIST-1, is not much bigger than our planet Jupiter, and all the planets are very close to the size of Earth. Their orbits all fall well within what, in our solar system, would be the orbital distance of our innermost planet, Mercury. With such small orbits, the TRAPPIST-1 planets complete a "year" in a matter of a few Earth days: 1.5 for the innermost planet, TRAPPIST-1b, and 20 for the outermost, TRAPPIST-1h. This particular arrangement of planets with a double-transit reflect an actual configuration of the system during the 21 days of observations made by NASA's Spitzer Space Telescope in late 2016. The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. http://photojournal.jpl.nasa.gov/catalog/PIA21429
How Normal is Our Solar System?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-10-01
To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because weve got eight, it might be unsurprising that their eccentricities are so low.Super-EarthsWe dont have any planets in the range of 1-10 times the mass of Earth, which is pretty unusual super-Earths have a high occurrence rate among exoplanets.In summary, the authors find that for the most part, were a pretty typical solar system. Our most unusual features are the lack of a super-Earth, the lack of any close-in planets, and the low eccentricities of our planets. The fact that were fairly average means that, from a habitability standpoint, theres probably nothing special about our little corner of the galaxy. So perhaps life elsewhere is a possibility!CitationRebecca G. Martin and Mario Livio 2015 ApJ 810 105. doi:10.1088/0004-637X/810/2/105
Kepler-90 System Compared to Our Solar System (Artist's Concept)
2017-12-14
Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA's Kepler Space Telescope. This artist's concept depicts the Kepler-90 system compared with our own solar system. The newly-discovered Kepler-90i -- a sizzling hot, rocky planet that orbits its star once every 14.4 days -- was found using machine learning from Google. Machine learning is an approach to artificial intelligence in which computers "learn." In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded changes in starlight caused by planets beyond our solar system, known as exoplanets. https://photojournal.jpl.nasa.gov/catalog/PIA22193
Multi-mesh gear dynamics program evaluation and enhancements
NASA Technical Reports Server (NTRS)
Boyd, L. S.; Pike, J.
1985-01-01
A multiple mesh gear dynamics computer program was continually developed and modified during the last four years. The program can handle epicyclic gear systems as well as single mesh systems with internal, buttress, or helical tooth forms. The following modifications were added under the current funding: variable contact friction, planet cage and ring gear rim flexibility options, user friendly options, dynamic side bands, a speed survey option and the combining of the single and multiple mesh options into one general program. The modified program was evaluated by comparing calculated values to published test data and to test data taken on a Hamilton Standard turboprop reduction gear-box. In general, the correlation between the test data and the analytical data is good.
Extrasolar planets: constraints for planet formation models.
Santos, Nuno C; Benz, Willy; Mayor, Michel
2005-10-14
Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.
Debris disks as signposts of terrestrial planet formation
NASA Astrophysics Data System (ADS)
Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.
2011-06-01
There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by scaling our systems to match the observed semimajor axis distribution of giant exoplanets, we predict that terrestrial exoplanets in the same systems should be a few times more abundant at ~0.5 AU than giant or terrestrial exoplanets at 1 AU; 3) the Solar System appears to be unusual in terms of its combination of a rich terrestrial planet system and a low dust content. This may be explained by the weak, outward-directed instability that is thought to have caused the late heavy bombardment. The movie associated to Fig. 2 is available in electronic form at http://www.aanda.org
Formation of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)
1999-01-01
An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.
The Birth of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissaur, Jack L.
1997-01-01
An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.
Our Solar System Features Eight Planets
NASA Technical Reports Server (NTRS)
2009-01-01
Our solar system features eight planets, seen in this artist's diagram. Although there is some debate within the science community as to whether Pluto should be classified as a Planet or a dwarf planet, the International Astronomical Union has decided on the term plutoid as a name for dwarf planets like Pluto. This representation is intentionally fanciful, as the planets are depicted far closer together than they really are. Similarly, the bodies' relative sizes are inaccurate. This is done for the purpose of being able to depict the solar system and still represent the bodies with some detail. (Otherwise the Sun would be a mere speck, and the planets even the majestic Jupiter would be far too small to be seen.)Analysis of a planetary-rotation system for evaporated optical coatings
Oliver, J. B.
2016-01-01
The impact of planetary-design considerations for optical coating deposition is analyzed, including the ideal number of planets, variations in system performance, and the deviation of planet motion from the ideal. System capacity is maximized for four planets, although substrate size can significantly influence this result. Guidance is provided in the design of high-performance deposition systems based on the relative impact of different error modes. As a result, errors in planet mounting such that the planet surface is not perpendicular to its axis of rotation are particularly problematic, suggesting planetary design modifications would be appropriate.
Kepler-47: A Three-Planet Circumbinary System
NASA Astrophysics Data System (ADS)
Welsh, William; Orosz, Jerome; Quarles, Billy; Haghighipour, Nader
2015-12-01
Kepler-47 is the most interesting of the known circumbinary planets. In the discovery paper by Orosz et al. (2012) two planets were detected, with periods of 49.5 and 303 days around the 7.5-day binary. In addition, a single "orphan" transit of a possible third planet was noticed. Since then, five additional transits by this planet candidate have been uncovered, leading to the unambiguous confirmation of a third transiting planet in the system. The planet has a period of 187 days, and orbits in between the previously detected planets. It lies on the inner edge of the optimistic habitable zone, while its outer sibling falls within the conservative habitable zone. The orbit of this new planet is precessing, causing its transits to become significantly deeper over the span of the Kepler observations. Although the planets are not massive enough to measurably perturb the binary, they are sufficiently massive to interact with each other and cause mild transit timing variations (TTVs). This enables our photodynamical model to estimate their masses. We find that all three planets have very low-density and are on remarkably co-planar orbits: all 4 orbits (the binary and three planets) are within ~2 degrees of one another. Thus the Kepler-47 system puts interesting constraints on circumbinary planet formation and migration scenarios.
Origins of Inner Solar Systems
NASA Astrophysics Data System (ADS)
Dawson, Rebekah Ilene
2017-06-01
Over the past couple decades, thousands of extra-solar planetshave been discovered orbiting other stars. The exoplanets discovered to date exhibit a wide variety of orbital and compositional properties; most are dramatically different from the planets in our own Solar System. Our classical theories for the origins of planetary systems were crafted to account for the Solar System and fail to account for the diversity of planets now known. We are working to establish a new blueprint for the origin of planetary systems and identify the key parameters of planet formation and evolution that establish the distribution of planetary properties observed today. The new blueprint must account for the properties of planets in inner solar systems, regions of planetary systems closer to their star than Earth’s separation from the Sun and home to most exoplanets detected to data. I present work combining simulations and theory with data analysis and statistics of observed planets to test theories of the origins of inner solars, including hot Jupiters, warm Jupiters, and tightly-packed systems of super-Earths. Ultimately a comprehensive blueprint for planetary systems will allow us to better situate discovered planets in the context of their system’s formation and evolution, important factors in whether the planets may harbor life.
Journey to a Star Rich with Planets
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Click on the image for movie of Journey to a Star Rich with Planets This artist's animation takes us on a journey to 55 Cancri, a star with a family of five known planets - the most planets discovered so far around a star besides our own. The animation begins on Earth, with a view of the night sky and 55 Cancri (flashing dot), located 41 light-years away in the constellation Cancer. It then zooms through our solar system, passing our asteroids and planets, until finally arriving at the outskirts of 55 Cancri. The first planet to appear is the farthest out from the star -- a giant planet, probably made of gas, with a mass four times that of Jupiter. This planet orbits its star every 14 years, similar to Jupiter's 11.9-year orbit. As the movie continues, the three inner planets are shown, the closest of which is about 10 to 13 times the mass of Earth with an orbital period of less than three days. Zooming out, the animation highlights the newest member of the 55 Cancri family - a massive planet, likely made of gas, water and rock, about 45 times the mass of Earth and orbiting the star every 260 days. This planet is the fourth out from the star, and lies in the system's habitable zone (green). A habitable zone is the place around a star where liquid water would persist. Though the newest planet probably has a thick gaseous envelope, astronomers speculate that it could have one or more moons. In our own solar system, moons are common, so it seems likely that they also orbit planets in other solar systems. If such moons do exist, and if they are as large as Mars or Earth, astronomers speculate that they would retain atmospheres and surface liquid water that might make interesting environments for the development of life. The animation ends with a comparison between 55 Cancri and our solar system. The colors of the illustrated planets were chosen to resemble those of our own solar system. Astronomers do not know what the planets look like.A possible giant planet orbiting the cataclysmic variable LX Ser
NASA Astrophysics Data System (ADS)
Li, Kai; Hu, Shaoming; Zhou, Jilin; Wu, Donghong; Guo, Difu; Jiang, Yunguo; Gao, Dongyang; Chen, Xu; Wang, Xianyu
2017-04-01
LX Ser is a deeply eclipsing cataclysmic variable with an orbital period of 0.1584325 d. 62 new eclipse times were determined by our observations and the AAVSO International Data base. Combining all available eclipse times, we analyzed the O - C behavior of LX Ser. We found that the O - C diagram of LX Ser shows a sinusoidal oscillation with a period of 22.8 yr and an amplitude of 0.00035 d. Two mechanisms (i.e., the Applegate mechanism and the light-travel time effect) are applied to explain the cyclic modulation. We found that it is difficult to apply the Applegate mechanism to explain the cyclic oscillation in the orbital period. Therefore, the cyclic period change is most likely to be caused by the light-travel time effect due to the presence of a third body. The mass of the tertiary component was determined to be M3 ∼ 7.5 MJup. We supposed that the tertiary companion is plausibly a giant planet. The stability of the giant planet was checked, and we found that the multiple system is stable.
Optical performance of the New Worlds Occulter
NASA Astrophysics Data System (ADS)
Arenberg, Jonathan W.; Lo, Amy S.; Glassman, Tiffany M.; Cash, Webster
2007-04-01
The New Worlds Observer (NWO) is a multiple spacecraft mission that is capable of detecting and characterizing extra-solar planets and planetary systems. NWO consists of an external occulter and a generic space telescope, flying in tandem. The external occulter has specific requirements on its shape and size, while the telescope needs no special modification beyond that required to do high-quality astrophysical observations. The occulter is a petal-shaped, opaque screen that creates a high-suppression shadow large enough to accommodate the telescope. This article reports on the optical performance of the novel New Worlds occulter design. It also introduces two new aspects of its optical performance which enhance the detectability of extra-solar planets. We also include a brief discussion of the buildability and the tolerances of the occulter. It is also shown that an occulter design can be found for any set of science requirements. We show that NWO is a viable mission concept for the study of extra-solar planets. To cite this article: J.W. Arenberg et al., C. R. Physique 8 (2007).
77 FR 3102 - Procedures for Implementing the National Environmental Policy Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... from solar system bodies (such as asteroids, comets, planets, dwarf planets, and planetary moons.../program which would return samples to Earth from solar system bodies (such as asteroids, comets, planets, dwarf planets, and planetary moons), which would likely receive a Restricted Earth Return categorization...
Stability Analysis of the Planetary System Orbiting Upsilon Andromedae
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
We present results of long-term numerical orbital integrations designed to test the stability of the three-planet system orbiting Upsilon Andromedae and short-term integrations to test whether mutual perturbations among the planets can be used to determine planetary masses. Our initial conditions are based on the latest fits to the radial velocity data obtained by the planet-search group at Lick Observatory. The new fits result in significantly more stable systems than did the initially announced planetary parameters. An analytic analysis of the star and the two outer planets shows that this subsystem is Hill stable up to five. Our integrations involving all three planets show that the system is stable for at least 100 Myr for up to four. In our simulations, we still see a secular resonance between the outer two planets and in some cases large oscillations in the eccentricity of the inner planet.
The formation of co-orbital planets and their resulting transit signatures
NASA Astrophysics Data System (ADS)
Granados Contreras, Agueda Paula; Boley, Aaron
2018-04-01
Systems with Tightly-packed Inner Planets (STIPs) are metastable, exhibiting sudden transitions to an unstable state that can potentially lead to planet consolidation. When these systems are embedded in a gaseous disc, planet-disc interactions can significantly reduce the frequency of instabilities, and if they do occur, disc torques alter the dynamical outcomes. We ran a suite of N-body simulations of synthetic 6-planet STIPs using an independent implementation of IAS15 that includes a prescription for gaseous tidal damping. The algorithm is based on the results of disc simulations that self-consistently evolve gas and planets. Even for very compact configurations, the STIPS are resistant to instability when gas is present. However, instability can still occur, and in some cases, the combination of system instability and gaseous damping leads to the formation of co-orbiting planets that are stable even when gas damping is removed. While rare, such systems should be detectable in transit surveys, although the dynamics of the system can make the transit signature difficult to identify.
Thirty years of beta Pic and debris disks studies
NASA Astrophysics Data System (ADS)
Lagrange, Anne-Marie; Boccaletti, Anthony
2015-01-01
In the last 30 years, our knowledge of planetary systems has considerably evolved, in particular thanks to the development of observational techniques and computer simulations for modeling. From the observational point of view, emblematic discoveries thirty years ago have opened a way to dedicated studies, among which the IRAS detections of IR excess associated to dust surrounding main-sequence stars. Shortly after these discoveries, the first image of a debris disk around the star beta Pictoris in 1984 was made, followed in the 90's by the indirect detection of extrasolar planets and, a decade later, by the direct imaging of young giant planets. Beta Pictoris is a ground-breaking object for the study of formation and evolution of planetary systems. It is a unique system in many regards, as it is made of dust, planetesimals, comets and at least one giant planet. Observations with various techniques (imaging, spectroscopy, interferometry) at multiple wavelengths (from the UV to radio waves) have allowed significant progress in the understanding of this system. Yet, many questions are still open, and more results are expected in the coming decade thanks to the next generation of instruments like for instance ALMA, JWST, SPHERE and many others. To celebrate the thirtieth anniversary of the first debris disk image, we propose to gather experts on the analysis of beta Pictoris and interested colleagues to review and discuss the observational knowledge on this archetypal system (including the latest results), as well as its current understanding and related open questions to be addressed in the next decade, such as the history of the disk and planet formation, dynamical evolution, etc. Similar, well-studied debris disks systems with significant amount of observational data that allow in-depth modeling will be also presented and discussed. Second, in a two-days dedicated workshop, we will gather to define an action plan for the typically 3-5 next years to achieve a full, comprehensive description of the whole beta Pictoris system, and to organize the necessary work, and possible milestones. In the next years, a similar approach may, eventually, be applicable to other systems.
Thirty years of beta Pic and debris disks studies
NASA Astrophysics Data System (ADS)
Lagrange, A.-M.; Boccaletti, A.
2014-09-01
In the last 30 years, our knowledge of planetary systems has considerably evolved, in particular thanks to the development of observational techniques and computer simulations for modeling. From the observational point of view, emblematic discoveries thirty years ago have opened a way to dedicated studies, among which the IRAS detections of IR excess associated to dust surrounding main-sequence stars. Shortly after these discoveries, the first image of a debris disk around the star beta Pictoris in 1984 was made, followed in the 90's by the indirect detection of extrasolar planets and, a decade later, by the direct imaging of young giant planets. Beta Pictoris is a ground-breaking object for the study of formation and evolution of planetary systems. It is a unique system in many regards, as it is made of dust, planetesimals, comets and at least one giant planet. Observations with various techniques (imaging, spectroscopy, interferometry) at multiple wavelengths (from the UV to radio waves) have allowed significant progress in the understanding of this system. Yet, many questions are still open, and more results are expected in the coming decade thanks to the next generation of instruments like for instance ALMA, JWST, SPHERE and many others. To celebrate the thirtieth anniversary of the first debris disk image, we propose to gather experts on the analysis of beta Pictoris and interested colleagues to review and discuss the observational knowledge on this archetypal system (including the latest results), as well as its current understanding and related open questions to be addressed in the next decade, such as the history of the disk and planet formation, dynamical evolution, etc. Similar, well-studied debris disks systems with significant amount of observational data that allow in-depth modeling will be also presented and discussed. Second, in a two-days dedicated workshop, we will gather to define an action plan for the typically 3-5 next years to achieve a full, comprehensive description of the whole beta Pictoris system, and to organize the necessary work, and possible milestones. In the next years, a similar approach may, eventually, be applicable to other systems.
An analysis of the transit times of TrES-1b
NASA Astrophysics Data System (ADS)
Steffen, Jason H.; Agol, Eric
2005-11-01
The presence of a second planet in a known, transiting-planet system will cause the time between transits to vary. These variations can be used to constrain the orbital elements and mass of the perturbing planet. We analyse the set of transit times of the TrES-1 system given in Charbonneau et al. We find no convincing evidence for a second planet in the TrES-1 system from those data. By further analysis, we constrain the mass that a perturbing planet could have as a function of the semi-major axis ratio of the two planets and the eccentricity of the perturbing planet. Near low-order, mean-motion resonances (within ~1 per cent fractional deviation), we find that a secondary planet must generally have a mass comparable to or less than the mass of the Earth - showing that these data are the first to have sensitivity to sub-Earth-mass planets. We compare the sensitivity of this technique to the mass of the perturbing planet with future, high-precision radial velocity measurements.
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2005-01-01
Modern theories of star and planet formation are based upon observations of planets and smaller bodies within our own Solar System, exoplanets &round normal stars and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path.
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1997-01-01
Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that most single stars should have rocky planets in orbit about them; the frequency of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models for the formation of the giant planets found in recent radial velocity searches are discussed.
The Birth of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1997-01-01
An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments, and they predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.
Maximum number of habitable planets at the time of Earth's origin: new hints for panspermia?
von Bloh, Werner; Franck, Siegfried; Bounama, Christine; Schellnhuber, Hans-Joachim
2003-04-01
New discoveries have fuelled the ongoing discussion of panspermia, i.e. the transport of life from one planet to another within the solar system (interplanetary panspermia) or even between different planetary systems (interstellar panspermia). The main factor for the probability of interstellar panspermia is the average density of stellar systems containing habitable planets. The combination of recent results for the formation rate of Earth-like planets with our estimations of extrasolar habitable zones allows us to determine the number of habitable planets in the Milky Way over cosmological time scales. We find that there was a maximum number of habitable planets around the time of Earth's origin. If at all, interstellar panspermia was most probable at that time and may have kick-started life on our planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu, E-mail: rodigas@as.arizona.edu
Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dustmore » grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.« less
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
We present results of long-term numerical orbital integrations designed to test the stability of the three-planet system orbiting upsilon Andromedae and short-term integrations to test whether mutual perturbations among the planets can be used to determine planetary masses. Our initial conditions are based on recent fits to the radial velocity data obtained by the planet search group at Lick Observatory. The new fits result in significantly more stable systems than did the initially announced planetary parameters. Our integrations using the 2000 February parameters show that if the system is nearly planar, then it is stable for at least 100 Myr for m(sub f) = 1/sin i less than or = 4. In some stable systems, the eccentricity of the inner planet experiences large oscillations. The relative periastra of the outer two planets' orbits librate about 0 deg. in most of the stable systems; if future observations imply that the periastron longitudes of these planets are very closely aligned at the present epoch, dynamical simulations may provide precise estimates for the masses and orbital inclinations of these two planets.
Solar System Evolution through Planetesmial Collisions
NASA Astrophysics Data System (ADS)
Trierweiler, Isabella; Laughlin, Greg
2018-01-01
Understanding planet formation is crucial to unraveling the history of our Solar System. Refining our theory of planet formation has become particularly important as the discovery of exoplanet systems through missions like Kepler have indicated that our system is incredibly unique. Compared to other systems around Sun-like stars, we are missing a significant amount of mass in the inner region of our solar system.A leading explanation for the low mass of the terrestrial planets is Jupiter’s Grand Tack. In this theory, the existence of the rocky planets is thought to be the result of the migration of Jupiter through the inner solar system. This migration could spark a collisional cascade of planetesimals, allowing planetesimals to drift inwards and shepherd an original set of massive planets into the Sun, thus explaining the absence of massive planets in our current system. The remnants of the planetesimals would them become the building blocks for a new generation of smaller, rocky planets.Using the N-body simulator REBOUND, we investigate the dynamics of the Grand Tack. We focus in particular on collisional cascades, which are thought to cause the inward planetesimal drift. We first modify the simulator to account for fragmentation outcomes in planetesimal collisions. Modeling disks of varying initial conditions, we then characterize the disk conditions needed to begin a cascade and shed light on the solar system’s dynamics just prior to the formation of the terrestrial planets.
VizieR Online Data Catalog: Detection of Kepler multiple M-star systems (Rappaport+, 2014)
NASA Astrophysics Data System (ADS)
Rappaport, S.; Swift, J.; Levine, A.; Joss, M.; Sanchis-Ojeda, R.; Barclay, T.; Still, M.; Handler, G.; Olah, K.; Muirhead, P. S.; Huber, D.; Vida, K.
2017-07-01
In all, we find 297 of the 3897 targets exhibit the requisite significant Fourier transform (FT) signal comprising a base frequency plus its harmonic, with the base frequency exceeding 0.5 cycles/day (i.e., Prot<2 days). We believe that the majority of these periodicities are likely to be due to stellar rotation manifested via starspots, but a significant number may be due to planet transits and binary eclipses. The individual FTs for these systems were further examined to eliminate those which were clearly not due to rotating starspots. In all cases we folded the data modulo the detected fundamental period, and were readily able to rule out cases due to transiting planets since their well-known sharp, relatively rectangular dipping profiles are characteristic. Of course, we also checked the KOI list for matches. Any of the objects that appear in the Kepler eclipsing binary ("EB") star catalog (e.g., Matijevic et al. 2012AJ....143..123M) were likewise eliminated. (2 data files).
ON THE LIKELIHOOD OF PLANET FORMATION IN CLOSE BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang-Condell, Hannah, E-mail: hjangcon@uwyo.edu
2015-02-01
To date, several exoplanets have been discovered orbiting stars with close binary companions (a ≲ 30 AU). The fact that planets can form in these dynamically challenging environments implies that planet formation must be a robust process. The initial protoplanetary disks in these systems from which planets must form should be tidally truncated to radii of a few AU, which indicates that the efficiency of planet formation must be high. Here, we examine the truncation of circumstellar protoplanetary disks in close binary systems, studying how the likelihood of planet formation is affected over a range of disk parameters. If themore » semimajor axis of the binary is too small or its eccentricity is too high, the disk will have too little mass for planet formation to occur. However, we find that the stars in the binary systems known to have planets should have once hosted circumstellar disks that were capable of supporting planet formation despite their truncation. We present a way to characterize the feasibility of planet formation based on binary orbital parameters such as stellar mass, companion mass, eccentricity, and semimajor axis. Using this measure, we can quantify the robustness of planet formation in close binaries and better understand the overall efficiency of planet formation in general.« less
NASA Astrophysics Data System (ADS)
Grunblatt, Samuel K.; Huber, Daniel; Gaidos, Eric; Lopez, Eric D.; Howard, Andrew W.; Isaacson, Howard T.; Sinukoff, Evan; Vanderburg, Andrew; Nofi, Larissa; Yu, Jie; North, Thomas S. H.; Chaplin, William; Foreman-Mackey, Daniel; Petigura, Erik; Ansdell, Megan; Weiss, Lauren; Fulton, Benjamin; Lin, Douglas N. C.
2017-12-01
Despite more than 20 years since the discovery of the first gas giant planet with an anomalously large radius, the mechanism for planet inflation remains unknown. Here, we report the discovery of K2-132b, an inflated gas giant planet found with the NASA K2 Mission, and a revised mass for another inflated planet, K2-97b. These planets orbit on ≈9 day orbits around host stars that recently evolved into red giants. We constrain the irradiation history of these planets using models constrained by asteroseismology and Keck/High Resolution Echelle Spectrometer spectroscopy and radial velocity measurements. We measure planet radii of 1.31 ± 0.11 R J and 1.30 ± 0.07 R J, respectively. These radii are typical for planets receiving the current irradiation, but not the former, zero age main-sequence irradiation of these planets. This suggests that the current sizes of these planets are directly correlated to their current irradiation. Our precise constraints of the masses and radii of the stars and planets in these systems allow us to constrain the planetary heating efficiency of both systems as 0.03{ % }-0.02 % +0.03 % . These results are consistent with a planet re-inflation scenario, but suggest that the efficiency of planet re-inflation may be lower than previously theorized. Finally, we discuss the agreement within 10% of the stellar masses and radii, and the planet masses, radii, and orbital periods of both systems, and speculate that this may be due to selection bias in searching for planets around evolved stars.
Transit Duration Variations due to Secular Interactions in Systems with Tightly-packed Inner Planets
NASA Astrophysics Data System (ADS)
Boley, Aaron; Van Laerhoven, Christa; Granados Contreras, A. Paula
2018-04-01
Secular interactions among planets in multi-planet systems will lead to variations in orbital inclinations and to the precession of orbital nodes. Taking known system architectures at face value, we calculate orbital precession rates for planets in tightly-packed systems using classical second-order secular theory, in which the orientation of the orbits can be described as a vector sum of eigenmodes and the eigenstructure is determined only by the masses and semi-major axes of the planets. Using this framework, we identify systems that have fast precession frequencies, and use those systems to explore the range of transit duration variation that could occur using amplitudes that are consistent with tightly-packed planetary systems. We then further assess how transit duration variations could be used in practice.
Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.
Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jørgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N
2012-08-03
In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.
NASA Astrophysics Data System (ADS)
Akeson, Rachel
Measuring the occurrence rate of extrasolar planets is one of the most fundamental constraints on our understanding of planets throughout the Galaxy. By studying planet populations across a wide parameter space in stellar age, type, metallicity, and multiplicity, we can inform planet formation, migration and evolution theories. The ground-based ELTs and the flagship space missions that NASA is planning in the next decades and beyond will be designed to make the first observations of potential biomarkers in the atmospheres of extrasolar planets understanding how common these planets and how they are distributed will be crucial for this effort. One of the most important results of the main Kepler mission was a measurement of the frequency of planets orbiting FGK dwarfs. Although that result is crucial for estimating the frequency of planetary systems orbiting middle-aged Sun-like stars, the majority of stars in the galaxy have lower masses. We propose to extend the Kepler occurrence rates to lower stellar masses by using publicly available data from the second-generation K2 mission to estimate the frequency of planets orbiting low-mass stars. The confluence of the lower temperature, smaller size, and relative abundance of M dwarfs makes them attractive and efficient targets for habitable planet detection and characterization. The archived K2 data contain nearly an order of magnitude more M dwarfs than the original Kepler data set ( 30,000 compared to 3700), allowing us to constrain occurrence rates both more precisely and with more granularity across the M dwarf parameter range. We will also take advantage of the wide variety of stellar environments sampled by the community-driven K2 mission to estimate the frequency of planets orbiting stars with a range of metallicities and ages. The K2 mission has observed several clusters across a wide range of ages, including the Upper Scorpius OB association (10My old), the Pleiades cluster (115My old), and the Hyades and Praesepe clusters (600My old). One goal of this proposal is to pinpoint when and if the planet occurrence rate converges with that of the Kepler field, whose stars have a median age of 4Gy. This will inform the timescales of the dominant formation and migration mechanisms, and improve our ability to discriminate between competing proposed theories. The proposed work encompasses the following tasks: (1) Generating and publishing a uniform, repeatable, robust catalogue of planet candidates using the publicly available K2 data comprising the first 33 months of observations; (2) Measuring the completeness (false negative rate) and reliability (false positive rate) of the resulting candidate catalogue; (3) Systematically and accurately characterizing the properties of the stellar sample (both exoplanet hosts and non-hosts); (4) Calculating the distribution of the underlying planet population across a wide range of stellar host parameters. The proposed work is relevant to several of NASA s strategic goals, including ascertaining the content, origin, and evolution of the solar system and the potential for life elsewhere , and discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars . With respect to the Astrophysics Data Analysis Program call, the proposed work builds on the legacy of Kepler occurrence rate calculations by placing them in the wider context afforded by the publicly available K2 data.
The Architectural Design Rules of Solar Systems Based on the New Perspective
NASA Astrophysics Data System (ADS)
Sharma, Bijay Kumar
2011-05-01
In this paper I present a new perspective of the birth and evolution of Planetary Systems. This new perspective presents an all encompassing and self consistent Paradigm of the birth and evolution of the solar systems. In doing so it redefines astronomy and rewrites astronomical principles. Kepler and Newton defined a stable and non-evolving elliptical orbits. While this perspective defines a collapsing or expanding spiral orbit of planets except for Brown Dwarfs. Brown Dwarfs are significant fraction of the central star. Hence they rapidly evolve from non-Keplerian state to the end point which is a Keplerian state where it is in stable elliptical orbits. On the basis of the Lunar Laser Ranging Data released by NASA on the Silver Jubilee Celebration of Man's Landing on Moon on 21st July 1969-1994, theoretical formulation of Earth-Moon tidal interaction was carried out and Planetary Satellite Dynamics was established. It was found that this mathematical analysis could as well be applied to Star and Planets system and since every star could potentially contain an extra-solar system, hence we have a large ensemble of exo-planets to test our new perspective on the birth and evolution of solar systems. Till date 403 exo-planets have been discovered in 390 extra-solar systems by radial velocity method, by transiting planet method, by gravitational lensing method, by direct imaging method and by timing method. I have taken 12 single planet systems, four Brown Dwarf - Star systems and two Brown Dwarf pairs. Following architectural design rules are corroborated through this study of exo-planets. All planets are born at inner Clarke's Orbit what we refer to as inner geo-synchronous orbit in case of Earth-Moon System. The inner Clarke's Orbit is an orbit of unstable equilibrium. By any perturbative force such as cosmic particles or radiation pressure, the planet gets tipped long of aG1 or short of aG1. Here aG1 is inner Clarke's Orbit. If planet is long of aG1 then it is said to be in extra-synchronous orbit. Here Gravitational Sling Shot effect is in play. In gravity assist planet fly-by maneuver in space flights, gravitational sling shot is routinely used to boost the space craft to its destination. The exo-planet can either be launched on death spiral as CLOSE HOT JUPITERS or can be launched on an expanding spiral path as the planets in our Solar System are. In death spiral, exo-planet less than 5 mJ will get pulverized and vaporized in close proximity to the host star. If the mass is between 5 and 7.5 mJ then it will be partially vaporized and partially engulfed by the host star and if it is greater than 7.5 mJ, then it will be completely ingested by the host star. In the process the planet will deposit all its material and angular momentum in the Host Star. This will leave tell-tale imprints of ingestion: in such cases host Star will have higher 7Li, host star will become a rapidly rotating progenitor and the host star will have excess IR. All these have been confirmed by observations of Transiting Planets. It was also found that if the exo-planet are significant fraction of the host star then those exo-planets rapidly migrate from aG1 to aG2 and have very short Time Constant of Evolution as Brown Dwarfs have. But if exo-planets are insignificant fraction of the host star as our terrestrial planets are then they are stay put in their original orbit of birth. By corollary this implies that Giant exo-planets reach nearly Unity Evolution Factor in a fraction of the life span of a solar system. This is particularly true for brown dwarfs orbiting main sequence stars. In this study four star systems hosting Brown Dwarfs, two Brown Dwarf pairs and 12 extrasolar systems hosting Jupiter sized planets are selected. In Brown Dwarfs evolution factor is invariably UNITY or near UNITY irrespective of their respective age and Time Constant of Evolution is very short of the order of year or tens of years. In case of 12 exo-planets system with increasing mass ratio evolution factor increases and time constant of evolution shortens from Gy to My though there are two exceptions. TW Hydrae is a special case. This Solar System is newly born system which is only 9 million years old. Hence its exo-planet has just been born and it is very near its birth place just as predicted by my hypothesis. In fact it is only slightly greater than aG1. This vindicates our basic premise that planets are always born at inner Clarke's Orbit. This study vindicates the design rules which had been postulated at 35th COSPAR Scientific Assembly in 2004 at Paris, France, under the title "New Perspective on the Birth & Evolution of Solar Systems".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beauge, C.; Nesvorny, D.
Doppler and transit observations of exoplanets show a pile-up of Jupiter-size planets in orbits with a 3 day period. A fraction of these hot Jupiters have retrograde orbits with respect to the parent star's rotation, as evidenced by the measurements of the Rossiter-McLaughlin effect. To explain these observations we performed a series of numerical integrations of planet scattering followed by the tidal circularization and migration of planets that evolved into highly eccentric orbits. We considered planetary systems having three and four planets initially placed in successive mean-motion resonances, although the angles were taken randomly to ensure orbital instability in shortmore » timescales. The simulations included the tidal and relativistic effects, and precession due to stellar oblateness. Our results show the formation of two distinct populations of hot Jupiters. The inner population (Population I) is characterized by semimajor axis a < 0.03 AU and mainly formed in the systems where no planetary ejections occurred. Our follow-up integrations showed that this population was transient, with most planets falling inside the Roche radius of the star in <1 Gyr. The outer population of hot Jupiters (Population II) formed in systems where at least one planet was ejected into interstellar space. This population survives the effects of tides over >1 Gyr and fits nicely the observed 3 day pile-up. A comparison between our three-planet and four-planet runs shows that the formation of hot Jupiters is more likely in systems with more initial planets. Due to the large-scale chaoticity that dominates the evolution, high eccentricities and/or high inclinations are generated mainly by close encounters between the planets and not by secular perturbations (Kozai or otherwise). The relative proportion of retrograde planets seems of be dependent on the stellar age. Both the distribution of almost aligned systems and the simulated 3 day pile-up also fit observations better in our four-planet simulations. This may suggest that the planetary systems with observed hot Jupiters were originally rich in the number of planets, some of which were ejected. In a broad perspective, our work therefore hints on an unexpected link between the hot Jupiters and recently discovered free floating planets.« less
A Venus-mass Planet Orbiting a Brown Dwarf: A Missing Link between Planets and Moons
NASA Astrophysics Data System (ADS)
Udalski, A.; Jung, Y. K.; Han, C.; Gould, A.; Kozłowski, S.; Skowron, J.; Poleski, R.; Soszyński, I.; Pietrukowicz, P.; Mróz, P.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Pietrzyński, G.; Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Gaudi, B. S.; Hwang, K.-H.; Choi, J.-Y.; Shin, I.-G.; Park, H.; Bozza, V.
2015-10-01
The co-planarity of solar system planets led Kant to suggest that they formed from an accretion disk, and the discovery of hundreds of such disks around young stars as well as hundreds of co-planar planetary systems by the Kepler satellite demonstrate that this formation mechanism is extremely widespread. Many moons in the solar system, such as the Galilean moons of Jupiter, also formed out of the accretion disks that coalesced into the giant planets. Here we report the discovery of an intermediate system, OGLE-2013-BLG-0723LB/Bb, composed of a Venus-mass planet orbiting a brown dwarf, which may be viewed either as a scaled-down version of a planet plus a star or as a scaled-up version of a moon plus a planet orbiting a star. The latter analogy can be further extended since they orbit in the potential of a larger, stellar body. For ice-rock companions formed in the outer parts of accretion disks, like Uranus and Callisto, the scaled masses and separations of the three types of systems are similar, leading us to suggest that the formation processes of companions within accretion disks around stars, brown dwarfs, and planets are similar.
Eccentricities and inclinations of multiplanet systems with external perturbers
NASA Astrophysics Data System (ADS)
Pu, Bonan; Lai, Dong
2018-07-01
Compact multiplanet systems containing super-Earths or sub-Neptunes, commonly found around solar-type stars, may be surrounded by external giant planet or stellar companions, which can shape the architecture and observability of the inner systems. We present a comprehensive study on the evolution of the inner planetary system subject to the gravitational influence of an eccentric, misaligned outer perturber. Analytic results are derived for the inner planet eccentricities (ei) and mutual inclination (θ12) of the `two-planet + perturber' system, calibrated with numerical secular and N-body integrations, as a function of the perturber mass mp, semimajor axis ap, and inclination angle θp. We find that the dynamics of the inner system is determined by the dimensionless parameter ɛ12, given by the ratio between the differential precession rate driven by the perturber and the mutual precession rate of the inner planets. Loosely packed systems (corresponding to ɛ12 ≫ 1) are more susceptible to eccentricity/inclination excitations by the perturber than tightly packed inner systems (with ɛ12 ≪ 1) (or singletons), although resonance may occur around ɛ12 ˜ 1, leading to large ei and θ12. Dynamical instability may set in for inner planet systems with large excited eccentricities and mutual inclinations. We present a formalism to extend our analytical results to general inner systems with N > 2 planets and apply our results to constrain possible external companions to the Kepler-11 system. Eccentricity and inclination excitation by external companions may help explain the observational trend that systems with fewer transiting planets are dynamically hotter than those with more transiting planets.
Pinning Down Properties of TRAPPIST-1
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-02-01
TRAPPIST-1, a nearby ultracool dwarf star, was catapulted into the public eye roughly a year ago when it was determined to host seven transiting, Earth-sized planets three of which are located in its habitable zone. But how correct are the properties weve measured for this system?TRAPPIST-1 is a very small, dim star its only 11% the diameter of the Sun which makes it easier for us to learn about its planets from transit data. [ESO]Intrigue of TRAPPIST-1One reason the TRAPPIST-1 system is of particular interest to scientists is that its small star (roughly the size of Jupiter) means that the system has a very favorable planet-to-star ratio. This makes it possible to learn a great deal about the properties of the planets using current and next-generation telescopes.The observations we expect to be able to make of TRAPPIST-1 exoplanets of the planet atmospheres, surface conditions, and internal compositions, for example will allow us to test planet formation and evolution theories and assess the prospects of habitability for Earth-sized planets orbiting cool M dwarfs.Why Stellar Measurements MatterThe parallax motion of TRAPPIST-1 in dec (top) and R.A. (bottom) as a function of day. Observations were made between 2013 and 2016 and then folded over a year. [Van Grootel et al. 2018]In order to make these measurements, however, we first need very precise measurements of the host stars parameters. This is because transiting exoplanet parameters are generally determined relative to those of the host. A few examples:Determining how much irradiation a planet receives requires knowing the luminosity of the host star and planets orbit size. The latter is calculated based on the host stars mass.Determining the planets radius requires knowing the host stars radius, as the planets transit depth tells us only the star-to-planet radius ratio.Determining whether or not the planet is able to retain an atmosphere and therefore whether it has exhibited long-term habitability requires knowing the time the host star takes to contract onto the main sequence, which depends on the stars mass.When the TRAPPIST-1 planetary system was discovered, measurements of TRAPPIST-1s properties were made to the best of our abilities at the time. Now, in a new study led by Valrie Van Grootel (University of Lige, Belgium), a team of scientists has used new observations and analysis techniques to refine our measurements of the star.Stellar luminosity for evolution models for various masses and metallicities. The green dashed horizontal lines bracket the authors observed value for TRAPPIST-1s luminosity. A stellar mass of 0.09 M is needed to account for the old age and luminosity of the star. [Van Grootel et al. 2018]New EstimatesUsing 188 epochs of observations of TRAPPIST-1 from multiple telescopes between 2013 and 2016, Van Grootel and collaborators obtained a very precise measurement for TRAPPIST-1s parallax. This allowed them to refine the estimate of its luminosity now measured at (5.22 0.19) x 10-4that of the Sun to twice the precision of the previous estimate.The team then produced a new estimate for TRAPPIST-1s mass using new stellar evolution modeling and analysis, combined with empirical mass derived for similar ultracool dwarfs in astrometric binaries. This approach produces a final mass for TRAPPIST-1 of 0.089 0.006 M which is nearly 10% higher than the previous estimate and significantly more precise. Finally, the authors use these values to obtain new estimates of TRAPPIST-1s radius (0.121 0.003 R) and effective temperature (2516 41 K).These new, refined measurements will ensure that our future observations of the TRAPPIST-1 planets are being interpreted correctly which is criticalfor a system that will be so thoroughly scrutinized in coming years. Keep an eye out for new results about TRAPPIST-1 in the future!CitationValrie Van Grootel et al 2018 ApJ 853 30. doi:10.3847/1538-4357/aaa023
Schwarz, Richard; Pilat-Lohinger, Elke; Dvorak, Rudolf; Erdi, Balint; Sándor, Zsolt
2005-10-01
With the aid of numerical experiments we examined the dynamical stability of fictitious terrestrial planets in 1:1 mean motion resonance with Jovian-like planets of extrasolar planetary systems. In our stability study of the so-called "Trojan" planets in the habitable zone, we used the restricted three-body problem with different mass ratios of the primary bodies. The application of the three-body problem showed that even massive Trojan planets can be stable in the 1:1 mean motion resonance. From the 117 extrasolar planetary systems only 11 systems were found with one giant planet in the habitable zone. Out of this sample set we chose four planetary systems--HD17051, HD27442, HD28185, and HD108874--for further investigation. To study the orbital behavior of the stable zone in the different systems, we used direct numerical computations (Lie Integration Method) that allowed us to determine the escape times and the maximum eccentricity of the fictitious "Trojan planets."
Design of aircraft turbine fan drive gear transmission system
NASA Technical Reports Server (NTRS)
Dent, E.; Hirsch, R. A.; Peterson, V. W.
1970-01-01
The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts.
Spin-Orbit Misalignment of Two-Planet-System KOI-89 Via Gravity Darkening
NASA Astrophysics Data System (ADS)
Ahlers, Jonathon; Barnes, Jason W.; Barnes, Rory
2015-12-01
We investigate the potential causes of spin-orbit misalignment in multiplanetary systems via two-planet-system KOI-89. We focus on this system because it can experimentally constrain the outstanding hypotheses that have been proposed to cause misalignments. Using gravity darkening, we constrain both the spin-orbit angles and the angle between the planes of the orbits. Our best-fit model shows that the 85-day-orbit and 208-day-orbit planets are misaligned from the host star's rotation axis by 72° ± 3° and 73° (+11 -5°), respectively. From these results, we limit KOI-89's potential causes of spin-orbit misalignment based on three criteria: agreement with KOI-89's fundamental parameters, the capability to cause extreme misalignment, and conformance with mutually aligned planets. Our results disfavor planet-embryo collisions, chaotic evolution of stellar spin, magnetic torquing, coplanar high-eccentricity migration, and inclination resonance, limiting possible causes to star-disk binary interactions, disk warping via planet-disk interactions, Kozai resonance, planet-planet scattering, or internal gravity waves in the convective interior of the star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovich, Cristobal; Rafikov, Roman; Tremaine, Scott, E-mail: cpetrovi@princeton.edu
Many exoplanets in close-in orbits are observed to have relatively high eccentricities and large stellar obliquities. We explore the possibility that these result from planet-planet scattering by studying the dynamical outcomes from a large number of orbit integrations in systems with two and three gas-giant planets in close-in orbits (0.05 AU < a < 0.15 AU). We find that at these orbital separations, unstable systems starting with low eccentricities and mutual inclinations (e ≲ 0.1, i ≲ 0.1) generally lead to planet-planet collisions in which the collision product is a planet on a low-eccentricity, low-inclination orbit. This result is inconsistentmore » with the observations. We conclude that eccentricity and inclination excitation from planet-planet scattering must precede migration of planets into short-period orbits. This result constrains theories of planet migration: the semi-major axis must shrink by 1-2 orders of magnitude without damping the eccentricity and inclination.« less
Kepler Confirms First Earth-Sized Planet Outside Our Solar System (Kepler-20) (Reporter Package)
2011-12-19
NASA's Kepler mission has confirmed the discovery of the first Earth-size planets outside our solar system orbiting a sun-like star. Located about 1,000 light years from Earth, the Kepler-20 solar system has five planets orbiting a star similar to the Sun. Kepler-20f, the 4th planet in the system, is about 90 percent the size of Earth. Kepler-20f is slightly larger than Earth,with a radius that is 3 percent larger.
TWO SMALL PLANETS TRANSITING HD 3167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderburg, Andrew; Bieryla, Allyson; Latham, David W.
2016-09-20
We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R {sub ⊕} and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R {sub ⊕} and orbits its host star every 29.85 days. At a distance of just 45.8 ± 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167more » b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets’ masses. The outer planet is large enough that it likely has a thick gaseous envelope that could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope .« less
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)
1998-01-01
An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.
Observed properties of extrasolar planets.
Howard, Andrew W
2013-05-03
Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.
The Fate of Close-in Planets: Tidal or Magnetic Migration?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strugarek, A.; Bolmont, E.; Mathis, S.
Planets in close-in orbits interact magnetically and tidally with their host stars. These interactions lead to a net torque that makes close-in planets migrate inward or outward depending on their orbital distance. We systematically compare the strength of magnetic and tidal torques for typical observed star–planet systems (T-Tauri and hot Jupiter, M-dwarf and Earth-like planet, K star and hot Jupiter) based on state-of-the-art scaling laws. We find that depending on the characteristics of the system, tidal or magnetic effects can dominate. For very close-in planets, we find that both torques can make a planet migrate on a timescale as smallmore » as 10–100 thousands of years. Both effects thus have to be taken into account when predicting the evolution of compact systems.« less
Planetary system formation: Effects of planet-disk tidal interaction
NASA Astrophysics Data System (ADS)
Bryden, Geoffrey
The standard theory of planet formation begins with the coagulation of solid planetesimals (Safronov 1969, Wetherill & Stewart 1989) followed by the accretion of disk gas once the solid core reaches a critical mass >~10M⊕ (Perri & Cameron 1974, Mizuno 1980, Bodenheimer & Pollack 1986). The classic picture of planet formation, in which each planet's position in the nebula remain fixed, is challenged by the observed distribution of extra-solar planets (e.g. Mayor & Queloz 1995, Butler et al. 1999). The majority of these planets are on short-period orbits ( P<~10 days) very close to their central stars ( ap<~0.1 AU), suggesting that orbital migration plays an important role in the formation of planetary systems. The intent of this thesis is to explore the inclusion of protoplanetary tidal forces into the classical theory of planetary system formation. Protoplanetary interaction with the surrounding gaseous nebulae directly determines giant planets' semi-major axes, masses, gas/solid ratio, and relative spacing. In essence, the process of gap formation determines the primary observational characteristics of both individual planets and their composite systems. Detailed simulations of gap formation produce a range of planetary masses consistent with the observed distribution. Fully self-interacting models of planetary system formation can be used to create a wide variety of planetary systems, ranging from the solar system to Upsilon Andromeda (Butler et al. 1999).
How to Pluck a Spectrum from a Planet
NASA Technical Reports Server (NTRS)
2007-01-01
This diagram illustrates how astronomers using NASA's Spitzer Space Telescope can capture the elusive spectra of hot-Jupiter planets. Spectra are an object's light spread apart into its basic components, or wavelengths. By dissecting light in this way, scientists can sort through it and uncover clues about the composition of the object giving off the light. To obtain a spectrum for an object, one first needs to capture its light. Hot-Jupiter planets are so close to their stars that even the most powerful telescopes can't distinguish their light from the light of their much brighter stars. But, there are a few planetary systems that allow astronomers to measure the light from just the planet by using a clever technique. Such 'transiting' systems are oriented in such a way that, from our vantage point, the planets' orbits are seen edge-on and cross directly in front of and behind their stars. In this technique, known as the secondary eclipse method, changes in the total infrared light from a star system are measured as its planet transits behind the star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone. To capture a spectrum of the planet, Spitzer must observe the system twice. It takes a spectrum of the star together with the planet (first panel), then, as the planet disappears from view, a spectrum of just the star (second panel). By subtracting the star's spectrum from the combined spectrum of the star plus the planet, it is able to get the spectrum for just the planet (third panel). This ground-breaking technique was used by Spitzer to obtain the first-ever spectra of two planets beyond our solar system, HD 209458b and HD 189733b. The results suggest that the hot planets are socked in with dry clouds high up in the planet's stratospheres. In addition, HD 209458b showed hints of silicates, indicating those high clouds might be made of very fine sand-like particles.NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
Many of the exoplanets that weve discovered lie in compact systems with orbits very close to their host star. These systems are especially interesting in the case of cool stars where planets lie in the stars habitable zone as is the case, for instance, for the headline-making TRAPPIST-1 system.But other factors go into determining potential habitability of a planet beyond the rough location where water can remain liquid. One possible consideration: whether the planets have moons.Supporting HabitabilityLocations of equality between the Hill and Roche radius for five different potential moon densities. The phase space allows for planets of different semi-major axes and stellar host masses. Two example systems are shown, Kepler-80 and TRAPPIST-1, with dots representing the planets within them. [Kane 2017]Earths Moon is thought to have been a critical contributor to our planets habitability. The presence of a moon stabilizes its planets axial tilt, preventing wild swings in climate as the stars radiation shifts between the planets poles and equator. But what determines if a planet can have a moon?A planet can retain a moon in a stable orbit anywhere between an outer boundary of the Hill radius (beyond which the planets gravity is too weak to retain the moon) and an inner boundary of the Roche radius (inside which the moon would be torn apart by tidal forces). The locations of these boundaries depend on both the planets and moons properties, and they can be modified by additional perturbative forces from the host star and other planets in the system.In a new study, San Francisco State University scientist Stephen R. Kane modeled these boundaries for planets specifically in compact systems, to determine whether such planets can host moons to boost their likelihood of habitability.Allowed moon density as a function of semimajor axis for the TRAPPIST-1 system, for two different scenarios with different levels of perturbations. The vertical dotted lines show the locations of the six innermost TRAPPIST-1 planets. [Kane 2017]Challenge of Moons in Compact SystemsKane found that compact systems have a harder time supporting stable moons; the range of radii at which their moons can orbit is greatly reduced relative to spread-out systems like our own. As an example, Kane calculates that if the Earth were in a compact planetary system with a semimajor axis of 0.05 AU, its Hill radius would shrink from being 78.5 times to just 4.5 times its Roche radius greatly narrowing the region in which our Moon would be able to reside.Kane applied his models to the TRAPPIST-1 system as an example, demonstrating that its very unlikely that many if any of the systems seven planets would be able to retain a stable moon unless that moon were unreasonably dense.Is TRAPPIST-1 Really Moonless?Image of the Moon as it transits across the face of the Sun, as viewed from the Stereo-B spacecraft (which is in an Earth-trailing orbit). [NASA]How do these results fit with other observations of TRAPPIST-1? Kane uses our Moon as an example again: if we were watching a transit of the Earth and Moon in front of the Sun from a distance, the Moons transit depth would be 7.4% as deep as Earths. A transit of this depth in the TRAPPIST-1 system would have been detectable in Spitzer photometry of the system so the fact that we didnt see anything like this supports the idea that the TRAPPIST-1 planets dont have large moons.On the other hand, smaller moons (perhaps no more than 200300 km in radius) would have escaped detection. Future long-term monitoring of TRAPPIST-1 with observatories like the James Webb Space Telescope or 30-meter-class ground-based telescopes will help constrain this possibility, however.CitationStephen R. Kane 2017 ApJL 839 L19. doi:10.3847/2041-8213/aa6bf2
TRAPPIST-1 Comparison to Solar System and Jovian Moons
2017-02-22
All seven planets discovered in orbit around the red dwarf star TRAPPIST-1 could easily fit inside the orbit of Mercury, the innermost planet of our solar system. In fact, they would have room to spare. TRAPPIST-1 also is only a fraction of the size of our sun; it isn't much larger than Jupiter. So the TRAPPIST-1 system's proportions look more like Jupiter and its moons than those of our solar system. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial, according to research published in 2017 in the journal Nature. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. http://photojournal.jpl.nasa.gov/catalog/PIA21428
NASA Astrophysics Data System (ADS)
Rodler, Florian
2015-12-01
The gas giant Upsilon Andromeda b (υ And b) was one of the first discovered exoplanets. This planet orbits around a bright, similar to the Sun star only 13.5 parsecs away from us. υ And b is also the innermost planet of a confirmed three-planet system, all of them non-transiting. As with all non-transiting planets, their exact masses and sizes are unknown, with their orbital inclination being the key parameter to unveil those values. Astrometric measurements have placed constraints to the orbital inclinations of the two outer planets in this system, indicating that we look almost 'face-on' on the system (McArthur et al. 2010). However, the orbital inclination for the innermost planet remained unknown.Photometric monitoring of υ And b orbit at infrared wavelengths has revealed significant brightness changes between the day-side and the night-side of the planet (Crossfield et al. 2010). The amplitude of those brightness variations depends on the orbital inclination of the planet and on its radius, therefore we can tightly constrain the size of the planet if its inclination is known.Here we present the measurement of the orbital inclination for the innermost planet υ And b, 23 deg, obtained by monitoring the Doppler shift of carbon monoxide (CO) lines on the atmospheric day-side of the planet with Keck/NIRSPEC. From this measurement we establish a planet mass of 1.7 times the mass of Jupiter and a minimum planet radius of 1.8 times the size of Jupiter. This result reveals that υ And b is likely to be one of the most inflated giant planets discovered to date. In addition, the observed strong CO absorption suggests an atmosphere with temperature uniformly decreasing towards higher altitudes, which suggests the absence of an atmospheric thermal inversion (Rodler et al. 2015).
Orbital stability of compact three-planets systems.
NASA Astrophysics Data System (ADS)
Gavino, Sacha; Lissauer, Jack
2018-04-01
Recent discoveries unveiled a significant number of compact multi-planetary systems, where the adjacent planets orbits are much closer to those found in the Solar System. Studying the orbital stability of such compact systems provides information on how they form and how long they survive. We performed a general study of three Earth-like planets orbiting a Sun-mass star in circular and coplanar prograde orbits. The simulations were performed over a wide range of mutual Hill radii and were conducted for virtual times reaching at most 10 billion years. Both equally-spaced and unequally spaced planet systems are investigated. We recover the results of previous studies done for systems of planets spaced uniformly in mutual Hill radius and we investigate mean motion resonances and test chaos. We also study systems with different initial spacing between the adjacent inner pair of planets and the outer pair of planets and we displayed their lifetime on a grid at different resolution. Over 45000 simulations have been done. We then characterize isochrones for lifetime of systems of equivalent spacing. We find that the stability time increases significantly for values of mutual Hill radii beyond 8. We also study the affects of mean motion resonances, the degree of symmetry in the grid and test chaos.
Space Science in Action: Planets and the Solar System [Videotape].
ERIC Educational Resources Information Center
1999
This videotape recording teaches students about the key characteristics of each planet, the differences between inner and outer planets, and which planets have their own moons. Students look at how remote-control rovers are designed to explore other surfaces in the solar system. A hands-on activity demonstrates how gravity keeps all the members of…
BIRTH LOCATIONS OF THE KEPLER CIRCUMBINARY PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu
2015-07-20
The Kepler mission has discovered about a dozen circumbinary planetary systems, all containing planets on ∼1 AU orbits. We place bounds on the locations in the circumbinary protoplanetary disk, where these planets could have formed through collisional agglomeration starting from small (kilometer-sized or less) planetesimals. We first present a model of secular planetesimal dynamics that accounts for the (1) perturbation due to the eccentric precessing binary, as well as the (2) gravity and (3) gas drag from a precessing eccentric disk. Their simultaneous action leads to rich dynamics, with (multiple) secular resonances emerging in the disk. We derive analytic resultsmore » for size-dependent planetesimal eccentricity and demonstrate the key role of the disk gravity for circumbinary dynamics. We then combine these results with a simple model for collisional outcomes and find that in systems like Kepler-16, planetesimal growth starting with 10–100 m planetesimals is possible outside a few AU. The exact location exterior to which this happens is sensitive to disk eccentricity, density, and precession rate, as well as to the size of the first generation of planetesimals. Strong perturbations from the binary in the inner part of the disk, combined with a secular resonance at a few AU, inhibit the growth of kilometer-sized planetesimals within 2–4 AU of the binary. In situ planetesimal growth in the Kepler circumbinary systems is possible only starting from large initial planetesimals (few-kilometer-sized even assuming favorable disk properties, i.e., low surface density)« less
Kepler-90 system (Artist's Concept)
2017-12-14
Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA's Kepler Space Telescope. The newly-discovered Kepler-90i -- a sizzling hot, rocky planet that orbits its star once every 14.4 days -- was found using machine learning from Google. Machine learning is an approach to artificial intelligence in which computers "learn." In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded changes in starlight caused by planets beyond our solar system, known as exoplanets. https://photojournal.jpl.nasa.gov/catalog/PIA22192
NASA Astrophysics Data System (ADS)
Mann, Andrew W.; Vanderburg, Andrew; Rizzuto, Aaron C.; Kraus, Adam L.; Berlind, Perry; Bieryla, Allyson; Calkins, Michael L.; Esquerdo, Gilbert A.; Latham, David W.; Mace, Gregory N.; Morris, Nathan R.; Quinn, Samuel N.; Sokal, Kimberly R.; Stefanik, Robert P.
2018-01-01
Planets in young clusters are powerful probes of the evolution of planetary systems. Here we report the discovery of three planets transiting EPIC 247589423, a late-K dwarf in the Hyades (≃800 Myr) cluster, and robust detection limits for additional planets in the system. The planets were identified from their K2 light curves as part of our survey of young clusters and star-forming regions. The smallest planet has a radius comparable to Earth ({0.99}-0.04+0.06{R}\\oplus ), making it one of the few Earth-sized planets with a known, young age. The two larger planets are likely a mini-Neptune and a super-Earth, with radii of {2.91}-0.10+0.11{R}\\oplus and {1.45}-0.08+0.11{R}\\oplus , respectively. The predicted radial velocity signals from these planets are between 0.4 and 2 m s-1, achievable with modern precision RV spectrographs. Because the target star is bright (V = 11.2) and has relatively low-amplitude stellar variability for a young star (2-6 mmag), EPIC 247589423 hosts the best known planets in a young open cluster for precise radial velocity follow-up, enabling a robust test of earlier claims that young planets are less dense than their older counterparts.
OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR-PLANET-MOON SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Takashi; Barnes, Jason W.; O'Brien, David P., E-mail: tsasaki@vandals.uidaho.edu, E-mail: jwbarnes@uidaho.edu, E-mail: obrien@psi.edu
2012-07-20
We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion ofmore » lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semimajor axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.« less
Multi-Planetary Systems: Observations and Models of Dynamical Interactions
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2018-01-01
More than 600 multi-planet systems are known. The vast majority of these systems have been discovered by NASA's Kepler spacecraft, but dozens were found using the Doppler technique, the first multi-exoplanet system was identified through pulsar timing, and the most massive system has been found using imaging. More than one-third of the 4000+ planet candidates found by NASA's Kepler spacecraft are associated with target stars that have more than one planet candidate, and the large number of such Kepler "multis" tells us that flat multiplanet systems like our Solar System are common. Virtually all of Kepler candidate multis are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship. Statistical studies performed on these candidate systems reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness. The characteristics of several of the most interesting confirmed multi-exoplanet systems will also be discussed.HR 8799's four massive planets orbit tens of AU from their host star and travel on nearly circular orbits. PSR B1257+12 has three much smaller planets orbiting close to a neutron star. Both represent extremes and show that planet formation is a robust process that produces a diversity of outcomes. Although both exomoons and Trojan (triangle Lagrange point) planets have been searched for, neither has yet been found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Simon; Winn, Joshua N.; Marcy, Geoffrey W.
We measure the sky-projected stellar obliquities ({lambda}) in the multiple-transiting planetary systems KOI-94 and Kepler-25, using the Rossiter-McLaughlin effect. In both cases, the host stars are well aligned with the orbital planes of the planets. For KOI-94 we find {lambda} = -11 Degree-Sign {+-} 11 Degree-Sign , confirming a recent result by Hirano and coworkers. Kepler-25 was a more challenging case, because the transit depth is unusually small (0.13%). To obtain the obliquity, it was necessary to use prior knowledge of the star's projected rotation rate and apply two different analysis methods to independent wavelength regions of the spectra. Themore » two methods gave consistent results, {lambda} = 7 Degree-Sign {+-} 8 Degree-Sign and -0. Degree-Sign 5 {+-} 5. Degree-Sign 7. There are now a total of five obliquity measurements for host stars of systems of multiple-transiting planets, all of which are consistent with spin-orbit alignment. This alignment is unlikely to be the result of tidal interactions because of the relatively large orbital distances and low planetary masses in the systems. In this respect, the multiplanet host stars differ from hot-Jupiter host stars, which commonly have large spin-orbit misalignments whenever tidal interactions are weak. In particular, the weak-tide subset of hot-Jupiter hosts has obliquities consistent with an isotropic distribution (p = 0.6), but the multiplanet hosts are incompatible with such a distribution (p {approx} 10{sup -6}). This suggests that high obliquities are confined to hot-Jupiter systems, and provides further evidence that hot-Jupiter formation involves processes that tilt the planetary orbit.« less
Probing the TRAPPIST-1 System with K2, JWST, and Beyond
NASA Astrophysics Data System (ADS)
Luger, Rodrigo; Lustig-Yaeger, Jacob; Agol, Eric; TRAPPIST-1 Collaboration
2018-01-01
I will discuss recent work I have done to characterize TRAPPIST-1, a nearby exoplanet system hosting seven terrestrial-size planets, three of which are in the habitable zone. In the first part of this talk, I will report on my efforts to constrain the orbital properties of the smallest and farthest out planet in the system, TRAPPIST-1h, from K2 data de-trended with my systematics correction pipeline, EVEREST. I will further discuss how the detection of TRAPPIST-1h with K2 confirmed the intricate resonant structure of the system, whose planets are all linked to their neighbors via three-body Laplace resonances. This is the longest known chain in any exoplanet system and holds important clues for the formation and migration of the TRAPPIST-1 planets. In the second part of this talk, I will discuss ongoing work to characterize the TRAPPIST-1 system via planet-planet occultations (PPOs), events during which one planet occults the disk of another, imparting a small photometric signal as its thermal or reflected light is blocked. Because of the extreme coplanarity of the system, PPOs should occur on average 1 - 2 times per day in TRAPPIST-1. I will discuss how the upcoming James Webb Space Telescope (JWST) will likely be able to detect PPOs in this system in the mid-infrared, and how these can be used to place exquisite constraints on the masses, eccentricities, and mutual inclinations of its planets. I will also show how photodynamical modeling of these events can eventually be used to reveal a planet's day/night temperature contrast, infer various atmospheric properties, and construct crude two-dimensional surface maps of alien worlds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sun-Ju; Lee, Chung-Uk; Koo, Jae-Rim, E-mail: sjchung@kasi.re.kr, E-mail: leecu@kasi.re.kr, E-mail: koojr@kasi.re.kr
2014-04-20
Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCPmore » events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M {sub E} planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M {sub E} planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.« less
Remote Thermal IR Spectroscopy of our Solar System
NASA Technical Reports Server (NTRS)
Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly
1999-01-01
Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra containing hydrocarbons such as methane and ethane. Spectroscopic information on extrasolar planets thus can permit their classification. Spectra and spectral lines contain information on the temperature structure of the atmosphere. Line and band spectra can be used to identify the molecular constituents and retrieve species abundances, thereby classifying and characterizing the planet. At high enough spectral resolution characteristic planetary atmospheric dynamics and unique phenomena such as failure of local thermodynamic equilibrium can be identified. Dynamically induced effects such as planetary rotation and orbital velocity shift and change the shape of spectral features and must be modeled in detailed spectral studies. We will use our knowledge of the compositional, thermal and dynamical characteristics of planetary atmospheres in our own solar system to model spectra observed remotely on similar planets in extrasolar planetary systems. We will use a detailed radiative transfer and beam integration program developed for the modeling and interpretation of thermal infrared spectra measured from nearby planet planets to generate models of an extra-solar "Earth" and "Jupiter". From these models we will show how key spectral features distinguish between terrestrial and gaseous planets, what information can be obtained with different spectral resolution, what spectral features can be used to search for conditions for biogenic activity, and how dynamics and distance modify the observed spectra. We also will look at unique planetary phenomena such as atmospheric lasing and discuss their utility as probes for detection and identification of planets. Results of such studies will provide information to constrain design for instrumentation needed to directly detect extrasolar planets.
Exchange of meteorites (and life?) between stellar systems.
Melosh, H J
2003-01-01
It is now generally accepted that meteorite-size fragments of rock can be ejected from planetary bodies. Numerical studies of the orbital evolution of such planetary ejecta are consistent with the observed cosmic ray exposure times and infall rates of these meteorites. All of these numerical studies agree that a substantial fraction (up to one-third) of the ejecta from any planet in our Solar System is eventually thrown out of the Solar System during encounters with the giant planets Jupiter and Saturn. In this paper I examine the probability that such interstellar meteorites might be captured into a distant solar system and fall onto a terrestrial planet in that system within a given interval of time. The overall conclusion is that it is very unlikely that even a single meteorite originating on a terrestrial planet in our solar system has fallen onto a terrestrial planet in another stellar system, over the entire period of our Solar System's existence. Although viable microorganisms may be readily exchanged between planets in our solar system through the interplanetary transfer of meteoritic material, it seems that the origin of life on Earth must be sought within the confines of the Solar System, not abroad in the galaxy.
Impact of planet-planet scattering on the formation and survival of debris discs
NASA Astrophysics Data System (ADS)
Marzari, F.
2014-10-01
Planet-planet scattering is a major dynamical mechanism able to significantly alter the architecture of a planetary system. In addition to that, it may also affect the formation and retention of a debris disc by the system. A violent chaotic evolution of the planets can easily clear leftover planetesimal belts preventing the ignition of a substantial collisional cascade that can give origin to a debris disc. On the other end, a mild evolution with limited steps in eccentricity and semimajor axis can trigger the formation of a debris disc by stirring an initially quiet planetesimal belt. The variety of possible effects that planet-planet scattering can have on the formation of debris discs is analysed and the statistical probability of the different outcomes is evaluated. This leads to the prediction that systems which underwent an episode of chaotic evolution might have a lower probability of harbouring a debris disc.
An extrasolar planetary system with three Neptune-mass planets.
Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre
2006-05-18
Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.
Lissauer, J J; Marcy, G W; Ida, S
2000-11-07
The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.
Detection of Planets Orbiting Sun-Like Stars
NASA Astrophysics Data System (ADS)
Marcy, Geoffrey W.; Butler, R. Paul
1996-12-01
During the past 11 months, astronomers have finally discovered planets orbiting Sun-like stars. A total of eight planets has been detected by the Doppler technique, and there are possible planets detected by astrometry around one other star. Some of the new planets exhibit properties similar to those in our Solar System. But many of them have properties that were unexpected. Several planets are more massive than Jupiter, and some orbit their host star in orbits smaller than Mercury's orbit. Equally unexpected is that three of these planets have noncircular orbits. Current theory of the formation of planetary systems is challenged to account for these new planetary properties, but several models are emerging, involving gravitational scattering of planetesimals and viscous or tidal decay of orbits. The occurrence rate of true analogs of our Solar System will soon be determined with the detection of long-period gas giants analogous to Jupiter.
Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru
2000-01-01
The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782
Addressing the statistical mechanics of planet orbits in the solar system
NASA Astrophysics Data System (ADS)
Mogavero, Federico
2017-10-01
The chaotic nature of planet dynamics in the solar system suggests the relevance of a statistical approach to planetary orbits. In such a statistical description, the time-dependent position and velocity of the planets are replaced by the probability density function (PDF) of their orbital elements. It is natural to set up this kind of approach in the framework of statistical mechanics. In the present paper, I focus on the collisionless excitation of eccentricities and inclinations via gravitational interactions in a planetary system. The future planet trajectories in the solar system constitute the prototype of this kind of dynamics. I thus address the statistical mechanics of the solar system planet orbits and try to reproduce the PDFs numerically constructed by Laskar (2008, Icarus, 196, 1). I show that the microcanonical ensemble of the Laplace-Lagrange theory accurately reproduces the statistics of the giant planet orbits. To model the inner planets I then investigate the ansatz of equiprobability in the phase space constrained by the secular integrals of motion. The eccentricity and inclination PDFs of Earth and Venus are reproduced with no free parameters. Within the limitations of a stationary model, the predictions also show a reasonable agreement with Mars PDFs and that of Mercury inclination. The eccentricity of Mercury demands in contrast a deeper analysis. I finally revisit the random walk approach of Laskar to the time dependence of the inner planet PDFs. Such a statistical theory could be combined with direct numerical simulations of planet trajectories in the context of planet formation, which is likely to be a chaotic process.
2014 Summer Series - Jon Jenkins - Chasing Shadow Worlds: Exoplanets from Kepler and Beyond
2014-08-14
Twenty years ago, there were no planets known outside our own solar system. Since then, the discoveries of about 1500 planets orbiting other stars have radically altered our views of planets and planetary systems. This revolution in knowledge is due in no small part to the Kepler Mission, which has discovered over 950 of these planets and over 3000 planet candidates. This talk will review the greatest hits of Kepler and peek into the future of exoplanets.
Dynamical mass and multiplicity constraints on co-orbital bodies around stars
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Marsh, Thomas R.; Gänsicke, Boris T.
2016-09-01
Objects transiting near or within the disruption radius of both main-sequence (e.g. KOI 1843) and white dwarf (WD 1145+017) stars are now known. Upon fragmentation or disintegration, these planets or asteroids may produce co-orbital configurations of nearly equal mass objects. However, as evidenced by the co-orbital objects detected by transit photometry in the WD 1145+017 system, these bodies are largely unconstrained in size, mass, and total number (multiplicity). Motivated by potential future similar discoveries, we perform N-body simulations to demonstrate if and how debris masses and multiplicity may be bounded due to second-to-minute deviations and the resulting accumulated phase shifts in the osculating orbital period amongst multiple co-orbital equal point masses. We establish robust lower and upper mass bounds as a function of orbital period deviation, but find the constraints on multiplicity to be weak. We also quantify the fuzzy instability boundary, and show that mutual collisions occur in less than 5, 10, and 20 per cent of our simulations for masses of 1021, 1022, and 1023 kg. Our results may provide useful initial rough constraints on other stellar systems with multiple co-orbital bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Zhaohuan; Dong Ruobing; Nelson, Richard P.
By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk-the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an {alpha} = 0.01, M-dot =10{sup -8} M{sub Sun} yr{sup -1} disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M{sub J} planet due to (1) dust diffusion andmore » (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T{sub s} /{alpha}, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration with planet(s) in the disk is a promising mechanism to explain submm observations of transitional disks but it may need to be combined with other processes (e.g., dust growth) to explain the near-IR deficit of some systems.« less
Seeking Planets in the Dust Artist Concept
2014-12-02
A dusty planetary system left is compared to another system with little dust in this artist concept. Dust can make it difficult for telescopes to image planets because light from the dust can outshine that of the planets.
Exoplanet detection. A terrestrial planet in a ~1-AU orbit around one member of a ~15-AU binary.
Gould, A; Udalski, A; Shin, I-G; Porritt, I; Skowron, J; Han, C; Yee, J C; Kozłowski, S; Choi, J-Y; Poleski, R; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Mróz, P; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Gaudi, B S; Christie, G W; Drummond, J; McCormick, J; Natusch, T; Ngan, H; Tan, T-G; Albrow, M; DePoy, D L; Hwang, K-H; Jung, Y K; Lee, C-U; Park, H; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Larsen, P; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Philpott, L; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Shvartzvald, Y; Maoz, D; Kaspi, S; Friedmann, M
2014-07-04
Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution. Copyright © 2014, American Association for the Advancement of Science.
Outer planet entry probe system study. Volume 2: Supporting technical studies
NASA Technical Reports Server (NTRS)
1972-01-01
The environment, science investigations, and general mission analysis considerations are given first. These data are followed by discussions of the studies pertaining to the planets Jupiter, Saturn, Uranus, and Neptune. Except for Neptune, each planet discussion is divided into two parts: (1) parametric activities and (2) probe definition for that planet, or the application of a given probe for that planet. The Neptune discussion is limited to parametrics in the area of science and mission analysis. Each of the probe system definitions consists of system and subsystem details including telecommunications, data handling, power pyrotechnics, attitude control, structures, propulsion, thermal control, and probe to spacecraft integration. The first configuration is discussed in detail and the subsequent configuration discussions are limited to the differences. Finally, the hardware availability to support a probe system and commonality of science, missions, and subsystems for use at the various planets are considered.
TRAPPIST-1 System - Artist Concept
2017-08-11
This illustration shows what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial, according to research published in 2017 in the journal Nature. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. They are likely all tidally locked, meaning the same face of the planet is always pointed at the star, as the same side of our moon is always pointed at Earth. This creates a perpetual night side and perpetual day side on each planet. TRAPPIST-1b and c receive the most light from the star and would be the warmest. TRAPPIST-1e, f and g all orbit in the habitable zone, the area where liquid water is most likely to be detected. But any of the planets could potentially harbor liquid water, depending on their compositions. https://photojournal.jpl.nasa.gov/catalog/PIA21751
Jenkins, J M; Doyle, L R; Cullers, D K
1996-02-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.
1996-01-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
NASA Technical Reports Server (NTRS)
Vazirani, P.
1995-01-01
The process of combining telemetry signals received at multiple antennas, commonly referred to as arraying, can be used to improve communication link performance in the Deep Space Network (DSN). By coherently adding telemetry from multiple receiving sites, arraying produces an enhancement in signal-to-noise ratio (SNR) over that achievable with any single antenna in the array. A number of different techniques for arraying have been proposed and their performances analyzed in past literature. These analyses have compared different arraying schemes under the assumption that the signals contain additive white Gaussian noise (AWGN) and that the noise observed at distinct antennas is independent. In situations where an unwanted background body is visible to multiple antennas in the array, however, the assumption of independent noises is no longer applicable. A planet with significant radiation emissions in the frequency band of interest can be one such source of correlated noise. For example, during much of Galileo's tour of Jupiter, the planet will contribute significantly to the total system noise at various ground stations. This article analyzes the effects of correlated noise on two arraying schemes currently being considered for DSN applications: full-spectrum combining (FSC) and complex-symbol combining (CSC). A framework is presented for characterizing the correlated noise based on physical parameters, and the impact of the noise correlation on the array performance is assessed for each scheme.
First Light from Extrasolar Planets and Implications for Astrobiology
NASA Technical Reports Server (NTRS)
Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake
2005-01-01
The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-01-01
In other solar systems, the radiation streaming from the central star can have a destructive impact on the atmospheres of the stars close-in planets. A new study suggests that these exoplanets may also have a much harder time keeping their moons.Where Are the Exomoons?Moons are more common in our solar system than planets by far (just look at Jupiters enormous collection of satellites!) and yet we havent made a single confirmed discovery of a moon around an planet outside of our solar system. Is this just because moons have smaller signals and are more difficult to detect? Or might there also be a physical reason for there to be fewer moons around the planets were observing?Led by Ming Yang, a team of scientists from Nanjing University in China have explored one mechanism that could limit the number of moons we might find around exoplanets: photoevaporation.Artists illustration of the process of photoevaporation, in which the atmosphere of a planet is stripped by radiation from its star. [NASA Goddard SFC]Effects of RadiationPhotoevaporation is a process by which the harsh high-energy radiation from a star blasts a close-in planet, imparting enough energy to the atoms of the planets atmosphere for those atoms to escape. As the planets atmosphere gradually erodes, significant mass loss occurs on timescales of tens or hundreds of millions of years.How might this process affect such a planets moons? To answer this question, Yang and collaborators used an N-body code called MERCURY to model solar systems in which a Neptune-like planet at 0.1 AU gradually loses mass. The planet starts out with a large system of moons, and the team tracks the moons motions to determine their ultimate fates.Escaping BodiesEvolution of the planet mass (top) in a simulation containing 500 small moons. The evolution of the semimajor axes of the moons (middle) and their eccentricities (bottom) are shown, with three example moons, starting at different radii, highlighted in blue, red and green. The black dotted line shows how the critical semimajor axis for stability evolves with time as the planet loses mass. [Yang et al. 2016]Yang and collaborators find that the photoevaporation process has a critical impact on whether or not the moons remain in stable orbits. As the photoevaporation drives mass loss of the planet, the planets gravitational influence shrinks and the orbits of its exomoons expand and become more eccentric. Eventually these orbits can reach critical values where theyre no longer stable, often resulting in systems with only one or no surviving moons.The team finds that even in the best-case scenario of only small moons, no more than roughly a quarter of them survive the simulation still in orbit around their planet. In simulations that include larger moons further out, the system is even more likely to become unstable as the planet loses mass, with more moons ultimately escaping.What happens to the moons that escape? Some leave the planetmoon system to become planet-like objects that remain in orbit around the host star. Others are smashed to bits when they collide with other moons or with the planet. And some can even escape their entire solar system to become a free-floating object in the galaxy!Based on their simulations, the authors speculate that exomoons are less common around planets that are close to their host stars (0.1 AU). Furthermore, exomoons are likely less common in solar systems around especially X-ray-luminous stars (e.g., M dwarfs) that can more easily drive photoevaporation. For these reasons, our best chances for finding exomoons in future missions will be aroundstars that are more Sun-like, orbitingplanets that arent too close to their hosts.CitationMing Yang et al 2016 ApJ 833 7. doi:10.3847/0004-637X/833/1/7
Jupiter's decisive role in the inner Solar System's early evolution.
Batygin, Konstantin; Laughlin, Greg
2015-04-07
The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System's terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter's inward migration entrained s ≳ 10-100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System's terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.
Habitability of the TRAPPIST-1 System
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
The recent discovery of seven Earth-sized, terrestrial planets around an M dwarf star was met with excitement and optimism. But how habitable are these planets actually likely to be? A recent study of these planets likely climates may provide an answer to this question.An Optimistic OutlookIn February of this year, the TRAPPIST-1 system was announced: seven roughly Earth-sized, transiting, terrestrial planets all orbiting their host ultracool dwarf star within a distance the size of Mercurys orbit. Three of the planets were initially declared to be in the stars habitable zone and scientists speculated that even those outside the habitable zone could potentially still harbor liquid water making the system especially exciting.In Wolfs simulations, the surface temperature (solid lines) of TRAPPIST-1d grows to more than 380K in just 40 years. [Adapted from Wolf 2017]The planets were labeled as temperate because all seven have equilibrium temperatures that are under 400K. Since liquid water requires a surface temperature of 273-373K, this certainly seems promising!Finding Realistic TemperaturesBut theres a catch: equilibrium temperatures are not actual measurements of the planets surface temperature, theyre just very rudimentary estimates based on how much light the planet receives. To get a better estimate of the real temperature of the planet and therefore assess its habitability you need advanced climate modeling of the planet that include factors like the greenhouse effect and planetary albedo.In Wolfs simulations, the surface temperature of TRAPPIST-1f plummets rapidly even when modeled with dense carbon dioxide atmosphere (purple line). The bottom panel shows the corresponding rapid growth of sea-ice on the surface oceans for the different atmospheric models. [Wolf 2017]To that end, scientist Eric Wolf (University of Colorado Boulder) has conducted state-of-the-art 3D climate calculations for the three center-most planets planets d, e, and f in the TRAPPIST-1 system. Wolf assumed traditional terrestrial-planet atmospheres composed of nitrogen, carbon dioxide, and water, and he examined what would happen if these planets had large water supplies in the form of surface oceans.Runaway and Snowball PlanetsWolfs climate model indicates that the closest-in of the three planets, planet d, would undergo thermal runaway even in the best case scenario. In just 40 years of the simulation, the planets surface temperature exceeds 380K, suggesting it couldnt continue to sustain liquid water. Wolf argues that planet d and the two planets interior to it, b and c, all lie inside of the traditional liquid water habitable zone they are hot, dry, and uninhabitable.Next, Wolf models the outermost of the three center planets, planet f. Even when planet f is modeled with a dense carbon dioxide atmosphere, it cant avoid its fate of becoming completely ice-covered within roughly 60 years. Wolf concludes that planets f, g and h all lie outside of the traditional habitable zone defined by the maximum carbon dioxide greenhouse limit.Equilibrium solutions for TRAPPIST-1e with various atmospheric conditions. Top panel: mean surface temperature. Middle panel: sea-ice coverage. Bottom panel: habitable surface area. [Wolf 2017]Goldilocks?Lastly, Wolf turns to planet e, the central planet in the system. This planet, he finds, is the most viable candidate for a robustly habitable world. The simulations show that planet e can maintain habitable surface conditions for a variety of atmospheric compositions.While astrobiologists eyeing TRAPPIST-1 may be disappointed that at second glance the planets are not quite as inhabitable as they first seemed, it is promising to see that the habitability of the central planet holds up reasonably well to some more realistic testing. Either way, future examinations of all seven of these planets should help us learn more about terrestrial, Earth-sized planets.CitationEric T. Wolf 2017 ApJL 839 L1. doi:10.3847/2041-8213/aa693a
Statistical Study of the Early Solar System's Instability with 4, 5 and 6 Giant Planets
NASA Astrophysics Data System (ADS)
Nesvorny, David; Morbidelli, A.
2012-10-01
Several properties of the Solar System, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early Solar System evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly ten thousand numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of least one ice giant from the Solar System. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large, but we found that a massive disk would lead to excessive dynamical damping, and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the Solar System was assumed to have five giant planets initially and one ice giant, with the mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn. The range of possible outcomes is rather broad in this case, indicating that the present Solar System is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a few percent probability. The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five planet case.
A pebbles accretion model with chemistry and implications for the solar system in the lights of Juno
NASA Astrophysics Data System (ADS)
Ali-Dib, Mohamad
2016-10-01
The chemical compositions of the solar system giant planets are a major source of informations on their origins. Since the measurements by the Galileo probe, multiple models have been put forward to try and explain the noble gases enrichment in Jupiter. The most discussed among these are its formation in the outer cold nebula and its formation in a partially photoevaporated disk. In this work I couple a pebbles accretion model to the disk's chemistry and photoevaporation in order to make predictions from both scenarios and compare them to the upcoming Juno measurements. The model include pebbles and gas accretion, type I and II migration, photoevaporation and chemical measurements from meteorites, comets and disks. Population synthesis simulations are used to explore the models free parameters (planets initial conditions), where then the results are narrowed down using the planets chemical, dynamical and core mass costraints. We end up with a population that fits all of the constrains. These are then used to predict the oxygen abundance and core mass in Jupiter, to be compared to results of Juno. Same calculations are also done for Saturn and Neptune for comparison. I will present the results from these simulations as well as the predictions from all of the different models.Ali-Dib, M. (2016ab, submitted to MNRAS)
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.
1997-01-01
The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)
1997-01-01
The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.
Polarimetry Microlensing of Close-in Planetary Systems
NASA Astrophysics Data System (ADS)
Sajadian, Sedighe; Hundertmark, Markus
2017-04-01
A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When the lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.
The Search for Young Planetary Systems And the Evolution of Young Stars
NASA Technical Reports Server (NTRS)
Beichman, Charles A.; Boden, Andrew; Ghez, Andrea; Hartman, Lee W.; Hillenbrand, Lynn; Lunine, Jonathan I.; Simon, Michael J.; Stauffer, John R.; Velusamy, Thangasamy
2004-01-01
The Space Interferometer Mission (SIM) will provide a census of planetary systems by con- ducting a broad survey of 2,000 stars that will be sensitive to the presence of planets with masses as small as approx. 15 Earth masses (1 Uranus mass) and a deep survey of approx. 250 of the nearest, stars with a mass limit of approx.3 Earth masses. The broad survey will include stars spanning a wide range of ages, spectral types, metallicity, and other important parameters. Within this larger context, the Young Stars and Planets Key Project will study approx. 200 stars with ages from 1 Myr to 100 Myr to understand the formation and dynamical evolution of gas giant planets. The SIM Young Stars and Planets Project will investigate both the frequency of giant planet formation and the early dynamical history of planetary systems. We will gain insight into how common the basic architecture of our solar system is compared with recently discovered systems with close-in giant planets by examining 200 of the nearest (less than 150 pc) and youngest (1-100 Myr) solar-type stars for planets. The sensitivity of the survey for stars located 140 pc away is shown in the planet mass-separation plane. We expect to find anywhere from 10 (assuming that only the presently known fraction of stars. 5-7%, has planets) to 200 (all young stars have planets) planetary systems. W-e have set our sensitivity threshold to ensure the detection of Jupiter-mass planets in the critical orbital range of 1 to 5 AU. These observations, when combined with the results of planetary searches of mature stars, will allow us to test theories of planetary formation and early solar system evolution. By searching for planets around pre-main sequence stars carefully selected to span an age range from 1 to 100 Myr, we will learn a t what epoch and with what frequency giant planets are found at the water-ice snowline where they are expected to form. This will provide insight into the physical mechanisms by which planets form and migrate from their place of birth, and about their survival rate. With these data in hand, we will provide data, for the first time, on such important questions as: What processes affect the formation and dynamical evolution of planets? When and where do planets form? What is initial mass distribution of planetary systems around young stars? How might planets be destroyed? What is the origin of the eccentricity of planetary orbits? What is the origin of the apparent dearth of companion objects between planets and brown dwarfs seen in mature stars? The observational strategy is a compromise between the desire to extend the planetary mass function as low as possible and the essential need to build up sufficient statistics on planetary occurrence. About half of the sample will be used to address the "where" and "when" of planet formation. We will study classical T Tauri stars (cTTs) which have massive accretion disks and post- accretion, weak-lined T Tauri stars (wTTs). Preliminary estimates suggest the sample will consist of approx. 30% cTTs and approx. 70% wTTs, driven in part by the difficulty of making accurate astrometric measurements toward objects with strong variability or prominent disks.
NASA Astrophysics Data System (ADS)
Papaloizou, J. C. B.
2016-11-01
We study orbital evolution of multi-planet systems with masses in the terrestrial planet regime induced through tidal interaction with a protoplanetary disk assuming that this is the dominant mechanism for producing orbital migration and circularization. We develop a simple analytic model for a system that maintains consecutive pairs in resonance while undergoing orbital circularization and migration. This model enables migration times for each planet to be estimated once planet masses, circularization times and the migration time for the innermost planet are specified. We applied it to a system with the current architecture of Kepler 444 adopting a simple protoplanetary disk model and planet masses that yield migration times inversely proportional to the planet mass, as expected if they result from torques due to tidal interaction with the protoplanetary disk. Furthermore the evolution time for the system as a whole is comparable to current protoplanetary disk lifetimes. In addition we have performed a number of numerical simulations with input data obtained from this model. These indicate that although the analytic model is inexact, relatively small corrections to the estimated migration rates yield systems for which period ratios vary by a minimal extent. Because of relatively large deviations from exact resonance in the observed system of up to 2 %, the migration times obtained in this way indicate only weak convergent migration such that a system for which the planets did not interact would contract by only {˜ }1 % although undergoing significant inward migration as a whole. We have also performed additional simulations to investigate conditions under which the system could undergo significant convergent migration before reaching its final state. These indicate that migration times have to be significantly shorter and resonances between planet pairs significantly closer during such an evolutionary phase. Relative migration rates would then have to decrease allowing period ratios to increase to become more distant from resonances as the system approached its final state in the inner regions of the protoplanetary disk.
Statistical and dynamical remastering of classic exoplanet systems
NASA Astrophysics Data System (ADS)
Nelson, Benjamin Earl
The most powerful constraints on planet formation will come from characterizing the dynamical state of complex multi-planet systems. Unfortunately, with that complexity comes a number of factors that make analyzing these systems a computationally challenging endeavor: the sheer number of model parameters, a wonky shaped posterior distribution, and hundreds to thousands of time series measurements. In this dissertation, I will review our efforts to improve the statistical analyses of radial velocity (RV) data and their applications to some renown, dynamically complex exoplanet system. In the first project (Chapters 2 and 4), we develop a differential evolution Markov chain Monte Carlo (RUN DMC) algorithm to tackle the aforementioned difficult aspects of data analysis. We test the robustness of the algorithm in regards to the number of modeled planets (model dimensionality) and increasing dynamical strength. We apply RUN DMC to a couple classic multi-planet systems and one highly debated system from radial velocity surveys. In the second project (Chapter 5), we analyze RV data of 55 Cancri, a wide binary system known to harbor five planetary orbiting the primary. We find the inner-most planet "e" must be coplanar to within 40 degrees of the outer planets, otherwise Kozai-like perturbations will cause the planet to enter the stellar photosphere through its periastron passage. We find the orbits of planets "b" and "c" are apsidally aligned and librating with low to median amplitude (50+/-6 10 degrees), but they are not orbiting in a mean-motion resonance. In the third project (Chapters 3, 4, 6), we analyze RV data of Gliese 876, a four planet system with three participating in a multi-body resonance, i.e. a Laplace resonance. From a combined observational and statistical analysis computing Bayes factors, we find a four-planet model is favored over one with three-planets. Conditioned on this preferred model, we meaningfully constrain the three-dimensional orbital architecture of all the planets orbiting Gliese 876 based on the radial velocity data alone. By demanding orbital stability, we find the resonant planets have low mutual inclinations phi so they must be roughly coplanar (phicb = 1.41(+/-0.62/0.57) degrees and phibe = 3.87(+/-1.99/1.86 degrees). The three-dimensional Laplace argument librates chaotically with an amplitude of 50.5(+/-7.9/10.0) degrees, indicating significant past disk migration and ensuring long-term stability. In the final project (Chapter 7), we analyze the RV data for nu Octantis, a closely separated binary with an alleged planet orbiting interior and retrograde to the binary. Preliminary results place very tight constraints on the planet-binary mutual inclination but no model is dynamically stable beyond 105 years. These empirically derived models motivate the need for more sophisticated algorithms to analyze exoplanet data and will provide new challenges for planet formation models.
NASA Technical Reports Server (NTRS)
Doyle, Laurance R.
1998-01-01
During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.
Diversidad de Sistemas Planetarios en Discos de Baja Masa
NASA Astrophysics Data System (ADS)
Ronco, M. P.; de Elía, G. C.
The accretion process that allows the formation of terrestrial planets is strongly dependent on the mass distribution in the system and the presence of gas giant planets. Several studies suggest that planetary systems formed only by terrestrial planets are the most common in the Universe. In this work we study the diversity of planetary systems that could form around solar-type stars in low mass disks in absence of gas giants planets and search wich ones are targets of particular interest. FULL TEXT IN SPANISH
Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-06-01
We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.
Morbidelli, Alessandro
2014-04-28
In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.
Giant planets: Clues on current and past organic chemistry in the outer solar system
NASA Technical Reports Server (NTRS)
Pollack, James B.; Atreya, Sushil K.
1992-01-01
The giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - were formed in the same flattened disk of gas and dust, the solar nebula, as the terrestrial planets were. Yet, the giant planets differ in some very fundamental ways from the terrestrial planets. Despite enormous differences, the giant planets are relevant to exobiology in general and the origin of life on the Earth in particular. The giant planets are described as they are today. Their basic properties and the chemistry occurring in their atmospheres is discussed. Theories of their origin are explored and aspects of these theories that may have relevance to exobiology and the origin of life on Earth are stressed.
The symbiosis of photometry and radial-velocity measurements
NASA Technical Reports Server (NTRS)
Cochran, William D.
1994-01-01
The FRESIP mission is optimized to detect the inner planets of a planetary system. According to the current paradigm of planet formation, these planets will probably be small Earth-sized objects. Ground-based radial-velocity programs now have the sensitivity to detect Jovian-mass planets in orbit around bright solar-type stars. We expect the more massive planets to form in the outer regions of a proto-stellar nebula. These two types of measurements will very nicely complement each other, as they have highest detection probability for very different types of planets. The combination of FRESIP photometry and ground-based spectra will provide independent confirmation of the existence of planetary systems in orbit around other stars. Such detection of both terrestrial and Jovian planets in orbit around the same star is essential to test our understanding of planet formation.
Exotic Earths: forming habitable worlds with giant planet migration.
Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn
2006-09-08
Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.
Compositional Constraints on the Best Characterized Rocky Exoplanet, Kepler-36 b
NASA Astrophysics Data System (ADS)
Rogers, Leslie; Deck, Katherine; Lissauer, Jack J.; Carter, Joshua A.
2015-01-01
Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets that revolve around a sub-giant star with orbital periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities; the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large-scale instability within 5 Giga-days. Ultimately, we measure the planets' masses within 4.2% precision, and the planets' radii with 1.8% precision. Kepler-36 b is currently the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b's mass and radius are consistent with an Earth-like composition, and an iron-enhanced Mercury-like composition is ruled out.
Compositional Constraints on the Best Characterized Rocky Exoplanet, Kepler-36 b
NASA Astrophysics Data System (ADS)
Rogers, Leslie Anne; Deck, Katherine; Lissauer, Jack; Carter, Joshua
2015-08-01
Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets that revolve around a sub-giant star with orbital periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities; the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large scale instability within 5 Giga-days. Ultimately, we measure the planets' masses within 4.2% precision, and the planets' radii with 1.8% precision. Kepler-36 b is currently the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b’s mass and radius are consistent with a Earth-like composition, and an iron-enhanced Mercury-like composition is ruled out.
Compositional Constraints on the Best Characterized Rocky Exoplanet, Kepler-36 b
NASA Astrophysics Data System (ADS)
Rogers, L.; Deck, K.; Lissauer, J. J.; Carter, J.
2014-12-01
Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets that revolve around a sub-giant star with orbital periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities; the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large scale instability within 5 Giga-days. Ultimately, we measure the planets' masses within 4.2% precision, and the planets' radii with 1.8% precision. Kepler-36 b is currently the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b's mass and radius are consistent with a Earth-like composition, and an iron-enhanced Mercury-like composition is ruled out.
Multiple Disk Gaps and Rings Generated by a Single Super-Earth
NASA Astrophysics Data System (ADS)
Dong, Ruobing; Li, Shengtai; Chiang, Eugene; Li, Hui
2017-07-01
We investigate the observational signatures of super-Earths (i.e., planets with Earth-to-Neptune mass), which are the most common type of exoplanet discovered to date, in their natal disks of gas and dust. Combining two-fluid global hydrodynamics simulations with a radiative transfer code, we calculate the distributions of gas and of submillimeter-sized dust in a disk perturbed by a super-Earth, synthesizing images in near-infrared scattered light and the millimeter-wave thermal continuum for direct comparison with observations. In low-viscosity gas (α ≲ {10}-4), a super-Earth opens two annular gaps to either side of its orbit by the action of Lindblad torques. This double gap and its associated gas pressure gradients cause dust particles to be dragged by gas into three rings: one ring sandwiched between the two gaps, and two rings located at the gap edges farthest from the planet. Depending on the system parameters, additional rings may manifest for a single planet. A double gap located at tens of au from a host star in Taurus can be detected in the dust continuum by the Atacama Large Millimeter Array (ALMA) at an angular resolution of ∼0\\buildrel{\\prime\\prime}\\over{.} 03 after two hours of integration. Ring and gap features persist in a variety of background disk profiles, last for thousands of orbits, and change their relative positions and dimensions depending on the speed and direction of planet migration. Candidate double gaps have been observed by ALMA in systems such as HL Tau (D5 and D6) and TW Hya (at 37 and 43 au); we submit that each double gap is carved by one super-Earth in nearly inviscid gas.
Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Brown, David J. A.; Mustill, Alexander J.; Pollacco, Don
2015-10-01
The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal-mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.
Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO
NASA Astrophysics Data System (ADS)
Veras, D.; Brown, D. J. A.; Mustill, A. J.; Pollacco, D.
2017-09-01
The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal- mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.
Data Validation in the Kepler Science Operations Center Pipeline
NASA Technical Reports Server (NTRS)
Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.;
2010-01-01
We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore thismore » possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.« less
NASA Technical Reports Server (NTRS)
Sagan, C.
1972-01-01
Review of some of the highlights and more recent developments in the search for extraterrestrial intelligence. The first major problem is one of the generality of the formation of planetary systems. Observations of the nearest stars which are not members of binary or multiple stars indicates that fully half have companions of planetary mass. The presence of organic compounds in meteorites, probably in Jovian planets, in comets, in the interstellar medium, and in cool stars implies that the production of organic compounds essential for the origin of life should be pervasive throughout the universe. Possibilities of interstellar communication are discussed.
NASA Technical Reports Server (NTRS)
Wetherill, George W.
1993-01-01
Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.
Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M
1996-06-25
The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.
NASA Technical Reports Server (NTRS)
Doyle, L. R.; Dunham, E. T.; Deeg, H. J.; Blue, J. E.; Jenkins, J. M.
1996-01-01
The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.
Imaging Protoplanets: Observing Transition Disks with Non-Redundant Masking
NASA Astrophysics Data System (ADS)
Sallum, Stephanie
2017-01-01
Transition disks - protoplanetary disks with inner, solar system sized clearings - may be shaped by young planets. Directly imaging protoplanets in these objects requires high contrast and resolution, making them promising targets for future extremely large telescopes. The interferometric technique of non-redundant masking (NRM) is well suited for these observations, enabling companion detection for contrasts of 1:100 - 1:1000 at or within the diffraction limit. My dissertation focuses on searching for and characterizing companions in transition disk clearings using NRM. I will briefly describe the technique and present spatially resolved observations of the T Cha and LkCa 15 transition disks. Both of these objects hosted posited substellar companions. However multi-epoch T Cha datasets cannot be explained by planets orbiting in the disk plane. Conversely, LkCa 15 data taken with the Large Binocular Telescope (LBT) in single-aperture mode reveal the presence of multiple forming planets. The dual aperture LBT will provide triple the angular resolution of these observations, dramatically increasing the phase space for exoplanet detection. I will also present new results from the dual-aperture LBT, with similar resolution to that expected for next generation facilities like GMT.
The Age of Planet Host κ Andromedae Based on Interferometric Observations
NASA Astrophysics Data System (ADS)
Jones, Jeremy; White, Russel J.; Quinn, Samuel N.; Baines, Ellyn K.; Boyajian, Tabetha S.; Ireland, Michael; CHARA Team
2016-01-01
We present CHARA Array interferometric observations, obtained with the PAVO beam combiner in the optical (~750 nm), of κ Andromedae. This nearby (51.6 pc) B9/A0V star hosts a directly-imaged low mass companion. Observations made at multiple orientations show the star to be oblate (~15%), consistent with its large projected rotational velocity (vsini = 161.6 ± 22.2 km s-1). The interferometric observations, combined with photometry and the vsini are used to constrain an oblate star model of κ And, enabling us to determine its fundamental properties (e.g., average radius, bolometric luminosity, and equatorial velocity). These stellar properties are compared to the predictions of MESA evolution models to determine an age and mass for the star. The best fit model favors a young age for the system (< 100 Myr), which implies that κ And b has a mass around the limit separating planets and brown dwarfs.
Interior structures and tidal heating in the TRAPPIST-1 planets
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Dobos, Vera; Kiss, László L.
2018-05-01
Context. With seven planets, the TRAPPIST-1 system has among the largest number of exoplanets discovered in a single system so far. The system is of astrobiological interest, because three of its planets orbit in the habitable zone of the ultracool M dwarf. Aims: We aim to determine interior structures for each planet and estimate the temperatures of their rock mantles due to a balance between tidal heating and convective heat transport to assess their habitability. We also aim to determine the precision in mass and radius necessary to determine the planets' compositions. Methods: Assuming the planets are composed of uniform-density noncompressible materials (iron, rock, H2O), we determine possible compositional models and interior structures for each planet. We also construct a tidal heat generation model using a single uniform viscosity and rigidity based on each planet's composition. Results: The compositions for planets b, c, d, and e remain uncertain given the error bars on mass and radius. With the exception of TRAPPIST-1c, all have densities low enough to indicate the presence of significant H2O. Planets b and c experience enough heating from planetary tides to maintain magma oceans in their rock mantles; planet c may have surface eruptions of silicate magma, potentially detectable with next-generation instrumentation. Tidal heat fluxes on planets d, e, and f are twenty times higher than Earth's mean heat flow. Conclusions: Planets d and e are the most likely to be habitable. Planet d avoids the runaway greenhouse state if its albedo is ≳0.3. Determining the planet's masses within 0.1-0.5 Earth masses would confirm or rule out the presence of H2O and/or iron. Understanding the geodynamics of ice-rich planets f, g, and h requires more sophisticated modeling that can self-consistently balance heat production and transport in both rock and ice layers.
Automated design of gravity-assist trajectories to Mars and the outer planets
NASA Technical Reports Server (NTRS)
Longuski, James M.; Williams, Steve N.
1991-01-01
In this paper, a new approach to planetary mission design is described which automates the search for gravity-assist trajectories. This method finds all conic solutions given a range of launch dates, a range of launch energies and a set of target planets. The new design tool is applied to the problems of finding multiple encounter trajectories to the outer planets and Venus gravity-assist trajectories to Mars. The last four-planet grand tour opportunity (until the year 2153) is identified. It requires an earth launch in 1996 and encounters Jupiter, Uranus, Neptune, and Pluto. Venus gravity-assist trajectories to Mars for the 30 year period 1995-2024 are examined. It is shown that in many cases these trajectories require less launch energy to reach Mars than direct ballistic trajectories.
Multiple-Agent Air/Ground Autonomous Exploration Systems
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.
2007-01-01
Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.
The Fate of Exomoons when Planets Scatter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-03-01
Four examples of close-encounter outcomes: a) the moon stays in orbit around its host, b) the moon is captured into orbit around its perturber, c) and d) the moon is ejected from the system from two different starting configurations. [Adapted from Hong et al. 2018]Planet interactions are thought to be common as solar systems are first forming and settling down. A new study suggests that these close encounters could have a significant impact on the moons of giant exoplanets and they may generate a large population of free-floating exomoons.Chaos in the SystemIn the planetplanet scattering model of solar-system formation, planets are thought to initially form in closely packed systems. Over time, planets in a system perturb each other, eventually entering an instability phase during which their orbits cross and the planets experience close encounters.During this scattering process, any exomoons that are orbiting giant planets can be knocked into unstable orbits directly by close encounters with perturbing planets. Exomoons can also be disturbed if their host planets properties or orbits change as a consequence of scattering.Led by Yu-Cian Hong (Cornell University), a team of scientists has now explored the fate of exomoons in planetplanet scattering situations using a suite of N-body numerical simulations.Chances for SurvivalHong and collaborators find that the vast majority roughly 80 to 90% of exomoons around giant planets are destabilized during scattering and dont survive in their original place in the solar system. Fates of these destabilized exomoons include:moon collision with the star or a planet,moon capture by the perturbing planet,moon ejection from the solar system,ejection of the entire planetmoon system from the solar system, andmoon perturbation onto a new heliocentric orbit as a planet.Unsurprisingly, exomoons that have close-in orbits and those that orbit larger planets are the most likely to survive close encounters; as an example, exomoons on orbits similar to Jupiters Galilean satellites (i.e., orbiting at a distance of less than 4% of their host planets Hill radius) have a 2040% chance of survival.Moon initial semimajor axis vs. moon survival rate. Three of Jupiters Galilean moons are shown for reference. [Hong et al. 2018]Free-Floating MoonsAn intriguing consequence of Hong and collaborators results is the prediction of a population of free-floating exomoons that were ejected from solar systems during planetplanet scattering and now wander through the universe alone. According to the authors models, there may be as many of these free-floating exomoons as there are stars in the universe!Future surveys that search for objects using gravitational microlensing like that planned with the Wide-Field Infrared Survey Telescope (WFIRST) may be able to detect such objects down to masses of a tenth of an Earth mass. In the meantime, were a little closer to understanding the complex dynamics of early solar systems.CitationYu-Cian Hong et al 2018 ApJ 852 85. doi:10.3847/1538-4357/aaa0db
Hubble Observes the Moons and Rings of Uranus
NASA Technical Reports Server (NTRS)
1994-01-01
This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings, at least five of the inner moons, and bright clouds in the planet's southern hemisphere. Hubble now allows astronomers to revisit the planet at a level of detail not possible since the Voyager 2 spacecraft flew by the planet briefly, nearly a decade ago.
Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. Similar details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft that flew by Uranus in 1986 (the rings were discovered by stellar occultation experiments in 1977, but not seen directly until Voyager flew to Uranus). Since the flyby, none of these inner satellites has been observed further, and detailed observations of the rings and Uranus' atmosphere have not been possible, because the rings are lost in the planet's glare as seen through ground-based optical telescopes.Each of the inner moons appears as a string of three dots in this picture because it is a composite of three images, taken about six minutes apart. When these images are combined, they show the motion of the moons compared with the sky background. Because the moons move much more rapidly than our own Moon, they change position noticeably over only a few minutes. (These multiple images also help to distinguish the moons from stars and imaging detector artifacts, i.e., cosmic rays and electronic noise).Thanks to Hubble's capabilities, astronomers will now be able to determine the orbits more precisely. With this increase in accuracy, astronomers can better probe the unusual dynamics of Uranus' complicated satellite system. Measuring the moons' brightness in several colors might offer clues to the satellites' origin by providing new information on their mineralogical composition. Similar measurements of the rings should yield new insights into their composition and origin.One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does reveal a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84- year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus' atmosphere, which should be unusual given the planet's large tilt.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/TRAPPIST-1 Planetary Orbits and Transits
2017-02-22
This frame from a video details a system of seven planets orbiting TRAPPIST-1, an ultra-cool dwarf star. Spitzer was able to identify a total of seven rocky worlds, including three in the habitable zone where liquid water might be found. A study established the planets' size, distance from their sun and, for some of them, their approximate mass and density. It also established that some, if not all, of these planets are tidally locked, meaning one face of the planet permanently faces their sun. The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. A video is available at http://photojournal.jpl.nasa.gov/catalog/PIA21427
Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star
NASA Astrophysics Data System (ADS)
2010-08-01
Astronomers using ESO's world-leading HARPS instrument have discovered a planetary system containing at least five planets, orbiting the Sun-like star HD 10180. The researchers also have tantalising evidence that two other planets may be present, one of which would have the lowest mass ever found. This would make the system similar to our Solar System in terms of the number of planets (seven as compared to the Solar System's eight planets). Furthermore, the team also found evidence that the distances of the planets from their star follow a regular pattern, as also seen in our Solar System. "We have found what is most likely the system with the most planets yet discovered," says Christophe Lovis, lead author of the paper reporting the result. "This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system." The team of astronomers used the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla, Chile, for a six-year-long study of the Sun-like star HD 10180, located 127 light-years away in the southern constellation of Hydrus (the Male Water Snake). HARPS is an instrument with unrivalled measurement stability and great precision and is the world's most successful exoplanet hunter. Thanks to the 190 individual HARPS measurements, the astronomers detected the tiny back and forth motions of the star caused by the complex gravitational attractions from five or more planets. The five strongest signals correspond to planets with Neptune-like masses - between 13 and 25 Earth masses [1] - which orbit the star with periods ranging from about 6 to 600 days. These planets are located between 0.06 and 1.4 times the Earth-Sun distance from their central star. "We also have good reasons to believe that two other planets are present," says Lovis. One would be a Saturn-like planet (with a minimum mass of 65 Earth masses) orbiting in 2200 days. The other would be the least massive exoplanet ever discovered [2], with a mass of about 1.4 times that of the Earth. It is very close to its host star, at just 2 percent of the Earth-Sun distance. One "year" on this planet would last only 1.18 Earth-days. "This object causes a wobble of its star of only about 3 km/hour - slower than walking speed - and this motion is very hard to measure," says team member Damien Ségransan. If confirmed, this object would be another example of a hot rocky planet, similar to Corot-7b (eso0933). The newly discovered system of planets around HD 10180 is unique in several respects. First of all, with at least five Neptune-like planets lying within a distance equivalent to the orbit of Mars, this system is more populated than our Solar System in its inner region, and has many more massive planets there [3]. Furthermore, the system probably has no Jupiter-like gas giant. In addition, all the planets seem to have almost circular orbits. So far, astronomers know of fifteen systems with at least three planets. The last record-holder was 55 Cancri, which contains five planets, two of them being giant planets. "Systems of low-mass planets like the one around HD 10180 appear to be quite common, but their formation history remains a puzzle," says Lovis. Using the new discovery as well as data for other planetary systems, the astronomers found an equivalent of the Titius-Bode law that exists in our Solar System: the distances of the planets from their star seem to follow a regular pattern [4]. "This could be a signature of the formation process of these planetary systems," says team member Michel Mayor. Another important result found by the astronomers while studying these systems is that there is a relationship between the mass of a planetary system and the mass and chemical content of its host star. All very massive planetary systems are found around massive and metal-rich stars, while the four lowest-mass systems are found around lower-mass and metal-poor stars [5]. Such properties confirm current theoretical models. The discovery is announced today at the international colloquium "Detection and dynamics of transiting exoplanets", at the Observatoire de Haute-Provence, France. Notes [1] Using the radial velocity method, astronomers can only estimate a minimum mass for a planet as the mass estimate also depends on the tilt of the orbital plane relative to the line of sight, which is unknown. From a statistical point of view, this minimum mass is however often close to the real mass of the planet. [2] (added 30 August 2010) HD 10180b would be the lowest mass exoplanet discovered orbiting a "normal" star like our Sun. However, lower mass exoplanets have been previously discovered orbiting the pulsar PSR B1257+12 (a highly magnetised rotating neutron star). [3] On average the planets in the inner region of the HD 10180 system have 20 times the mass of the Earth, whereas the inner planets in our own Solar System (Mercury, Venus, Earth and Mars) have an average mass of half that of the Earth. [4] The Titius-Bode law states that the distances of the planets from the Sun follow a simple pattern. For the outer planets, each planet is predicted to be roughly twice as far away from the Sun as the previous object. The hypothesis correctly predicted the orbits of Ceres and Uranus, but failed as a predictor of Neptune's orbit. [5] According to the definition used in astronomy, "metals" are all the elements other than hydrogen and helium. Such metals, except for a very few minor light chemical elements, have all been created by the various generations of stars. Rocky planets are made of "metals". More information This research was presented in a paper submitted to Astronomy and Astrophysics ("The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems" by C. Lovis et al.). The team is composed of C. Lovis, D. Ségransan, M. Mayor, S. Udry, F. Pepe, and D. Queloz (Observatoire de Genève, Université de Genève, Switzerland), W. Benz (Universität Bern, Switzerland), F. Bouchy (Institut d'Astrophysique de Paris, France), C. Mordasini (Max-Planck-Institut für Astronomie, Heidelberg, Germany), N. C. Santos (Universidade do Porto, Portugal), J. Laskar (Observatoire de Paris, France), A. Correia (Universidade de Aveiro, Portugal), and J.-L. Bertaux (Université Versailles Saint-Quentin, France) and G. Lo Curto (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Abstract Concept of TRAPPIST-1 System
2017-02-22
This artist's concept appeared on the Feb. 23, 2017 cover of the journal Nature announcing that the TRAPPIST-1 star, an ultra-cool dwarf, has seven Earth-size planets orbiting it. Any of these planets could have liquid water on them. Planets that are farther from the star are more likely to have significant amounts of ice, especially on the side that faces away from the star. The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. http://photojournal.jpl.nasa.gov/catalog/PIA21421
Habitable Planets with Dynamic System of Global Air-Liquid-Solid Planet and Life
NASA Astrophysics Data System (ADS)
Miura, Y.; Kato, T.
2017-11-01
Habitable zone is dynamic three phase states (air-liquid-solid), which will be obtained in water-planet with volatile exchanges. Water and carbon-bearing grains at older extraterrestrial stones suggest that there are no global ocean water system.
Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.
2018-05-01
We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p < 1.25 R ⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shang-Fei; Lin, Douglas N. C.; Guillochon, James
A large population of planetary candidates in short-period orbits have been found recently through transit searches, mostly with the Kepler mission. Radial velocity surveys have also revealed several Jupiter-mass planets with highly eccentric orbits. Measurements of the Rossiter-McLaughlin effect indicate that the orbital angular momentum vector of some planets is inclined relative to the spin axis of their host stars. This diversity could be induced by post-formation dynamical processes such as planet-planet scattering, the Kozai effect, or secular chaos which brings planets to the vicinity of their host stars. In this work, we propose a novel mechanism to form close-inmore » super-Earths and Neptune-like planets through the tidal disruption of gas giant planets as a consequence of these dynamical processes. We model the core-envelope structure of gas giant planets with composite polytropes which characterize the distinct chemical composition of the core and envelope. Using three-dimensional hydrodynamical simulations of close encounters between Jupiter-like planets and their host stars, we find that the presence of a core with a mass more than 10 times that of the Earth can significantly increase the fraction of envelope which remains bound to it. After the encounter, planets with cores are more likely to be retained by their host stars in contrast with previous studies which suggested that coreless planets are often ejected. As a substantial fraction of their gaseous envelopes is preferentially lost while the dense incompressible cores retain most of their original mass, the resulting metallicity of the surviving planets is increased. Our results suggest that some gas giant planets can be effectively transformed into either super-Earths or Neptune-like planets after multiple close stellar passages. Finally, we analyze the orbits and structure of known planets and Kepler candidates and find that our model is capable of producing some of the shortest-period objects.« less
2011-12-20
This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA Kepler mission discovered the newfound planets, called Kepler-20e and Kepler-20f.
Theories of Giant Planet Formation
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1998-01-01
An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajadian, Sedighe; Hundertmark, Markus, E-mail: s.sajadian@cc.iut.ac.ir
A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When themore » lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.
2011-01-01
Pairs of migrating extrasolar planets often lock into mean motion resonance as they drift inward. This paper studies the convergent migration of giant planets (driven by a circumstellar disk) and determines the probability that they are captured into mean motion resonance. The probability that such planets enter resonance depends on the type of resonance, the migration rate, the eccentricity damping rate, and the amplitude of the turbulent fluctuations. This problem is studied both through direct integrations of the full three-body problem and via semi-analytic model equations. In general, the probability of resonance decreases with increasing migration rate, and with increasingmore » levels of turbulence, but increases with eccentricity damping. Previous work has shown that the distributions of orbital elements (eccentricity and semimajor axis) for observed extrasolar planets can be reproduced by migration models with multiple planets. However, these results depend on resonance locking, and this study shows that entry into-and maintenance of-mean motion resonance depends sensitively on the migration rate, eccentricity damping, and turbulence.« less
Planetary Formation: From The Earth And Moon To Extrasolar Planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)
1999-01-01
An overview of current theories of planetary growth, emphasizing the formation of habitable planets, is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost - to orbital decay within the protoplanetary disk. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. Specific issues to be discussed include: (1) how do giant planets influence the formation and habitability of terrestrial planets? (2) could a giant impact leading to lunar formation have occurred - 100 million years after the condensation of the oldest meteorites?
A Toolbox for Exoplanet Exploration
NASA Astrophysics Data System (ADS)
Jensen-Clem, Rebecca Marie
2017-05-01
In this thesis, I develop a new suite of tools to address two questions in exoplanet science: how common are Earth-mass planets in the habitable zones of Solar-type stars, and can we detect signs of life on other worlds? Answering the first question requires a method for detecting Earth-Sun analogs. Currently, the radial velocity (RV) method of exoplanet detection is one of the most successful tools for probing inner planetary systems. However, degeneracy between a spectrometer's wavelength calibration and the astrophysical RV shift has limited the sensitivity of today's instruments. In my thesis, I address a method for breaking this degeneracy: by combining a traditional spectrometer design with a dynamic interferometer, a fringe pattern is generated at the image plane that is highly sensitive to changes in the radial velocity of the target star. I augmented previous theoretical studies of the method, creating an end-to-end simulation to 1) introduce and recover wavelength calibration errors, and 2) investigate the effects of interferometer position errors on the RV precision. My simulation showed that using this kind of interferometric system, a 5-m class telescope could detect an Earth-Sun analog. Addressing the occurrence rate of Earth twins also requires an understanding of planet formation in multiple star systems, which encompass half of all Solar-type stars. Gravitational interactions between binary components separated by 10-100 astronomical units are predicted to truncate the outer edges of their respective disks, possibly reducing the disks' lifetimes. Consequently, the pool of material and the amount of time available for planet formation may be smaller than in single star systems. The stars' rotational periods provide a fossil record of these events: star-disk magnetic interactions initially prevent a contracting pre-main sequence star from spinning up, and hence a star with a shorter-lived disk is expected to be spinning more quickly when it reaches the zero age main sequence. In order to conduct a large-scale multiplicity survey to investigate the relationship between stellar rotation and binary system properties (e.g. their separations and mass ratios), I contributed to the commissioning of Robo-AO, a robotic laser guide star adaptive optics system, at the Kitt Peak 2.1-m. After the instrument's installation, I wrote a data pipeline to optimize the system's sensitivity to close stellar companions via reference star differential imaging. I then characterized Robo-AO's performance during its first year of operations. Finally, I used Robo-AO to search for binaries among the 759 stars in the Pleiades with rotational periods measured using the photometric data of the re-purposed Kepler telescope, K2. Detecting signs of life on other worlds will require detailed characterization of rocky exoplanet atmospheres. Polarimetry has long been proposed as a means of probing these atmospheres, but current instruments lack the sensitivity to detect the starlight reflected and polarized by such small, close-in planets. However, the latest generation of high contrast imaging instruments (e.g. GPI and SPHERE) may be able to detect the polarization of thermal emission by young gas giants due to scattering by aerosols in their atmospheres. Observational constraints on the details of clouds physics imposed by polarized emission will improve our understanding of the planets' compositions, and hence their formation histories. For the case of the brown dwarf HD19467 B orbiting a nearby Sun-like star, I demonstrated that the Gemini Planet Imager can detect linear polarizations on the order predicted for these cloudy exoplanets. My current pilot programs can produce the first detections of polarized exoplanet emission, while also building expertise for reflected starlight polarimetry with future observatories.
Stability and self-organization of planetary systems.
Pakter, Renato; Levin, Yan
2018-04-01
We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system-in which planets have masses comparable to those of planets in the solar system-the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.
The Updated Multiple Star Catalog
NASA Astrophysics Data System (ADS)
Tokovinin, Andrei
2018-03-01
The catalog of hierarchical stellar systems with three or more components is an update of the original 1997 version. For 2000 hierarchies, the new Multiple Star Catalog (MSC) provides distances, component masses and periods, and supplementary information (astrometry, photometry, identifiers, orbits, notes). The MSC content and format are explained, and its incompleteness and strong observational selection are stressed. Nevertheless, the MSC can be used for statistical studies and is a valuable source for planning observations of multiple stars. Rare classes of stellar hierarchies found in the MSC (with six or seven components, extremely eccentric orbits, planar and possibly resonant orbits, hosting planets) are briefly presented. High-order hierarchies have smaller velocity dispersion compared to triples and are often associated with moving groups. The paper concludes with an analysis of the ratio of periods and separations between inner and outer subsystems. In wide hierarchies, the ratio of semimajor axes, estimated statistically, is distributed between 3 and 300, with no evidence of dynamically unstable systems.
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
NASA Technical Reports Server (NTRS)
Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.
2014-01-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
Effects of extreme obliquity variations on the habitability of exoplanets.
Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S
2014-04-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
Exoplanets: A New Era of Comparative Planetology
NASA Astrophysics Data System (ADS)
Meadows, Victoria
2014-11-01
We now know of over 1700 planets orbiting other stars, and several thousand additional planetary candidates. These discoveries have the potential to revolutionize our understanding of planet formation and evolution, while providing targets for the search for life beyond the Solar System. Exoplanets display a larger diversity of planetary types than those seen in our Solar System - including low-density, low-mass objects. They are also found in planetary system architectures very different from our own, even for stars similar to our Sun. Over 20 potentially habitable planets are now known, and half of the M dwarfs stars in our Galaxy may harbor a habitable planet. M dwarfs are plentiful, and they are therefore the most likely habitable planet hosts, but their planets will have radiative and gravitational interactions with their star and sibling planets that are unlike those in our Solar System. Observations to characterize the atmospheres and surfaces of exoplanets are extremely challenging, and transit transmission spectroscopy has been used to measure atmospheric composition for a handful of candidates. Frustratingly, many of the smaller exoplanets have flat, featureless spectra indicative of planet-wide haze or clouds. The James Webb Space Telescope and future ground-based telescopes will improve transit transmission characterization, and enable the first search for signs of life in terrestrial exoplanet atmospheres. Beyond JWST, planned next-generation space telescopes will directly image terrestrial exoplanets, allowing surface and atmospheric characterization that is more robust to haze. Until these observations become available, there is a lot that we can do as planetary scientists to inform required measurements and future data interpretation. Solar System planets can be used as validation targets for extrasolar planet observations and models. The rich heritage of planetary science models can also be used to explore the potential diversity of exoplanet environments and star-planet interactions. And planetary remote-sensing can inform new techniques to identify environmental characteristics and biosignatures in exoplanet spectra.
Records of Migration in the Exoplanet Configurations
NASA Astrophysics Data System (ADS)
Michtchenko, Tatiana A.; Rodriguez Colucci, A.; Tadeu Dos Santos, M.
2013-05-01
Abstract (2,250 Maximum Characters): When compared to our Solar System, many exoplanet systems exhibit quite unusual planet configurations; some of these are hot Jupiters, which orbit their central stars with periods of a few days, others are resonant systems composed of two or more planets with commensurable orbital periods. It has been suggested that these configurations can be the result of a migration processes originated by tidal interactions of the planets with disks and central stars. The process known as planet migration occurs due to dissipative forces which affect the planetary semi-major axes and cause the planets to move towards to, or away from, the central star. In this talk, we present possible signatures of planet migration in the distribution of the hot Jupiters and resonant exoplanet pairs. For this task, we develop a semi-analytical model to describe the evolution of the migrating planetary pair, based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem. Our approach is based on an analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces needs to be invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the stationary solutions of the conservative problem (Birkhoff, Dynamical systems, 1966). The ultimate convergence and the evolution of the system along one of these modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the roper frequencies of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states, and consequently to constrain the parameters of the physical processes involved.
The dynamics of the multi-planet system orbiting Kepler-56
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gongjie; Naoz, Smadar; Johnson, John Asher
2014-10-20
Kepler-56 is a multi-planet system containing two coplanar inner planets that are in orbits misaligned with respect to the spin axis of the host star, and an outer planet. Various mechanisms have been proposed to explain the broad distribution of spin-orbit angles among exoplanets, and these theories fall under two broad categories. The first is based on dynamical interactions in a multi-body system, while the other assumes that disk migration is the driving mechanism in planetary configuration and that the star (or disk) is titled with respect to the planetary plane. Here we show that the large observed obliquity ofmore » Kepler 56 system is consistent with a dynamical origin. In addition, we use observations by Huber et al. to derive the obliquity's probability distribution function, thus improving the constrained lower limit. The outer planet may be the cause of the inner planets' large obliquities, and we give the probability distribution function of its inclination, which depends on the initial orbital configuration of the planetary system. We show that even in the presence of precise measurement of the true obliquity, one cannot distinguish the initial configurations. Finally we consider the fate of the system as the star continues to evolve beyond the main sequence, and we find that the obliquity of the system will not undergo major variations as the star climbs the red giant branch. We follow the evolution of the system and find that the innermost planet will be engulfed in ∼129 Myr. Furthermore we put an upper limit of ∼155 Myr for the engulfment of the second planet. This corresponds to ∼3% of the current age of the star.« less
CROWDING-OUT OF GIANTS BY DWARFS: AN ORIGIN FOR THE LACK OF COMPANION PLANETS IN HOT JUPITER SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogihara, Masahiro; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi, E-mail: ogihara@nagoya-u.jp
2013-11-20
We investigate the formation of close-in terrestrial planets from planetary embryos under the influence of a hot Jupiter (HJ) using gravitational N-body simulations that include gravitational interactions between the gas disk and the terrestrial planet (e.g., type I migration). Our simulations show that several terrestrial planets efficiently form outside the orbit of the HJ, making a chain of planets, and all of them gravitationally interact directly or indirectly with the HJ through resonance, which leads to inward migration of the HJ. We call this mechanism of induced migration of the HJ ''crowding-out''. The HJ is eventually lost through collision withmore » the central star, and only several terrestrial planets remain. We also find that the efficiency of the crowding-out effect depends on the model parameters; for example, the heavier the disk is, the more efficient the crowding-out is. When planet formation occurs in a massive disk, the HJ can be lost to the central star and is never observed. On the other hand, for a less massive disk, the HJ and terrestrial planets can coexist; however, the companion planets may be below the detection limit of current observations. In both cases, systems with a HJ and terrestrial planets have little chance of detection. Therefore, our model naturally explains the lack of companion planets in HJ systems regardless of the disk mass. In effect, our model provides a theoretical prediction for future observations; additional planets can be discovered just outside the HJ, and their masses should generally be small.« less
Properties of the single Jovian planet population and the pursuit of Solar system analogues
NASA Astrophysics Data System (ADS)
Agnew, Matthew T.; Maddison, Sarah T.; Horner, Jonathan
2018-07-01
While the number of exoplanets discovered continues to increase at a rapid rate, we are still to discover any system that truly resembles the Solar system. Existing and near future surveys will likely continue this trend of rapid discovery. To see if these systems are Solar system analogues, we will need to efficiently allocate resources to carry out intensive follow-up observations. We seek to uncover the properties and trends across systems that indicate how much of the habitable zone is stable in each system to provide focus for planet hunters. We study the dynamics of all known single Jovian planetary systems to assess the dynamical stability of the habitable zone around their host stars. We perform a suite of simulations of all systems where the Jovian planet will interact gravitationally with the habitable zone, and broadly classify these systems. Besides the system's mass ratio (Mpl/Mstar), the Jovian planet's semimajor axis (apl), and eccentricity (epl), we find that there are no underlying system properties which are observable that indicate the potential for planets to survive within the system's habitable zone. We use Mpl/Mstar, apl, and epl to generate a parameter space over which the unstable systems cluster, thus allowing us to predict which systems to exclude from future observational or numerical searches for habitable exoplanets. We also provide a candidate list of 20 systems that have completely stable habitable zones and Jovian planets orbiting beyond the habitable zone as potential first-order Solar system analogues.
Properties of the single Jovian planet population and the pursuit of Solar system analogues
NASA Astrophysics Data System (ADS)
Agnew, Matthew T.; Maddison, Sarah T.; Horner, Jonathan
2018-04-01
While the number of exoplanets discovered continues to increase at a rapid rate, we are still to discover any system that truly resembles the Solar system. Existing and near future surveys will likely continue this trend of rapid discovery. To see if these systems are Solar system analogues, we will need to efficiently allocate resources to carry out intensive follow-up observations. We seek to uncover the properties and trends across systems that indicate how much of the habitable zone is stable in each system to provide focus for planet hunters. We study the dynamics of all known single Jovian planetary systems, to assess the dynamical stability of the habitable zone around their host stars. We perform a suite of simulations of all systems where the Jovian planet will interact gravitationally with the habitable zone, and broadly classify these systems. Besides the system's mass ratio (Mpl/Mstar), and the Jovian planet's semi-major axis (apl) and eccentricity (epl), we find that there are no underlying system properties which are observable that indicate the potential for planets to survive within the system's habitable zone. We use Mpl/Mstar, apl and epl to generate a parameter space over which the unstable systems cluster, thus allowing us to predict which systems to exclude from future observational or numerical searches for habitable exoplanets. We also provide a candidate list of 20 systems that have completely stable habitable zones and Jovian planets orbiting beyond the habitable zone as potential first order Solar system analogues.
A Binary System in the Hyades Cluster Hosting a Neptune-Sized Planet
NASA Astrophysics Data System (ADS)
Feinstein, Adina; Ciardi, David; Crossfield, Ian; Schlieder, Joshua; Petigura, Erik; David, Trevor J.; Bristow, Makennah; Patel, Rahul; Arnold, Lauren; Benneke, Björn; Christiansen, Jessie; Dressing, Courtney; Fulton, Benjamin; Howard, Andrew; Isaacson, Howard; Sinukoff, Evan; Thackeray, Beverly
2018-01-01
We report the discovery of a Neptune-size planet (Rp = 3.0Rearth) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. The planet is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set contraints on the formation and evolution of planetary systems.
A Distant Solar System Artist Concept
2004-12-09
This artist concept depicts a distant hypothetical solar system, similar in age to our own. Looking inward from the system outer fringes, a ring of dusty debris can be seen, and within it, planets circling a star the size of our Sun. This debris is all that remains of the planet-forming disk from which the planets evolved. Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains. These outer debris disks are too faint to be imaged by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own. http://photojournal.jpl.nasa.gov/catalog/PIA07096
NASA Astrophysics Data System (ADS)
Xu, Wenrui; Lai, Dong
2017-07-01
Recent observations of Kepler multiplanet systems have revealed a number of systems with planets very close to second-order mean motion resonances (MMRs, with period ratio 1 : 3, 3 : 5, etc.). We present an analytic study of resonance capture and its stability for planets migrating in gaseous discs. Resonance capture requires slow convergent migration of the planets, with sufficiently large eccentricity damping time-scale Te and small pre-resonance eccentricities. We quantify these requirements and find that they can be satisfied for super-Earths under protoplanetary disc conditions. For planets captured into resonance, an equilibrium state can be reached, in which eccentricity excitation due to resonant planet-planet interaction balances eccentricity damping due to planet-disc interaction. This 'captured' equilibrium can be overstable, leading to partial or permanent escape of the planets from the resonance. In general, the stability of the captured state depends on the inner to outer planet mass ratio q = m1/m2 and the ratio of the eccentricity damping times. The overstability growth time is of the order of Te, but can be much larger for systems close to the stability threshold. For low-mass planets undergoing type I (non-gap opening) migration, convergent migration requires q ≲ 1, while the stability of the capture requires q ≳ 1. These results suggest that planet pairs stably captured into second-order MMRs have comparable masses. This is in contrast to first-order MMRs, where a larger parameter space exists for stable resonance capture. We confirm and extend our analytical results with N-body simulations, and show that for overstable capture, the escape time from the MMR can be comparable to the time the planets spend migrating between resonances.
... Every book on parenting will tell you that life forever changes after the birth of a child. So parents of twins (or triplets or more!) can feel as if they've left the hospital and arrived home on a different planet. The arrival of multiple newborns can bring medical, ...
Orbital dynamics of multi-planet systems with eccentricity diversity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Stephen R.; Raymond, Sean N., E-mail: skane@sfsu.edu
2014-04-01
Since exoplanets were detected using the radial velocity method, they have revealed a diverse distribution of orbital configurations. Among these are planets in highly eccentric orbits (e > 0.5). Most of these systems consist of a single planet but several have been found to also contain a longer period planet in a near-circular orbit. Here we use the latest Keplerian orbital solutions to investigate four known systems which exhibit this extreme eccentricity diversity; HD 37605, HD 74156, HD 163607, and HD 168443. We place limits on the presence of additional planets in these systems based on the radial velocity residuals.more » We show that the two known planets in each system exchange angular momentum through secular oscillations of their eccentricities. We calculate the amplitude and timescale for these eccentricity oscillations and associated periastron precession. We further demonstrate the effect of mutual orbital inclinations on the amplitude of high-frequency eccentricity oscillations. Finally, we discuss the implications of these oscillations in the context of possible origin scenarios for unequal eccentricities.« less
MAGNETIC GAMES BETWEEN A PLANET AND ITS HOST STAR: THE KEY ROLE OF TOPOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strugarek, A.; Brun, A. S.; Réville, V.
Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star–planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. Themore » Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star–planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 10{sup 19} W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.« less
Magnetic Games between a Planet and Its Host Star: The Key Role of Topology
NASA Astrophysics Data System (ADS)
Strugarek, A.; Brun, A. S.; Matt, S. P.; Réville, V.
2015-12-01
Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star-planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. The Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star-planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 1019 W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.
Formation of Outer Planets: Overview
NASA Technical Reports Server (NTRS)
Lissauer, Jack
2003-01-01
An overview of current theories of planetary formation, with emphasis on giant planets is presented. The most detailed models are based upon observation of our own Solar System and of young stars and their environments. Terrestrial planets are believe to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk disspates. The primary questions regarding the core instability model is whether planets with small cores can accrete gaseous enveloples within the lifetimes of gaseous protoplanetary disks. The main alternative giant planet formation model is the disk instability model, in which gaseous planets form directly via gravitational instabilities within protoplanetary disks. Formation of giant planets via gas instability has never been demonstrated for realistic disk conditions. Moreover, this model has difficulty explaining the supersolar abundances of heavy elements in Jupiter and Saturn, and it does not explain the orgin of planets like Uranus and Neptune.
HUBBLE OBSERVES THE MOONS AND RINGS OF THE PLANET URANUS
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings, at least five of the inner moons, and bright clouds in the planet's southern hemisphere. Hubble now allows astronomers to revisit the planet at a level of detail not possible since the Voyager 2 spacecraft flew by the planet briefly, nearly a decade ago. Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. Similar details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft that flew by Uranus in 1986 (the rings were discovered by stellar occultation experiments in 1977, but not seen directly until Voyager flew to Uranus). Since the flyby, none of these inner satellites has been observed further, and detailed observations of the rings and Uranus' atmosphere have not been possible, because the rings are lost in the planet's glare as seen through ground-based optical telescopes. Each of the inner moons appears as a string of three dots in this picture because it is a composite of three images, taken about six minutes apart. When these images are combined, they show the motion of the moons compared with the sky background. Because the moons move much more rapidly than our own Moon, they change position noticeably over only a few minutes. (These multiple images also help to distinguish the moons from stars and imaging detector artifacts, i.e., cosmic rays and electronic noise). Thanks to Hubble's capabilities, astronomers will now be able to determine the orbits more precisely. With this increase in accuracy, astronomers can better probe the unusual dynamics of Uranus' complicated satellite system. Measuring the moons' brightness in several colors might offer clues to the satellites' origin by providing new information on their mineralogical composition. Similar measurements of the rings should yield new insights into their composition and origin. One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does reveal a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus' atmosphere, which should be unusual given the planet's large tilt. Credit: Kenneth Seidelmann, U.S. Naval Observatory, and NASA These observations were conducted by a team led by Dr. Ken Seidelmann of the U.S. Naval Observatory as Principal Investigator. These images have been processed by Professor Douglas Currie and Mr. Dan Dowling in the Department of Physics at the University of Maryland. Other team members are Dr. Ben Zellner at Georgia Southern University, Dr. Dan Pascu and Mr. Jim Rhode at the U.S. Naval Observatory, and Dr. Ed Wells, Mr. Charles Kowal (Computer Science Corporation) and Dr. Alex Storrs of the Space Telescope Science Institute.
Constraining the primordial orbits of the terrestrial planets
NASA Astrophysics Data System (ADS)
Brasser, R.; Walsh, K. J.; Nesvorný, D.
2013-08-01
Evidence in the Solar system suggests that the giant planets underwent an epoch of radial migration that was very rapid, with an e-folding time-scale shorter than 1 Myr. It is probable that the cause of this migration was that the giant planets experienced an orbital instability that caused them to encounter each other, resulting in radial migration. A promising and heavily studied way to accomplish such a fast migration is for Jupiter to have scattered one of the ice giants outwards; this event has been called the `jumping Jupiter' scenario. Several works suggest that this dynamical instability occurred `late', long after all the planets had formed and the solar nebula had dissipated. Assuming that the terrestrial planets had already formed, then their orbits would have been affected by the migration of the giant planets as many powerful resonances would sweep through the terrestrial planet region. This raises two questions. First, what is the expected increase in dynamical excitement of the terrestrial planet orbits caused by late and very fast giant planet migration? And secondly, assuming that the migration occurred late, can we use this migration of the giant planets to obtain information on the primordial orbits of the terrestrial planets? In this work, we attempt to answer both of these questions using numerical simulations. We directly model a large number of terrestrial planet systems and their response to the smooth migration of Jupiter and Saturn, and also two jumping Jupiter simulations. We study the total dynamical excitement of the terrestrial planet system with the angular momentum deficit (AMD) value, including the way it is shared among the planets. We conclude that to reproduce the current AMD with a reasonable probability (˜20 per cent) after late rapid giant planet migration and a favourable jumping Jupiter evolution, the primordial AMD should have been lower than ˜70 per cent of the current value, but higher than 10 per cent. We find that a late giant planet migration scenario that initially had five giant planets rather than four had a higher probability of satisfying the orbital constraints of the terrestrial planets. Assuming late migration, we predict that Mars was initially on an eccentric and inclined orbit while the orbits of Mercury, Venus and Earth were more circular and coplanar. The lower primordial dynamical excitement and the peculiar partitioning between planets impose new constraints for terrestrial planet formation simulations.
Modeling circumbinary planets: The case of Kepler-38
NASA Astrophysics Data System (ADS)
Kley, Wilhelm; Haghighipour, Nader
2014-04-01
Context. Recently, a number of planets orbiting binary stars have been discovered by the Kepler space telescope. In a few systems the planets reside close to the dynamical stability limit. Owing to the difficulty of forming planets in such close orbits, it is believed that they have formed farther out in the disk and migrated to their present locations. Aims: Our goal is to construct more realistic models of planet migration in circumbinary disks and to determine the final position of these planets more accurately. In our work, we focus on the system Kepler-38 where the planet is close to the stability limit. Methods: The evolution of the circumbinary disk is studied using two-dimensional hydrodynamical simulations. We study locally isothermal disks as well as more realistic models that include full viscous heating, radiative cooling from the disk surfaces, and radiative diffusion in the disk midplane. After the disk has been brought into a quasi-equilibrium state, a 115 Earth-mass planet is embedded and its evolution is followed. Results: In all cases the planets stop inward migration near the inner edge of the disk. In isothermal disks with a typical disk scale height of H/r = 0.05, the final outcome agrees very well with the observed location of planet Kepler-38b. For the radiative models, the disk thickness and location of the inner edge is determined by the mass in the system. For surface densities on the order of 3000 g/cm2 at 1 AU, the inner gap lies close to the binary and planets stop in the region between the 5:1 and 4:1 mean-motion resonances with the binary. A model with a disk with approximately a quarter of the mass yields a final position very close to the observed one. Conclusions: For planets migrating in circumbinary disks, the final position is dictated by the structure of the disk. Knowing the observed orbits of circumbinary planets, radiative disk simulations with embedded planets can provide important information on the physical state of the system during the final stages of its evolution. Movies are available in electronic form at http://www.aanda.org
Long-Period Planets in Open Clusters and the Evolution of Planetary Systems
NASA Astrophysics Data System (ADS)
Quinn, Samuel N.; White, Russel; Latham, David W.; Stefanik, Robert
2018-01-01
Recent discoveries of giant planets in open clusters confirm that they do form and migrate in relatively dense stellar groups, though overall occurrence rates are not yet well constrained because the small sample of giant planets discovered thus far predominantly have short periods. Moreover, planet formation rates and the architectures of planetary systems in clusters may vary significantly -- e.g., due to intercluster differences in the chemical properties that regulate the growth of planetary embryos or in the stellar space density and binary populations, which can influence the dynamical evolution of planetary systems. Constraints on the population of long-period Jovian planets -- those representing the reservoir from which many hot Jupiters likely form, and which are most vulnerable to intracluster dynamical interactions -- can help quantify how the birth environment affects formation and evolution, particularly through comparison of populations possessing a range of ages and chemical and dynamical properties. From our ongoing RV survey of open clusters, we present the discovery of several long-period planets and candidate substellar companions in the Praesepe, Coma Berenices, and Hyades open clusters. From these discoveries, we improve estimates of giant planet occurrence rates in clusters, and we note that high eccentricities in several of these systems support the prediction that the birth environment helps shape planetary system architectures.
Dynamic modeling and optimization for space logistics using time-expanded networks
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2014-12-01
This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.
Assessing the Effect of Stellar Companions to Kepler Objects of Interest
NASA Astrophysics Data System (ADS)
Hirsch, Lea; Ciardi, David R.; Howard, Andrew
2017-01-01
Unknown stellar companions to Kepler planet host stars dilute the transit signal, causing the planetary radii to be underestimated. We report on the analysis of 165 stellar companions detected with high-resolution imaging to be within 2" of 159 KOI host stars. The majority of the planets and planet candidates in these systems have nominal radii smaller than 6 REarth. Using multi-filter photometry on each companion, we assess the likelihood that the companion is bound and estimate its stellar properties, including stellar radius and flux. We then recalculate the planet radii in these systems, determining how much each planet's size is underestimated if it is assumed to 1) orbit the primary star, 2) orbit the companion star, or 3) be equally likely to orbit either star in the system. We demonstrate the overall effect of unknown stellar companions on our understanding of Kepler planet sizes.
Timing of the formation and migration of giant planets as constrained by CB chondrites
Johnson, Brandon C.; Walsh, Kevin J.; Minton, David A.; Krot, Alexander N.; Levison, Harold F.
2016-01-01
The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My. PMID:27957541
Occurrence of Earth-like bodies in planetary systems.
Wetherill, G W
1991-08-02
Present theories of terrestrial planet formation predict the rapid ;;runaway formation'' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter'' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.
Occurrence of earth-like bodies in planetary systems
NASA Technical Reports Server (NTRS)
Wetherill, George W.
1991-01-01
Present theories of terrestrial planet formation predict the rapid 'runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then emerge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to 'Jupiter' does not form, an earth-sized planet is almost always found near earth's heliocentric distance. These results suggest that occurrence of earthlike planets may be a common feature of planetary systems.
Timing of the formation and migration of giant planets as constrained by CB chondrites.
Johnson, Brandon C; Walsh, Kevin J; Minton, David A; Krot, Alexander N; Levison, Harold F
2016-12-01
The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My.
Lessons Learned from Radiative Transfer Simulations of the Venus Atmosphere
NASA Technical Reports Server (NTRS)
Arney, G.; Meadows, V. S.; Lincowski, A.
2017-01-01
The Venus atmosphere is extremely complex, and because of this the spectrum of Earths sister planet is likewise intricate and a challenge to model accurately. However, accurate modeling of Venus spectrum opens up multiple opportunities to better understand the planet next door, and even for understanding Venus-like planets beyond our solar system. Near-infrared (1-2.5 um, NIR) spectral windows observable on the Venus nigthside present the opportunity to probe beneath the Venusian cloud deck and measure thermal emission from the surface and lower atmosphere remotely from Earth or from orbit. These nigthside spectral windows were discovered by Allen and Crawford (1984) and have since been used measure trace gas abundances in the Venus lower atmosphere (less than 45 km), map surface emissivity varisions, and measure properties of the lower cloud deck. These windows sample radiation from below the cloud base at roughly 45 km, and pressures in this region range from roughly Earthlike (approx. 1 bar) up to 90 bars at the surface. Temperatures in this region are high: they range from about 400 K at the base of the cloud deck up to about 740 K at the surface. This high temperature and pressure presents several challenges to modelers attempting radiative transfer simulations of this region of the atmosphere, which we will review. Venus is also important to spectrally model to predict the remote observables of Venus-like exoplanets in anticipation of data from future observatories. Venus-like planets are likely one of the most common types of terrestrial planets and so simulations of them are valuable for planning observatory and detector properties of future telescopes being designed, as well as predicting the types of observations required to characterize them.
A High Mass & Low Envelope Fraction for the Warm Neptune K2-55b
NASA Astrophysics Data System (ADS)
Dressing, Courtney; Sinukoff, Evan; Fulton, Benjamin; Lopez, Eric; Beichman, Charles; Howard, Andrew; Knutson, Heather; Werner, Michael; Schlieder, Joshua; Benneke, Björn; Crossfield, Ian; Isaacson, Howard; Krick, Jessica; Gorjian, Varoujan; Livingston, John; Petigura, Erik; Akeson, Rachel; Batygin, Konstantin; Christiansen, Jessie; Ciardi, David; Crepp, Justin; Jasmine Gonzales, Erica; Hardegree-Ullman, Kevin; Hirsch, Lea; Kosiarek, Molly; Weiss, Lauren
2018-01-01
The NASA K2 mission is using the Kepler spacecraft to search for transiting planets in multiple fields along the ecliptic plane. One of the planets detected by K2 is K2-55b, a warm Neptune in a short-period orbit (2.8 days) around a late K dwarf. We previously obtained near-infrared spectra from IRTF/SpeX to characterize the system and found that the host star K2-55 has a radius of 0.715 (+0.043/-0.040) solar radii, a mass of 0.668 (+/- 0.069) solar masses, and an effective temperature of 4300K (+100/-107). We then combined our updated stellar properties with new fits to the K2 photometry to estimate a planet radius of 4.38 (+0.29/-0.25) Earth radii, confirmed the transit ephemeris using Spitzer/IRAC (GO 11026, PI Werner), and embarked on radial velocity observations with Keck/HIRES to measure the planet mass. Our RV data suggest that K2-55b is much more massive than expected, indicating that the planet has a high density despite having a relatively high mass. The lack of a significant volatile envelope tests current theories of gas giant formation and indicates that K2-55b may have avoided runaway accretion by migration, delayed formation, or inefficient core accretion. We gratefully acknowledge funding from the NASA Sagan Fellowship Program and the NASA K2 Guest Observer Program. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.
Outer-Planet Mission Analysis Using Solar-Electric Ion Propulsion
NASA Technical Reports Server (NTRS)
Woo, Byoungsam; Coverstone, Victoria L.; Hartmann, John W.; Cupples, Michael
2003-01-01
Outer-planet mission analysis was performed using three next generation solar-electric ion thruster models. Optimal trajectories are presented that maximize the delivered mass to the designated outer planet. Trajectories to Saturn and Neptune with a single Venus gravity assist are investigated. For each thruster model, the delivered mass versus flight time curve was generated to obtain thruster model performance. The effects of power to the thrusters and resonance ratio of Venutian orbital periods to spacecraft period were also studied. Multiple locally optimal trajectories to Saturn and Neptune have been discovered in different regions of the parameter search space. The characteristics of each trajectory are noted.
NASA Astrophysics Data System (ADS)
Andrade-Ines, Eduardo; Robutel, Philippe
2018-01-01
We present an analytical formalism to study the secular dynamics of a system consisting of N-2 planets orbiting a binary star in outer orbits. We introduce a canonical coordinate system and expand the disturbing function in terms of canonical elliptic elements, combining both Legendre polynomials and Laplace coefficients, to obtain a general formalism for the secular description of this type of configuration. With a quadratic approximation of the development, we present a simplified analytical solution for the planetary orbits for both the single planet and the two-planet cases. From the two-planet model, we show that the inner planet accelerates the precession rate of the binary pericenter, which, in turn, may enter in resonance with the secular frequency of the outer planet, characterizing a secular resonance. We calculate an analytical expression for the approximate location of this resonance and apply it to known circumbinary systems, where we show that it can occur at relatively close orbits, for example at 2.4 au for the Kepler-38 system. With a more refined model, we analyse the dynamics of this secular resonance and we show that a bifurcation of the corresponding fixed points can affect the long- term evolution and stability of planetary systems. By comparing our results with complete integrations of the exact equations of motion, we verified the accuracy of our analytical model.
ERIC Educational Resources Information Center
Riddle, Bob
2002-01-01
Provides information about each of the planets in our solar system. Focuses on information related to the space missions that have visited or flown near each planet, and includes a summary of what is known about some of the features of each planet. (DDR)
Moon or Planet? The Exomoon Hunt Continues Artist Concept
2014-04-10
Researchers have detected the first exomoon candidate -- a moon orbiting a planet that lies outside our solar system. Using a technique called microlensing, they observed what could be either a moon and a planet -- or a planet and a star.
NASA Astrophysics Data System (ADS)
Wang, Su; Ji, Jianghui
2017-12-01
The Kepler mission has released over 4496 planetary candidates, among which 3483 planets have been confirmed as of 2017 April. The statistical results of the planets show that there are two peaks around 1.5 and 2.0 in the distribution of orbital period ratios. The observations indicate that plenty of planet pairs could have first been captured into mean-motion resonances (MMRs) in planetary formation. Subsequently, these planets depart from exact resonant locations to be near-MMR configurations. Through type I migration, two low-mass planets have a tendency to be trapped in first-order MMRs (2:1 or 3:2 MMRs); however, two scenarios of mass accretion of planets and potential outward migration play important roles in reshaping their final orbital configurations. Under the scenario of mass accretion, the planet pairs can cross 2:1 MMRs and then enter into 3:2 MMRs, especially for the inner pairs. With such a formation scenario, the possibility that two planets are locked into 3:2 MMRs can increase if they are formed in a flat disk. Moreover, the outward migration can make planets have a high likelihood to be trapped into 3:2 MMRs. We perform additional runs to investigate the mass relationship for those planets in three-planet systems, and we show that two peaks near 1.5 and 2.0 for the period ratios of two planets can be easily reproduced through our formation scenario. We further show that the systems in chain resonances (e.g., 4:2:1, 3:2:1, 6:3:2, and 9:6:4 MMRs), have been observed in our simulations. This mechanism can be applicable to understand the formation of systems of Kepler-48, Kepler-53, Kepler-100, Kepler-192, Kepler-297, Kepler-399, and Kepler-450.
NASA Technical Reports Server (NTRS)
Belton, M. J. S.; Aksnes, K.; Davies, M. E.; Hartmann, W. K.; Millis, R. L.; Owen, T. C.; Reilly, T. H.; Sagan, C.; Suomi, V. E.; Collins, S. A., Jr.
1972-01-01
A recommended imaging system is outlined for use aboard the Outer Planet Grand Tour Explorer. The system features the high angular resolution capacity necessary to accommodate large encounter distances, and to satisfy the demand for a reasonable amount of time coverage. Specifications for all components within the system are provided in detail.
Mars’ Growth Stunted by an Early Giant Planet Instability
NASA Astrophysics Data System (ADS)
Clement, Matthew; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J.
2017-10-01
Many dynamical aspects of the solar system can be explained by the outer planets experiencing a period of orbital instability. Though often correlated with a perceived delayed spike in the lunar cratering record known as the Late Heavy Bombardment (LHB), recent work suggests that this event may have occurred during the epoch of terrestrial planet formation. Though current simulations of terrestrial accretion can reproduce many observed qualities of the solar system, replicating the small mass of Mars requires modification to standard planet formation models. Here we use direct numerical simulations to show that an early instability in the outer solar system regularly yields properly sized Mars analogues. In 80% of simulations, we produce a Mars of the appropriate mass. Our most successful outcomes occur when the terrestrial planets evolve 10 million years (Myr), and accrete several Mars sized embryos in the Mars forming region before the instability takes place. Mars is left behind as a stranded embryo, while the remainder of these bodies are either ejected from the system or scattered towards the inner solar system where they deliver water to Earth. An early giant planet instability can thus replicate both the inner and outer solar system in a single model.
Migrating Jupiter up to the habitable zone: Earth-like planet formation and water delivery
NASA Astrophysics Data System (ADS)
Darriba, L. A.; de Elía, G. C.; Guilera, O. M.; Brunini, A.
2017-11-01
Context. Several observational works have shown the existence of Jupiter-mass planets covering a wide range of semi-major axes around Sun-like stars. Aims: We aim to analyse the planetary formation processes around Sun-like stars that host a Jupiter-mass planet at intermediate distances ranging from 1 au to 2 au. Our study focusses on the formation and evolution of terrestrial-like planets and water delivery in the habitable zone (HZ) of the system. Our goal is also to analyse the long-term dynamical stability of the resulting systems. Methods: A semi-analytic model was used to define the properties of a protoplanetary disk that produces a Jupiter-mass planet around the snow line, which is located at 2.7 au for a solar-mass star. Then, it was used to describe the evolution of embryos and planetesimals during the gaseous phase up to the formation of the Jupiter-mass planet, and we used the results as the initial conditions to carry out N-body simulations of planetary accretion. We developed sixty N-body simulations to describe the dynamical processes involved during and after the migration of the gas giant. Results: Our simulations produce three different classes of planets in the HZ: "water worlds", with masses between 2.75 M⊕ and 3.57 M⊕ and water contents of 58% and 75% by mass, terrestrial-like planets, with masses ranging from 0.58 M⊕ to 3.8 M⊕ and water contents less than 1.2% by mass, and "dry worlds", simulations of which show no water. A relevant result suggests the efficient coexistence in the HZ of a Jupiter-mass planet and a terrestrial-like planet with a percentage of water by mass comparable to the Earth. Moreover, our study indicates that these planetary systems are dynamically stable for at least 1 Gyr. Conclusions: Systems with a Jupiter-mass planet located at 1.5-2 au around solar-type stars are of astrobiological interest. These systems are likely to harbour terrestrial-like planets in the HZ with a wide diversity of water contents.
Dynamical effects of stellar companions
NASA Astrophysics Data System (ADS)
Naoz, Smadar
2015-08-01
The fraction of stellar binaries in the field is extremely high (about 40% - 70% for > 1 Msun stars), and thus, given this frequency, a large fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (<100 AU) is significantly lower than in the overall population. Stellar companions’ gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. I will review the dynamical effects stellar binaries have on a planetary systems. I will also present new results on the influence that stellar evolution has on the dynamical processes in these systems.
Study of ephemeris accuracy of the minor planets. [using computer based data systems
NASA Technical Reports Server (NTRS)
Brooks, D. R.; Cunningham, L. E.
1974-01-01
The current state of minor planet ephemerides was assessed, and the means for providing and updating these emphemerides for use by both the mission planner and the astronomer were developed. A system of obtaining data for all the numbered minor planets was planned, and computer programs for its initial mechanization were developed. The computer based system furnishes the osculating elements for all of the numbered minor planets at an adopted date of October 10, 1972, and at every 400 day interval over the years of interest. It also furnishes the perturbations in the rectangular coordinates relative to the osculating elements at every 4 day interval. Another computer program was designed and developed to integrate the perturbed motion of a group of 50 minor planets simultaneously. Sampled data resulting from the operation of the computer based systems are presented.