Wang, Jie; Shen, Haijing; Hu, Xiaoxia; Li, Yan; Li, Zhihao; Xu, Jinfan; Song, Xiufeng; Zeng, Haibo; Yuan, Quan
2016-03-01
For the water remediation techniques based on adsorption, the long-standing contradictories between selectivity and multiple adsorbability, as well as between affinity and recyclability, have put it on weak defense amid more and more severe environment crisis. Here, a pollutant-targeting hydrogel scavenger is reported for water remediation with both high selectivity and multiple adsorbability for several pollutants, and with strong affinity and good recyclability through rationally integrating the advantages of multiple functional materials. In the scavenger, aptamers fold into binding pockets to accommodate the molecular structure of pollutants to afford perfect selectivity, and Janus nanoparticles with antibacterial function as well as anisotropic surfaces to immobilize multiple aptamers allow for simultaneously handling different kinds of pollutants. The scavenger exhibits high efficiencies in removing pollutants from water and it can be easily recycled for many times without significant loss of loading capacities. Moreover, the residual concentrations of each contaminant are well below the drinking water standards. Thermodynamic behavior of the adsorption process is investigated and the rate-controlling process is determined. Furthermore, a point of use device is constructed and it displays high efficiency in removing pollutants from environmental water. The scavenger exhibits great promise to be applied in the next generation of water purification systems.
Zhang, Shengxiao; Zhang, Yuanyuan; Bi, Guoming; Liu, Junshen; Wang, Zhigang; Xu, Qiang; Xu, Hui; Li, Xiaoyan
2014-04-15
The polydopamine polymer decorated with magnetic nanoparticles (Fe3O4/PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe3O4/PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8h, and Fe3O4 nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe3O4/PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu(2+), Ag(+), and Hg(2+) were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g(-1), respectively. The Fe3O4/PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation. Copyright © 2014 Elsevier B.V. All rights reserved.
Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun
2017-05-02
Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH) x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.
33 CFR 136.109 - Removal costs and multiple items of damages.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Removal costs and multiple items of damages. 136.109 Section 136.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...
33 CFR 136.109 - Removal costs and multiple items of damages.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Removal costs and multiple items of damages. 136.109 Section 136.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...
33 CFR 136.109 - Removal costs and multiple items of damages.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Removal costs and multiple items of damages. 136.109 Section 136.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...
33 CFR 136.109 - Removal costs and multiple items of damages.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Removal costs and multiple items of damages. 136.109 Section 136.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...
33 CFR 136.109 - Removal costs and multiple items of damages.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Removal costs and multiple items of damages. 136.109 Section 136.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...
Oil palm biomass-based adsorbents for the removal of water pollutants--a review.
Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah
2011-07-01
This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.
Multiple evaluations of the removal of pollutants in road runoff by soil infiltration.
Murakami, Michio; Sato, Nobuyuki; Anegawa, Aya; Nakada, Norihide; Harada, Arata; Komatsu, Toshiya; Takada, Hideshige; Tanaka, Hiroaki; Ono, Yoshiro; Furumai, Hiroaki
2008-05-01
Groundwater replenishment by infiltration of road runoff is expected to be a promising option for ensuring a sustainable urban water cycle. In this study, we performed a soil infiltration column test using artificial road runoff equivalent to approximately 11-12 years of rainfall to evaluate the removal of pollutants by using various chemical analyses and bioassay tests. These results indicated that soil infiltration treatment works effectively to remove most of the pollutants such as organic matter (chemical oxygen demand (CODMn) and dissolved organic carbon (DOC)), P species, polycyclic aromatic hydrocarbons (PAHs), numerous heavy metals and oestrogenic activities. Bioassay tests, including algal growth inhibition test, Microtox and mutagen formation potential (MFP) test, also revealed effective removal of toxicities by the soils. However, limited amounts of NO3, Mn, Ni, alkaline earth metals, perfluorooctane sulphonate (PFOS) and perfluorooctane sulphonamide (FOSA) were removed by the soils and they possibly reach the groundwater and cause contamination.
Performance of compost filtration practice for green infrastructure stormwater applications.
Faucette, Britt; Cardoso, Fatima; Mulbry, Walter; Millner, Pat
2013-09-01
Urban storm water runoff poses a substantial threat of pollution to receiving surface waters. Green infrastructure, low impact development, green building ordinances, National Pollutant Discharge Elimination System (NPDES) storm water permit compliance, and Total Maximum Daily Load (TMDL) implementation strategies have become national priorities; however, designers need more sustainable, low-cost solutions to meet these goals and guidelines. The objective of this study was to determine the multiple-event removal efficiency and capacity of compost filter socks (FS) and filter socks with natural sorbents (NS) to remove soluble phosphorus, ammonium-nitrogen, nitrate-nitrogen, E. coli, Enterococcus, and oil from urban storm water runoff. Treatments were exposed to simulated storm water pollutant concentrations consistent with urban runoff originating from impervious surfaces, such as parking lots and roadways. Treatments were exposed to a maximum of 25 runoff events, or when removal efficiencies were < or = 25%, whichever occurred first. Experiments were conducted in triplicate. The filter socks with natural sorbents removed significantly greater soluble phosphorus than the filter socks alone, removing a total of 237 mg/linear m over eight runoff events, or an average of 34%. The filter socks with natural sorbents removed 54% of ammonium-nitrogen over 25 runoff events, or 533 mg/linear m, and only 11% of nitrate-nitrogen, or 228 mg/linear m. The filter socks and filter socks with natural sorbents both removed 99% of oil over 25 runoff events, or a total load of 38,486 mg/linear m. Over 25 runoff events the filter socks with natural sorbents removed E. coli and Enteroccocus at 85% and 65%, or a total load of 3.14 CFUs x 10(8)/ linear m and 1.5 CFUs x 10(9)/linear m, respectively; both were significantly greater than treatment by filter socks alone. Based on these experiments, this technique can be used to reduce soluble pollutants from storm water over multiple runoff events.
Code of Federal Regulations, 2013 CFR
2013-04-01
... facility which (i) is used to abate or control water or atmospheric pollution or contamination by removing... performing multiple functions or used in connection with several plants, etc. (i) If a facility is designed... addition to abating water pollution is installed at a cost of $100,000 in, and is used only in connection...
Code of Federal Regulations, 2010 CFR
2010-04-01
... facility which (i) is used to abate or control water or atmospheric pollution or contamination by removing... performing multiple functions or used in connection with several plants, etc. (i) If a facility is designed... addition to abating water pollution is installed at a cost of $100,000 in, and is used only in connection...
Code of Federal Regulations, 2014 CFR
2014-04-01
... facility which (i) is used to abate or control water or atmospheric pollution or contamination by removing... performing multiple functions or used in connection with several plants, etc. (i) If a facility is designed... addition to abating water pollution is installed at a cost of $100,000 in, and is used only in connection...
Code of Federal Regulations, 2012 CFR
2012-04-01
... facility which (i) is used to abate or control water or atmospheric pollution or contamination by removing... performing multiple functions or used in connection with several plants, etc. (i) If a facility is designed... addition to abating water pollution is installed at a cost of $100,000 in, and is used only in connection...
Code of Federal Regulations, 2011 CFR
2011-04-01
... facility which (i) is used to abate or control water or atmospheric pollution or contamination by removing... performing multiple functions or used in connection with several plants, etc. (i) If a facility is designed... addition to abating water pollution is installed at a cost of $100,000 in, and is used only in connection...
Zhang, Jing; Zhang, Baogang; Tian, Caixing; Ye, Zhengfang; Liu, Ye; Lei, Zhongfang; Huang, Wenli; Feng, Chuanping
2013-06-01
Microbial fuel cells (MFCs), representing a promising method to treat combined pollutants with energy recovery, were utilized to remove sulfide and recover power with corn stover filtrate (CSF) as the co-substrate in present study. A maximum power density of 744 mW/m(2) was achieved with sulfide removal of 91% during 72 h operation when the CSF concentrations (mg-COD/l) and the electrolyte conductivity were set at 800 mg/l and 10.06 mS/cm, respectively, while almost 52% COD was removed due to the microbial degradation of CSF to the volatile organic carbons. CSF concentrations and electrolyte conductivities had significant effects on the performance of the MFCs. Simultaneous removals of inorganic pollutant and complex organic compounds with electricity generation in MFCs are reported for the first time. These results provide a good reference for multiple contaminations treatment especially sulfide containing wastewaters based on the MFC technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Purpose Main challenge of phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of po...
A multifunctional azobenzene-based polymeric adsorbent for effective water remediation
Wan, Decheng; Chen, Feng; Geng, Qingrui; Lu, Hang; Willcock, Helen; Liu, Qiuming; Wang, Fangyingkai; Zou, Kaidian; Jin, Ming; Pu, Hongting; Du, Jianzhong
2014-01-01
The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, π–π stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials. PMID:25465671
Regional assessment of groundwater quality for drinking purpose.
Jang, Cheng-Shin
2012-05-01
Owing to limited surface water during a long-term drought, this work attempted to locate clean and safe groundwater in the Choushui River alluvial fan of Taiwan based on drinking-water quality standards. Because aquifers contained several pollutants, multivariate indicator kriging (MVIK) was adopted to integrate the multiple pollutants in groundwater based on drinking- and raw-water quality standards and to explore spatial uncertainty. According to probabilities estimated by MVIK, safe zones were determined under four treatment conditions--no treatment; ammonium-N and iron removal; manganese and arsenic removal; and ammonium-N, iron, manganese, and arsenic removal. The analyzed results reveal that groundwater in the study area is not appropriate for drinking use without any treatments because of high ammonium-N, iron, manganese, and/or arsenic concentrations. After ammonium-N, iron, manganese, and arsenic removed, about 81.9-94.9% of total areas can extract safe groundwater for drinking. The proximal-fan, central mid-fan, southern mid-fan, and northern regions are the excellent locations to pump safe groundwater for drinking after treatment. Deep aquifers of exceeding 200 m depth have wider regions to obtain excellent groundwater than shallow aquifers do.
Current Progress of Capacitive Deionization for Removal of Pollutant Ions
NASA Astrophysics Data System (ADS)
Gaikwad, Mahendra S.; Balomajumder, Chandrajit
2016-08-01
A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.
NASA Astrophysics Data System (ADS)
Medrano, Nicolas W.
Ambient air pollution is a major issue in urban environments, causing negative health impacts and increasing costs for metropolitan economies. Vegetation has been shown to remove these pollutants at a substantial rate. This study utilizes the i-Tree Eco (UFORE) and i-Tree Canopy models to estimate air pollution removal services provided by trees in Government Canyon State Natural Area (GCSNA), an approximately 4,700 hectare area in San Antonio, Texas. For i-Tree Eco, a stratified project of the five prominent vegetation types was completed. A comparison of removal services provided by vegetation communities indicated there was no significant difference in removal rates. Total pollution removal of GCSNA was estimated to be 239.52 metric tons/year at a rate of 64.42 kg/ha of tree cover/year. By applying this value to the area within Bexar County, Texas belonging to the Balcones Canyonlands ecoregion, it was determined that for 2013 an estimated 2,598.45 metric tons/year of air pollution was removed at a health value to society of 19.4 million. This is a reduction in pollution removal services since 2003, in which 3,050.35 metric tons/year were removed at a health value of 22.8 million. These results suggest urban sprawl taking place in San Antonio is reducing air pollution removal services provided by trees.
Efficiencies of multilayer infiltration systems for the removal of urban runoff pollutants.
Hou, Lizhu; Liu, Fang; Feng, Chuanping; Wan, Li
2013-01-01
Current rates of urban development will result in water runoff becoming a major complication of urban water pollution. To address the worsening situation regarding water resource shortage and pollution, novel multilayer infiltration systems were designed and their effectiveness for removing pollutants in urban runoff tested experimentally. The multilayer infiltration systems effectively removed most pollutants, including organic matter (chemical oxygen demand (CODCr)), total nitrogen (TN), ammonia-nitrogen (NH4(+)-N) and total phosphorus (TP). CODCr, TN, NH4(+)-N, and TP were reduced by 68.67, 23.98, 82.66 and 92.11%, respectively. The main mechanism for nitrogen removal was biological nitrogen removal through nitrification and denitrification. Phosphorus in the urban runoff was removed mainly by fixation processes in the soil, such as adsorption and chemical precipitation. The results indicate that the proposed novel system has potential for removal of pollutants from urban runoff and subsequent reuse of the treated water.
Air pollution removal by urban trees and shrubs in the United States
David J. Nowak; Daniel E. Crane; Jack C. Stevens
2006-01-01
A modeling study using hourly meteorological and pollution concentration data from across the coterminous United States demonstrates that urban trees remove large amounts of air pollution that consequently improve urban air quality. Pollution removal (03, PM10, NO2, SO2, CO)...
USDA-ARS?s Scientific Manuscript database
Main challenge of phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediaiton of polycyclic aromatic hydrocarbons...
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Pollutants Eligible for a Removal Credit G Appendix G to Part 403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... POLLUTION Pt. 403, App. G Appendix G to Part 403—Pollutants Eligible for a Removal Credit I. Regulated...
[Treatment of Urban Runoff Pollutants by a Multilayer Biofiltration System].
Wang, Xiao-lu; Zuo, Jian-e; Gan, Li-li; Xing, Wei; Miao, Heng-feng; Ruan, Wen-quan
2015-07-01
In order to control the non-point source pollution from road runoff in Wuxi City effectively, a multilayer biofiltration system was designed to remove a variety of pollutants according to the characteristics of road runoff in Wuxi, and the experimental research was carried out to study the effect on rainwater pollution purification. The results show that the system has a good performance on removing suspended solids (SS), organic pollutant (COD), nitrogen and phosphorus: all types of multilayer biofiltration systems have a high removal rate for SS, which can reach 90%. The system with activated carbon (GAC) has higher removal rates for COD and phosphorus. The system with zeolite (ZFM) has a relatively better removal efficiency for nitrogen. The addition of wood chips in the system can significantly improve the system efficiency for nitrogen removal. Between the two configurations of layered and distributed wood chips, configurations of distributed wood chips reach higher COD, phosphorus and nitrogen pollutants removal efficiencies since they can reduce the release of wood chips dissolution.
Rushworth, Alastair; Lee, Duncan; Mitchell, Richard
2014-07-01
It has long been known that air pollution is harmful to human health, as many epidemiological studies have been conducted into its effects. Collectively, these studies have investigated both the acute and chronic effects of pollution, with the latter typically based on individual level cohort designs that can be expensive to implement. As a result of the increasing availability of small-area statistics, ecological spatio-temporal study designs are also being used, with which a key statistical problem is allowing for residual spatio-temporal autocorrelation that remains after the covariate effects have been removed. We present a new model for estimating the effects of air pollution on human health, which allows for residual spatio-temporal autocorrelation, and a study into the long-term effects of air pollution on human health in Greater London, England. The individual and joint effects of different pollutants are explored, via the use of single pollutant models and multiple pollutant indices. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Air pollution removal by urban forests in Canada and its effect on air quality and human health
David J. Nowak; Satoshi Hirabayashi; Marlene Doyle; Mark McGovern; Jon Pasher
2018-01-01
Urban trees perform a number of ecosystem services including air pollution removal, carbon sequestration, cooling air temperatures and providing aesthetic beauty to the urban landscape. Trees remove air pollution by intercepting particulate matter on plant surfaces and absorbing gaseous pollutants through the leaf stomata. Computer simulations with local environmental...
Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.
Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L
2014-01-01
Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.
UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS
Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...
The Control of pollution in highway runoff through biofiltration.
DOT National Transportation Integrated Search
1995-01-01
Biofiltration is the process of filtering polluted water through vegetation to remove pollutants. Pollutants may be removed through settling, infiltration, and adsorption to sediment and vegetation. This report summarizes the findings of three parall...
Simultaneous electrodialytic removal of PAH, PCB, TBT and heavy metals from sediments.
Pedersen, Kristine B; Lejon, Tore; Jensen, Pernille E; Ottosen, Lisbeth M
2017-08-01
Contaminated sediments are remediated in order to protect human health and the environment, with the additional benefit of using the treated sediments for other activities. Common for many polluted sediments is the contamination with several different pollutants, making remediation challenging with the need of different remedial actions for each pollutant. In this study, electrodialytic remediation (EDR) of sediments was found effective for simultaneous removal of heavy metals and organic pollutants for sediments from Arctic regions - Sisimiut in Greenland and Hammerfest in Norway. The influence of sediment properties and experimental settings on the remediation process was studied by employing multivariate analysis. The importance of the variables studied varied with the pollutant and based on these results it was possible to assess removal processes for the different pollutants. Desorption was found to be important for the removal of heavy metals and TBT, while photolysis was significant for removal of PAH, PCB and TBT. In addition, dechlorination was found to be important for the removal of PCB. The highest removal efficiencies were found for heavy metals, TBT and PCB (>40%) and lower removal efficiencies for PAH (<35%). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen-feng, Tang; You-biao, Hu
2018-05-01
This paper studies the characteristics of atmospheric pollutant (SO2, NO2, PM2.5 and PM10) and the effects of rainfall on the removal of atmospheric pollutants. The results show atmospheric pollutants concentration vary in different seasons and functional area: atmospheric pollutants concentration in summer and autumn is lower than that in winter and spring; the concentration of SO2 and NO2 in coal-chemical industry areas and light industrial areas is higher, the concentration difference of PM2.5 and PM10 in different functional areas is very small, the removal efficiency of rainfall on atmospheric pollutant is gradually improved with the increasing of daily rainfall, rainfall intensity and rainfall duration, the ability of rainfall to remove pollutants tends to be stable after daily rainfall and rainfall intensity exceeds 30mm and 20mm/h respectively, the effect of rainfall on the removal of PM2.5 was slightly worse than the effect of rainfall on other atmospheric pollutants, the rainfall duration should be 60min, 60min and 80min respectively when the effect of rainfall on NO2, PM10 and SO2 tends to be stable.
Lucke, Terry; Nichols, Peter W B
2015-12-01
This study evaluated the pollution removal and hydrologic performance of five, 10-year old street-side bioretention systems. The bioretention basins were subjected to a series of simulated rainfall events using synthetic stormwater. Four different pollution concentrations were tested on three of the bioretention basins. The four concentrations tested were: A) no pollution; B) typical Australian urban pollutant loads; C) double the typical pollution loads, and; D) five times the typical pollution loads. Tests were also undertaken to determine the levels of contaminant and heavy metals build-up that occurred in the filter media over the 10 year operational life of the bioretention systems. Although highly variable, the overall hydrological performance of the basins was found to be positive, with all basins attenuating flows, reducing both peak flow rates and total outflow volumes. Total suspended solids removal performance was variable for all tests and no correlation was found between performance and dosage. Total nitrogen (TN) removal was positive for Tests B, C and D. However, the TN removal results for Test A were found to be negative. Total phosphorus (TP) was the only pollutant to be effectively removed from all basins for all four synthetic stormwater tests. The study bioretention basins were found to export pollutants during tests where no pollutants were added to the simulated inflow water (Test A). Heavy metal and hydrocarbon testing undertaken on the bioretention systems found that the pollution levels of the filter media were still within acceptable limits after 10 years in operation. This field study has shown bioretention basin pollution removal performance to be highly variable and dependant on a range of factors including inflow pollution concentrations, filter media, construction methods and environmental factors. Further research is required in order to fully understand the potential stormwater management benefits of these systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Xuyang; Liu, Xingmei; Zhang, Minghua; Dahlgren, Randy A; Eitzel, Melissa
2010-01-01
Vegetated buffers are a well-studied and widely used agricultural management practice for reducing nonpoint-source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-e(-bxw)), (0 < K < or = 100) successfully captured the relationship between buffer width and pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. Buffer width alone explains 37, 60, 44, and 35% of the total variance in removal efficacy for sediment, pesticides, N, and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope < or = 10%) or negatively (when slope > 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Based on our analysis, a 30-m buffer under favorable slope conditions (approximately 10%) removes more than 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation, and modeling of vegetated buffers for treating agricultural runoff.
Air quality and human health impacts of grasslands and shrublands in the United States
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Varsha; Hirabayashi, Satoshi; Ziv, Guy; Bakshi, Bhavik R.
2018-06-01
Vegetation including canopy, grasslands, and shrublands can directly sequester pollutants onto the plant surface, resulting in an improvement in air quality. Until now, several studies have estimated the pollution removal capacity of canopy cover at the level of a county, but no such work exists for grasslands and shrublands. This work quantifies the air pollution removal capacity of grasslands and shrublands at the county-level in the United States and estimates the human health benefits associated with pollution removal using the i-Tree Eco model. Sequestration of pollutants is estimated based on the Leaf Area Index (LAI) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) derived dataset estimates of LAI and the percentage land cover obtained from the National Land Cover Database (NLCD) for the year 2010. Calculation of pollution removal capacity using local environmental data indicates that grasslands and shrublands remove a total of 6.42 million tonnes of air pollutants in the United States and the associated monetary benefits total 268 million. Human health impacts and associated monetary value due to pollution removal was observed to be significantly high in urban areas indicating that grasslands and shrublands are equally critical as canopy in improving air quality and human health in urban regions.
Guide to Air Cleaners in the Home
... In-duct Particle Removal Flat or panel air filters Pleated or extended surface filters In-duct Gaseous Pollutant Removal In-duct Pollutant ... can remove particles from the air — mechanical air filters and electronic air cleaners. Mechanical air filters remove ...
Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials.
Vareda, João P; Durães, Luisa
2017-11-10
Recently developed tailored adsorbents for heavy metal uptake are studied in batch tests with Cu, Pb, Cd, Ni, Cr and Zn, in order to decontaminate polluted environments where these heavy metals are found in solution - water courses and groundwater. The adsorbents feature mercapto or amine-mercapto groups that are capable of complexating the cations. Through the use of equilibrium tests it is found that a remarkably high heavy metal uptake is obtained for all metals (ranging from 84 to 140 mg/g). These uptake values are quite impressive when compared to other adsorbents reported in the literature, which is also due to the double functionalization present in one of the adsorbents. For the best adsorbent, adsorption capacities followed the order Cu(II) > Pb(II) > Zn(II) > Cr(III) > Cd(II) > Ni(II). With these adsorbents, the removal process was fast with most of the metals being removed in less than 1 h. Competitive sorption tests were performed in tertiary mixtures that were based on real world polluted sites. It was found that although competitive sorption occurs, affecting the individual removal of each metal, all the cations in solution still interact with the adsorbent, achieving removal values that make this type of material very interesting for its proposed application.
On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons
NASA Astrophysics Data System (ADS)
Liu, Chun-Ho; Wong, Colman C. C.
2014-01-01
Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).
NASA Astrophysics Data System (ADS)
Zhang, X.; Liu, X.; Zhang, M.; Dahlgren, R. A.; Eitzel, M.
2009-12-01
Vegetated buffers are a well-studied and widely used agricultural management practice for reducing non-point source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-exp(-b x w) , (0< K <= 100) successfully captured the relationship between buffer width and pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. The estimates of K were 90.9, 93.2, 92.0, and 89.5 for sediment, pesticides, nitrogen (N) and phosphorus (P), respectively. Buffer width alone explains 37, 60, 44 and 35% of the total variance in removal efficacy for sediment, pesticides, N and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope ≤ 10%) or negatively (when slope > 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Models for all the studied pollutants were statistically significant with P-values < 0.001. Based on our analysis, a 30 m buffer under favorable slope conditions (≈ 10%) removes over 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation and modeling of vegetated buffers for treating agricultural runoff.
Spatial heterogeneity and air pollution removal by an urban forest
Francisco J. Escobedo; David J. Nowak
2009-01-01
Estimates of air pollution removal by the urban forest have mostly been based on mean values of forest structure variables for an entire city. However, the urban forest is not uniformly distributed across a city because of biophysical and social factors. Consequently, air pollution removal function by urban vegetation should vary because of this spatial heterogeneity....
PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ...
Perhaps more so than with any other class of pollutants, the occurrence of pharmaceuticals and personal care products (PPCPs) in the environment highlights the immediate, intimate, and inseparable connection between the personal activities of individual citizens and their environment. PPCPs, in contrast to other types of pollutants, owe their origins in the environment directly to their worldwide, universal, frequent, highly dispersed, and individually small but cumulative usage by multitudes of individuals ? as opposed to the larger, highly delineated, and more controllable industrial manufacturing/usage of most high-volume synthetic chemicals.Many PPCPs can enter the environment following ingestion or application by the user or administration to domestic animals. Disposal of unused/expired PPCPs in landfills and in domestic sewage is another route to the environment. The aquatic environment serves as the major, ultimate receptacle for these chemicals, for which little is known with respect to actual or potential adverse effects. Domestic sewage treatment plants are not specifically engineered to remove PPCPs, and the efficiencies with which they are removed vary from nearly complete to ineffective. While PPCPs in the environment (or domestic drinking water) are not regulated, and even though their concentrations are extremely low (ng/L- g/L), the consequences of exposure over multiple generations to multiple compounds having different as well as similar modes
Heat recirculating cooler for fluid stream pollutant removal
Richards, George A.; Berry, David A.
2008-10-28
A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.
Non-Thermal Removal of Gaseous Pollutants
NASA Technical Reports Server (NTRS)
Srivastava, S.; McGowan, J. William; Chiu, K. C. Ray
1995-01-01
The removal of fluorine based exhaust gases such as CFC's, PFC's, NF3, and SF6 used for plasma etching of and deposition on semi-conductors is a subject of increasing interest because of safety, air pollution, and global warming issues. Conventional treatment methods for removing exhaust gas pollutants are wet scrubbing, carbon and resin adsorption, catalytic oxidation, and thermal incineration. However, there are drawbacks associated with each of these methods which include difficulties in implementation, problems with the disposal of solid and liquid pollutant waste, large water and fuel consumption, and additional pollutants such as NOx emissions which are generated in thermal incineration processes.
Air pollution control systems in WtE units: an overview.
Vehlow, J
2015-03-01
All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made. Copyright © 2014 Elsevier Ltd. All rights reserved.
The effect of different surface materials on runoff quality in permeable pavement systems.
Li, Haiyan; Li, Zhifei; Zhang, Xiaoran; Li, Zhuorong; Liu, Dongqing; Li, Tanghu; Zhang, Ziyang
2017-09-01
To investigate the effect of different permeable pavement surface materials on the removal of pollutants from urban storm-runoff, six commonly surface materials (porous asphalt, porous concrete, cement brick, ceramic brick, sand base brick, and shale brick) were selected in this study and the research was carried out by column experiments. Except the concentrations of total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH 4 -N), nitrate nitrogen (NO 3 -N), total nitrogen (TN), and total phosphorus (TP) in the influent and effluent that were measured, the removal mechanism of pollutants was discussed further. The results indicate that the surface materials influence the removal efficiency of pollutants greatly and have different effects on certain pollutant. Furthermore, the physical interception and adsorption would be the main mechanism for the removal of pollutants from runoff. For example, for all surface materials, the average removal efficiency of TSS is nearly about 90.0% because of physical interception. Due to the amount of iron oxide, the removal efficiency of COD, NO 3 -N, and TN of shale brick was 88.2, 35.1, and 17.5%, respectively. NH 4 -N and TN can be easily removed by porous asphalt due to the high content of organic matter. By lacking of useful adsorption sites, all the surface materials had little effect on the removal of TP from runoff. This research could offer useful guidelines for the better design of permeable pavement system and promote the insight into the removal mechanism of pollutants in permeable pavement system. Graphical abstract Different types of materials for the different types of pollutants in the runoff purification capacity were significantly different, overall, shale brick and porous asphalt Shale bricks and porous asphalt have a better purification effect according to the six kinds of materials.
Textile dye degradation using nano zero valent iron: A review.
Raman, Chandra Devi; Kanmani, S
2016-07-15
Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana
2016-11-15
Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a range
Removal of Organic Pollutants from Water Using Superwetting Materials.
Li, Lingxiao; Zhang, Junping; Wang, Aiqin
2018-02-01
The frequent occurrence of water pollution accidents and the leakage of organic pollutants have caused severe environmental and ecological crisis. It is thus highly imperative to find efficient materials to solve the problem. Inspired by the lotus leaf, superwetting materials are receiving increasing attention in the field of removal of organic pollutants from water. Various superwetting materials have been successfully generated and integrated into devices for removal of organic pollutants from water. On the basis of our previous work in the field, we summarized in this account the progress of removal of (1) floating and underwater insoluble, (2) emulsified insoluble, and (3) both insoluble and soluble organic pollutants from water using superwetting materials including superhydrophobic & superoleophilic materials, superhydrophilic & underwater superoleophobic materials, and materials with controllable wettability. The superwetting materials are in the forms of 2D porous materials, 3D porous materials and particles, etc. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the design of novel superwetting materials for efficient removal of organic pollutants from water. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mailler, R; Gasperi, J; Rocher, V; Gilbert-Pawlik, S; Geara-Matta, D; Moilleron, R; Chebbo, G
2014-04-01
This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 μg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment.
A pollutant removal prediction tool for stormwater derived diffuse pollution.
Revitt, D Michael; Scholes, Lian; Ellis, J Bryan
2008-01-01
This report describes the development of a methodology to theoretically assess the effectiveness of structural BMPs with regard to their treatment of selected stormwater pollutants (metals, polyaromatic hydrocarbons and herbicides). The result is a prioritisation, in terms of pollutant removal efficiency, of 15 different BMPs which can inform stormwater managers and other stakeholders of the best available options for the treatment of urban runoff pollutants of particular environmental concern. Regardless of the selected pollutant, infiltration basins and sub-surface flow constructed wetlands are predicted to perform most efficiently with lagoons, porous asphalt and sedimentation tanks being the least effective systems for the removal of pollutants. The limitations of the approach in terms of the variabilities in BMP designs and applications are considered. (c) IWA Publishing 2008.
NASA Astrophysics Data System (ADS)
Wong, C.; Liu, C.
2010-12-01
Unlike pollutant transport over flat terrain, the mechanism and plume dispersion over urban areas is not well known. This study is therefore conceived to examine how urban morphology modifies the pollutant transport over urban areas. The computational domain and boundary condition used in this study is shown in Figure 1. The LES shows that inside the street canyon, the ground-level pollutants are carried to roof-level by the re-circulating flow, which are then removed from the street canyon to the UBL. Right above the roof level, narrow high-speed air masses in the streamwise flows and intensive downdrafts have been found in the shear layer. Different from the flows over a smooth surface, the maximum turbulence intensities descend that are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses rapidly over the buildings exhibiting a Gaussian-plume form in the UBL. The mean component of vertical pollutant flux shows that the mean wind contributes to pollutant removal and entrainment simultaneously. Whereas, the fluctuating component demystifies that pollutant removal is mainly governed by atmospheric turbulence. Over the roof level, atmospheric flows slow down rapidly in the wake behind leeward building, suggesting the momentum entrainment into the street canyons. The decelerating streamwise flows in turn lead to upward flows carrying pollutants away from the street canyons, illustrating the basic pollutant removal mechanism in the skimming flow regime. Figure 1: Computational domain and boundary conditions Figure 2: Ensemble average vertical pollutant flux along the roof level. (a). Mean component; (b). turbulent component.
Remediation Technology Collaboration Development
NASA Technical Reports Server (NTRS)
Mahoney, John; Olsen, Wade
2010-01-01
This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.
Cong, Xin; Li, Fasheng; Kelly, Ryan M; Xue, Nandong
2018-04-01
The distribution of pollutants in waste clay bricks from an organochlorine pesticide-contaminated site was investigated, and removal of the pollutants using a thermal desorption technology was studied. The results showed that the contents of HCHs in both the surface and the inner layer of the bricks were slightly higher than those of DDTs. The total pore volume of the bricks was 37.7 to 41.6% with an increase from external to internal surfaces. The removal efficiency by thermal treatment was within 62 to 83% for HCHs and DDTs in bricks when the temperature was raised from 200 to 250 °C after 1 h. HCHs were more easily removed than DDTs with a higher temperature. Either intraparticle or surface diffusion controls the desorption processes of pollutants in bricks. It was feasible to use the polluted bricks after removal of the pollutants by low-temperature thermal desorption technology.
REMOVAL OF SELECTED POLLUTANTS FROM AQUEOUS MEDIA BY HARDWOOD MULCH
Generic hardwood mulch, usually used for landscaping, was utilized to remove several selected pollutants (heavy metals and toxic organic compounds) typically found in urban stormwater (SW) runoff. The hardwood mulch sorbed all the selected pollutants from a spiked stormwater mix...
UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER
Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...
NOx Removal from Flue Gases Using Non-Thermal Plasma
NASA Astrophysics Data System (ADS)
Takaki, Koichi
Air pollution caused by gas emission of pollutants produced from a wide range of sources including coal, oil and gas burning power plants, diesel engines, paper mills, steel and chemical production plants must be reduced drastically and urgently, as mandated by recent worldwide nation legislation which recently are being reinforced increasingly by international agreements. Non-thermal plasma in which the mean energy of electrons is substantially higher than that of the gas offer advantages in reducing energy required to remove the pollutants. The electrical energy supplied into the discharge is used preferentially to create energetic electrons which are then used to produce radicals by dissociation and ionization of the carrier gas in which the pollutants are present. These radicals are used to decompose the pollutants. There are two technologically promising techniques for generating non-thermal plasmas in atmospheric gas pressure containing the pollutants, namely electron beam irradiation and electrical discharge techniques. Both techniques are undergoing intensive and continuous development worldwide. This is done to reduce the energy requirement for pollutant removal, and therefore the associated cost, as well as to obtain a better understanding of the physical and chemical processes involved in reducing the pollutants. In the present paper only electrical discharge techniques for NOx removal from flue gases and exhaust emissions are reviewed. This paper summarizes the chemical reactions responsible for the removal of the major polluting constituents of NO and NO2 encountered in the flue gases.
Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali
2014-02-05
Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.
2014-01-01
Background Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries. Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. Results The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Conclusions Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions. PMID:24499601
Engel, Maya; Chefetz, Benny
2016-12-01
Adsorption of organic pollutants by carbon nanotubes (CNTs) in the environment or removal of pollutants during water purification require deep understanding of the impacts of the presence of dissolved organic matter (DOM). DOM is an integral part of environmental systems and plays a key role affecting the behavior of organic pollutants. In this study, the effects of solution chemistry (pH and ionic strength) and the presence of DOM on the removal of atrazine and lamotrigine by single-walled CNTs (SWCNTs) was investigated. The solubility of atrazine slightly decreased (∼5%) in the presence of DOM, whereas that of lamotrigine was significantly enhanced (by up to ∼70%). Simultaneous introduction of DOM and pollutant resulted in suppression of removal of both atrazine and lamotrigine, which was attributed to DOM-pollutant competition or blockage of adsorption sites by DOM. However the decrease in removal of lamotrigine was also a result of its complexation with DOM. Pre-introduction of DOM significantly reduced pollutant adsorption by the SWCNTs, whereas introduction of DOM after the pollutant resulted in the release of adsorbed atrazine and lamotrigine from the SWCNTs. These data imply that DOM exhibits higher affinity for the adsorption sites than the triazine-based pollutants. In the absence of DOM atrazine was a more effective competitor than lamotrigine for adsorption sites in SWCNTs. However, competition between pollutants in the presence of DOM revealed lamotrigine as the better competitor. Our findings help unravel the complex DOM-organic pollutant-CNT system and will aid in CNT-implementation in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke
2016-02-01
Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Air pollution removal by trees in public green spaces in Strasbourg city, France
Wissal Selmi; Christiane Weber; Emmanuel Riviere; Nadege Blond; Lotfi Mehdi; David Nowak
2016-01-01
This study integrates i-Tree Eco model in order to estimate air pollution removal by urban trees in Strasbourg city, France. Applied for the first time in a French city, the model shows that public trees, i.e., trees managed by the city, removed about 88 t of pollutants during one year period (from July 2012 to June 2013): about 1 ton for CO; 14 tons for NO2...
System for Removing Pollutants from Incinerator Exhaust
NASA Technical Reports Server (NTRS)
Wickham, David t.; Bahr, James; Dubovik, Rita; Gebhard, Steven C.; Lind, Jeffrey
2008-01-01
A system for removing pollutants -- primarily sulfur dioxide and mixed oxides of nitrogen (NOx) -- from incinerator exhaust has been demonstrated. The system is also designed secondarily to remove particles, hydrocarbons, and CO. The system is intended for use in an enclosed environment, for which a prior NOx-and-SO2-removal system designed for industrial settings would not be suitable.
POLLUTION FROM PERSONAL ACTIONS, ACTIVITIES, AND ...
Perhaps more so than with any other class of pollutants, the occurrence of pharmaceuticals and personal care products (PPCPs) in the environment highlights the immediate, intimate, and inseparable connection between the personal activities of individual citizens and their environment. PPCPs, in contrast to other types of pollutants, owe their origins in the environment directly to their worldwide, universal, frequent, highly dispersed, and individually small but cumulative usage by multitudes of individuals C as opposed to the larger, highly delineated, and more controllable industrial manufacturing/usage of most high-volume synthetic chemicals.Many PPCPs (as well as their metabolites and transformation products) can enter the environment following ingestion or application by the user or administration to domestic animals. Disposal of unused/expired PPCPs in landfills and in domestic sewage is another route to the environment. The aquatic environment serves as the major, ultimate receptacle for these chemicals, for which little is known with respect to actual or potential adverse effects. Domestic sewage treatment plants are not specifically engineered to remove PPCPs, and the efficiencies with which they are removed vary from nearly complete to ineffective. While PPCPs in the environment (or domestic drinking water) are not regulated, and even though their concentrations are extremely low (ng/L-?g/L), the consequences of exposure over multiple generations to m
POLLUTION FROM PERSONAL ACTIONS, ACTIVITIES, AND ...
Perhaps more so than with any other class of pollutants, the occurrence of pharmaceuticals and personal care products (PPCPS) in the environment highlights the immediate, intimate, and inseparable connection between the personal activities of individual citizens and their environment. PPCPS, in contrast to other types of pollutants, owe their origins in the environment directly to their worldwide, universal, frequent, highly dispersed, and individually small but cumulative usage by multitudes of individuals - as opposed to the larger, highly delineated, and more controllable industrial manufacturing/usage of most high- volume synthetic chemicals. Many PPCPs (as well as their metabolites and transformation products) can enter the environment following ingestion or application by the user or administration to domestic animals. Disposal of unused/expired PPCPs in landfills and in domestic sewage is another route to the environment. 'Me aquatic environment serves as the major, ultimate receptacle for these chemicals, for which little is known with respect to actual or potential adverse effects. Domestic sewage treatment plants are not designed to remove PPCPS, and the efficiencies with which they are removed vary from nearly complete to ineffective. While PPCPs in the environment (or domestic drinking water) are not regulated, and even though their concentrations are extremely low (ng/L-@Lg/L), the consequences of exposure to multiple compounds having different as w
Promoting nitrate removal in rain gardens | Science Inventory ...
Rain gardens are vegetated surface depressions, often located at low points in landscapes, designed to receive stormwater runoff from roads, roofs, and parking lots. The gardens’ sandy soils allow stormwater to drain quickly to the native soils below and eventually to groundwater. The rain garden vegetation and soils remove pollutants and nutrients from stormwater runoff through biological and physical processes such as plant uptake and sorption to soil particles. In comparison with stormwater release to receiving waters through conventional storm drain systems, infiltrating stormwater through rain gardens reduces peak flows and loadings of both pollutants and nutrients. This reduction improves the physical and biological integrity of receiving streams by reducing stream bank erosion and negative effects on stream communities. While local governments and individual homeowners are building these systems, relatively few scientific studies have documented the ability of rain gardens to remove pollutants and nutrients. This U.S. EPA long-term research project investigates: 1) the performance of rain gardens in removing pollutants, and 2) whether currently-accepted design standards can be adjusted to improve nitrate removal capabilities. Typical rain garden designs provide large removals of pollutants of concern, including heavy metals, phosphorus, total nitrogen, and ammonium. The gardens have been less successful in removing nitrate, an importan
Organic pollutant removal from edible oil process wastewater using electrocoagulation
NASA Astrophysics Data System (ADS)
Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.
2018-03-01
Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater
Wu, Yiping; Liu, Shu-Guang
2012-01-01
Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.
Wu, Yiping; Liu, Shuguang
2012-09-01
Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.
Nitrogen removal pathway of anaerobic ammonium oxidation in on-site aged refuse bioreactor.
Wang, Chao; Zhao, Youcai; Xie, Bing; Peng, Qing; Hassan, Muhammad; Wang, Xiaoyuan
2014-05-01
The nitrogen removal pathways and nitrogen-related functional genes in on-site three-stage aged refuse bioreactor (ARB) treating landfill leachate were investigated. It was found that on average 90.0% of CODCr, 97.6% of BOD5, 99.3% of NH4(+)-N, and 81.0% of TN were removed with initial CODCr, BOD5, NH4(+)-N, and TN concentrations ranging from 2323 to 2754, 277 to 362, 1237 to 1506, and 1251 to 1580 mg/L, respectively. Meanwhile, the functional genes amoA, nirS and anammox 16S rRNA gene were found to coexist in every bioreactor, and their relative proportions in each bioreactor were closely related to the pollutant removal performance of the corresponding bioreactor, which indicated the coexistence of multiple nitrogen removal pathways in the ARB. Detection of anammox expression proved the presence of the anammox nitrogen removal pathway during the process of recirculating mature leachate to the on-site ARB, which provides important information for nitrogen management in landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya
2015-08-14
The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.
Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya
2015-01-01
The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222
Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Ruan, Wenqian; Wei, Xionghui
2018-06-01
Water pollution occurs mainly due to inorganic and organic pollutants, such as nutrients, heavy metals and persistent organic pollutants. For the modeling and optimization of pollutants removal, artificial intelligence (AI) has been used as a major tool in the experimental design that can generate the optimal operational variables, since AI has recently gained a tremendous advance. The present review describes the fundamentals, advantages and limitations of AI tools. Artificial neural networks (ANNs) are the AI tools frequently adopted to predict the pollutants removal processes because of their capabilities of self-learning and self-adapting, while genetic algorithm (GA) and particle swarm optimization (PSO) are also useful AI methodologies in efficient search for the global optima. This article summarizes the modeling and optimization of pollutants removal processes in water treatment by using multilayer perception, fuzzy neural, radial basis function and self-organizing map networks. Furthermore, the results conclude that the hybrid models of ANNs with GA and PSO can be successfully applied in water treatment with satisfactory accuracies. Finally, the limitations of current AI tools and their new developments are also highlighted for prospective applications in the environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.
40 CFR 403.7 - Removal credits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GENERAL PRETREATMENT REGULATIONS FOR EXISTING AND NEW SOURCES OF POLLUTION § 403.7 Removal credits. (a... system. Removal as used in this subpart shall not mean dilution of a pollutant in the POTW. (ii) Sludge... D of SWDA); the Clean Air Act; the Toxic Substances Control Act; and the Marine Protection, Research...
Xu, Jie; Wang, Xue; Sun, Shiqing; Zhao, Yongjun; Hu, Changwei
2017-09-07
Three different treatment technologies, namely mono-algae culture, algal-bacterial culture, and algal-fungal culture, were applied to remove pollutants form synthetic domestic sewage and to remove CO 2 from biogas in a photobioreactor. The effects of different initial influent C/N ratios on microalgal growth rates and pollutants removal efficiencies by the three microalgal cultures were investigated. The best biogas upgrading and synthetic domestic sewage pollutants removal effect was achieved in the algal-fungal system at the influent C/N ratio of 5:1. At the influent C/N ratio of 5:1, the algal-fungal system achieved the highest mean chemical oxygen demand (COD) removal efficiency of 81.92% and total phosphorus (TP) removal efficiency of 81.52%, respectively, while the algal-bacterial system demonstrated the highest mean total nitrogen (TN) removal efficiency of 82.28%. The average CH 4 concentration in upgraded biogas and the removal efficiencies of COD, TN, and TP were 93.25 ± 3.84% (v/v), 80.23 ± 3.92%, 75.85 ± 6.61%, and 78.41 ± 3.98%, respectively. These results will provide a reference for wastewater purification ad biogas upgrading with microalgae based technology.
Liu, Junzhuo; Wang, Fengwu; Liu, Wei; Tang, Cilai; Wu, Chenxi; Wu, Yonghong
2016-05-01
Planted floating treatment bed (FTB) is an innovative technique of removing nutrients from polluted water but limited in deep water and cold seasons. Periphyton was integrated into FTB for a hybrid floating treatment bed (HFTB) to improve its nutrient removal capacity. To assess its potential for treating nutrient-polluted rivers, HFTB was up-scaled from 5L laboratory tanks to 350L outdoor tanks and then to a commercial-scale 900m section of polluted river. Plants and periphyton interacted in HFTB with periphyton limiting plant root growth and plants having shading effects on periphyton. Non-overlapping distribution of plants and periphyton can minimize the negative interactions in HFTB. HFTB successfully kept TN and TP of the river at less than 2.0 and 0.02mgL(-1), respectively. This study indicates that HFTB can be easily up-scaled for nutrients removal from polluted rivers in different seasons providing a long-term, environmentally-friendly method to remediate polluted ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrokinetic-Fenton remediation of organochlorine pesticides from historically polluted soil.
Ni, Maofei; Tian, Shulei; Huang, Qifei; Yang, Yanmei
2018-04-01
Soil contamination by persistent organic pollutants (POPs) poses a great threat to historically polluted soil worldwide. In this study, soils were characterized, and organochlorine pesticides contained in the soils were identified and quantified. Individual electrokinetic (IE), EK-Fenton-coupled technologies (EF), and enhanced EK-Fenton treatment (E-1, E-2, and E-3) were applied to remediate soils contaminated with hexachloro-cyclohexane soprocide (HCH) and dichloro-diphenyl-trichloroethane (DDT). Variation of pH, electrical conductivity, and electroosmotic flow was evaluated during the EK-Fenton process. The IE treatment showed low removal efficiency for HCHs (30.5%) and DDTs (25.9%). In the EF treatment, the highest removal level (60.9%) was obtained for α-HCH, whereas P,P-DDT was the lowest (40.0%). Low solubility of pollutants impeded the HCH and DDT removal. After enhanced EK-Fenton treatment, final removal of pollutants decreased as follows: β-HCH (82.6%) > γ-HCH (81.6%) > α-HCH (81.2%) > δ-HCH (80.0%) > P,P-DDD (73.8%) > P,P-DDE (73.1%) > P,P-DDT (72.6%) > O,P-DDT (71.5%). The results demonstrate that EK-Fenton is a promising technology for POP removal in historically polluted soil.
Adsorption experiment of toxic micro-pollutants derived from automobiles using red soil.
Kawai, Takahiro; Ichiki, Atsushi; Sawada, Yasunori
2015-01-01
In some countries, non-point source pollution derived from a city's economic activities tends to be a barrier to the improvement of water quality. Roadway runoff is known to contain toxic micro-pollutants such as polycyclic aromatic hydrocarbons (PAHs). Conversely, red soil is known to adsorb some organic matter. In this study, artificial roadway runoff water containing toxic micro-pollutants was made using roadway dust collected from a highway, and used for both batch-type tests and soil column tests with red soil in order to understand adsorption ability of the red soil on such toxic micro-pollutants, especially PAHs. In the batch-type tests, PAHs could be removed by approximately 40% when the contact time was 90 minutes. In the soil column tests, PAHs were removed by more than 80% while suspended solids were removed by more than 90%. Notably, PAHs with a high molecular weight were removed more readily in the tests than PAHs with a low molecular weight.
40 CFR 403.7 - Removal credits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW SOURCES OF POLLUTION § 403.7 Removal credits. (a... system. Removal as used in this subpart shall not mean dilution of a pollutant in the POTW. (ii) Sludge... D of SWDA); the Clean Air Act; the Toxic Substances Control Act; and the Marine Protection, Research...
Air pollution control systems in WtE units: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vehlow, J., E-mail: juergen.vehlow@partner.kit.edu
Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removalmore » of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.« less
Simultaneous Removal of Thallium and EDTA by Fenton Process
NASA Astrophysics Data System (ADS)
Xu, Ruibing; Huang, Xuexia; Li, Huosheng; Su, Minhua; Chen, Diyun
2018-01-01
The wastewater containing heavy metals and organic pollutants is widely discharged from industries. Because of the coexistence of heavy metals and organic pollutants, the treatment of such wastewater is very difficult. Fenton process is considered to be one of the most effective approaches for the degradation of organic pollutants in aqueous solution due to the strong oxidative ability of hydroxyl radical which generated from the Fenton process. Apart from this, heavy metals are able to be removed during Fenton process owning to the synergic effect of coagulation and precipitation. In this work, pollutants of thallium and EDTA were successfully removed via the Fenton process. A series of single-factor experiments were designed and performed to achieve an optimal reaction conditions for the removal of both thallium and EDTA. Results showed that the removal efficiencies of thallium and TOC could be as high as 96.54% and 70.42%, respectively. The outcomes from our study demonstrate that Fenton process is a promising method for the purification of wastewater containing thallium and EDTA.
Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment.
Dia, Oumar; Drogui, Patrick; Buelna, Gerardo; Dubé, Rino
2018-05-01
Landfill leachates are known for their high and complex composition of organic, inorganic and microbial pollutants. As a result, it is quite challenging to treat these effluents by using only one treatment process. A combining approach is generally required to treat efficiently these wastewaters and comply with the discharge standards. In this present study, electrocoagulation (EC) and biofiltration (BF) processes were sequentially used to treat landfill leachate. EC process has been able to remove 37 ± 2% of the initial total COD. A fractionation of organic compounds showed that EC was particularly efficient to remove insoluble COD and humic acids. In addition, other pollutants such as turbidity, true color, Zn and phosphorus were significantly reduced by EC with 82 ± 2.7%, 60 ± 13%, 95 ± 2.6% and 82 ± 5.5% of removal respectively. The subsequent treatment by BF process led to completely removal of ammonia pollution (>99% of NH 4 removal) and a partial removal of dissolved organic compounds (42 ± 7% of COD removal). The hybrid process EC/BF could form the basis of a process capable of removing organic and inorganic pollutants from many refractory wastewaters (mature landfill leachates, industrial and municipal wastewaters). Copyright © 2018 Elsevier Ltd. All rights reserved.
Khaksar, Gholamreza; Treesubsuntorn, Chairat; Thiravetyan, Paitip
2017-02-01
Better understanding of plant-bacteria interactions under stress is of the prime importance for enhancing airborne pollutant phytoremediation. No studies have investigated plant-epiphyte interactions compared to plant-endophyte interactions under airborne formaldehyde stress in terms of plant Indole-3-acetic acid (IAA), ethylene, reactive oxygen species (ROS) levels and pollutant removal efficiency. Euphorbia milii was inoculated with native plant growth-promoting (PGP) endophytic and epiphytic isolates individually to investigate plant-endophyte compared to plant-epiphyte interactions under continuous formaldehyde fumigation. Under airborne formaldehyde stress, endophyte interacts with its host plant closely and provides higher levels of IAA which protected the plant against formaldehyde phytotoxicity by lowering intracellular ROS, ethylene levels and maintaining shoot epiphytic community; hence, higher pollutant removal. However, plant-epiphyte interactions could not provide enough IAA to confer protection against formaldehyde stress; thus, increased ROS and ethylene levels, large decrease in shoot epiphytic population and lower pollutant removal although epiphyte contacts with airborne pollutant directly (has greater access to gaseous formaldehyde). Endophyte-inoculated plant synthesized more tryptophan as a signaling molecule for its associated bacteria to produce IAA compared to the epiphyte-inoculated one. Under stress, PGP endophyte interacts with its host closely; thus, better protection against stress and higher pollutant removal compared to epiphyte which has limited interactions with the host plant; hence, lower pollutant removal. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Removing environmental organic pollutants with bioremediation and phytoremediation.
Kang, Jun Won
2014-06-01
Hazardous organic pollutants represent a threat to human, animal, and environmental health. If left unmanaged, these pollutants could cause concern. Many researchers have stepped up efforts to find more sustainable and cost-effective alternatives to using hazardous chemicals and treatments to remove existing harmful pollutants. Environmental biotechnology, such as bioremediation and phytoremediation, is a promising field that utilizes natural resources including microbes and plants to eliminate toxic organic contaminants. This technology offers an attractive alternative to other conventional remediation processes because of its relatively low cost and environmentally-friendly method. This review discusses current biological technologies for the removal of organic contaminants, including chlorinated hydrocarbons, focusing on their limitation and recent efforts to correct the drawbacks.
Fujioka, Nanae; Suzuki, Moe; Kurosu, Shunji; Kawase, Yoshinori
2016-02-01
The iron elution and dissolved oxygen (DO) consumption in organic pollutant removal by nanoscale zero-valent iron (nZVI) was examined in the range of solution pH from 3.0 to 9.0. Their behaviors were linked with the removal of organic pollutant through the dissolution of iron and the formation of iron oxide/hydroxide layer affected strongly by solution pH and DO. As an example of organic pollutants, azo-dye Orange II was chosen in this study. The chemical composition analyses before and after reaction confirmed the corrosion of nZVI into ions, the formation of iron oxide/hydroxide layer on nZVI surface and the adsorption of the pollutant and its intermediates. The complete decolorization of Orange II with nZVI was accomplished very quickly. On the other hand, the total organic carbon (TOC) removal was considerably slow and the maximum TOC removal was around 40% obtained at pH 9.0. The reductive cleavage of azo-bond by emitted electrons more readily took place as compared with the cleavage of aromatic rings of Orange II leading to the degradation to smaller molecules and subsequently the mineralization. A reaction kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach was developed to elucidate mechanisms for organic pollutant removal controlled by the formation of iron oxide/hydroxide layer, the progress of which could be characterized by considering the dynamic concentration changes in Fe(2+) and DO. The dynamic profiles of Orange II removal linked with Fe(2+) and DO could be reasonably simulated in the range of pH from 3.0 to 9.0. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mojiri, Amin; Ahmad, Zakiah; Tajuddin, Ramlah Mohd; Arshad, Mohd Fadzil; Gholami, Ali
2017-07-01
Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.
Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang
2014-08-01
This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... removal activities during Phase III or IV of the National Contingency Plan, under the Federal Water Pollution Control Act, as amended. 33 U.S.C. 1321. ... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL CLAIMS Pollution Removal...
Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F
2014-10-15
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (<22.46Å) and average particle size lower than 48.8Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02g adsorbent mass, 10mgL(-1) initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.
2014-10-01
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.8 Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02 g adsorbent mass, 10 mg L-1 initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30 min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.
Wang, Dongsheng; Xing, Linan; Xie, Jiankun; Chow, Christopher W K; Xu, Zhizhen; Zhao, Yanmei; Drikas, Mary
2010-09-01
China has a very complex water supply system which relies on many rivers and lakes. As the population and economic development increases, water quality is greatly impacted by anthropogenic processes. This seriously affects the character of the dissolved organic matter (DOM) and imposes operational challenges to the water treatment facilities in terms of process optimization. The aim of this investigation was to compare selected drinking water sources (raw) with different DOM character, and the respective treated waters after coagulation, using simple organic characterization techniques to obtain a better understanding of the impact of source water quality on water treatment. Results from the analyses of selected water samples showed that the dissolved organic carbon (DOC) of polluted waters is generally higher than that of un-polluted waters, but the specific UV absorbance value has the opposite trend. After resolving the high performance size exclusion chromatography (HPSEC) peak components of source waters using peak fitting, the twelve waters studied can be divided into two main groups (micro-polluted and un-polluted) by using cluster analysis. The DOM removal efficiency (treatability) of these waters has been compared using four coagulants. For water sources allocated to the un-polluted group, traditional coagulants (Al(2)(SO(4))(3) and FeCl(3)) achieved better removal. High performance poly aluminum chloride, a new type of composite coagulant, performed very well and more efficiently for polluted waters. After peak fitting the HPSEC chromatogram of each of the treated waters, average removal efficiency of the profiles can be calculated and these correspond well with DOC and UV removal. This provides a convenient tool to assess coagulation removal and coagulant selection. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Identification and influence of spatio-temporal outliers in urban air quality measurements.
O'Leary, Brendan; Reiners, John J; Xu, Xiaohong; Lemke, Lawrence D
2016-12-15
Forty eight potential outliers in air pollution measurements taken simultaneously in Detroit, Michigan, USA and Windsor, Ontario, Canada in 2008 and 2009 were identified using four independent methods: box plots, variogram clouds, difference maps, and the Local Moran's I statistic. These methods were subsequently used in combination to reduce and select a final set of 13 outliers for nitrogen dioxide (NO 2 ), volatile organic compounds (VOCs), total benzene, toluene, ethyl benzene, and xylene (BTEX), and particulate matter in two size fractions (PM 2.5 and PM 10 ). The selected outliers were excluded from the measurement datasets and used to revise air pollution models. In addition, a set of temporally-scaled air pollution models was generated using time series measurements from community air quality monitors, with and without the selected outliers. The influence of outlier exclusion on associations with asthma exacerbation rates aggregated at a postal zone scale in both cities was evaluated. Results demonstrate that the inclusion or exclusion of outliers influences the strength of observed associations between intraurban air quality and asthma exacerbation in both cities. The box plot, variogram cloud, and difference map methods largely determined the final list of outliers, due to the high degree of conformity among their results. The Moran's I approach was not useful for outlier identification in the datasets studied. Removing outliers changed the spatial distribution of modeled concentration values and derivative exposure estimates averaged over postal zones. Overall, associations between air pollution and acute asthma exacerbation rates were weaker with outliers removed, but improved with the addition of temporal information. Decreases in statistically significant associations between air pollution and asthma resulted, in part, from smaller pollutant concentration ranges used for linear regression. Nevertheless, the practice of identifying outliers through congruence among multiple methods strengthens confidence in the analysis of outlier presence and influence in environmental datasets. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun
2013-01-01
Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water.
Removal of phenols from water accompanied with synthesis of organobentonite in one-step process.
Ma, Jianfeng; Zhu, Lizhong
2007-08-01
A novel technology of wastewater treatment was proposed based on simultaneously synthesis of organobentonite and removal of organic pollutants such as phenols from water in one-step, which resulted that both surfactants and organic pollutants were removed from water by bentonite. The effects of contact time, pH and inorganic salt on the removal of phenols were investigated. Kinetic results showed that phenols and cetyltrimethylammonium bromide (CTMAB) could be removed by bentonite in 25 min. The removal efficiencies were achieved at 69%, 92% and 99%, respectively, for phenol, p-nitrophenol and beta-naphthol at the initial amount of CTMAB at about 120% cation exchange capacity of bentonite. Better dispersion property and more rapid bentonite sedimentation were observed in the process. The results indicated that the one-step process is an efficient, simple and low cost technology for removal of organic pollutants and cationic surfactants from water. The proposed technology made it possible that bentonite was applied as sorbent for wastewater treatment in industrial scale.
Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan
2017-02-01
In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng
2014-09-01
When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, W.
1998-12-01
EPA has proposed effluent limitations guidelines and standards for the centralized waste treatment (CWT) industry. This report investigates the cost-effectiveness of all possible combinations of proposed control options for the three subcategories of CWT operations. EPA considered three control options for metals, two for oils and two for organics, with 12 possible combinations of these options. The report measures cost-effectiveness through a comparison of compliance costs to the quantity of pollutants removed under each combination of control options. The effectiveness of the regulations is measured in terms of reductions in the pounds of pollutants discharged to surface waters, weighted tomore » account for the pollutants` toxicity. Some pollutants removed are specifically addressed by the regulation, while others and not directly regulated but are removed incidentally as a result of controlling for other pollutants.« less
Li, Jin-Tao; Zhang, Shao-Hui; Hua, Yu-Mei
2013-01-01
The effects of pH, chemical oxygen demand (COD) concentration and external resistance on denitrifying microbial fuel cell were evaluated in terms of electricity generation characteristics and pollutant removal performance. The results showed that anodic influent with weakly alkaline or neutral pH and cathodic influent with weakly acidic pH favored pollutant removal and electricity generation. The suitable influent pH of the anode and cathode were found to be 7.5-8.0 and 6.0-6.5, respectively. In the presence of sufficient nitrate in the cathode, higher influent COD concentration led to more electricity generation and greater pollutant removal rates. With an anodic influent pH of 8.0 and a cathodic influent pH of 6.0, an influent COD concentration of 400 mg/L was deemed to be appropriate. Low external resistance favored nitrate and COD removal. The results suggest that operation of denitrifying microbial fuel cell at a lower external resistance would be desirable for pollutant removal but not electricity generation.
Lv, Junping; Guo, Junyan; Feng, Jia; Liu, Qi; Xie, Shulian
2017-06-01
Sulfate is a primary sulfur source and can be available in wastewaters. Nevertheless, effect of sulfate ions on growth and pollutants removal of microalgae seems to be less investigated. At the present study, self-flocculating microalga Chlorococcum sp. GD was grown in synthetic municipal wastewater with different sulfate concentrations. Results indicated that Chlorococcum sp. GD grew better in synthetic municipal wastewater with 18, 45, 77, 136 and 271mg/L SO 4 2- than in wastewater without SO 4 2- . Chlorococcum sp. GD had also excellent removal efficiencies of nitrogen and phosphorus and effectively flocculated in sulfate wastewater. Sulfate deprivation weakened the growth, pollutants removal and self-flocculation of Chlorococcum sp. GD in wastewater. Antioxidative enzymes activity significantly increased and photosynthetic activity significantly decreased when Chlorococcum sp. GD was cultivated in sulfate-free wastewater. Sulfate deprivation probably reduced cell activity of growth, pollutants removal and flocculation via inducing the over-accumulation of reactive oxygen species (ROS). Copyright © 2017 Elsevier Ltd. All rights reserved.
Water hyacinths for removal of cadmium and nickel from polluted waters
NASA Technical Reports Server (NTRS)
Wolverton, B. C.
1975-01-01
Removal of cadmium and nickel from static water systems utilizing water hyacinths (Eichhornia crassipes (Mart.) Solms) was investigated. This aquatic plant demonstrated the ability to rapidly remove heavy metals from aqueous systems by root absorption and concentration. Water hyacinths demonstrated the ability to absorb and concentrate up to 0.67 mg of cadmium and 0.50 mg of nickel per gram of dry plant material when exposed for a 24-hour period to waters polluted with from 0.578 to 2.00 ppm of these toxic metals. It is found that one hectare of water hyacinths has the potential of removing 300 g of cadmium or nickel from 240,000 liters of water polluted with these metals during a 24-hour period.
Microbial degradation of petroleum hydrocarbons.
Varjani, Sunita J
2017-01-01
Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei
2016-09-15
In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nano-adsorbents for the removal of metallic pollutants from water and wastewater.
Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H
2009-05-01
Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.
Prospects of banana waste utilization in wastewater treatment: A review.
Ahmad, Tanweer; Danish, Mohammed
2018-01-15
This review article explores utilization of banana waste (fruit peels, pseudo-stem, trunks, and leaves) as precursor materials to produce an adsorbent, and its application against environmental pollutants such as heavy metals, dyes, organic pollutants, pesticides, and various other gaseous pollutants. In recent past, quite a good number of research articles have been published on the utilization of low-cost adsorbents derived from biomass wastes. The literature survey on banana waste derived adsorbents shown that due to the abundance of banana waste worldwide, it also considered as low-cost adsorbents with promising future application against various environmental pollutants. Furthermore, raw banana biomass can be chemically modified to prepare efficient adsorbent as per requirement; chemical surface functional group modification may enhance the multiple uses of the adsorbent with industrial standard. It was evident from a literature survey that banana waste derived adsorbents have significant removal efficiency against various pollutants. Most of the published articles on banana waste derived adsorbents have been discussed critically, and the conclusion is drawn based on the results reported. Some results with poorly performed experiments were also discussed and pointed out their lacking in reporting. Based on literature survey, the future research prospect on banana wastes has a significant impact on upcoming research strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huck, J J; Whyatt, J D; Coulton, P; Davison, B; Gradinar, A
2017-03-01
This work investigates the potential of combining the outputs of multiple low-cost sensor technologies for the direct measurement of spatio-temporal variations in phenomena that exist at the interface between our bodies and the environment. The example used herein is the measurement of personal exposure to traffic pollution, which may be considered as a function of the concentration of pollutants in the air and the frequency and volume of that air which enters our lungs. The sensor-based approach described in this paper removes the 'traditional' requirements either to model or interpolate pollution levels or to make assumptions about the physiology of an individual. Rather, a wholly empirical analysis into pollution exposure is possible, based upon high-resolution spatio-temporal data drawn from sensors for NO 2 , nasal airflow and location (GPS). Data are collected via a custom smartphone application and mapped to give an unprecedented insight into exposure to traffic pollution at the individual level. Whilst the quality of data from low-cost miniaturised sensors is not suitable for all applications, there certainly are many applications for which these data would be well suited, particularly those in the field of citizen science. This paper demonstrates both the potential and limitations of sensor-based approaches and discusses the wider relevance of these technologies for the advancement of citizen science.
ERIC Educational Resources Information Center
Wing, Steve
2010-01-01
Sewage sludge is composed of residuals removed from wastewater that comes from homes, hospitals, and industries. Wastewater-treatment systems are designed to remove pollutants that could contaminate public waterways. Sludge--called "biosolids" by those who produce it, spread it, and regulate it--includes these pollutants as well as…
33 CFR 153.405 - Liability to the pollution fund.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Liability to the pollution fund... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.405 Liability to the pollution fund. The owner or operator of the vessel...
33 CFR 153.407 - Payments or reimbursements from the pollution fund.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the pollution fund. 153.407 Section 153.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.407 Payments or reimbursements from the pollution fund...
33 CFR 153.407 - Payments or reimbursements from the pollution fund.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the pollution fund. 153.407 Section 153.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.407 Payments or reimbursements from the pollution fund...
33 CFR 153.405 - Liability to the pollution fund.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Liability to the pollution fund... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.405 Liability to the pollution fund. The owner or operator of the vessel...
33 CFR 153.407 - Payments or reimbursements from the pollution fund.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the pollution fund. 153.407 Section 153.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.407 Payments or reimbursements from the pollution fund...
33 CFR 153.405 - Liability to the pollution fund.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Liability to the pollution fund... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.405 Liability to the pollution fund. The owner or operator of the vessel...
33 CFR 153.405 - Liability to the pollution fund.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Liability to the pollution fund... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.405 Liability to the pollution fund. The owner or operator of the vessel...
33 CFR 153.405 - Liability to the pollution fund.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Liability to the pollution fund... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.405 Liability to the pollution fund. The owner or operator of the vessel...
33 CFR 153.407 - Payments or reimbursements from the pollution fund.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the pollution fund. 153.407 Section 153.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.407 Payments or reimbursements from the pollution fund...
33 CFR 153.407 - Payments or reimbursements from the pollution fund.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the pollution fund. 153.407 Section 153.407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.407 Payments or reimbursements from the pollution fund...
Converter slag-coal cinder columns for the removal of phosphorous and other pollutants.
Yang, Jian; Wang, Su; Lu, Zhibo; Yang, Jian; Lou, Shanjie
2009-08-30
A mixture of converter slag and coal cinder as adsorbent for the removal of phosphorous and other pollutants was studied in the paper. The maximum P adsorption capacity, pH of solution, contact time and initial phosphate concentration were evaluated in batch experiments for the two materials firstly. The data of P sorption were best fitted to Langumir equation, and the maximum adsorption capacities of converter slag and coal cinder were 2.417 and 0.398 mg P/g, respectively. The pH of solutions with converter slag and coal cinder changed dramatically with time and closed to 8 in 8h, and the influence of initial pH on phosphate removal by coal cinder was more significant than by converter slag. Phosphate removal rate by converter slag decreased with increase of initial phosphate concentrations. Subsequently, two flow-through columns (Column 1#, V(converter slag):V(coal cinder)=1:5; Column 2#, V(converter slag):V(coal cinder)=1:3) were operated for the removal of phosphorous and other pollutants from the effluents of a vermifilter for nearly eleven months. Results indicated the average removal efficiency of total phosphorus, dissolved phosphorus, COD and NH(4)(+)-N by Column 1# were 44%, 56%, 31% and 67%, and by Column 2# were 42%, 54%, 24% and 57%, respectively. Column 1# had higher removal efficiency for P and other pollutants.
Zheng, Yucong; Wang, Xiaochang; Xiong, Jiaqing; Liu, Yongjun; Zhao, Yaqian
2014-04-01
A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger river in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface-and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m(3)/(m(2)·day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ± 4.5%, 93.4% ± 2.1%, 54.0% ± 6.3%, 53.9% ± 6.0% and 69.4% ± 4.6%, respectively, which brought about an effective improvement of the river water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Novel sorbents for environmental remediation
NASA Astrophysics Data System (ADS)
Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David
2014-05-01
Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session on Novel sorbents for environmental remediation, will also be evaluated and presented.
Affordable Environmental Technology: Preparing for the 21st Century
1992-12-20
35 HEAVY METAL REMOVAL ...................................................... ............ 38 FIRE...environmental pollutants, or that effectively concentrate heavy metals (mercury), and with these strains to produce efficient pollutant removal...93. These sediments have accumulated toxic organic and inorganic ( heavy metals ) materials for decades. In those harbors where there is little
TREATMENT BY FILTRATION OF STORMWATER RUNOFF PRIOR TO GROUNDWATER RECHARGE
Generally, dry ponds, trenches and swales do not have the same pollutant removal capacity as wet detention ponds. Their pollutant removal ability results from the straining of particulate matter out of the water. However, infiltration ceases when the bottom of the pond, trench or...
Schiavon, Marco; Ragazzi, Marco; Rada, Elena Cristina; Torretta, Vincenzo
2016-12-01
The biological removal of pollutants, especially through biotrickling filters (BTFs), has recently become attractive for the low investment and operational costs and the low secondary pollution. This paper is intended to investigate the state of the art on BTF applications. After an overview on the biodegradation process and the typical parameters involved, this paper presents the analysis of a group of 16 literature studies chosen as the references for this sector. The reference studies differ from one another by the pollutants treated (volatile organic compounds [VOC], hydrogen sulphide, nitrogen oxides and trimethylamine), the geometry and size of the BTFs, and the procedures of the tests. The reference studies are analyzed and discussed in terms of the operational conditions and the results obtained, especially with respect to the removal efficiencies (REs) and the elimination capacities (ECs) of the pollutants considered. Empty bed residence time (EBRT), pollutant loading rate, temperature, pH, oxygen availability, trickling liquid flow rate, inoculum selection and biomass control strategies revealed to be the most important operational factors influencing the removal performance of a BTF.
An evaluation of the urban stormwater pollutant removal efficiency of catch basin inserts.
Morgan, Robert A; Edwards, Findlay G; Brye, Kristofor R; Burian, Stephen J
2005-01-01
In a storm sewer system, the catch basin is the interface between surface runoff and the sewer. Responding to the need to improve the quality of stormwater from urban areas and transportation facilities, and spurred by Phase I and II Stormwater Rules from the U.S. Environmental Protection Agency, several companies market catch basin inserts as best management practices for urban water quality management. However, little data have been collected under controlled tests that indicate the pollutant removal efficiency of these inserts when the inflow is near what can be expected to occur in the field. A stormwater simulator was constructed to test inserts under controlled and replicable conditions. The inserts were tested for removal efficiency of total suspended solids (TSS) and total petroleum hydrocarbons (TPH) at an inflow rate of 757 to 814 L/min, with influent pollutant concentrations of 225 mg/L TSS and 30 mg/L TPH. These conditions are similar to stormwater runoff from small commercial sites in the southeastern United States. Results from the tests indicate that at the test flowrate and pollutant concentration, average TSS removal efficiencies ranged from 11 to 42% and, for TPH, the removal efficiency ranged from 10 to 19%.
Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard
2006-04-15
Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.
33 CFR 155.215 - Discharge removal equipment for inland oil barges.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Discharge removal equipment for inland oil barges. 155.215 Section 155.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...
33 CFR 155.220 - Discharge removal equipment for vessels carrying oil as secondary cargo.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Discharge removal equipment for vessels carrying oil as secondary cargo. 155.220 Section 155.220 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION...
33 CFR 155.215 - Discharge removal equipment for inland oil barges.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Discharge removal equipment for inland oil barges. 155.215 Section 155.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...
33 CFR 155.215 - Discharge removal equipment for inland oil barges.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Discharge removal equipment for inland oil barges. 155.215 Section 155.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...
33 CFR 155.220 - Discharge removal equipment for vessels carrying oil as secondary cargo.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Discharge removal equipment for vessels carrying oil as secondary cargo. 155.220 Section 155.220 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION...
33 CFR 155.215 - Discharge removal equipment for inland oil barges.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Discharge removal equipment for inland oil barges. 155.215 Section 155.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...
33 CFR 155.215 - Discharge removal equipment for inland oil barges.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Discharge removal equipment for inland oil barges. 155.215 Section 155.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...
33 CFR 155.220 - Discharge removal equipment for vessels carrying oil as secondary cargo.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Discharge removal equipment for vessels carrying oil as secondary cargo. 155.220 Section 155.220 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION...
33 CFR 155.220 - Discharge removal equipment for vessels carrying oil as secondary cargo.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Discharge removal equipment for vessels carrying oil as secondary cargo. 155.220 Section 155.220 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION...
Use of microalgae to remove pollutants from power plant discharges
Wilde, Edward W.; Benemann, John R.; Weissman, Joseph C.; Tillett, David M.
1991-01-01
A method and system for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulogy and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinnoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinnoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge.
Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping
2013-01-01
Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.
Use of microalgae to remove pollutants from power plant discharges
Wilde, E.W.; Benemann, J.R.; Weissman, J.C.; Tillett, D.M.
1991-04-30
A method and system are described for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulic and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge. 4 figures.
Oxy-fuel combustion with integrated pollution control
Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR
2012-01-03
An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.
Water hyacinths for removal of phenols from polluted waters
NASA Technical Reports Server (NTRS)
Wolverton, B. C.
1975-01-01
Removal of phenol by water hyacinths (Eichhornia crassipes (Mart.) Solms) in static water was investigated. 2.75 g dry weight of this aquatic plant demonstrated the ability to absorb 100 mg of phenol per plant per 72 hours from distilled water, river water, and bayou water. One hectare of water hyacinth plants is shown to be potentially capable of removing 160 kg of phenol per 72 hours from waters polluted with this chemical.
Ball Powder Production Wastewater Biological Treatability Studies.
1992-06-01
biosorption . U Study the impact of stripping of ethyl acetate, the growth substrate on the removal of NG. U Investigate the endogenous denitrification...order to quantify the removal of NG due to biosorption . For these experiments, 250 ml of mixed liquor samples were 37 j collected at periodic intervals...F:M ratios on the removal of priority pollutants. Although some amount of biosorption was noticed, a mass balance on priority pollutants showed that
Bloodworth, J W; Holman, I P; Burgess, P J; Gillman, S; Frogbrook, Z; Brown, P
2015-09-15
In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tomar, Sachin Kumar; Chakraborty, Saswati
2018-08-01
The impact of air flow rate on aerobic granulation was evaluated for treating toxic multiple pollutants; phenol (400 mg L -1 ), thiocyanate (100 mg L -1 ) and ammonia nitrogen (100 mg L -1 ) by using three lab scale sequencing batch reactors (SBRs) (R1, R2 and R3). Larger granules (2938.67 ± 64.91 μm) with higher biomass concentration (volatile solids of 4.17 ± 0.09 g L -1 ), higher granule settling velocity (55.56 ± 1.36 m h -1 ) and lower sludge volume index (35.25 ± 1.71 mL gTSS -1 ) were observed at optimal air flow rate of 2.5 L min -1 (R2). Confocal laser scanning microscopic images illustrated the extended fluorescence for extracellular polymeric substances in R2. In R2, partial nitrification was achieved. Phenol was completely removed in all the reactors while partial removal of SCN - and no nitrification were observed with a decrease (1.5 L min -1 ) and an increase (3.5 L min -1 ) in air flow rates (R1 and R3, respectively). This study provides an experimental contribution to examine the effect of optimal combination of aeration and toxic multiple pollutants, governing characteristics and nitrification efficiency of granules along with SBR performance in an economic way in terms of optimal air supply. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multiple Interactive Pollutants in Water Quality Trading
NASA Astrophysics Data System (ADS)
Sarang, Amin; Lence, Barbara J.; Shamsai, Abolfazl
2008-10-01
Efficient environmental management calls for the consideration of multiple pollutants, for which two main types of transferable discharge permit (TDP) program have been described: separate permits that manage each pollutant individually in separate markets, with each permit based on the quantity of the pollutant or its environmental effects, and weighted-sum permits that aggregate several pollutants as a single commodity to be traded in a single market. In this paper, we perform a mathematical analysis of TDP programs for multiple pollutants that jointly affect the environment (i.e., interactive pollutants) and demonstrate the practicality of this approach for cost-efficient maintenance of river water quality. For interactive pollutants, the relative weighting factors are functions of the water quality impacts, marginal damage function, and marginal treatment costs at optimality. We derive the optimal set of weighting factors required by this approach for important scenarios for multiple interactive pollutants and propose using an analytical elasticity of substitution function to estimate damage functions for these scenarios. We evaluate the applicability of this approach using a hypothetical example that considers two interactive pollutants. We compare the weighted-sum permit approach for interactive pollutants with individual permit systems and TDP programs for multiple additive pollutants. We conclude by discussing practical considerations and implementation issues that result from the application of weighted-sum permit programs.
33 CFR 153.403 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.403 Applicability. The provisions of this subpart apply to: (a) Each Federal and State...
33 CFR 153.403 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.403 Applicability. The provisions of this subpart apply to: (a) Each Federal and State...
33 CFR 153.403 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.403 Applicability. The provisions of this subpart apply to: (a) Each Federal and State...
33 CFR 153.403 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.403 Applicability. The provisions of this subpart apply to: (a) Each Federal and State...
33 CFR 153.403 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.403 Applicability. The provisions of this subpart apply to: (a) Each Federal and State...
Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A
2010-08-01
Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens. (c) 2010 Elsevier Ltd. All rights reserved.
Sources and Removal of Springtime Arctic Aerosol
NASA Astrophysics Data System (ADS)
Willis, M. D.; Burkart, J.; Bozem, H.; Kunkel, D.; Schulz, H.; Hanna, S.; Aliabadi, A. A.; Bertram, A. K.; Hoor, P. M.; Herber, A. B.; Leaitch, R.; Abbatt, J.
2017-12-01
The sources and removal mechanisms of pollution transported to Arctic regions are key factors in controlling the impact of short-lived climate forcing agents on Arctic climate. We lack a predictive understanding of pollution transport to Arctic regions largely due to poor understanding of removal mechanisms and aerosol chemical and physical processing both within the Arctic and during transport. We present vertically resolved observations of aerosol physical and chemical properties in High Arctic springtime. While much previous work has focused on characterizing episodic events of high pollutant concentrations transported to Arctic regions, here we focus on measurements made under conditions consistent with chronic Arctic Haze, which is more representative of the pollution seasonal maximum observed at long term monitoring stations. On six flights based at Alert and Eureka, Nunavut, Canada, we observe evidence for vertical variations in both aerosol sources and removal mechanisms. With support from model calculations, we show evidence for sources of partially neutralized aerosol with higher organic aerosol (OA) and black carbon content in the middle troposphere, compared to lower tropospheric aerosol with higher amounts of acidic sulfate. Further, we show evidence for aerosol depletion relative to carbon monoxide, both in the mid-to-upper troposphere and within the Arctic Boundary Layer (ABL). Dry deposition, with relatively low removal efficiency, was responsible for aerosol removal in the ABL while ice or liquid-phase scavenging was responsible for aerosol removal at higher altitudes during transport. Overall, we find that vertical variations in both regional and remote aerosol sources, and removal mechanisms, combine with long aerosol residence times to drive the properties of springtime Arctic aerosol.
Wu, Jin; Ma, Luming; Chen, Yunlu; Cheng, Yunqin; Liu, Yan; Zha, Xiaosong
2016-04-01
Catalytic ozonation of organic pollutants from actual bio-treated dyeing and finishing wastewater (BDFW) with iron shavings was investigated. Catalytic ozonation effectively removed organic pollutants at initial pH values of 7.18-7.52, and the chemical oxygen demand (COD) level decreased from 142 to 70 mg·L(-1) with a discharge limitation of 80 mg·L(-1). A total of 100% and 42% of the proteins and polysaccharides, respectively, were removed with a decrease in their contribution to the soluble COD from 76% to 41%. Among the 218 organic species detected by liquid chromatography-mass spectrometry, 58, 77, 79 and 4 species were completely removed, partially removed, increased and newly generated, respectively. Species including textile auxiliaries and dye intermediates were detected by gas chromatography-mass spectrometry. The inhibitory effect decreased from 51% to 33%, suggesting a reduction in the acute toxicity. The enhanced effect was due to hydroxyl radical (OH) oxidation, co-precipitation and oxidation by other oxidants. The proteins were removed by OH oxidation (6%), by direct ozonation, co-precipitation and oxidation by other oxidants (94%). The corresponding values for polysaccharides were 21% and 21%, respectively. In addition, the iron shavings behaved well in successive runs. These results indicated that the process was favorable for engineering applications for removal of organic pollutants from BDFW. Copyright © 2016 Elsevier Ltd. All rights reserved.
33 CFR 153.415 - Cost summary reports.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.415 Cost summary reports. As soon as practicable after completion of an action...
33 CFR 153.415 - Cost summary reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.415 Cost summary reports. As soon as practicable after completion of an action...
33 CFR 153.415 - Cost summary reports.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.415 Cost summary reports. As soon as practicable after completion of an action...
33 CFR 153.415 - Cost summary reports.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.415 Cost summary reports. As soon as practicable after completion of an action...
33 CFR 153.415 - Cost summary reports.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.415 Cost summary reports. As soon as practicable after completion of an action...
Sprenger, C; Lorenzen, G; Grunert, A; Ronghang, M; Dizer, H; Selinka, H-C; Girones, R; Lopez-Pila, J M; Mittal, A K; Szewzyk, R
2014-06-01
Emerging countries frequently afflicted by waterborne diseases require safe and cost-efficient production of drinking water, a task that is becoming more challenging as many rivers carry a high degree of pollution. A study was conducted on the banks of the Yamuna River, Delhi, India, to ascertain if riverbank filtration (RBF) can significantly improve the quality of the highly polluted surface water in terms of virus removal (coliphages, enteric viruses). Human adenoviruses and noroviruses, both present in the Yamuna River in the range of 10(5) genomes/100 mL, were undetectable after 50 m infiltration and approximately 119 days of underground passage. Indigenous somatic coliphages, used as surrogates of human pathogenic viruses, underwent approximately 5 log10 removal after only 3.8 m of RBF. The initial removal after 1 m was 3.3 log10, and the removal between 1 and 2.4 m and between 2.4 and 3.8 m was 0.7 log10 each. RBF is therefore an excellent candidate to improve the water situation in emerging countries with respect to virus removal.
Ontañon, Ornella M; González, Paola S; Barros, Germán G; Agostini, Elizabeth
2017-07-25
Microbial bioremediation emerged some decades ago as an eco-friendly technology to restore polluted sites. Traditionally, the search for microorganisms suitable for bioremediation has been based on the selection of isolated strains able to remove a specific type of pollutant. However, this strategy has now become obsolete, since co-pollution is a global reality. Thus, current studies attempt to find bacterial cultures capable of coping with a mixture of organic and inorganic compounds. In this sense, the bacterial consortium SFC 500-1 has demonstrated efficiency for Cr(VI) and phenol removal, both of which are found in many industrial wastewaters. In the present study, the ability of SFC 500-1 for simultaneous removal was improved through its entrapment in a Ca-alginate matrix. This strategy led to an increased removal of Cr(VI), which was partially reduced to Cr(III). Immobilised cells were able to tolerate and degrade phenol up to 1,500mg/l at high rates, forming catechol and cis,cis-muconate as oxidation intermediates. Successful removal potential through 5 cycles of reuse, as well as after long-term storage, was another important advantage of the immobilised consortium. These characteristics make SFC 500-1 an interesting system for potential application in the biotreatment of co-polluted effluents. Copyright © 2017. Published by Elsevier B.V.
33 CFR 155.205 - Discharge removal equipment for vessels 400 feet or greater in length.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Discharge removal equipment for vessels 400 feet or greater in length. 155.205 Section 155.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
33 CFR 155.210 - Discharge removal equipment for vessels less than 400 feet in length.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Discharge removal equipment for vessels less than 400 feet in length. 155.210 Section 155.210 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
33 CFR 155.205 - Discharge removal equipment for vessels 400 feet or greater in length.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Discharge removal equipment for vessels 400 feet or greater in length. 155.205 Section 155.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
33 CFR 155.205 - Discharge removal equipment for vessels 400 feet or greater in length.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Discharge removal equipment for vessels 400 feet or greater in length. 155.205 Section 155.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
33 CFR 155.210 - Discharge removal equipment for vessels less than 400 feet in length.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Discharge removal equipment for vessels less than 400 feet in length. 155.210 Section 155.210 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
33 CFR 155.210 - Discharge removal equipment for vessels less than 400 feet in length.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Discharge removal equipment for vessels less than 400 feet in length. 155.210 Section 155.210 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
33 CFR 155.205 - Discharge removal equipment for vessels 400 feet or greater in length.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Discharge removal equipment for vessels 400 feet or greater in length. 155.205 Section 155.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
33 CFR 155.205 - Discharge removal equipment for vessels 400 feet or greater in length.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Discharge removal equipment for vessels 400 feet or greater in length. 155.205 Section 155.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
33 CFR 155.210 - Discharge removal equipment for vessels less than 400 feet in length.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Discharge removal equipment for vessels less than 400 feet in length. 155.210 Section 155.210 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
33 CFR 155.210 - Discharge removal equipment for vessels less than 400 feet in length.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Discharge removal equipment for vessels less than 400 feet in length. 155.210 Section 155.210 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION...
Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A
2018-04-01
Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nagase, Hiroyasu; Tsujino, Hidekazu; Kurihara, Daisuke; Saito, Hiroshi; Kawase, Masaya
2014-04-01
Organic environmental pollutants are now being detected with remarkably high frequency in the aquatic environment. Photodegradation by ultraviolet light is sometimes used as a method for removing organic chemicals from water; however, this method is relatively inefficient because of the low degradation rates involved, and more efficient methods are under development. Here we show that the removal of various organic pollutants can be assisted by calcined dolomite in aqueous solution under irradiation with ultraviolet light. It was possible to achieve substantial removal of bisphenol A, chlorophenols, alkylphenols, 1-naphthol and 17β-estradiol. The major component of dolomite responsible for the removal was calcium hydroxide. Our results demonstrate that the use of calcium hydroxide with ultraviolet light irradiation can be a very effective method of rapidly removing organic environmental pollutants from water. This is a new role for calcium hydroxide and dolomite in water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
From nZVI to SNCs: development of a better material for pollutant removal in water.
Fang, Ying; Wen, Jia; Zeng, Guangming; Shen, Maocai; Cao, Weicheng; Gong, Jilai; Zhang, Yaxin
2018-03-01
Nanoscale zero-valent iron (nZVI), with its reductive potentials and wide availability, offers degradative remediation for environmental pollutants. However, weaknesses such as easy aggregation, easy oxidation, and nanoscale size have hindered its further applications in the environment to some extent. Therefore, various supported nZVI composites (SNCs) with higher dispersibility, enhanced water stability, and tunable size have been developed to overcome the weaknesses. SNCs family is a great alternative for water purification applications that require high removal efficiency and rapid kinetics, as a result of their multifunctional properties and magnetic separation capacity. In this review, we compare the advantages of SNCs to nZVI for pollutant removal in water, discuss for the first time the synthetic techniques of obtaining SNCs, and analyze the influencing factors and mechanisms associated with the removal of some typical hazardous pollutants (e.g., dyes, heavy metals, nitrogen, and phosphorus) using SNCs. Moreover, limitations and future research needs of such material are discussed. More attention should be paid to the evaluation of toxicity, development of green synthetic routes, and potential application areas of such materials in future research.
[Treatment of polluted urban river water using filamentous green algae].
Liang, Xia; Li, Xiao-Ping
2008-01-01
Filamentous green algae dominated treatment system was set up to remove contaminants from polluted urban river water under lab conditions. Experiments show that TP is decreased up to 50%, associated with 72% removal of TSS. The removal efficiencies of soluble species, PO4(3-) and NH4(+)-N, are up to 90% and 85% respectively. Under heavily polluted conditions (TP > 3.0 mg x L(-1), TN > 22.0 mg x L(-1)), the average removal efficiencies of TP and TN are 89% and 45% respectively, while under light polluted conditions (TP < 0.50 mg x L(-1), TN < 10 mg x L(-1)), the average effluent concentration of PO4(3-) and NH4(+)-N are well below 0.1 mg x L(-1) and 2.0 mg x L(-1) respectively. During the experiments, the biomass of filamentous green algae is increased significantly (38.78%), and at the same time a large number of unicellular Chlorophytes and Cyanophytes species are occurred on the interior wall surface of experimental fertility. The maximum biomass occurs at the highest concentration of DO.
Liao, Zhen-Liang; Chen, Hao; Zhu, Bai-Rong; Li, Huai-Zheng
2015-09-01
Even zeolite is promising in ammonia pollution disposing, its removal efficiency is frequently interfered by organics. As activated carbon has good removal efficiency on organic contaminants, combination of two adsorbents may allow their respective adsorption characteristics into full play. This paper provides a performance assessment of the combination for enhancing ammonium removal in micro-polluted raw water. Gel-filtration chromatography (GFC) was carried out to quantify the molecular weight (MW) range of organic contaminants that powdered activated carbon (PAC) and powdered zeolite (PZ) can remove. The polydispersity difference which also calculated from GFC may indicate the wider organic contaminants removal range of PAC and the relatively centralized removal range of PZ. The jar tests of combination dosing confirm a synergistic effect which promotes ammonium removing. Nevertheless, it also shows an antagonism hindering the due removal performance of the two adsorbents on CODMn, while it is not much evident on UV254. Furthermore, a comparison study with simulated coagulation-sedimentation process was conducted to evaluate the optimum dosing points (spatial and temporal) of PAC and PZ among follows: suction well, pipeline mixer, early and middle phase of flocculation. We suggest to dose both two adsorbents into the early phase of flocculation to maximize the versatile removal efficiency on turbidity, ammonium and organic contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.
The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less
Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials
Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.
2014-01-01
The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less
Evaluating the Effects of Emission Reductions on Multiple Pollutants Simultaneously
Modeling studies over the Philadelphia metropolitan area have examined how emission control strategies might affect several types of air pollutants simultaneously. This study supports considering effects of multiple pollutants in determining optimum pollution control strategies. ...
NASA Astrophysics Data System (ADS)
Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut
2018-05-01
The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.
Gilbert, S; Gasperi, J; Rocher, V; Lorgeoux, C; Chebbo, G
2012-01-01
This paper investigates the occurrence of alkylphenols (APs) and polybromodiphenylethers (PBDEs) in raw wastewater during dry and wet-weather periods, and their removal by physico-chemical lamellar settling and biofiltration techniques. Due to in-sewer deposit erosion and, to a lesser extent, to external inputs, raw effluents exhibit from 1.5 to 5 times higher AP and PBDE concentrations during wet periods compared with dry ones. The lamellar settler obtains high removal of APs and PBDEs under both dry and wet-weather flows (>53% for Σ(6)AP and >89% for Σ(4)PBDE), confirming the insensitivity of this technique to varying influent conditions. Indeed, despite the higher pollutant concentrations observed in raw effluents under wet-weather flows, adjusting the addition of coagulant-flocculent allows for efficient removal. By combining physical and biological processes, the biofiltration unit treats nutrient pollution, as well as Σ(6)AP and Σ(4)PBDE contamination (58 ± 5% and 75 ± 6% respectively). Although the operating conditions of the biofiltration unit are modified during wet periods, the performance in nutrient pollution, APs and light PBDE congeners remains high. Nevertheless, lower efficiency has been noted in nitrogen pollution, i.e. no denitrification occurs, and BDE-209 (not removed during wet-weather periods). In conclusion, this study demonstrates that the combination of both techniques treats AP and PBDE pollution efficiently during dry periods, but that they are also suitable for stormwater treatment.
[Performance of Grass Swales for Controlling Pollution of Roadway Runoff in Field Experiments].
Huang, Jun-jie; Shen, Qing-ran; Li, Tian
2015-06-01
Two different styles of grass swales were built in new Binhu region of Hefei city to monitor the flux and quality of the influent and effluent water under actual precipitation conditions, in order to evaluate the performance of water quality purification and pollution load control for roadway runoff. The results showed that both of the grass swales could effectively remove the pollutants such as TSS, COD, Pb, Cu, Cd, Zn in roadway runoff; the median EMC removal efficiencies of TSS and COD were 67.1%, 46.7% respectively,for facility I, and the median EMC removal efficiencies of TSS and COD were 78.6%, 58.6% respectively, for facility II; the concentrations of Pb, Cu, Zn in the effluent of facility II could meet the requirements of the surface water quality class V; release of nitrogen and phosphorus occurred in both facilities I and I[ in several rainfall events, mainly in heavy storms; the removal efficiencies of TP in the two grass swales were improved with the increase of influent concentration; the mean removal efficiencies of TP in facilities I and II were 14.7% and 45.4%, respectively; the load control performance of facility II for pollutants such as TSS, COD, TP, TN, NH4+ -N and NO3- -N was better than that of facility I; in the district with poor soil permeability and low ground slope, application of dry swale could achieve better performance in water quality control and pollution load reduction of roadway runoff.
Gas-phase advanced oxidation for effective, efficient in situ control of pollution.
Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka
2014-01-01
In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.
33 CFR 153.411 - Procedures for payment of judgments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.411 Procedures for payment of judgments. An owner or operator of a...
33 CFR 153.411 - Procedures for payment of judgments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.411 Procedures for payment of judgments. An owner or operator of a...
33 CFR 153.411 - Procedures for payment of judgments.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.411 Procedures for payment of judgments. An owner or operator of a...
33 CFR 153.411 - Procedures for payment of judgments.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.411 Procedures for payment of judgments. An owner or operator of a...
33 CFR 153.411 - Procedures for payment of judgments.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.411 Procedures for payment of judgments. An owner or operator of a...
Jiang, Yu; Shang, Yu; Wang, Hongyu; Yang, Kai
2016-12-01
The start-up of an aerobic granular sludge (AGS) reactor at low temperature was more difficult than at ambient temperature.The rapid formation and characteristics of AGS in a sequencing batch airlift reactor at low temperature were investigated. The nutrient removal ability of the system was also evaluated. It was found that compact granules with clear boundary were formed within 10 days and steady state was achieved within 25 days. The settling properties of sludge were improved with the increasing secretion of extracellular polymeric substances and removal performances of pollutants were enhanced along with granulation. The average removal efficiencies of COD, NH4(+)-N, total nitrogen (TN), total phosphorus (TP) after aerobic granules maturing were over 90.9%, 94.7%, 75.4%, 80.2%, respectively. The rise of temperature had little impact on pollutant biodegradation while the variation of dissolved oxygen caused obvious changes in TN and TP removal rates. COD concentrations of effluents were below 30 mg l(-1) in most cycles of operation with a wide range of organic loading rates (0.6-3.0 kg COD m(-3) d(-1)). The rapid granulation and good performance of pollutant reduction by the system might provide an alternate for wastewater treatment in cold regions.
Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong
2016-06-29
Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.
Environmental application of biochar: Current status and perspectives.
Oliveira, Fernanda R; Patel, Anil K; Jaisi, Deb P; Adhikari, Sushil; Lu, Hui; Khanal, Samir Kumar
2017-12-01
In recent years, there has been a significant interest on biochar for various environmental applications, e.g., pollutants removal, carbon sequestration, and soil amelioration. Biochar has several unique properties, which makes it an efficient, cost-effective and environmentally-friendly material for diverse contaminants removal. The variability in physicochemical properties (e.g., surface area, microporosity, and pH) provides an avenue for biochar to maximize its efficacy to targeted applications. This review aims to highlight the vital role of surface architecture of biochar in different environmental applications. Particularly, it provides a critical review of current research updates related to the pollutants interaction with surface functional groups of biochars and the effect of the parameters variability on biochar attributes pertinent to specific pollutants removal, involved mechanisms, and competence for these removals. Moreover, future research directions of biochar research are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Monsores Paixão, Monique; Tadeu Gomes Vianna, Marco; Marques, Marcia
2018-01-01
Aromatic organic pollutants are highly toxic to the human and environmental health and are considered as priority pollutants by regulatory agencies. Managing contaminated sites with organic pollutants is one of the major environmental challenges today. Of all technologies that have been proposed to remove contaminants, adsorption is recognized worldwide as an attractive option due to its versatility, wide applicability and economic viability. Recent studies report the use of graphene (GN), a recently carbon nanomaterial, and its derivatives in sorption processes for the removal of aromatic organic compounds. The present review has shown that GN structures are a promising alternative to traditional adsorbent materials, with excellent results in the removal of organic compounds from water, due to their unique structural characteristics and great adsorption capacity for organic compounds. Although, there is still a long way to go until that practical applications can be implemented.
Removal of organic pollutants and heavy metals in soils by electrokinetic remediation.
Ricart, M T; Pazos, M; Gouveia, S; Cameselle, C; Sanroman, M A
2008-07-01
In this work, the feasibility of electrokinetic remediation for the restoration of polluted soil with organic and inorganic compounds had been development and evaluated using a model soil sample. The model soil was prepared with kaolinite clay artificially polluted in the laboratory with chromium and an azo dye: Reactive Black 5 (RB5). The electromigration of Cr in a spiked kaolinite sample was studied in alkaline conditions. Despite of the high pH registered in the kaolinite sample (around pH 9.5), Cr migrated towards the cathode and it was accumulated in the cathode chamber forming a white precipitate. The removal was not complete, and 23% of the initial Cr was retained into the kaolinite sample close to the cathode side. The azo dye RB5 could be effectively removed from kaolinite by electrokinetics and the complete cleanup of the kaolinite could be achieved in alkaline environment. In this condition, RB5 formed an anion that migrated towards the anode where it was accumulated and quickly degraded upon the electrode surface. The electrokinetic treatment of a kaolinite sample polluted with both Cr and RB5 yielded very good results. The removal of Cr was improved compared to the experiment where Cr was the only pollutant, and RB5 reached a removal as high as 95%. RB5 was removed by electromigration towards the anode, where the dye was degraded upon the surface of the electrode by electrochemical oxidation. Cr was transported towards the cathode by electromigration and electroosmosis. It is supposed that the interaction among RB5 and Cr into the kaolinite sample prevented premature precipitation and allow Cr to migrate and concentrate in the cathode chamber.
Assessment of Pollutant Removal Efficiency and Drainage Capacity in Stormwater Biofilters
NASA Astrophysics Data System (ADS)
Carroll, S. J.; Mills, H.; Reagan, A.; Triassi, M.; Bauer, S.; Matiasek, S. J.; Libby, R.; Meddings, C.
2016-12-01
Urban stormwater runoff contributes to flooding and impacts water quality with increased sediment and pollutant loads. Biofilters are vegetated filtration systems designed to mitigate stormwater by enhancing infiltration, sedimentation, contaminant sorption and uptake. Despite the rapid implementation of biofilters as stormwater management solutions, their performance is mainly evaluated in terms of flood reduction while their pollutant removal efficiency is rarely assessed. We investigated the effect of biofilter composition on drainage capacity and individual pollutant removal in test columns. Triplicate columns consisted of layers of pebbles, fine sand, filtration mix (test variable), mulch, lava rock and Santa Barbara sedges. The filtration mix was one of five combinations of coarse sand and local loam soil ranging from 100% sand to 100% soil. Consistent with differences in pore size distribution, hydraulic conductivity values were lowest in 100% soil biofilters (3.0 ± 0.6 mm/h) and highest in the 100% sand biofilters (22.7 ± 4.2 mm/h). A synthetic mixture of nutrients, metals, and salts in proportions representative of stormwater composition was applied to the test columns. Biofilters removed over 98% of dissolved copper, nickel, and zinc, and at least 67% of dissolved lead, even when applying synthetic runoff with metal concentrations three orders of magnitude larger than in actual stormwater. In addition, biofilters oxygenated, neutralized, and decreased the turbidity of stormwater. Ammonium was quantitatively removed from synthetic runoff (97-100%), while nitrate and phosphate were poorly retained (48-64%) or even leached from sand biofilters. This study demonstrated that, while decreasing drainage capacity, adding even a small proportion of native soil to the filtration media significantly increases pollutant removal of biofilters. With proper consideration of the filtration mixture, biofiltration systems can effectively remediate urban stormwater.
Long-term contamination in a recovered area affected by a mining spill.
Martín Peinado, F J; Romero-Freire, A; García Fernández, I; Sierra Aragón, M; Ortiz-Bernad, I; Simón Torres, M
2015-05-01
Soil pollution from the spill of Aznalcóllar mine (S Spain) was monitored by analysing polluted soils in 1998, 1999, and 2004. Following the methodology used in previous studies, in 2013 we conducted a new sampling and analysis of the soils affected by the spill and the data were compared with those of 2004. The results confirm that the pH tended to rise and concentration of pollutants tended to diminish over time. In 2013, the total concentration of pollutants was within the normal range for uncontaminated soils and close to the background concentration of the soils prior to the spill; while the soluble concentration of pollutants was clearly below the toxic level. These results indicate that remediation measures implemented have been effective. However, the removal of tailings (first remediation measure applied) was deficient and in many places the tailings were mixed with the soil. The high concentration of sulphides and metal(loid)s in the tailings gave rise to spots with very acidic and highly polluted soils devoid of vegetation. In 2013, fifteen years after the spill, these spots of bare soils remain a major source of pollution from which pollutants are scattered through the solid and liquid phases of runoff water, requiring action to immobilize pollutants and encourage the restoration of vegetation on these soils. In this type of pollution in a Mediterranean environment, the complete removal of tailings is more important than the speed at which they are removed. Copyright © 2015 Elsevier B.V. All rights reserved.
Air pollution removal and temperature reduction by Gainesville's urban forest
Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer
2009-01-01
Poor air quality is a common problem in many urban areas. It can lead to human health problems and reduced visibility, and it can impair the health of plants and wildlife. The urban forest can help improve air quality by removing pollutants and by reducing air temperature through shading and transpiration. Trees also emit volatile...
A numerical simulation on the flow of watershed filtration reactors using lignocellulosic materials
N. Hur; B. Choi; J.S. Han; E.W. Shin; S. Min; R.M. Rowell
2003-01-01
Pinyon juniper, a small-diameter and underutilized (SDU) lignocellulosic material, was harvested in New Mexico, identified as Juniperus monosperma at the USDA Forest Products Laboratory, chipped, fiberized and chemically modified to remove pollutants from wastewater. This juniper species was selected as a raw material through screening test for removal of pollutants...
A Study of a Super-Cooling Technique for Removal of Rubber from Solid-Rubber Tires.
environmental pollution . In answering these questions, an experiment is conducted to validate the concept and to determine liquid...is performed to compare the costs of the super-cooling technique with those of the brake drum lathe method of rubber removal. Safety and environmental pollution factors are also investigated and
ERIC Educational Resources Information Center
Rillo, Thomas J.
1974-01-01
Discusses damages of oil tanker spillage to the marine organisms and scientists' research in oil pollution removal techniques. Included is a list of learning activities concerning the causes and effects of oil pollution and methods of solving the problem. (CC)
Simultaneous Exposure to Multiple Air Pollutants Influences Alveolar Epithelial Cell Ion Transport
Purpose. Air pollution sources generally release multiple pollutants simultaneously and yet, research has historically focused on the source-to-health linkages of individual air pollutants. We recently showed that exposure of alveolar epithelial cells to a combination of particul...
Ge, Yuan; Wang, Xiaochang; Zheng, Yucong; Dzakpasu, Mawuli; Zhao, Yaqian; Xiong, Jiaqing
2015-09-01
The choice of substrates with high adsorption capacity, yet readily available and economical is vital for sustainable pollutants removal in constructed wetlands (CWs). Two identical large-scale demonstration horizontal subsurface flow (HSSF) CWs (surface area, 340 m(2); depth, 0.6 m; HLR, 0.2 m/day) with gravel or slag substrates were evaluated for their potential use in remediating polluted urban river water in the prevailing climate of northwest China. Batch experiments to elucidate phosphorus adsorption mechanisms indicated a higher adsorption capacity of slag (3.15 g/kg) than gravel (0.81 g/kg), whereby circa 20 % more total phosphorus (TP) removal was recorded in HSSF-slag than HSSF-gravel. TP removal occurred predominantly via CaO-slag dissolution followed by Ca phosphate precipitation. Moreover, average removals of chemical oxygen demand and biochemical oxygen demand were approximately 10 % higher in HSSF-slag than HSSF-gravel. Nevertheless, TP adsorption by slag seemed to get quickly saturated over the monitoring period, and the removal efficiency of the HSSF-slag approached that of the HSSF-gravel after 1-year continuous operation. In contrast, the two CWs achieved similar nitrogen removal during the 2-year monitoring period. Findings also indicated that gravel provided better support for the development of other wetland components such as biomass, whereby the biomass production and the amount of total nitrogen (TN; 43.1-59.0 g/m(2)) and TP (4.15-5.75 g/m(2)) assimilated by local Phragmites australis in HSSF-gravel were higher than that in HSSF-slag (41.2-52.0 g/m(2) and 3.96-4.07 g/m(2), respectively). Overall, comparable pollutant removal rates could be achieved in large-scale HSSF CWs with either gravel or slag as substrate and provide a possible solution for polluted urban river remediation in northern China.
ORIGINS AND RAMIFICATIONS OF PHARMACEUTICALS ...
Perhaps more so than with any other class of pollutants, the occurrence of pharmaceuticals and personal care products (PPCPS) in the environment highlights the immediate, intimate, and inseparable connection between the personal activities of individual citizens and their environment. PPCPS, in contrast to other types of pollutants, owe their origins in the environment directly to their worldwide, universal, frequent, highly dispersed, and individually small but cumulative usage by multitudes of individuals - as opposed to the larger, highly delineated, and more controllable industrial manufacturing/usage of most high- volume synthetic chemicals. Many PPCPs (as well as their metabolites and transformation products) can enter the environment following ingestion or application by the user or administration to domestic animals. Disposal of unused/expired PPCPs in landfills and in domestic sewage is another route to the environment. The aquatic environment serves as the major, ultimate receptacle for these chemicals, for which little is known with respect to actual or potential adverse effects. Domestic sewage treatment plants are not designed to remove PPCPS, and the efficiencies with which they are removed vary from nearly complete to ineffective. While PPCPs in the environment (or domestic drinking water) are not regulated, and even though their concentrations are extremely low (ng/L-@Lg/L), the consequences of exposure to multiple compounds having different as w
PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ...
Perhaps more so than with any other class of pollutants, the occurrence of pharmaceuticals and personal care products (PPCPS) in the environment highlights the immediate, intimate, and inseparable connection between the personal activities of individual citizens and their environment. PPCPS, in contrast to other types of pollutants, owe their origins in the environment directly to their worldwide, universal, frequent, highly dispersed, and individually small but cumulative usage by multitudes of individuals - as opposed to the larger, highly delineated, and more controllable industrial manufacturing/usage of most high- volume synthetic chemicals. Many PPCPs (as well as their metabolites and transformation products) can enter the environment following ingestion or application by the user or administration to domestic animals. Disposal of unused/expired PPCPs in landfills and in domestic sewage is another route to the environment. The aquatic environment serves as the major, ultimate receptacle for these chemicals, for which little is known with respect to actual or potential adverse effects. Domestic sewage treatment plants are not specifically engineered to remove PPCPS, and the efficiencies with which they are removed vary from nearly complete to ineffective. While PPCPs in the environment (or domestic drinking water) are not regulated, and even though their concentrations are extremely low (ng/L-ug/L), the consequences of exposure over multiple generations to
18 CFR 35.25 - Construction work in progress.
Code of Federal Regulations, 2012 CFR
2012-04-01
... of pollution produced by the power plant, but does not include any facility that reduces pollution by... oil or coal burners, soot blowers, bottom ash removal systems and concomitant air pollution control..., which facility would not be necessary if the plant continued to burn gas or oil. (4) Pollution control...
18 CFR 35.25 - Construction work in progress.
Code of Federal Regulations, 2013 CFR
2013-04-01
... of pollution produced by the power plant, but does not include any facility that reduces pollution by... oil or coal burners, soot blowers, bottom ash removal systems and concomitant air pollution control..., which facility would not be necessary if the plant continued to burn gas or oil. (4) Pollution control...
18 CFR 35.25 - Construction work in progress.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of pollution produced by the power plant, but does not include any facility that reduces pollution by... oil or coal burners, soot blowers, bottom ash removal systems and concomitant air pollution control..., which facility would not be necessary if the plant continued to burn gas or oil. (4) Pollution control...
33 CFR 153.413 - Deposit of money into the fund.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.413 Deposit of money into the fund. Any person liable for the payment of... the cognizant District Commander, or to the Commandant for deposit into the Pollution Fund as...
33 CFR 153.413 - Deposit of money into the fund.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.413 Deposit of money into the fund. Any person liable for the payment of... the cognizant District Commander, or to the Commandant for deposit into the Pollution Fund as...
33 CFR 153.413 - Deposit of money into the fund.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.413 Deposit of money into the fund. Any person liable for the payment of... the cognizant District Commander, or to the Commandant for deposit into the Pollution Fund as...
33 CFR 153.413 - Deposit of money into the fund.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.413 Deposit of money into the fund. Any person liable for the payment of... the cognizant District Commander, or to the Commandant for deposit into the Pollution Fund as...
33 CFR 153.413 - Deposit of money into the fund.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.413 Deposit of money into the fund. Any person liable for the payment of... the cognizant District Commander, or to the Commandant for deposit into the Pollution Fund as...
Water Pollution Scrubber Activity Simulates Pollution Control Devices.
ERIC Educational Resources Information Center
Kennedy, Edward C., III; Waggoner, Todd C.
2003-01-01
A laboratory activity caused students to think actively about water pollution. The students realized that it would be easier to keep water clean than to remove pollutants. They created a water scrubbing system allowing them to pour water in one end and have it emerge clean at the other end. (JOW)
33 CFR 153.105 - FWPCA delegations and redelegation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL... Water Pollution Control Act (FWPCA) [33 U.S.C. 1321 et seq.] are published in § 1.01-80 and § 1.01-85...
33 CFR 153.105 - FWPCA delegations and redelegation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL... Water Pollution Control Act (FWPCA) [33 U.S.C. 1321 et seq.] are published in § 1.01-80 and § 1.01-85...
33 CFR 153.105 - FWPCA delegations and redelegation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL... Water Pollution Control Act (FWPCA) [33 U.S.C. 1321 et seq.] are published in § 1.01-80 and § 1.01-85...
33 CFR 153.105 - FWPCA delegations and redelegation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL... Water Pollution Control Act (FWPCA) [33 U.S.C. 1321 et seq.] are published in § 1.01-80 and § 1.01-85...
33 CFR 153.105 - FWPCA delegations and redelegation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL... Water Pollution Control Act (FWPCA) [33 U.S.C. 1321 et seq.] are published in § 1.01-80 and § 1.01-85...
Nsenga Kumwimba, Mathieu; Meng, Fangang; Iseyemi, Oluwayinka; Moore, Matthew T; Zhu, Bo; Tao, Wang; Liang, Tang Jia; Ilunga, Lunda
2018-10-15
Domestic wastewater and agricultural runoff are increasingly viewed as major threats to both aquatic and terrestrial ecosystems due to the introduction of non-point source inorganic (e.g., nitrogen, phosphorus and metals) and organic (e.g., pesticides and pharmaceutical residues) pollutants. With rapid economic growth and social change in rural regions, it is important to examine the treatment systems in rural and remote areas for high efficiency, low running costs, and minimal maintenance in order to minimize its influence on water bodies and biodiversity. Recently, the use of vegetated drainage ditches (VDDs) has been employed in treatment of domestic sewage and agricultural runoff, but information on the performance of VDDs for treating these pollutants with various new management practices is still not sufficiently summarized. This paper aims to outline and review current knowledge related to the use of VDDs in mitigating these pollutants from domestic sewage and agricultural runoff. Literature analysis has suggested that further research should be carried out to improve ditch characteristics and management strategies inside ditches in order to ensure their effectiveness. Firstly, the reported major ditch characteristics with the most effect on pollutant removal processes (e.g., plant species, weirs, biofilms, and substrates selection) were summarized. The second focus concerns the function of ditch characteristics in VDDs for pollutant removal and identification of possible removal mechanisms involved. Thirdly, we examined factors to consider for establishing appropriate management strategies within ditches and how these could influence the whole ditch design process. The current review promotes areas where future research is needed and highlights clear and sufficient evidence regarding performance and application of this overlooked ditch system to reduce pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.
To study the recovery of L-Cysteine using halloysite nanotubes after heavy metal removal
NASA Astrophysics Data System (ADS)
Thakur, Juhi
2016-04-01
Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.
Liu, Huijuan; Ru, Jia; Qu, Jiuhui; Dai, Ruihua; Wang, Zijian; Hu, Chun
2009-06-01
A new biomimetic absorbent, cellulose acetate (CA) embedded with triolein (CA-triolein), was prepared and applied for the removal of persistent organic pollutants (POPs) from micro-polluted aqueous solution. The comparison of CA-triolein, CA and granular activated carbon (GAC) for dieldrin removal was investigated. Results showed that CA-triolein absorbent gave a lowest residual concentration after 24 h although GAC had high removal rate in the first 4 h adsorption. Then the removal efficiency of mixed POPs (e.g. aldrin, dieldrin, endrin and heptachlor epoxide), absorption isotherm, absorbent regeneration and initial column experiments of CA-triolein were studied in detail. The linear absorption isotherm and the independent absorption in binary isotherm indicated that the selected POPs are mainly absorbed onto CA-triolein absorbent by a partition mechanism. The absorption constant, K, was closely related to the hydrophobic property of the compound. Thermodynamic calculations showed that the absorption was spontaneous, with a high affinity and the absorption was an endothermic reaction. Rinsing with hexane the CA-triolein absorbent can be regenerated after absorption of POPs. No significant decrease in the dieldrin removal efficiency was observed even when the absorption-regeneration process was repeated for five times. The results of initial column experiments showed that the CA-triolein absorbent did not reach the breakthrough point at a breakthrough empty-bed volume (BV) of 3200 when the influent concentration was 1-1.5 microg/L and the empty-bed contact time (EBCT) was 20 min.
NASA Astrophysics Data System (ADS)
Cheng, Wai Chi; Liu, Chun-Ho
2010-05-01
To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant
Lee, Hwan; Lee, Yoonjin; Kim, Jaeyoung; Kim, Choltae
2014-01-01
In this study the full-scale operation of soil flushing with air sparging to improve the removal efficiency of petroleum at depths of less than 7 m at a military site in Korea was evaluated. The target area was polluted by multiple gasoline and diesel fuel sources. The soil was composed of heterogeneous layers of granules, sand, silt and clay. The operation factors were systemically assessed using a column test and a pilot study before running the full-scale process at the site. The discharged TPH and BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations in the water were highest at 20 min and at a rate of 350 L/min, which was selected as the volume of air for the full-scale operation in the pilot air sparging test. The surfactant-aid condition was 1.4 times more efficient than the non-surfactant condition in the serial operations of modified soil flushing followed by air sparging. The hydraulic conductivity (3.13 × 10−3 cm/s) increased 4.7 times after the serial operation of both processes relative to the existing condition (6.61 × 10−4 cm/s). The removal efficiencies of TPH were 52.8%, 57.4%, and 61.8% for the soil layers at 6 to 7, 7 to 8 and 8 to 9 m, respectively. Therefore, the TPH removal was improved at depth of less than 7 m by using this modified remediation system. The removal efficiencies for the areas with TPH and BTEX concentrations of more than 500 and 80 mg/kg, were 55.5% and 92.9%, respectively, at a pore volume of 2.9. The total TPH and BTEX mass removed during the full-scale operation was 5109 and 752 kg, respectively. PMID:25166919
Zhou, Shilei; Huang, Tinglin; Zhang, Haihan; Zeng, Mingzheng; Liu, Fei; Bai, Shiyuan; Shi, Jianchao; Qiu, Xiaopeng; Yang, Xiao
2016-02-01
Indigenous oligotrophic aerobic denitrifiers nitrogen removal characteristics, community metabolic activity and functional genes were analyzed in a micro-polluted reservoir. The results showed that the nitrate in the enhanced system decreased from 1.71±0.01 to 0.80±0.06mg/L, while the control system did little to remove and there was no nitrite accumulation. The total nitrogen (TN) removal rate of the enhanced system reached 38.33±1.50% and the TN removal rate of surface sediment in the enhanced system reached 23.85±2.52%. TN removal in the control system experienced an 85.48±2.37% increase. The densities of aerobic denitrifiers in the enhanced system ranged from 2.24×10(5) to 8.13×10(7)cfu/mL. The abundance of nirS and nirK genes in the enhanced system were higher than those of in the control system. These results suggest that the enhanced in situ indigenous aerobic denitrifiers have potential applications for the bioremediation of micro-polluted reservoir system. Copyright © 2015 Elsevier Ltd. All rights reserved.
A study of subsurface wastewater infiltration systems for distributed rural sewage treatment.
Qin, Wei; Dou, Junfeng; Ding, Aizhong; Xie, En; Zheng, Lei
2014-08-01
Three types of subsurface wastewater infiltration systems (SWIS) were developed to study the efficiency of organic pollutant removal from distributed rural sewage under various conditions. Of the three different layered substrate systems, the one with the greatest amount of decomposed cow dung (5%) and soil (DCDS) showed the highest removal efficiency with respect to total nitrogen (TN), where the others showed no significant difference. The TN removal efficiency was increased with an increasing filling height of DCDS. Compared with the TN removal efficiency of 25% in the system without DCDS, the removal efficiency of the systems in which DCDS filled half and one fourth of the height was increased by 72% and 31%, respectively. Based on seasonal variations in the discharge of the typical rural family, the SWIS were run at three different hydraulic loads of 6.5, 13 and 20 cm/d. These results illustrated that SWIS could perform well at any of the given hydraulic loads. The results of trials using different inlet configurations showed that the effluent concentration of the contaminants in the system operating a multiple-inlet mode was much lower compared with the system operated under single-inlet conditions. The effluent concentration ofa pilot-scale plant achieved the level III criteria specified by the Surface Water Quality Standard at the initial stage.
Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui
2016-05-05
The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation. Copyright © 2016. Published by Elsevier B.V.
Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment.
Chu, Huaqiang; Cao, Dawen; Dong, Bingzhi; Qiang, Zhimin
2010-03-01
This work investigated the feasibility of treating micro-polluted surface water for drinking water production with a bio-diatomite dynamic membrane reactor (BDDMR) at lab-scale in continuous-flow mode. Results indicate that the BDDMR was effective in removing COD(Mn), DOC, UV(254), NH(3)-N and trihalomethanes' formation potential (THMFP) at a hydraulic retention time (HRT) of 3.5h due to its high concentrations of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS). The removal of pollutants was mainly ascribed to microbial degradation in BDDMR because the dynamic membrane alone was much less effective in pollutant removal. Though the diatomite particles (5-20microm) were much smaller in size than the aperture of the stainless steel support mesh (74microm), microorganisms and their extracellular polymer substances could bind these particles tightly to form bio-diatomite particles which were completely retained by the support mesh. The analysis of molecular weight (MW) distribution by gel permeation chromatography (GPC) shows that the BDDMR could effectively remove the hydrophilic fraction of dissolved organic materials present in the raw water. Copyright 2009 Elsevier Ltd. All rights reserved.
López-Vizcaíno, R; Risco, C; Isidro, J; Rodrigo, S; Saez, C; Cañizares, P; Navarro, V; Rodrigo, M A
2017-01-01
This work reports results of the application of electrokinetic fence technology in a 32 m 3 -prototype which contains soil polluted with 2,4-D and oxyfluorfen, focusing on the evaluation of the mechanisms that describe the removal of these two herbicides and comparing results to those obtained in smaller plants: a pilot-scale mockup (175 L) and a lab-scale soil column (1 L). Results show that electric heating of soil (coupled with the increase in the volatility) is the key to explain the removal of pollutants in the largest scale facility while electrokinetic transport processes are the primary mechanisms that explain the removal of herbicides in the lab-scale plant. 2-D and 3-D maps of the temperature and pollutant concentrations are used in the discussion of results trying to give light about the mechanisms and about how the size of the setup can lead to different conclusions, despite the same processes are occurring in the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aluminium Involvement in Neurotoxicity
Fulgenzi, Alessandro; Vietti, Daniele; Ferrero, Maria Elena
2014-01-01
The aetiology of neurodegenerative diseases (ND) seems to involve susceptibility genes and environmental factors. Toxic metals are considered major environmental pollutants. Following our study of a case of multiple sclerosis (MS) improvement due to removal of aluminium (Al) and other toxic metals, we have examined the possible relationship between Al intoxication and ND. We used the slow intravenous treatment with the chelating agent EDTA (calcium disodium ethylene diamine tetraacetic acid) (chelation test) to remove Al and detected it in the urine collected from the patients for 12 hours. Patients affected by MS represented 85.6% of total ND. Al was present in 44.8% of cases comprehensive of ND and healthy patients. Al levels were significantly higher in ND patients than in healthy subjects. We here show that treatment of patients affected by Al burden with ten EDTA chelation therapies (EDTA intravenous administration once a week) was able to significantly reduce Al intoxication. PMID:25243176
40 CFR 63.7957 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... removed from process equipment; residues removed from air pollution control equipment; and debris removed..., concrete, steel, fiberglass, or plastic) which provide structural support and is designed to hold an...
Impact of chemical leaching on permeability and cadmium removal from fine-grained soils.
Lin, Zhongbing; Zhang, Renduo; Huang, Shuang; Wang, Kang
2017-08-01
The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl 2 , FeCl 3 , citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl 3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl 3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl 3 , Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.
[Urban non-point source pollution control by runoff retention and filtration pilot system].
Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia
2011-09-01
A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.
Investigation on the efficiency of treated Palm Tree waste for removal of organic pollutants
NASA Astrophysics Data System (ADS)
Azoulay, Karima; El HajjajiI, Souad; Dahchour, Abdelmalek
2017-04-01
Development of the industrial sector generates several problems of environmental pollution. This issue rises concern among scientific community and decision makers, in this work; we e interested in water resources polluted by the chemical substances, which can cause various problems of health. As an example, dyes generated by different industrial activities such as textile, cosmetic, metal plating, leather, paper and plastic sectors, constitute an important source of pollution. In this work, we aim at investigating the efficiency of palm tree waste for removal of dyes from polluted solution. Our work presents a double environmental aspect, on one hand it constitutes an attempt for valorization of Palm Tree waste, and on the other hand it provides natural adsorbent. The study focuses on the effectiveness of the waste in removing Methylene Bleu and Methyl Orange taken as models of pollutants from aqueous solution. Kinetics and isotherm experiments were conducted in order to determine the sorption behavior of the examined dye. The effects of initial dye and adsorbent concentrations are considered. The results indicate that the correlation coefficient calculated from pseudo-second order equation was higher than the other kinetic equations, indicating that equilibrium data fitted well with pseudo-second order model where adsorption process was chemisorption. The adsorption equilibrium was well described by Langmuir isotherm model.
Evaluation of constructed wetlands by wastewater purification ability and greenhouse gas emissions.
Gui, P; Inamori, R; Matsumura, M; Inamori, Y
2007-01-01
Domestic wastewater is a significant source of nitrogen and phosphorus, which cause lake eutrophication. Among the wastewater treatment technologies, constructed wetlands are a promising low-cost means of treating point and diffuse sources of domestic wastewater in rural areas. However, the sustainable operation of constructed wetland treatment systems depends upon a high rate conversion of organic and nitrogenous loading into their metabolic gaseous end products, such as N2O and CH4. In this study, we examined and compared the performance of three typical types of constructed wetlands: Free Water Surface (FWS), Subsurface Flow (SF) and Vertical Flow (VF) wetlands. Pollutant removal efficiency and N2O and CH4 emissions were assessed as measures of performance. We found that the pollutant removal rates and gas emissions measured in the wetlands exhibited clear seasonal changes, and these changes were closely associated with plant growth. VF wetlands exhibited stable removal of organic pollutants and NH3-N throughout the experiment regardless of season and showed great potential for CH4 adsorption. SF wetlands showed preferable T-N removal performance and a lower risk of greenhouse gas emissions than FWS wetlands. Soil oxidation reduction potential (ORP) analysis revealed that water flow structure and plant growth influenced constructed wetland oxygen transfer, and these variations resulted in seasonal changes of ORP distribution inside wetlands that were accompanied by fluctuations in pollutant removal and greenhouse gas emissions.
Grassed swales for stormwater pollution control during rain and snowmelt.
Bäckström, M
2003-01-01
The retention of suspended solids, particles and heavy metals in different grassed swales during rain events and snowmelt is discussed. The experimental results derived from investigations performed in existing grassed swales in the Luleå region, Northern Sweden. During high pollutant loading rates, grassed swales retain significant amounts of pollutants, mainly due to sedimentation of particulate matter. Low to moderate removal efficiencies could be expected for heavy metals, especially metals in solution (i.e. the dissolved phase). When grassed swales receive urban runoff with low pollutant concentrations, they may release rather than retain pollutants. Swales are important snow deposit areas in the city and particle bound pollutants do to a large extent remain in the swale after snowmelt. However, dissolved pollutants (i.e. dissolved heavy metals) are likely to escape the swale with the melt water. Grassed swales may be regarded as facilities that even out the peaks in pollutant loads without being capable of producing consistent high removal rates. This suggests that swales should be considered as primary treatment devices. Possible design parameters for grassed swales are mean hydraulic detention time, surface loading rate or specific swale area.
[Survey on the contamination of microcystin-LR in water supply of Shanghai city].
Wu, He-yan; Zheng, Li-xing; Su, Jin; Shi, Wei
2005-03-01
To study the pollution level of microcystin-LR in water supply of Shanghai city and the removal efficacy for microcystin-LR through routine water treatment technique. High performance liquid chromatogram (HPLC) was applied to determine the concentration of microcystin-LR in source water, water samples after various water treatment procedures and tap water. The concentration of microcystin-LR varied with sampling seasons and sites and reached peak during summer and fall. The maximum of microcystin-LR was 2.38 microg/L in source water. Coagulation plus chlorine disinfection were found to be effective for the removal of microcystin-LR, while the remove rate through filtration was not significant. And it could also be detected in tap water as high as 1.27 microg/L. The source waters of Shanghai city were polluted by cyanobacteria toxins represented by microcystin-LR. The source water in suburb was more polluted. Routine water treatment techniques can not remove the toxins effectively.
2000-03-01
from coconut husks bound within a woven mesh rope either made from polyethylene or coir rope. The CGR incorporates wetland plants (usually as rooted...Process 6-1 Nonrestoration Alternative Considerations 6-3 Stormwater ponds 6-4 Infiltration (exfiltration) devices 6-6 Oil and grease trap devices 6-8... Oil and Grease Trap Pollutant Removal 6-9 Table 6.4. Sand Filter Pollutant Removal 6-11 Table 6.5. Selection of Appropriate Structural Solutions
Arianna Morani; David J. Nowak; Satoshi Hirabayashi; Carlo Calfapietra
2011-01-01
Highest priority zones for tree planting within New York City were selected by using a planting priority index developed combining three main indicators: pollution concentration, population density and low canopy cover. This new tree population was projected through time to estimate potential air quality and carbon bene!ts. Those trees will likely remove more than 10...
Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo
2015-01-01
Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation). Copyright © 2014 Elsevier B.V. All rights reserved.
Weiss, Stefan; Reemtsma, Thorsten
2008-08-01
The potential of a lab-scale membrane bioreactor (MBR) to remove polar pollutants from municipal wastewater was studied for industrial and household chemicals over a period of 22 months parallel to a conventional activated sludge (CAS) treatment. For half of the compounds, such as benzotriazole, 5-tolyltriazole (5-TTri), benzothiazole-2-sulfonate and 1,6-naphthalene disulfonate (1,6-NDSA), removal by MBR was significantly better than in CAS, while no improvement was recorded for the other half (1,5-NDSA, 1,3-NDSA, 4-TTri and naphthalene-1-sulfonate). The influence of operational conditions on trace pollutant removal by MBR was studied but no significant effects were found for variation of hydraulic retention time (7h-14h) and sludge retention time (26d-102d), suggesting that the lowest values selected have already been high enough for good removal. It is shown that the seemingly inconsistent results reported here and in previous studies regarding the comparison of trace pollutant removal in MBR and CAS are highly consistent. MBR is neither superior for well degradable compounds that are already extensively degraded in CAS treatment nor for recalcitrant compounds that are not amenable to biodegradation. For most compounds of intermediate removal in CAS treatment (15-80%), among them pharmaceuticals, personal care products and industrial chemicals, the MBR is clearly superior and reduces the effluent concentration by 20-50%. Despite of this clear benefit of MBR, the effect is not pronounced enough to serve as a sole argument for employing MBR in municipal wastewater treatment.
Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping
2010-01-01
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.101 Purpose. The purpose of this... hazardous substances as required by the Federal Water Pollution Control Act, as amended (FWPCA); the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.101 Purpose. The purpose of this... hazardous substances as required by the Federal Water Pollution Control Act, as amended (FWPCA); the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.101 Purpose. The purpose of this... hazardous substances as required by the Federal Water Pollution Control Act, as amended (FWPCA); the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.101 Purpose. The purpose of this... hazardous substances as required by the Federal Water Pollution Control Act, as amended (FWPCA); the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.101 Purpose. The purpose of this... hazardous substances as required by the Federal Water Pollution Control Act, as amended (FWPCA); the...
Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong
2016-09-15
The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.417... reasonable costs related thereto are proper for payment from the Pollution Fund. (OSC signature) (Incident...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.417... reasonable costs related thereto are proper for payment from the Pollution Fund. (OSC signature) (Incident...
Protein-Based Nanofabrics for Multifunctional Air Filtering
NASA Astrophysics Data System (ADS)
Souzandeh, Hamid
With the fast development of economics and population, air pollution is getting worse and becomes a great concern worldwide. The release of chemicals, particulates and biological materials into air can lead to various diseases or discomfort to humans and other living organisms, alongside other serious impacts on the environment. Therefore, improving indoor air quality using various air filters is in critical need because people stay inside buildings most time of the day. However, current air filters using traditional polymers can only remove particles from the polluted air and disposing the huge amount of used air filters can cause serious secondary environmental pollution. Therefore, development of multi-functional air filter materials with environmental friendliness is significant. For this purpose, we developed "green" protein-based multifunctional air-filtering materials. The outstanding performance of the green materials in removal of multiple species of pollutants, including particulate matter, toxic chemicals, and biological hazards, simultaneously, will greatly facilitate the development of the next-generation air-filtration systems. First and foremost, we developed high-performance protein-based nanofabric air-filter mats. It was found that the protein-nanofabrics possess high-efficiency multifunctional air-filtering properties for both particles and various species of chemical gases. Then, the high-performance natural protein-based nanofabrics were promoted both mechanically and functionally by a textured cellulose paper towel. It is interestingly discovered that the textured cellulose paper towel not only can act as a flexible mechanical support, but also a type of airflow regulator which can improve the pollutant-nanofilter interactions. Furthermore, the protein-based nanofabrics were crosslinked in order to enhance the environmental-stability of the filters. It was found that the crosslinked protein-nanofabrics can significantly improve the structure stability against different moisture levels and temperatures, while maintain the multifunctional filtration performance. Moreover, it was demonstrated that the crosslinked protein-nanomaterials also possess antibacterial properties against the selected gram-negative and gram-positive bacteria. This provides a cost-effective solution for advanced "green" nanomaterials with excellent performance in both filtration functions and structure stability under varying environment. This work indicates that protein-based air-filters are promising "green" air-filtering materials for next-generation air-filtration systems.
Photocatalytic Oxidation of Oil Contaminated Water Using TiO2/UV
NASA Astrophysics Data System (ADS)
Vargas Solla, Monica; Romero Rojas, Jairo
2017-04-01
Currently, oil is one of the most used energy sources all around the world, for example to make motor engines work. That prevailing usage of oil is the reason why water sources are under serious pollution risks with compounds that are hard to remove, such as hydrocarbons. There are a few water treatment processes known as Advanced Oxidation Processes, which search for a way to treat polluted water with toxic refractory compounds, to make its reuse more feasible and to avoid or at least appease the injurious effects of pollution over ecosystems. A heterogeneous photocatalysis water treatment technology, sorted as an Advanced Oxidation Process, which is intended to treat refractory compound polluted water by the use of TiO2 and UV light, is presented in this investigation. The evidence about its efficiency in hydrocarbon removal from used motor oil polluted water, since it is an extremely important pollutant due to its complexity, toxicity and recalcitrant characteristics, is also presented through COD, Oil and Grease and Hydrocarbons analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaney, J.J.
The air pollution problems associated with coal burning are discussed. The movement of the pollutants and their natural removal from the atmosphere are reviewed as are the general inefficiencies at emission control attempts. (AIP)
Gas pollutants removal in a single- and two-stage ejector-venturi scrubber.
Gamisans, Xavier; Sarrà, Montserrrat; Lafuente, F Javier
2002-03-29
The absorption of SO(2) and NH(3) from the flue gas into NaOH and H(2)SO(4) solutions, respectively has been studied using an industrial scale ejector-venturi scrubber. A statistical methodology is presented to characterise the performance of the scrubber by varying several factors such as gas pollutant concentration, air flowrate and absorbing solution flowrate. Some types of venturi tube constructions were assessed, including the use of a two-stage venturi tube. The results showed a strong influence of the liquid scrubbing flowrate on pollutant removal efficiency. The initial pollutant concentration and the gas flowrate had a slight influence. The use of a two-stage venturi tube considerably improved the absorption efficiency, although it increased energy consumption. The results of this study will be applicable to the optimal design of venturi-based absorbers for gaseous pollution control or chemical reactors.
NASA Astrophysics Data System (ADS)
Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.
2017-09-01
Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.
Water reduction by constructed wetlands treating waste landfill leachate in a tropical region.
Ogata, Yuka; Ishigaki, Tomonori; Ebie, Yoshitaka; Sutthasil, Noppharit; Chiemchaisri, Chart; Yamada, Masato
2015-10-01
One of the key challenges in landfill leachate management is the prevention of environmental pollution by the overflow of untreated leachate. To evaluate the feasibility of constructed wetlands (CWs) for the treatment of waste landfill leachate in tropical regions, water reduction and pollutant removal by a CW subjected to different flow patterns (i.e., horizontal subsurface flow (HSSF) and free water surface (FWS)) were examined in both rainy and dry seasons in Thailand. A pilot-scale CW planted with cattail was installed at a landfill site in Thailand. With HSSF, the CW substantially removed pollutants from the landfill leachate without the need to harvest plants, whereas with FWS, it only slightly removed pollutants. Under both flow patterns, the CW significantly reduced the leachate volume to a greater extent than surface evaporation, which is regarded as an effect of the storage pond. Additionally, water reduction occurred regardless of season and precipitation, within the range 0-9 mm d(-1). In the case of low feeding frequency, water reduction by the CW with HSSF was lower than that with FWS. However, high feeding frequency improved water reduction by the CW with HSSF and resulted in a similar reduction to that observed with FWS, which exhibited maximum evapotranspiration. In terms of water reduction, with both HSSF in conjunction with high frequency feeding and FWS, the CW provided a high degree of evapotranspiration. However, pollutant removal efficiencies with HSSF were higher than for FWS. The present study suggested that CWs with HSSF and high frequency feeding could be useful for the prevention of uncontrollable dispersion of polluted leachate in the tropical climate zone. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deciphering the science behind electrocoagulation to remove suspended clay particles from water.
Holt, P K; Barton, G W; Mitchell, C A
2004-01-01
Electrocoagulation removes pollutant material from water by a combination of coagulant delivered from a sacrificial aluminium anode and hydrogen bubbles evolved at an inert cathode. Rates of clay particle flotation and settling were experimentally determined in a 7 L batch reactor over a range of currents (0.25-2.0 A) and pollutant loadings (0.1-1.7 g/L). Sedimentation and flotation are the dominant removal mechanism at low and high currents, respectively. This shift in separation mode can be explained by analysing the reactor in terms of a published dissolved air flotation model.
Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Farasati, Farhad
2012-01-01
Local exhaust ventilation (LEV) systems and integrated collectors were designed and implemented in a mining company in order to control emitted air pollutant from furnaces. The LEV was designed for capture and transition of air pollutants emitted from furnaces to the integrated collectors. The integrated collectors including four high efficiency Stairmand model cyclones for control of particulate matter, a venturi scrubber for control of the fine particles, SO(2) and a part of H(2)S to follow them, and a packed scrubber for treatment of the residual H(2)S and SO(2) were designed. Pollutants concentration were measured to determine system effectiveness. The results showed that the effectiveness of LEV for reducing workplace pollution is 91.83%, 96.32% and 83.67% for dust, SO(2) and H(2)S, respectively. Average removal efficiency of particles by combination of cyclone and venturi scrubber was 98.72%. Average removal efficiency of SO(2) and H(2)S were 95.85% and 47.13% for the venturi scrubber and 68.45% and 92.7% for the packed bed scrubber. The average removal efficiency of SO(2) and H(2)S were increased to 99.1% and 95.95% by the combination of venturi and packed bed scrubbers. According to the results, integrated collectors are a good air pollution control option for industries with economic constraints and ancient technologies.
Wang, Jiaming; Jiang, Jianguo; Li, Dean; Li, Tianran; Li, Kaimin; Tian, Sicong
2015-12-01
Pb and Zn contamination in agricultural soils has become an important issue for human health and the environment. Washing is an effective method for remediating polluted soil. Here, we compare several washing materials and methods in the treatment of Pb- and Zn-polluted farmland soil. We examined four washing reagents, hydrochloric acid, citric acid, Na2EDTA, and tartaric acid, all of which independently removed Zn at rates >65 %. Combining washing reagents markedly enhanced heavy metal removal, by using Na2EDTA and either tartaric acid or lactate in sequence: Pb and Zn removal rates improved to 84.1 and 82.1 % for Na2EDTA-tartaric acid; and to 88.3 and 89.9 % for Na2EDTA-lactate, respectively. Additionally, combining ultrasound with conventional washing methods markedly improved washing efficiency, by shortening washing duration by 96 %. We achieved similar removal rates using ultrasound for 10 min, compared with traditional mechanical vibration alone for 4 h. We concluded that treating Pb- and Zn-contaminated soil with appropriate washing reagents under optimal conditions can greatly enhance the remediation of polluted farmland soils.
Constructed wetland using corncob charcoal substrate: pollutants removal and intensification.
Liu, Mao; Li, Boyuan; Xue, Yingwen; Wang, Hongyu; Yang, Kai
2017-09-01
To investigate the feasibility of using corncob charcoal substrate in constructed wetlands, four laboratory-scale vertical flow constructed wetlands (VFCWs) were built. Effluent pollutant (chemical oxygen demand (COD), NH 4 + -N, total phosphorus (TP)) concentrations during the experiment were determined to reveal pollutant removal mechanisms and efficiencies at different stages. In the stable stage, a VFCW using clay ceramisite substrate under aeration attained higher COD (95.1%), and NH 4 + -N (95.1%) removal efficiencies than a VFCW using corncob charcoal substrate (91.5% COD, 91.3% NH 4 + -N) under aeration, but lower TP removal efficiency (clay ceramisite 32.0% and corncob charcoal 40.0%). The VFCW with raw corncob substrate showed stronger COD emissions (maximum concentration 3,108 mg/L) than the corncob charcoal substrate (COD was lower than influent). The VFCW using corncob charcoal substrate performed much better than the VFCW using clay ceramisite substrate under aeration when the C/N ratio was low (C/N = 1.5, TN removal efficiency 36.89%, 4.1% respectively). These results suggest that corncob charcoal is a potential substrate in VFCWs under aeration with a unique self -supplying carbon source property in the denitrification process.
Li, Han; Huang, Shaobin; Zhang, Yongqing
2016-09-01
Cr(VI) pollution is increasing continuously as a result of ongoing industrialization. In this study, we investigated the thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1, isolated from the biofilm of a biotrickling filter used in nitrogen oxides (NOX) removal, with respect to its ability to remove Cr(VI) from an aqueous solution. TAD1 was capable of reducing Cr(VI) from an initial concentration of 10 mg/L to non-detectable levels over a pH range of 7-9 and at a temperature range of 30-50°C. TAD1 simultaneously removed both Cr(VI) and NO3 (-)-N at 50°C, when the pH was 7 and the initial Cr(VI) concentration was 15 mg/L. The reduction of Cr(VI) to Cr(III) correlated with the growth metabolic activity of TAD1. The presence of other heavy metals (Cu, Zn, and Ni) inhibited the ability of TAD1 to remove Cr(VI). The metals each individually inhibited Cr(VI) removal, and the extent of inhibition increased in a cooperative manner in the presence of a combination of the metals. The addition of biodegradable cellulose acetate microspheres (an adsorption material) weakened the toxicity of the heavy metals; in their presence, the Cr(VI) removal efficiency returned to a high level. The feasibility and applicability of simultaneous nitrate removal and Cr(VI) reduction by strain TAD1 is promising, and may be an effective biological method for the clean-up of wastewater.
33 CFR 159.85 - Sewage removal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sewage removal. 159.85 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.85 Sewage removal. The device must be designed for efficient removal of nearly all of the liquid and solids in the sewage retention...
40 CFR 1065.659 - Removed water correction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Removed water correction. 1065.659 Section 1065.659 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.659 Removed water correction. (a) If you remove water upstream of a...
Burning crude oil without pollution
NASA Technical Reports Server (NTRS)
Houseman, J.
1979-01-01
Crude oil can be burned at drilling sites by two-stage combustion process without producing pollution. Process allows easier conformance to strict federal or state clean air standards without installation of costly pollution removal equipment. Secondary oil recovery can be accomplished with injection of steam heating by burning oil.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Purpose. 153.401 Section 153.401 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.401...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Purpose. 153.401 Section 153.401 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.401...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Purpose. 153.401 Section 153.401 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.401...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Purpose. 153.401 Section 153.401 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.401...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Purpose. 153.401 Section 153.401 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Administration of the Pollution Fund § 153.401...
EnviroAtlas - Woodbine, IA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1 block group in Woodbine, Iowa. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Pittsburgh, PA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,089 block groups in Pittsburgh, Pennsylvania. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, OR - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1176 block groups in Portland, Oregon. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Fresno, CA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 405 block groups in Fresno, California. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New Bedford, MA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 128 block group in New Bedford, Massachusetts. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Tampa, FL - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,833 block groups in Tampa Bay, Florida. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Minneapolis/St. Paul, MN - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,772 block groups in Minneapolis/St. Paul, Minnesota. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Cleveland, OH - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,442 block groups in Cleveland, Ohio. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Milwaukee, WI - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,175 block groups in Milwaukee, Wisconsin. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, ME - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 146 block groups in Portland, Maine. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Memphis, TN - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 703 block groups in Memphis, Tennessee. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Green Bay, WI - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 155 block groups in Green Bay, Wisconsin. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
EnviroAtlas - Austin, TX - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 750 block groups in Austin, Texas. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Lind, Emma E; Grahn, Mats
2011-05-01
Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (P<0.005, 1000 permutations) and locus-by-locus Analysis of Molecular Variance (AMOVA) further confirmed that habitats are significantly separated (F(ST)=0.021, P<0.01, 1023 permutations). The amount of genetic variation between populations did not differ between habitats, and populations from both habitats had similar levels of heterozygosity (polluted sites Nei's Hs=0.11, reference sites Nei's Hs=0.11). Still, pairwise F(ST): s between three, out of four, pairs of polluted-reference sites were significant. A F(ST)-outlier analysis showed that 21 (8.4%) loci were statistically different from a neutral distribution at the P<0.05 level and therefore indicated to be under divergent selection. When removing 13 F(ST)-outlier loci, significant at the P<0.01 level, differentiation between habitats disappeared in a multidimensional scaling plot. In conclusion, pulp mill effluence has acted as a selective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment. © The Author(s) 2011. This article is published with open access at Springerlink.com
NASA Astrophysics Data System (ADS)
Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina
2018-04-01
In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.
Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D
2015-10-15
Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Qian; Zhang, Yihe; Meng, Zilin; Tong, Wangshu; Yu, Xuelian; An, Qi
2017-09-25
Photocatalysis is a promising strategy to address the global environmental and energy challenges. However, the studies on the application of the photocatalytically degraded dye-polluted water and the multi-purpose use of one type of catalyst have remained sparse. In this report, we try to demonstrate a concept of multiple and cyclic application of materials and resources in environmentally relevant catalyst reactions. A magnetic composite catalyst prepared from exfoliated titania nanosheets, graphene, the magnetic iron oxide nanoparticles, and a polyelectrolyte enabled such a cyclic application. The composite catalyst decomposed a methylene blue-polluted water under visible light, and then the catalyst was collected and removed from the treated water using a magnet. The photocatalytically treated water was then used to prepare the electrolyte in electrochemical reductive reactions and presented superior electrochemical performance compared with the dye-polluted water. The composite catalyst was once again used as the cathode catalyst in the electrochemical reaction. Each component in the composite catalyst was indispensable in its catalytic activity, but each component played different roles in the photochemical, magnetic recycling, and electrochemical processes. We expect the report inspire the study on the multi-functional catalyst and cyclic use of the catalytically cleaned water, which should contribute for the environmental and energy remedy from a novel perspective.
Huang, Guowen; Lee, Duncan; Scott, E Marian
2018-03-30
The long-term health effects of air pollution are often estimated using a spatio-temporal ecological areal unit study, but this design leads to the following statistical challenges: (1) how to estimate spatially representative pollution concentrations for each areal unit; (2) how to allow for the uncertainty in these estimated concentrations when estimating their health effects; and (3) how to simultaneously estimate the joint effects of multiple correlated pollutants. This article proposes a novel 2-stage Bayesian hierarchical model for addressing these 3 challenges, with inference based on Markov chain Monte Carlo simulation. The first stage is a multivariate spatio-temporal fusion model for predicting areal level average concentrations of multiple pollutants from both monitored and modelled pollution data. The second stage is a spatio-temporal model for estimating the health impact of multiple correlated pollutants simultaneously, which accounts for the uncertainty in the estimated pollution concentrations. The novel methodology is motivated by a new study of the impact of both particulate matter and nitrogen dioxide concentrations on respiratory hospital admissions in Scotland between 2007 and 2011, and the results suggest that both pollutants exhibit substantial and independent health effects. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Reuse rate of treated wastewater in water reuse system.
Fan, Yao-bo; Yang, Wen-bo; Li, Gang; Wu, Lin-lin; Wei, Yuan-song
2005-01-01
A water quality model for water reuse was made by mathematics induction. The relationship among the reuse rate of treated wastewater (R), pollutant concentration of reused water (Cs), pollutant concentration of influent (C0), removal efficiency of pollutant in wastewater (E), and the standard of reuse water were discussed in this study. According to the experiment result of a toilet wastewater treatment and reuse with membrane bioreactors, R would be set at less than 40%, on which all the concemed parameters could meet with the reuse water standards. To raise R of reuse water in the toilet, an important way was to improve color removal of the wastewater.
Self assembled molecular monolayers on high surface area materials as molecular getters
King, David E.; Herdt, Gregory C.; Czanderna, Alvin W.
1997-01-01
The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.
Self assembled molecular monolayers on high surface area materials as molecular getters
King, D.E.; Herdt, G.C.; Czanderna, A.W.
1997-01-07
The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.
Qiu, Cuicui; Yuan, Shi; Li, Xiang; Wang, Huijiao; Bakheet, Belal; Komarneni, Sridhar; Wang, Yujue
2014-09-15
Electrolysis and ozonation are two commonly used technologies for treating wastewaters contaminated with nitrophenol pollutants. However, they are often handicapped by their slow kinetics and low yields of total organic carbon (TOC) mineralization. To improve TOC mineralization efficiency, we combined electrolysis using a boron-doped diamond (BDD) anode with ozonation (electrolysis-O3) to treat a p-nitrophenol (PNP) aqueous solution. Up to 91% TOC was removed after 60 min of the electrolysis-O3 process. In comparison, only 20 and 44% TOC was respectively removed by individual electrolysis and ozonation treatment conducted under similar reaction conditions. The result indicates that when electrolysis and ozonation are applied simultaneously, they have a significant synergy for PNP mineralization. This synergy can be mainly attributed to (i) the rapid degradation of PNP to carboxylic acids (e.g., oxalic acid and acetic acid) by O3, which would otherwise take a much longer time by electrolysis alone, and (ii) the effective mineralization of the ozone-refractory carboxylic acids to CO2 by OH generated from multiple sources in the electrolysis-O3 system. The result suggests that combining electrolysis with ozonation can provide a simple and effective way to mutually compensate the limitations of the two processes for degradation of phenolic pollutants. Copyright © 2014 Elsevier B.V. All rights reserved.
Canadian proposal for crimes against the environment: pollution as a criminal act
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrader-Frechette, K.
1986-06-01
The author examines the proposal of the Law Reform Commission which would add crimes against the environment to Canada's Criminal Code. She discusses the possibility that making pollution a criminal rather than a civil offense would not reduce pollution or polluters. She suggests that polluters should be required to pay into a fund which could be used to compensate victims, and, further, that all liability limits should be removed.
40 CFR 63.10692 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... argon-oxygen decarburization vessel to the air pollution control device. Chlorinated plastics means...) and PVC copolymers. Control device means the air pollution control equipment used to remove...
40 CFR 63.10692 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... argon-oxygen decarburization vessel to the air pollution control device. Chlorinated plastics means...) and PVC copolymers. Control device means the air pollution control equipment used to remove...
Factoring stream turbulence into global assessments of nitrogen pollution.
Grant, Stanley B; Azizian, Morvarid; Cook, Perran; Boano, Fulvio; Rippy, Megan A
2018-03-16
The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Demonstration of a Catalytic Converter Using a Lawn Mower Engine
ERIC Educational Resources Information Center
Young, Mark A.
2010-01-01
Catalytic conversion is an important tool in environmental-remediation strategies and source removal of pollutants. Because a catalyst is regenerated, the chemistry can be extremely effective for conversion of undesirable pollutant species to less harmful products in situations where the pollutants have accumulated or are being continuously…
Air Pollution, Causes and Cures.
ERIC Educational Resources Information Center
Manufacturing Chemists Association, Washington, DC.
This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…
CHARACTERIZATION OF PRIORITY POLLUTANTS FROM A SECONDARY LEAD AND BATTERY MANUFACTURING FACILITY
A plant site at which secondary lead is produced from old batteries was sampled utilizing the U.S. EPA protocol for the priority pollutants. The waste treatment plant at this site uses lime and settle techniques to remove pollutants from the wastewater before it is discharged int...
33 CFR 136.1 - Purpose and applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; CLAIMS... Pollution Act of 1990 (the Act) (33 U.S.C. 2713) for certain uncompensated removal costs or uncompensated... requirements with respect to— (i) The discharge of oil or other pollution by oil within such State; or (ii) Any...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Purpose. 133.1 Section 133.1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION... trust Fund (the Fund) for oil pollution removal costs under section 1012(d)(1) of the Oil Pollution Act...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Purpose. 133.1 Section 133.1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION... trust Fund (the Fund) for oil pollution removal costs under section 1012(d)(1) of the Oil Pollution Act...
33 CFR 136.1 - Purpose and applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; CLAIMS... Pollution Act of 1990 (the Act) (33 U.S.C. 2713) for certain uncompensated removal costs or uncompensated... requirements with respect to— (i) The discharge of oil or other pollution by oil within such State; or (ii) Any...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Purpose. 133.1 Section 133.1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION... trust Fund (the Fund) for oil pollution removal costs under section 1012(d)(1) of the Oil Pollution Act...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Purpose. 133.1 Section 133.1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION... trust Fund (the Fund) for oil pollution removal costs under section 1012(d)(1) of the Oil Pollution Act...
33 CFR 136.1 - Purpose and applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; CLAIMS... Pollution Act of 1990 (the Act) (33 U.S.C. 2713) for certain uncompensated removal costs or uncompensated... requirements with respect to— (i) The discharge of oil or other pollution by oil within such State; or (ii) Any...
33 CFR 136.1 - Purpose and applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; CLAIMS... Pollution Act of 1990 (the Act) (33 U.S.C. 2713) for certain uncompensated removal costs or uncompensated... requirements with respect to— (i) The discharge of oil or other pollution by oil within such State; or (ii) Any...
33 CFR 136.1 - Purpose and applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; CLAIMS... Pollution Act of 1990 (the Act) (33 U.S.C. 2713) for certain uncompensated removal costs or uncompensated... requirements with respect to— (i) The discharge of oil or other pollution by oil within such State; or (ii) Any...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Purpose. 133.1 Section 133.1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION... trust Fund (the Fund) for oil pollution removal costs under section 1012(d)(1) of the Oil Pollution Act...
40 CFR 63.4581 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Emission Standards for Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products...). Add-on control means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before discharge to the atmosphere...
40 CFR 63.3981 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., activators, accelerators). Add-on control means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before... directing those emissions into an add-on air pollution control device. Capture efficiency or capture system...
40 CFR 63.4581 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Emission Standards for Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products...). Add-on control means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before discharge to the atmosphere...
Denitrifying woodchip bioreactor and phosphorus filter pairing to minimize pollution swapping
Christianson, Laura E.; Lepine, Christine; Sibrell, Philip; Penn, Chad J.; Summerfelt, Steven T.
2017-01-01
Pairing denitrifying woodchip bioreactors and phosphorus-sorbing filters provides a unique, engineered approach for dual nutrient removal from waters impaired with both nitrogen (N) and phosphorus (P). This column study aimed to test placement of two P-filter media (acid mine drainage treatment residuals and steel slag) relative to a denitrifying system to maximize N and P removal and minimize pollution swapping under varying flow conditions (i.e., woodchip column hydraulic retention times (HRTs) of 7.2, 18, and 51 h; P-filter HRTs of 7.6–59 min). Woodchip denitrification columns were placed either upstream or downstream of P-filters filled with either medium. The configuration with woodchip denitrifying systems placed upstream of the P-filters generally provided optimized dissolved P removal efficiencies and removal rates. The P-filters placed upstream of the woodchip columns exhibited better P removal than downstream-placed P-filters only under overly long (i.e., N-limited) retention times when highly reduced effluent exited the woodchip bioreactors. The paired configurations using mine drainage residuals provided significantly greater P removal than the steel slag P-filters (e.g., 25–133 versus 8.8–48 g P removed m−3 filter media d−1, respectively), but there were no significant differences in N removal between treatments (removal rates: 8.0–18 g N removed m−3 woodchips d−1; N removal efficiencies: 18–95% across all HRTs). The range of HRTs tested here resulted in various undesirable pollution swapping by-products from the denitrifying bioreactors: nitrite production when nitrate removal was not complete and sulfate reduction, chemical oxygen demand production and decreased pH during overly long retention times. The downstream P-filter placement provided a polishing step for removal of chemical oxygen demand and nitrite.
Denitrifying woodchip bioreactor and phosphorus filter pairing to minimize pollution swapping.
Christianson, Laura E; Lepine, Christine; Sibrell, Philip L; Penn, Chad; Summerfelt, Steven T
2017-09-15
Pairing denitrifying woodchip bioreactors and phosphorus-sorbing filters provides a unique, engineered approach for dual nutrient removal from waters impaired with both nitrogen (N) and phosphorus (P). This column study aimed to test placement of two P-filter media (acid mine drainage treatment residuals and steel slag) relative to a denitrifying system to maximize N and P removal and minimize pollution swapping under varying flow conditions (i.e., woodchip column hydraulic retention times (HRTs) of 7.2, 18, and 51 h; P-filter HRTs of 7.6-59 min). Woodchip denitrification columns were placed either upstream or downstream of P-filters filled with either medium. The configuration with woodchip denitrifying systems placed upstream of the P-filters generally provided optimized dissolved P removal efficiencies and removal rates. The P-filters placed upstream of the woodchip columns exhibited better P removal than downstream-placed P-filters only under overly long (i.e., N-limited) retention times when highly reduced effluent exited the woodchip bioreactors. The paired configurations using mine drainage residuals provided significantly greater P removal than the steel slag P-filters (e.g., 25-133 versus 8.8-48 g P removed m -3 filter media d -1 , respectively), but there were no significant differences in N removal between treatments (removal rates: 8.0-18 g N removed m -3 woodchips d -1 ; N removal efficiencies: 18-95% across all HRTs). The range of HRTs tested here resulted in various undesirable pollution swapping by-products from the denitrifying bioreactors: nitrite production when nitrate removal was not complete and sulfate reduction, chemical oxygen demand production and decreased pH during overly long retention times. The downstream P-filter placement provided a polishing step for removal of chemical oxygen demand and nitrite. Copyright © 2017 The Conservation Fund. Published by Elsevier Ltd.. All rights reserved.
Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk
2017-08-01
This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mahmud, Mohd Hafiyyan; Lee, Khai Ern; Goh, Thian Lai
2017-10-01
The present paper aims to assess the phytoremediation performance based on pollution removal efficiency of the highly polluted region of Alur Ilmu urban river for its applicability of on-site treatment. Thirteen stations along Alur Ilmu were selected to produce thematic maps through spatial distribution analysis based on six water quality parameters of Malaysia's Water Quality Index (WQI) for dry and raining seasons. The maps generated were used to identify the highly polluted region for phytoremediation applicability assessment. Four free-floating plants were tested in treating water samples from the highly polluted region under three different conditions, namely controlled, aerated and normal treatments. The selected free-floating plants were water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), rose water lettuce (Pistia sp.) and pennywort (Centella asiatica). The results showed that Alur Ilmu was more polluted during dry season compared to raining season based on the water quality analysis. During dry season, four parameters were marked as polluted along Alur Ilmu, namely dissolve oxygen (DO), 4.72 mg/L (class III); ammoniacal nitrogen (NH 3 -N), 0.85 mg/L (class IV); total suspended solid (TSS), 402 mg/L (class V) and biological oxygen demand (BOD), 3.89 mg/L (class III), whereas, two parameters were classed as polluted during raining season, namely total suspended solid (TSS), 571 mg/L (class V) and biological oxygen demand (BOD), 4.01 mg/L (class III). The thematic maps generated from spatial distribution analysis using Kriging gridding method showed that the highly polluted region was recorded at station AL 5. Hence, water samples were taken from this station for pollution removal analysis. All the free-floating plants were able to reduce TSS and COD in less than 14 days. However, water hyacinth showed the least detrimental effect from the phytoremediation process compared to other free-floating plants, thus made it a suitable free-floating plants to be used for on-site treatment.
Effect of PAC dosage in a pilot-scale PAC-MBR treating micro-polluted surface water.
Hu, Jingyi; Shang, Ran; Deng, Huiping; Heijman, Sebastiaan G J; Rietveld, Luuk C
2014-02-01
To address the water scarcity issue and advance the traditional drinking water treatment technique, a powdered activated carbon-amended membrane bioreactor (PAC-MBR) is proposed for micro-polluted surface water treatment. A pilot-scale study was carried out by initially dosing different amounts of PAC into the MBR. Comparative results showed that 2g/L performed the best among 0, 1, 2 and 3g/L PAC-MBR regarding organic matter and ammonia removal as well as membrane flux sustainability. 1g/L PAC-MBR exhibited a marginal improvement in pollutant removal compared to the non-PAC system. The accumulation of organic matter in the bulk mixture of 3g/L PAC-MBR led to poorer organic removal and severer membrane fouling. Molecular weight distribution of the bulk liquid in 2g/L PAC-MBR revealed the synergistic effects of PAC adsorption/biodegradation and membrane rejection on organic matter removal. Additionally, a lower amount of soluble extracellular polymer substances in the bulk can be secured in 21 days operation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meng, Fan; Yang, Anqi; Zhang, Guangming; Wang, Hangyao
2017-10-01
Dissolved oxygen (DO) is an important parameter in photosynthetic bacteria (PSB) wastewater treatment. This study set different DO levels and detected the pollutants removal, PSB growth and pigments production. Results showed that DO significantly influenced the performances of PSB wastewater treatment process. The highest COD (93%) and NH 3 -N removal (83%) was achieved under DO of 4-8mg/L, but DO of 2-4mg/L was recommended considering the aeration cost. PSB biomass reached 1645mg/L under DO of 4-8mg/L with satisfying co-enzyme Q10 content. The biomass yield was relatively stable at all DO levels. For bacteriochlorophyll and carotenoids, DO>1mg/L could satisfy their production. On the other hand, DO<0.5mg/L led to the highest dehydrogenase activity. According to the different purposes, the optimal treatment time was different. The most pigments production occurred at 24h; biomass reached peak at 48h; and the optimal time for pollutants removal was 72h. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adsorption of SOx and NOx in activated viscose fibers.
Plens, Ana Carolina O; Monaro, Daniel L G; Coutinho, Aparecido R
2015-01-01
SOx and NOx are emissions resulting from combustion processes and are the main agents that contribute to the formation of acid rain, which causes harm to humans and the environment. Several techniques for removing these pollutants are applied in i.e. oil refineries, thermoelectric that use petroleum oils and vehicular pollution. Among these, highlight the adsorption of contaminants by the usage of activated carbon fibers and activated carbon, which are characterized by high surface area and uniform distribution of pores, providing appropriate conditions for application in processes of removing environmental contaminants. In the present work, activated viscose fibers (AVF) were prepared and applied in adsorption experiments of NO and SO2. The materials produced showed high values of surface area, with a predominance of micro pores with diameters in the range of 1.0 nm. The AVF had satisfactory performance in the removal of contaminants and are compatible with other synthetic fibers. Thus, the formation of active sites of carbon provides contaminants adsorption, demonstrating that carbon fibers cloth can be applied for the removal of pollutants.
Yang, Yongqiang; Zhan, Xuan; Wu, Shijun; Kang, Mingliang; Guo, Jianan; Chen, Fanrong
2016-04-01
The low hydraulic loading rate (HLR) greatly restricts the wide application of subsurface wastewater infiltration system (SWIS) in densely populated areas. To increase the HLR, an innovative SWIS was developed using cyclic operation mode. In each cycle, a wastewater feeding period is followed by a drying period, in which the aeration is conducted by a medium-pressure fan. Results indicated that the removal rate of TOC and NH4(+)-N were more than 85% at HLR of 0.5m(3)/m(2)d, whereas the TN removal rate was lower than 20%, indicating that the aeration was efficient and denitrification process was largely limited in the SWIS. When HLR decreased from 0.5 to 0.2m(3)/m(2)d, the pollutant removal efficiency enhanced slightly except for TN. Overall, the intermittent operation and micro-power aeration, combined with shunting the pollutant loading were really helpful for SWIS to achieve higher HLR, which offers a reference for the design of innovative SWIS. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.
2016-10-01
The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.
Removal of residual particulate matter from filter media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almlie, Jay C.; Miller, Stanley J.
A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.
Removal of residual particulate matter from filter media
Almlie, Jay C; Miller, Stanley J
2014-11-11
A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.
Application of an adsorptive-thermocatalytic process for BTX removal from polluted air flow
2014-01-01
Background Zero valent iron and copper oxide nanoparticles (30-60 nm) were coated on a bed of natural zeolite (Clinoptilolite) with 1-2 mm grains and arranged as a dual filter in a stainless steel cylindrical reactor (I.D 4.5 cm and L = 30 cm) to investigating the coated bed removal efficiency for BTX. The experiments were conducted in three steps. First, with an air flow of 1.5 L/min and temperature range of 38 (ambient temperature) to 600°C the BTX removal and mineralization was surveyed. Then, in an optimized temperature the effect of flow rate and pollution loading rate were surveyed on BTX removal. Results The BTX removal at 300 and 400°C were respectively up to 87.47% and 94.03%. Also in these temperatures respectively 37.21% and 90.42% of BTX mineralization were achieved. In the retention times of 14.1 s and 7.05 s, respectively 96.18% and 78.42% of BTX was removed. Conclusions According to the results, this adsorptive-thermocatalytic process with using Clinoptilolite as an adsorbent bed and combined Fe0 and Cu2O nanoparticles as catalysts can be an efficient and competitive process in the condition of high flow rate and high pollution loading rate with an adequate process temperature of 350°C. PMID:24955244
Dai, Guofei; Zhong, Jiayou; Song, Lirong; Guo, Chunjing; Gan, Nanqin; Wu, Zhenbin
2015-07-01
Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin-dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields.
Schwientek, Marc; Guillet, Gaëlle; Rügner, Hermann; Kuch, Bertram; Grathwohl, Peter
2016-01-01
Increasing numbers of organic micropollutants are emitted into rivers via municipal wastewaters. Due to their persistence many pollutants pass wastewater treatment plants without substantial removal. Transport and fate of pollutants in receiving waters and export to downstream ecosystems is not well understood. In particular, a better knowledge of processes governing their environmental behavior is needed. Although a lot of data are available concerning the ubiquitous presence of micropollutants in rivers, accurate data on transport and removal rates are lacking. In this paper, a mass balance approach is presented, which is based on the Lagrangian sampling scheme, but extended to account for precise transport velocities and mixing along river stretches. The calculated mass balances allow accurate quantification of pollutants' reactivity along river segments. This is demonstrated for representative members of important groups of micropollutants, e.g. pharmaceuticals, musk fragrances, flame retardants, and pesticides. A model-aided analysis of the measured data series gives insight into the temporal dynamics of removal processes. The occurrence of different removal mechanisms such as photooxidation, microbial degradation, and volatilization is discussed. The results demonstrate, that removal processes are highly variable in time and space and this has to be considered for future studies. The high precision sampling scheme presented could be a powerful tool for quantifying removal processes under different boundary conditions and in river segments with contrasting properties. Copyright © 2015. Published by Elsevier B.V.
Wang, Changhui; Wu, Yu; Bai, Leilei; Zhao, Yaqian; Yan, Zaisheng; Jiang, Helong; Liu, Xin
2018-07-01
This study assesses the feasibility of recycling drinking water treatment residue (DWTR) to treat eutrophic surface water in a one-year continuous flow column test. Heat-treated DWTR was used as an additional medium (2%-4%) in columns in case excessive organic matter and N were released from the DWTR to surface water. The results indicated that with minimal undesirable effects on other water properties, DWTR addition substantially enhanced P removal, rendering P concentrations in treated water oligotrophic and treated water unsuitable for Microcystis aeruginosa breeding. Long-term stable P removal by DWTR-column treatment was mainly attributed to the relatively low P levels in raw water (<0.108 mg L -1 ) and high P adsorption capability of DWTR, as confirmed by increases in amorphous Al/Fe in DWTR after the tests and low adsorption of P in the mobile forms. The major components of DWTR showed minimal changes, and potential metal pollution from DWTR was not a factor to consider during recycling. DWTR also enriched functional bacterial genera that benefitted biogeochemical cycles and multiple pollution control (e.g., Dechloromonas, Geobacter, Leucobacter, Nitrospira, Rhodoplanes, and Sulfuritalea); an apparent decrease in Mycobacterium with potential pathogenicity was observed in DWTR-columns. Regardless, limited denitrification of DWTR-columns was observed as a result of low bioavailability of C in surface water. This finding indicates that DWTR can be used with other methods to ensure denitrification for enhanced treatment effects. Overall, the use of DWTR as an additional medium in column systems can potentially treat eutrophic surface water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wharfe, Emma S; Jarvis, Roger M; Winder, Catherine L; Whiteley, Andrew S; Goodacre, Royston
2010-12-01
The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time-course and analysed by Fourier transform infrared (FT-IR) spectroscopy. FT-IR was used as a whole-organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2-131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT-IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT-IR spectra that could be attributed to phenol degradation products from the ortho- and meta-cleavage of the aromatic ring. This study demonstrates that FT-IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
New biosorbent in removing some metals from industrial wastewater in El Mex Bay, Egypt
NASA Astrophysics Data System (ADS)
Abdallah, Maha Ahmed Mohamed; Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somaia B.
2017-07-01
Biosorption is an extensive technology applied for the removal of heavy metal ions and other pollutants from aqueous solutions. In the present study, the biosorption of cadmium, lead, chromium and mercury ions from polluted surface seawater in El-Max Bay was determined using hybrid active carbon sorbents. These sorbents were treated chemically by acid, base and redox reaction followed by surface loading of baker's yeast biomass for increasing their biosorption capacity and the highest metal uptake values. The surface function and morphology of the hybrid immobilized sorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Metal removal values proved that the vital role of baker's yeast as a significant high removable due to functional groups at baker's yeast cell wall surface that have the ability to forming various coordination complexes with metal ions. A noticeable increase in the removal of all studied metals was observed and reached to 100 %.
Čehovin, Matej; Medic, Alojz; Kompare, Boris; Žgajnar Gotvajn, Andreja
2016-12-01
Drinking water contains organic matter that occasionally needs to be treated to assure its sufficient quality and safety for the consumers. H2O2 and UV advanced oxidation processes (H2O2/UV AOPs) were combined with hydrodynamic cavitation (HC) to assess the effects on the removal of selected organic pollutants. Water samples containing humic acid, methylene blue dye and micropollutants (metaldehyde, diatrizoic acid, iohexol) were treated first by H2O2 (dosages from 1 to 12 mg L-1) and UV (dosages from 300 to 2800 mJ cm-2) AOPs alone and later in combination with HC, generated by nozzles and orifice plates (4, 8, 18 orifices). Using HC, the removal of humic acid was enhanced by 5-15%, methylene blue by 5-20% and metaldehyde by approx. 10%. Under favouring conditions, i.e. high UV absorbance of the matrix (more than 0.050 cm-1 at a wavelength of 254 nm) and a high pollutant to oxidants ratio, HC was found to improve the hydrodynamic conditions in the photolytic reactor, to improve the subjection of the H2O2 to the UV fluence rate distribution and to enhance the removal of the tested organic pollutants, thus showing promising potential of further research in this field.
Chen, Fu; Luo, Zhanbin; Liu, Gangjun; Yang, Yongjun; Zhang, Shaoliang; Ma, Jing
2017-12-15
Laboratory experiments were conducted to investigate the efficiency of a simultaneous chemical extraction and oxidation for removing persistent organic pollutants (POPs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), citric acid (CA) and sodium persulfate (SP) were applied synchronously with Fe 2+ activated oxidation to enhance the co-removal of both types of pollutants. It is found that the addition of HPCD can enhance POPs removal through solubilization of POPs and iron chelation; while the CA-chelated Fe 2+ activation process is effective for extracting metals and degrading residual POPs. Under the optimized reagent conditions, 69.4% Cu, 78.1% Pb, 74.6% Ni, 97.1% polychlorinated biphenyls, 93.8% polycyclic aromatic hydrocarbons, and 96.4% polybrominated diphenylethers were removed after the sequential application of SP-HPCD-Fe 2+ and SP-CA-Fe 2+ processes with a duration of 180 and 240 min, respectively. A high dehalogenation efficiency (84.8% bromine and 86.2% chlorine) is observed, suggesting the low accumulation of halogen-containing organic intermediates. The remediated soil can satisfy the national soil quality standard of China. Collectively, co-contaminated soil can be remediated with reasonable time and capital costs through simultaneous application of persulfate oxidation and chemical extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Feng; Zhang, Shunan; Luo, Pei; Zhuang, Xuliang; Chen, Xiang; Wu, Jinshui
2018-01-01
In this review, the applications of Myriophyllum-based integrative biotechnology to remove common non-point source (NPS) pollutants, such as nitrogen, phosphorus, heavy metals, and organic pollutants (e.g., pesticides and antibiotics) are summarized. The removal of these pollutants via various mechanisms, including uptake by plant and microbial communities in macrophyte-based treatment systems are discussed. This review highlights the potential use of Myriophyllum biomass to produce animal feed, fertilizer, and other valuable by-products, which can yield cost-effective returns and attract more attention to the regulation and recycling of NPS pollutants. In addition, it demonstrates that utilization of Myriophyllum species is a promising and reliable strategy for wastewater treatment. The future development of sustainable Myriophyllum-based treatment systems is discussed from various perspectives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Shanquan; Chen, Siyuan; Wang, Yu; Low, Adrian; Lu, Qihong; Qiu, Rongliang
2016-12-01
Due to massive production and improper handling, organohalide compounds are widely distributed in subsurface environments, primarily in anoxic groundwater, soil and sediment. Compared to traditional pump-and-treat or dredging-and-disposal treatments, in situ remediation employing abiotic or biotic reductive dehalogenation represents a sustainable and economic solution for the removal of organohalide pollutants. Both nanoscale zero-valent iron (nZVI) and organohalide-respiring bacteria remove halogens through reductive dehalogenation and have been extensively studied and successfully applied for the in situ remediation of chloroethenes and other organohalide pollutants. nZVI and microbial reductive dehalogenation (Bio-RD) complement each other to boost reductive dehalogenation efficiency, suggesting that the integration of nZVI with Bio-RD (Bio-nZVI-RD) may constitute an even more promising strategy for the in situ remediation of organohalide pollutants. In this review, we first provide an overview of the current literature pertaining to nZVI- and organohalide-respiring bacteria-mediated reductive dehalogenation of organohalide pollutants and compare the pros and cons of individual treatment methods. We then highlight recent studies investigating the implementation of Bio-nZVI-RD to achieve rapid and complete dehalogenation and discuss the halogen removal mechanism of Bio-nZVI-RD and its prospects for future remediation applications. In summary, the use of Bio-nZVI-RD facilitates opportunities for the effective in situ remediation of a wide range of organohalide pollutants. Copyright © 2016 Elsevier Inc. All rights reserved.
Coconut-based biosorbents for water treatment--a review of the recent literature.
Bhatnagar, Amit; Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2010-10-15
Biosorption is an emerging technique for water treatment utilizing abundantly available biomaterials (especially agricultural wastes). Among several agricultural wastes studied as biosorbents for water treatment, coconut has been of great importance as various parts of this tree (e.g. coir, shell, etc.) have been extensively studied as biosorbents for the removal of diverse type of pollutants from water. Coconut-based agricultural wastes have gained wide attention as effective biosorbents due to low-cost and significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of coconut-based biosorbents from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. Available abundantly, high biosorption capacity, cost-effectiveness and renewability are the important factors making these materials as economical alternatives for water treatment and waste remediation. This paper presents a state of the art review of coconut-based biosorbents used for water pollution control, highlighting and discussing key advancement on the preparation of novel adsorbents utilizing coconut wastes, its major challenges together with the future prospective. It is evident from the literature survey that coconut-based biosorbents have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale, leading to the superior improvement of pollution control and environmental preservation. Copyright © 2010 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-05
....gov or at the Office of Pollution Prevention and Toxics Docket (OPPT Docket), Environmental Protection... information contact: Kenneth Moss, Chemical Control Division (7405M), Office of Pollution Prevention and... Division, Office of Pollution Prevention and Toxics. Therefore, 40 CFR parts 9 and 721 are amended as...
Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.
Wang, L; Wang, B
2000-01-01
The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.
40 CFR 403.7 - Removal credits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Removal credits. 403.7 Section 403.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRETREATMENT REGULATIONS FOR EXISTING AND NEW SOURCES OF POLLUTION § 403.7 Removal credits. (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... as set forth in— (1) Section 1001 of the Oil Pollution Act of 1990 (33 U.S.C. 2701), respecting the... zone, liable, liability, navigable waters, mobile offshore drilling unit, natural resources, offshore facility, oil, owner or operator, person, remove, removal, removal costs, security interest, and United...
Code of Federal Regulations, 2012 CFR
2012-07-01
... as set forth in— (1) Section 1001 of the Oil Pollution Act of 1990 (33 U.S.C. 2701), respecting the... zone, liable, liability, navigable waters, mobile offshore drilling unit, natural resources, offshore facility, oil, owner or operator, person, remove, removal, removal costs, security interest, and United...
Code of Federal Regulations, 2011 CFR
2011-07-01
... as set forth in— (1) Section 1001 of the Oil Pollution Act of 1990 (33 U.S.C. 2701), respecting the... zone, liable, liability, navigable waters, mobile offshore drilling unit, natural resources, offshore facility, oil, owner or operator, person, remove, removal, removal costs, security interest, and United...
33 CFR 159.87 - Removal fittings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Removal fittings. 159.87 Section 159.87 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.87 Removal fittings. If sewage...
33 CFR 159.85 - Sewage removal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Sewage removal. 159.85 Section 159.85 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.85 Sewage removal. The device...
Arca-Ramos, A; Eibes, G; Feijoo, G; Lema, J M; Moreira, M T
2015-11-01
In this study, the removal of bisphenol A (BPA) by laccase in a continuous enzymatic membrane reactor (EMR) was investigated. The effects of key parameters, namely, type of laccase, pH, and enzyme activity, were initially evaluated. Once optimal conditions were determined, the continuous removal of the pollutant in an EMR was assessed in synthetic and real biologically treated wastewaters. The reactor configuration consisted of a stirred tank reactor coupled to a ceramic membrane, which prevented the sorption of the pollutant and allowed the recovery and recycling of laccase. Nearly complete removal of BPA was attained under both operation regimes with removal yields above 94.5 %. In experiments with real wastewater, the removal of BPA remained high while the presence of colloids and certain ions and the formation of precipitates on the membrane potentially affected enzyme stability and made necessary the periodic addition of laccase. Polymerization and degradation were observed as probable mechanisms of BPA transformation by laccase.
A preliminary study on the occurrence and dissipation of estrogen in livestock wastewater.
Tang, Xianjin; Naveedullah; Hashmi, Muhammad Zaffar; Zhang, Hu; Qian, Mingrong; Yu, Chunna; Shen, Chaofeng; Qin, Zhihui; Huang, Ronglang; Qiao, Jiani; Chen, Yingxu
2013-04-01
Livestock wastewater has high estrogen activity because animal excreta contain estrogen. In the past, when biological technologies were applied to treat livestock wastewater, the removal efficiency of estrogen pollutants was always ignored. Therefore, the efficiency of estrogen removal by anaerobic/aerobic (A/O) treatment and by up flow anaerobic sludge blanket and step-fed sequencing batch reactor (UASB-SFSBR) treatment was investigated in the present study. The results showed that the A/O treatment had no significant estrogenic removal ability, whereas the removal rates of estrogen after UASB-SFSBR treatment reached approximately 78 %, as measured by liquid chromatography and tandem mass spectrometry. The estrogen concentration decreased from 31.5 ng/L to an undetectable level according to the yeast estrogen screen analysis. We found differences between the estrogen removal rates measured by the chemical assay and those measured using the bioassay. More attention must be paid to the removal of estrogen pollutants in livestock wastewater to reduce the environmental risk.
Fibrous Filter to Protect Building Environments from Polluting Agents: A Review
NASA Astrophysics Data System (ADS)
Chavhan, Md. Vaseem; Mukhopadhyay, Arunangshu
2016-04-01
This paper discusses the use of fibrous filter to protect the building environments from air born polluting agents and especially of concern chemical, biological and radiological agents. Air-filtration includes removal of particulate from air and toxic gases from air. In air filtration, particulate which are mostly biological and radioactive types of agents can be removed by using mechanical and electrostatic filters. Some biological agents, which cannot be removed by air filtration alone, special techniques like antimicrobial finish, UV germicides, coated filters etc. are required. Biocide agent can be added into the fibre itself by grafting reaction to impart antimicrobial activity. Chemical agents like toxic gases can be removed by integrating adsorbents and sorbents in filters or by fibre modifications. It is also possible to impart catalytic conversion properties into the fibre to remove volatile gasous. Radioactive agents can be removed by particulate filter if present in the form of aerosol or by gas cleaning by the use of specific fibre impregnate.
Emerging usage of electrocoagulation technology for oil removal from wastewater: A review.
An, Chunjiang; Huang, Gordon; Yao, Yao; Zhao, Shan
2017-02-01
Electrocoagulation is a simple and efficient treatment method involving the electrodissolution of sacrificial anodes and formation of hydroxo-metal products as coagulants, while the simultaneous production of hydrogen at the cathode facilitates the pollutant removal by flotation. Oil is one of the most important hydrocarbon products in the modern world. It can cause environmental pollution during various stages of production, transportation, refining and use. Electrocoagulation treatment is particularly effective for destabilization of oil-in-water emulsions by neutralizing charges and bonding oil pollutants to generated flocs and hydrogen bubbles. The development of electrocoagulation technologies provided a promising alternative for oil removal from wastewater. This paper presents a review of emerging electrochemical technologies used for treating oil-containing wastewater. It includes a brief description of the oily wastewater origin and characteristics. The treatment processes developed so far for oily wastewater and the electrocoagulation mechanisms are also introduced. This paper summarizes the current applications of electrocoagulation for oil removal from wastewater. The factors that influence the electrocoagulation treatment efficiencies as well as the process optimization and modeling studies are discussed. The state-of-the-art and development trends of electrocoagulation process for oil removal are further introduced. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Wanguang; Lei, Qiongye; Li, Zhengkui; Han, Huayang
2016-02-01
Slightly polluted water has become one of the main sources of nitrogen contaminants in recent years, for which constructed wetlands (CW) is a typical and efficient treatment. However, the knowledge about contribution of individual nitrogen removal pathways and nitrogen balance in constructed wetlands is still limited. In this study, a stable-isotope-addition experiment was performed in laboratory-scale constructed wetlands treating slightly polluted water to determine quantitative contribution of different pathways and temporal variation of nitrogen balance using Na(15)NO3 as tracer. Microbial conversion and substrate retention were found to be the dominant pathways in nitrogen removal contributing 24.4-79.9 and 8.9-70.7 %, respectively, while plant contributed only 4.6-11.1 % through direct assimilation but promoted the efficiency of other pathways. In addition, microbial conversion became the major way to remove N whereas nitrogen retained in substrate at first was gradually released to be utilized by microbes and plants over time. The findings indicated that N2 emission representing microbial conversion was not only the major but also permanent nitrogen removal process, thus keeping a high efficiency of microbial conversion is important for stable and efficient nitrogen removal in constructed wetlands.
Lv, Jinze; Zhu, Lizhong
2013-01-01
A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.
Lv, Zheng-Hui; Wang, Jing; Yang, Guang-Feng; Feng, Li-Juan; Mu, Jun; Zhu, Liang; Xu, Xiang-Yang
2018-02-01
In order to evaluate the enhancement mechanisms of enhanced startup performance in biofilm systems for polluted source water pretreatment, three lab-scale reactors with elastic stereo media (ESM) were operated under different enhanced sediment and hydraulic agitation conditions. It is interesting to found the previously underestimated or overlooked effects of sediment on the enhancement of pollutants removal performance and enrichment of functional bacteria in biofilm systems. The maximum NH 4 + -N removal rate of 0.35 mg L -1 h -1 in sediment enhanced condition was 2.19 times of that in control reactor. Sediment contributed to 42.0-56.5% of NH 4 + -N removal and 15.4-41.2% of total nitrogen removal in different reactors under different operation conditions. The enhanced hydraulic agitation with sediment further improved the operation performance and accumulation of functional bacteria. Generally, Proteobacteria (48.9-52.1%), Bacteroidetes (18.9-20.8%) and Actinobacteria (15.7-18.5%) were dominant in both sediment and ESM bioiflm at phylum level. The potentially functional bacteria found in sediment and ESM biofilm samples with some functional bacteria mainly presented in sediment samples only (e.g., Genera Bacillus and Lactococcus of Firmicutes phylum) may commonly contribute to the removal of nitrogen and organics.
Removal of heavy metals and pollutants by membrane adsorption techniques
NASA Astrophysics Data System (ADS)
Khulbe, K. C.; Matsuura, T.
2018-03-01
Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.
The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis.
Baumgardner, Darrel; Varela, Sebastian; Escobedo, Francisco J; Chacalo, Alicia; Ochoa, Carlos
2012-04-01
Air quality improvement by a forested, peri-urban national park was quantified by combining the Urban Forest Effects (UFORE) and the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) models. We estimated the ecosystem-level annual pollution removal function of the park's trees, shrub and grasses using pollution concentration data for carbon monoxide (CO), ozone (O(3)), and particulate matter less than 10 microns in diameter (PM(10)), modeled meteorological and pollution variables, and measured forest structure data. Ecosystem-level O(3) and CO removal and formation were also analyzed for a representative month. Total annual air quality improvement of the park's vegetation was approximately 0.02% for CO, 1% for O(3,) and 2% for PM(10), of the annual concentrations for these three pollutants. Results can be used to understand the air quality regulation ecosystem services of peri-urban forests and regional dynamics of air pollution emissions from major urban areas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.
Roinas, Georgios; Mant, Cath; Williams, John B
2014-01-01
Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.
Zheng, Yucong; Wang, Xiaochang C; Dzakpasu, Mawuli; Ge, Yuan; Zhao, Yaqian; Xiong, Jiaqing
2016-01-01
Hybrid constructed wetland (HCW) systems have been used to treat various wastewaters across the world. However, large-scale applications of HCWs are scarce, particularly for on-site improvement of the water quality of highly polluted urban rivers in semi-arid regions. In this study, a large pilot-scale HCW system was constructed to improve the water quality of the Zaohe River in Xi'an, China. With a total area of about 8000 m(2), the pilot HCW system, composed of different configurations of surface and subsurface flow wetlands, was operated for 2 years at an average inflow volume rate of 362 m(3)/day. Local Phragmites australis and Typha orientalis from the riverbank were planted in the HCW system. Findings indicate a higher treatment efficiency for organics and suspended solids than nutrients. The inflow concentrations of 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), NH3-N, and total phosphorus (TP) were 125.6, 350.9, 334.2, 38.5, 27.2, and 3.9 mg/L, respectively. Average removal efficiencies of 94.4, 74.5, 92.0, 56.3, 57.5, and 69.2%, respectively, were recorded. However, the pollutant removal rates were highly seasonal especially for nitrogen. Higher removals were recorded for all pollutants in the autumn while significantly lower removals were recorded in the winter. Plant uptake and assimilation accounted for circa 19-29 and 16-23% of the TN and TP removal, respectively. Moreover, P. australis demonstrated a higher nutrient uptake ability and competitive potential. Overall, the high efficiency of the pilot HCW for improving the water quality of such a highly polluted urban river provided practical evidence of the applicability of the HCW technology for protecting urban water environments.
Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective.
Kuppusamy, Saranya; Palanisami, Thavamani; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi
2016-01-01
Pollution and the global health impacts from toxic environmental pollutants are presently of great concern. At present, more than 100 million people are at risk from exposure to a plethora of toxic organic and inorganic pollutants. This review is an exploration of the ex-situ technologies for cleaning-up the contaminated soil, groundwater and air emissions, highlighting their principles, advantages, deficiencies and the knowledge gaps. Challenges and strategies for removing different types of contaminants, mainly heavy metals and priority organic pollutants, are also described.
A robust sebum, oil, and particulate pollution model for assessing cleansing efficacy of human skin.
Peterson, G; Rapaka, S; Koski, N; Kearney, M; Ortblad, K; Tadlock, L
2017-06-01
With increasing concerns over the rise of atmospheric particulate pollution globally and its impact on systemic health and skin ageing, we have developed a pollution model to mimic particulate matter trapped in sebum and oils creating a robust (difficult to remove) surrogate for dirty, polluted skin. To evaluate the cleansing efficacy/protective effect of a sonic brush vs. manual cleansing against particulate pollution (trapped in grease/oil typical of human sebum). The pollution model (Sebollution; sebum pollution model; SPM) consists of atmospheric particulate matter/pollution combined with grease/oils typical of human sebum. Twenty subjects between the ages of 18-65 were enrolled in a single-centre, cleansing study comparisons between the sonic cleansing brush (normal speed) compared to manual cleansing. Equal amount of SPM was applied to the centre of each cheek (left and right). Method of cleansing (sonic vs. manual) was randomized to the side of the face (left or right) for each subject. Each side was cleansed for five-seconds using the sonic cleansing device with sensitive brush head or manually, using equal amounts of water and a gel cleanser. Photographs (VISIA-CR, Canfield Imaging, NJ, USA) were taken at baseline (before application of the SPM), after application of SPM (pre-cleansing), and following cleansing. Image analysis (ImageJ, NIH, Bethesda, MD, USA) was used to quantify colour intensity (amount of particulate pollutants on the skin) using a scale of 0 to 255 (0 = all black pixels; 255 = all white pixels). Differences between the baseline and post-cleansing values (pixels) are reported as the amount of SPM remaining following each method of cleansing. Using a robust cleansing protocol to assess removal of pollutants (SPM; atmospheric particulate matter trapped in grease/oil), the sonic brush removed significantly more SPM than manual cleansing (P < 0.001). While extreme in colour, this pollution method easily allows assessment of efficacy through image analysis. © 2016 The Authors. International Journal of Cosmetic Science published by John Wiley & Sons Ltd on behalf of Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K
2015-11-01
One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water. Copyright © 2015 Elsevier B.V. All rights reserved.
Schneider, William R.
1989-01-01
Methods and apparatus for removing a pollutant such as dust (33) from a fluid stream (34). A nested array of fibers (35) is provided in a substantially annular container (36) having openings in its inner (32) and outer (31) cylindrical sides of such size as to retain the fibers (35) within the container while permitting fluid (34) to pass through easily, and the pollutant-containing fluid stream (34) is passed through at least a substantial portion of the container (36) from a region (37) outside the outer side (31) to a region (38) inside the inner side (32). Thus a substantial fraction of the pollutant (33) is separated from the fluid stream (34) in a portion of the nested array (35) generally nearer to the outer side (31) of the container (36) than to the inner side (31). From time to time the container (36) is rotated about its axis to remove a substantial fraction of the separated pollutant (33) from the nested array (35), by tumbling action and by the force of gravity, through the openings in the outer side (31) of the container (36). To assist in this removal, purging fluid (41) may be directed back through the container (36) from the inner side (32) during the tumbling.
Membrane bioreactors for the removal of anionic micropollutants from drinking water.
Crespo, João G; Velizarov, Svetlozar; Reis, Maria A
2004-10-01
Biological treatment processes allow for the effective elimination of anionic micropollutants from drinking water. However, special technologies have to be implemented to eliminate the target pollutants without changing water quality, either by adding new pollutants or removing essential water components. Some innovative technologies that combine the use of membranes with the biological degradation of ionic micropollutants in order to minimize the secondary contamination of treated water include pressure-driven membrane bioreactors, gas-transfer membrane bioreactors and ion exchange membrane bioreactors.
Velizarov, S; Rodrigues, C M; Reis, M A; Crespo, J G
The mechanism of anionic pollutant removal in an ion exchange membrane bioreactor (IEMB) was studied for drinking water denitrification. This hybrid process combines continuous ion exchange transport (Donnan dialysis) of nitrate and its simultaneous bioreduction to gaseous nitrogen. A nonporous mono-anion permselective membrane precludes direct contact between the polluted water and the denitrifying culture and prevents secondary pollution of the treated water with dissolved nutrients and metabolic products. Complete denitrification may be achieved without accumulation of NO3(-) and NO2(-) ions in the biocompartment. Focus was given to the effect of the concentration of co-ions, counterions, and ethanol on the IEMB performance. The nitrate overall mass transfer coefficient in this hybrid process was found to be 2.8 times higher compared to that in a pure Donnan dialysis process without denitrification. Furthermore, by adjusting the ratio of co-ions between the biocompartment and the polluted water compartment, the magnitude and direction of each individual anion flux can be easily regulated, allowing for flexible process operation and control. Synthetic groundwater containing 135-350 mg NO3(-) L(-1) was treated in the IEMB system. A surface denitrification rate of 33 g NO3(-) per square meter of membrane per day was obtained at a nitrate loading rate of 360 g NO3(-) m(-3)d(-1), resulting in a nitrate removal efficiency of 85%.
Rocha, Andrea A; Wilde, Christian; Hu, Zhenzhong; Nepotchatykh, Oleg; Nazarenko, Yevgen; Ariya, Parisa A
2017-07-01
Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide (CO 2 ) which contribute to climate change and atmospheric pollution. There is a need for green and sustainable solutions to remove air pollutants, as opposed to conventional techniques which can be expensive, consume additional energy and generate further waste. We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces, to remove CO 2, and undesired organic air pollutants using natural particles, while generating oxygen. This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO 2 with a conversion rate of approximately 4% CO 2 per hour, generating a steady supply of oxygen (6mmol/hr), while nanoparticles effectively remove several undesired organic by-products. We also showed algal waste of the bioreactor can be used for mercury remediation. We estimated the potential CO 2 emissions that could be captured from our new method for three industrial cases in which, coal, oil and natural gas were used. With a 30% carbon capture system, the reduction of CO 2 was estimated to decrease by about 420,000, 320,000 and 240,000 metric tonnes, respectively for a typical 500MW power plant. The cost analysis we conducted showed potential to scale-up, and the entire system is recyclable and sustainable. We further discuss the implications of usage of this complete system, or as individual units, that could provide a hybrid option to existing industrial setups. Copyright © 2016. Published by Elsevier B.V.
Cui, Yue; Liu, Xiang-Yang; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian
2016-03-15
In this study, we have explored and compared the effectiveness of using (1) lab-fabricated forward osmosis (FO) membranes under both FO and reverse osmosis (RO) modes and (2) commercially available RO membranes under the RO mode for the removal of organic micro-pollutants. The lab-fabricated FO membranes are thin film composite (TFC) membranes consisting of a polyamide layer and a porous substrate cast from three different materials; namely, Matrimid, polyethersulfone (PESU) and sulfonated polyphenylene sulfone (sPPSU). The results show that the FO mode is superior to the RO mode in the removal of phenol, aniline and nitrobenzene from wastewater. The rejections of all three TFC membranes to all the three organic micro-pollutants under the FO processes are higher than 72% and can be even higher than 90% for aniline when a 1000 ppm aromatic aqueous solution and 1 M NaCl are employed as feeds. These performances outperform the results obtained from themselves and commercially available RO membranes under the RO mode. In addition, the rejection can be maintained even when treating a more concentrated feed solution (2000 ppm). The removal performance can be further enhanced by using a more concentrated draw solution (2 M). The water flux is almost doubled, and the rejection increment can reach up to 17%. Moreover, it was observed that annealing as a post-treatment would help compact the membrane selective layer and further enhance the separating efficiency. The obtained organic micro-pollutant rejections and water fluxes under various feasible operating conditions indicate that the FO process has potential to be a viable treatment for wastewater containing organic micro-pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ltaïef, Aziza Hadj; Sabatino, Simona; Proietto, Federica; Ammar, Salah; Gadri, Abdellatif; Galia, Alessandro; Scialdone, Onofrio
2018-07-01
The treatment of toxic organic pollutants by electro-Fenton (EF) presents some drawbacks such as the necessity to work at low pH and the low solubility of oxygen in water contacted with air or oxygen at room pressure that results often in slow and relatively low abatements. Here, the coupled adoption of natural heterogeneous catalysts and of relatively high pressure was proposed in order to improve the performances of EF for the treatment of organic pollutants. Caffeic acid (CA) and 3-chlorophenol were used as model resistant organic pollutants. EF process was performed using both conventional homogeneous FeSO 4 and natural heterogeneous catalysts (pyrite, chalcopyrite, Fe 2 O 3 and Fe 3 O 4 ) as iron catalysts and oxygen at various pressures in the absence or in the presence of BDD anode. The effect of the nature of the catalyst, the oxygen pressure, the current density and the catalyst load was widely investigated in order to optimize the process. It was shown that the coupled utilization of a natural heterogeneous catalyst such as chalcopyrite and a relatively high pressure allows to obtain the total removal of CA and a high removal of the TOC (about 75%) in short times (2 h) with relatively high current efficiencies using an Iridium based anode. In the case of 3-chlorophenol, the utilization of a BDD anode was necessary to achieve a high removal of the pollutant and the TOC. It was shown that the removal of 3-chlorophenol can be effectively performed in different water bodies and with different initial concentrations of 3-chlorophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination.
Zhang, Xiaolin; Qian, Jieshu; Pan, Bingcai
2016-01-19
Efficient and powerful water purifiers are in increasing need because we are facing a more and more serious problem of water pollution. Here, we demonstrate the design of versatile magnetic nanoadsorbents (M-QAC) that exhibit excellent disinfection and adsorption performances at the same time. The M-QAC is constructed by a Fe3O4 core surrounded by a polyethylenimine-derived corona. When dispersed in water, the M-QAC particles are able to interact simultaneously with multiple contaminants, including pathogens and heavy metallic cations and anions, in minutes. Subsequently, the M-QACs along with those contaminants can be easily removed and recollected by using a magnet. Meanwhile, the mechanisms of disinfection are investigated by using TEM and SEM, and the adsorption mechanisms are analyzed by XPS. In a practical application, M-QACs are applied to polluted river water 8000-fold greater in mass, producing clean water with the concentrations of all major pollutants below the drinking water standard of China. The adsorption ability of M-QAC could be regenerated for continuous use in a facile manner. With more virtues, such as low-cost fabrication and easy scaling up, the M-QAC have been shown to be a very promising multifunctional water purifier with rational design and to have great potential for real water purification applications.
NASA Astrophysics Data System (ADS)
Gilliom, R.; Hogue, T. S.; McCray, J. E.
2017-12-01
There is a need for improved parameterization of stormwater best management practices (BMP) performance estimates to improve modeling of urban hydrology, planning and design of green infrastructure projects, and water quality crediting for stormwater management. Percent removal is commonly used to estimate BMP pollutant removal efficiency, but there is general agreement that this approach has significant uncertainties and is easily affected by site-specific factors. Additionally, some fraction of monitored BMPs have negative percent removal, so it is important to understand the probability that a BMP will provide the desired water quality function versus exacerbating water quality problems. The widely used k-C* equation has shown to provide a more adaptable and accurate method to model BMP contaminant attenuation, and previous work has begun to evaluate the strengths and weaknesses of the k-C* method. However, no systematic method exists for obtaining first-order removal rate constants needed to use the k-C* equation for stormwater BMPs; thus there is minimal application of the method. The current research analyzes existing water quality data in the International Stormwater BMP Database to provide screening-level parameterization of the k-C* equation for selected BMP types and analysis of factors that skew the distribution of efficiency estimates from the database. Results illustrate that while certain BMPs are more likely to provide desired contaminant removal than others, site- and design-specific factors strongly influence performance. For example, bioretention systems show both the highest and lowest removal rates of dissolved copper, total phosphorous, and total nitrogen. Exploration and discussion of this and other findings will inform the application of the probabilistic pollutant removal rate constants. Though data limitations exist, this research will facilitate improved accuracy of BMP modeling and ultimately aid decision-making for stormwater quality management in urban systems.
Senduran, Cem; Gunes, Kemal; Topaloglu, Duygu; Dede, Omer Hulusi; Masi, Fabio; Kucukosmanoglu, Ozen Arli
2018-08-01
This study performed in Sapanca Lake catchment area, used as a drinking water resource. Two highways located at northern and southern shores, and a railway at its south are significant sources of pollution. As a possible solution for protecting water quality a pocket wetland constructed and operated. Performances statistically interpreted by Spearman's Correlation test and univariate analysis of variance on collected data. The mean removal efficiencies obtaited were 52% (TSS), 4% (Nitrate), 26% (TN), -5% (TOC), 63% (TP), 4.5% (Chloride), 3% (Sulfate), 33% (Cr), 39% (Co), -19.5% (Ni), 7% (Cu), 55% (Zn), 36% (As), 38% (Cd) and 18% (Pb). TSS removal was in positive significant medium correlation with Co, Cu, Zn, and Pb removal respectively (p < 0.05). Other statistically significant positive high correlations calculated between removal efficiency of Nitrate-TN, Chloride-Sulfate, Cr-Co-Cu-As-Cd. According to ANOVA and Kruskal-Wallis test results, removal efficiencies of TSS and TOC partially affected by different temperature (p < 0.1 for TSS and p < 0.05 for TOC) and pH ranges (p < 0.1 for both removal efficiencies), TP removal efficiency significantly affected by different pH ranges (p < 0.001), and Chloride and Sulfate removal efficiencies were significantly (p < 0.001) affected by different temperature ranges. Regardless of geographical location and climatic factors, pocket wetland systems can be relied upon for minimizing heavy metals such as Cr, Co, Zn, As, Cd and Pb and critical pollutants such as TP and TSS caused by highway runoff. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Chen; Chen, Jun-Feng; Li, Yun; Chen, Rong-Chang; Asaoka, Sachio; Yuan, Guo-Li
2012-12-01
As the inland waterway transportation developed rapidly in China, the frequency of hazardous chemical leakage accidents is increasing every year. Such pollution to inland river environment has become a world-wide issue. Montmorillonite (Mont) is typical 2:1 layer type silicate clay and due to their special structure, it has been used in organic pollution removal process. In order to improve their ability in pollution adsorption, the pillared Mont was made in this work. Since the common toxic structure in most chemical pollutants is the halogen atom-benzene ring part, we select a typical compound Monochlorobenzene (MCB) as the aim contaminant. In this research, the original Mont, Na-Mont, TiO2 and TiO2-Mont were prepared and used in MCB degradation experiment as catalysts. The influence of catalyst amount, promoter (H2O2) amount, MCB concentration and reaction time to MCB removal rate were studied, respectively in detail.
Yang, Guang-feng; Feng, Li-juan; Wang, Sha-fei; Yang, Qi; Xu, Xiang-yang; Zhu, Liang
2015-09-01
A lab-scale novel bio-diatomite biofilm process (BDBP) was established for the polluted raw water pretreatment in this study. Results showed that a shorter startup period of BDBP system was achieved under the completely circulated operation mode, and the removal efficiencies of nitrogen and disinfection by-product precursor were effective at low hydraulic retention time of 2-4 h due to high biomass attached to the carrier and diatomite. A maximum NH4(+)-N oxidation potential predicted by modified Stover-Kincannon model was 333.3 mg L(-1) d(-1) in the BDBP system, which was 4.7 times of that in the control reactor. Results demonstrated that the present of bio-diatomite favors the accumulation of functional microbes in the oligotrophic niche, and the pollutants removal performance of this novel process was enhanced for polluted raw water pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
He, Hai-Bo; Li, Bin; Dong, Jun-Ping; Lei, Yun-Yi; Wang, Tian-Lin; Yu, Qiong-Wei; Feng, Yu-Qi; Sun, You-Bao
2013-08-28
A functionalizable organosiliceous hybrid magnetic material was facilely constructed by surface polymerization of octavinyl polyhedral oligomeric silsesquioxane (POSS) on the Fe3O4 nanoparticles. The resultant Fe3O4@POSS was identified as a mesoporous architecture with an average particle diameter of 20 nm and high specific surface area up to 653.59 m(2) g(-1). After it was tethered with an organic chain containing dithiol via thiol-ene addition reaction, the ultimate material (Fe3O4@POSS-SH) still have moderate specific area (224.20 m(2) g(-1)) with almost identical porous morphology. It turns out to be a convenient, efficient single adsorbent for simultaneous elimination of inorganic heavy metal ions and organic dyes in simulate multicomponent wastewater at ambient temperature. The Fe3O4@POSS-SH nanoparticles can be readily withdrawn from aqueous solutions within a few seconds under moderate magnetic field and exhibit good stability in strong acid and alkaline aqueous matrices. Contaminants-loaded Fe3O4@POSS-SH can be easily regenerated with either methanol-acetic acid (for organic dyes) or hydrochloric acid (for heavy metal ions) under ultrasonication. The renewed one keeps appreciable adsorption capability toward both heavy metal ions and organic dyes, the removal rate for any of the pollutants exceeds 92% to simulate wastewater with multiple pollutants after repeated use for 5 cycles. Beyond the environmental remediation function, thanks to the pendant vinyl groups, the Fe3O4@POSS derived materials rationally integrating distinct or versatile functions could be envisaged and consequently a wide variety of applications may emerge.
Woertz, J R; Kinney, K A; McIntosh, N D; Szaniszlo, P J
2001-12-05
Stricter regulations on volatile organic compounds and hazardous air pollutants have increased the demand for abatement technologies. Biofiltration, a process in which contaminated air is passed through a biologically active bed, can be used to remove these pollutants from air streams. In this study, a fungal vapor-phase bioreactor containing a strain of the dimorphic black yeast, Exophiala lecanii-corni, was used to treat a gas stream contaminated with toluene. The maximum toluene elimination capacity in short-term tests was 270 g m(-3) h(-1), which is 2 to 7 times greater than the toluene elimination capacities typically reported for bacterial systems. The fungal bioreactor also maintained toluene removal efficiencies of greater than 95% throughout the 175-day study. Harsh operating conditions such as low moisture content, acidic biofilms, and nitrogen limitation did not adversely affect performance. The fungal bioreactor also rapidly reestablished high toluene removal efficiencies after an 8-day shutdown period. These results indicate that fungal bioreactors may be an effective alternative to conventional abatement technologies for treating high concentrations of pollutants in waste gas streams. Copyright 2001 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Wei, Yun-Yun; Sun, Xiao-Ting; Xu, Zhang-Run
2018-07-01
Wrinkled structures can provide enlarged surface areas for some living organisms to ingest nutrients. Imitating biological wrinkle structures offers an efficient way to enhance the adsorption surface for removing hazardous pollutants in wastewater. In this work, poly-(ethylene glycol) double acrylate (PEGDA)/TiO2 composite film with tunable surface wrinkles was synthesized. TiO2 nanoparticles were evenly immobilized in the PEGDA hydrogel simply by a facile photopolymerization method within 700 ms. Various wrinkle morphologies were obtained by precisely controlling UV exposure time. The composite film was characterized by X-ray diffraction, scanning electron microscopy, diffuse reflection spectroscopy, etc. Congo red was chosen as a model pollutant to demonstrate the adsorption and degradation capacity of the composite film. The experimental results showed that the introduction of wrinkled polymer improved the dispersibility of TiO2 nanoparticles. The removal efficiency reached 100% after 180-min adsorption in the darkness and 180-min UV irradiation. The composite film exhibited a much higher enrichment and photocatalysis capacity than the pure TiO2 powder, and could be developed as a reusable film for the removal of the organic pollutants in wastewater.
Baalbaki, Zeina; Torfs, Elena; Maere, Thomas; Yargeau, Viviane; Vanrolleghem, Peter A
2017-04-01
The presence of micropollutants in the environment has triggered research on quantifying and predicting their fate in wastewater treatment plants (WWTPs). Since the removal of micropollutants is highly related to conventional pollutant removal and affected by hydraulics, aeration, biomass composition and solids concentration, the fate of these conventional pollutants and characteristics must be well predicted before tackling models to predict the fate of micropollutants. In light of this, the current paper presents the dynamic modelling of conventional pollutants undergoing activated sludge treatment using a limited set of additional daily composite data besides the routine data collected at a WWTP over one year. Results showed that as a basis for modelling, the removal of micropollutants, the Bürger-Diehl settler model was found to capture the actual effluent total suspended solids (TSS) concentrations more efficiently than the Takács model by explicitly modelling the overflow boundary. Results also demonstrated that particular attention must be given to characterizing incoming TSS to obtain a representative solids balance in the presence of a chemically enhanced primary treatment, which is key to predict the fate of micropollutants.
Zhang, Yuanyuan; Shang, Jiaobo; Song, Yanqun; Rong, Chuan; Wang, Yinghui; Huang, Wenyu; Yu, Kefu
2017-02-01
A facile strategy to increase the selectivity of heterogeneous Fenton oxidation is investigated. The increase was reached by increasing selective adsorption of heterogeneous Fenton catalyst to a target pollutant. The heterogeneous Fenton catalyst was prepared by a two-step process. First, zeolite particles were imprinted by the target pollutant, methylene blue (MB), in their aggregations, and second, iron ions were loaded on the zeolite aggregations to form the molecule imprinted Fe-zeolites (MI-FZ) Fenton catalyst. Its adsorption amount for MB reached as high as 44.6 mg g -1 while the adsorption amount of un-imprinted Fe-zeolites (FZ) is only 15.6 mg g -1 . Fenton removal efficiency of MI-FZ for MB was 87.7%, being 33.9% higher than that of FZ. The selective Fenton oxidation of MI-FZ for MB was further confirmed by its removal performance for the mixed MB and bisphenol A (BPA) in solution. The removal efficiency of MB was 44.7% while that of BPA was only 14.9%. This fact shows that molecular imprinting is suitable to prepare the Fe-zeolites (FZ)-based Fenton catalyst with high selectivity for removal of target pollutants, at least MB.
Gómez, M; Murcia, M D; Dams, R; Christofi, N; Gómez, E; Gómez, J L
2012-01-01
Chlorophenols are well-known priority pollutants and many different treatments have been assessed to facilitate their removal from industrial wastewater. However, an absolute and optimum solution still has to be practically implemented in an industrial setting. In this work, a series ofphysical, chemical and biochemical treatments have been systematically tested for the removal of 4-chlorophenol, and their results have been compared in order to determine the most effective treatment based on removal efficiency and residual by-product formation. Chemical treatments based on advanced oxidation processes (AOP) produced the best results on rate and extent of pollutant removal. The non-chemical technologies showed advantages in terms of complete (in the case of adsorption) or easy (enzymatic treatments) removal of toxic treatment by-products. The AOP methods led to the production of different photoproducts depending on the chosen treatment. Toxic products remained in most cases following treatment, though the toxicity level is significantly reduced with combination treatments. Among the treatments, a photochemical method combining UV, produced with a KrCl excilamp, and hydrogen peroxide achieved total removal of chlorophenol and all by-products and is considered the best treatment for chlorophenol removal.
Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan
2017-10-09
Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.
Stability of multi-permeable reactive barriers for long term removal of mixed contaminants.
Lee, Jai-Young; Lee, Kui-Jae; Youm, Sun Young; Lee, Mi-Ran; Kamala-Kannan, Seralathan; Oh, Byung-Taek
2010-02-01
The Permeable Reactive Barriers (PRBs) are relatively simple, promising technology for groundwater remediation. A PRBs consisting of two reactive barriers (zero valent iron-barrier and bio-barrier) were designed to evaluate the application and feasibility of the barriers for the removal of wide range of pollutants from synthetic water. After 470 days of Multi-PRBs column operation, the pH level in the water sample is increased from 4 to 7, whereas the oxidation reduction potential (ORP) is decreased to -180 mV. Trichloroethylene (TCE), heavy metals, and nitrate were completely removed in the zero valent iron-barrier. Ammonium produced during nitrate reduction is removed in the biologically reactive zone of the column. The results of the present study suggest that Multi-PRBs system is an effective alternate method to confine wide range of pollutants from contaminated groundwater.
Tiwari, Bhagyashree; Sellamuthu, Balasubramanian; Ouarda, Yassine; Drogui, Patrick; Tyagi, Rajeshwar D; Buelna, Gerardo
2017-01-01
Due to research advancement and discoveries in the field of medical science, maintains and provides better human health and safer life, which lead to high demand for production of pharmaceutical compounds with a concomitant increase in population. These pharmaceutical (biologically active) compounds were not fully metabolized by the body and excreted out in wastewater. This micro-pollutant remains unchanged during wastewater treatment plant operation and enters into the receiving environment via the discharge of treated water. Persistence of pharmaceutical compounds in both surface and ground waters becomes a major concern due to their potential eco-toxicity. Pharmaceuticals (emerging micro-pollutants) deteriorate the water quality and impart a toxic effect on living organisms. Therefore, from last two decades, plenty of studies were conducted on the occurrence, impact, and removal of pharmaceutical residues from the environment. This review provides an overview on the fate and removal of pharmaceutical compounds via biological treatment process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cramer, Alisha J.; Cole, Jacqueline M.
2017-05-08
The ever-increasing demands of the modern world continue to place substantial strain on the environment. To help alleviate the damage done to the natural world, the encapsulation of small molecules or ions (guests) into porous inorganic structural frameworks (hosts) provides a potential remedy for some of the environmental concerns facing us today. These concerns include the removal of harmful pollutants from water or air, the safe entrapment of nuclear waste materials, or the purification and storage of small molecules that act as alternative fuel sources. For this study, we review the trends in using inorganic materials as hostmedia for themore » removal or storage of various wastes and alternative fuels. In conclusion, we cover the treatment of water contaminated with dyes or heavy metals, air pollution alleviation via CO 2, SO x, NO x, and volatile organic compound containment, nuclear waste immobilization, and storage for H 2 and methane as alternative fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Da-Quan; Sun, Tian-Ying; Yu, Xue-Feng, E-mail: yxf@whu.edu.cn
Highlights: • The morphology and properties of Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) were investigated. • YHF:Ce NTs were conjugated with Au nanoparticles to produce Au-YHF:Ce nanocomposites. • Au-YHF:Ce NTs showed excellent capability and efficiency in removing Congo red from solutions. • Au-YHF:Ce NTs were utilized to determine the concentration of Congo red based on SERS. - Abstract: Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) with large surface area are synthesized and conjugated with Au nanoparticles (NPs) to produce Au-YHF:Ce nanocomposites. The Au-YHF:Ce NTs have a hollow structure, rough surface, polymer coating, and good surface-enhanced Raman spectroscopy (SERS) properties.more » They are applied to wastewater treatment to remove Congo red as a typical pollutant. The materials not only remove pollutants rapidly from the wastewater, but also detect trace amounts of the pollutants quantitatively. The multifunctional Au-YHF:Ce NTs have commercial potential as nano-absorbents and nano-detectors in water treatment and environmental monitoring.« less
Cheng, Yunqin; Chen, Yunlu; Lu, Juncheng; Nie, Jianxin; Liu, Yan
2018-04-01
The Fenton process is used as a tertiary treatment to remove organic pollutants from the effluent of bio-treated pharmaceutical wastewater (EBPW). The optimal and most appropriate Fenton conditions were determined by an orthogonal array test and single-factor experiments. The removal of chemical oxygen demand (COD) was influenced by the following factors in a descending order: H 2 O 2 /Fe(II) molar ratio > H 2 O 2 dosage > reaction time. Under the most appropriate Fenton conditions (H 2 O 2 /Fe(II) molar ratio of 1:1, H 2 O 2 dosage of 120 mg L -1 and reaction time of 10 min), the COD and dissolved organic carbon (DOC) were removed with efficiencies of 62 and 53%, respectively, which met the national discharge standard (GB 21903-2008) for the Lake Tai Basin, China. However, the Fenton treatment was inadequate for removal of N compounds, and the removal of organic nitrogen led to an increment in N-NH 3 from 3.28 to 19.71 mg L -1 . Proteins and polysaccharides were completely removed, and humic acids (HAs) were partly removed with an efficiency of 55%. Three-dimensional excitation/emission matrix spectra (3DEEMs) indicated complete removal of fulvic acid-like substances and 90% reduction in the florescence intensity of humic acid-like substances. Organic pollutants with molecular weights (MW) > 10 kDa were completely removed, MW 5-10 kDa were degraded into smaller MW ones, and some low molecular weight acids (MW 0.1-1 kDa) were mineralized during the Fenton process. Some species, including pharmaceutical intermediates and solvents were detected by gas chromatography-mass spectrometry (GC-MS). The operational costs of the Fenton's treatment were estimated to be 0.58 yuan RMB/m 3 EBPW based on reagent usage and iron sludge treatment and disposal.
Langeveld, J G; Liefting, H J; Boogaard, F C
2012-12-15
Stormwater runoff is a major contributor to the pollution of receiving waters. This study focuses at characterising stormwater in order to be able to determine the impact of stormwater on receiving waters and to be able to select the most appropriate stormwater handling strategy. The stormwater characterisation is based on determining site mean concentrations (SMCs) and their uncertainties as well as the treatability of stormwater by monitoring specific pollutants concentration levels (TSS, COD, BOD, TKN, TP, Pb, Cu, Zn, E.coli) at three full scale stormwater treatment facilities in Arnhem, the Netherlands. This has resulted in 106 storm events being monitored at the lamella settler, 59 at the high rate sand filter and 132 at the soil filter during the 2 year monitoring period. The stormwater characteristics in Arnhem in terms of SMCs for main pollutants TSS and COD and settling velocities differ from international data. This implies that decisions for stormwater handling made on international literature data will very likely be wrong due to assuming too high concentrations of pollutants and misjudgement of the treatability of stormwater. The removal rates monitored at the full scale treatment facilities are within the expected range, with the soil filter and the sand filter having higher removal rates than the lamella settler. The full scale pilots revealed the importance of incorporating gross solids removal in the design of stormwater treatment facilities, as the gross solids determine operation and maintenance requirements. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hörmann, Vanessa; Brenske, Klaus-Reinhard; Ulrichs, Christian
2018-01-01
Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m -3 ) and 2-ethylhexanol (14.6 mg m -3 ) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h -1 m -2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h -1 m -2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO 2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO 2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species.
LANDSAT imagery of the Venetian Lagoon: A multitemporal analysis
NASA Technical Reports Server (NTRS)
Alberotanza, L.; Zandonella, A. (Principal Investigator)
1980-01-01
The use of LANDSAT multispectral scanner images from 1975 to 1979 to determine pollution dispersion in the central basin of the lagoon under varying tidal conditions is described. Images taken during the late spring and representing both short and long range tidal dynamics were processed for partial haze removal and removal of residual striping. Selected spectral bands were correlated to different types of turbid water. The multitemporal data was calibrated, classified considering sea truth data, and evaluated. The classification differentiated tide diffusion, algae belts, and industrial, agricultural, and urban turbidity distributions. Pollution concentration is derived during the short time interval between inflow and outflow and from the distance between the two lagoon inlets and the industrial zones. Increasing pollution of the lagoon is indicated.
BENEFICIAL USE OF URBAN STORMWATER
This chapter presents a conceptual system for the control of stormwater pollution in which the stormwater runoff is collected in designated storage reservoirs throughout an industrial park, treated to remove pollutants, and further treated for use. With this concept, the benefit...
Ozone Generators That Are Sold as Air Cleaners
... U.S. EPA, 1996a). Top of Page What Other Methods Can Be Used to Control Indoor Air Pollution? ... Air Cleaning: Remove pollutants through proven air cleaning methods. Of the three, the first approach — source control — ...
Volume 1, Sources and migration of highway runoff pollutants--executive summary
DOT National Transportation Integrated Search
1984-05-01
This report summarizes the research undertaken to identify the sources of highway pollutants, and to determine their deposition and accumulation within the highway system and subsequent removal from the highway system to the surrounding environment. ...
Volume 2, Sources and migration of highway runoff pollutants--methods
DOT National Transportation Integrated Search
1984-02-01
The overall objectives of this research were to identify the sources of highway pollutants, and to determine their deposition and accumulation within the highway system and subsequent removal from the highway system to the surrounding environment. In...
HAZARDOUS AIR POLLUTANTS: WET REMOVAL RATES AND MECHANISMS
Fourteen hazardous organic air pollutants were evaluated for their potentials to be wet deposited by precipitation scavenging. This effort included a survey of solubilities (Henry's Law constants) in the literature, measurement of solubilities of three selected species, developme...
Volume 4, Sources and migration of highway runoff pollutants--appendix
DOT National Transportation Integrated Search
1984-04-01
The overall objectives of this research were to identify the sources of highway pollutants and to determine their deposition and accumulation with the highway system and subsequent removal from the highway system to the surrounding environment. This ...
Samuel, Manoj P; Senthilvel, S; Tamilmani, D; Mathew, A C
2012-09-01
A horizontal flow multimedia stormwater filter was developed and tested for hydraulic efficiency and pollutant removal efficiency. Gravel, coconut (Cocos nucifera) fibre and sand were selected as the media and filled in 1:1:1 proportion. A fabric screen made up of woven sisal hemp was used to separate the media. The adsorption behaviour of coir fibre was determined in a series of column and batch studies and the corresponding isotherms were developed. The hydraulic efficiency of the filter showed a diminishing trend as the sediment level in inflow increased. The filter exhibited 100% sediment removal at lower sediment concentrations in inflow water (>6 g L(-1)). The filter could remove NO3(-), SO4(2-) and total solids (TS) effectively. Removal percentages of Mg(2+) and Na(+) were also found to be good. Similar results were obtained from a field evaluation study. Studies were also conducted to determine the pattern of silt and sediment deposition inside the filter body. The effects of residence time and rate of flow on removal percentages of NO3(-) and TS were also investigated out. In addition, a multiple regression equation that mathematically represents the filtration process was developed. Based on estimated annual costs and returns, all financial viability criteria (internal rate of return, net present value and benefit-cost ratio) were found favourable and affordable to farmers for investment in the developed filtration system. The model MUSIC was calibrated and validated for field conditions with respect to the developed stormwater filter.
Yong, Zi Jun; Bashir, Mohammed J K; Ng, Choon Aun; Sethupathi, Sumathi; Lim, Jun-Wei
2018-01-01
The increase in landfill leachate generation is due to the increase of municipal solid waste (MSW) as global development continues. Landfill leachate has constantly been the most challenging issue in MSW management as it contains high amount of organic and inorganic compounds that might cause pollution to water resources. Biologically treated landfill leachate often fails to fulfill the regulatory discharge standards. Thus, to prevent environmental pollution, many landfill leachate treatment plants involve multiple stages treatment process. The Papan Landfill in Perak, Malaysia currently has no proper leachate treatment system. In the current study, sequential treatment via sequencing batch reactor (SBR) followed by coagulation was used to treat chemical oxygen demand (COD), ammoniacal nitrogen (NH 3 -N), total suspended solids (TSS), and colour from raw landfill leachate. SBR optimum aeration rate, L/min, optimal pH and dosage (g/L) of Alum for coagulation as a post-treatment were determined. The two-step sequential treatment by SBR followed by coagulation (Alum) achieved a removal efficiency of 84.89%, 94.25%, 91.82% and 85.81% for COD, NH 3 -N, TSS and colour, respectively. Moreover, the two-stage treatment process achieved 95.0% 95.0%, 95.3%, 100.0%, 87.2%, 62.9%, 50.0%, 41.3%, 41.2, 34.8, and 22.9 removals of Cadmium, Lead, Copper, Selenium, Barium, Iron, Silver, Nickel, Zinc, Arsenic, and Manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Superfund Removal Guidance for Preparing Action Memoranda
Dated September 2009, this updates and replaces previous documents. An Action Memo (AM) should substantiate need for removal action based upon criteria in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). Includes AM template.
Research on numerical method for multiple pollution source discharge and optimal reduction program
NASA Astrophysics Data System (ADS)
Li, Mingchang; Dai, Mingxin; Zhou, Bin; Zou, Bin
2018-03-01
In this paper, the optimal method for reduction program is proposed by the nonlinear optimal algorithms named that genetic algorithm. The four main rivers in Jiangsu province, China are selected for reducing the environmental pollution in nearshore district. Dissolved inorganic nitrogen (DIN) is studied as the only pollutant. The environmental status and standard in the nearshore district is used to reduce the discharge of multiple river pollutant. The research results of reduction program are the basis of marine environmental management.
Shivaraju, H P; Byrappa, K
2012-07-01
This work deals with the non-biodegradable micro-pollutants degradation by supported photocatalyst based heterogeneous photocatalytic reaction. TiO2 based supported photocatalyst was prepared by the hydrothermal technique to improve the photocatalytic performance along with easy recovery of suspended photocatalyst from aqueous medium after photoreaction. TO2 deposited calcium alumino-silicate beads (CASB) supports were prepared under mild hydrothermal conditions (Temparature-200 degrees C, Duration-24 h). In the present study, industrial dyes such as Amaranth and Brilliant Yellow were used as model micro-pollutants in aqueous solution. A real time pesticide industrial effluent was tested for its photocatalytic removal of organic pollutants using TO2 deposited CASB supported photocatalytic composite as an effective photocatalyst. Photocatalytic degradation of micro-pollutants present in aqueous medium was carried out in a batch photoreactor, at atmospheric pressure and temperature (28 degrees C). The influence of different light sources, irradiation time, catalyst load and catalytic performance is discussed. The photocatalytic degradation of micro-pollutants in aqueous medium was evaluated by determination of COD and %T. Easy separation and recovery of suspended photocatalysts from aqueous solution is the major advantage of hydrothermally prepared supported photocatalytic composite.
Nitrate removal from polluted water by using a vegetated floating system.
Bartucca, Maria Luce; Mimmo, Tanja; Cesco, Stefano; Del Buono, Daniele
2016-01-15
Nitrate (NO3(-)) water pollution is one of the most prevailing and relevant ecological issues. For instance, the wide presence of this pollutant in the environment is dramatically altering the quality of superficial and underground waters. Therefore, we set up a floating bed vegetated with a terrestrial herbaceous species (Italian ryegrass) with the aim to remediate hydroponic solutions polluted with NO3(-). The floating bed allowed the plants to grow and achieve an adequate development. Ryegrass was not affected by the treatments. On the contrary, plant biomass production and total nitrogen content (N-K) increased proportionally to the amount of NO3(-) applied. Regarding to the water cleaning experiments, the vegetated floating beds permitted to remove almost completely all the NO3(-) added from the hydroponic solutions with an initial concentration of 50, 100 and 150 mg L(-1). Furthermore, the calculation of the bioconcentration factor (BCF) indicated this species as successfully applicable for the remediation of solutions polluted by NO3(-). In conclusion, the results highlight that the combination of ryegrass and the floating bed system resulted to be effective in the remediation of aqueous solutions polluted by NO3(-). Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan
2015-01-01
A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.
Study on The Application of Composed TiO2-diatomite in The Removal of Phenol in Water
NASA Astrophysics Data System (ADS)
Liu, S.; Li, J.
2017-10-01
As an environmentally friendly pollution control technology, TiO2 photocatalytic technology has a broad prospect in the field of environmental protection. In this paper, composed nano-TiO2-diatomite were prepared by depositing TiO2 nanoparticles on the surface of diatomite microparticles. The nano-TiO2/diatomite composed photocatalyst is used to remove phenol in water in a specific designed reaction box under 4 different operation factors such as different reaction time, different pollutant concentration, different UV light powers and different amount of catalytic powder. The experimental results indicate that the phenol removal percentages are influenced by the reaction time most significantly, the second is the phenol concentration, the next one is the photocatalyst amount and the UV light powers’ effect is quite limited. Tthe degradation of phenol typically slows down at the reaction time about 30 or 60 minutes. Besides that, the phenol removal kinetic removal rates were also investigated.
This research project will identify specific chemical and physical characteristics of activated carbon surfaces that promote the removal of gas-phase, polar organic pollutants. It is expected that basic and acidic functional groups will influence aldehyde adsorption through di...
Framework of risk assessment in relation to FGD-gypsum use as agricultural amendment
USDA-ARS?s Scientific Manuscript database
Due to the concerns by EPA of air pollution from coal fired power plants, the industry are building and retrofitting existing facilities to remove more impurities from the environment. Industry has introduced removal of fly ash contaminates before SO2 removal, allowing generation of FGD-gypsum with...
Wolfand, Jordyn M; Bell, Colin D; Boehm, Alexandria B; Hogue, Terri S; Luthy, Richard G
2018-06-05
Stormwater best management practices (BMPs) are implemented to reduce microbial pollution in runoff, but their removal efficiencies differ. Enhanced BMPs, such as those with media amendments, can increase removal of fecal indicator bacteria (FIB) in runoff from 0.25-log 10 to above 3-log 10 ; however, their implications for watershed-scale management are poorly understood. In this work, a computational model was developed to simulate watershed-scale bacteria loading and BMP performance using the Ballona Creek Watershed (Los Angeles County, CA) as a case study. Over 1400 scenarios with varying BMP performance, percent watershed area treated, BMP treatment volume, and infiltrative capabilities were simulated. Incremental improvement of BMP performance by 0.25-log 10 , while keeping other scenario variables constant, reduces annual bacterial load at the outlet by a range of 0-29%. In addition, various simulated scenarios provide the same FIB load reduction; for example, 75% load reduction is achieved by diverting runoff from either 95% of the watershed area to 25 000 infiltrating BMPs with 0.5-log 10 removal or 75% of the watershed area to 75 000 infiltrating BMPs with 1.5-log 10 removal. Lastly, simulated infiltrating BMPs provide greater FIB reduction than noninfiltrating BMPs at the watershed scale. Results provide new insight on the trade-offs between BMP treatment volume, performance, and distribution.
Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review.
Wang, Jianlong; Wang, Shizong
2016-11-01
The pharmaceutical and personal care products (PPCPs) are emerging pollutants which might pose potential hazards to environment and health. These pollutants are becoming ubiquitous in the environments because they cannot be effectively removed by the conventional wastewater treatment plants due to their toxic and recalcitrant performance. The presence of PPCPs has received increasing attention in recent years, resulting in great concern on their occurrence, transformation, fate and risk in the environments. A variety of technologies, including physical, biological and chemical processes have been extensively investigated for the removal of PPCPs from wastewater. In this paper, the classes, functions and the representatives of the frequently detected PPCPs in aquatic environments were summarized. The analytic methods for PPCPs were briefly introduced. The removal efficiency of PPCPs by wastewater treatment plants was analyzed and discussed. The removal of PPCPs from wastewater by physical, chemical and biological processes was analyzed, compared and summarized. Finally, suggestions are made for future study of PPCPs. This review can provide an overview for the removal of PPCPs from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zawierucha, Iwona; Kozlowski, Cezary; Malina, Grzegorz
2016-04-01
Heavy metals from industrial processes are of special concern because they produce chronic poisoning in the aquatic environment. More strict environmental regulations on the discharge of toxic metals require the development of various technologies for their removal from polluted streams (i.e. industrial wastewater, mine waters, landfill leachate, and groundwater). The separation of toxic metal ions using immobilized materials (novel sorbents and membranes with doped ligands), due to their high selectivity and removal efficiency, increased stability, and low energy requirements, is promising for improving the environmental quality. This critical review is aimed at studying immobilized materials as potential remediation agents for the elimination of numerous toxic metal (e.g. Pb, Cd, Hg, and As) ions from polluted streams. This study covers the general characteristics of immobilized materials and separation processes, understanding of the metal ion removal mechanisms, a review of the application of immobilized materials for the removal of toxic metal ions, as well as the impacts of various parameters on the removal efficiency. In addition, emerging trends and opportunities in the field of remediation technologies using these materials are addressed.
Volume 3, Sources and migration of highway runoff pollutants--research report
DOT National Transportation Integrated Search
1984-05-01
The overall objectives of this research were to identify the sources of highway pollutants, and to determine their deposition and accumulation within the highway system and subsequent removal from the highway system to the surrounding environment. Th...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL
This presentation overviews causes of sewer deterioration and heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer- and combined sewer overflow- (CSO-) storage-tank-flushing systems for removal of ...
Zhang, Rui; Wang, Xiaoxiang; Zhou, Lei; Liu, Zhu; Crump, Doug
2018-05-15
Sulfate radical (SO 4 .- )-induced oxidation is an important technology in advanced oxidation processes (AOPs) for the removal of pollutants. To date, few studies have assessed the effects of dissolved oxygen (DO) on the SO 4 .- -induced oxidation of organic micro-pollutants. In the present work, a quantum chemical calculation was used to investigate the influence of the external oxygen molecule on the Gibbs free energy (G pollutant ) and HOMO-LUMO gap (ΔE) of 15 organic micro-pollutants representing four chemical categories. Several thermodynamic and statistical models were combined with the data from the quantum chemical calculation to illustrate the impact of DO on the oxidation of organic micro-pollutants by SO 4 .- . Results indicated that the external oxygen molecule increased G pollutant of all studied chemicals, which implies DO has the potential to decrease the energy barrier of the SO 4 .- -induced oxidation and shift the chemical equilibrium of the reaction towards the side of products. From the perspective of kinetics, DO can accelerate the oxidation by decreasing ΔE of organic micro-pollutants. In addition, changes of G pollutant and ΔE of the SO 4 .- -induced oxidation were both significantly different between open-chain and aromatic chemicals, and these differences were partially attributed to the difference of polarizability of these two types of chemicals. Furthermore, we revealed that all changes of G pollutant and ΔE induced by DO were dependent on the DO content. Our study emphasizes the significance of DO on the oxidation of organic micro-pollutants by SO 4 .- , and also provides a theoretical method to study the effect of components in wastewater on removal of organic pollutants in AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.
Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko
2007-11-01
This paper is a part of the research work on 'Integrated treatment of industrial wastes towards prevention of regional water resources contamination - INTREAT' the project. It addresses the environmental pollution problems associated with solid and liquid waste/effluents produced by sulfide ore mining and metallurgical activities in the Copper Mining and Smelting Complex Bor (RTB-BOR), Serbia. However, since the minimum solubility for the different metals usually found in the polluted water occurs at different pH values and the hydroxide precipitates are amphoteric in nature, selective removal of mixed metals could be achieved as the multiple stage precipitation. For this reason, acid mine water had to be treated in multiple stages in a continuous precipitation system-cascade line reactor. All experiments were performed using synthetic metal-bearing effluent with chemical a composition similar to the effluent from open pit, Copper Mining and Smelting Complex Bor (RTB-BOR). That effluent is characterized by low pH (1.78) due to the content of sulfuric acid and heavy metals, such as Cu, Fe, Ni, Mn, Zn with concentrations of 76.680, 26.130, 0.113, 11.490, 1.020 mg/dm3, respectively. The cascade line reactor is equipped with the following components: for feeding of effluents, for injection of the precipitation agent, for pH measurements and control, and for removal of the process gases. The precipitation agent was 1M NaOH. In each of the three reactors, a changing of pH and temperature was observed. In order to verify. efficiency of heavy metals removal, chemical analyses of samples taken at different pH was done using AES-ICP. Consumption of NaOH in reactors was 370 cm3, 40 cm3 and 80 cm3, respectively. Total time of the experiment was 4 h including feeding of the first reactor. The time necessary to achieve the defined pH value was 25 min for the first reactor and 13 min for both second and third reactors. Taking into account the complete process in the cascade line reactor, the difference between maximum and minimum temperature was as low as 6 degrees C. The quantity of solid residue in reactors respectively was 0.62 g, 2.05 g and 3.91 g. In the case of copper, minimum achieved concentration was 0.62 mg/dm3 at pH = 10.4. At pH = 4.50 content of iron has rapidly decreased to < 0.1 mg/dm3 and maintained constant at all higher pH values. That means that precipitation has already ended at pH=4.5 and maximum efficiency of iron removal was 99.53%. The concentration of manganese was minimum at pH value of 11.0. Minimum obtained concentration of Zn was 2.18 mg/dm3 at a pH value of 11. If pH value is higher than 11, Zn can be re-dissolved. The maximum efficiency of Ni removal reached 76.30% at a pH value of 10.4. Obtained results show that efficiency of copper, iron and manganese removal is very satisfactory (higher than 90%). The obtained efficiency of Zn and Ni removal is lower (72.30% and 76.31%, respectively). The treated effluent met discharge water standard according to The Council Directive 76/464/EEC on pollution caused by certain dangerous substances into the aquatic environment of the Community. Maximum changing of temperature during the whole process was 6 degrees C. This technology, which was based on inducing chemical precipitation of heavy metals is viable for selective removal of heavy metals from metal-bearing effluents in three reactor systems in a cascade line. The worldwide increasing concern for the environment and guidelines regarding effluent discharge make their treatment necessary for safe discharge in water receivers. In the case where the effluents contain valuable metals, there is also an additional economic interest to recover these metals and to recycle them as secondary raw materials in different production routes.
EnviroAtlas - Phoenix, AZ - Ecosystem Services by Block Group
This dataset presents environmental benefits of the urban forest in 2,434 block groups in Phoenix, Arizona. Carbon attributes, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. Temperature reduction values for Phoenix will be added when they become available. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Removal of sulfur and nitrogen containing pollutants from discharge gases
Joubert, James I.
1986-01-01
Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.
NASA Astrophysics Data System (ADS)
Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan
2018-05-01
Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.
Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris
2007-01-01
Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).
Metal chelate process to remove pollutants from fluids
Chang, Shih-Ger T.
1994-01-01
The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.
Metal chelate process to remove pollutants from fluids
Chang, S.G.T.
1994-12-06
The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.
Uptake of Heavy Metals from Industrial Wastewater Using In Vitro Plant Cultures.
Jauhari, Nupur; Menon, Sanjay; Sharma, Neelam; Bharadvaja, Navneeta
2017-11-01
The plant species Bacopa monnieri has been observed to reduce the heavy metal concentrations in its vicinity. The present study is a comparison of in vitro culture and soil-grown plants of B. monnieri to remove Cr and Cd, from synthetic solution and effluent obtained from industrial area. Results were obtained at every half hour interval upto 180 min. Samples were observed for light absorption using UV-Visible spectrophotometer. Statistically, both systems reclaimed Cr and Cd from polluted water. In vitro cultures showed 67% and 93% removal of Cr and Cd from industrial wastewater whereas soil-grown plants showed 64% and 83% Cr and Cd removal. However, reduction rate was significantly higher for in vitro culture as compared to soil-grown plants. Besides other advantages, in vitro plant cultures proved to be more potent to detoxify pollutants in less time. This approach can be used for the removal of heavy metals at large scale.
Influence of environmental factors on removal of oxides of nitrogen by a photocatalytic coating.
Cros, Clement J; Terpeluk, Alexandra L; Crain, Neil E; Juenger, Maria C G; Corsi, Richard L
2015-08-01
Nitrogen oxides (NOx) emitted from combustion processes have elevated concentrations in large urban areas. They cause a range of adverse health effects, acid rain, and are precursors to formation of other atmospheric pollutants, such as ozone, peroxyacetyl nitrate, and inorganic aerosols. Photocatalytic materials containing a semi-conductor that can be activated by sunlight, such as titanium dioxide, have been studied for their ability to remove NOx. The study presented herein aims to elucidate the environmental parameters that most influence the NOx removal efficiency of photocatalytic coatings in hot and humid climate conditions. Concrete samples coated with a commercially available photocatalytic coating (a stucco) and an uncoated sample have been tested in a reactor simulating reasonable summertime outdoor sunlight, relative humidity and temperature conditions in southeast Texas. Two-level full factorial experiments were completed on each sample for five parameters. It was found that contact time, relative humidity and temperature significantly influenced both NO and NO₂removal. Elevated concentrations of organic pollutants reduced NO removal by the coating. Ultra-violet light intensity did not significantly influence removal of NO or NO₂, however, ultra-violet light intensity was involved in a two-factor interaction that significantly influenced removal of both NO and NO₂.
Wang, Min; Huang, Yu-Chi; Wu, Jian-Qiang
2010-11-01
By using the constructed buffer strips test base and the runoff hydrometric devices, a research on stagnant runoff and nitrogen (N), phosphorous (P) pollutants removal capacity of the vegetated buffer strips was conducted. The results show that the vegetated buffer strips might reduce the speed of runoff significantly and improve the hydraulic permeability of soil. The runoff water output time of 19 m buffer strips planted with Cynodon dactylon, Festuca arundinacea and Trifolium repens are 2.46, 1.72 and 2.03 times higher than the control (no vegetation) respectively; The seepage water quantity of three vegetation buffer strips are 3.01, 2.16 and 2.45 times higher than the control respectively as well. Total removal efficiency of the three buffer strips increase about 237%, 268% and 274% comparing with the control respectively. The N, P removal capacity of seepage is significantly higher than that of the runoff, the larger seepage water quantity will cause higher N, P total removal efficiency and removal loads of unit area. With different vegetated buffer strips, the TN, NH4(+) -N, TP removal ratio of seepage and runoff are 2.79, 2.02 and 2.83 respectively.
Andronic, Luminita; Isac, Luminita; Miralles-Cuevas, Sara; Visa, Maria; Oller, Isabel; Duta, Anca; Malato, Sixto
2016-12-15
Materials with photocatalytic and adsorption properties for advanced wastewater treatment targeting reuse were studied. Making use of TiO 2 as a well-known photocatalyst, Cu 2 S as a Vis-active semiconductor, and fly ash as a good adsorbent, dispersed mixtures/composites were prepared to remove pollutants from wastewater. X-ray diffraction, scanning electron microscopy, energy-dispersive X-Ray spectroscopy, atomic force microscopy, band gap energy, point of zero charge (pH pzc ) and BET porosity were used to characterize the substrates. Phenol, imidacloprid and dichloroacetic acid were used as pollutants for photocatalytic activity of the new photocatalysts. Experiments using the new dispersed powders were carried out at laboratory scale in two solar simulators and under natural solar irradiation at the Plataforma Solar de Almería, in a Compound Parabolic Collector (CPC) for a comparative analysis of pollutants removal and mineralization efficiencies, and to identify features that could facilitate photocatalyst separation and reuse. The results show that radiation intensity significantly affects the phenol degradation rate. The composite mixture of TiO 2 and fly ash is 2-3 times less active than sol-gel TiO 2 . Photodegradation kinetic data on the highly active TiO 2 are compared for pollutants elimination. Photodegradation of dichloroacetic acid was fast and complete after 90min in the CPC, while after 150min imidacloprid and phenol removal was 90% and 56% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Fan, Guang-Ping; Cang, Long; Zhou, Dong-Mei; Zhou, Li-Xiang
2011-11-01
The effect of different soil types (red soil,yellow-brown soil and black soil) on the electrokinetic (EK)-oxidation remediation of heavy metals-organic pollutant contaminated soil was studied in laboratory-scale experiments. Copper and pyrene were chosen as model pollutant, and 12% H2O2, 10% hydroxypropyl-beta-cyclodextrin and 0.01 mol x L(-1) NaNO3 solution were added into the anode and cathode cell. The applied voltage was 1 V x cm(-1). After 15 days of EK remediation, the removal rate of pyrene and copper in red soil, yellow-brown soil and black soil were 38.5%, 46.8%, 51.3% for pyrene and 85.0%, 22.6%, 24.1% for Cu, respectively. The high pH of black soil produced high electroosmotic flow and increased the exposure of oxidants and pollutants, meanwhile the low clay content was also conducive to the desorption of pyrene. The low pH and organic matter of red soil affected the chemical species distribution of Cu and increased its removal rate. It is concluded that soil pH, clay content and heavy metal speciation in soil are the dominant factors affecting the migration and removal efficiency of pollutants.
Rosal, Roberto; Rodríguez, Antonio; Perdigón-Melón, José Antonio; Petre, Alice; García-Calvo, Eloy; Gómez, María José; Agüera, Ana; Fernández-Alba, Amadeo R
2010-01-01
This work reports a systematic survey of over seventy individual pollutants in a Sewage Treatment Plant (STP) receiving urban wastewater. The compounds include mainly pharmaceuticals and personal care products, as well as some metabolites. The quantification in the ng/L range was performed by Liquid Chromatography-QTRAP-Mass Spectrometry and Gas Chromatography coupled to Mass Spectrometry. The results showed that paraxanthine, caffeine and acetaminophen were the main individual pollutants usually found in concentrations over 20 ppb. N-formyl-4-amino-antipiryne and galaxolide were also detected in the ppb level. A group of compounds including the beta-blockers atenolol, metoprolol and propanolol; the lipid regulators bezafibrate and fenofibric acid; the antibiotics erythromycin, sulfamethoxazole and trimethoprim, the antiinflammatories diclofenac, indomethacin, ketoprofen and mefenamic acid, the antiepileptic carbamazepine and the antiacid omeprazole exhibited removal efficiencies below 20% in the STP treatment. Ozonation with doses lower than 90 microM allowed the removal of many individual pollutants including some of those more refractory to biological treatment. A kinetic model allowed the determination of second order kinetic constants for the ozonation of bezafibrate, cotinine, diuron and metronidazole. The results show that the hydroxyl radical reaction was the major pathway for the oxidative transformation of these compounds. (c) 2009 Elsevier Ltd. All rights reserved.
Najafpoor, Ali Asghar; Jonidi Jafari, Ahmad; Hosseinzadeh, Ahmad; Khani Jazani, Reza; Bargozin, Hasan
2018-01-01
Treatment with a non-thermal plasma (NTP) is a new and effective technology applied recently for conversion of gases for air pollution control. This research was initiated to optimize the efficient application of the NTP process in benzene, toluene, ethyl-benzene, and xylene (BTEX) removal. The effects of four variables including temperature, initial BTEX concentration, voltage, and flow rate on the BTEX elimination efficiency were investigated using response surface methodology (RSM). The constructed model was evaluated by analysis of variance (ANOVA). The model goodness-of-fit and statistical significance was assessed using determination coefficients (R 2 and R 2 adj ) and the F-test. The results revealed that the R 2 proportion was greater than 0.96 for BTEX removal efficiency. The statistical analysis demonstrated that the BTEX removal efficiency was significantly correlated with the temperature, BTEX concentration, voltage, and flow rate. Voltage was the most influential variable affecting the dependent variable as it exerted a significant effect (p < 0.0001) on the response variable. According to the achieved results, NTP can be applied as a progressive, cost-effective, and practical process for treatment of airstreams polluted with BTEX in conditions of low residence time and high concentrations of pollutants.
Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.
Alldred, Mary; Baines, Stephen B; Findlay, Stuart
2016-01-01
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.
Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes
Alldred, Mary; Baines, Stephen B.; Findlay, Stuart
2016-01-01
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets. PMID:26914688
40 CFR 300.415 - Removal action.
Code of Federal Regulations, 2014 CFR
2014-07-01
... food chain from hazardous substances or pollutants or contaminants; (ii) Actual or potential contamination of drinking water supplies or sensitive ecosystems; (iii) Hazardous substances or pollutants or...—where it will reduce the likelihood of spillage; leakage; exposure to humans, animals, or food chain; or...
40 CFR 300.415 - Removal action.
Code of Federal Regulations, 2012 CFR
2012-07-01
... food chain from hazardous substances or pollutants or contaminants; (ii) Actual or potential contamination of drinking water supplies or sensitive ecosystems; (iii) Hazardous substances or pollutants or...—where it will reduce the likelihood of spillage; leakage; exposure to humans, animals, or food chain; or...
DOT National Transportation Integrated Search
2006-05-01
This research has provided NCDOT with (1) scientific observations to validate the pollutant removal : performance of selected structural BMPs, (2) a database management option for BMP monitoring and : non-monitoring sites, (3) pollution prevention pl...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...
Code of Federal Regulations, 2010 CFR
2010-07-01
... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...
Code of Federal Regulations, 2014 CFR
2014-07-01
... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...
Code of Federal Regulations, 2013 CFR
2013-07-01
... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...
Code of Federal Regulations, 2012 CFR
2012-07-01
... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...
33 CFR 133.7 - Requests: Amount.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 133.7 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event...
33 CFR 133.7 - Requests: Amount.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 133.7 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event...
33 CFR 133.7 - Requests: Amount.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 133.7 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event...
33 CFR 133.7 - Requests: Amount.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 133.7 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event...
33 CFR 133.7 - Requests: Amount.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 133.7 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; STATE ACCESS § 133.7... amount anticipated for immediate removal action for a single oil pollution incident, but, in any event...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false [Reserved] 153.107 Section 153.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.107 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false [Reserved] 153.107 Section 153.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.107 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false [Reserved] 153.107 Section 153.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.107 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false [Reserved] 153.107 Section 153.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.107 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false [Reserved] 153.107 Section 153.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.107 [Reserved] ...
Application of nano filter for organic pollutant degradation
NASA Astrophysics Data System (ADS)
Qandalee, Mohammad; Hatami, Mehdi; Majedi, Ali; Bateni, Mohsen; Vahdat, Seyed Mohammad
2012-12-01
In this study, the possibility of using a novel nanocomposite structure based on nanoscale titanium dioxide as a filter toward elimination of organic pollutant was investigated. Methyl Orange (MO) was selected as a typical organic pollutant and effect of lamp intensity, addition of hydrogen peroxide and MO concentration were investigated. The photocatalytic degradation of MO was modeled using Langmuir-Hinshelwood equation and the removal rates were simulated.
Worldwide Emerging Environmental Issues Affecting the U.S. Military. April 2004 - April 2005
2005-04-01
cleaning up other chemical pollutants . [April 2004. Military Implications and Source] New Genetically Modified Plant to Detect Landmine Explosive...Institute of Technology have discovered that duckweed, a common floating aquatic plant , can remove persistent organic pollutants (POPs) from wetlands...ceilings for 2010 for four pollutants : sulphur, NOx, VOCs, and ammonia, regulating emissions by sources (e.g. combustion plant , electricity production
Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.
Alsbaiee, Alaaeddin; Smith, Brian J; Xiao, Leilei; Ling, Yuhan; Helbling, Damian E; Dichtel, William R
2016-01-14
The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.
Norris, M J; Pulford, I D; Haynes, H; Dorea, C C; Phoenix, V R
2013-01-01
Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10-70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS.
Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer
NASA Astrophysics Data System (ADS)
Alsbaiee, Alaaeddin; Smith, Brian J.; Xiao, Leilei; Ling, Yuhan; Helbling, Damian E.; Dichtel, William R.
2016-01-01
The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.
Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.
Mohammad, Balsam T; Veiga, María C; Kennes, Christian
2007-08-15
This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. (c) 2007 Wiley Periodicals, Inc.
Pollution-free, resource recovery, garbage disposal/fuel burning plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielson, J.P
1989-05-16
A method is described of burning solid combustibles containing potential atmospheric pollutants and of recovering valuable resources from the combustibles while preventing the release of pollutants into the atmosphere, including the steps of introducing the combustibles through an airlock into a furnace substantially sealed against the atmosphere; introducing combustion-supporting fluid into the furnace; burning the combustibles at a temperature high enough to melt at least some of the inorganic components contained therin; removing and recovering solid components from the furnace through a gas lock; removing and recovering molten components from the furnace through a conduit and valve; passing high temperaturegaseousmore » products of combustion from the furnace through heat exchanger means utilizing boiler tubes carrying the gaseous products surrounded by water to generate steam as a useful product.« less
Setyono, Daisy; Valiyaveettil, Suresh
2016-01-25
Paper, a readily available renewable resource, comprises of interwoven cellulosic fibers, which can be functionalized to develop interesting low-cost adsorbent material for water purification. In this study, polyethyleneimine (PEI)-functionalized paper was used for the removal of hazardous pollutants such as Au and Ag nanoparticles, Cr(VI) anions, Ni(2+), Cd(2+), and Cu(2+) cations from spiked water samples. Compared to untreated paper, the PEI-coated paper showed significant improvement in adsorption capacities toward the pollutants investigated in this study. Kinetics, isotherm models, pH, and desorption studies were carried out to study the adsorption mechanism of pollutants on the adsorbent surface. Adsorption of pollutants was better described by pseudo-second order kinetics and Langmuir isotherm model. Maximum adsorption of anionic pollutants was achieved at pH 5 while that of cations was at pH>6. Overall, the PEI-functionalized paper showed interesting Langmuir adsorption capacities for heavy metal ions such as Cr(VI) (68 mg/g), Ni(2+) (208 mg/g), Cd(2+) (370 mg/g), and Cu(2+) (435 mg/g) ions at neutral pH. In addition, the modified paper was also used to remove Ag-citrate (79 mg/g), Ag-PVP (46 mg/g), Au-citrate (30 mg/g), Au-PVP (17 mg/g) nanoparticles from water. Desorption of NPs from the adsorbent was done by washing with 2 M HCl or thiourea solution, while heavy metal ions were desorbed using 1 M NaOH or HNO3 solution. The modified paper retained its extraction efficiencies upon desorption of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.
Phytodegradation potential of bisphenolA from aqueous solution by Azolla Filiculoides
2014-01-01
Many organic hazardous pollutants such as bisphenolA (BPA) which are toxic and not easily biodegradable can concerns for environmental pollution worldwide. The objective of this study was to examine whether Azolla Filiculoides is able to remove BPA from aqueous solutions. In this study, the Azolla with different biomass (0.3, 0.6, 0.9, 1.2 g) has been cultured in solution that was contained 5, 10, 25 and 50 ppm BPA. Samples were collected every 2 days from all of containers. The analytical determination of BPA was performed by using of DR4000 uv-visible at λmax = 276 nm. The results indicated that Azolla has high ability to remove BPA from aqueous solutions. The BPA removal was 60-90%. The removal efficiency is increasing with decreasing of BPA concentration and increasing of biomass amount and vice versa. The removal efficiency was more than 90% when BPA concentration was 5 ppm and amount of biomass was 0.9gr. It is concluded that Azolla able remove BPA by Phytodegradation from the aqueous solutions. Since conventional methods of BPA removal need to high cost and energy, phytoremediation by Azolla as a natural treatment system can decrease those issues and it can be a useful and beneficial method to removal of BPA. PMID:24693863
Phytodegradation potential of bisphenolA from aqueous solution by Azolla Filiculoides.
Zazouli, Mohammad Ali; Mahdavi, Yousef; Bazrafshan, Edris; Balarak, Davoud
2014-01-01
Many organic hazardous pollutants such as bisphenolA (BPA) which are toxic and not easily biodegradable can concerns for environmental pollution worldwide. The objective of this study was to examine whether Azolla Filiculoides is able to remove BPA from aqueous solutions. In this study, the Azolla with different biomass (0.3, 0.6, 0.9, 1.2 g) has been cultured in solution that was contained 5, 10, 25 and 50 ppm BPA. Samples were collected every 2 days from all of containers. The analytical determination of BPA was performed by using of DR4000 uv-visible at λmax = 276 nm. The results indicated that Azolla has high ability to remove BPA from aqueous solutions. The BPA removal was 60-90%. The removal efficiency is increasing with decreasing of BPA concentration and increasing of biomass amount and vice versa. The removal efficiency was more than 90% when BPA concentration was 5 ppm and amount of biomass was 0.9gr. It is concluded that Azolla able remove BPA by Phytodegradation from the aqueous solutions. Since conventional methods of BPA removal need to high cost and energy, phytoremediation by Azolla as a natural treatment system can decrease those issues and it can be a useful and beneficial method to removal of BPA.
Santiago-Morales, Javier; Gómez, María José; Herrera-López, Sonia; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto
2013-10-01
This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thomas L. Eberhardt; Soo-Hong Min; James S. Han
2006-01-01
Biomass-based filtration media are of interest as an economical means to remove pollutants and nutrients found in stormwater runoff. Refined aspen wood fiber samples treated with iron salt solutions demonstrated limited capacities to remove (ortho)phosphate from test solutions. To provide additional sites for iron complex formation, and thereby impart a greater...
Sebei, Haroun; Pham Minh, Doan; Lyczko, Nathalie; Sharrock, Patrick; Nzihou, Ange
2017-10-01
Hydroxyapatite (HAP) is highly considered as good sorbent for the removal of metals from the aqueous phase. However, soluble metals co-exist with organic pollutants in wastewaters. But little work has been devoted to investigate the reactivity of HAP for the removal of organic compounds. The main objective of this work is to study the reactivity of HAP-based sorbents for the removal of catechol as a model organic pollutant from an aqueous solution. Thus, HAP sorbents were firstly synthesized using calcium carbonate and potassium dihydrogen phosphate under moderate conditions (25-80°C, atmospheric pressure). A zinc-doped HAP was also used as sorbent, which was obtained from the contact of HAP with an aqueous solution of zinc nitrate. All the sorbents were characterized by different standard physico-chemical techniques. The sorption of catechol was carried out in a batch reactor under stirring at room temperature and pressure. Zinc-doped HAP sorbent was found to be more reactive than non-doped HAP sorbents for the fixation of catechol. The highest sorption capacity was of 15 mg of C per gram of zinc-doped HAP sorbent. The results obtained suggest the reaction scheme of HAP sorbents with metals and organic pollutants when HAP sorbents were used for the treatment of complex wastewaters.
NASA Astrophysics Data System (ADS)
Prasetyaningrum, Aji; Jos, Bakti; Dharmawan, Yudhy; Prabowo, Bilal T.; Fathurrazan, Muh.; Fyrouzabadi
2018-05-01
Chromium (VI) is one of the major metallic pollutants in plating industrial wastewater. Cr(VI) is one of toxic metal that cause serious threat to human health and the environment because its non-biodegradable. Among the technologies for removing these pollutants, electrocoagulation can be considered as an effective method. This method have some advantages such as less amount of produced sludge and high efficiency in removal of pollutants.This research intended to study the effects of type of electrode on the degree of Cr(VI) removal from wastewater of plating industry using electrocoagulation method. This laboratory research conducted with 3 types of electrode (aluminum, stainless and combination of both electrode). Synthetic chromium wastewater was prepared at the initial concentration of 100 mg L-1. The process was conducted at pH 3. The electricity current was setting at 3 Ampere. The variable of time of electrocoagulation at 1 and 2 hours. After performing the process on electrochemical cells, samples analyzed by the UV-Vis spectrophotometer regarding amount of Cr(VI) metals. The results showed that aluminium was the best performance electrode at variable of 2 hours with 26% of reduction of Cr(VI)metal content in plating industrial waste water.
Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work
Lv, Junping; Feng, Jia; Liu, Qi; Xie, Shulian
2017-01-01
Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA). PMID:28045437
Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei
2018-01-01
Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.
Aoudj, S; Khelifa, A; Drouiche, N
2017-08-01
Semiconductor industry effluents contain organic and inorganic pollutants, such as sodium dodecyl sulfate (SDS), fluoride and ammonia, at high levels which consists a major environmental issue. A combined EC-EF process is proposed as a post-treatment after precipitation for simultaneous clarification and removal of pollutants. In EC step, a hybrid Fe-Al was used as the soluble anode in order to avoid supplementary EC step. EC-Fe is more suitable for SDS removal; EC-Al is more suitable for fluoride removal, while EC with hybrid Al-Fe makes a good compromise. Clarification and ammonia oxidation were achieved in the EF step. Effects of anodic material, initial pH, current, anion nature, chloride concentration and initial pollutant concentration were studied. The final concentrations may reach 0.27, 6.23 and 0.22 mg L -1 for SDS, fluoride and ammonia respectively. These concentrations are far lower than the correspondent discharge limits. Similarly, the final turbidity was found 4.35 NTU which is lower than 5NTU and the treated water does not need further filtration before discharge. Furthermore, the EC-EF process proves to be sufficiently energy-efficient with less soluble electrode consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rezania, Shahabaldin; Ponraj, Mohanadoss; Talaiekhozani, Amirreza; Mohamad, Shaza Eva; Md Din, Mohd Fadhil; Taib, Shazwin Mat; Sabbagh, Farzaneh; Sairan, Fadzlin Md
2015-11-01
The development of eco-friendly and efficient technologies for treating wastewater is one of the attractive research area. Phytoremediation is considered to be a possible method for the removal of pollutants present in wastewater and recognized as a better green remediation technology. Nowadays the focus is to look for a sustainable approach in developing wastewater treatment capability. Water hyacinth is one of the ancient technology that has been still used in the modern era. Although, many papers in relation to wastewater treatment using water hyacinth have been published, recently removal of organic, inorganic and heavy metal have not been reviewed extensively. The main objective of this paper is to review the possibility of using water hyacinth for the removal of pollutants present in different types of wastewater. Water hyacinth is although reported to be as one of the most problematic plants worldwide due to its uncontrollable growth in water bodies but its quest for nutrient absorption has provided way for its usage in phytoremediation, along with the combination of herbicidal control, integratated biological control and watershed management controlling nutrient supply to control its growth. Moreover as a part of solving wastewater treatment problems in urban or industrial areas using this plant, a large number of useful byproducts can be developed like animal and fish feed, power plant energy (briquette), ethanol, biogas, composting and fiber board making. In focus to the future aspects of phytoremediation, the utilization of invasive plants in pollution abatement phytotechnologies can certainly assist for their sustainable management in treating waste water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the top of an AOD vessel. Control device means the air pollution control equipment used to remove... vessel to the air pollution control device. Charge means the addition of iron and steel scrap or other... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the top of an AOD vessel. Control device means the air pollution control equipment used to remove... vessel to the air pollution control device. Charge means the addition of iron and steel scrap or other... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the top of an AOD vessel. Control device means the air pollution control equipment used to remove... vessel to the air pollution control device. Charge means the addition of iron and steel scrap or other... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the top of an AOD vessel. Control device means the air pollution control equipment used to remove... vessel to the air pollution control device. Charge means the addition of iron and steel scrap or other... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the top of an AOD vessel. Control device means the air pollution control equipment used to remove... vessel to the air pollution control device. Charge means the addition of iron and steel scrap or other... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
DOT National Transportation Integrated Search
2016-03-01
The project objective was to conduct a detailed literature review of storm water pollutants and mitigation technologies and synthesize : the information so that INDOT can implement project results into standards. Because it is a municipal separate st...
33 CFR 153.109 - CERCLA delegations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false CERCLA delegations. 153.109 Section 153.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.109 CERCLA...
33 CFR 153.109 - CERCLA delegations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false CERCLA delegations. 153.109 Section 153.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.109 CERCLA...
33 CFR 153.109 - CERCLA delegations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false CERCLA delegations. 153.109 Section 153.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.109 CERCLA...
33 CFR 153.109 - CERCLA delegations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false CERCLA delegations. 153.109 Section 153.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.109 CERCLA...
33 CFR 153.109 - CERCLA delegations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false CERCLA delegations. 153.109 Section 153.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL General § 153.109 CERCLA...
MANAGEMENT OF WET-WEATHER FLOW IN THE URBAN WATERSHED
This chapter covers the control and treatment of stormwater in relation to the removal or reduction of the stormwater pollutant loads. The control of stormwater to prevent flooding is not the emphasis of this chapter. The pollution abatement technologies discussed will help atte...
Investigating Nitrogen Pollution: Activities and Models.
ERIC Educational Resources Information Center
Green Teacher, 2000
2000-01-01
Introduces activities on nitrogen, nitrogen pollution from school commuters, nitrogen response in native and introduced species, and nutrient loading models. These activities help students determine the nitrogen contribution from their parents' cars, test native plant responses to nitrogen, and experiment with the results of removing water from…
NASA Astrophysics Data System (ADS)
Greco, Enrico; Ciliberto, Enrico; Cirino, Antonio M. E.; Capitani, Donatella; Di Tullio, Valeria
2016-05-01
The use of nanotechnology in conservation is a relatively new concept. Usually, classical cleanup methods take into account the use of other chemicals: On the one hand they help the environment destroying pollutants, but on the other hand they often become new pollutants. Among the new oxidation methods called advanced oxidation processes, heterogeneous photocatalysis has appeared an emerging technology with several economic and environmental advantages. A new sol-gel method of synthesis of TiO2 anatase is reported in this work using lithium and cobalt (II) salts. The activation energy of the doped photocatalyst was analyzed by solid-state UV-Vis spectrophotometer. The mobility of Li ions on TiO2 NPs surface was studied by 7Li MAS NMR spectroscopy. Use of doped nanotitania is suggested from authors for the removal of pollutants in confined areas containing goods that must be preserved from decomposition and aging phenomena.
Elimination of persistent organic pollutants from fish oil with solid adsorbents.
Ortiz, X; Carabellido, L; Martí, M; Martí, R; Tomás, X; Díaz-Ferrero, J
2011-02-01
Fish oils are one of the main sources of ω-3 fatty acids in animal and human diet. However, they can contain high concentrations of persistent organic pollutants due to their lipophilic properties. The aim of this study is the reduction of persistent organic pollutants in fish oil using silicon-based and carbon-based solid adsorbents. A wide screening study with different commercially available adsorbents was carried out, in order to determine their capacity of pollutant removal from fish oil. Moreover, adsorption conditions were evaluated and optimized with using an experimental design and adjustment of the experimental results to response surfaces, obtaining removals rates of more than 99% of PCDD/Fs, 81% of dioxin-like PCBs, 70% of HCB, 41% of DDTs, 16% of marker PCBs and 10% of PBDEs. Finally, fish oil fatty acids were analyzed before and after the treatment with solid adsorbents, confirming that it did not affect its nutritive properties. Copyright © 2010 Elsevier Ltd. All rights reserved.
Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.
Stępniewska, Z; Kuźniar, A
2013-11-01
Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.
[Wastewater from the condensation and drying section of ABS was pretreated by microelectrolysis].
Lai, Bo; Qin, Hong-Ke; Zhou, Yue-Xi; Song, Yu-Dong; Cheng, Jia-Yun; Sun, Li-Dong
2011-04-01
Wastewater from the condensation and drying section of acrylonitrile-butadiene-styrene (ABS) resin plant was pretreated by the microelectrolysis, and the effect of the influent pH value on the pollution removal efficiency of the microelectrolysis was mainly studied. In order to study the electrochemical action of the microelectrolysis for the degradation of toxic refractory organic pollutants, two control experiments of activated carbon and iron were set up. The results showed that the TOC removal efficiencies were all fluctuated between 40% and 60% under the condition of different influent pH values. The microelectrolysis can decompose and transform the toxic refractory organic pollutants and increase the BOD5/COD ratio from 0.32 to 0.60, which increased the biodegradability of ABS resin wastewater significantly. When the pH value of influent was 4.0, the BOD5/COD ratio of effluent reached 0.71. The result of UV-vis spectra indicates that the removal efficiency of the organic nitrile was the highest with influent pH was 4.0. Therefore, the best influent pH value of microelectrolysis was 4.0.
Mechanisms and pathways of aniline elimination from aquatic environments.
Lyons, C D; Katz, S; Bartha, R
1984-01-01
The fate of aniline, a representative of arylamine pollutants derived from the manufacture of dyes, coal liquefaction, and pesticide degradation, was comprehensively evaluated by use of unpolluted and polluted pond water as model environments. Evaporation plus autoxidation proved to be minor elimination mechanisms, removing ca. 1% of the added aniline per day. Instantaneous binding to humic components of a 0.1% sewage sludge inoculum removed 4%. Biodegradation of aniline in pond water was accelerated by the sewage sludge inoculum. A substantial portion of the degraded aniline carbon was mineralized to CO2 within a 1-week period, and microbial biomass was formed as a result of aniline utilization. Biodegradation was clearly the most significant removal mechanism of polluting aniline from pond water. A gas chromatographic-mass spectrometric analysis of biodegradation intermediates revealed that the major pathway of aniline biodegradation in pond water involved oxidative deamination to catechol, which was further metabolized through cis,cis-muconic, beta-ketoadipic, levulinic, and succinic acid intermediates to CO2. Minor biodegradation pathways involved reversible acylation to acetanilide and formanilide, whereas N-oxidation resulted in small amounts of oligomeric condensation products. PMID:6497369
The use of date palm as a potential adsorbent for wastewater treatment: a review.
Ahmad, Tanweer; Danish, Mohammad; Rafatullah, Mohammad; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah; Ibrahim, Mohamad Nasir Mohamad
2012-06-01
In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution. This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years. Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.
Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu
2012-09-01
To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements-A Review.
Bilal, Muhammad; Rasheed, Tahir; Sosa-Hernández, Juan Eduardo; Raza, Ali; Nabeel, Faran; Iqbal, Hafiz M N
2018-02-19
In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.
Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review
Bilal, Muhammad; Rasheed, Tahir; Raza, Ali; Nabeel, Faran
2018-01-01
In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed. PMID:29463058
Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...
Eltaher, M. A.; Abdou, A. N. A.
2017-01-01
Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction. PMID:29308227
Rashed, M Nageeb; Eltaher, M A; Abdou, A N A
2017-12-01
Nanocomposite TiO 2 /ASS (TiO 2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO 2 /ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO 2 /ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO 2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution was achieved with TiO 2 /ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO 2 /ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO 2 /ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO 2 /ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd 2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.
NASA Astrophysics Data System (ADS)
Rashed, M. Nageeb; Eltaher, M. A.; Abdou, A. N. A.
2017-12-01
Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.
Characterization of the LTC catalyst: Performance against common air pollutants
NASA Astrophysics Data System (ADS)
Collins, Marcia F.
1987-04-01
One of the important qualities of the Low-Temperature Catalyst (LTC) is the rapid oxidation of carbon monoxide to carbon dioxide under a wide variety of conditions. The catalytic material is a palladium-copper activated complex which reacts with various contaminant molecules through a continuous oxidation/reduction cycle. The alumina substrate enhances LTC activity with its favorable surface chemistry and very high surface area. About 10 percent surface water is necessary to facilitate the oxidation of CO. This reaction shows a log-log dependence on contact time, suggesting a Langmuir-Hinshelwood mechanism. In the tube tests, LTC removed 90 to 100 percent of contaminating carbon monoxide in the temperature region of 20 to 4000 C, and at ambient over a range of 25 to 65 percent relative humidity. In contrast, NO2 is chemisorbed by the LTC/alumina material--the amount strongly dependent on temperature increases but independent of humidity. The LTC catalyst has demonstrated excellent capability to remove an important variety of hazardous pollutant gases which are common factors to poor indoor air quality. The Instapure Air Filtration System incorporates the LTC catalyst in a 50:50 mixture with activated carbon to effectively remove particulate, odors, and hazardous gases at room temperature and humidities. The ability to remove hazardous gases is unique for the category of portable air filtration equipment. The wide variety of pollutant gases that LTC removes suggests that catalytic technology is adaptable to a considerable range of commercial and industrial applications.
Characterization of the LTC catalyst: Performance against common air pollutants
NASA Technical Reports Server (NTRS)
Collins, Marcia F.
1987-01-01
One of the important qualities of the Low-Temperature Catalyst (LTC) is the rapid oxidation of carbon monoxide to carbon dioxide under a wide variety of conditions. The catalytic material is a palladium-copper activated complex which reacts with various contaminant molecules through a continuous oxidation/reduction cycle. The alumina substrate enhances LTC activity with its favorable surface chemistry and very high surface area. About 10 percent surface water is necessary to facilitate the oxidation of CO. This reaction shows a log-log dependence on contact time, suggesting a Langmuir-Hinshelwood mechanism. In the tube tests, LTC removed 90 to 100 percent of contaminating carbon monoxide in the temperature region of 20 to 4000 C, and at ambient over a range of 25 to 65 percent relative humidity. In contrast, NO2 is chemisorbed by the LTC/alumina material--the amount strongly dependent on temperature increases but independent of humidity. The LTC catalyst has demonstrated excellent capability to remove an important variety of hazardous pollutant gases which are common factors to poor indoor air quality. The Instapure Air Filtration System incorporates the LTC catalyst in a 50:50 mixture with activated carbon to effectively remove particulate, odors, and hazardous gases at room temperature and humidities. The ability to remove hazardous gases is unique for the category of portable air filtration equipment. The wide variety of pollutant gases that LTC removes suggests that catalytic technology is adaptable to a considerable range of commercial and industrial applications.
Removing ammonium from water and wastewater using cost-effective adsorbents: A review.
Huang, Jianyin; Kankanamge, Nadeeka Rathnayake; Chow, Christopher; Welsh, David T; Li, Tianling; Teasdale, Peter R
2018-01-01
Ammonium is an important nutrient in primary production; however, high ammonium loads can cause eutrophication of natural waterways, contributing to undesirable changes in water quality and ecosystem structure. While ammonium pollution comes from diffuse agricultural sources, making control difficult, industrial or municipal point sources such as wastewater treatment plants also contribute significantly to overall ammonium pollution. These latter sources can be targeted more readily to control ammonium release into water systems. To assist policy makers and researchers in understanding the diversity of treatment options and the best option for their circumstance, this paper produces a comprehensive review of existing treatment options for ammonium removal with a particular focus on those technologies which offer the highest rates of removal and cost-effectiveness. Ion exchange and adsorption material methods are simple to apply, cost-effective, environmentally friendly technologies which are quite efficient at removing ammonium from treated water. The review presents a list of adsorbents from the literature, their adsorption capacities and other parameters needed for ammonium removal. Further, the preparation of adsorbents with high ammonium removal capacities and new adsorbents is discussed in the context of their relative cost, removal efficiencies, and limitations. Efficient, cost-effective, and environmental friendly adsorbents for the removal of ammonium on a large scale for commercial or water treatment plants are provided. In addition, future perspectives on removing ammonium using adsorbents are presented. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Li, D.
2016-12-01
Sudden water pollution accidents are unavoidable risk events that we must learn to co-exist with. In China's Taihu River Basin, the river flow conditions are complicated with frequently artificial interference. Sudden water pollution accident occurs mainly in the form of a large number of abnormal discharge of wastewater, and has the characteristics with the sudden occurrence, the uncontrollable scope, the uncertainty object and the concentrated distribution of many risk sources. Effective prevention of pollution accidents that may occur is of great significance for the water quality safety management. Bayesian networks can be applied to represent the relationship between pollution sources and river water quality intuitively. Using the time sequential Monte Carlo algorithm, the pollution sources state switching model, water quality model for river network and Bayesian reasoning is integrated together, and the sudden water pollution risk assessment model for river network is developed to quantify the water quality risk under the collective influence of multiple pollution sources. Based on the isotope water transport mechanism, a dynamic tracing model of multiple pollution sources is established, which can describe the relationship between the excessive risk of the system and the multiple risk sources. Finally, the diagnostic reasoning algorithm based on Bayesian network is coupled with the multi-source tracing model, which can identify the contribution of each risk source to the system risk under the complex flow conditions. Taking Taihu Lake water system as the research object, the model is applied to obtain the reasonable results under the three typical years. Studies have shown that the water quality risk at critical sections are influenced by the pollution risk source, the boundary water quality, the hydrological conditions and self -purification capacity, and the multiple pollution sources have obvious effect on water quality risk of the receiving water body. The water quality risk assessment approach developed in this study offers a effective tool for systematically quantifying the random uncertainty in plain river network system, and it also provides the technical support for the decision-making of controlling the sudden water pollution through identification of critical pollution sources.
ERIC Educational Resources Information Center
Nuttonson, M. Y.
Fifteen papers were translated: On the removal of impurities from the atmosphere by clouds and precipitation; Some aspects of the adoption of automatic methods of determining atmospheric pollutants; Recording of sulfur dioxide content at the outskirts of a city. Comparison of measurement results for a valley and an elevation; Theoretical and…
Plakas, Konstantinos V; Sklari, Stella D; Yiankakis, Dimitrios A; Sideropoulos, Georgios Th; Zaspalis, Vassilis T; Karabelas, Anastasios J
2016-03-15
To assess the performance of a novel 'filter'-type electro-Fenton (EF) device, results are reported from pilot-scale studies of continuous water treatment, to degrade diclofenac (DCF), a typical organic micro-pollutant, with no addition of oxidants. The novel 'filter' consisted of three pairs of anode/cathode electrodes made of carbon felt, with cathodes impregnated with iron nanoparticles (γ-Fe2O3/F3O4 oxides). The best 'filter' performance was obtained at applied potential of 2 V and low water superficial velocities (∼0.09 cm/s), i.e., the mineralization current efficiency (MCE) was >20%, during continuous steady state treatment of tap water with low DCF concentrations (16 μg/L). The EF 'filter' exhibited satisfactory stability regarding both electrode integrity (no iron leaching) and removal efficiency, even after multiple filtration/oxidation treatment cycles, achieving (under steady conditions) DCF and TOC removal 85% and 36%, respectively. This performance is considered satisfactory because the EF process took place under rather unfavorable conditions, such as neutral pH, low dissolved O2 concentration, low electrical conductivity, and presence of natural organic matter and inorganic ions in tap water. Ongoing R&D is aimed at 'filter' development and optimization for practical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salt, D.E.; Blaylock, M.; Kumar, N. P.B.A.
1995-05-01
Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called phytoremediation. Three subsets of this technology are applicable to toxic metal remediation: (1) Phytoextraction: the use of metal-accumulating plants to remove toxic metals from soil; (2) Rhizofiltration: the use of plant roots to remove toxic metals from polluted waters; and (3) Phytostabilization: the use of plants to eliminate the bioavailability of toxic metals in soils. Biological mechanisms of toxic metal uptake,more » translocation and resistance as well as strategies for improving phytoremediation are also discussed. 83 refs., 4 figs., 1 tab.« less
Stormwater solids removal characteristics of a catch basin insert using geotextile.
Alam, Md Zahanggir; Anwar, A H M Faisal; Heitz, Anna
2018-03-15
Suspended solids in urban runoff have multiple adverse environmental impacts and create a wide range of water quality problems in receiving water bodies. Geotextile filtration systems inserted within catch basins have the potential to mitigate these effects, through flow attenuation and pollutant removal. This study modelled a catch basin in a column and assessed the hydraulic and solids removal characteristics of a new type of non-woven geotextile (NWG1) in the capture of solids from stormwater runoff. The new geotextile was compared with two others readily available on the market (NWG2, NWG3). Synthetic stormwater containing TSS (200mg/L) was used with two particle size distributions of 0-180μm (P1; D 50 :106μm) and 0-300μm (P2; D 50 :150μm). The results revealed that the desired stormwater TSS concentration (<30mg/L; ANZECC, 2000) could be achieved with a short ripening process (e.g., 1-2kg/m 2 of suspended solids loading) for trials using the larger particle size distribution (P2). In addition, 36% more suspended solids were captured in trials using the soil with the larger range of particle sizes (P2) than for the soil with smaller particle sizes (P1). Geotextile fibre pattern appeared to have a significant influence on the TSS removal capacity. The NWG1 has higher permittivity than NWG3 but similar to NWG2. NWG1 could capture overall more TSS (which also resulted in earlier clogging) than NWG2 and NWG3 because of the special fibre structure of NWG1. The experimental data shows that these geotextiles may start to clog when the hydraulic conductivity reaches below 1.36×10 -5 m/s. The overall hydraulic performances of geotextiles showed that the NWG1 has better potential for use in CBIs because of its higher strength and multiple reuse capability. Copyright © 2017 Elsevier B.V. All rights reserved.
Pietroletti, Marco; Capobianchi, Alfredo; Ragosta, Emanuela; Mecozzi, Mauro
2010-10-15
In this paper we tested the power of Caulerpa racemosa for removal hydrocarbons from seawater. C. racemosa was implanted in two aquariums filled with natural seawater having a hydrocarbon content lower than 0.05mg/L which is the detection limit of the FTIR spectrophotometric method used for the determination. One aquarium was submitted to sequential additions of hydrocarbons (n-esadecane 10, 20 and 40mg/L, n-docosane 15mg/L) and diesel fuels (20mg/L) while the second one remained uncontaminated and used as control. After any addition, hydrocarbon content in seawater was determined at regular time intervals (one or two days) and when comparable hydrocarbon contents (i.e. lower than 0.05mg/L) were again observed, the real removal power of hydrocarbons was verified by several spectroscopic measurements performed on algae from both aquariums. Total hydrocarbon contents in algae determined by infrared (FTIR) spectroscopy, always resulted higher in the polluted aquarium for all the concentrations of added pollutants. Further FTIR studies performed on algae showed the presence of marked quantitative and structural molecular modifications involving carbohydrates, proteins, lipids, nucleic acids and chlorophyll pigments in C. racemosa from the aquarium test. In addition, visible (VIS) spectroscopic examination of C. racemosa showed a reduction of chlorophyll pigments in the polluted aquarium with respect to the control one. At last, FTIR spectra all the algal samples submitted to hydrocarbon pollution were re-examined by means of two-dimensional correlation analysis, a statistical tool helpful for studying the dynamic evolution of any molecular and biological system submitted to an external perturbation producing compositional and structural changes. This approach showed differences among the molecular modifications caused by any type of hydrocarbon used, modifications related reasonably to the molecular dimensions and concentration of the added pollutants. All these spectroscopic evidences suggested that the removal power of C. racemosa depends on its metabolic activities and not only on a simple adsorption process.
Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Kansiime, F; Lens, P N L
2014-01-15
Decentralised grey water treatment in urban slums using low-cost and robust technologies offers opportunities to minimise public health risks and to reduce environmental pollution caused by the highly polluted grey water i.e. with a COD and N concentration of 3000-6000 mg L(-1) and 30-40 mg L(-1), respectively. However, there has been very limited action research to reduce the pollution load from uncontrolled grey water discharge by households in urban slums. This study was therefore carried out to investigate the potential of a two-step filtration process to reduce the grey water pollution load in an urban slum using a crushed lava rock filter, to determine the main filter design and operation parameters and the effect of intermittent flow on the grey water effluent quality. A two-step crushed lava rock filter unit was designed and implemented for use by a household in the Bwaise III slum in Kampala city (Uganda). It was monitored at a varying hydraulic loading rate (HLR) of 0.5-1.1 m d(-1) as well as at a constant HLR of 0.39 m d(-1). The removal efficiencies of COD, TP and TKN were, respectively, 85.9%, 58% and 65.5% under a varying HLR and 90.5%, 59.5% and 69%, when operating at a constant HLR regime. In addition, the log removal of Escherichia coli, Salmonella spp. and total coliforms was, respectively, 3.8, 3.2 and 3.9 under the varying HLR and 3.9, 3.5 and 3.9 at a constant HLR. The results show that the use of a two-step filtration process as well as a lower constant HLR increased the pollutant removal efficiencies. Further research is needed to investigate the feasibility of adding a tertiary treatment step to increase the nutrients and microorganisms removal from grey water. Copyright © 2013 Elsevier Ltd. All rights reserved.
40 CFR 467.02 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... includes air pollution control scrubbers which are sometimes used to control fumes from chemical solution... cool. (s) Wet scrubbers are air pollution control devices used to remove particulates and fumes from... every plant in a subcategory, but when present is an integral part of the aluminum forming process. (c...
40 CFR 467.02 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... includes air pollution control scrubbers which are sometimes used to control fumes from chemical solution... cool. (s) Wet scrubbers are air pollution control devices used to remove particulates and fumes from... every plant in a subcategory, but when present is an integral part of the aluminum forming process. (c...
40 CFR 467.02 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... includes air pollution control scrubbers which are sometimes used to control fumes from chemical solution... cool. (s) Wet scrubbers are air pollution control devices used to remove particulates and fumes from... every plant in a subcategory, but when present is an integral part of the aluminum forming process. (c...
O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul
2018-02-01
A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.