Passive radio frequency peak power multiplier
Farkas, Zoltan D.; Wilson, Perry B.
1977-01-01
Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.
Intelligent power management in a vehicular system with multiple power sources
NASA Astrophysics Data System (ADS)
Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul
This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
Common source-multiple load vs. separate source-individual load photovoltaic system
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph
1989-01-01
A comparison of system performance is made for two possible system setups: (1) individual loads powered by separate solar cell sources; and (2) multiple loads powered by a common solar cell source. A proof for resistive loads is given that shows the advantage of a common source over a separate source photovoltaic system for a large range of loads. For identical loads, both systems perform the same.
Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths
NASA Technical Reports Server (NTRS)
Davis, Bette; Gaul, W. C.
2007-01-01
This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.
Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2016-01-01
An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.
Code TESLA for Modeling and Design of High-Power High-Efficiency Klystrons
2011-03-01
CODE TESLA FOR MODELING AND DESIGN OF HIGH - POWER HIGH -EFFICIENCY KLYSTRONS * I.A. Chernyavskiy, SAIC, McLean, VA 22102, U.S.A. S.J. Cooke, B...and multiple-beam klystrons as high - power RF sources. These sources are widely used or proposed to be used in accelerators in the future. Comparison...of TESLA modelling results with experimental data for a few multiple-beam klystrons are shown. INTRODUCTION High - power and high -efficiency
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 183.322 - Multiple generators.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.322 Multiple generators. When a vessel is equipped with two or more generators to supply ship's service power, the following requirements...
46 CFR 183.322 - Multiple generators.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.322 Multiple generators. When a vessel is equipped with two or more generators to supply ship's service power, the following requirements...
46 CFR 183.322 - Multiple generators.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.322 Multiple generators. When a vessel is equipped with two or more generators to supply ship's service power, the following requirements...
46 CFR 183.322 - Multiple generators.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.322 Multiple generators. When a vessel is equipped with two or more generators to supply ship's service power, the following requirements...
46 CFR 183.322 - Multiple generators.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.322 Multiple generators. When a vessel is equipped with two or more generators to supply ship's service power, the following requirements...
Restrictive loads powered by separate or by common electrical sources
NASA Technical Reports Server (NTRS)
Appelbaum, J.
1989-01-01
In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.
Low profile, highly configurable, current sharing paralleled wide band gap power device power module
McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M
2016-08-23
A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.
Power optimization of wireless media systems with space-time block codes.
Yousefi'zadeh, Homayoun; Jafarkhani, Hamid; Moshfeghi, Mehran
2004-07-01
We present analytical and numerical solutions to the problem of power control in wireless media systems with multiple antennas. We formulate a set of optimization problems aimed at minimizing total power consumption of wireless media systems subject to a given level of QoS and an available bit rate. Our formulation takes into consideration the power consumption related to source coding, channel coding, and transmission of multiple-transmit antennas. In our study, we consider Gauss-Markov and video source models, Rayleigh fading channels along with the Bernoulli/Gilbert-Elliott loss models, and space-time block codes.
Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources
Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li
2014-01-01
To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953
Gas production strategy of underground coal gasification based on multiple gas sources.
Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li
2014-01-01
To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.
Efficient RF energy harvesting by using a fractal structured rectenna system
NASA Astrophysics Data System (ADS)
Oh, Sechang; Ramasamy, Mouli; Varadan, Vijay K.
2014-04-01
A rectenna system delivers, collects, and converts RF energy into direct current to power the electronic devices or recharge batteries. It consists of an antenna for receiving RF power, an input filter for processing energy and impedance matching, a rectifier, an output filter, and a load resistor. However, the conventional rectenna systems have drawback in terms of power generation, as the single resonant frequency of an antenna can generate only low power compared to multiple resonant frequencies. A multi band rectenna system is an optimal solution to generate more power. This paper proposes the design of a novel rectenna system, which involves developing a multi band rectenna with a fractal structured antenna to facilitate an increase in energy harvesting from various sources like Wi-Fi, TV signals, mobile networks and other ambient sources, eliminating the limitation of a single band technique. The usage of fractal antennas effects certain prominent advantages in terms of size and multiple resonances. Even though, a fractal antenna incorporates multiple resonances, controlling the resonant frequencies is an important aspect to generate power from the various desired RF sources. Hence, this paper also describes the design parameters of the fractal antenna and the methods to control the multi band frequency.
Computational studies for a multiple-frequency electron cyclotron resonance ion source (abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.
1996-03-01
The number density of electrons, the energy (electron temperature), and energy distribution are three of the fundamental properties which govern the performance of electron cyclotron resonance (ECR) ion sources in terms of their capability to produce high charge state ions. The maximum electron energy is affected by several processes including the ability of the plasma to absorb power. In principle, the performances of an ECR ion source can be realized by increasing the physical size of the ECR zone in relation to the total plasma volume. The ECR zones can be increased either in the spatial or frequency domains inmore » any ECR ion source based on B-minimum plasma confinement principles. The former technique requires the design of a carefully tailored magnetic field geometry so that the central region of the plasma volume is a large, uniformly distributed plasma volume which surrounds the axis of symmetry, as proposed in Ref. . Present art forms of the ECR source utilize single frequency microwave power supplies to maintain the plasma discharge; because the magnetic field distribution continually changes in this source design, the ECR zones are relegated to thin {open_quote}{open_quote}surfaces{close_quote}{close_quote} which surround the axis of symmetry. As a consequence of the small ECR zone in relation to the total plasma volume, the probability for stochastic heating of the electrons is quite low, thereby compromising the source performance. This handicap can be overcome by use of broadband, multiple frequency microwave power as evidenced by the enhanced performances of the CAPRICE and AECR ion sources when two frequency microwave power was utilized. We have used particle-in-cell codes to simulate the magnetic field distributions in these sources and to demonstrate the advantages of using multiple, discrete frequencies over single frequencies to power conventional ECR ion sources. (Abstract Truncated)« less
Lindl, J.D.; Bangerter, R.O.
1975-10-31
Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.
Feedback power control strategies in wireless sensor networks with joint channel decoding.
Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio
2009-01-01
In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.
Design of a hybrid power system based on solar cell and vibration energy harvester
NASA Astrophysics Data System (ADS)
Zhang, Bin; Li, Mingxue; Zhong, Shaoxuan; He, Zhichao; Zhang, Yufeng
2018-03-01
Power source has become a serious restriction of wireless sensor network. High efficiency, self-energized and long-life renewable source is the optimum solution for unmanned sensor network applications. However, single renewable power source can be easily affected by ambient environment, which influences stability of the system. In this work, a hybrid power system consists of a solar panel, a vibration energy harvester and a lithium battery is demonstrated. The system is able to harvest multiple types of ambient energy, which extends its applicability and feasibility. Experiments have been conducted to verify performance of the system.
A 2.5-2.7 THz Room Temperature Electronic Source
NASA Technical Reports Server (NTRS)
Maestrini, Alain; Mehdi, Imran; Lin, Robert; Siles, Jose Vicente; Lee, Choonsup; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Bertrand, Thomas; Ward, John
2011-01-01
We report on a room temperature 2.5 to 2.7 THz electronic source based on frequency multipliers. The source utilizes a cascade of three frequency multipliers with W-band power amplifiers driving the first stage multiplier. Multiple-chip multipliers are utilized for the two initial stages to improve the power handling capability and a sub-micron anode is utilized for the final stage tripler. Room temperature measurements indicate that the source can put out a peak power of about 14 microwatts with more than 4 microwatts in the 2.5 to 2.7 THz range.
Feedback Power Control Strategies in Wireless Sensor Networks with Joint Channel Decoding
Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio
2009-01-01
In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm. PMID:22291536
Losier, Y; Englehart, K; Hudgins, B
2007-01-01
The integration of multiple input sources within a control strategy for powered upper limb prostheses could provide smoother, more intuitive multi-joint reaching movements based on the user's intended motion. The work presented in this paper presents the results of using myoelectric signals (MES) of the shoulder area in combination with the position of the shoulder as input sources to multiple linear discriminant analysis classifiers. Such an approach may provide users with control signals capable of controlling three degrees of freedom (DOF). This work is another important step in the development of hybrid systems that will enable simultaneous control of multiple degrees of freedom used for reaching tasks in a prosthetic limb.
46 CFR 129.323 - Multiple generators.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Multiple generators. 129.323 Section 129.323 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.323 Multiple generators. If an OSV uses two or more...
46 CFR 129.323 - Multiple generators.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Multiple generators. 129.323 Section 129.323 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.323 Multiple generators. If an OSV uses two or more...
46 CFR 129.323 - Multiple generators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Multiple generators. 129.323 Section 129.323 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.323 Multiple generators. If an OSV uses two or more...
46 CFR 129.323 - Multiple generators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple generators. 129.323 Section 129.323 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.323 Multiple generators. If an OSV uses two or more...
46 CFR 129.323 - Multiple generators.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Multiple generators. 129.323 Section 129.323 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.323 Multiple generators. If an OSV uses two or more...
An adaptable multiple power source for mass spectrometry and other scientific instruments.
Lin, T-Y; Anderson, G A; Norheim, R V; Prost, S A; LaMarche, B L; Leach, F E; Auberry, K J; Smith, R D; Koppenaal, D W; Robinson, E W; Paša-Tolić, L
2015-09-01
An Adaptable Multiple Power Source (AMPS) system has been designed and constructed. The AMPS system can provide up to 16 direct current (DC) (±400 V; 5 mA), 4 radio frequency (RF) (two 500 VPP sinusoidal signals each, 0.5-5 MHz) channels, 2 high voltage sources (±6 kV), and one ∼40 W, 250 °C temperature-regulated heater. The system is controlled by a microcontroller, capable of communicating with its front panel or a computer. It can assign not only pre-saved fixed DC and RF signals but also profiled DC voltages. The AMPS system is capable of driving many mass spectrometry components and ancillary devices and can be adapted to other instrumentation/engineering projects.
Beyond Talking Heads: Sourced Comics and the Affordances of Multimodality
ERIC Educational Resources Information Center
Dickinson, Hannah; Werner, Maggie M.
2015-01-01
This article analyzes the genre of the sourced comic as an important pedagogical tool in the development of both alphabetic and multimodal literacies. We argue that sourced comics provide multiple design elements with which students can explore their complex relationships with scholarly sources, make visible various power relations informing…
Unequal power allocation for JPEG transmission over MIMO systems.
Sabir, Muhammad Farooq; Bovik, Alan Conrad; Heath, Robert W
2010-02-01
With the introduction of multiple transmit and receive antennas in next generation wireless systems, real-time image and video communication are expected to become quite common, since very high data rates will become available along with improved data reliability. New joint transmission and coding schemes that explore advantages of multiple antenna systems matched with source statistics are expected to be developed. Based on this idea, we present an unequal power allocation scheme for transmission of JPEG compressed images over multiple-input multiple-output systems employing spatial multiplexing. The JPEG-compressed image is divided into different quality layers, and different layers are transmitted simultaneously from different transmit antennas using unequal transmit power, with a constraint on the total transmit power during any symbol period. Results show that our unequal power allocation scheme provides significant image quality improvement as compared to different equal power allocations schemes, with the peak-signal-to-noise-ratio gain as high as 14 dB at low signal-to-noise-ratios.
NASA Astrophysics Data System (ADS)
Pyne, Moinak
This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.
Analysis and Application of Microgrids
NASA Astrophysics Data System (ADS)
Yue, Lu
New trends of generating electricity locally and utilizing non-conventional or renewable energy sources have attracted increasing interests due to the gradual depletion of conventional fossil fuel energy sources. The new type of power generation is called Distributed Generation (DG) and the energy sources utilized by Distributed Generation are termed Distributed Energy Sources (DERs). With DGs embedded in the distribution networks, they evolve from passive distribution networks to active distribution networks enabling bidirectional power flows in the networks. Further incorporating flexible and intelligent controllers and employing future technologies, active distribution networks will turn to a Microgrid. A Microgrid is a small-scale, low voltage Combined with Heat and Power (CHP) supply network designed to supply electrical and heat loads for a small community. To further implement Microgrids, a sophisticated Microgrid Management System must be integrated. However, due to the fact that a Microgrid has multiple DERs integrated and is likely to be deregulated, the ability to perform real-time OPF and economic dispatch with fast speed advanced communication network is necessary. In this thesis, first, problems such as, power system modelling, power flow solving and power system optimization, are studied. Then, Distributed Generation and Microgrid are studied and reviewed, including a comprehensive review over current distributed generation technologies and Microgrid Management Systems, etc. Finally, a computer-based AC optimization method which minimizes the total transmission loss and generation cost of a Microgrid is proposed and a wireless communication scheme based on synchronized Code Division Multiple Access (sCDMA) is proposed. The algorithm is tested with a 6-bus power system and a 9-bus power system.
Airborne Dioxins, Furans and Polycyclic Aromatic Hydrocarbons Exposure to Military Personnel in Iraq
Masiol, Mauro; Mallon, Timothy; Haines, Kevin M.; Utell, Mark J.; Hopke, Philip K.
2016-01-01
Objectives The objective was to use ambient polycyclic aromatic hydrocarbon (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) concentrations measured at Joint Base Balad in Iraq in 2007 to identify the sources of these species and their spatial patterns. Methods The ratios of the measured species were compared to literature data for likely emission sources. Using the multiple site measurements on specific days, contour maps have been drawn using inverse distance weighting (IDW). Results These analyses suggest multiple sources including the burn pit (primarily a source of PCDD/PCDFs), the transportation field (primarily as source of PAHs) and other sources of PAHs that include aircraft, space heating, and diesel power generation. Conclusions The nature and locations of the sources were identified. PCDD/PCDFs were emitted by the burn pit. Multiple PAH sources exist across the base. PMID:27501100
NASA Astrophysics Data System (ADS)
Nishiura, Takanobu; Nakamura, Satoshi
2002-11-01
It is very important to capture distant-talking speech for a hands-free speech interface with high quality. A microphone array is an ideal candidate for this purpose. However, this approach requires localizing the target talker. Conventional talker localization algorithms in multiple sound source environments not only have difficulty localizing the multiple sound sources accurately, but also have difficulty localizing the target talker among known multiple sound source positions. To cope with these problems, we propose a new talker localization algorithm consisting of two algorithms. One is DOA (direction of arrival) estimation algorithm for multiple sound source localization based on CSP (cross-power spectrum phase) coefficient addition method. The other is statistical sound source identification algorithm based on GMM (Gaussian mixture model) for localizing the target talker position among localized multiple sound sources. In this paper, we particularly focus on the talker localization performance based on the combination of these two algorithms with a microphone array. We conducted evaluation experiments in real noisy reverberant environments. As a result, we confirmed that multiple sound signals can be identified accurately between ''speech'' or ''non-speech'' by the proposed algorithm. [Work supported by ATR, and MEXT of Japan.
Real power regulation design for multi-terminal VSC-HVDC systems
NASA Astrophysics Data System (ADS)
Li, Guo-Jie; Ruan, Si-Ye; Lie, Tek Tjing
2013-06-01
A multi-terminal voltage-source-converter (VSC) based high voltage direct current (HVDC) system is concerned for its flexibility and reliability. In this study, a control strategy for multiple VSCs is proposed to auto-share the real power variation without changing control mode, which is based on "dc voltage droop" power regulation functions. With the proposed power regulation design, the multiple VSCs automatically share the real power change and the VSC-HVDC system is stable even under loss of any one converter while there is no overloading for any individual converter. Simulation results show that it is effective to balance real power for power disturbance and thus improves operation reliability for the multi-terminal VSC-HVDC system by the proposed control strategy.
NASA Astrophysics Data System (ADS)
Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.
2018-02-01
A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.
Hybrid Power Management-Based Vehicle Architecture
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be replaced and disposed of. The environmentally safe ultracapacitor components reduce disposal concerns, and their recyclable nature reduces the environmental impact. High ultracapacitor power density provides high power during surges, and the ability to absorb high power during recharging. Ultracapacitors are extremely efficient in capturing recharging energy, are rugged, reliable, maintenance-free, have excellent lowtemperature characteristic, provide consistent performance over time, and promote safety as they can be left indefinitely in a safe, discharged state whereas batteries cannot.
Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng
2014-08-01
Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.
7. Perimeter acquisition radar power plant room #202, battery equipment ...
7. Perimeter acquisition radar power plant room #202, battery equipment room; showing battery room (in background) and multiple source power converter (in foreground). The picture offers another look at the shock-isolation system developed for each platform - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND
Hammond, T J; Mills, Arthur K; Jones, David J
2011-12-05
We investigate the photon flux and far-field spatial profiles for near-threshold harmonics produced with a 66 MHz femtosecond enhancement cavity-based EUV source operating in the tight-focus regime. The effects of multiple quantum pathways in the far-field spatial profile and harmonic yield show a strong dependence on gas jet dynamics, particularly nozzle diameter and position. This simple system, consisting of only a 700 mW Ti:Sapphire oscillator and an enhancement cavity produces harmonics up to 20 eV with an estimated 30-100 μW of power (intracavity) and > 1μW (measured) of power spectrally-resolved and out-coupled from the cavity. While this power is already suitable for applications, a quantum mechanical model of the system indicates substantial improvements should be possible with technical upgrades.
A simple, efficient resistance soldering apparatus
NASA Technical Reports Server (NTRS)
Vermillion, C. M.
1972-01-01
Multiple resistance soldering device for attaching electric leads to multiple terminal block connectors uses power source with one terminal connected to working probe, and other terminal attached to connector carrying common pins for lead insertion. Mating of male and female connectors solders each lead to individual cup pin.
Modeling and simulation of an unmanned ground vehicle power system
NASA Astrophysics Data System (ADS)
Broderick, John; Hartner, Jack; Tilbury, Dawn M.; Atkins, Ella M.
2014-06-01
Long-duration missions challenge ground robot systems with respect to energy storage and efficient conversion to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and/or ultra-capacitor. This paper presents a hybrid systems framework for collectively modeling the dynamics and switching between these different power components. The hybrid system allows modeling power source on/off switching and different regimes of operation, together with continuous parameters such as state of charge, temperature, and power output. We apply this modeling framework to a fuel cell/battery power system applicable to unmanned ground vehicles such as Packbot or TALON. A simulation comparison of different control strategies is presented. These strategies are compared based on maximizing energy efficiency and meeting thermal constraints.
Iwai, Kosuke; Shih, Kuan Cheng; Lin, Xiao; Brubaker, Thomas A; Sochol, Ryan D; Lin, Liwei
2014-10-07
Point-of-care (POC) and disposable biomedical applications demand low-power microfluidic systems with pumping components that provide controlled pressure sources. Unfortunately, external pumps have hindered the implementation of such microfluidic systems due to limitations associated with portability and power requirements. Here, we propose and demonstrate a 'finger-powered' integrated pumping system as a modular element to provide pressure head for a variety of advanced microfluidic applications, including finger-powered on-chip microdroplet generation. By utilizing a human finger for the actuation force, electrical power sources that are typically needed to generate pressure head were obviated. Passive fluidic diodes were designed and implemented to enable distinct fluids from multiple inlet ports to be pumped using a single actuation source. Both multilayer soft lithography and injection molding processes were investigated for device fabrication and performance. Experimental results revealed that the pressure head generated from a human finger could be tuned based on the geometric characteristics of the pumping system, with a maximum observed pressure of 7.6 ± 0.1 kPa. In addition to the delivery of multiple, distinct fluids into microfluidic channels, we also employed the finger-powered pumping system to achieve the rapid formation of both water-in-oil droplets (106.9 ± 4.3 μm in diameter) and oil-in-water droplets (75.3 ± 12.6 μm in diameter) as well as the encapsulation of endothelial cells in droplets without using any external or electrical controllers.
Carambola optics for recycling of light.
Leutz, Ralf; Fu, Ling; Ries, Harald
2006-04-20
Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.
Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.
Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan
2017-08-13
Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Walsh, James; Böcking, Till; Gaus, Katharina
2017-01-01
Modern fluorescence microscopy requires software-controlled illumination sources with high power across a wide range of wavelengths. Diode lasers meet the power requirements and combining multiple units into a single fiber launch expands their capability across the required spectral range. We present the NicoLase, an open-source diode laser combiner, fiber launch, and software sequence controller for fluorescence microscopy and super-resolution microscopy applications. Two configurations are described, giving four or six output wavelengths and one or two single-mode fiber outputs, with all CAD files, machinist drawings, and controller source code openly available. PMID:28301563
Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
Alton, Gerald D.
1998-01-01
Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.
Analysis of Discontinuity Induced Bifurcations in a Dual Input DC-DC Converter
NASA Astrophysics Data System (ADS)
Giaouris, Damian; Banerjee, Soumitro; Mandal, Kuntal; Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; El Aroudi, Abdelali
DC-DC power converters with multiple inputs and a single output are used in numerous applications where multiple sources, e.g. two or more renewable energy sources and/or a battery, feed a single load. In this work, a classical boost converter topology with two input branches connected to two different sources is chosen, with each branch independently being controlled by a separate peak current mode controller. We demonstrate for the first time that even though this converter is similar to other well known topologies that have been studied before, it exhibits many complex nonlinear behaviors that are not found in any other standard PWM controlled power converter. The system undergoes period incrementing cascade as a parameter is varied, with discontinuous hard transitions between consecutive periodicities. We show that the system can be described by a discontinuous map, which explains the observed bifurcation phenomena. The results have been experimentally validated.
NASA Technical Reports Server (NTRS)
Cunefare, K. A.; Koopmann, G. H.
1991-01-01
This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.
Separating Turbofan Engine Noise Sources Using Auto and Cross Spectra from Four Microphones
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2008-01-01
The study of core noise from turbofan engines has become more important as noise from other sources such as the fan and jet were reduced. A multiple-microphone and acoustic-source modeling method to separate correlated and uncorrelated sources is discussed. The auto- and cross spectra in the frequency range below 1000 Hz are fitted with a noise propagation model based on a source couplet consisting of a single incoherent monopole source with a single coherent monopole source or a source triplet consisting of a single incoherent monopole source with two coherent monopole point sources. Examples are presented using data from a Pratt& Whitney PW4098 turbofan engine. The method separates the low-frequency jet noise from the core noise at the nozzle exit. It is shown that at low power settings, the core noise is a major contributor to the noise. Even at higher power settings, it can be more important than jet noise. However, at low frequencies, uncorrelated broadband noise and jet noise become the important factors as the engine power setting is increased.
Multi-service highly sensitive rectifier for enhanced RF energy scavenging.
Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran
2015-05-07
Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869 MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of -10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments.
Multi-Service Highly Sensitive Rectifier for Enhanced RF Energy Scavenging
Shariati, Negin; Rowe, Wayne S. T.; Scott, James R.; Ghorbani, Kamran
2015-01-01
Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478–496 and 852–869 MHz) and exhibits favorable impedance matching over a broad input power range (−40 to −10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of −10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137
Ion Source Development for a Compact Proton Beam Writing System III
2013-06-28
to yield ion beam with energies up to 3 keV. The electrical power required to operate multiple components (like RF Valve , Probe and Extraction...they are powered through an isolation transformer. The required gas, to be ionized in the RF ion source, is fed through a coarse needle valve ...connector, the system can be pumped down to 3×10-2 mbar using an oil roughing pump. Nitrogen gas is feed in by adjusting the gas regulating valve
High power beta electron device - Beyond betavoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayers, William M.; Gentile, Charles A.
Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less
High power beta electron device - Beyond betavoltaics
Ayers, William M.; Gentile, Charles A.
2017-11-10
Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less
High power beta electron device - Beyond betavoltaics.
Ayers, William M; Gentile, Charles A
2018-01-01
Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.
Multiple high voltage output DC-to-DC power converter
NASA Technical Reports Server (NTRS)
Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)
1977-01-01
Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.
Multiple scattering corrections to the Beer-Lambert law. 2: Detector with a variable field of view.
Zardecki, A; Tam, W G
1982-07-01
The multiple scattering corrections to the Beer-Lambert law in the case of a detector with a variable field of view are analyzed. We introduce transmission functions relating the received radiant power to reference power levels relevant to two different experimental situations. In the first case, the transmission function relates the received power to a reference power level appropriate to a nonattenuating medium. In the second case, the reference power level is established by bringing the receiver to the close-up position with respect to the source. To examine the effect of the variation of the detector field of view the behavior of the gain factor is studied. Numerical results modeling the laser beam propagation in fog, cloud, and rain are presented.
Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
Alton, G.D.
1998-11-24
Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.
Series Connected Buck-Boost Regulator
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G. (Inventor)
2006-01-01
A Series Connected Buck-Boost Regulator (SCBBR) that switches only a fraction of the input power, resulting in relatively high efficiencies. The SCBBR has multiple operating modes including a buck, a boost, and a current limiting mode, so that an output voltage of the SCBBR ranges from below the source voltage to above the source voltage.
NASA Technical Reports Server (NTRS)
Worrall, Diana M.
1994-01-01
This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.
Progress in CPI Microwave Tube Development
NASA Astrophysics Data System (ADS)
Wright, Edward L.; Bohlen, Heinz
2006-01-01
CPI continues its role as a leading supplier of state-of-the-art, high-power microwave tubes; from linear beam, velocity- and density-modulated devices, to high frequency gyro-devices. Klystrons are the device-of-choice for many high-power microwave applications, and can provide multi-megawatts to multi-kilowatts of power from UHF to W-band, respectively. A number of recent and on-going developments will be described. At UHF frequencies, the inductive output tube (IOT) has replaced the klystron for terrestrial NTSC and HDTV broadcast, due to its high efficiency and linearity, and is beginning to see use in scientific applications requiring 300 kW or less. Recent advances have enabled use well into L-band. CPI has developed a number of multiple-beam amplifiers. The VKL-8301 multiple-beam klystron (MBK) was built for the TESLA V/UV and x-ray FEL projects, and is a candidate RF source for the International Linear Collider (ILC). We have also contributed to the development of the U.S. Naval Research Laboratory (NRL) high-power fundamental-mode S-band MBK. The VHP-8330B multiple-beam, high-order mode (HOM) IOT shows great promise as a compact, CW UHF source for high power applications. These topics will be discussed, along with CPI's development capabilities for new and novel applications. Most important is our availability to provide design and fabrication services to organizations requiring CPI's manufacturing and process control infrastructure to build and test state-of-the-art devices.
Wavelength stabilized DBR high power diode laser using EBL optical confining grating technology
NASA Astrophysics Data System (ADS)
Paoletti, R.; Codato, S.; Coriasso, C.; Gotta, P.; Meneghini, G.; Morello, G.; De Melchiorre, P.; Riva, E.; Rosso, M.; Stano, A.; Gattiglio, M.
2018-02-01
This paper reports a DBR High Power Diode Laser (DBR-HPDL) realization, emitting up to 10W in the 920 nm range. High spectral purity (90% power in about 0.5 nm), and wavelength stability versus injected current (about 5 times more than standard FP laser) candidates DBR-HPDL as a suitable device for wavelength stabilized pump source, and high brightness applications exploiting Wavelength Division Multiplexing. Key design aspect is a multiple-orders Electron Beam Lithography (EBL) optical confining grating, stabilizing on same wafer multiple wavelengths by a manufacturable and reliable technology. Present paper shows preliminary demonstration of wafer with 3 pitches, generating DBRHPDLs 2.5 nm spaced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Richard Stephen
2017-05-22
This presentation is part of US-China Clean Coal project and describes the impact of power plant cycling, techno economic modeling of combined IGCC and CCS, integrated capacity generation decision making for power utilities, and a new decision support tool for integrated assessment of CCUS.
All-Solid-State 2.45-to-2.78-THz Source
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seith; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Pearson, John C.; Goldsmith, Paul F.;
2011-01-01
Sources in the THz range are required in order for NASA to implement heterodyne instruments in this frequency range. The source that has been demonstrated here will be used for an instrument on the SOFIA platform as well as for upcoming astrophysics missions. There are currently no electronic sources in the 2 3- THz frequency range. An electronically tunable compact source in this frequency range is needed for lab spectroscopy as well as for compact space-deployable heterodyne receivers. This solution for obtaining useful power levels in the 2 3- THz range is based on utilizing power-combined multiplier stages. Utilizing power combining, the input power can be distributed between different multiplier chips and then recombined after the frequency multiplication. A continuous wave (CW) coherent source covering 2.48 2.75 THz, with greater than 10 percent instantaneous and tuning bandwidth, and having l 14 W of output power at room temperature, has been demonstrated. This source is based on a 91.8 101.8-GHz synthesizer followed by a power amplifier and three cascaded frequency triplers. It demonstrates that purely electronic solid-state sources can generate a useful amount of power in a region of the electromagnetic spectrum where lasers (solid-state or gas) were previously the only available coherent sources. The bandwidth, agility, and operability of this THz source has enabled wideband, high-resolution spectroscopic measurements of water, methanol, and carbon monoxide with a resolution and signal-to-noise ratio unmatched by other existing systems, providing new insight in the physics of these molecules. Further - more, the power and optical beam quality are high enough to observe the Lamb-dip effect in water. The source frequency has an absolute accuracy better than 1 part in 1012, and the spectrometer achieves sub-Doppler frequency resolution better than 1 part in 108. The harmonic purity is better than 25 dB. This source can serve as a local oscillator for a variety of heterodyne systems, and can be used as a method for precision control of more powerful but much less frequency-agile quantum mechanical terahertz sources.
Frequency and amplitude stabilization in MEMS and NEMS oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.
This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply.more » This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.« less
High power water load for microwave and millimeter-wave radio frequency sources
Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.
1999-01-01
A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.
Researcher Linguistic Vulnerability: A Note on Methodological Implications.
Muller, Ashley Elizabeth; Gubrium, Erika
2016-01-01
We reflect on the experiences of a researcher conducting a pilot exercise project with marginalized research participants within the substance use disorder treatment field, in a language that was nonnative to her. While the project collected and analyzed quantitative data, the researcher was motivated by qualitative inquiry's commitment to reducing participant-researcher distance and power differences. Despite multiple sources of power imbalances favoring the researcher, the ability of participants to speak their native language to a nonnative researcher, and the researcher's active recognition of her linguistic vulnerability, appeared to afford them an unexpected source of power within the context of the project. We discuss the researcher's observations of these power dynamics and their implications for cross-cultural research and when working with marginalized research participants. © The Author(s) 2015.
Investigation of automated feature extraction using multiple data sources
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Perkins, Simon J.; Pope, Paul A.; Theiler, James P.; David, Nancy A.; Porter, Reid B.
2003-04-01
An increasing number and variety of platforms are now capable of collecting remote sensing data over a particular scene. For many applications, the information available from any individual sensor may be incomplete, inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for an application such as image feature extraction or classification, it may be that fusing the mulitple data sources can lead to more consistent and reliable results. Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or classification algorithms also greatly increases. With a single data source, the determination of a suitable algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of machine learning, where the computational power of modern computers can be harnessed to the task at hand. We describe experiments in which we investigate the ability of a suite of automated feature extraction tools developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction tasks. We compare and contrast this software's capabilities on 1) individual data sets from different data sources 2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.
Performance analysis of optimal power allocation in wireless cooperative communication systems
NASA Astrophysics Data System (ADS)
Babikir Adam, Edriss E.; Samb, Doudou; Yu, Li
2013-03-01
Cooperative communication has been recently proposed in wireless communication systems for exploring the inherent spatial diversity in relay channels.The Amplify-and-Forward (AF) cooperation protocols with multiple relays have not been sufficiently investigated even if it has a low complexity in term of implementation. We consider in this work a cooperative diversity system in which a source transmits some information to a destination with the help of multiple relay nodes with AF protocols and investigate the optimality of allocating powers both at the source and the relays system by optimizing the symbol error rate (SER) performance in an efficient way. Firstly we derive a closedform SER formulation for MPSK signal using the concept of moment generating function and some statistical approximations in high signal to noise ratio (SNR) for the system under studied. We then find a tight corresponding lower bound which converges to the same limit as the theoretical upper bound and develop an optimal power allocation (OPA) technique with mean channel gains to minimize the SER. Simulation results show that our scheme outperforms the equal power allocation (EPA) scheme and is tight to the theoretical approximation based on the SER upper bound in high SNR for different number of relays.
Illusion induced overlapped optics.
Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin
2014-01-13
The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.
NASA Technical Reports Server (NTRS)
2002-01-01
Stirling Technology Company (STC) developed the RG-350 convertor using components from separate Goddard Space Center and U.S. Army Natick SBIR contracts. Based on the RG-350, STC commercialized a product line of Stirling cycle generator sets, known as RemoteGen(TM), with power levels ranging from 10We to 3kWe. Under SBIR agreements with Glenn Research Center, the company refined and extended the capabilities of the RemoteGen convertors. They can provide power in remote locations by efficiently producing electricity from multiple-fuel sources, such as propane, alcohol, gasoline, diesel, coal, solar energy, or wood pellets. Utilizing any fuel source that can create heat, RemoteGen enables the choice of the most appropriate fuel source available. The engines operate without friction, wear, or maintenance. These abilities pave the way for self-powered appliances, such as refrigerators and furnaces. Numerous applications for RemoteGen include quiet, pollution-free generators for RVs and yachts, power for cell phone towers remote from the grid, and off-grid residential power variously using propane, ethanol, and solid biomass fuels. One utility and the National Renewable Energy Laboratory are evaluating a solar dish concentrator version with excellent potential for powering remote irrigation pumps.
ZnO-based multiple channel and multiple gate FinMOSFETs
NASA Astrophysics Data System (ADS)
Lee, Ching-Ting; Huang, Hung-Lin; Tseng, Chun-Yen; Lee, Hsin-Ying
2016-02-01
In recent years, zinc oxide (ZnO)-based metal-oxide-semiconductor field-effect transistors (MOSFETs) have attracted much attention, because ZnO-based semiconductors possess several advantages, including large exciton binding energy, nontoxicity, biocompatibility, low material cost, and wide direct bandgap. Moreover, the ZnO-based MOSFET is one of most potential devices, due to the applications in microwave power amplifiers, logic circuits, large scale integrated circuits, and logic swing. In this study, to enhance the performances of the ZnO-based MOSFETs, the ZnObased multiple channel and multiple gate structured FinMOSFETs were fabricated using the simple laser interference photolithography method and the self-aligned photolithography method. The multiple channel structure possessed the additional sidewall depletion width control ability to improve the channel controllability, because the multiple channel sidewall portions were surrounded by the gate electrode. Furthermore, the multiple gate structure had a shorter distance between source and gate and a shorter gate length between two gates to enhance the gate operating performances. Besides, the shorter distance between source and gate could enhance the electron velocity in the channel fin structure of the multiple gate structure. In this work, ninety one channels and four gates were used in the FinMOSFETs. Consequently, the drain-source saturation current (IDSS) and maximum transconductance (gm) of the ZnO-based multiple channel and multiple gate structured FinFETs operated at a drain-source voltage (VDS) of 10 V and a gate-source voltage (VGS) of 0 V were respectively improved from 11.5 mA/mm to 13.7 mA/mm and from 4.1 mS/mm to 6.9 mS/mm in comparison with that of the conventional ZnO-based single channel and single gate MOSFETs.
Power conversion distribution system using a resonant high-frequency AC link
NASA Technical Reports Server (NTRS)
Sood, P. K.; Lipo, T. A.
1986-01-01
Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.
High brightness fiber laser pump sources based on single emitters and multiple single emitters
NASA Astrophysics Data System (ADS)
Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas
2008-02-01
Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.
Yan Wei, Xiao; Kuang, Shuang Yang; Yang Li, Hua; Pan, Caofeng; Zhu, Guang; Wang, Zhong Lin
2015-01-01
Self-powered system that is interface-free is greatly desired for area-scalable application. Here we report a self-powered electroluminescent system that consists of a triboelectric generator (TEG) and a thin-film electroluminescent (TFEL) lamp. The TEG provides high-voltage alternating electric output, which fits in well with the needs of the TFEL lamp. Induced charges pumped onto the lamp by the TEG generate an electric field that is sufficient to excite luminescence without an electrical interface circuit. Through rational serial connection of multiple TFEL lamps, effective and area-scalable luminescence is realized. It is demonstrated that multiple types of TEGs are applicable to the self-powered system, indicating that the system can make use of diverse mechanical sources and thus has potentially broad applications in illumination, display, entertainment, indication, surveillance and many others. PMID:26338365
Magnetour: Surfing planetary systems on electromagnetic and multi-body gravity fields
NASA Astrophysics Data System (ADS)
Lantoine, Gregory; Russell, Ryan P.; Anderson, Rodney L.; Garrett, Henry B.
2017-09-01
A comprehensive tour of the complex outer planet systems is a central goal in space science. However, orbiting multiple moons of the same planet would be extremely prohibitive using traditional propulsion and power technologies. In this paper, a new mission concept, named Magnetour, is presented to facilitate the exploration of outer planet systems and address both power and propulsion challenges. This approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, without significant propellant or onboard power source. To achieve this free-lunch 'Grand Tour', Magnetour exploits the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare electrodynamic tether for power and propulsion. Preliminary results indicate that the Magnetour concept is sound and is potentially highly promising at Jupiter.
Land-Use Intensity of Electricity Production: Comparison Across Multiple Sources
NASA Astrophysics Data System (ADS)
Swain, M.; Lovering, J.; Blomqvist, L.; Nordhaus, T.; Hernandez, R. R.
2015-12-01
Land is an increasingly scarce global resource that is subject to competing pressures from agriculture, human settlement, and energy development. As countries concerned about climate change seek to decarbonize their power sectors, renewable energy sources like wind and solar offer obvious advantages. However, the land needed for new energy infrastructure is also an important environmental consideration. The land requirement of different electricity sources varies considerably, but there are very few studies that offer a normalized comparison. In this paper, we use meta-analysis to calculate the land-use intensity (LUI) of the following electricity generation sources: wind, solar photovoltaic (PV), concentrated solar power (CSP), hydropower, geothermal, nuclear, biomass, natural gas, and coal. We used data from existing studies as well as original data gathered from public records and geospatial analysis. Our land-use metric includes land needed for the generation facility (e.g., power plant or wind farm) as well as the area needed to mine fuel for natural gas, coal, and nuclear power plants. Our results found the lowest total LUI for nuclear power (115 ha/TWh/y) and the highest LUI for biomass (114,817 ha/TWh/y). Solar PV and CSP had a considerably lower LUI than wind power, but both were an order of magnitude higher than fossil fuels (which ranged from 435 ha/TWh/y for natural gas to 579 ha/TWh/y for coal). Our results suggest that a large build-out of renewable electricity, though it would offer many environmental advantages over fossil fuel power sources, would require considerable land area. Among low-carbon energy sources, relatively compact sources like nuclear and solar have the potential to reduce land requirements.
High-efficiency integrated piezoelectric energy harvesting systems
NASA Astrophysics Data System (ADS)
Hande, Abhiman; Shah, Pradeep
2010-04-01
This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.
Control Algorithms Charge Batteries Faster
NASA Technical Reports Server (NTRS)
2012-01-01
On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.
NASA Astrophysics Data System (ADS)
Hennig, R. J.; Friedrich, J.; Malaguzzi Valeri, L.; McCormick, C.; Lebling, K.; Kressig, A.
2016-12-01
The Power Watch project will offer open data on the global electricity sector starting with power plants and their impacts on climate and water systems; it will also offer visualizations and decision making tools. Power Watch will create the first comprehensive, open database of power plants globally by compiling data from national governments, public and private utilities, transmission grid operators, and other data providers to create a core dataset that has information on over 80% of global installed capacity for electrical generation. Power plant data will at a minimum include latitude and longitude, capacity, fuel type, emissions, water usage, ownership, and annual generation. By providing data that is both comprehensive, as well as making it publically available, this project will support decision making and analysis by actors across the economy and in the research community. The Power Watch research effort focuses on creating a global standard for power plant information, gathering and standardizing data from multiple sources, matching information from multiple sources on a plant level, testing cross-validation approaches (regional statistics, crowdsourcing, satellite data, and others) and developing estimation methodologies for generation, emissions, and water usage. When not available from official reports, emissions, annual generation, and water usage will be estimated. Water use estimates of power plants will be based on capacity, fuel type and satellite imagery to identify cooling types. This analysis is being piloted in several states in India and will then be scaled up to a global level. Other planned applications of of the Power Watch data include improving understanding of energy access, air pollution, emissions estimation, stranded asset analysis, life cycle analysis, tracking of proposed plants and curtailment analysis.
View from... Photonics Meets Biology Summer School: The bio-mission of diode lasers
NASA Astrophysics Data System (ADS)
Won, Rachel
2015-12-01
Diode lasers represent a viable alternative to light sources used in many biomedical applications. Their ongoing development will further increase their importance, offering not only multiple wavelength ranges, but also higher power levels.
Large-region acoustic source mapping using a movable array and sparse covariance fitting.
Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L
2017-01-01
Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].
Microwave Frequency Multiplier
NASA Astrophysics Data System (ADS)
Velazco, J. E.
2017-02-01
High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing concerns. We present a theoretical analysis for the beam-wave interactions in the MFM's input and output cavities. We show the conditions required for successful frequency multiplication inside the output cavity. Computer simulations using the plasma physics code MAGIC show that 100 kW of Ka-band (32-GHz) output power can be produced using an 80-kW X-band (8-GHz) signal at the MFM's input. The associated MFM efficiency - from beam power to Ka-band power - is 83 percent. Thus, the overall klystron-MFM efficiency is 42 percent - assuming that a klystron with an efficiency of 50 percent delivers the input signal.
Note: Tormenta: An open source Python-powered control software for camera based optical microscopy.
Barabas, Federico M; Masullo, Luciano A; Stefani, Fernando D
2016-12-01
Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.
Note: Tormenta: An open source Python-powered control software for camera based optical microscopy
NASA Astrophysics Data System (ADS)
Barabas, Federico M.; Masullo, Luciano A.; Stefani, Fernando D.
2016-12-01
Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.
Field Trials of the Multi-Source Approach for Resistivity and Induced Polarization Data Acquisition
NASA Astrophysics Data System (ADS)
LaBrecque, D. J.; Morelli, G.; Fischanger, F.; Lamoureux, P.; Brigham, R.
2013-12-01
Implementing systems of distributed receivers and transmitters for resistivity and induced polarization data is an almost inevitable result of the availability of wireless data communication modules and GPS modules offering precise timing and instrument locations. Such systems have a number of advantages; for example, they can be deployed around obstacles such as rivers, canyons, or mountains which would be difficult with traditional 'hard-wired' systems. However, deploying a system of identical, small, battery powered, transceivers, each capable of injecting a known current and measuring the induced potential has an additional and less obvious advantage in that multiple units can inject current simultaneously. The original purpose for using multiple simultaneous current sources (multi-source) was to increase signal levels. In traditional systems, to double the received signal you inject twice the current which requires you to apply twice the voltage and thus four times the power. Alternatively, one approach to increasing signal levels for large-scale surveys collected using small, battery powered transceivers is it to allow multiple units to transmit in parallel. In theory, using four 400 watt transmitters on separate, parallel dipoles yields roughly the same signal as a single 6400 watt transmitter. Furthermore, implementing the multi-source approach creates the opportunity to apply more complex current flow patterns than simple, parallel dipoles. For a perfect, noise-free system, multi-sources adds no new information to a data set that contains a comprehensive set of data collected using single sources. However, for realistic, noisy systems, it appears that multi-source data can substantially impact survey results. In preliminary model studies, the multi-source data produced such startling improvements in subsurface images that even the authors questioned their veracity. Between December of 2012 and July of 2013, we completed multi-source surveys at five sites with depths of exploration ranging from 150 to 450 m. The sites included shallow geothermal sites near Reno Nevada, Pomarance Italy, and Volterra Italy; a mineral exploration site near Timmins Quebec; and a landslide investigation near Vajont Dam in northern Italy. These sites provided a series of challenges in survey design and deployment including some extremely difficult terrain and a broad range of background resistivity and induced values. Despite these challenges, comparison of multi-source results to resistivity and induced polarization data collection with more traditional methods support the thesis that the multi-source approach is capable of providing substantial improvements in both depth of penetration and resolution over conventional approaches.
Optical design of a light-emitting diode lamp for a maritime lighthouse.
Jafrancesco, D; Mercatelli, L; Sansoni, P; Fontani, D; Sani, E; Coraggia, S; Meucci, M; Francini, F
2015-04-10
Traffic signaling is an emerging field for light-emitting diode (LED) applications. This sustainable power-saving illumination technology can be used in maritime signaling thanks to the recently updated norms, where the possibility to utilize LED sources is explicitly cited, and to the availability of high-power white LEDs that, combined with suitable lenses, permit us to obtain well-collimated beams. This paper describes the optical design of a LED-based lamp that can replace a traditional lamp in an authentic marine lighthouse. This source recombines multiple separated LEDs realizing a quasi-punctual localized source. Advantages can be lower energy consumption, higher efficiency, longer life, fewer faults, slower aging, and minor maintenance costs. The proposed LED source allows us to keep and to utilize the old Fresnel lenses of the lighthouse, which very often have historical value.
Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua
2013-07-01
We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.
Heat Recuperator Engineering for an ARL Liquid-Fueled Thermophotovoltaic Power Source Demonstrator
2014-09-01
using logistics and multiple other fuels. Some potential technologies include thermoelectric , thermophotovoltaic (TPV), and thermionic. For these... thermoelectric , thermophotovoltaic (TPV), and thermionic. For these technologies, thermal efficiency is critical to achieve high energy density and thermal-to... thermoelectric and TPV. The exhaust gas will be above this temperature, but more than 50% of the thermal power of the combustor can be lost to the exhaust
Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reale, D. V., E-mail: david.reale@ttu.edu; Bragg, J.-W. B.; Gonsalves, N. R.
2014-05-15
Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bandsmore » of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.« less
Development of a Novel Wireless Electric Power Transfer System for Space Applications
NASA Technical Reports Server (NTRS)
VazquezRamos, Gabriel; Yuan, Jiann-Shiun
2011-01-01
This paper will introduce a new implementation for wireless electric power transfer systems: space applications. Due to the risks that constitute the use of electrical connector for some space missions/applications, a simple wireless power system design approach will be evaluated as an alternative for the use of electrical connectors. This approach takes into consideration the overall system performance by designing the magnetic resonance elements and by verifying the overall system electrical behavior. System characterization is accomplished by executing circuit and analytical simulations using Matlab(TradeMark) and LTSpiceIV(TradeMark) software packages. The design methodology was validated by two different experiments: frequency consideration (design of three magnetic elements) and a small scale proof-ofconcept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The proof-of-concept prototype provided approx.4 W of wireless power to the load (light bulb) at a separation of 3 cm from the source. In addition. a resonant circuit was designed and installed to the battery terminals of a handheld radio without batteries, making it tum on at a separation of approx.5 cm or less from the source. It was also demonstrated by prototype experimentation that multiple loads can be powered wirelessly at the same time with a single electric power source.
Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.
Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J
2014-05-01
Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.
ELF Transients and Q-bursts Detected Around the Globe: First results from Palmer Station, Antarctica
NASA Astrophysics Data System (ADS)
Flint, Q. A.; Moore, R. C.
2016-12-01
We present the first analysis of data from the recently deployed broadband ELF (5-500 Hz) B-field receiver at Palmer Station, Antarctica together with observations at similar receivers located at Sondrestromfjord, Greenland and Arrival Heights, Antarctica. Such remote locations afford the unique opportunity to record signals that are essentially unperturbed by power line noise. As a result, using this multi-site global network of ELF/VLF receivers, we are able to easily detect a particular type of ELF transient that propagates around the world multiple times, known as the Q-burst. The Q-burst is characterized by a large increase in amplitude above the background at the Schumann Resonance modes and is believed to result from especially powerful cloud-to-ground lightning discharges. These powerful lightning discharges are likely responsible for a significant level of energetic coupling between the troposphere, the ionosphere, and the magnetosphere. The ELF and VLF waves excited by the lightning discharge propagate to great distances in the earth-ionosphere waveguide, and in fact propagate around the Earth multiple times. By measuring the received waveform at multiple distant sites around the globe, we can pinpoint the source lightning location, compare the changes in field strength and spectrum as a function of distance from the source, and evaluate modal propagation effects in the VLF range (that are not apparent in the ELF range).
Chen, Tianle; Zeng, Donglin
2015-01-01
Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419
Lithium Iron Phosphate Cell Performance Evaluations for Lunar Extravehicular Activities
NASA Technical Reports Server (NTRS)
Reid, Concha
2007-01-01
Lithium-ion battery cells are being evaluated for their ability to provide primary power and energy storage for NASA s future Exploration missions. These missions include the Orion Crew Exploration Vehicle, the Ares Crew Launch Vehicle Upper Stage, Extravehicular Activities (EVA, the advanced space suit), the Lunar Surface Ascent Module (LSAM), and the Lunar Precursor and Robotic Program (LPRP), among others. Each of these missions will have different battery requirements. Some missions may require high specific energy and high energy density, while others may require high specific power, wide operating temperature ranges, or a combination of several of these attributes. EVA is one type of mission that presents particular challenges for today s existing power sources. The Portable Life Support System (PLSS) for the advanced Lunar surface suit will be carried on an astronaut s back during eight hour long sorties, requiring a lightweight power source. Lunar sorties are also expected to occur during varying environmental conditions, requiring a power source that can operate over a wide range of temperatures. Concepts for Lunar EVAs include a primary power source for the PLSS that can recharge rapidly. A power source that can charge quickly could enable a lighter weight system that can be recharged while an astronaut is taking a short break. Preliminary results of Al23 Ml 26650 lithium iron phosphate cell performance evaluations for an advanced Lunar surface space suit application are discussed in this paper. These cells exhibit excellent recharge rate capability, however, their specific energy and energy density is lower than typical lithium-ion cell chemistries. The cells were evaluated for their ability to provide primary power in a lightweight battery system while operating at multiple temperatures.
Charge-Control Unit for Testing Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.
2008-01-01
A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.
Long-Term Stability of the NIST Standard Ultrasonic Source.
Fick, Steven E
2008-01-01
The National Institute of Standards and Technology (NIST) Standard Ultrasonic Source (SUS) is a system comprising a transducer capable of output power levels up to 1 W at multiple frequencies between 1 MHz and 30 MHz, and an electrical impedance-matching network that allows the system to be driven by a conventional 50 Ω rf (radio-frequency) source. It is designed to allow interlaboratory replication of ultrasonic power levels with high accuracy using inexpensive readily available ancillary equipment. The SUS was offered for sale for 14 years (1985 to 1999). Each system was furnished with data for the set of calibration points (combinations of power level and frequency) specified by the customer. Of the systems that had been ordered with some calibration points in common, three were returned more than once to NIST for recalibration. Another system retained at NIST has been recalibrated periodically since 1984. The collective data for these systems comprise 9 calibration points and 102 measurements spanning a 17 year interval ending in 2001, the last year NIST ultrasonic power measurement services were available to the public. These data have been analyzed to compare variations in output power with frequency, power level, and time elapsed since the first calibration. The results verify the claim, made in the instruction sheet furnished with every SUS, that "long-term drift, if any, in the calibration of NIST Standard Sources is insignificant compared to the uncertainties associated with a single measurement of ultrasonic power by any method available at NIST."
Cheng, Tonglei; Tuan, Tong Hoang; Xue, Xiaojei; Liu, Lai; Deng, Dinghuan; Suzuki, Takenobu; Ohishi, Yasutake
2015-08-10
We experimentally demonstrate multiple dispersive waves (DWs) emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber (BTMOF). To the best of our knowledge, this is the first demonstration of multiple DWs in the non-silica fibers. By using a pulse of ~80 MHz and ~200 fs emitted from an optical parametric oscillator (OPO) as the pump source, DWs and solitons are investigated on the fast and slow axes of the BTMOF at the pump wavelength of ~1800 nm. With the average pump power increasing from ~200 to 450 mW, the center wavelength of the 1st DW decreases from ~956 to 890 nm, the 2nd DW from ~1039 to 997 nm, the 3rd DW from ~1101 to 1080 nm, and the 4th DW from ~1160 to 1150 nm. Meanwhile, obvious multiple soliton self-frequency shifts (SSFSs) are observed in the mid-infrared region. Furthermore, DWs and solitons at the pump wavelength of ~1400 and 2000 nm are investigated at the average pump power of ~350 mW.
Optimization of a Fabry-Perot Q-switch fiber optic laser
NASA Astrophysics Data System (ADS)
Armas Rivera, Ivan; Beltrán Pérez, Georgina; Kuzin, Evgene; Castillo Mixcóatl, Juan; Muñoz Aguirre, Severino
2013-11-01
Optical fiber Q-Switch lasers have been used in a variety of application areas in science as well as in industry owing to their multiple characteristics. A possible application is that owing to their high output power they can be used as pumping sources for supercontinuum generation. Such source can be employed in optical coherence tomography (OCT) focused to dermatology. Therefore it is important to develop sources with emission wavelength that are not injurious to human skin. In the present work erbium doped fiber (EDF) was used owing that its emission wavelength (1550 nm) is adequate for this purpose. The most efficient way of achieving high power in a Q-Switch laser is optimizing all the parameters involved in the pulses generation, such as pumping power, active medium length and modulation frequency. The results show that using a fiber length of 7 meters is possible to get 10 μJ of energy, a peak power of 140 W, an average power of 27.5mW with temporal widths of 500 ns. The laser uses an acousto-optic device to modulate the internal loses inside the cavity. As highly reflecting mirrors, a Sagnac Interferometer and a Fiber Bragg Grating was employed.
Parallel Implementation of the Wideband DOA Algorithm on the IBM Cell BE Processor
2010-05-01
Abstract—The Multiple Signal Classification ( MUSIC ) algorithm is a powerful technique for determining the Direction of Arrival (DOA) of signals...Broadband Engine Processor (Cell BE). The process of adapting the serial based MUSIC algorithm to the Cell BE will be analyzed in terms of parallelism and...using Multiple Signal Classification MUSIC algorithm [4] • Computation of Focus matrix • Computation of number of sources • Separation of Signal
High-power and highly reliable 638-nm band BA-LD for CW operation
NASA Astrophysics Data System (ADS)
Nishida, Takehiro; Kuramoto, Kyosuke; Abe, Shinji; Kusunoki, Masatsugu; Miyashita, Motoharu; Yagi, Tetsuya
2018-02-01
High-power laser diodes (LDs) are strongly demanded as light sources of display applications. In multiple spatial light modulator-type projectors or liquid crystal displays, the light source LDs are operated under CW condition. The high-power 638-nm band broad-area LD for CW operation was newly developed. The LD consisted of two stripes with each width of 75 μm to reduce both an optical power density at a front facet and a threshold current. The newly improved epitaxial technology was also applied to the LD to suppress an electron overflow from an active layer. The LD showed superior output characteristics, such as output of 1.77 W at case temperature of 55 °C with wall plug efficiency (WPE) of 23%, which was improved by 40% compared with the current product. The peak WPE at 25 °C reached 40.6% under the output power of 2.37 W, CW, world highest.
Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors
NASA Astrophysics Data System (ADS)
Bicanic, Kristopher T.
This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.
Determining the effect of key climate drivers on global hydropower production
NASA Astrophysics Data System (ADS)
Galelli, S.; Ng, J. Y.; Lee, D.; Block, P. J.
2017-12-01
Accounting for about 17% of total global electrical power production, hydropower is arguably the world's main renewable energy source and a key asset to meet Paris climate agreements. A key component of hydropower production is water availability, which depends on both precipitation and multiple drivers of climate variability acting at different spatial and temporal scales. To understand how these drivers impact global hydropower production, we study the relation between four patterns of ocean-atmosphere climate variability (i.e., El Niño Southern Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation, and Atlantic Multidecadal Oscillation) and monthly time series of electrical power production for over 1,500 hydropower reservoirs—obtained via simulation with a high-fidelity dam model forced with 20th century climate conditions. Notably significant relationships between electrical power productions and climate variability are found in many climate sensitive regions globally, including North and South America, East Asia, West Africa, and Europe. Coupled interactions from multiple, simultaneous climate drivers are also evaluated. Finally, we highlight the importance of using these climate drivers as an additional source of information within reservoir operating rules where the skillful predictability of inflow exists.
CHANDRA OBSERVATIONS OF SGR 1627-41 NEAR QUIESCENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Hongjun; Kaspi, Victoria M.; Cumming, Andrew
2012-09-20
We report on an observation of SGR 1627-41 made with the Chandra X-Ray Observatory on 2011 June 16. Approximately three years after its outburst activity in 2008, the source's flux has been declining, as it approaches its quiescent state. For an assumed power-law spectrum, we find that the absorbed 2-10 keV flux for the source is 1.0{sup +0.3}{sub -0.2} Multiplication-Sign 10{sup -13} erg cm{sup -2} s{sup -1} with a photon index of 2.9 {+-} 0.8 (N{sub H} = 1.0 Multiplication-Sign 10{sup 23} cm{sup -2}). This flux is approximately consistent with that measured at the same time after the source's outburstmore » in 1998. With measurements spanning three years after the 2008 outburst, we analyze the long-term flux and spectral evolution of the source. The flux evolution is well described by a double exponential with decay times of 0.5 {+-} 0.1 and 59 {+-} 6 days, and a thermal cooling model fit suggests that SGR 1627-41 may have a hot core (T{sub c} {approx} 2 Multiplication-Sign 10{sup 8} K). We find no clear correlation between flux and spectral hardness as found in other magnetars. We consider the quiescent X-ray luminosities of magnetars and the subset of rotation-powered pulsars with high magnetic fields (B {approx}> 10{sup 13} G) in relation to their spin-inferred surface magnetic field strength and find a possible trend between the two quantities.« less
Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2011-01-01
In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.
A Wideband Satcom Based Avionics Network with CDMA Uplink and TDM Downlink
NASA Technical Reports Server (NTRS)
Agrawal, D.; Johnson, B. S.; Madhow, U.; Ramchandran, K.; Chun, K. S.
2000-01-01
The purpose of this paper is to describe some key technical ideas behind our vision of a future satcom based digital communication network for avionics applications The key features of our design are as follows: (a) Packetized transmission to permit efficient use of system resources for multimedia traffic; (b) A time division multiplexed (TDM) satellite downlink whose physical layer is designed to operate the satellite link at maximum power efficiency. We show how powerful turbo codes (invented originally for linear modulation) can be used with nonlinear constant envelope modulation, thus permitting the satellite amplifier to operate in a power efficient nonlinear regime; (c) A code division multiple access (CDMA) satellite uplink, which permits efficient access to the satellite from multiple asynchronous users. Closed loop power control is difficult for bursty packetized traffic, especially given the large round trip delay to the satellite. We show how adaptive interference suppression techniques can be used to deal with the ensuing near-far problem; (d) Joint source-channel coding techniques are required both at the physical and the data transport layer to optimize the end-to-end performance. We describe a novel approach to multiple description image encoding at the data transport layer in this paper.
A Direct Position-Determination Approach for Multiple Sources Based on Neural Network Computation.
Chen, Xin; Wang, Ding; Yin, Jiexin; Wu, Ying
2018-06-13
The most widely used localization technology is the two-step method that localizes transmitters by measuring one or more specified positioning parameters. Direct position determination (DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer superior localization performance. However, existing DPD algorithms such as maximum likelihood (ML)-based and multiple signal classification (MUSIC)-based estimations are computationally expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose the use of a modular neural network for multiple-source DPD. In this method, the area of interest is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis function (RBF) neural networks are utilized for position estimation. Simulation results show that a number of appropriately trained neural networks can be successfully used for DPD. The performance of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore, the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is therefore an attractive choice for real-time applications.
Large area full-field optical coherence tomography using white light source
NASA Astrophysics Data System (ADS)
Chang, Shoude; Mao, Youxin; Sherif, Sherif; Flueraru, Costel
2007-06-01
Optical coherence tomography (OCT) is an emerging technology for high-resolution cross-sectional imaging of 3D structures. Not only could OCT extract the internal features of an object, but it could acquire the 3D profile of an object as well. Hence it has huge potentials for industrial applications. Owing to non-scanning along the X-Y axis, full-field OCT could be the simplest and most economic imaging system, especially for applications where the speed is critical. For an OCT system, the performance and cost basically depends on the light source being used. The broader the source bandwidth, the finer of the depth resolution that could be reached; the more power of the source, the better signal-to-noise ratio and the deeper of penetration the system achieves. A typical SLD (Superluminescent Diode) light source has a bandwidth of 15 nm and 10 mW optical power at a price around 6,000. However, a Halogen bulb having 50W power and 200nm bandwidth only costs less than 10. The design and implementation of a large-area, full-field OCT system using Halogen white-light source is described in the paper. The experimental results obtained from 3D shaping and multiple-layer tomographies are also presented.
Structure for common access and support of fuel cell stacks
Walsh, Michael M.
2000-01-01
A structure provides common support and access to multiple fuel cells externally mounted thereto. The structure has openings leading to passages defined therein for providing the access. Various other fuel cell power system components are connected at the openings, such as reactant and coolant sources.
CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN WATER ACT TO PROTECT A NATIONAL TREASURE
Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inh...
Poynting-vector based method for determining the bearing and location of electromagnetic sources
Simons, David J.; Carrigan, Charles R.; Harben, Philip E.; Kirkendall, Barry A.; Schultz, Craig A.
2008-10-21
A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.
Hydro-Piezoelectricity: A Renewable Energy Source for Autonomous Underwater Vehicles
1999-09-30
having capacities of a few watts to hundreds of kW. Based on a unique Wave Energy Converter ( WEC ) buoy and intelligent power take-off algorithms, the... environmental monitoring. In addition, there will be significant dual use in the commercial sector for power generation in remote locations where the...2.5 meter by 6.5 meter long WEC at the LEO 15 site of Rutgers University. b. Multiple sensor outputs and performance data were reliably
Source-space ICA for MEG source imaging.
Jonmohamadi, Yaqub; Jones, Richard D
2016-02-01
One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.
Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.G. Johnson; K.L. Lively; C.C. Dwight
Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would bemore » that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.« less
Microfabricated injectable drug delivery system
Krulevitch, Peter A.; Wang, Amy W.
2002-01-01
A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.
ERIC Educational Resources Information Center
Bradshaw, Delia
2001-01-01
Teachers transform lives, and the ripple effect goes on for years. Three pertinent questions are asked in this paper: Where does this power come from? What is its source? and What makes teachers so special? Two aspects of these questions are the multiplicity of identities that coexist within each teacher and the passion inside teachers that…
Optical Interconnection Via Computer-Generated Holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Zhou, Shaomin
1995-01-01
Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.
Energy recovery during expansion of compressed gas using power plant low-quality heat sources
Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR
2006-03-07
A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.
NASA Astrophysics Data System (ADS)
Eckert, C. H. J.; Zenker, E.; Bussmann, M.; Albach, D.
2016-10-01
We present an adaptive Monte Carlo algorithm for computing the amplified spontaneous emission (ASE) flux in laser gain media pumped by pulsed lasers. With the design of high power lasers in mind, which require large size gain media, we have developed the open source code HASEonGPU that is capable of utilizing multiple graphic processing units (GPUs). With HASEonGPU, time to solution is reduced to minutes on a medium size GPU cluster of 64 NVIDIA Tesla K20m GPUs and excellent speedup is achieved when scaling to multiple GPUs. Comparison of simulation results to measurements of ASE in Y b 3 + : Y AG ceramics show perfect agreement.
Multi-Mission Power Analysis Tool (MMPAT) Version 3
NASA Technical Reports Server (NTRS)
Wood, Eric G.; Chang, George W.; Chen, Fannie C.
2012-01-01
The Multi-Mission Power Analysis Tool (MMPAT) simulates a spacecraft power subsystem including the power source (solar array and/or radioisotope thermoelectric generator), bus-voltage control, secondary battery (lithium-ion or nickel-hydrogen), thermostatic heaters, and power-consuming equipment. It handles multiple mission types including heliocentric orbiters, planetary orbiters, and surface operations. Being parametrically driven along with its user-programmable features can reduce or even eliminate any need for software modifications when configuring it for a particular spacecraft. It provides multiple levels of fidelity, thereby fulfilling the vast majority of a project s power simulation needs throughout the lifecycle. It can operate in a stand-alone mode with a graphical user interface, in batch mode, or as a library linked with other tools. This software can simulate all major aspects of a spacecraft power subsystem. It is parametrically driven to reduce or eliminate the need for a programmer. Added flexibility is provided through user-designed state models and table-driven parameters. MMPAT is designed to be used by a variety of users, such as power subsystem engineers for sizing power subsystem components; mission planners for adjusting mission scenarios using power profiles generated by the model; system engineers for performing system- level trade studies using the results of the model during the early design phases of a spacecraft; and operations personnel for high-fidelity modeling of the essential power aspect of the planning picture.
Bi-level Multi-Source Learning for Heterogeneous Block-wise Missing Data
Xiang, Shuo; Yuan, Lei; Fan, Wei; Wang, Yalin; Thompson, Paul M.; Ye, Jieping
2013-01-01
Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified “bi-level” learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. PMID:23988272
Bi-level multi-source learning for heterogeneous block-wise missing data.
Xiang, Shuo; Yuan, Lei; Fan, Wei; Wang, Yalin; Thompson, Paul M; Ye, Jieping
2014-11-15
Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. © 2013 Elsevier Inc. All rights reserved.
Power-output regularization in global sound equalization.
Stefanakis, Nick; Sarris, John; Cambourakis, George; Jacobsen, Finn
2008-01-01
The purpose of equalization in room acoustics is to compensate for the undesired modification that an enclosure introduces to signals such as audio or speech. In this work, equalization in a large part of the volume of a room is addressed. The multiple point method is employed with an acoustic power-output penalty term instead of the traditional quadratic source effort penalty term. Simulation results demonstrate that this technique gives a smoother decline of the reproduction performance away from the control points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A. A.; Abeysekara, U.; Linnemann, J. T.
2012-07-10
The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, are analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum ismore » measured in the range 1-100 TeV using the last three years of Milagro data (2005-2008), with the detector in its final configuration. An F-test indicates that MGRO J2019+37 is better fit by a power law with an exponential cutoff than by a simple power law. The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of 7{sup +5}{sub -2} Multiplication-Sign 10{sup -10} s{sup -1} m{sup -2} TeV{sup -1}, a spectral index of 2.0{sup +0.5}{sub -1.0}, and a cutoff energy of 29{sup +50}{sub -16} TeV. MGRO J2031+41 shows no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of 2.1{sup +0.6}{sub -0.6} Multiplication-Sign 10{sup -10} s{sup -1} m{sup -2} TeV{sup -1} and a spectral index of 3.22{sup +0.23}{sub -0.18}. The overall flux is subject to a {approx}30% systematic uncertainty. The systematic uncertainty on the power-law indices is {approx}0.1. Both uncertainties have been verified with cosmic-ray data. A comparison with previous results from TeV J2032+4130, MGRO J2031+41, and MGRO J2019+37 is also presented.« less
An autonomous structural health monitoring solution
NASA Astrophysics Data System (ADS)
Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew
2013-05-01
Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.
Smart Energy Management of Multiple Full Cell Powered Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOhammad S. Alam
2007-04-23
In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. Themore » goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.
An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.
EEG and MEG data analysis in SPM8.
Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl
2011-01-01
SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools.
EEG and MEG Data Analysis in SPM8
Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl
2011-01-01
SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools. PMID:21437221
The Power of Verbal Scaffolding: "Showing" Beginning Readers How to Use Reading Strategies
ERIC Educational Resources Information Center
Ankrum, Julie W.; Genest, Maria T.; Belcastro, Elizabeth G.
2014-01-01
A single case study design was employed to describe the nature of one teacher's verbal scaffolding used during differentiated reading instruction in a kindergarten classroom. The teacher participant was selected from a group of exemplary teachers nominated from two school districts in southwestern Pennsylvania. Multiple sources of data, including…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgenson, Jennie; Denholm, Paul; Mehos, Mark
2013-12-01
Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that the solar thermal energy can be dispatched similarly to conventional thermal generation. However, CSP-TES plants are energy-limited, meaning that their response might be restricted by solar availability. Therefore, the use of this limited solar energy must be optimally scheduled toprovide the greatest value to the system. The timing of CSP-TES dispatch depends on a variety of factors, including electricity demand patterns, the penetration of variable generation sources, and the configuration of the CSP-TES plant itself. We use an established CSP-TES modeling framework inmore » a commercially available production cost model to compare the dispatch and value of two CSP-TEStechnologies (molten salt towers and parabolic troughs) in a Colorado test system. In addition, we consider a range of configuration parameters, such as the solar multiple and thermal energy storage limit, to evaluate how the operational and capacity value varies with plant configuration.« less
The effect of a hot, spherical scattering cloud on quasi-periodic oscillation behavior
NASA Astrophysics Data System (ADS)
Bussard, R. W.; Weisskopf, M. C.; Elsner, R. F.; Shibazaki, N.
1988-04-01
A Monte Carlo technique is used to investigate the effects of a hot electron scattering cloud surrounding a time-dependent X-ray source. Results are presented for the time-averaged emergent energy spectra and the mean residence time in the cloud as a function of energy. Moreover, after Fourier transforming the scattering Green's function, it is shown how the cloud affects both the observed power spectrum of a time-dependent source and the cross spectrum (Fourier transform of a cross correlation between energy bands). It is found that the power spectra intrinsic to the source are related to those observed by a relatively simple frequency-dependent multiplicative factor (a transmission function). The cloud can severely attenuate high frequencies in the power spectra, depending on optical depth, and, at lower frequencies, the transmission function has roughly a Lorentzian shape. It is also found that if the intrinsic energy spectrum is constant in time, the phase of the cross spectrum is determined entirely by scattering. Finally, the implications of the results for studies of the X-ray quasi-periodic oscillators are discussed.
Chikkagoudar, Satish; Wang, Kai; Li, Mingyao
2011-05-26
Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.
2011-01-01
Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/. PMID:21615923
The Chandra Source Catalog 2.0: Spectral Properties
NASA Astrophysics Data System (ADS)
McCollough, Michael L.; Siemiginowska, Aneta; Burke, Douglas; Nowak, Michael A.; Primini, Francis Anthony; Laurino, Omar; Nguyen, Dan T.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula; Chandra Source Catalog Team
2018-01-01
The second release of the Chandra Source Catalog (CSC) contains all sources identified from sixteen years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package) using wstat as a fit statistic and Bayesian draws method to determine errors. Three models were fit to each source: an absorbed power-law, blackbody, and Bremsstrahlung emission. The fitted parameter values for the power-law, blackbody, and Bremsstrahlung models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy fluxes computed from the normalizations of predefined absorbed power-law, black-body, Bremsstrahlung, and APEC models needed to match the observed net X-ray counts. For sources that have been observed multiple times we performed a Bayesian Blocks analysis will have been performed (see the Primini et al. poster) and the most significant block will have a joint fit performed for the mentioned spectral models. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard). This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering
NASA Astrophysics Data System (ADS)
Badel, Arnaud; Tixador, Pascal; Arniet, Michel
2012-01-01
Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.
Power control apparatus and methods for electric vehicles
Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li
2016-03-22
Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.
Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.
Lee, Dasheng
2008-12-02
In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program.
Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network
Lee, Dasheng
2008-01-01
In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program. PMID:27873953
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.
1983-01-01
An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.
Multiplicity of High-z Submillimeter Galaxies from Cosmological Simulations
NASA Astrophysics Data System (ADS)
Ball, David; Narayanan, Desika; Hopkins, Philip F.; Turk, Matthew
2015-01-01
Sub-millimeter galaxies (or SMG's) are some of the most luminous galaxies in the universe, yet are nearly invisible in the optical. Theorists have long struggled to simulate SMG's and accurately match their spectral properties and abundance to observations. Recent high-resolution observations, however, suggest that what were previously thought to be single sub-millimeter sources on the sky, may break up into multiple components when viewed with sufficient resolving power. Here, we present a combination of high-resolution cosmological hydrodynamic zoom simulations of massive galaxies in formation with a new dust radiative transfer package in order to understand this multiplicity in simulated SMGs. We find that multiplicity is a natural element of SMG formation as numerous subhalos bombard the central during its peak growth phase
PC Software graphics tool for conceptual design of space/planetary electrical power systems
NASA Technical Reports Server (NTRS)
Truong, Long V.
1995-01-01
This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.
Novel attributes of AlGaN/AlN/GaN/SiC HEMTs with the multiple indented channel
NASA Astrophysics Data System (ADS)
Orouji, Ali A.; Ghaffari, Majid
2015-11-01
In this paper, a high performance AlGaN/AlN/GaN/SiC High Electron Mobility Transistor (HEMT) with the multiple indented channel (MIC-HEMT) is proposed. The main focus of the proposed structure is based on reduction of the space around the gate, stop of the spread of the depletion region around the source-drain, and decrement of the thickness of the channel between the gate and drain. Therefore, the breakdown voltage increases, meanwhile the elimination of the gate depletion layer extension to source/drain decreases the gate-source and gate-drain capacitances. The optimized results reveal that the breakdown voltage and the drain saturation current increase about 178% and 46% compared with a conventional HEMT (C-HEMT), respectively. Therefore, the maximum output power density is improved by factor 4.1 in comparison with conventional one. Also, the cut-off frequency of 25.2 GHz and the maximum oscillation frequency of 92.1 GHz for the MIC-HEMT are obtained compared to 13 GHz and 43 GHz for that of the C-HEMT and the minimum figure noise decreased consequently of reducing the gate-drain and gate-source capacitances by about 42% and 40%, respectively. The proposed MIC-HEMT shows a maximum stable gain (MSG) exceeding 24.1 dB at 3.1 GHz which the greatest gain is yet reported for HEMTs, showing the potential of this device for high power RF applications.
Song, Hajun; Hwang, Sejin; Song, Jong-In
2017-05-15
This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.
Energy to the Edge (E2E) U.S. Army Rapid Equipping Force
2014-03-21
generators, parallel multiple sources, prioritize loads, and balance loads. Smart grids are based on complex algorithms and controls. 3. Reduce...stations are not able to be s rviced by prim power because of their location in the middle of a very active airfield and fueling a syst m that c ist
Collaborative Action Research on Technology Integration for Science Learning
ERIC Educational Resources Information Center
Wang, Chien-hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua
2012-01-01
This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies,…
New developments in cogeneration: opening remarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuster, C.N.
1982-06-01
Cogeneration is defined as Total energy, that is, multiple use of a single source of energy. Dual utilization of radiation in an ancient bath in Pompeii is perhaps the earliest such use. Because of PURPA in 1978 development of small power production facilities and cogeneration is encouraged. A map shows the projected cogeneration facilities across the country in 1995.
Multiple Filamentation of Laser Pulses in a Glass
NASA Astrophysics Data System (ADS)
Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Iglakova, A. N.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.; Sokolova, E. B.
2016-03-01
Results are presented of experiments on investigation of the spatial characteristics of multi-filamentation region of giga- and terawatt pulses of a Ti:sapphire laser in a glass. Dependences are obtained of the coordinate of the beginning of filamentation region, number of filaments, their distribution along the laser beam axis, and length of filaments on the pulse power. It is shown that with increasing radiation power, the number of filaments in the multi-filamentation region decreases, whereas the filament diameter has a quasiconstant value for all powers realized in the experiments. It is shown that as a certain power of the laser pulse with Gauss energy density distribution is reached, the filamentation region acquires the shape of a hollow cone with apex directed toward the radiation source.
1983-09-01
pulses Ncr) of polymer materials in the multiple irradiation regime at a fixed laser intensity corresponding to Ncr = 20 for PMMA...KCl to repetitively pulsed 10.6 ~m laser irradiation . The technique of pulsed laser calorimetry [1] was used and at low intensity (~2s0 Mw/cm 2 ) a...power pulsed lasers . Under irradiation by high in tensity pUlsed monochromatic sources intensity dependent absorption mechanisms can be
Ogura, Yusuke; Shirai, Nobuhiro; Tanida, Jun
2002-09-20
An optical levitation and translation method for a microscopic particle by use of the resultant force induced by multiple light beams is studied. We show dependence of the radiation pressure force on the illuminating distribution by numerical calculation, and we find that the strongest axial force is obtained by a specific spacing period of illuminating beams. Extending the optical manipulation technique by means of vertical-cavity surface-emitting laser (VCSEL) array sources [Appl. Opt. 40, 5430 (2001)], we are the first, to our knowledge, to demonstrate levitation of a particle and its translation while levitated by using a VCSEL array. The vertical position of the target particle can be controlled in a range of a few tens of micrometers with an accuracy of 2 microm or less. The analytical and experimental results suggest that use of multiple beams is an effective method to levitate a particle with low total illumination power. Some issues on the manipulation method that uses multiple beams are discussed.
A compact and continuously driven supersonic plasma and neutral source.
Asai, T; Itagaki, H; Numasawa, H; Terashima, Y; Hirano, Y; Hirose, A
2010-10-01
A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.
Custom chipset and compact module design for a 75-110 GHz laboratory signal source
NASA Astrophysics Data System (ADS)
Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.
2016-12-01
We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummon, M.; Jorgenson, J.; Denholm, P.
2013-10-01
Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant.more » We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.« less
Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummon, M.; Denholm, P.; Jorgenson, J.
2013-10-01
Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant.more » We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.« less
Patch Network for Power Allocation and Distribution in Smart Materials
NASA Technical Reports Server (NTRS)
Golembiewski, Walter T.
2000-01-01
The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.
Miniature quadrupole mass spectrometer having a cold cathode ionization source
Felter, Thomas E.
2002-01-01
An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.
Status of a Power Processor for the Prometheus-1 Electric Propulsion System
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Hill, Gerald M.; Aulisio, Michael; Gerber, Scott; Griebeler, Elmer; Hewitt, Frank; Scina, Joseph
2006-01-01
NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies.
NASA Astrophysics Data System (ADS)
Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Gerilowski, K.; Krings, T.; Borchardt, J.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Roberts, D. A.; Dennison, P. E.; Ayasse, A.
2016-12-01
Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) can map large regions with the high spatial resolution necessary to resolve methane (CH4) and carbon dioxide (CO2) emissions. This capability is aided by real time detection and geolocation of gas plumes, permitting unambiguous identification of individual emission source locations and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in the Four Corners region (Colorado and New Mexico) and the San Joaquin Valley (California). Over three hundred plumes were observed, reflecting emissions from anthropogenic and natural sources. Examples of plumes will be shown for a number of sources, including CH4 from well completions, gas processing plants, tanks, pipeline leaks, natural seeps, and CO2 from power plants. Despite these promising results, an imaging spectrometer built exclusively for quantitative mapping of gas plumes would have improved sensitivity compared to AVIRIS-NG. For example, an instrument providing a 1 nm spectral sampling (2,000-2,400 micron) would permit mapping CH4, CO2, H2O, CO, and N2O from more diffuse sources using both airborne and orbital platforms. The ability to identify emission sources offers the potential to constrain regional greenhouse gas budgets and improve partitioning between anthropogenic and natural emission sources. Because the CH4 lifetime is only about 9 years and CH4 has a Global Warming Potential 86 times that of CO2 for a 20 year time interval, mitigating these emissions is a particularly cost-effective approach to reduce overall atmospheric radiative forcing. Fig. 1. True color image subset with superimposed gas plumes showing concentrations in ppmm. Left: AVIRIS-NG observed CH4 plumes from natural gas processing plant extending over 500 m downwind of multiple emissions sources. Right: Multiple CO2 plumes observed from coal-fired power plant.
Sliding-mode control of single input multiple output DC-DC converter
NASA Astrophysics Data System (ADS)
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
Sliding-mode control of single input multiple output DC-DC converter.
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
NASA Astrophysics Data System (ADS)
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2012-09-01
The global rise in energy demands brings major obstacles to many energy organizations in providing adequate energy supply. Hence, many techniques to generate cost effective, reliable and environmentally friendly alternative energy source are being explored. One such method is the integration of photovoltaic cells, wind turbine generators and fuel-based generators, included with storage batteries. This sort of power systems are known as distributed generation (DG) power system. However, the application of DG power systems raise certain issues such as cost effectiveness, environmental impact and reliability. The modelling as well as the optimization of this DG power system was successfully performed in the previous work using Particle Swarm Optimization (PSO). The central idea of that work was to minimize cost, minimize emissions and maximize reliability (multi-objective (MO) setting) with respect to the power balance and design requirements. In this work, we introduce a fuzzy model that takes into account the uncertain nature of certain variables in the DG system which are dependent on the weather conditions (such as; the insolation and wind speed profiles). The MO optimization in a fuzzy environment was performed by applying the Hopfield Recurrent Neural Network (HNN). Analysis on the optimized results was then carried out.
2008-09-12
considered to be promising for application as distributed generation sources due to high efficiency and compactness [1-2], [21-24]. The PEMFC is...also a primary candidate for environment-friendly vehicles. The nomenclatures of the PEMFC are as follows: B , C : Constants to calculate the...0 O H H-O H-O 1 2 N I q q r r FU = (10) The block diagram of the PEMFC model based on the above equations is shown in Fig
Multiple protocol fluorometer and method
Kolber, Zbigniew S.; Falkowski, Paul G.
2000-09-19
A multiple protocol fluorometer measures photosynthetic parameters of phytoplankton and higher plants using actively stimulated fluorescence protocols. The measured parameters include spectrally-resolved functional and optical absorption cross sections of PSII, extent of energy transfer between reaction centers of PSII, F.sub.0 (minimal), F.sub.m (maximal) and F.sub.v (variable) components of PSII fluorescence, photochemical and non-photochemical quenching, size of the plastoquinone (PQ) pool, and the kinetics of electron transport between Q.sub.a and PQ pool and between PQ pool and PSI. The multiple protocol fluorometer, in one embodiment, is equipped with an excitation source having a controlled spectral output range between 420 nm and 555 nm and capable of generating flashlets having a duration of 0.125-32 .mu.s, an interval between 0.5 .mu.s and 2 seconds, and peak optical power of up to 2 W/cm.sup.2. The excitation source is also capable of generating, simultaneous with the flashlets, a controlled continuous, background illumination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huertas-Hernando, Daniel; Farahmand, Hossein; Holttinen, Hannele
2016-06-20
Hydro power is one of the most flexible sources of electricity production. Power systems with considerable amounts of flexible hydro power potentially offer easier integration of variable generation, e.g., wind and solar. However, there exist operational constraints to ensure mid-/long-term security of supply while keeping river flows and reservoirs levels within permitted limits. In order to properly assess the effective available hydro power flexibility and its value for storage, a detailed assessment of hydro power is essential. Due to the inherent uncertainty of the weather-dependent hydrological cycle, regulation constraints on the hydro system, and uncertainty of internal load as wellmore » as variable generation (wind and solar), this assessment is complex. Hence, it requires proper modeling of all the underlying interactions between hydro power and the power system, with a large share of other variable renewables. A summary of existing experience of wind integration in hydro-dominated power systems clearly points to strict simulation methodologies. Recommendations include requirements for techno-economic models to correctly assess strategies for hydro power and pumped storage dispatch. These models are based not only on seasonal water inflow variations but also on variable generation, and all these are in time horizons from very short term up to multiple years, depending on the studied system. Another important recommendation is to include a geographically detailed description of hydro power systems, rivers' flows, and reservoirs as well as grid topology and congestion.« less
Microwave Power Combiners for Signals of Arbitrary Amplitude
NASA Technical Reports Server (NTRS)
Conroy, Bruce; Hoppe, Daniel
2009-01-01
Schemes for combining power from coherent microwave sources of arbitrary (unequal or equal) amplitude have been proposed. Most prior microwave-power-combining schemes are limited to sources of equal amplitude. The basic principle of the schemes now proposed is to use quasi-optical components to manipulate the polarizations and phases of two arbitrary-amplitude input signals in such a way as to combine them into one output signal having a specified, fixed polarization. To combine power from more than two sources, one could use multiple powercombining stages based on this principle, feeding the outputs of lower-power stages as inputs to higher-power stages. Quasi-optical components suitable for implementing these schemes include grids of parallel wires, vane polarizers, and a variety of waveguide structures. For the sake of brevity, the remainder of this article illustrates the basic principle by focusing on one scheme in which a wire grid and two vane polarizers would be used. Wire grids are the key quasi-optical elements in many prior equal-power combiners. In somewhat oversimplified terms, a wire grid reflects an incident beam having an electric field parallel to the wires and passes an incident beam having an electric field perpendicular to the wires. In a typical prior equal-power combining scheme, one provides for two properly phased, equal-amplitude signals having mutually perpendicular linear polarizations to impinge from two mutually perpendicular directions on a wire grid in a plane oriented at an angle of 45 with respect to both beam axes. The wires in the grid are oriented to pass one of the incident beams straight through onto the output path and to reflect the other incident beam onto the output path along with the first-mentioned beam.
NASA Astrophysics Data System (ADS)
Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping
2018-03-01
Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.
Scaling device for photographic images
NASA Technical Reports Server (NTRS)
Rivera, Jorge E. (Inventor); Youngquist, Robert C. (Inventor); Cox, Robert B. (Inventor); Haskell, William D. (Inventor); Stevenson, Charles G. (Inventor)
2005-01-01
A scaling device projects a known optical pattern into the field of view of a camera, which can be employed as a reference scale in a resulting photograph of a remote object, for example. The device comprises an optical beam projector that projects two or more spaced, parallel optical beams onto a surface of a remotely located object to be photographed. The resulting beam spots or lines on the object are spaced from one another by a known, predetermined distance. As a result, the size of other objects or features in the photograph can be determined through comparison of their size to the known distance between the beam spots. Preferably, the device is a small, battery-powered device that can be attached to a camera and employs one or more laser light sources and associated optics to generate the parallel light beams. In a first embodiment of the invention, a single laser light source is employed, but multiple parallel beams are generated thereby through use of beam splitting optics. In another embodiment, multiple individual laser light sources are employed that are mounted in the device parallel to one another to generate the multiple parallel beams.
Multifrequency observations of a solar microwave burst with two-dimensional spatial resolution
NASA Technical Reports Server (NTRS)
Gary, Dale E.; Hurford, G. J.
1990-01-01
Frequency-agile interferometry observations using three baselines and the technique of frequency synthesis were used to obtain two-dimensional positions of multiple microwave sources at several frequency ranges in a solar flare. Source size and brightness temperature spectra were obtained near the peak of the burst. The size spectrum shows that the source size decreases rapidly with increasing frequency, but the brightness temperature spectrum can be well-fitted by gyrosynchrotron emission from a nonthermal distribution of electrons with power-law index of 4.8. The spatial structure of the burst showed several characteristics in common with primary/secondary bursts discussed by Nakajima et al. (1985). A source of coherent plasma emission at low frequencies is found near the secondary gyrosynchrotron source, associated with the leader spots of the active region.
Principles for timing at spallation neutron sources based on developments at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, R. O.; Merl, R. B.; Rose, C. R.
2001-01-01
Due to AC-power-grid frequency fluctuations, the designers for accelerator-based spallation-neutron facilities have worked to optimize the conflicting demands of accelerator and neutron chopper performance. For the first time, we are able to quantitatively access the tradeoffs between these two constraints and design or upgrade a facility to optimize total system performance using powerful new simulation techniques. We have modeled timing systems that integrate chopper controllers and chopper hardware and built new systems. Thus, at LANSCE, we now operate multiple chopper systems and the accelerator as simple slaves to a single master-timing-reference generator. Based on this experience we recommend that spallationmore » neutron sources adhere to three principles. First, timing for pulsed sources should be planned starting with extraction at a fixed phase and working backwards toward the leading edge of the beam pulse. Second, accelerator triggers and storage ring extraction commands from neutron choppers offer only marginal benefits to accelerator-based spallation sources. Third, the storage-ring RF should be phase synchronized with neutron choppers to provide extraction without the one orbit timing uncertainty.« less
An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments
Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; ...
2015-09-18
Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DCmore » voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.« less
Designing for Wide-Area Situation Awareness in Future Power Grid Operations
NASA Astrophysics Data System (ADS)
Tran, Fiona F.
Power grid operation uncertainty and complexity continue to increase with the rise of electricity market deregulation, renewable generation, and interconnectedness between multiple jurisdictions. Human operators need appropriate wide-area visualizations to help them monitor system status to ensure reliable operation of the interconnected power grid. We observed transmission operations at a control centre, conducted critical incident interviews, and led focus group sessions with operators. The results informed a Work Domain Analysis of power grid operations, which in turn informed an Ecological Interface Design concept for wide-area monitoring. I validated design concepts through tabletop discussions and a usability evaluation with operators, earning a mean System Usability Scale score of 77 out of 90. The design concepts aim to support an operator's complete and accurate understanding of the power grid state, which operators increasingly require due to the critical nature of power grid infrastructure and growing sources of system uncertainty.
Power in the loop real time simulation platform for renewable energy generation
NASA Astrophysics Data System (ADS)
Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing
2018-02-01
Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.
A multi-channel isolated power supply in non-equipotential circuit
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da
2018-04-01
A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.
The evolution of scaling laws in the sea ice floe size distribution
NASA Astrophysics Data System (ADS)
Horvat, Christopher; Tziperman, Eli
2017-09-01
The sub-gridscale floe size and thickness distribution (FSTD) is an emerging climate variable, playing a leading-order role in the coupling between sea ice, the ocean, and the atmosphere. The FSTD, however, is difficult to measure given the vast range of horizontal scales of individual floes, leading to the common use of power-law scaling to describe it. The evolution of a coupled mixed-layer-FSTD model of a typical marginal ice zone is explicitly simulated here, to develop a deeper understanding of how processes active at the floe scale may or may not lead to scaling laws in the floe size distribution. The time evolution of mean quantities obtained from the FSTD (sea ice concentration, mean thickness, volume) is complex even in simple scenarios, suggesting that these quantities, which affect climate feedbacks, should be carefully calculated in climate models. The emergence of FSTDs with multiple separate power-law regimes, as seen in observations, is found to be due to the combination of multiple scale-selective processes. Limitations in assuming a power-law FSTD are carefully analyzed, applying methods used in observations to FSTD model output. Two important sources of error are identified that may lead to model biases: one when observing an insufficiently small range of floe sizes, and one from the fact that floe-scale processes often do not produce power-law behavior. These two sources of error may easily lead to biases in mean quantities derived from the FSTD of greater than 100%, and therefore biases in modeled sea ice evolution.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2013-01-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2012-08-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... arithmetic mean PM 2.5 concentration from single or multiple community- oriented monitors, and 65 [mu]g/m\\3...-oriented monitor within an area. In addition, the 24-hour PM 10 standard was revised to be based on the...): Stationary source monitoring and reporting. 110(a)(2)(G): Emergency powers. 110(a)(2)(H): Future SIP...
Air Force Technical Objective Document, FY89.
1988-04-01
threat warning; multimegawatt stand-off jammers; a family of new, broadband , active decoy expendables; E4? subsystems and EW suites for Military...and monolithic integrated circuits. (3) Microwave TWTs Develop microwave tube technology and selected thermionic power sources and amplifiers for ECM...Improved design reliability and multiple application of tube technology are stressed. Improve Traveling Wave Tube ( TWT ) reliability by instrumenting a TWT
Energy harvesting using TEG and PV cell for low power application
NASA Astrophysics Data System (ADS)
Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain
2018-02-01
A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.
Churchill, Nathan W; Spring, Robyn; Grady, Cheryl; Cimprich, Bernadine; Askren, Mary K; Reuter-Lorenz, Patricia A; Jung, Mi Sook; Peltier, Scott; Strother, Stephen C; Berman, Marc G
2016-08-08
There is growing evidence that fluctuations in brain activity may exhibit scale-free ("fractal") dynamics. Scale-free signals follow a spectral-power curve of the form P(f ) ∝ f(-β), where spectral power decreases in a power-law fashion with increasing frequency. In this study, we demonstrated that fractal scaling of BOLD fMRI signal is consistently suppressed for different sources of cognitive effort. Decreases in the Hurst exponent (H), which quantifies scale-free signal, was related to three different sources of cognitive effort/task engagement: 1) task difficulty, 2) task novelty, and 3) aging effects. These results were consistently observed across multiple datasets and task paradigms. We also demonstrated that estimates of H are robust across a range of time-window sizes. H was also compared to alternative metrics of BOLD variability (SDBOLD) and global connectivity (Gconn), with effort-related decreases in H producing similar decreases in SDBOLD and Gconn. These results indicate a potential global brain phenomenon that unites research from different fields and indicates that fractal scaling may be a highly sensitive metric for indexing cognitive effort/task engagement.
Churchill, Nathan W.; Spring, Robyn; Grady, Cheryl; Cimprich, Bernadine; Askren, Mary K.; Reuter-Lorenz, Patricia A.; Jung, Mi Sook; Peltier, Scott; Strother, Stephen C.; Berman, Marc G.
2016-01-01
There is growing evidence that fluctuations in brain activity may exhibit scale-free (“fractal”) dynamics. Scale-free signals follow a spectral-power curve of the form P(f ) ∝ f−β, where spectral power decreases in a power-law fashion with increasing frequency. In this study, we demonstrated that fractal scaling of BOLD fMRI signal is consistently suppressed for different sources of cognitive effort. Decreases in the Hurst exponent (H), which quantifies scale-free signal, was related to three different sources of cognitive effort/task engagement: 1) task difficulty, 2) task novelty, and 3) aging effects. These results were consistently observed across multiple datasets and task paradigms. We also demonstrated that estimates of H are robust across a range of time-window sizes. H was also compared to alternative metrics of BOLD variability (SDBOLD) and global connectivity (Gconn), with effort-related decreases in H producing similar decreases in SDBOLD and Gconn. These results indicate a potential global brain phenomenon that unites research from different fields and indicates that fractal scaling may be a highly sensitive metric for indexing cognitive effort/task engagement. PMID:27498696
A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems
NASA Astrophysics Data System (ADS)
Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.
2017-08-01
This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.
Cho, Seongbeom; Boxrud, David J; Bartkus, Joanne M; Whittam, Thomas S; Saeed, Mahdi
2007-01-01
Simplified multiple-locus variable-number tandem repeat analysis (MLVA) was developed using one-shot multiplex PCR for seven variable-number tandem repeats (VNTR) markers with high diversity capacity. MLVA, phage typing, and PFGE methods were applied on 34 diverse Salmonella Enteritidis isolates from human and non-human sources. MLVA detected allelic variations that helped to classify the S. Enteritidis isolates into more evenly distributed subtypes than other methods. MLVA-based S. Enteritidis clonal groups were largely associated with sources of the isolates. Nei's diversity indices for polymorphism ranged from 0.25 to 0.70 for seven VNTR loci markers. Based on Simpson's and Shannon's diversity indices, MLVA had a higher discriminatory power than pulsed field gel electrophoresis (PFGE), phage typing, or multilocus enzyme electrophoresis. Therefore, MLVA may be used along with PFGE to enhance the effectiveness of the molecular epidemiologic investigation of S. Enteritidis infections. PMID:17692097
Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts
NASA Astrophysics Data System (ADS)
Cox, D. M.; Kaldor, A.; Zakin, M. R.
1987-01-01
Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.
NASA Astrophysics Data System (ADS)
Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.
2018-03-01
Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.
Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
For miniaturization of electronics systems, power consumption plays a key role in the realm of constraints. Considering the very large scale integration (VLSI) design aspect, as transistor feature size is decreased to 50 nm and below, there is sizable increase in the number of transistors as more functional building blocks are embedded in the same chip. However, the consequent increase in power consumption (dynamic and leakage) will serve as a key constraint to inhibit the advantages of transistor feature size reduction. Power consumption can be reduced by minimizing the voltage supply (for dynamic power consumption) and/or increasing threshold voltage (V(sub th), for reducing leakage power). When the feature size of the transistor is reduced, supply voltage (V(sub dd)) and threshold voltage (V(sub th)) are also reduced accordingly; then, the leakage current becomes a bigger factor of the total power consumption. To maintain low power consumption, operation of electronics at sub-threshold levels can be a potentially strong contender; however, there are two obstacles to be faced: more leakage current per transistor will cause more leakage power consumption, and slow response time when the transistor is operated in weak inversion region. To enable low power consumption and yet obtain high performance, the CMOS (complementary metal oxide semiconductor) transistor as a basic element is viewed and controlled as a four-terminal device: source, drain, gate, and body, as differentiated from the traditional approach with three terminals: i.e., source and body, drain, and gate. This technique features multiple voltage sources to supply the dynamic control, and uses dynamic control to enable low-threshold voltage when the channel (N or P) is active, for speed response enhancement and high threshold voltage, and when the transistor channel (N or P) is inactive, to reduce the leakage current for low-leakage power consumption.
Kiloparsec Jet Properties of Hybrid, Low-, and High-Synchrotron-Peaked Blazars
NASA Astrophysics Data System (ADS)
Stanley, Ethan C.
Blazars are a rare class of active galactic nucleus (AGN) with relativistic jets closely aligned with the line of sight. Many aspects of the environments and kiloparsec-scale jet structure are not fully understood. Hybrid and high synchrotron peaked (HSP) blazars are two types of blazar that provide unique opportunities to study these jets. Hybrid blazars appear to have jets of differing morphology on each side of their core, suggesting that external factors shape their jet morphology. Three hybrid sources were investigated in radio, optical, and X-ray wavelengths: 8C 1849+670, PKS 2216-038, and PKS 1045-188. For all three, X-ray emission was detected only from the approaching jet. All three had jet radio flux densities and emission mechanisms similar to higher-power FR II sources, but two had approaching jets similar to lower-power FR I sources. None of the three showed definitive signs of asymmetry in their external environments. These results agree with previous multiwavelength studies of hybrid sources that show a dominance of FR I approaching jets and FR II emission mechanisms. With the addition of these three hybrid sources, 13 have been studied in total. Eleven have FR I approaching jets, and eight of those have FR II emission mechanisms. These trends may be due to small number statistics, or they may indicate other factors are creating hybrid-like appearances. High synchrotron peaked blazars are defined by the frequency of the peak of their jet synchrotron emission. Some have shown extreme variability which would imply incredibly-powerful and well-aligned jets, but VLBA observations have measured only modest jet speeds. A radio survey was performed to measure the extended radio luminosity of a large sample of HSP sources. These sources were compared to the complete radio flux density limited MOJAVE 1.5 Jy sample. Flat spectrum radio quasars (FSRQs) showed significant overlap with low synchrotron peaked (LSP) BL Lacs in multiple parameters, which may suggest that many FSRQs are "masquerading'' as LSP BL Lacs. HSP BL Lacs showed slightly lower extended radio luminosities and significantly lower maximum apparent jet speeds, suggesting that they are intrinsically weaker sources. There was a good correlation between maximum apparent jet speed and extended radio luminosity, which supports using the extended radio luminosity as a measure of intrinsic jet power. There was a lack of TeV-detected sources with higher extended radio luminosities, which suggests TeV emission may favor low power jets or high synchrotron peak frequencies. The apparent low power of HSP sources and TeV-detected sources questions any model of TeV emission and variability that depends on the jet (or a part of it) being intrinsically powerful.
Distributed Coding of Compressively Sensed Sources
NASA Astrophysics Data System (ADS)
Goukhshtein, Maxim
In this work we propose a new method for compressing multiple correlated sources with a very low-complexity encoder in the presence of side information. Our approach uses ideas from compressed sensing and distributed source coding. At the encoder, syndromes of the quantized compressively sensed sources are generated and transmitted. The decoder uses side information to predict the compressed sources. The predictions are then used to recover the quantized measurements via a two-stage decoding process consisting of bitplane prediction and syndrome decoding. Finally, guided by the structure of the sources and the side information, the sources are reconstructed from the recovered measurements. As a motivating example, we consider the compression of multispectral images acquired on board satellites, where resources, such as computational power and memory, are scarce. Our experimental results exhibit a significant improvement in the rate-distortion trade-off when compared against approaches with similar encoder complexity.
Electrical characterization of a Mapham inverter using pulse testing techniques
NASA Technical Reports Server (NTRS)
Baumann, E. D.; Myers, I. T.; Hammond, A. N.
1990-01-01
Electric power requirements for aerospace missions have reached megawatt power levels. Within the next few decades, it is anticipated that a manned lunar base, interplanetary travel, and surface exploration of the Martian surface will become reality. Several research and development projects aimed at demonstrating megawatt power level converters for space applications are currently underway at the NASA Lewis Research Center. Innovative testing techniques will be required to evaluate the components and converters, when developed, at their rated power in the absence of costly power sources, loads, and cooling systems. Facilities capable of testing these components and systems at full power are available, but their use may be cost prohibitive. The use of a multiple pulse testing technique is proposed to determine the electrical characteristics of large megawatt level power systems. Characterization of a Mapham inverter is made using the proposed technique and conclusions are drawn concerning its suitability as an experimental tool to evaluate megawatt level power systems.
Electromagnetic Modeling of Human Body Using High Performance Computing
NASA Astrophysics Data System (ADS)
Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada
Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.
Development of an automated electrical power subsystem testbed for large spacecraft
NASA Technical Reports Server (NTRS)
Hall, David K.; Lollar, Louis F.
1990-01-01
The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.
Ensemble positive unlabeled learning for disease gene identification.
Yang, Peng; Li, Xiaoli; Chua, Hon-Nian; Kwoh, Chee-Keong; Ng, See-Kiong
2014-01-01
An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions.
An inter-lighting interference cancellation scheme for MISO-VLC systems
NASA Astrophysics Data System (ADS)
Kim, Kyuntak; Lee, Kyujin; Lee, Kyesan
2017-08-01
In this paper, we propose an inter-lighting interference cancellation (ILIC) scheme to reduce the interference between adjacent light-emitting diodes (LEDs) and enhance the transmission capacity of multiple-input-single-output (MISO)-visible light communication (VLC) systems. In indoor environments, multiple LEDs have normally been used as lighting sources, allowing the design of MISO-VLC systems. To enhance the transmission capacity, different data should be simultaneously transmitted from each LED; however, that can lead to interference between adjacent LEDs. In that case, relatively low-received power signals are subjected to large interference because wireless optical systems generally use intensity modulation and direct detection. Thus, only the signal with the highest received power can be detected, while the other received signals cannot be detected. To solve this problem, we propose the ILIC scheme for MISO-VLC systems. The proposed scheme preferentially detects the highest received power signal, and this signal is referred as interference signal by an interference component generator. Then, relatively low-received power signal can be detected by cancelling the interference signal from the total received signals. Therefore, the performance of the proposed scheme can improve the total average bit error rate and throughput of a MISO-VLC system.
NASA Technical Reports Server (NTRS)
Jeganathan, M.; Wilson, K. E.; Lesh, J. R.
1996-01-01
Uplink data from recent free-space optical communication experiments carried out between the Table Mountain Facility and the Japanese Engineering Test Satellite are used to study fluctuations caused by beam propagation through the atmosphere. The influence of atmospheric scintillation, beam wander and jitter, and multiple uplink beams on the statistics of power received by the satellite is analyzed and compared to experimental data. Preliminary analysis indicates the received signal obeys an approximate lognormal distribution, as predicted by the weak-turbulence model, but further characterization of other sources of fluctuations is necessary for accurate link predictions.
NASA Technical Reports Server (NTRS)
Jeganathan, M.; Wilson, K. E.; Lesh, J. R.
1996-01-01
Uplink data from recent free-space optical communication experiments carried out between the Table Mountain Facility and the Japanese Engineering Test Satellite are used to study fluctuations caused by beam propagation through the atmosphere. The influence of atmospheric scintillation, beam wander and jitter, and multiple uplink beams on the statistics of power received by the satellite is analyzed and compared to experimental data. Preliminary analysis indicates the received signal obeys an approximate lognormal distribution, as predicted by the weak-turbulence model, but further characterization of other sources of fluctuations is necessary for accurate link predictions.
Method for analyzing the mass of a sample using a cold cathode ionization source mass filter
Felter, Thomas E.
2003-10-14
An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-01-01
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-08-27
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.
AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Chowdhury, Badrul H.
2005-01-01
ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President's initiative on future space exploration beyond low earth orbit. Some of these preliminary issues - those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover - Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source - With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use - whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system - the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA's on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side redundancies and including emergency generators on both ac and dc sides is proposed. The generation frequency is 400 Hz mostly because of the technology maturity at this frequency in the aerospace industry. Power will be distributed to several ac load distribution buses through solid state variable speed, constant frequency converters on the ac side. A segmented dc ring bus supplied from ac/dc converters and with the capability of connecting/disconnecting the segments will supply power to multiple de load distribution buses. The system will have the capability of reverse flow from dc to ac side in the case of an extreme emergency on the main ac generation side.
Shulman, Abraham; Goldstein, Barbara
2014-01-01
The clinical significance of QEEG LORETA data analysis performed sequentially within 6 months is presented in a case report of a predominantly central type severe disabling subjective idiopathic tinnitus (SIT) before and following treatment. The QEEG LORETA data is reported as Z-scores of z = ± 2.54, p < 0.013. The focus is on demonstration of patterns of brain wave oscillations reflecting multiple brain functions in multiple ROIs in the presence of the tinnitus signal (SIT). The patterns of brain activity both high, middle and low frequencies are hypothesized to reflect connectivities within and between multiple neuronal networks in brain. The Loreta source localization non auditory ROI Images at the maximal abnormality in the very narrow band frequency spectra (24.21 Hz), showed the mathematically most probable underlying sources of the scalp recorded data to be greatest in the mid-cingulate, bilateral precuneus, cingulate and the bilateral caudate nucleus. Clinical correlation of the data with the history and course of the SIT is considered an objective demonstration of the affect, behavioral, and emotional component of the SIT. The correlation of the caudate activity, SIT as the traumatic event with the clinical course of PTSD, and the clinical diagnosis of PTSD is discussed. The clinical translation for patient care is highlighted in a SIT patient with multiple comorbidities by translation of QEEG/LORETA electrophysiologic data, as an adjunct to: provide an objectivity of patterns of brain wave activity in multiple regions of interest (ROIs) reflecting multiple brain functions, in response to and in the presence of the tinnitus signal, recorded from the scalp and analyzed with the metrics of absolute power, relative power, asymmetry, and coherence, for the subjective tinnitus complaint (SIT); 2) provide an increase in the accuracy of the tinnitus diagnosis; 3) assess/monitor treatment efficacy; 4) provide a rationale for selection of a combined tinnitus targeted therapy of behavioral, pharmacologic, sound therapy modalities of treatment attempting tinnitus relief; 5) provide insight into the medical significance of the SIT; 6) attempt discriminant function analysis for identification of a particular diagnostic clinical category of CNS neuropsychiatric disease; and 7) attempt to translate what is known of the neuroscience of sensation, brain function, QEEG/LORETA source localization, for the etiology and prognosis of the individual SIT patient.
Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search.
Liu, Xianglong; Huang, Lei; Deng, Cheng; Lang, Bo; Tao, Dacheng
2016-10-01
Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over the state-of-the-art methods.
Simple and versatile long range swept source for optical coherence tomography applications
NASA Astrophysics Data System (ADS)
Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G.; Vanholsbeeck, Frédérique
2015-12-01
We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman-Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples.
NASA Astrophysics Data System (ADS)
Zhou, Huiping; Chang, Weina; Zhang, Longjiang
2016-08-01
Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other uncertainty factors.
Power relations in qualitative research.
Karnieli-Miller, Orit; Strier, Roni; Pessach, Liat
2009-02-01
This article focuses on the tensions between the commitment to power redistribution of the qualitative paradigm and the ethical and methodological complexity inherent in clinical research. Qualitative inquiry, in general, though there are significant variations between its different paradigms and traditions, proposes to reduce power differences and encourages disclosure and authenticity between researchers and participants. It clearly departs from the traditional conception of quantitative research, whereby the researcher is the ultimate source of authority and promotes the participants' equal participation in the research process. But it is precisely this admirable desire to democratize the research process, and the tendency to question traditional role boundaries, that raises multiple ethical dilemmas and serious methodological challenges. In this article, we offer a conceptual frame for addressing questions of power distribution in qualitative research through a developmental analysis of power relations across the different stages of the research process. We discuss ethical and methodological issues.
Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues
NASA Astrophysics Data System (ADS)
Zheng, Wei
2014-11-01
Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.
Correlated noise-based switches and stochastic resonance in a bistable genetic regulation system
NASA Astrophysics Data System (ADS)
Wang, Can-Jun; Yang, Ke-Li
2016-07-01
The correlated noise-based switches and stochastic resonance are investigated in a bistable single gene switching system driven by an additive noise (environmental fluctuations), a multiplicative noise (fluctuations of the degradation rate). The correlation between the two noise sources originates from on the lysis-lysogeny pathway system of the λ phage. The steady state probability distribution is obtained by solving the time-independent Fokker-Planck equation, and the effects of noises are analyzed. The effects of noises on the switching time between the two stable states (mean first passage time) is investigated by the numerical simulation. The stochastic resonance phenomenon is analyzed by the power amplification factor. The results show that the multiplicative noise can induce the switching from "on" → "off" of the protein production, while the additive noise and the correlation between the noise sources can induce the inverse switching "off" → "on". A nonmonotonic behaviour of the average switching time versus the multiplicative noise intensity, for different cross-correlation and additive noise intensities, is observed in the genetic system. There exist optimal values of the additive noise, multiplicative noise and cross-correlation intensities for which the weak signal can be optimal amplified.
A Novel Technique to Detect Code for SAC-OCDMA System
NASA Astrophysics Data System (ADS)
Bharti, Manisha; Kumar, Manoj; Sharma, Ajay K.
2018-04-01
The main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.
Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer
NASA Technical Reports Server (NTRS)
Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan
2011-01-01
The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2012-01-01
Surveillance applications usually require high levels of video quality, resulting in high power consumption. The existence of a well-behaved scheme to balance video quality and power consumption is crucial for the system's performance. In the present work, we adopt the game-theoretic approach of Kalai-Smorodinsky Bargaining Solution (KSBS) to deal with the problem of optimal resource allocation in a multi-node wireless visual sensor network (VSN). In our setting, the Direct Sequence Code Division Multiple Access (DS-CDMA) method is used for channel access, while a cross-layer optimization design, which employs a central processing server, accounts for the overall system efficacy through all network layers. The task assigned to the central server is the communication with the nodes and the joint determination of their transmission parameters. The KSBS is applied to non-convex utility spaces, efficiently distributing the source coding rate, channel coding rate and transmission powers among the nodes. In the underlying model, the transmission powers assume continuous values, whereas the source and channel coding rates can take only discrete values. Experimental results are reported and discussed to demonstrate the merits of KSBS over competing policies.
Distributed control system for demand response by servers
NASA Astrophysics Data System (ADS)
Hall, Joseph Edward
Within the broad topical designation of smart grid, research in demand response, or demand-side management, focuses on investigating possibilities for electrically powered devices to adapt their power consumption patterns to better match generation and more efficiently integrate intermittent renewable energy sources, especially wind. Devices such as battery chargers, heating and cooling systems, and computers can be controlled to change the time, duration, and magnitude of their power consumption while still meeting workload constraints such as deadlines and rate of throughput. This thesis presents a system by which a computer server, or multiple servers in a data center, can estimate the power imbalance on the electrical grid and use that information to dynamically change the power consumption as a service to the grid. Implementation on a testbed demonstrates the system with a hypothetical but realistic usage case scenario of an online video streaming service in which there are workloads with deadlines (high-priority) and workloads without deadlines (low-priority). The testbed is implemented with real servers, estimates the power imbalance from the grid frequency with real-time measurements of the live outlet, and uses a distributed, real-time algorithm to dynamically adjust the power consumption of the servers based on the frequency estimate and the throughput of video transcoder workloads. Analysis of the system explains and justifies multiple design choices, compares the significance of the system in relation to similar publications in the literature, and explores the potential impact of the system.
Medium wave exposure characterisation using exposure quotients.
Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Pinar, Iván
2010-06-01
One of the aspects considered in the International Commission on Non-Ionizing Radiation Protection guidelines is that, in situations of simultaneous exposure to fields of different frequencies, exposure quotients for thermal and electrical stimulation effects should be examined. The aim of the present work was to analyse the electromagnetic radiation levels and exposure quotients for exposure to multiple-frequency sources in the vicinity of medium wave radio broadcasting antennas. The measurements were made with a spectrum analyser and a monopole antenna. Kriging interpolation was used to prepare contour maps and to estimate the levels in the towns and villages of the zone. The results showed that the exposure quotient criterion based on electrical stimulation effects to be more stringent than those based on thermal effects or power density levels. Improvement of dosimetry evaluations requires the spectral components of the radiation to be quantified, followed by application of the criteria for exposure to multiple-frequency sources.
Keefe, Douglas H.; Schairer, Kim S.
2011-01-01
An insert ear-canal probe including sound source and microphone can deliver a calibrated sound power level to the ear. The aural power absorbed is proportional to the product of mean-squared forward pressure, ear-canal area, and absorbance, in which the sound field is represented using forward (reverse) waves traveling toward (away from) the eardrum. Forward pressure is composed of incident pressure and its multiple internal reflections between eardrum and probe. Based on a database of measurements in normal-hearing adults from 0.22 to 8 kHz, the transfer-function level of forward relative to incident pressure is boosted below 0.7 kHz and within 4 dB above. The level of forward relative to total pressure is maximal close to 4 kHz with wide variability across ears. A spectrally flat incident-pressure level across frequency produces a nearly flat absorbed power level, in contrast to 19 dB changes in pressure level. Calibrating an ear-canal sound source based on absorbed power may be useful in audiological and research applications. Specifying the tip-to-tail level difference of the suppression tuning curve of stimulus frequency otoacoustic emissions in terms of absorbed power reveals increased cochlear gain at 8 kHz relative to the level difference measured using total pressure. PMID:21361437
Design of resolution/power controllable Asynchronous Sigma-Delta Modulator
NASA Astrophysics Data System (ADS)
Deshmukh, Anita Arvind; Deshmukh, Raghvendra B.
2016-12-01
This paper presents the design of a Programmable Asynchronous Modulator (PAM) with field control of resolution and power. A novel variable hysteresis Schmitt Trigger (ST) is used for external programmability. Asynchronous Sigma-Delta Modulator (ASDM) implementation with external control voltages is proposed to supervise the resolution and power. This architecture with reduced circuit complexity considerably improves the earlier realizations by eliminating multiple current sources as well switched capacitor circuits and results in power saving up to 87 %. Proposed PAM design demonstrates an improved SNDR of 115 dB, DR of 96 dB, and power consumption below 280 μW. It illustrates Effective Number of Bits (ENOB) to 18.81 and Figure of Merit (FoM) to 0.15 fJ/conversion step. Modulator is implemented in Cadence UMC Hspice 0.18 μm CMOS analog technology. Off-chip PAM control for resolution/power performance has potential applications in battery operated ultra low power applications like IoT; where ADC is one of the major power consuming components. It offers the promise for an efficient performance with power saving.
NASA Astrophysics Data System (ADS)
Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar
2016-02-01
The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.
The Chandra Source Catalog: Source Variability
NASA Astrophysics Data System (ADS)
Nowak, Michael; Rots, A. H.; McCollough, M. L.; Primini, F. A.; Glotfelty, K. J.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2009-01-01
The Chandra Source Catalog (CSC) contains fields of view that have been studied with individual, uninterrupted observations that span integration times ranging from 1 ksec to 160 ksec, and a large number of which have received (multiple) repeat observations days to years later. The CSC thus offers an unprecedented look at the variability of the X-ray sky over a broad range of time scales, and across a wide diversity of variable X-ray sources: stars in the local galactic neighborhood, galactic and extragalactic X-ray binaries, Active Galactic Nuclei, etc. Here we describe the methods used to identify and quantify source variability within a single observation, and the methods used to assess the variability of a source when detected in multiple, individual observations. Three tests are used to detect source variability within a single observation: the Kolmogorov-Smirnov test and its variant, the Kuiper test, and a Bayesian approach originally suggested by Gregory and Loredo. The latter test not only provides an indicator of variability, but is also used to create a best estimate of the variable lightcurve shape. We assess the performance of these tests via simulation of statistically stationary, variable processes with arbitrary input power spectral densities (here we concentrate on results of red noise simulations) at variety of mean count rates and fractional root mean square variabilities relevant to CSC sources. We also assess the false positive rate via simulations of constant sources whose sole source of fluctuation is Poisson noise. We compare these simulations to a preliminary assessment of the variability found in real CSC sources, and estimate the variability sensitivities of the CSC.
The Chandra Source Catalog: Source Variability
NASA Astrophysics Data System (ADS)
Nowak, Michael; Rots, A. H.; McCollough, M. L.; Primini, F. A.; Glotfelty, K. J.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Evans, I.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2009-09-01
The Chandra Source Catalog (CSC) contains fields of view that have been studied with individual, uninterrupted observations that span integration times ranging from 1 ksec to 160 ksec, and a large number of which have received (multiple) repeat observations days to years later. The CSC thus offers an unprecedented look at the variability of the X-ray sky over a broad range of time scales, and across a wide diversity of variable X-ray sources: stars in the local galactic neighborhood, galactic and extragalactic X-ray binaries, Active Galactic Nuclei, etc. Here we describe the methods used to identify and quantify source variability within a single observation, and the methods used to assess the variability of a source when detected in multiple, individual observations. Three tests are used to detect source variability within a single observation: the Kolmogorov-Smirnov test and its variant, the Kuiper test, and a Bayesian approach originally suggested by Gregory and Loredo. The latter test not only provides an indicator of variability, but is also used to create a best estimate of the variable lightcurve shape. We assess the performance of these tests via simulation of statistically stationary, variable processes with arbitrary input power spectral densities (here we concentrate on results of red noise simulations) at variety of mean count rates and fractional root mean square variabilities relevant to CSC sources. We also assess the false positive rate via simulations of constant sources whose sole source of fluctuation is Poisson noise. We compare these simulations to an assessment of the variability found in real CSC sources, and estimate the variability sensitivities of the CSC.
RF Power Transfer, Energy Harvesting, and Power Management Strategies
NASA Astrophysics Data System (ADS)
Abouzied, Mohamed Ali Mohamed
Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes.
Energy Harvesting Research: The Road from Single Source to Multisource.
Bai, Yang; Jantunen, Heli; Juuti, Jari
2018-06-07
Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long-term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single-source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Opportunities and Challenges in Supply-Side Simulation: Physician-Based Models
Gresenz, Carole Roan; Auerbach, David I; Duarte, Fabian
2013-01-01
Objective To provide a conceptual framework and to assess the availability of empirical data for supply-side microsimulation modeling in the context of health care. Data Sources Multiple secondary data sources, including the American Community Survey, Health Tracking Physician Survey, and SK&A physician database. Study Design We apply our conceptual framework to one entity in the health care market—physicians—and identify, assess, and compare data available for physician-based simulation models. Principal Findings Our conceptual framework describes three broad types of data required for supply-side microsimulation modeling. Our assessment of available data for modeling physician behavior suggests broad comparability across various sources on several dimensions and highlights the need for significant integration of data across multiple sources to provide a platform adequate for modeling. A growing literature provides potential estimates for use as behavioral parameters that could serve as the models' engines. Sources of data for simulation modeling that account for the complex organizational and financial relationships among physicians and other supply-side entities are limited. Conclusions A key challenge for supply-side microsimulation modeling is optimally combining available data to harness their collective power. Several possibilities also exist for novel data collection. These have the potential to serve as catalysts for the next generation of supply-side-focused simulation models to inform health policy. PMID:23347041
NASA Astrophysics Data System (ADS)
Mills, R.; Lotoski, J.; Lu, Y.
2017-09-01
EUV continuum radiation (10-30 nm) arising only from very low energy pulsed pinch gas discharges comprising some hydrogen was first observed at BlackLight Power, Inc. and reproduced at the Harvard Center for Astrophysics (CfA). The source was determined to be due to the transition of H to the lower-energy hydrogen or hydrino state H(1/4) whose emission matches that observed wherein alternative sources were eliminated. The identity of the catalyst that accepts 3 · 27.2 eV from the H to cause the H to H(1/4) transition was determined to HOH versus 3H. The mechanism was elucidated using different oxide-coated electrodes that were selective in forming HOH versus plasma forming metal atoms as well as from the intensity profile that was a mismatch for the multi-body reaction required during 3H catalysis. The HOH catalyst was further shown to give EUV radiation of the same nature by igniting a solid fuel comprising a source of H and HOH catalyst by passing a low voltage, high current through the fuel to produce explosive plasma. No chemical reaction can release such high-energy light. No high field existed to form highly ionized ions that could give radiation in this EUV region that persisted even without power input. This plasma source serves as strong evidence for the existence of the transition of H to hydrino H(1/4) by HOH as the catalyst and a corresponding new power source wherein initial extraordinarily brilliant light-emitting prototypes are already producing photovoltaic generated electrical power. The hydrino product of a catalyst reaction of atomic hydrogen was analyzed by multiple spectroscopic techniques. Moreover, the mH catalyst was identified to be active in astronomical sources such as the Sun, stars and interstellar medium wherein the characteristics of hydrino match those of the dark matter of the Universe.
High-power, format-flexible, 885-nm vertical-cavity surface-emitting laser arrays
NASA Astrophysics Data System (ADS)
Wang, Chad; Talantov, Fedor; Garrett, Henry; Berdin, Glen; Cardellino, Terri; Millenheft, David; Geske, Jonathan
2013-03-01
High-power, format flexible, 885 nm vertical-cavity surface-emitting laser (VCSEL) arrays have been developed for solid-state pumping and illumination applications. In this approach, a common VCSEL size format was designed to enable tiling into flexible formats and operating configurations. The fabrication of a common chip size on ceramic submount enables low-cost volume manufacturing of high-power VCSEL arrays. This base VCSEL chip was designed to be 5x3.33 mm2, and produced up to 50 Watts of peak continuous wave (CW) power. To scale to higher powers, multiple chips can be tiled into a combination of series or parallel configurations tailored to the application driver conditions. In actively cooled CW operation, the VCSEL array chips were packaged onto a single water channel cooler, and we have demonstrated 0.5x1, 1x1, and 1x3 cm2 formats, producing 150, 250, and 500 Watts of peak power, respectively, in under 130 A operating current. In QCW operation, the 1x3 cm2 VCSEL module, which contains 18 VCSEL array chips packaged on a single water cooler, produced over 1.3 kW of peak power. In passively cooled packages, multiple chip configurations have been developed for illumination applications, producing over 300 Watts of peak power in QCW operating conditions. These VCSEL chips use a substrate-removed structure to allow for efficient thermal heatsinking to enable high-power operation. This scalable, format flexible VCSEL architecture can be applied to wavelengths ranging from 800 to 1100 nm, and can be used to tailor emission spectral widths and build high-power hyperspectral sources.
A Robust and Resilient Network Design Paradigm for Region-Based Faults Inflicted by WMD Attack
2016-04-01
MEASUREMENTS FOR GRID MONITORING AND CONTROL AGAINST POSSIBLE WMD ATTACKS We investigated big data processing of PMU measurements for grid monitoring and...control against possible WMD attacks. Big data processing and analytics of synchrophasor measurements, collected from multiple locations of power grids...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
22 W coherent GaAlAs amplifier array with 400 emitters
NASA Technical Reports Server (NTRS)
Krebs, D.; Herrick, R.; No, K.; Harting, W.; Struemph, F.
1991-01-01
Greater than 22 W of optical power has been demonstrated from a multiple-emitter, traveling-wave semiconductor amplifier, with approximately 87 percent of the output at the frequency of the injection source. The device integrates, in AlGaAs graded-index separate-confinement heterostructure single quantum well (GRINSCH-SQW) epitaxy, 400 ridge waveguide amplifiers with a coherent optical signal distribution circuit on a 12 x 6 mm chip.
Thermopower Wave-Driven Hybrid Supercapacitor Charging System.
Shin, Dongjoon; Hwang, Hayoung; Yeo, Taehan; Seo, Byungseok; Choi, Wonjoon
2016-11-16
The development of new energy sources and harvesting methods has increased with the rapid development of multiscale wireless and portable systems. A thermopower wave (TW) is a potential portable energy source that exhibits a high power density. TWs generate electrical energy via the transport of charges inside micro- or nanostructured materials. This transport is induced by self-propagating combustion. Despite the high specific power of TWs, the generation of energy by TWs is transient, making a TW device a one-time use source, which is a critical limitation on the further advancement of this technology. Herein, we first report the development of a hybrid supercapacitor charging system driven by consecutive TWs to accumulate multiple amounts of energy generated by the repetitive combustion of the chemical fuel. In this study, hybrid layers composed of a supercapacitor (poly(vinyl alcohol)/MnO 2 /nickel) and solid fuel layer (nitrocellulose film) were fabricated as one integrated platform. Combustion was initiated by the ignition of the fuel layer, resulting in the production of electrical energy, attributed to the potential difference between two electrodes, and the transport of charges inside one of the electrodes. Electrical energy could simultaneously and directly charge the supercapacitor, and the discharged voltage could be significantly increased in comparison with the voltage level before the application of a TW. Furthermore, the application of multiple TWs in succession in the hybrid supercapacitor charging system successfully allowed for stack voltage amplification, which was synchronized to each TW. The results of this study could be used to understand the underlying phenomena for charging supercapacitors with the variation of thermal energy and to advance the application of TWs as more efficient, practical energy sources.
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
NASA Astrophysics Data System (ADS)
Fusalba, Florence; Chami, Marianne; Rey, Marlene; Moreau, Gilles; Reynier, Yvan; Azais, Philippe
2014-08-01
Currently Li-ion batteries are preferred to supply space missions owing to their large energy density. However, these batteries are designed for standard missions without high-power pulsed payloads, therefore for low C-rates profiles, and do not answer the needs of high- power space applications. More enhanced power sources compatible with extended thermal environment are therefore needed for some space applications like next generation launchers or radar satellites. It is believed that synergy between terrestrial and space sectors could foster the avoidance of multiple financing for the development of similar technologies and systems, as well as dual-use of facilities, providing some real applications for synergy. CEA experienced terrestrial requirements for Hybrid Electric Vehicle applications, start & stop, e-buses and other larger vehicles. In this frame, materials especially designed for high power needs, new cells conception and recently hybrid supercapacitors developments at CEA are discussed as potential solutions for space high power feature.
Computer controlled synchronous shifting of an automatic transmission
Davis, Roy I.; Patil, Prabhakar B.
1989-01-01
A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements.
Mashburn, Andrew J; Downer, Jason T; Rivers, Susan E; Brackett, Marc A; Martinez, Andres
2014-04-01
Social and emotional learning programs are designed to improve the quality of social interactions in schools and classrooms in order to positively affect students' social, emotional, and academic development. The statistical power of group randomized trials to detect effects of social and emotional learning programs and other preventive interventions on setting-level outcomes is influenced by the reliability of the outcome measure. In this paper, we apply generalizability theory to an observational measure of the quality of classroom interactions that is an outcome in a study of the efficacy of a social and emotional learning program called The Recognizing, Understanding, Labeling, Expressing, and Regulating emotions Approach. We estimate multiple sources of error variance in the setting-level outcome and identify observation procedures to use in the efficacy study that most efficiently reduce these sources of error. We then discuss the implications of using different observation procedures on both the statistical power and the monetary costs of conducting the efficacy study.
Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.
2009-01-01
Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.
Renormalizability of quasiparton distribution functions
Ishikawa, Tomomi; Ma, Yan-Qing; Qiu, Jian-Wei; ...
2017-11-21
Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet power divergences because they are not defined by twist-2 operators. Here in this article, we identify all sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space, and demonstrated that power divergences, as well as all logarithmic divergences can be renormalized multiplicatively to all ordersmore » in QCD perturbation theory.« less
NASA Astrophysics Data System (ADS)
Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael
2012-08-01
This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.
Renormalizability of quasiparton distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Tomomi; Ma, Yan-Qing; Qiu, Jian-Wei
Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet power divergences because they are not defined by twist-2 operators. Here in this article, we identify all sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space, and demonstrated that power divergences, as well as all logarithmic divergences can be renormalized multiplicatively to all ordersmore » in QCD perturbation theory.« less
NASA Astrophysics Data System (ADS)
McDonough, Matthew Kelly
Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Du, Pengwei; Greitzer, Frank L.
2012-12-31
This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individualmore » data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.« less
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
Hansen, Benjamin J; Liu, Ying; Yang, Rusen; Wang, Zhong Lin
2010-07-27
Harvesting energy from multiple sources available in our personal and daily environments is highly desirable, not only for powering personal electronics, but also for future implantable sensor-transmitter devices for biomedical and healthcare applications. Here we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device consists of a piezoelectric poly(vinylidene fluoride) nanofiber nanogenerator for harvesting mechanical energy, such as from breathing or from the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby boosting output and lifetime. Using the hybrid device, we demonstrate a "self-powered" nanosystem by powering a ZnO nanowire UV light sensor.
Multi-wavelength and multiband RE-doped optical fiber source array for WDM-GPON applications
NASA Astrophysics Data System (ADS)
Perez-Sanchez, G. G.; Bertoldi-Martins, I.; Gallion, P.; Gosset, C.; Álvarez-Chávez, J. A.
2013-12-01
In this paper, a multiband, multi-wavelength, all-fibre source array consisting of an 810nm pump laser diode, thretwo fiber splitters and three segments of Er-, Tm- and Nd-doped fiber is proposed for PON applications. In the set-up, cascaded pairs of standard fiber gratings are used for extracting the required multiple wavelengths within their corresponding bands. A thorough design parameter description, optical array details and full simulation results, such as: full multi-wavelength spectrum, peak and average powers for each generated wavelength, linewidth at FWHM for each generated signal, and individual and overall conversion efficiency, will be included in the manuscript.
Policy Enabling Environment for Corporate Renewable Energy Sourcing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Interest in renewable energy (RE) procurement in new markets is on the rise. Corporations are increasing their commitments to procuring RE, motivated by an interest in using clean energy sources and reducing their energy expenses. Many large companies have facilities and supply chains in multiple countries, and are interested in procuring renewable energy in the grids where they use energy. The policy environment around the world plays a key role in shaping where and how corporations will invest in renewables. This fact sheet details findings from a recent 21st Century Power Partnership report, Policies to Enable Corporate Renewable Energy Sourcingmore » Internationally.« less
Raman dissipative soliton fiber laser pumped by an ASE source.
Pan, Weiwei; Zhang, Lei; Zhou, Jiaqi; Yang, Xuezong; Feng, Yan
2017-12-15
The mode locking of a Raman fiber laser with an amplified spontaneous emission (ASE) pump source is investigated for performance improvement. Raman dissipative solitons with a compressed pulse duration of 1.05 ps at a repetition rate of 2.47 MHz are generated by utilizing nonlinear polarization rotation and all-fiber Lyot filter. A signal-to-noise ratio as high as 85 dB is measured in a radio-frequency spectrum, which suggests excellent temporal stability. Multiple-pulse operation with unique random static distribution is observed for the first time, to the best of our knowledge, at higher pump power in mode-locked Raman fiber lasers.
Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Lantz, Eric; Ho, Jonathan
Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented relymore » on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO 2 emissions, and lowering allowance prices for the Clean Power Plan.« less
Utilizing Climate Forecasts for Improving Water and Power Systems Coordination
NASA Astrophysics Data System (ADS)
Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.
2016-12-01
Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.
Binladen, Jonas; Gilbert, M Thomas P; Bollback, Jonathan P; Panitz, Frank; Bendixen, Christian; Nielsen, Rasmus; Willerslev, Eske
2007-02-14
The invention of the Genome Sequence 20 DNA Sequencing System (454 parallel sequencing platform) has enabled the rapid and high-volume production of sequence data. Until now, however, individual emulsion PCR (emPCR) reactions and subsequent sequencing runs have been unable to combine template DNA from multiple individuals, as homologous sequences cannot be subsequently assigned to their original sources. We use conventional PCR with 5'-nucleotide tagged primers to generate homologous DNA amplification products from multiple specimens, followed by sequencing through the high-throughput Genome Sequence 20 DNA Sequencing System (GS20, Roche/454 Life Sciences). Each DNA sequence is subsequently traced back to its individual source through 5'tag-analysis. We demonstrate that this new approach enables the assignment of virtually all the generated DNA sequences to the correct source once sequencing anomalies are accounted for (miss-assignment rate<0.4%). Therefore, the method enables accurate sequencing and assignment of homologous DNA sequences from multiple sources in single high-throughput GS20 run. We observe a bias in the distribution of the differently tagged primers that is dependent on the 5' nucleotide of the tag. In particular, primers 5' labelled with a cytosine are heavily overrepresented among the final sequences, while those 5' labelled with a thymine are strongly underrepresented. A weaker bias also exists with regards to the distribution of the sequences as sorted by the second nucleotide of the dinucleotide tags. As the results are based on a single GS20 run, the general applicability of the approach requires confirmation. However, our experiments demonstrate that 5'primer tagging is a useful method in which the sequencing power of the GS20 can be applied to PCR-based assays of multiple homologous PCR products. The new approach will be of value to a broad range of research areas, such as those of comparative genomics, complete mitochondrial analyses, population genetics, and phylogenetics.
The Coherent X-ray Imaging instrument at the Linac Coherent Light Source
Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; ...
2015-04-15
The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.
2015-06-01
unit may setup and teardown the entire tactical infrastructure multiple times per day. This tactical network administrator training is a critical...language and runs on Linux and Unix based systems. All provisioning is based around the Nagios Core application, a powerful backend solution for network...start up a large number of virtual machines quickly. CORE supports the simulation of fixed and mobile networks. CORE is open-source, written in Python
NASA Astrophysics Data System (ADS)
Stankovskiy, Alexey; Çelik, Yurdunaz; Eynde, Gert Van den
2017-09-01
Perturbation of external neutron source can cause significant local power changes transformed into undesired safety-related events in an accelerator driven system. Therefore for the accurate design of MYRRHA sub-critical core it is important to evaluate the uncertainty of power responses caused by the uncertainties in nuclear reaction models describing the particle transport from primary proton energy down to the evaluated nuclear data table range. The calculations with a set of models resulted in quite low uncertainty on the local power caused by significant perturbation of primary neutron yield from proton interactions with lead and bismuth isotopes. The considered accidental event of prescribed proton beam shape loss causes drastic increase in local power but does not practically change the total core thermal power making this effect difficult to detect. In the same time the results demonstrate a correlation between perturbed local power responses in normal operation and misaligned beam conditions indicating that generation of covariance data for proton and neutron induced neutron multiplicities for lead and bismuth isotopes is needed to obtain reliable uncertainties for local power responses.
Low Energy Dissipation Nano Device Research
NASA Astrophysics Data System (ADS)
Yu, Jenny
2015-03-01
The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.
Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.
2007-10-02
A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.
Gomes, Ana L.; Kinchesh, Paul; Kersemans, Veerle; Allen, Philip D.; Smart, Sean C.
2016-01-01
Purpose To develop an MRI-compatible resistive heater, using high frequency alternating current (AC), for temperature maintenance of anaesthetised animals. Materials and Methods An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10–100 kHz) AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice. Results Images and spectra acquired in the presence and absence of 50–100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse’s temperature approached the set target. Conclusion The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality. PMID:27806062
A DEEP CHANDRA OBSERVATION OF THE WOLF-RAYET + BLACK HOLE BINARY NGC 300 X-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binder, B.; Williams, B. F.; Anderson, S. F.
We have obtained a 63 ks Chandra ACIS-I observation of the Wolf-Rayet + black hole binary NGC 300 X-1. We measure rapid low-amplitude variability in the 0.35-8 keV light curve. The power density spectrum has a power-law index {gamma} = 1.02 {+-} 0.15 consistent with an accreting black hole in a steep power-law state. When compared to previous studies of NGC 300 X-1 performed with XMM-Newton, we find the source at the low end of the previously measured 0.3-10 keV luminosity. The spectrum of NGC 300 X-1 is dominated by a power law ({Gamma} = 2.0 {+-} 0.3) with amore » contribution at low energies by a thermal component. We estimate the 0.3-10 keV luminosity to be 2.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 38} erg s{sup -1}. The timing and spectroscopic properties of NGC 300 X-1 are consistent with being in a steep power-law state, similar to earlier observations performed with XMM-Newton. We additionally compare our observations to known high-mass X-ray binaries and ultraluminous X-ray sources, and find the properties of NGC 300 X-1 are most consistent with black hole high-mass X-ray binaries.« less
Multiple-Ring Digital Communication Network
NASA Technical Reports Server (NTRS)
Kirkham, Harold
1992-01-01
Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.
Analysis and design of a high power laser adaptive phased array transmitter
NASA Technical Reports Server (NTRS)
Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.
1977-01-01
The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.
An integral nuclear power and propulsion system concept
NASA Astrophysics Data System (ADS)
Choong, Phillip T.; Teofilo, Vincent L.; Begg, Lester L.; Dunn, Charles; Otting, William
An integral space power concept provides both the electrical power and propulsion from a common heat source and offers superior performance capabilities over conventional orbital insertion using chemical propulsion systems. This paper describes a hybrid (bimodal) system concept based on a proven, inherently safe solid fuel form for the high temperature reactor core operation and rugged planar thermionic energy converter for long-life steady state electric power production combined with NERVA-based rocket technology for propulsion. The integral system is capable of long-life power operation and multiple propulsion operations. At an optimal thrust level, the integral system can maintain the minimal delta-V requirement while minimizing the orbital transfer time. A trade study comparing the overall benefits in placing large payloads to GEO with the nuclear electric propulsion option shows superiority of nuclear thermal propulsion. The resulting savings in orbital transfer time and the substantial reduction of overall lift requirement enables the use of low-cost launchers for several near-term military satellite missions.
Recent advances in Reltron and Super-Reltron HPM source development
NASA Astrophysics Data System (ADS)
Miller, Robert B.; Muehlenweg, Carl A.; Habiger, Kerry W.; Smith, John R.; Shiffler, Donald A.
1994-05-01
Reltron and super-reltron microwave tubes use post acceleration of a well-modulated beam and multiple output cavity extraction sections to generate high power microwave pulses with excellent efficiency. We have continued our development of these tubes with emphasis being given to four specific topics: (1) Recent experiments with our 1-GHz super-reltron tube have demonstrated operation at a peak power level of 600 MW. With pulse durations of several hundred nanoseconds, the microwave energy per pulse is about 250 J. (2) We have extracted significant power (several tens of megawatts) at the third multiple (3 GHz) of our 1-GHz super-reltron tube using output cavities designed for operation in S-band. (3) We have fielded a small S-band super-reltron tube on our 260 kV modulator. We have obtained lifetime data for this tube under repetitive (20 Hz), long pulse (2 microsecond(s) ec) operating conditions. (4) We have initiated feasibility experiments of the reltron concept by post accelerating the bunched beam produced by a SLAC XK-5 klystron. In this paper we report our experimental results and discuss relevant theoretical considerations related to each of these four topics.
A general solution strategy of modified power method for higher mode solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung, E-mail: deokjung@unist.ac.kr
2016-01-15
A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the newmore » strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.« less
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
NASA Astrophysics Data System (ADS)
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
de Vocht, Frank; Lee, Brian
2014-08-01
Studies have suggested that residential exposure to extremely low frequency (50 Hz) electromagnetic fields (ELF-EMF) from high voltage cables, overhead power lines, electricity substations or towers are associated with reduced birth weight and may be associated with adverse birth outcomes or even miscarriages. We previously conducted a study of 140,356 singleton live births between 2004 and 2008 in Northwest England, which suggested that close residential proximity (≤ 50 m) to ELF-EMF sources was associated with reduced average birth weight of 212 g (95%CI: -395 to -29 g) but not with statistically significant increased risks for other adverse perinatal outcomes. However, the cohort was limited by missing data for most potentially confounding variables including maternal smoking during pregnancy, which was only available for a small subgroup, while also residual confounding could not be excluded. This study, using the same cohort, was conducted to minimize the effects of these problems using multiple imputation to address missing data and propensity score matching to minimize residual confounding. Missing data were imputed using multiple imputation using chained equations to generate five datasets. For each dataset 115 exposed women (residing ≤ 50 m from a residential ELF-EMF source) were propensity score matched to 1150 unexposed women. After doubly robust confounder adjustment, close proximity to a residential ELF-EMF source remained associated with a reduction in birth weight of -116 g (95% confidence interval: -224:-7 g). No effect was found for proximity ≤ 100 m compared to women living further away. These results indicate that although the effect size was about half of the effect previously reported, close maternal residential proximity to sources of ELF-EMF remained associated with suboptimal fetal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard
2010-08-01
We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.
High-brightness diode pump sources for solid-state and fiber laser pumping across 8xx-9xx nm range
NASA Astrophysics Data System (ADS)
Diamant, Ronen; Berk, Yuri; Cohen, Shalom; Klumel, Genady; Levy, Moshe; Openhaim, Yaki; Peleg, Ophir; Yanson, Dan; Karni, Yoram
2011-06-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scalable QCW pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
Improving the Nulling Beamformer Using Subspace Suppression.
Rana, Kunjan D; Hämäläinen, Matti S; Vaina, Lucia M
2018-01-01
Magnetoencephalography (MEG) captures the magnetic fields generated by neuronal current sources with sensors outside the head. In MEG analysis these current sources are estimated from the measured data to identify the locations and time courses of neural activity. Since there is no unique solution to this so-called inverse problem, multiple source estimation techniques have been developed. The nulling beamformer (NB), a modified form of the linearly constrained minimum variance (LCMV) beamformer, is specifically used in the process of inferring interregional interactions and is designed to eliminate shared signal contributions, or cross-talk, between regions of interest (ROIs) that would otherwise interfere with the connectivity analyses. The nulling beamformer applies the truncated singular value decomposition (TSVD) to remove small signal contributions from a ROI to the sensor signals. However, ROIs with strong crosstalk will have high separating power in the weaker components, which may be removed by the TSVD operation. To address this issue we propose a new method, the nulling beamformer with subspace suppression (NBSS). This method, controlled by a tuning parameter, reweights the singular values of the gain matrix mapping from source to sensor space such that components with high overlap are reduced. By doing so, we are able to measure signals between nearby source locations with limited cross-talk interference, allowing for reliable cortical connectivity analysis between them. In two simulations, we demonstrated that NBSS reduces cross-talk while retaining ROIs' signal power, and has higher separating power than both the minimum norm estimate (MNE) and the nulling beamformer without subspace suppression. We also showed that NBSS successfully localized the auditory M100 event-related field in primary auditory cortex, measured from a subject undergoing an auditory localizer task, and suppressed cross-talk in a nearby region in the superior temporal sulcus.
Bayesian networks improve causal environmental ...
Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value
NASA Astrophysics Data System (ADS)
Roten, D.; Hogue, S.; Spell, P.; Marland, E.; Marland, G.
2017-12-01
There is an increasing role for high resolution, CO2 emissions inventories across multiple arenas. The breadth of the applicability of high-resolution data is apparent from their use in atmospheric CO2 modeling, their potential for validation of space-based atmospheric CO2 remote-sensing, and the development of climate change policy. This work focuses on increasing our understanding of the uncertainty in these inventories and the implications on their downstream use. The industrial point sources of emissions (power generating stations, cement manufacturing plants, paper mills, etc.) used in the creation of these inventories often have robust emissions characteristics, beyond just their geographic location. Physical parameters of the emission sources such as number of exhaust stacks, stack heights, stack diameters, exhaust temperatures, and exhaust velocities, as well as temporal variability and climatic influences can be important in characterizing emissions. Emissions from large point sources can behave much differently than emissions from areal sources such as automobiles. For many applications geographic location is not an adequate characterization of emissions. This work demonstrates the sensitivities of atmospheric models to the physical parameters of large point sources and provides a methodology for quantifying parameter impacts at multiple locations across the United States. The sensitivities highlight the importance of location and timing and help to highlight potential aspects that can guide efforts to reduce uncertainty in emissions inventories and increase the utility of the models.
A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.Lawrece Ives; George Collins; David Marsden Michael Read
2012-11-28
This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and testmore » of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.« less
Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; ...
2015-04-20
We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less
2013-02-01
papers, retrospectives, speeches, or essays of interest to the defense academic community which may not correspond with our mainstream policy- oriented...that this is indeed the case. Reflexive or “Pathological” Explanations. The most provocative and lyrical of those arguing that most anti-American...re- flect wording from statements in editorial essays or columnists’ writing, and in other cases, the questions blend elements from multiple sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
The PLEXOS Input Data Generator (PIDG) is a tool that enables PLEXOS users to better version their data, automate data processing, collaborate in developing inputs, and transfer data between different production cost modeling and other power systems analysis software. PIDG can process data that is in a generalized format from multiple input sources, including CSV files, PostgreSQL databases, and PSS/E .raw files and write it to an Excel file that can be imported into PLEXOS with only limited manual intervention.
Picosecond Electronics and Optoelectronics Held at Incline Village, Nevada on 13-15 March 1985.
1986-02-04
subpicosecond Observation of Modulation Speed Enhancement and laser pulses in s-lO n -si icrn Scnbttky diodes s in Phase Noise Reduction by Detuned Loading in...desadaptation is necessary for saving power dissipation so that multiple reflexions and inter connexion cross-talk noise could become the source of the...r : I:, .i . .. ,: V) i’). noise sidebands predominate. Because the samnler measures the product of the optical intensity and the electrical signal
Multiple Auto-Adapting Color Balancing for Large Number of Images
NASA Astrophysics Data System (ADS)
Zhou, X.
2015-04-01
This paper presents a powerful technology of color balance between images. It does not only work for small number of images but also work for unlimited large number of images. Multiple adaptive methods are used. To obtain color seamless mosaic dataset, local color is adjusted adaptively towards the target color. Local statistics of the source images are computed based on the so-called adaptive dodging window. The adaptive target colors are statistically computed according to multiple target models. The gamma function is derived from the adaptive target and the adaptive source local stats. It is applied to the source images to obtain the color balanced output images. Five target color surface models are proposed. They are color point (or single color), color grid, 1st, 2nd and 3rd 2D polynomials. Least Square Fitting is used to obtain the polynomial target color surfaces. Target color surfaces are automatically computed based on all source images or based on an external target image. Some special objects such as water and snow are filtered by percentage cut or a given mask. Excellent results are achieved. The performance is extremely fast to support on-the-fly color balancing for large number of images (possible of hundreds of thousands images). Detailed algorithm and formulae are described. Rich examples including big mosaic datasets (e.g., contains 36,006 images) are given. Excellent results and performance are presented. The results show that this technology can be successfully used in various imagery to obtain color seamless mosaic. This algorithm has been successfully using in ESRI ArcGis.
How managed a market? Modes of commissioning in England and Germany
2013-01-01
Background In quasi-markets governance over healthcare providers is mediated by commissioners. Different commissioners apply different combinations of six methods of control ('media of power') for exercising governance: managerial performance, negotiation, discursive control, incentives, competition and juridical control. This paper compares how English and German healthcare commissioners do so. Methods Systematic comparison of observational national-level case studies in terms of six media of power, using data from multiple sources. Results The comparison exposes and contrasts two basic generic modes of commissioning: 1. Surrogate planning (English NHS), in which a negotiated order involving micro-commissioning, provider competition, financial incentives and penalties are the dominant media of commissioner power over providers. 2. Case-mix commissioning (Germany), in which managerial performance, an 'episode based' negotiated order and juridical controls appear the dominant media of commissioner power. Conclusions Governments do not necessarily maximise commissioners' power over providers by implementing as many media of power as possible because these media interact, some complementing and others inhibiting each other. In particular, patient choice of provider inhibits commissioners' use of provider competition as a means of control. PMID:23734631
Power flow analysis and optimal locations of resistive type superconducting fault current limiters.
Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A
2016-01-01
Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.
NASA Astrophysics Data System (ADS)
Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2018-02-01
Coherent modulation imaging providing fast convergence speed and high resolution with single diffraction pattern is a promising technique to satisfy the urgent demands for on-line multiple parameter diagnostics with single setup in high power laser facilities (HPLF). However, the influence of noise on the final calculated parameters concerned has not been investigated yet. According to a series of simulations with twenty different sampling beams generated based on the practical parameters and performance of HPLF, the quantitative analysis based on statistical results was first investigated after considering five different error sources. We found the background noise of detector and high quantization error will seriously affect the final accuracy and different parameters have different sensitivity to different noise sources. The simulation results and the corresponding analysis provide the potential directions to further improve the final accuracy of parameter diagnostics which is critically important to its formal applications in the daily routines of HPLF.
Computer controllable synchronous shifting of an automatic transmission
Davis, R.I.; Patil, P.B.
1989-08-08
A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements. 6 figs.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.
Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise
NASA Astrophysics Data System (ADS)
Morita, Satoru
2018-05-01
Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.
Research on power source structure optimization for East China Power Grid
NASA Astrophysics Data System (ADS)
Xu, Lingjun; Sang, Da; Zhang, Jianping; Tang, Chunyi; Xu, Da
2017-05-01
The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.
Catastrophic global-avalanche of a hollow pressure filament
NASA Astrophysics Data System (ADS)
van Compernolle, B.; Poulos, M. J.; Morales, G. J.
2017-10-01
New results are presented of a basic heat transport experiment performed in the Large Plasma Device at UCLA. A ring-shaped electron beam source injects low energy electrons along a strong magnetic field into a preexisting, large and cold plasma. The injected electrons are thermalized by Coulomb collisions within a short distance and provide an off-axis heat source that results in a long, hollow, cylindrical region of elevated plasma pressure. The off-axis source is active for a period long compared to the density decay time, i.e., as time progresses the power per particle increases. Two distinct regimes are observed to take place, an early regime dominated by multiple avalanches, identified as a sudden intermittent rearrangement of the pressure profile that repeats under sustained heating, and a second regime dominated by broadband drift-Alfvén fluctuations. The transition between the two regimes is sudden and global, both radially and axially. The initial regime is characterized by peaked density and temperature profiles, while only the peaked temperature profile survives in the second regime. Recent measurements at multiple axial locations provide new insight into the axial dynamics of the global avalanche. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.
Systems and methods for an integrated electrical sub-system powered by wind energy
Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY
2008-06-24
Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.
NASA Astrophysics Data System (ADS)
Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group
2010-02-01
Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.
Rynne, Timothy M.; Spadaro, John F.; Iovenitti, Joe L.; Dering, John P.; Hill, Donald G.
1998-10-27
A method of enhancing the remediation of contaminated soils and ground water, production of oil and gas, and production of any solid, gas, and/or liquid from subsurface geologic and man-made formations including the steps of estimating the geometric boundaries of the region containing the material to be recovered, drilling a recovery well(s) into subsurface in a strategic location to recover the material of interest, establishing multiple sources of acoustical power in an array about and spaced-apart from the surface or at various depths below the surface in a borehole(s) and/or well(s), directing a volume of acoustical excitation from the sources into the region containing the material to be recovered, the excitation in the form of either controllable sinusoidal, square, pulsed, or various combinations of these three waveforms, and controlling the phasing, frequency, power, duration, and direction of these waveforms from the sources to increase and control the intensity of acoustical excitation in the region of the material to be recovered to enhance. the recovery of said material from the recovery well(s). The invention will augment any technology affecting the removal of materials from the subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk; John Adams Institute for Accelerator Science, Department of Physics, University of Oxford; Faircloth, Daniel C.
2015-04-08
In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for eithermore » long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.« less
Integration and Optimization of Alternative Sources of Energy in a Remote Region
NASA Astrophysics Data System (ADS)
Berberi, Pellumb; Inodnorjani, Spiro; Aleti, Riza
2010-01-01
In a remote coastal region supply of energy from national grid is insufficient for a sustainable development. Integration and optimization of local alternative renewable energy sources is an optional solution of the problem. In this paper we have studied the energetic potential of local sources of renewable energy (water, solar, wind and biomass). A bottom-up energy system optimization model is proposed in order to support planning policies for promoting the use of renewable energy sources. A software, based on multiple factors and constrains analysis for optimization energy flow is proposed, which provides detailed information for exploitation each source of energy, power and heat generation, GHG emissions and end-use sectors. Economical analysis shows that with existing technologies both stand alone and regional facilities may be feasible. Improving specific legislation will foster investments from Central or Local Governments and also from individuals, private companies or small families. The study is carried on the frame work of a FP6 project "Integrated Renewable Energy System."
Allocation and management issues in multiple-transaction open access transmission networks
NASA Astrophysics Data System (ADS)
Tao, Shu
This thesis focuses on some key issues related to allocation and management by the independent grid operator (IGO) of unbundled services in multiple-transaction open access transmission networks. The three unbundled services addressed in the thesis are transmission real power losses, reactive power support requirements from generation sources, and transmission congestion management. We develop the general framework that explicitly represents multiple transactions undertaken simultaneously in the transmission grid. This framework serves as the basis for formulating various problems treated in the thesis. We use this comprehensive framework to develop a physical-flow-based mechanism to allocate the total transmission losses to each transaction using the system. An important property of the allocation scheme is its capability to effectively deal with counter flows that result in the presence of specific transactions. Using the loss allocation results as the basis, we construct the equivalent loss compensation concept and apply it to develop flexible and effective procedures for compensating losses in multiple-transaction networks. We present a new physical-flow-based mechanism for allocating the reactive power support requirements provided by generators in multiple-transaction networks. The allocatable reactive support requirements are formulated as the sum of two specific components---the voltage magnitude variation component and the voltage angle variation component. The formulation utilizes the multiple-transaction framework and makes use of certain simplifying approximations. The formulation leads to a natural allocation as a function of the amount of each transaction. The physical interpretation of each allocation as a sensitivity of the reactive output of a generator is discussed. We propose a congestion management allocation scheme for multiple-transaction networks. The proposed scheme determines the allocation of congestion among the transactions on a physical-flow basis. It also proposes a congestion relief scheme that removes the congestion attributed to each transaction on the network in a least-cost manner to the IGO and determines the appropriate transmission charges to each transaction for its transmission usage. The thesis provides a compendium of problems that are natural extensions of the research results reported here and appear to be good candidates for future work.
Towards resiliency with micro-grids: Portfolio optimization and investment under uncertainty
NASA Astrophysics Data System (ADS)
Gharieh, Kaveh
Energy security and sustained supply of power are critical for community welfare and economic growth. In the face of the increased frequency and intensity of extreme weather conditions which can result in power grid outage, the value of micro-grids to improve the communities' power reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure in power shortage occasions. More wide-spread participation of micro-grids in the wholesale energy market in near future, makes the development of new investment models necessary. However, market and price risks in short term and long term along with risk factors' impacts shall be taken into consideration in development of new investment models. This work proposes a set of models and tools to address different problems associated with micro-grid assets including optimal portfolio selection, investment and financing in both community and a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for short-term operational volatilities and long-term market uncertainties. A number of analytical methodologies and financial concepts have been adopted to develop the aforementioned models as follows. (1) Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic scenario generation are applied to derive the optimal investment decision for a portfolio of micro-grid assets considering risk factors and multiple sources of uncertainties. (2) Real Option theory, Monte Carlo simulation and stochastic optimization techniques are applied to obtain optimal modularized investment decisions for hydrogen tri-generation systems in wastewater treatment facilities, considering multiple sources of uncertainty. (3) Public Private Partnership (PPP) financing concept coupled with investment horizon approach are applied to estimate public and private parties' revenue shares from a community-level micro-grid project over the course of assets' lifetime considering their optimal operation under uncertainty.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-23
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-01
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234
Traffic handling capability of a broadband indoor wireless network using CDMA multiple access
NASA Astrophysics Data System (ADS)
Zhang, Chang G.; Hafez, H. M.; Falconer, David D.
1994-05-01
CDMA (code division multiple access) may be an attractive technique for wireless access to broadband services because of its multiple access simplicity and other appealing features. In order to investigate traffic handling capabilities of a future network providing a variety of integrated services, this paper presents a study of a broadband indoor wireless network supporting high-speed traffic using CDMA multiple access. The results are obtained through the simulation of an indoor environment and the traffic capabilities of the wireless access to broadband 155.5 MHz ATM-SONET networks using the mm-wave band. A distributed system architecture is employed and the system performance is measured in terms of call blocking probability and dropping probability. The impacts of the base station density, traffic load, average holding time, and variable traffic sources on the system performance are examined. The improvement of system performance by implementing various techniques such as handoff, admission control, power control and sectorization are also investigated.
Preliminary experimental investigation of a complex dual-band high power microwave source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Li, Yangmei; Li, Zhiqiang
2015-10-15
In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by themore » dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.« less
Preliminary experimental investigation of a complex dual-band high power microwave source.
Zhang, Xiaoping; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang
2015-10-01
In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.
Automotive dual-mode hydrogen generation system
NASA Astrophysics Data System (ADS)
Kelly, D. A.
The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.
BioContainers: an open-source and community-driven framework for software standardization.
da Veiga Leprevost, Felipe; Grüning, Björn A; Alves Aflitos, Saulo; Röst, Hannes L; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I; Perez-Riverol, Yasset
2017-08-15
BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). The software is freely available at github.com/BioContainers/. yperez@ebi.ac.uk. © The Author(s) 2017. Published by Oxford University Press.
BioContainers: an open-source and community-driven framework for software standardization
da Veiga Leprevost, Felipe; Grüning, Björn A.; Alves Aflitos, Saulo; Röst, Hannes L.; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C.; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I.; Perez-Riverol, Yasset
2017-01-01
Abstract Motivation BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). Availability and Implementation The software is freely available at github.com/BioContainers/. Contact yperez@ebi.ac.uk PMID:28379341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Jun Hyung; Lee, Soo bin; Hodge, Bri-Mathias
The energy system of process industry are faced with a new unprecedented challenge. Renewable energies should be incorporated but single of them cannot meet its energy demand of high degree and a large quantity. This paper investigates a simulation framework to compute the capacity of multiple energy sources including solar, wind power, diesel and batteries. The framework involves actual renewable energy supply and demand profile generation and supply demand matching. Eight configurations of different supply options are evaluated to illustrate the applicability of the proposed framework with some remarks.
NASA Technical Reports Server (NTRS)
Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.
2010-01-01
The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.
Shifflett, Benjamin; Huang, Rong; Edland, Steven D
2017-01-01
Genotypic association studies are prone to inflated type I error rates if multiple hypothesis testing is performed, e.g., sequentially testing for recessive, multiplicative, and dominant risk. Alternatives to multiple hypothesis testing include the model independent genotypic χ 2 test, the efficiency robust MAX statistic, which corrects for multiple comparisons but with some loss of power, or a single Armitage test for multiplicative trend, which has optimal power when the multiplicative model holds but with some loss of power when dominant or recessive models underlie the genetic association. We used Monte Carlo simulations to describe the relative performance of these three approaches under a range of scenarios. All three approaches maintained their nominal type I error rates. The genotypic χ 2 and MAX statistics were more powerful when testing a strictly recessive genetic effect or when testing a dominant effect when the allele frequency was high. The Armitage test for multiplicative trend was most powerful for the broad range of scenarios where heterozygote risk is intermediate between recessive and dominant risk. Moreover, all tests had limited power to detect recessive genetic risk unless the sample size was large, and conversely all tests were relatively well powered to detect dominant risk. Taken together, these results suggest the general utility of the multiplicative trend test when the underlying genetic model is unknown.
Efficient Assignment of Multiple E-MBMS Sessions towards LTE
NASA Astrophysics Data System (ADS)
Alexiou, Antonios; Bouras, Christos; Kokkinos, Vasileios
One of the major prerequisites for Long Term Evolution (LTE) networks is the mass provision of multimedia services to mobile users. To this end, Evolved - Multimedia Broadcast/Multicast Service (E-MBMS) is envisaged to play an instrumental role during LTE standardization process and ensure LTE’s proliferation in mobile market. E-MBMS targets at the economic delivery, in terms of power and spectral efficiency, of multimedia data from a single source entity to multiple destinations. This paper proposes a novel mechanism for efficient radio bearer selection during E-MBMS transmissions in LTE networks. The proposed mechanism is based on the concept of transport channels combination in any cell of the network. Most significantly, the mechanism manages to efficiently deliver multiple E-MBMS sessions. The performance of the proposed mechanism is evaluated and compared with several radio bearer selection mechanisms in order to highlight the enhancements that it provides.
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-01-01
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. PMID:28677636
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-07-04
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.
Agent-based power sharing scheme for active hybrid power sources
NASA Astrophysics Data System (ADS)
Jiang, Zhenhua
The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.
NASA Astrophysics Data System (ADS)
Shadmand, Mohammad Bagher
Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.
Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser
Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.
2015-01-01
We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021 W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017 W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems. PMID:26330230
Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser
Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; ...
2015-09-02
We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 10 21 W/cm 2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E 4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery,more » changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~10 17 W/cm 2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyland, Kristina; Marvil, Josh; Young, Lisa M.
We present the results of deep, high-resolution, 5 GHz Expanded Very Large Array (EVLA) observations of the nearby, dwarf lenticular galaxy and intermediate-mass black hole candidate (M{sub BH} {approx} 4.5 Multiplication-Sign 10{sup 5} M{sub Sun }), NGC 404. For the first time, radio emission at frequencies above 1.4 GHz has been detected in this galaxy. We found a modestly resolved source in the NGC 404 nucleus with a total radio luminosity of 7.6 {+-} 0.7 Multiplication-Sign 10{sup 17} W Hz{sup -1} at 5 GHz and a spectral index from 5 to 7.45 GHz of {alpha} = -0.88 {+-} 0.30. NGCmore » 404 is only the third central intermediate-mass black hole candidate detected in the radio regime with subarcsecond resolution. The position of the radio source is consistent with the optical center of the galaxy and the location of a known, hard X-ray point source (L{sub X} {approx} 1.2 Multiplication-Sign 10{sup 37} erg s{sup -1}). The faint radio and X-ray emission could conceivably be produced by an X-ray binary, star formation, a supernova remnant, or a low-luminosity active galactic nucleus powered by an intermediate-mass black hole. In light of our new EVLA observations, we find that the most likely scenario is an accreting intermediate-mass black hole, with other explanations being either incompatible with the observed X-ray and/or radio luminosities or statistically unlikely.« less
NASA Astrophysics Data System (ADS)
Peach, Ken; Ekdahl, Carl
2014-02-01
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
NASA Astrophysics Data System (ADS)
Sun, L. B.; Wu, Z. S.; Yang, K. K.
2018-04-01
Islanding and power quality (PQ) disturbances in hybrid energy system become more serious with the application of renewable energy sources. In this paper, a novel method based on wavelet transform (WT) and modified feed forward neural network (FNN) is proposed to detect islanding and classify PQ problems. First, the performance indices, i.e., the energy content and SD of the transformed signal are extracted from the negative sequence component of the voltage signal at PCC using WT. Afterward, WT indices are fed to train FNNs midfield by Particle Swarm Optimization (PSO) which is a novel heuristic optimization method. Then, the results of simulation based on WT-PSOFNN are discussed in MATLAB/SIMULINK. Simulations on the hybrid power system show that the accuracy can be significantly improved by the proposed method in detecting and classifying of different disturbances connected to multiple distributed generations.
Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.
Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observationsmore » of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.« less
Self-Biased Hybrid Piezoelectric-Photoelectrochemical Cell with Photocatalytic Functionalities.
Tan, Chuan Fu; Ong, Wei Li; Ho, Ghim Wei
2015-07-28
Utilizing solar energy for environmental and energy remediations based on photocatalytic hydrogen (H2) generation and water cleaning poses great challenges due to inadequate visible-light power conversion, high recombination rate, and intermittent availability of solar energy. Here, we report an energy-harvesting technology that utilizes multiple energy sources for development of sustainable operation of dual photocatalytic reactions. The fabricated hybrid cell combines energy harvesting from light and vibration to run a power-free photocatalytic process that exploits novel metal-semiconductor branched heterostructure (BHS) of its visible light absorption, high charge-separation efficiency, and piezoelectric properties to overcome the aforementioned challenges. The desirable characteristics of conductive flexible piezoelectrode in conjunction with pronounced light scattering of hierarchical structure originate intrinsically from the elaborate design yet facile synthesis of BHS. This self-powered photocatalysis system could potentially be used as H2 generator and water treatment system to produce clean energy and water resources.
Collection of low-grade waste heat for enhanced energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less
Prediction of noise constrained optimum takeoff procedures
NASA Technical Reports Server (NTRS)
Padula, S. L.
1980-01-01
An optimization method is used to predict safe, maximum-performance takeoff procedures which satisfy noise constraints at multiple observer locations. The takeoff flight is represented by two-degree-of-freedom dynamical equations with aircraft angle-of-attack and engine power setting as control functions. The engine thrust, mass flow and noise source parameters are assumed to be given functions of the engine power setting and aircraft Mach number. Effective Perceived Noise Levels at the observers are treated as functionals of the control functions. The method is demonstrated by applying it to an Advanced Supersonic Transport aircraft design. The results indicate that automated takeoff procedures (continuously varying controls) can be used to significantly reduce community and certification noise without jeopardizing safety or degrading performance.
Alternate energy source usage methods for in situ heat treatment processes
Stone, Jr., Francis Marion; Goodwin, Charles R; Richard, Jr., James E
2014-10-14
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing power to one or more subsurface heaters is described herein. The method may include monitoring one or more operating parameters of the heaters, the intermittent power source, and a transformer coupled to the intermittent power source that transforms power from the intermittent power source to power with appropriate operating parameters for the heaters; and controlling the power output of the transformer so that a constant voltage is provided to the heaters regardless of the load of the heaters and the power output provided by the intermittent power source.
46 CFR 183.310 - Power sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be...
46 CFR 183.310 - Power sources.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2013-10-01 2013-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...
46 CFR 183.310 - Power sources.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2012-10-01 2012-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...
46 CFR 183.310 - Power sources.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2014-10-01 2014-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...
46 CFR 183.310 - Power sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2011-10-01 2011-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...
49 CFR 193.2613 - Auxiliary power sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... test must take into account the power needed to start up and simultaneously operate equipment that... 49 Transportation 3 2011-10-01 2011-10-01 false Auxiliary power sources. 193.2613 Section 193.2613...: FEDERAL SAFETY STANDARDS Maintenance § 193.2613 Auxiliary power sources. Each auxiliary power source must...
An open source web interface for linking models to infrastructure system databases
NASA Astrophysics Data System (ADS)
Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.
2016-12-01
Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.
Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions
NASA Astrophysics Data System (ADS)
Monsue, Teresa; Pesnell, Dean; Hill, Frank
2018-01-01
Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.
NASA Astrophysics Data System (ADS)
Gao, Qian
For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is compared with the conventional decoupled system with the same spectrum efficiency to demonstrate the power efficiency. Crucial lighting requirements are included as optimization constraints. To control non-linear distortion, the optical peak-to-average-power ratio (PAPR) of LEDs can be individually constrained. With a SVD-based pre-equalizer designed and employed, our scheme can achieve lower BER than counterparts applying zero-forcing (ZF) or linear minimum-mean-squared-error (LMMSE) based post-equalizers. Besides, a binary switching algorithm (BSA) is applied to improve BER performance. The third part looks into a problem of two-phase channel estimation in a relayed wireless network. The channel estimates in every phase are obtained by the linear minimum mean squared error (LMMSE) method. Inaccurate estimate of the relay to destination (RtD) channel in phase 1 could affect estimate of the source to relay (StR) channel in phase 2, which is made erroneous. We first derive a close-form expression for the averaged Bayesian mean-square estimation error (ABMSE) for both phase estimates in terms of the length of source and relay training slots, based on which an iterative searching algorithm is then proposed that optimally allocates training slots to the two phases such that estimation errors are balanced. Analysis shows how the ABMSE of the StD channel estimation varies with the lengths of relay training and source training slots, the relay amplification gain, and the channel prior information respectively. The last part deals with a transmission scheduling problem in a uplink multiple-input-multiple-output (MIMO) wireless network. Code division multiple access (CDMA) is assumed as a multiple access scheme and pseudo-random codes are employed for different users. We consider a heavy traffic scenario, in which each user always has packets to transmit in the scheduled time slots. If the relay is scheduled for transmission together with users, then it operates in a full-duplex mode, where the packets previously collected from users are transmitted to the destination while new packets are being collected from users. A novel expression of throughput is first derived and then used to develop a scheduling algorithm to maximize the throughput. Our full-duplex scheduling is compared with a half-duplex scheduling, random access, and time division multiple access (TDMA), and simulation results illustrate its superiority. Throughput gains due to employment of both MIMO and CDMA are observed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple... construct and operate nuclear power reactors of identical design (“common design”) to be located at multiple...
High Pressure Microwave Powered UV Light Sources
NASA Astrophysics Data System (ADS)
Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.
1997-10-01
Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.
LED-based endoscopic light source for spectral imaging
NASA Astrophysics Data System (ADS)
Browning, Craig M.; Mayes, Samuel; Favreau, Peter; Rich, Thomas C.; Leavesley, Silas J.
2016-03-01
Colorectal cancer is the United States 3rd leading cancer in death rates.1 The current screening for colorectal cancer is an endoscopic procedure using white light endoscopy (WLE). There are multiple new methods testing to replace WLE, for example narrow band imaging and autofluorescence imaging.2 However, these methods do not meet the need for a higher specificity or sensitivity. The goal for this project is to modify the presently used endoscope light source to house 16 narrow wavelength LEDs for spectral imaging in real time while increasing sensitivity and specificity. The process to do such was to take an Olympus CLK-4 light source, replace the light and electronics with 16 LEDs and new circuitry. This allows control of the power and intensity of the LEDs. This required a larger enclosure to house a bracket system for the solid light guide (lightpipe), three new circuit boards, a power source and National Instruments hardware/software for computer control. The results were a successfully designed retrofit with all the new features. The LED testing resulted in the ability to control each wavelength's intensity. The measured intensity over the voltage range will provide the information needed to couple the camera for imaging. Overall the project was successful; the modifications to the light source added the controllable LEDs. This brings the research one step closer to the main goal of spectral imaging for early detection of colorectal cancer. Future goals will be to connect the camera and test the imaging process.
46 CFR 161.013-9 - Independent power source.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Independent power source. 161.013-9 Section 161.013-9...: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Electric Distress Light for Boats § 161.013-9 Independent power source. (a) Each independent power source must be capable of powering the light so that it meets the...
46 CFR 129.310 - Power sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two...
46 CFR 129.310 - Power sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two... 46 Shipping 4 2011-10-01 2011-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST...
46 CFR 129.315 - Power sources for OSVs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs. (a) The requirements of... 46 Shipping 4 2014-10-01 2014-10-01 false Power sources for OSVs. 129.315 Section 129.315 Shipping... subpart 111.10 of this chapter. (b) If a generator provides electrical power for any system identified as...
46 CFR 129.310 - Power sources.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two... 46 Shipping 4 2014-10-01 2014-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST...
46 CFR 129.310 - Power sources.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two... 46 Shipping 4 2012-10-01 2012-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST...
46 CFR 129.310 - Power sources.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Power Sources and Distribution Systems § 129.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be energized from at least two... 46 Shipping 4 2013-10-01 2013-10-01 false Power sources. 129.310 Section 129.310 Shipping COAST...
Mapping Compound Cosmic Telescopes Containing Multiple Projected Cluster-scale Halos
NASA Astrophysics Data System (ADS)
Ammons, S. Mark; Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.
2014-01-01
Lines of sight with multiple projected cluster-scale gravitational lenses have high total masses and complex lens plane interactions that can boost the area of magnification, or étendue, making detection of faint background sources more likely than elsewhere. To identify these new "compound" cosmic telescopes, we have found directions in the sky with the highest integrated mass densities, as traced by the projected concentrations of luminous red galaxies (LRGs). We use new galaxy spectroscopy to derive preliminary magnification maps for two such lines of sight with total mass exceeding ~3 × 1015 M ⊙. From 1151 MMT Hectospec spectra of galaxies down to i AB = 21.2, we identify two to three group- and cluster-scale halos in each beam. These are well traced by LRGs. The majority of the mass in beam J085007.6+360428 (0850) is contributed by Zwicky 1953, a massive cluster at z = 0.3774, whereas beam J130657.5+463219 (1306) is composed of three halos with virial masses of 6 × 1014-2 × 1015 M ⊙, one of which is A1682. The magnification maps derived from our mass models based on spectroscopy and Sloan Digital Sky Survey photometry alone display substantial étendue: the 68% confidence bands on the lens plane area with magnification exceeding 10 for a source plane of zs = 10 are [1.2, 3.8] arcmin2 for 0850 and [2.3, 6.7] arcmin2 for 1306. In deep Subaru Suprime-Cam imaging of beam 0850, we serendipitously discover a candidate multiply imaged V-dropout source at z phot = 5.03. The location of the candidate multiply imaged arcs is consistent with the critical curves for a source plane of z = 5.03 predicted by our mass model. Incorporating the position of the candidate multiply imaged galaxy as a constraint on the critical curve location in 0850 narrows the 68% confidence band on the lens plane area with μ > 10 and zs = 10 to [1.8, 4.2] arcmin2, an étendue range comparable to that of MACS 0717+3745 and El Gordo, two of the most powerful single cluster lenses known. The significant lensing power of our beams makes them powerful probes of reionization and galaxy formation in the early universe.
A novel design for sap flux data acquisition in large research plots using open source components
NASA Astrophysics Data System (ADS)
Hawthorne, D. A.; Oishi, A. C.
2017-12-01
Sap flux sensors are a widely-used tool for estimating in-situ, tree-level transpiration rates. These probes are installed in the stems of multiple trees within a study area and are typically left in place throughout the year. Sensors vary in their design and theory of operation, but all require electrical power for a heating element and produce at least one analog signal that must be digitized for storage. There are two topologies traditionally adopted to energize these sensors and gather the data from them. In one, a single data logger and power source are used. Dedicated cables radiate out from the logger to supply power to each of the probes and retrieve analog signals. In the other layout, a standalone data logger is located at each monitored tree. Batteries must then be distributed throughout the plot to service these loggers. We present a hybrid solution based on industrial control systems that employs a central data logger and battery, but co-locates digitizing hardware with the sensors at each tree. Each hardware node is able to communicate and share power over wire links with neighboring nodes. The resulting network provides a fault-tolerant path between the logger and each sensor. The approach is optimized to limit disturbance of the study plot, protect signal integrity and to enhance system reliability. This open-source implementation is built on the Arduino micro-controller system and employs RS485 and Modbus communications protocols. It is supported by laptop based management software coded in Python. The system is designed to be readily fabricated and programmed by non-experts. It works with a variety of sap-flux measurement techniques and it is able to interface to additional environmental sensors.
Cesium isotope ratios as indicators of nuclear power plant operations.
Delmore, James E; Snyder, Darin C; Tranter, Troy; Mann, Nick R
2011-11-01
There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample. Copyright © 2011 Elsevier Ltd. All rights reserved.
Circuit for Communication Over Power Lines
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Normal F.; Greer, Lawrence C., III; Nappier, Jennifer
2011-01-01
Many distributed systems share common sensors and instruments along with a common power line supplying current to the system. A communication technique and circuit has been developed that allows for the simple inclusion of an instrument, sensor, or actuator node within any system containing a common power bus. Wherever power is available, a node can be added, which can then draw power for itself, its associated sensors, and actuators from the power bus all while communicating with other nodes on the power bus. The technique modulates a DC power bus through capacitive coupling using on-off keying (OOK), and receives and demodulates the signal from the DC power bus through the same capacitive coupling. The circuit acts as serial modem for the physical power line communication. The circuit and technique can be made of commercially available components or included in an application specific integrated circuit (ASIC) design, which allows for the circuit to be included in current designs with additional circuitry or embedded into new designs. This device and technique moves computational, sensing, and actuation abilities closer to the source, and allows for the networking of multiple similar nodes to each other and to a central processor. This technique also allows for reconfigurable systems by adding or removing nodes at any time. It can do so using nothing more than the in situ power wiring of the system.
Adaptive Portfolio Optimization for Multiple Electricity Markets Participation.
Pinto, Tiago; Morais, Hugo; Sousa, Tiago M; Sousa, Tiago; Vale, Zita; Praca, Isabel; Faia, Ricardo; Pires, Eduardo Jose Solteiro
2016-08-01
The increase of distributed energy resources, mainly based on renewable sources, requires new solutions that are able to deal with this type of resources' particular characteristics (namely, the renewable energy sources intermittent nature). The smart grid concept is increasing its consensus as the most suitable solution to facilitate the small players' participation in electric power negotiations while improving energy efficiency. The opportunity for players' participation in multiple energy negotiation environments (smart grid negotiation in addition to the already implemented market types, such as day-ahead spot markets, balancing markets, intraday negotiations, bilateral contracts, forward and futures negotiations, and among other) requires players to take suitable decisions on whether to, and how to participate in each market type. This paper proposes a portfolio optimization methodology, which provides the best investment profile for a market player, considering different market opportunities. The amount of power that each supported player should negotiate in each available market type in order to maximize its profits, considers the prices that are expected to be achieved in each market, in different contexts. The price forecasts are performed using artificial neural networks, providing a specific database with the expected prices in the different market types, at each time. This database is then used as input by an evolutionary particle swarm optimization process, which originates the most advantage participation portfolio for the market player. The proposed approach is tested and validated with simulations performed in multiagent simulator of competitive electricity markets, using real electricity markets data from the Iberian operator-MIBEL.
14 CFR 25.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2011 CFR
2011-01-01
... certification or under operating rules and that requires a power supply is an “essential load” on the power supply. The power sources and the system must be able to supply the following power loads in probable... source of power is required, after any failure or malfunction in any one power supply system...
14 CFR 25.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2010 CFR
2010-01-01
... certification or under operating rules and that requires a power supply is an “essential load” on the power supply. The power sources and the system must be able to supply the following power loads in probable... source of power is required, after any failure or malfunction in any one power supply system...
NASA Astrophysics Data System (ADS)
Vergallo, P.; Lay-Ekuakille, A.
2013-08-01
Brain activity can be recorded by means of EEG (Electroencephalogram) electrodes placed on the scalp of the patient. The EEG reflects the activity of groups of neurons located in the head, and the fundamental problem in neurophysiology is the identification of the sources responsible of brain activity, especially if a seizure occurs and in this case it is important to identify it. The studies conducted in order to formalize the relationship between the electromagnetic activity in the head and the recording of the generated external field allow to know pattern of brain activity. The inverse problem, that is given the sampling field at different electrodes the underlying asset must be determined, is more difficult because the problem may not have a unique solution, or the search for the solution is made difficult by a low spatial resolution which may not allow to distinguish between activities involving sources close to each other. Thus, sources of interest may be obscured or not detected and known method in source localization problem as MUSIC (MUltiple SIgnal Classification) could fail. Many advanced source localization techniques achieve a best resolution by exploiting sparsity: if the number of sources is small as a result, the neural power vs. location is sparse. In this work a solution based on the spatial sparsity of the field signal is presented and analyzed to improve MUSIC method. For this purpose, it is necessary to set a priori information of the sparsity in the signal. The problem is formulated and solved using a regularization method as Tikhonov, which calculates a solution that is the better compromise between two cost functions to minimize, one related to the fitting of the data, and another concerning the maintenance of the sparsity of the signal. At the first, the method is tested on simulated EEG signals obtained by the solution of the forward problem. Relatively to the model considered for the head and brain sources, the result obtained allows to have a significant improvement compared to the classical MUSIC method, with a small margin of uncertainty about the exact location of the sources. In fact, the constraints of the spatial sparsity on the signal field allow to concentrate power in the directions of active sources, and consequently it is possible to calculate the position of the sources within the considered volume conductor. Later, the method is tested on the real EEG data too. The result is in accordance with the clinical report even if improvements are necessary to have further accurate estimates of the positions of the sources.
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-01-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148
Implant for in-vivo parameter monitoring, processing and transmitting
Ericson, Milton N [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Smith, Stephen F [London, TN; Hylton, James O [Clinton, TN
2009-11-24
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring
Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.
2003-01-01
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Development open source microcontroller based temperature data logger
NASA Astrophysics Data System (ADS)
Abdullah, M. H.; Che Ghani, S. A.; Zaulkafilai, Z.; Tajuddin, S. N.
2017-10-01
This article discusses the development stages in designing, prototyping, testing and deploying a portable open source microcontroller based temperature data logger for use in rough industrial environment. The 5V powered prototype of data logger is equipped with open source Arduino microcontroller for integrating multiple thermocouple sensors with their module, secure digital (SD) card storage, liquid crystal display (LCD), real time clock and electronic enclosure made of acrylic. The program for the function of the datalogger is programmed so that 8 readings from the thermocouples can be acquired within 3 s interval and displayed on the LCD simultaneously. The recorded temperature readings at four different points on both hydrodistillation show similar profile pattern and highest yield of extracted oil was achieved on hydrodistillation 2 at 0.004%. From the obtained results, this study achieved the objective of developing an inexpensive, portable and robust eight channels temperature measuring module with capabilities to monitor and store real time data.
Ardila-Rey, Jorge Alfredo; Montaña, Johny; de Castro, Bruno Albuquerque; Schurch, Roger; Covolan Ulson, José Alfredo; Muhammad-Sukki, Firdaus; Bani, Nurul Aini
2018-03-29
Partial discharges (PDs) are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals.
Simulation of transvertron high power microwave sources
NASA Astrophysics Data System (ADS)
Sullivan, Donald J.; Walsh, John E.; Arman, M. Joseph; Godfrey, Brendan B.
1989-07-01
The transvertron oscillator or amplifier is a new and efficient type of intense relativistic electron-beam-driven microwave radiation source. In the m = 0 axisymmetric version, it consists of single or multiple cylindrical cavities driven at one of the TM(0np) resonances by a high-voltage, low-impedance electron beam. There is no applied magnetic field, and the oscillatory transverse motion acquired by the axially-injected electron beam is an essential part of the drive mechanism. The transvertron theory was systematically tested for a wide range of parameters and two possible applications. The simulations were designed to verify the theoretical predictions, assess the transvertron as a possible source of intense microwave radiation, and study its potential as a microwave amplifier. Numerical results agree well in all regards with the analytical theory. Simulations were carried out in two dimensions using CCUBE, with the exception of radial loading cases, where the three-dimensional code SOS was required.
A universal procedure for evaluation and application of surge-protective devices
NASA Technical Reports Server (NTRS)
1980-01-01
The source, nature, and frequency of occurrence of transients must be identified and a representative standard test wave chosen for proof testing. The performance of candidate suppressor devices then can be evaluated against the withstand goals set for the equipment. The various suppressors divide into two classes of generic behavior. The key to a universal procedure for evaluating both classes lies in representing transients as quasi-current sources of defined current impulse duration. The available surge current is established by the Thevenin equivalent transient voltage and source impedance. A load line drawn on the V-I characteristic graph of the suppressor quickly determines the clamping voltage and peak current. These values then can be compared to the requirement. The deposited energy and average power dissipation for multiple transients also can be calculated. The method is illustrated with a design example for motor vehicle alternator load dump suppression.
Towards a better understanding of helicopter external noise
NASA Astrophysics Data System (ADS)
Damongeot, A.; Dambra, F.; Masure, B.
The problem of helicopter external noise generation is studied taking into consideration simultaneously the multiple noise sources: rotor rotational-, rotor broadband -, and engine noise. The main data are obtained during flight tests of the rather quiet AS 332 Super Puma. The flight procedures settled by ICAO for noise regulations are used: horizontal flyover at 90 percent of the maximum speed, approach at minimum power velocity, take-off at best rate of climb. Noise source levels are assessed through narrow band analysis of ground microphone recordings, ground measurements of engine noise and theoretical means. With the perceived noise level unit used throughout the study, relative magnitude of noise sources is shown to be different from that obtained with linear noise unit. A parametric study of the influence of some helicopter parameters on external noise has shown that thickness-tapered, chord-tapered, and swept-back blade tips are good means to reduce the overall noise level in flyover and approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidorov, A.; Dorf, M.; Zorin, V.
2008-02-15
Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and themore » total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.« less
Optimization of a mirror-based neutron source using differential evolution algorithm
NASA Astrophysics Data System (ADS)
Yurov, D. V.; Prikhodko, V. V.
2016-12-01
This study is dedicated to the assessment of capabilities of gas-dynamic trap (GDT) and gas-dynamic multiple-mirror trap (GDMT) as potential neutron sources for subcritical hybrids. In mathematical terms the problem of the study has been formulated as determining the global maximum of fusion gain (Q pl), the latter represented as a function of trap parameters. A differential evolution method has been applied to perform the search. Considered in all calculations has been a configuration of the neutron source with 20 m long distance between the mirrors and 100 MW heating power. It is important to mention that the numerical study has also taken into account a number of constraints on plasma characteristics so as to provide physical credibility of searched-for trap configurations. According to the results obtained the traps considered have demonstrated fusion gain up to 0.2, depending on the constraints applied. This enables them to be used either as neutron sources within subcritical reactors for minor actinides incineration or as material-testing facilities.
Suh, D C; Manning, W G; Schondelmeyer, S; Hadsall, R S
2000-01-01
OBJECTIVE: To analyze the effect of multiple-source drug entry on price competition after patent expiration in the pharmaceutical industry. DATA SOURCES: Originators and their multiple-source drugs selected from the 35 chemical entities whose patents expired from 1984 through 1987. Data were obtained from various primary and secondary sources for the patents' expiration dates, sales volume and units sold, and characteristics of drugs in the sample markets. STUDY DESIGN: The study was designed to determine significant factors using the study model developed under the assumption that the off-patented market is an imperfectly segmented market. PRINCIPAL FINDINGS: After patent expiration, the originators' prices continued to increase, while the price of multiple-source drugs decreased significantly over time. By the fourth year after patent expiration, originators' sales had decreased 12 percent in dollars and 30 percent in quantity. Multiple-source drugs increased their sales twofold in dollars and threefold in quantity, and possessed about one-fourth (in dollars) and half (in quantity) of the total market three years after entry. CONCLUSION: After patent expiration, multiple-source drugs compete largely with other multiple-source drugs in the price-sensitive sector, but indirectly with the originator in the price-insensitive sector. Originators have first-mover advantages, and therefore have a market that is less price sensitive after multiple-source drugs enter. On the other hand, multiple-source drugs target the price-sensitive sector, using their lower-priced drugs. This trend may indicate that the off-patented market is imperfectly segmented between the price-sensitive and insensitive sector. Consumers as a whole can gain from the entry of multiple-source drugs because the average price of the market continually declines after patent expiration. PMID:10857475
Electrical system architecture
Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Akasam, Sivaprasad [Peoria, IL; Hoff, Brian D [East Peoria, IL
2008-07-15
An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.
Design of a Long Endurance Titan VTOL Vehicle
NASA Technical Reports Server (NTRS)
Prakash, Ravi; Braun, Robert D.; Colby, Luke S.; Francis, Scott R.; Guenduez, Mustafa E.; Flaherty, Kevin W.; Lafleur, Jarret M.; Wright, Henry S.
2006-01-01
Saturn s moon Titan promises insight into many key scientific questions, many of which can be investigated only by in situ exploration of the surface and atmosphere of the moon. This research presents a vertical takeoff and landing (VTOL) vehicle designed to conduct a scientific investigation of Titan s atmosphere, clouds, haze, surface, and any possible oceans. In this investigation, multiple options for vertical takeoff and horizontal mobility were considered. A helicopter was baselined because of its many advantages over other types of vehicles, namely access to hazardous terrain and the ability to perform low speed aerial surveys. Using a nuclear power source and the atmosphere of Titan, a turbo expander cycle produces the 1.9 kW required by the vehicle for flight and operations, allowing it to sustain a long range, long duration mission that could traverse the majority of Titan. Such a power source could increase the lifespan and quality of science for planetary aerial flight to an extent that the limiting factor for the mission life is not available power but the life of the mechanical parts. Therefore, the mission could potentially last for years. This design is the first to investigate the implications of this potentially revolutionary technology on a Titan aerial vehicle.
Assessing Model Characterization of Single Source ...
Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci
Alternate energy source usage for in situ heat treatment processes
Stone, Jr., Francis Marion; Goodwin, Charles R [League City, TX; Richard, Jr., James
2011-03-22
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for providing power to one or more subsurface heaters is described herein. The system may include an intermittent power source; a transformer coupled to the intermittent power source, and a tap controller coupled to the transformer. The transformer may be configured to transform power from the intermittent power source to power with appropriate operating parameters for the heaters. The tap controller may be configured to monitor and control the transformer so that a constant voltage is provided to the heaters from the transformer regardless of the load of the heaters and the power output provided by the intermittent power source.
Photonic-powered cable assembly
Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.
2013-01-22
A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.
Photonic-powered cable assembly
Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C
2014-06-24
A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.
46 CFR 129.315 - Power sources for OSVs of 100 or more gross tons.
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs... 46 Shipping 4 2013-10-01 2013-10-01 false Power sources for OSVs of 100 or more gross tons. 129....10 of this chapter. (b) If a generator provides electrical power for any system identified as a vital...
46 CFR 129.315 - Power sources for OSVs of 100 or more gross tons.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs... 46 Shipping 4 2011-10-01 2011-10-01 false Power sources for OSVs of 100 or more gross tons. 129....10 of this chapter. (b) If a generator provides electrical power for any system identified as a vital...
46 CFR 129.315 - Power sources for OSVs of 100 or more gross tons.
Code of Federal Regulations, 2012 CFR
2012-10-01
... VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs... 46 Shipping 4 2012-10-01 2012-10-01 false Power sources for OSVs of 100 or more gross tons. 129....10 of this chapter. (b) If a generator provides electrical power for any system identified as a vital...
Vanneste, Sven; De Ridder, Dirk
2012-01-01
Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. PMID:22586375
Evaluation of Cross-Protocol Stability of a Fully Automated Brain Multi-Atlas Parcellation Tool.
Liang, Zifei; He, Xiaohai; Ceritoglu, Can; Tang, Xiaoying; Li, Yue; Kutten, Kwame S; Oishi, Kenichi; Miller, Michael I; Mori, Susumu; Faria, Andreia V
2015-01-01
Brain parcellation tools based on multiple-atlas algorithms have recently emerged as a promising method with which to accurately define brain structures. When dealing with data from various sources, it is crucial that these tools are robust for many different imaging protocols. In this study, we tested the robustness of a multiple-atlas, likelihood fusion algorithm using Alzheimer's Disease Neuroimaging Initiative (ADNI) data with six different protocols, comprising three manufacturers and two magnetic field strengths. The entire brain was parceled into five different levels of granularity. In each level, which defines a set of brain structures, ranging from eight to 286 regions, we evaluated the variability of brain volumes related to the protocol, age, and diagnosis (healthy or Alzheimer's disease). Our results indicated that, with proper pre-processing steps, the impact of different protocols is minor compared to biological effects, such as age and pathology. A precise knowledge of the sources of data variation enables sufficient statistical power and ensures the reliability of an anatomical analysis when using this automated brain parcellation tool on datasets from various imaging protocols, such as clinical databases.
Emission current control system for multiple hollow cathode devices
NASA Technical Reports Server (NTRS)
Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)
1988-01-01
An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.
High spectral purity silicon ring resonator photon-pair source
NASA Astrophysics Data System (ADS)
Steidle, Jeffrey A.; Fanto, Michael L.; Tison, Christopher C.; Wang, Zihao; Preble, Stefan F.; Alsing, Paul M.
2015-05-01
Here we present the experimental demonstration of a Silicon ring resonator photon-pair source. The crystalline Silicon ring resonator (radius of 18.5μm) was designed to realize low dispersion across multiple resonances, which allows for operation with a high quality factor of Q~50k. In turn, the source exhibits very high brightness of >3x105 photons/s/mW2/GHz since the produced photon pairs have a very narrow bandwidth. Furthermore, the waveguidefiber coupling loss was minimized to <1.5dB using an inverse tapered waveguide (tip width of ~150nm over a 300μm length) that is butt-coupled to a high-NA fiber (Nufern UHNA-7). This ensured minimal loss of photon pairs to the detectors, which enabled very high purity photon pairs with minimal noise, as exhibited by a very high Coincidental-Accidental Ratio of >1900. The low coupling loss (3dB fiber-fiber) also allowed for operation with very low off-chip pump power of <200μW. In addition, the zero dispersion of the ring resonator resulted in the production of a photon-pair comb across multiple resonances symmetric about the pump resonance (every ~5nm spanning >20nm), which could be used in future wavelength division multiplexed quantum networks.
Pires, Sara M; Hald, Tine
2010-02-01
Salmonella is a major cause of human gastroenteritis worldwide. To prioritize interventions and assess the effectiveness of efforts to reduce illness, it is important to attribute salmonellosis to the responsible sources. Studies have suggested that some Salmonella subtypes have a higher health impact than others. Likewise, some food sources appear to have a higher impact than others. Knowledge of variability in the impact of subtypes and sources may provide valuable added information for research, risk management, and public health strategies. We developed a Bayesian model that attributes illness to specific sources and allows for a better estimation of the differences in the ability of Salmonella subtypes and food types to result in reported salmonellosis. The model accommodates data for multiple years and is based on the Danish Salmonella surveillance. The number of sporadic cases caused by different Salmonella subtypes is estimated as a function of the prevalence of these subtypes in the animal-food sources, the amount of food consumed, subtype-related factors, and source-related factors. Our results showed relative differences between Salmonella subtypes in their ability to cause disease. These differences presumably represent multiple factors, such as differences in survivability through the food chain and/or pathogenicity. The relative importance of the source-dependent factors varied considerably over the years, reflecting, among others, variability in the surveillance programs for the different animal sources. The presented model requires estimation of fewer parameters than a previously developed model, and thus allows for a better estimation of these factors to result in reported human disease. In addition, a comparison of the results of the same model using different sets of typing data revealed that the model can be applied to data with less discriminatory power, which is the only data available in many countries. In conclusion, the model allows for the estimation of relative differences between Salmonella subtypes and sources, providing results that will benefit future risk assessment or risk ranking purposes.
Efficient electrochemical CO2 conversion powered by renewable energy.
Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao
2015-07-22
The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.
X-RAY VARIABILITY AND HARDNESS OF ESO 243-49 HLX-1: CLEAR EVIDENCE FOR SPECTRAL STATE TRANSITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Servillat, Mathieu; Farrell, Sean A.; Lin Dacheng
2011-12-10
The ultraluminous X-ray (ULX) source ESO 243-49 HLX-1, which reaches a maximum luminosity of 10{sup 42} erg s{sup -1} (0.2-10 keV), currently provides the strongest evidence for the existence of intermediate-mass black holes (IMBHs). To study the spectral variability of the source, we conduct an ongoing monitoring campaign with the Swift X-ray Telescope (XRT), which now spans more than two years. We found that HLX-1 showed two fast rise and exponential decay type outbursts in the Swift XRT light curve with increases in the count rate of a factor {approx}40 separated by 375 {+-} 13 days. We obtained new XMM-Newtonmore » and Chandra dedicated pointings that were triggered at the lowest and highest luminosities, respectively. From spectral fitting, the unabsorbed luminosities ranged from 1.9 Multiplication-Sign 10{sup 40} to 1.25 Multiplication-Sign 10{sup 42} erg s{sup -1}. We confirm here the detection of spectral state transitions from HLX-1 reminiscent of Galactic black hole binaries (GBHBs): at high luminosities, the X-ray spectrum showed a thermal state dominated by a disk component with temperatures of 0.26 keV at most, and at low luminosities the spectrum is dominated by a hard power law with a photon index in the range 1.4-2.1, consistent with a hard state. The source was also observed in a state consistent with the steep power-law state, with a photon index of {approx}3.5. In the thermal state, the luminosity of the disk component appears to scale with the fourth power of the inner disk temperature, which supports the presence of an optically thick, geometrically thin accretion disk. The low fractional variability (rms of 9% {+-} 9%) in this state also suggests the presence of a dominant disk. The spectral changes and long-term variability of the source cannot be explained by variations of the beaming angle and are not consistent with the source being in a super-Eddington accretion state as is proposed for most ULX sources with lower luminosities. All this indicates that HLX-1 is an unusual ULX as it is similar to GBHBs, which have non-beamed and sub-Eddington emission, but with luminosities three orders of magnitude higher. In this picture, a lower limit on the mass of the black hole of >9000 M{sub Sun} can be derived, and the relatively low disk temperature in the thermal state also suggests the presence of an IMBH of a few 10{sup 3} M{sub Sun }.« less
46 CFR 120.310 - Power sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Power sources. 120.310 Section 120.310 Shipping COAST... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.310 Power sources. (a)(1) Each vessel that relies on electricity to...
46 CFR 120.310 - Power sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Power sources. 120.310 Section 120.310 Shipping COAST... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.310 Power sources. (a)(1) Each vessel that relies on electricity to...
46 CFR 112.05-5 - Emergency power source.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with § 112.05-1(c). Table 112.05-5(a) Size of vessel and service Type of emergency power source or... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...
46 CFR 112.05-5 - Emergency power source.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with § 112.05-1(c). Table 112.05-5(a) Size of vessel and service Type of emergency power source or... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...
46 CFR 112.05-5 - Emergency power source.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with § 112.05-1(c). Table 112.05-5(a) Size of vessel and service Type of emergency power source or... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...
NASA Astrophysics Data System (ADS)
Kang, M.; Zhang, H.; Fu, P.
2017-12-01
Marine aerosols exert a strong influence on global climate change and biogeochemical cycling, as oceans cover beyond 70% of the Earth's surface. However, investigations on marine aerosols are relatively limited at present due to the difficulty and inconvenience in sampling marine aerosols as well as their diverse sources. East China Sea (ECS), lying over the broad shelf of the western North Pacific, is adjacent to the Asian mainland, where continental-scale air pollution could impose a heavy load on the marine atmosphere through long-range atmospheric transport. Thus, contributions of major sources to marine aerosols need to be identified for policy makers to develop cost effective control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model, which can directly track the contributions from multiple emission sources to marine aerosols, is used to investigate the contributions from power, industry, transportation, residential, biogenic and biomass burning to marine aerosols over the ECS in May and June 2014. The model simulations indicate significant spatial and temporal variations of concentrations as well as the source contributions. This study demonstrates that the Asian continent can greatly affect the marine atmosphere through long-range transport.
NASA Astrophysics Data System (ADS)
Howe, Troy
Space exploration missions to the moon, Mars, and other celestial bodies have allowed for great scientific leaps to enhance our knowledge of the universe; yet the astronomical cost of these missions limits their utility to only a few select agencies. Reducing the cost of exploratory space travel will give rise to a new era of exploration, where private investors, universities, and world governments can send satellites to far off planets and gather important data. By using radioisotope power sources and thermal storage devices, a duty cycle can be introduced to extract large amounts of energy in short amounts of time, allowing for efficient space travel. The same device can also provide electrical power for subsystems such as communications, drills, lasers, or other components that can provide valuable scientific information. This project examines the use of multiple radioisotope sources combined with a thermal capacitor using Phase Change Materials (PCMs) which can collect energy over a period of time. The result of this design culminates in a variety of possible spacecraft with their own varying costs, transit times, and objectives. Among the most promising are missions to Mars which cost less than 17M, missions that can provide power to satellite constellations for decades, or missions that can deliver large, Opportunity-sized (185kg) payloads to mars for less than 53M. All made available to a much wider range of customer with commercially available satellite launches from earth. The true cost of such progress though lies in the sometimes substantial increase in transit times for these missions.
The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures
NASA Astrophysics Data System (ADS)
Margalit, Ben; Metzger, Brian D.; Thompson, Todd A.; Nicholl, Matt; Sukhbold, Tuguldur
2018-04-01
Multiple lines of evidence support a connection between hydrogen-poor superluminous supernovae (SLSNe) and long-duration gamma-ray bursts (GRBs). Both classes of events require a powerful central energy source, usually attributed to a millisecond magnetar or an accreting black hole. The GRB-SLSN link raises several theoretical questions: What distinguishes the engines responsible for these different phenomena? Can a single engine power both a GRB and a luminous SN in the same event? We propose a unifying model for magnetar thermalization and jet formation: misalignment between the rotation (Ω) and magnetic dipole (μ) axes dissipates a fraction of the spin-down power by reconnection in the striped equatorial wind, providing a guaranteed source of `thermal' emission to power the supernova. The remaining unthermalized power energizes a relativistic jet. We show that even weak relativistic jets of luminosity ˜1046 erg s-1 can escape the expanding SN ejecta implying that escaping relativistic jets may accompany many SLSNe. We calculate the observational signature of these jets. We show that they may produce transient ultraviolet (UV) cocoon emission lasting a few hours when the jet breaks out of the ejecta surface. A longer lived optical/UV signal may originate from a mildly relativistic wind driven from the interface between the jet and the ejecta walls, which could explain the secondary early-time maximum observed in some SLSNe light curves, such as LSQ14bdq. Our scenario predicts a population of GRB from on-axis jets with extremely long durations, potentially similar to the population of `jetted-tidal disruption events', in coincidence with a small subset of SLSNe.
NASA Astrophysics Data System (ADS)
O'Sullivan, Thomas D.; No, Keunsik; Matlock, Alex; Warren, Robert V.; Hill, Brian; Cerussi, Albert E.; Tromberg, Bruce J.
2017-10-01
Frequency-domain photon migration (FDPM) uses modulated laser light to measure the bulk optical properties of turbid media and is increasingly applied for noninvasive functional medical imaging in the near-infrared. Although semiconductor edge-emitting laser diodes have been traditionally used as miniature light sources for this application, we show that vertical-cavity surface-emitting lasers (VCSELs) exhibit output power and modulation performance characteristics suitable for FDPM measurements of tissue optical properties at modulation frequencies exceeding 1 GHz. We also show that an array of multiple VCSEL devices can be coherently modulated at frequencies suitable for FDPM and can improve optical power. In addition, their small size and simple packaging make them an attractive choice as components in wearable sensors and clinical FDPM-based optical spectroscopy systems. We demonstrate the benefits of VCSEL technology by fabricating and testing a unique, compact VCSEL-based optical probe with an integrated avalanche photodiode. We demonstrate sensitivity of the VCSEL-based probe to subcutaneous tissue hemodynamics that was induced during an arterial cuff occlusion of the upper arm in a human subject.
Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin
2013-11-26
An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring.
Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill
2016-08-08
Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... dedicated emergency power source with sufficient capacity to supply those services that are necessary for... power source, except: (1) A load required by this part to be powered from the emergency power source; (2...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... dedicated emergency power source with sufficient capacity to supply those services that are necessary for... power source, except: (1) A load required by this part to be powered from the emergency power source; (2...
Cavity-Enhanced Raman Spectroscopy for Food Chain Management
Sandfort, Vincenz; Goldschmidt, Jens; Wöllenstein, Jürgen
2018-01-01
Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene. PMID:29495501
New Generation Power System for Space Applications
NASA Technical Reports Server (NTRS)
Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim;
2004-01-01
The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.
Spallation neutron production and the current intra-nuclear cascade and transport codes
NASA Astrophysics Data System (ADS)
Filges, D.; Goldenbaum, F.; Enke, M.; Galin, J.; Herbach, C.-M.; Hilscher, D.; Jahnke, U.; Letourneau, A.; Lott, B.; Neef, R.-D.; Nünighoff, K.; Paul, N.; Péghaire, A.; Pienkowski, L.; Schaal, H.; Schröder, U.; Sterzenbach, G.; Tietze, A.; Tishchenko, V.; Toke, J.; Wohlmuther, M.
A recent renascent interest in energetic proton-induced production of neutrons originates largely from the inception of projects for target stations of intense spallation neutron sources, like the planned European Spallation Source (ESS), accelerator-driven nuclear reactors, nuclear waste transmutation, and also from the application for radioactive beams. In the framework of such a neutron production, of major importance is the search for ways for the most efficient conversion of the primary beam energy into neutron production. Although the issue has been quite successfully addressed experimentally by varying the incident proton energy for various target materials and by covering a huge collection of different target geometries --providing an exhaustive matrix of benchmark data-- the ultimate challenge is to increase the predictive power of transport codes currently on the market. To scrutinize these codes, calculations of reaction cross-sections, hadronic interaction lengths, average neutron multiplicities, neutron multiplicity and energy distributions, and the development of hadronic showers are confronted with recent experimental data of the NESSI collaboration. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross-sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target generally within less than 10% deviation, while production cross-section measurements for light charged particles on thin targets point out that appreciable distinctions exist within these models.
Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources
NASA Astrophysics Data System (ADS)
Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick
2014-02-01
We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz.
Performance of a permanent-magnet helicon source at 27 and 13 MHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Francis F.
2012-09-15
A small helicon source is used to create dense plasma and inject it into a large chamber. A permanent magnet is used for the dc magnetic field (B-field), making the system very simple and compact. Though theory predicts that better antenna coupling will occur at 27.12 MHz, it was found that 13.56 MHz surprisingly gives even higher density due to practical effects not included in theory. Complete density n and electron temperature T{sub e} profiles are measured at three distances below the source. The plasma inside the source is also measured with a special probe, even under the antenna. Themore » density there is lower than expected because the plasma created is immediately ejected, filling the experimental chamber. The advantage of helicons over inductively coupled plasmas (with no B-field) increases with RF power. At high B-fields, edge ionization by the Trivelpiece-Gould mode can be seen. These results are useful for design of multiple-tube, large-area helicon sources for plasma etching and deposition because problems are encountered which cannot be foreseen by theory alone.« less
Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.
Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R
2013-03-21
In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.
NASA Astrophysics Data System (ADS)
Elliott, Mark; MacDonald, Morgan C.; Chan, Terence; Kearton, Annika; Shields, Katherine F.; Bartram, Jamie K.; Hadwen, Wade L.
2017-11-01
Global water research and monitoring typically focus on the household's "main source of drinking-water." Use of multiple water sources to meet daily household needs has been noted in many developing countries but rarely quantified or reported in detail. We gathered self-reported data using a cross-sectional survey of 405 households in eight communities of the Republic of the Marshall Islands (RMI) and five Solomon Islands (SI) communities. Over 90% of households used multiple sources, with differences in sources and uses between wet and dry seasons. Most RMI households had large rainwater tanks and rationed stored rainwater for drinking throughout the dry season, whereas most SI households collected rainwater in small pots, precluding storage across seasons. Use of a source for cooking was strongly positively correlated with use for drinking, whereas use for cooking was negatively correlated or uncorrelated with nonconsumptive uses (e.g., bathing). Dry season water uses implied greater risk of water-borne disease, with fewer (frequently zero) handwashing sources reported and more unimproved sources consumed. Use of multiple sources is fundamental to household water management and feasible to monitor using electronic survey tools. We contend that recognizing multiple water sources can greatly improve understanding of household-level and community-level climate change resilience, that use of multiple sources confounds health impact studies of water interventions, and that incorporating multiple sources into water supply interventions can yield heretofore-unrealized benefits. We propose that failure to consider multiple sources undermines the design and effectiveness of global water monitoring, data interpretation, implementation, policy, and research.
Tritium power source for long-lived sensors
NASA Astrophysics Data System (ADS)
Litz, M. S.; Katsis, D. C.; Russo, J. A.; Carroll, J. J.
2014-06-01
A tritium-based indirect converting photovoltaic (PV) power source has been designed and prototyped as a long-lived (~15 years) power source for sensor networks. Tritium is a biologically benign beta emitter and low-cost isotope acquired from commercial vendors for this purpose. The power source combines tritium encapsulated with a radioluminescent phosphor coupled to a commercial PV cell. The tritium, phosphor, and PV components are packaged inside a BA5590-style military-model enclosure. The package has been approved by the nuclear regulatory commission (NRC) for use by DOD. The power source is designed to produce 100μW electrical power for an unattended radiation sensor (scintillator and avalanche photodiode) that can detect a 20 μCi source of 137Cs at three meters. This beta emitting indirect photon conversion design is presented as step towards the development of practical, logistically acceptable, lowcost long-lived compact power sources for unattended sensor applications in battlefield awareness and environmental detection.
Variable pressure power cycle and control system
Goldsberry, Fred L.
1984-11-27
A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.
Saada: A Generator of Astronomical Database
NASA Astrophysics Data System (ADS)
Michel, L.
2011-11-01
Saada transforms a set of heterogeneous FITS files or VOtables of various categories (images, tables, spectra, etc.) in a powerful database deployed on the Web. Databases are located on your host and stay independent of any external server. This job doesn’t require writing code. Saada can mix data of various categories in multiple collections. Data collections can be linked each to others making relevant browsing paths and allowing data-mining oriented queries. Saada supports 4 VO services (Spectra, images, sources and TAP) . Data collections can be published immediately after the deployment of the Web interface.
Multimedia transmission in MC-CDMA using adaptive subcarrier power allocation and CFO compensation
NASA Astrophysics Data System (ADS)
Chitra, S.; Kumaratharan, N.
2018-02-01
Multicarrier code division multiple access (MC-CDMA) system is one of the most effective techniques in fourth-generation (4G) wireless technology, due to its high data rate, high spectral efficiency and resistance to multipath fading. However, MC-CDMA systems are greatly deteriorated by carrier frequency offset (CFO) which is due to Doppler shift and oscillator instabilities. It leads to loss of orthogonality among the subcarriers and causes intercarrier interference (ICI). Water filling algorithm (WFA) is an efficient resource allocation algorithm to solve the power utilisation problems among the subcarriers in time-dispersive channels. The conventional WFA fails to consider the effect of CFO. To perform subcarrier power allocation with reduced CFO and to improve the capacity of MC-CDMA system, residual CFO compensated adaptive subcarrier power allocation algorithm is proposed in this paper. The proposed technique allocates power only to subcarriers with high channel to noise power ratio. The performance of the proposed method is evaluated using random binary data and image as source inputs. Simulation results depict that the bit error rate performance and ICI reduction capability of the proposed modified WFA offered superior performance in both power allocation and image compression for high-quality multimedia transmission in the presence of CFO and imperfect channel state information conditions.
Retrofits Convert Gas Vehicles into Hybrids
NASA Technical Reports Server (NTRS)
2012-01-01
Successful space missions can rarely be attributed to a single thing. Rather, they are the result of a system of systems: integrated elements functioning effectively in their individual roles and together with related components, then those systems interacting with and supporting other systems to form a collaborative whole - from the spacecraft itself to the engineering and research teams that design and build it. An example is found in spacecraft power systems. Unlike a gas-powered car or a battery-powered laptop, most spacecraft are powered by multiple energy sources - such as photovoltaic panels, fuel cells, and batteries - working in tandem to ensure the spacecraft functions throughout the course of a mission. As with any system, the appropriate combination of elements and the method of their management are key to high performance and efficiency. One initiative at Glenn Research Center, the Hybrid Power Management (HPM) program, focused on joining new and mature technologies for optimal power systems applications in space and on Earth, with the goal not only to develop ultra-efficient space power systems, but to advance HPM to address global energy issues. The HPM program emerged from Glenn s long history of electric vehicle research dating back to the 1970s, including the NASA Hybrid Electric Transit Bus (HETB) project in the 1990s, which was the largest vehicle to use supercapacitor energy storage.
Wireless Power Transfer for Distributed Estimation in Sensor Networks
NASA Astrophysics Data System (ADS)
Mai, Vien V.; Shin, Won-Yong; Ishibashi, Koji
2017-04-01
This paper studies power allocation for distributed estimation of an unknown scalar random source in sensor networks with a multiple-antenna fusion center (FC), where wireless sensors are equipped with radio-frequency based energy harvesting technology. The sensors' observation is locally processed by using an uncoded amplify-and-forward scheme. The processed signals are then sent to the FC, and are coherently combined at the FC, at which the best linear unbiased estimator (BLUE) is adopted for reliable estimation. We aim to solve the following two power allocation problems: 1) minimizing distortion under various power constraints; and 2) minimizing total transmit power under distortion constraints, where the distortion is measured in terms of mean-squared error of the BLUE. Two iterative algorithms are developed to solve the non-convex problems, which converge at least to a local optimum. In particular, the above algorithms are designed to jointly optimize the amplification coefficients, energy beamforming, and receive filtering. For each problem, a suboptimal design, a single-antenna FC scenario, and a common harvester deployment for colocated sensors, are also studied. Using the powerful semidefinite relaxation framework, our result is shown to be valid for any number of sensors, each with different noise power, and for an arbitrarily number of antennas at the FC.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5... 46 Shipping 4 2010-10-01 2010-10-01 false Power sources on vessels of more than 19.8 meters (65...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Power sources on vessels of more than 19.8 meters (65... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Power sources on vessels of more than 19.8 meters (65... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Power sources on vessels of more than 19.8 meters (65... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5...
Multiple external hazards compound level 3 PSA methods research of nuclear power plant
NASA Astrophysics Data System (ADS)
Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina
2017-01-01
2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.
Relativistic corrections and non-Gaussianity in radio continuum surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maartens, Roy; Zhao, Gong-Bo; Bacon, David
Forthcoming radio continuum surveys will cover large volumes of the observable Universe and will reach to high redshifts, making them potentially powerful probes of dark energy, modified gravity and non-Gaussianity. We consider the continuum surveys with LOFAR, WSRT and ASKAP, and examples of continuum surveys with the SKA. We extend recent work on these surveys by including redshift space distortions and lensing convergence in the radio source auto-correlation. In addition we compute the general relativistic (GR) corrections to the angular power spectrum. These GR corrections to the standard Newtonian analysis of the power spectrum become significant on scales near andmore » beyond the Hubble scale at each redshift. We find that the GR corrections are at most percent-level in LOFAR, WODAN and EMU surveys, but they can produce O(10%) changes for high enough sensitivity SKA continuum surveys. The signal is however dominated by cosmic variance, and multiple-tracer techniques will be needed to overcome this problem. The GR corrections are suppressed in continuum surveys because of the integration over redshift — we expect that GR corrections will be enhanced for future SKA HI surveys in which the source redshifts will be known. We also provide predictions for the angular power spectra in the case where the primordial perturbations have local non-Gaussianity. We find that non-Gaussianity dominates over GR corrections, and rises above cosmic variance when f{sub NL}∼>5 for SKA continuum surveys.« less
Regression Models for the Analysis of Longitudinal Gaussian Data from Multiple Sources
O’Brien, Liam M.; Fitzmaurice, Garrett M.
2006-01-01
We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. PMID:15726666
46 CFR 111.10-4 - Power requirements, generating sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... generators which supply both ship's service and propulsion power do not need additional ship's service... 46 Shipping 4 2010-10-01 2010-10-01 false Power requirements, generating sources. 111.10-4 Section...
46 CFR 111.10-4 - Power requirements, generating sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... generators which supply both ship's service and propulsion power do not need additional ship's service... 46 Shipping 4 2011-10-01 2011-10-01 false Power requirements, generating sources. 111.10-4 Section...
Energy storage connection system
Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.
2012-07-03
A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.
Ignition in tokamaks with modulated source of auxiliary heating
NASA Astrophysics Data System (ADS)
Morozov, D. Kh
2017-12-01
It is shown that the ignition may be achieved in tokamaks with the modulated power source. The time-averaged source power may be smaller than the steady-state source power, which is sufficient for the ignition. Nevertheless, the maximal power must be large enough, because the ignition must be achieved within a finite time interval.
Powell, James R.; Salzano, Francis J.
1978-01-01
Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.
PSR J1838-0537: DISCOVERY OF A YOUNG, ENERGETIC GAMMA-RAY PULSAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pletsch, H. J.; Allen, B.; Aulbert, C.
2012-08-10
We report the discovery of PSR J1838-0537, a gamma-ray pulsar found through a blind search of data from the Fermi Large Area Telescope (LAT). The pulsar has a spin frequency of 6.9 Hz and a frequency derivative of -2.2 Multiplication-Sign 10{sup -11} Hz s{sup -1}, implying a young characteristic age of 4970 yr and a large spin-down power of 5.9 Multiplication-Sign 10{sup 36} erg s{sup -1}. Follow-up observations with radio telescopes detected no pulsations; thus PSR J1838-0537 appears radio-quiet as viewed from Earth. In 2009 September the pulsar suffered the largest glitch so far seen in any gamma-ray-only pulsar, causingmore » a relative increase in spin frequency of about 5.5 Multiplication-Sign 10{sup -6}. After the glitch, during a putative recovery period, the timing analysis is complicated by the sparsity of the LAT photon data, the weakness of the pulsations, and the reduction in average exposure from a coincidental, contemporaneous change in LAT's sky-survey observing pattern. The pulsar's sky position is coincident with the spatially extended TeV source HESS J1841-055 detected by the High Energy Stereoscopic System (H.E.S.S.). The inferred energetics suggest that HESS J1841-055 contains a pulsar wind nebula powered by the pulsar.« less
NASA Astrophysics Data System (ADS)
Mullen, Christopher
Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with multiple case studies including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Menendez, Michael; Minei, Brenden; Wong, Kyle; Gabrick, Caton; Thornton, Matsu; Ghorbani, Reza
2016-04-01
This paper explains the development of smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting, or Deployable Disaster Devices (D3), where wind turbines and solar panels are developed in modular forms, which can be tied together depending on the needed power. The D3 packages/units can be used: (1) as a standalone unit in case of a disaster where no source of power is available, (2) for a remote location such as a farm, camp site, or desert (3) for a community that converts energy usage from fossil fuels to Renewable Energy (RE) sources, or (4) in a community system as a source of renewable energy for grid-tie or off-grid operation. In Smart D3 system, the power is generated (1) for consumer energy needs, (2) charge storage devices (such as batteries, capacitors, etc.), (3) to deliver power to the network when the smart D3 nano-grid is tied to the network and when the power generation is larger than consumption and storage recharge needs, or (4) to draw power from the network when the smart D3 nano-grid is tied to the network and when the power generation is less than consumption and storage recharge needs. The power generated by the Smart D3 systems are routed through high efficiency inverters for proper DC to DC or DC to AC for final use or grid-tie operations. The power delivery from the D3 is 220v AC, 110v AC and 12v DC provide proper power for most electrical and electronic devices worldwide. The power supply is scalable, using a modular system that connects multiple units together. This are facilitated through devices such as external Input-Output or I/O ports. The size of the system can be scaled depending on how many accessory units are connected to the I/O ports on the primary unit. The primary unit is the brain of the system allowing for smart switching and load balancing of power input and smart regulation of power output. The Smart D3 systems are protected by ruggedized weather proof casings allowing for operation in a variety of extreme environments and can be parachuted into the needed locations. The Smart Nanogrid Systems will have sensors that will sense the environmental conditions for the wind turbines and solar panels for maximum energy harvesting as well as identifying the appliances in use. These signal will be sent to a control system to send signal to the energy harvester actuators to maximize the power generation as well as regulating the power, i.e., either send the power to the appliances and consumer devices or send the power to the batteries and capacitors for energy storage, if the power is being generated but there are no consumer appliances in use, making it a "smart nanogrid deployable renewable energy harvesting system."
A multi-channel tunable source for atomic sensors
NASA Astrophysics Data System (ADS)
Bigelow, Matthew S.; Roberts, Tony D.; McNeil, Shirley A.; Hawthorne, Todd; Battle, Phil
2015-09-01
We have designed and completed initial testing on a laser source suitable for atomic interferometry from compact, robust, integrated components. Our design is enabled by capitalizing on robust, well-commercialized, low-noise telecom components with high reliability and declining costs which will help to drive the widespread deployment of this system. The key innovation is the combination of current telecom-based fiber laser and modulator technology with periodicallypoled waveguide technology to produce tunable laser light at rubidium D1 and D2 wavelengths (and expandable to other alkalis) using second harmonic generation (SHG). Unlike direct-diode sources, this source is immune to feedback at the Rb line eliminating the need for bulky high-power isolators in the system. In addition, the source has GHz-level frequency agility and in our experiments was found to only be limited by the agility of our RF generator. As a proof-of principle, the source was scanned through the Doppler-broadened Rb D2 absorption line. With this technology, multiple channels can be independently tuned to produce the fields needed for addressing atomic states in atom interferometers and clocks. Thus, this technology could be useful in the development cold-atom inertial sensors and gyroscopes.
VUV spectroscopic observations on the SABRE applied-B ion diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filuk, A.B.; Nash, T.J.; Noack, D.D.
We are using VUV spectroscopy to study the ion source region on the SABRE applied-B extraction ion diode. The VUV diagnostic views the anode-cathode gap perpendicular to the ion acceleration direction, and images a region 0--1 mm from the anode onto the entrance slit of a I m normal-incidence spectrometer. Time resolution is obtained by gating multiple striplines of a CuI- or MgF{sub 2} -coated micro-channel plate intensifier. We report on results with a passive proton/carbon ion source. Lines of carbon and oxygen are observed over 900--1600 {angstrom}. The optical depths of most of the lines are less than ormore » of order 1. Unfolding the Doppler broadening of the ion lines in the source plasma, we calculate the contribution of the source to the accelerated C IV ion micro-divergence as 4 mrad at peak power. Collisional-radiative modeling of oxygen line intensities provides the source plasma average electron density of 7{times}10{sup 16} cm{sup {minus}3} and temperature of 10 eV Measurements are planned with a lithium ion source and with VUV absorption spectroscopy.« less
NASA Astrophysics Data System (ADS)
Czirjak, Daniel
2017-04-01
Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-02-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.
Self-propelled micromotors based on Au-mesoporous silica nanorods
NASA Astrophysics Data System (ADS)
Wang, Ying-Shuai; Xia, Hong; Lv, Chao; Wang, Lei; Dong, Wen-Fei; Feng, Jing; Sun, Hong-Bo
2015-07-01
Here, a chemical powered micromotor from the assembly of Au-SiO2 nanorods is presented. This new micromotor can be propelled efficiently by hydrogen bubbles generated from a hydrolysis reaction of aqueous NaBH4 and KBH4 and by oxygen bubbles produced by decomposition of H2O2. The monodisperse Au nanoparticles in mesoporous silica particles could catalyze the decomposition of two different kinds of fuels and produce bubbles. High speeds of 80 μm s-1 and recycles of more than 30 times are achieved in both NaBH4 and H2O2 media. Locomotion and rolling forms of movement were found. The locomotion forms can be obtained in a larger proportion by patterning the Au-SiO2 nanorods and a PDMS membrane. These micromotors that use multiple fuel sources to power them offer a broader scope of preparation and show considerable promise for diverse applications of nanomotors in different chemical environments.Here, a chemical powered micromotor from the assembly of Au-SiO2 nanorods is presented. This new micromotor can be propelled efficiently by hydrogen bubbles generated from a hydrolysis reaction of aqueous NaBH4 and KBH4 and by oxygen bubbles produced by decomposition of H2O2. The monodisperse Au nanoparticles in mesoporous silica particles could catalyze the decomposition of two different kinds of fuels and produce bubbles. High speeds of 80 μm s-1 and recycles of more than 30 times are achieved in both NaBH4 and H2O2 media. Locomotion and rolling forms of movement were found. The locomotion forms can be obtained in a larger proportion by patterning the Au-SiO2 nanorods and a PDMS membrane. These micromotors that use multiple fuel sources to power them offer a broader scope of preparation and show considerable promise for diverse applications of nanomotors in different chemical environments. Electronic supplementary information (ESI) available: More electronic microscopy graphs, UV-Vis spectra and N2 adsorption isotherms. See DOI: 10.1039/c5nr02545a
NASA Astrophysics Data System (ADS)
Dralle, D.; Karst, N.; Thompson, S. E.
2015-12-01
Multiple competing theories suggest that power law behavior governs the observed first-order dynamics of streamflow recessions - the important process by which catchments dry-out via the stream network, altering the availability of surface water resources and in-stream habitat. Frequently modeled as: dq/dt = -aqb, recessions typically exhibit a high degree of variability, even within a single catchment, as revealed by significant shifts in the values of "a" and "b" across recession events. One potential source of this variability lies in underlying, hard-to-observe fluctuations in how catchment water storage is partitioned amongst distinct storage elements, each having different discharge behaviors. Testing this and competing hypotheses with widely available streamflow timeseries, however, has been hindered by a power law scaling artifact that obscures meaningful covariation between the recession parameters, "a" and "b". Here we briefly outline a technique that removes this artifact, revealing intriguing new patterns in the joint distribution of recession parameters. Using long-term flow data from catchments in Northern California, we explore temporal variations, and find that the "a" parameter varies strongly with catchment wetness. Then we explore how the "b" parameter changes with "a", and find that measures of its variation are maximized at intermediate "a" values. We propose an interpretation of this pattern based on statistical mechanics, meaning "b" can be viewed as an indicator of the catchment "microstate" - i.e. the partitioning of storage - and "a" as a measure of the catchment macrostate (i.e. the total storage). In statistical mechanics, entropy (i.e. microstate variance, that is the variance of "b") is maximized for intermediate values of extensive variables (i.e. wetness, "a"), as observed in the recession data. This interpretation of "a" and "b" was supported by model runs using a multiple-reservoir catchment toy model, and lends support to the hypothesis that power law streamflow recession dynamics, and their variations, have their origin in the multiple modalities of storage partitioning.
Mixture-based gatekeeping procedures in adaptive clinical trials.
Kordzakhia, George; Dmitrienko, Alex; Ishida, Eiji
2018-01-01
Clinical trials with data-driven decision rules often pursue multiple clinical objectives such as the evaluation of several endpoints or several doses of an experimental treatment. These complex analysis strategies give rise to "multivariate" multiplicity problems with several components or sources of multiplicity. A general framework for defining gatekeeping procedures in clinical trials with adaptive multistage designs is proposed in this paper. The mixture method is applied to build a gatekeeping procedure at each stage and inferences at each decision point (interim or final analysis) are performed using the combination function approach. An advantage of utilizing the mixture method is that it enables powerful gatekeeping procedures applicable to a broad class of settings with complex logical relationships among the hypotheses of interest. Further, the combination function approach supports flexible data-driven decisions such as a decision to increase the sample size or remove a treatment arm. The paper concludes with a clinical trial example that illustrates the methodology by applying it to develop an adaptive two-stage design with a mixture-based gatekeeping procedure.
True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe
LaRocca, Francesco; Nankivil, Derek; Farsiu, Sina; Izatt, Joseph A.
2014-01-01
Scanning laser ophthalmoscopes (SLOs) are able to achieve superior contrast and axial sectioning capability compared to fundus photography. However, SLOs typically use monochromatic illumination and are thus unable to extract color information of the retina. Previous color SLO imaging techniques utilized multiple lasers or narrow band sources for illumination, which allowed for multiple color but not “true color” imaging as done in fundus photography. We describe the first “true color” SLO, handheld color SLO, and combined color SLO integrated with a spectral domain optical coherence tomography (OCT) system. To achieve accurate color imaging, the SLO was calibrated with a color test target and utilized an achromatizing lens when imaging the retina to correct for the eye’s longitudinal chromatic aberration. Color SLO and OCT images from volunteers were then acquired simultaneously with a combined power under the ANSI limit. Images from this system were then compared with those from commercially available SLOs featuring multiple narrow-band color imaging. PMID:25401032
The first catalog of active galactic nuclei detected by the FERMI large area telescope
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-04-29
Here, we present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 γ-ray sources located at high Galactic latitudes (|b|>10°) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazarsmore » based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN "affiliations" (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing γ-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties—such as γ-ray fluxes and photon power-law spectral indices, redshifts, γ-ray luminosities, variability, and archival radio luminosities—and their correlations are presented and discussed for the different blazar classes. Lastly, we compare the 1LAC results with predictions regarding the γ-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence.« less
46 CFR 129.395 - Radio installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...
46 CFR 129.395 - Radio installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...
46 CFR 129.395 - Radio installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...
46 CFR 129.395 - Radio installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...
46 CFR 112.20-10 - Diesel or gas turbine driven emergency power source.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Power Source § 112.20-10 Diesel or gas turbine driven emergency power source. Simultaneously with the operation of the transfer means under § 112.20-5, the diesel engine or gas turbine driving the final... 46 Shipping 4 2011-10-01 2011-10-01 false Diesel or gas turbine driven emergency power source. 112...
46 CFR 112.20-10 - Diesel or gas turbine driven emergency power source.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Power Source § 112.20-10 Diesel or gas turbine driven emergency power source. Simultaneously with the operation of the transfer means under § 112.20-5, the diesel engine or gas turbine driving the final... 46 Shipping 4 2010-10-01 2010-10-01 false Diesel or gas turbine driven emergency power source. 112...
High Power Helicon Plasma Source for Plasma Processing
NASA Astrophysics Data System (ADS)
Prager, James; Ziemba, Timothy; Miller, Kenneth E.
2015-09-01
Eagle Harbor Technologies (EHT), Inc. is developing a high power helicon plasma source. The high power nature and pulsed neutral gas make this source unique compared to traditional helicon source. These properties produce a plasma flow along the magnetic field lines, and therefore allow the source to be decoupled from the reaction chamber. Neutral gas can be injected downstream, which allows for precision control of the ion-neutral ratio at the surface of the sample. Although operated at high power, the source has demonstrated very low impurity production. This source has applications to nanoparticle productions, surface modification, and ionized physical vapor deposition.
Dynamic power flow controllers
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
DISSECTING THE HIGH- z INTERSTELLAR MEDIUM THROUGH INTENSITY MAPPING CROSS-CORRELATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serra, Paolo; Doré, Olivier; Lagache, Guilaine, E-mail: Paolo.Serra@jpl.nasa.gov
We explore the detection, with upcoming spectroscopic surveys, of three-dimensional power spectra of emission line fluctuations produced in different phases of the interstellar medium (ISM) by forbidden transitions of ionized carbon [C ii] (157.7 μ m), ionized nitrogen [N ii] (121.9 and 205.2 μ m), and neutral oxygen [O i] (145.5 μ m) at redshift z > 4. These lines are important coolants of both the neutral and the ionized medium, and probe multiple phases of the ISM. In the framework of the halo model, we compute predictions of the three-dimensional power spectra for two different surveys, showing that they havemore » the required sensitivity to detect cross-power spectra between the [C ii] line and both the [O i] line and the [N ii] lines with sufficient signal-to-noise ratio. The importance of cross-correlating multiple lines with the intensity mapping technique is twofold. On the one hand, we will have multiple probes of the different phases of the ISM, which is key to understanding the interplay between energetic sources, and the gas and dust at high redshift. This kind of study will be useful for a next-generation space observatory such as the NASA Far-IR Surveyor, which will probe the global star formation and the ISM of galaxies from the peak of star formation to the epoch of reionization. On the other hand, emission lines from external galaxies are an important foreground when measuring spectral distortions of the cosmic microwave background spectrum with future space-based experiments like PIXIE; measuring fluctuations in the intensity mapping regime will help constrain the mean amplitude of these lines, and will allow us to better handle this important foreground.« less
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2013-10-01 2013-10-01 false Loads on systems without a temporary emergency power...
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2014-10-01 2014-10-01 false Loads on systems without a temporary emergency power...
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2012-10-01 2012-10-01 false Loads on systems without a temporary emergency power...
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2011-10-01 2011-10-01 false Loads on systems without a temporary emergency power...
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2010-10-01 2010-10-01 false Loads on systems without a temporary emergency power...
A portable high power microwave source with permanent magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Zhang, Jun; Li, Zhi-qiang
A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.
Piezoelectric-based hybrid reserve power sources for munitions
NASA Astrophysics Data System (ADS)
Rastegar, J.; Kwok, P.
2017-04-01
Reserve power sources are used extensively in munitions and other devices, such as emergency devices or remote sensors that need to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries sometimes require more than 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources are needed to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper, the development of a hybrid reserve power source that is constructed by integration of a piezoelectric-based energy harvesting device with a reserve battery to provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.
Laser spark distribution and ignition system
Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV
2008-09-02
A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.
A power allocation method for 2 × 2 VLC-MIMO indoor communication
NASA Astrophysics Data System (ADS)
Dai, Mingjun; Yuan, Jing; Feng, Renhai; Wang, Hui; Chen, Bin; Lin, Xiaohui
2016-08-01
Visible light communication (VLC) has been a promising field of optical communications which focuses on visible light spectrum that humans can see. Unlike existing studies which mainly discuss point-to-point communication, in this paper, we consider a VLC network, in particular a 2 × 2 system. Our focus is on dealing with interference in this network. The objective is to maximize the signal to interference plus noise ratio (SINR) of one receiver for a given SINR of another receiver. We formulate a power allocation optimization problem to deal with such interference, and introduce dichotomy to solve this optimization problem. Simulation results have twofold meaning: First, SINR_1 increases with the growth of SINR_2, which are the SINR of the two receivers, respectively. Second, our proposed scheme outperforms the classical time-division multiple access technique in terms of transmit powers of both light sources when the data rate for these two schemes are set to be identical for each user, respectively.
A Study about Kalman Filters Applied to Embedded Sensors
Valade, Aurélien; Acco, Pascal; Grabolosa, Pierre; Fourniols, Jean-Yves
2017-01-01
Over the last decade, smart sensors have grown in complexity and can now handle multiple measurement sources. This work establishes a methodology to achieve better estimates of physical values by processing raw measurements within a sensor using multi-physical models and Kalman filters for data fusion. A driving constraint being production cost and power consumption, this methodology focuses on algorithmic complexity while meeting real-time constraints and improving both precision and reliability despite low power processors limitations. Consequently, processing time available for other tasks is maximized. The known problem of estimating a 2D orientation using an inertial measurement unit with automatic gyroscope bias compensation will be used to illustrate the proposed methodology applied to a low power STM32L053 microcontroller. This application shows promising results with a processing time of 1.18 ms at 32 MHz with a 3.8% CPU usage due to the computation at a 26 Hz measurement and estimation rate. PMID:29206187
NASA Astrophysics Data System (ADS)
Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan
2017-12-01
Diverse power generation sector requires energy storage due to penetration of variable renewable energy sources and use of CO2 capture plants with fossil fuel based power plants. Cryogenic energy storage being large-scale, decoupled system with capability of producing large power in the range of MWs is one of the options. The drawback of these systems is low turnaround efficiencies due to liquefaction processes being highly energy intensive. In this paper, the scopes of improving the turnaround efficiency of such a plant based on liquid Nitrogen were identified and some of them were addressed. A method using multiple stages of reheat and expansion was proposed for improved turnaround efficiency from 22% to 47% using four such stages in the cycle. The novelty here is the application of reheating in a cryogenic system and utilization of waste heat for that purpose. Based on the study, process conditions for a laboratory-scale setup were determined and presented here.
Reliability and performance experience with flat-plate photovoltaic modules
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1982-01-01
Statistical models developed to define the most likely sources of photovoltaic (PV) array failures and the optimum method of allowing for the defects in order to achieve a 20 yr lifetime with acceptable performance degradation are summarized. Significant parameters were the cost of energy, annual power output, initial cost, replacement cost, rate of module replacement, the discount rate, and the plant lifetime. Acceptable degradation allocations were calculated to be 0.0001 cell failures/yr, 0.005 module failures/yr, 0.05 power loss/yr, a 0.01 rate of power loss/yr, and a 25 yr module wear-out length. Circuit redundancy techniques were determined to offset cell failures using fault tolerant designs such as series/parallel and bypass diode arrangements. Screening processes have been devised to eliminate cells that will crack in operation, and multiple electrical contacts at each cell compensate for the cells which escape the screening test and then crack when installed. The 20 yr array lifetime is expected to be achieved in the near-term.
Lamp method and apparatus using multiple reflections
MacLennan, Donald A.; Turner, Brian P.
2001-01-01
An electrodeless microwave discharge lamp includes an envelope with a discharge forming fill disposed therein which emits light, the fill being capable of absorbing light at one wavelength and re-emitting the absorbed light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill, a source of microwave energy coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed within the microwave cavity and configured to reflect at least some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length.
A multi-staining chip using hydrophobic valves for exfoliative cytology in cancer
NASA Astrophysics Data System (ADS)
Lee, Tae Hee; Bu, Jiyoon; Moon, Jung Eun; Kim, Young Jun; Kang, Yoon-Tae; Cho, Young-Ho; Kim, In Sik
2017-07-01
Exfoliative cytology is a highly established technique for the diagnosis of tumors. Various microfluidic devices have been developed to minimize the sample numbers by conjugating multiple antibodies in a single sample. However, the previous multi-staining devices require complex control lines and valves operated by external power sources, to deliver multiple antibodies separately for a single sample. In addition, most of these devices are composed of hydrophobic materials, causing unreliable results due to the non-specific binding of antibodies. Here, we present a multi-staining chip using hydrophobic valves, which is formed by the partial treatment of 2-hydroxyethyl methacrylate (HEMA). Our chip consists of a circular chamber, divided into six equal fan-shaped regions. Switchable injection ports are located at the center of the chamber and at the middle of the arc of each fan-shaped zone. Thus, our device is beneficial for minimizing the control lines, since pre-treatment solutions flow from the center to outer ports, while six different antibodies are introduced oppositely from the outer ports. Furthermore, hydrophobic narrow channels, connecting the central region and each of the six fan-shaped zones, are closed by capillary effect, thus preventing the fluidic mixing without external power sources. Meanwhile, HEMA treatment on the exterior region results in hydrophobic-to-hydrophilic transition and prevents the non-specific binding of antibodies. For the application, we measured the expression of six different antibodies in a single sample using our device. The expression levels of each antibody highly matched the conventional immunocytochemistry results. Our device enables cancer screening with a small number of antibodies for a single sample.
NASA Astrophysics Data System (ADS)
O'Neill, George C.; Barratt, Eleanor L.; Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Brookes, Matthew J.
2015-11-01
The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5 mm) spatial resolution and excellent (~1 ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including (i) projection of MEG data into source space, (ii) removing confounds introduced by the MEG inverse problem and (iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease.
The Power Plant Mapping Student Project: Bringing Citizen Science to Schools
NASA Astrophysics Data System (ADS)
Tayne, K.; Oda, T.; Gurney, K. R.; O'Keeffe, D.; Petron, G.; Tans, P. P.; Frost, G. J.
2014-12-01
An emission inventory (EI) is a conventional tool to quantify and monitor anthropogenic emissions of greenhouse gases and air pollutants into the atmosphere. Gridded EI can visually show geographical patterns of emissions and their changes over time. These patterns, when available, are often determined using location data collected by regional governments, industries, and researchers. Datasets such as Carbon Monitoring and Action (CARMA, www.carma.org) are particularly useful for mapping emissions from large point sources and have been widely used in the EI community. The EI community is aware of potentially significant errors in the geographical locations of point sources, including power plants. The big challenge, however, is to review tens of thousands of power plant locations around the world and correct them where needed. The Power Plant Mapping Student Project (PPMSP) is a platform designed for students in 4th through 12th grade to improve the geographical location of power plants indicated in existing datasets to benefit international EI research. In PPMSP, we use VENTUS, a web-based platform (http://ventus.project.asu.edu/) that invites citizens to contribute power plant location data. Using VENTUS, students view scenes in the vicinity of reported power plant coordinates on Google Maps. Students either verify the location of a power plant or search for it within a designated radius using various indicators, an e-guide, and a power plant photo gallery for assistance. If the power plant cannot be found, students mark the plant as unverified. To assure quality for research use, the project contains multiple checkpoints and levels of review. While participating in meaningful research that directly benefits the EI research community, students are engaged in relevant science curricula designed to meet each grade level's Next Generation Science Standards. Students study energy, climate change, the atmosphere, and geographical information systems. The curricula is integrated with math and writing, connecting to the Common Core Standards. PPMSP is designed to be accessible and relevant to all learners, including students learning English. With PPMSP, students are empowered to participate in relevant research and become future leaders in mitigating climate change.
NASA Astrophysics Data System (ADS)
Srikantha, Pirathayini
Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these serve to improve the resiliency of the future smart grid. It is demonstrated both theoretically and practically that the techniques proposed in this thesis are highly scalable and robust with superior convergence characteristics. These distributed and decentralized algorithms allow individual actuating nodes to execute self-healing and adaptive actions when exposed to changes in the grid so that the optimal operating state in the grid is maintained consistently.
Bayesian Networks Improve Causal Environmental Assessments for Evidence-Based Policy.
Carriger, John F; Barron, Mace G; Newman, Michael C
2016-12-20
Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on valued ecological resources. These aspects are demonstrated through hypothetical problem scenarios that explore some major benefits of using Bayesian networks for reasoning and making inferences in evidence-based policy.
14 CFR 23.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...
14 CFR 23.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...
14 CFR 23.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...
Jeong, Dae-Kyo; Kim, Insook; Kim, Dongwoo
2017-01-01
This paper presents a price-searching model in which a source node (Alice) seeks friendly jammers that prevent eavesdroppers (Eves) from snooping legitimate communications by generating interference or noise. Unlike existing models, the distributed jammers also have data to send to their respective destinations and are allowed to access Alice’s channel if it can transmit sufficient jamming power, which is referred to as collaborative jamming in this paper. For the power used to deliver its own signal, the jammer should pay Alice. The price of the jammers’ signal power is set by Alice and provides a tradeoff between the signal and the jamming power. This paper presents, in closed-form, an optimal price that maximizes Alice’s benefit and the corresponding optimal power allocation from a jammers’ perspective by assuming that the network-wide channel knowledge is shared by Alice and jammers. For a multiple-jammer scenario where Alice hardly has the channel knowledge, this paper provides a distributed and interactive price-searching procedure that geometrically converges to an optimal price and shows that Alice by a greedy selection policy achieves certain diversity gain, which increases log-linearly as the number of (potential) jammers grows. Various numerical examples are presented to illustrate the behavior of the proposed model. PMID:29165373
Jeong, Dae-Kyo; Kim, Insook; Kim, Dongwoo
2017-11-22
This paper presents a price-searching model in which a source node (Alice) seeks friendly jammers that prevent eavesdroppers (Eves) from snooping legitimate communications by generating interference or noise. Unlike existing models, the distributed jammers also have data to send to their respective destinations and are allowed to access Alice's channel if it can transmit sufficient jamming power, which is referred to as collaborative jamming in this paper. For the power used to deliver its own signal, the jammer should pay Alice. The price of the jammers' signal power is set by Alice and provides a tradeoff between the signal and the jamming power. This paper presents, in closed-form, an optimal price that maximizes Alice's benefit and the corresponding optimal power allocation from a jammers' perspective by assuming that the network-wide channel knowledge is shared by Alice and jammers. For a multiple-jammer scenario where Alice hardly has the channel knowledge, this paper provides a distributed and interactive price-searching procedure that geometrically converges to an optimal price and shows that Alice by a greedy selection policy achieves certain diversity gain, which increases log-linearly as the number of (potential) jammers grows. Various numerical examples are presented to illustrate the behavior of the proposed model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Daniel C.; Bowman, Judd; Parsons, Aaron R.
We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from –46° to –40°. Since sources atmore » similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of –0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.« less
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
Remote listening and passive acoustic detection in a 3-D environment
NASA Astrophysics Data System (ADS)
Barnhill, Colin
Teleconferencing environments are a necessity in business, education and personal communication. They allow for the communication of information to remote locations without the need for travel and the necessary time and expense required for that travel. Visual information can be communicated using cameras and monitors. The advantage of visual communication is that an image can capture multiple objects and convey them, using a monitor, to a large group of people regardless of the receiver's location. This is not the case for audio. Currently, most experimental teleconferencing systems' audio is based on stereo recording and reproduction techniques. The problem with this solution is that it is only effective for one or two receivers. To accurately capture a sound environment consisting of multiple sources and to recreate that for a group of people is an unsolved problem. This work will focus on new methods of multiple source 3-D environment sound capture and applications using these captured environments. Using spherical microphone arrays, it is now possible to capture a true 3-D environment A spherical harmonic transform on the array's surface allows us to determine the basis functions (spherical harmonics) for all spherical wave solutions (up to a fixed order). This spherical harmonic decomposition (SHD) allows us to not only look at the time and frequency characteristics of an audio signal but also the spatial characteristics of an audio signal. In this way, a spherical harmonic transform is analogous to a Fourier transform in that a Fourier transform transforms a signal into the frequency domain and a spherical harmonic transform transforms a signal into the spatial domain. The SHD also decouples the input signals from the microphone locations. Using the SHD of a soundfield, new algorithms are available for remote listening, acoustic detection, and signal enhancement The new algorithms presented in this paper show distinct advantages over previous detection and listening algorithms especially for multiple speech sources and room environments. The algorithms use high order (spherical harmonic) beamforming and power signal characteristics for source localization and signal enhancement These methods are applied to remote listening, surveillance, and teleconferencing.
NASA Astrophysics Data System (ADS)
Wei, Xianglin; Duan, Yuewei; Liu, Yongxue; Jin, Song; Sun, Chao
2018-05-01
The demand for efficient and cost-effective renewable energy is increasing as traditional sources of energy such as oil, coal, and natural gas, can no longer satisfy growing global energy demands. Among renewable energies, wind energy is the most prominent due to its low, manageable impacts on the local environment. Based on meteorological data from 2006 to 2014 and multi-source satellite data (i.e., Advanced Scatterometer, Quick Scatterometer, and Windsat) from 1999 to 2015, an assessment of the onshore and offshore wind energy potential in Jiangsu Province was performed by calculating the average wind speed, average wind direction, wind power density, and annual energy production (AEP). Results show that Jiangsu has abundant wind energy resources, which increase from inland to coastal areas. In onshore areas, wind power density is predominantly less than 200 W/m2, while in offshore areas, wind power density is concentrates in the range of 328-500 W/m2. Onshore areas comprise more than 13,573.24 km2, mainly located in eastern coastal regions with good wind farm potential. The total wind power capacity in onshore areas could be as much as 2.06 x 105 GWh. Meanwhile, offshore wind power generation in Jiangsu Province is calculated to reach 2 x 106 GWh, which is approximately four times the electricity demand of the entire Jiangsu Province. This study validates the effective application of Advanced Scatterometer, Quick Scatterometer, and Windsat data to coastal wind energy monitoring in Jiangsu. Moreover, the methodology used in this study can be effectively applied to other similar coastal zones.
Overview of NASA GRC Stirling Technology Development
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.
2004-01-01
The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (LMA) under contract to the Department of Energy (DOE). The generator will be a high efficiency electric power source for NASA Space Science missions with the ability to operate in vacuum or in an atmosphere such as on Mars. High efficiency is obtained through the use of free-piston Stirling power conversion. Power output will be greater than 100 watts at the beginning of life with the decline in power largely due to the decay of the plutonium heat source. In support of the DOE SRG project, the NASA Glenn Research Center (GRC) has established a technology effort to provide data to ensure a successful transition to flight for what will be the first dynamic power system in space. Initially, a limited number of areas were selected for the effort, however this is now being expanded to more thoroughly cover key technical issues. There is also an advanced technology effort that is complementary to the near-term technology effort. Many of the tests use the 55-We Technology Demonstration Convertor (TDC). There have been multiple controller tests to support the LMA flight controller design effort. Preparation is continuing for a thermal/vacuum system demonstration. A pair of flight prototype TDC s have been placed on continuous operation. Heater head life assessment continues, with the material data being refined and the analysis moving toward the system perspective. Magnet aging tests continue to characterize any possible aging in the strength or demagnetization resistance of the magnets in the linear alternator. A reliability effort has been initiated to help guide the development activities with focus on the key components and subsystems. This paper will provide an overview of some of the GRC technical efforts, including the status, and a description of future efforts.
Auxiliary power unit for moving a vehicle
Akasam, Sivaprasad [Peoria, IL; Johnson, Kris W [Peoria, IL; Johnson, Matthew D [Peoria, IL; Slone, Larry M [Washington, IL; Welter, James Milton [Chillicothe, IL
2009-02-03
A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.
NASA Astrophysics Data System (ADS)
Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan
2011-03-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
NASA Astrophysics Data System (ADS)
Hann, Swook; Kim, Dong-Hwan; Park, Chang-Soo
2006-04-01
A monitoring technique for multiple power splitter-passive optical networks (PS-PON) is presented. The technique is based on the remote sensing of fiber Bragg grating (FBG) using a tunable OTDR. To monitor the multiple PS-PON, the FBG can be used for a wavelength dependent reflective reference on each branch end of the PS. The FBG helps discern an individual event of the multiple PS-PON for the monitoring in collaborate with information of Rayleigh backscattered power. The multiple PS-PON can be analyzed by the monitoring method at the central office under 10-Gbit/s in-service.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Etingov, Pavel V.; Ren, Huiying
This paper describes a probabilistic look-ahead contingency analysis application that incorporates smart sampling and high-performance computing (HPC) techniques. Smart sampling techniques are implemented to effectively represent the structure and statistical characteristics of uncertainty introduced by different sources in the power system. They can significantly reduce the data set size required for multiple look-ahead contingency analyses, and therefore reduce the time required to compute them. High-performance-computing (HPC) techniques are used to further reduce computational time. These two techniques enable a predictive capability that forecasts the impact of various uncertainties on potential transmission limit violations. The developed package has been tested withmore » real world data from the Bonneville Power Administration. Case study results are presented to demonstrate the performance of the applications developed.« less
The Experimental Study of Novel Pseudospark Hollow Cathode Plasma Electron Gun
NASA Astrophysics Data System (ADS)
Gu, Xiaowei; Meng, Lin; Sun, Yiqin; Yu, Xinhua
2008-11-01
The high-power microwave devices with plasma-filled have unique properties. One of the major problems associated with plasma-filled microwave sources is that ions from the plasma drift toward the gun regions of the tube. This bombardment is particularly dangerous for the gun, where high-energy ion impacts can damage the cathode surface and degrade its electron emission capabilities. One of the techniques investigated to mitigate this issue is to replace the material cathode with plasma cathode. Now, we study the novel electron gun (E-gun) that can be suitable for high power microwave device applications, adopting two forms of discharge channel, 1: a single hole channel, the structure can produce a solid electron beam; 2: porous holes channel, the structure can generate multiple electronic injection which is similar to the annular electron beam.
How multiple causes combine: independence constraints on causal inference.
Liljeholm, Mimi
2015-01-01
According to the causal power view, two core constraints-that causes occur independently (i.e., no confounding) and influence their effects independently-serve as boundary conditions for causal induction. This study investigated how violations of these constraints modulate uncertainty about the existence and strength of a causal relationship. Participants were presented with pairs of candidate causes that were either confounded or not, and that either interacted or exerted their influences independently. Consistent with the causal power view, uncertainty about the existence and strength of causal relationships was greater when causes were confounded or interacted than when unconfounded and acting independently. An elemental Bayesian causal model captured differences in uncertainty due to confounding but not those due to an interaction. Implications of distinct sources of uncertainty for the selection of contingency information and causal generalization are discussed.
NASA Astrophysics Data System (ADS)
Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.
2017-11-01
The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.
LED intense headband light source for fingerprint analysis
Villa-Aleman, Eliel
2005-03-08
A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.
Multiple resonant railgun power supply
Honig, E.M.; Nunnally, W.C.
1985-06-19
A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.
Multiple resonant railgun power supply
Honig, Emanuel M.; Nunnally, William C.
1988-01-01
A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.
Vana, Kimberly D; Silva, Graciela E; Muzyka, Diann; Hirani, Lorraine M
2011-06-01
It has been proposed that students' use of an audience response system, commonly called clickers, may promote comprehension and retention of didactic material. Whether this method actually improves students' grades, however, is still not determined. The purpose of this study was to evaluate whether a lecture format utilizing multiple-choice PowerPoint slides and an audience response system was more effective than a lecture format using only multiple-choice PowerPoint slides in the comprehension and retention of pharmacological knowledge in baccalaureate nursing students. The study also assessed whether the additional use of clickers positively affected students' satisfaction with their learning. Results from 78 students who attended lecture classes with multiple-choice PowerPoint slides plus clickers were compared with those of 55 students who utilized multiple-choice PowerPoint slides only. Test scores between these two groups were not significantly different. A satisfaction questionnaire showed that 72.2% of the control students did not desire the opportunity to use clickers. Of the group utilizing the clickers, 92.3% recommend the use of this system in future courses. The use of multiple-choice PowerPoint slides and an audience response system did not seem to improve the students' comprehension or retention of pharmacological knowledge as compared with those who used solely multiple-choice PowerPoint slides.
Assessment of alternative power sources for mobile mining machinery
NASA Technical Reports Server (NTRS)
Cairelli, J. E.; Tomazic, W. A.; Evans, D. G.; Klann, J. L.
1981-01-01
Alternative mobile power sources for mining applications were assessed. A wide variety of heat engines and energy systems was examined as potential alternatives to presently used power systems. The present mobile power systems are electrical trailing cable, electrical battery, and diesel - with diesel being largely limited in the United States to noncoal mines. Each candidate power source was evaluated for the following requirements: (1) ability to achieve the duty cycle; (2) ability to meet Government regulations; (3) availability (production readiness); (4) market availability; and (5) packaging capability. Screening reduced the list of candidates to the following power sources: diesel, stirling, gas turbine, rankine (steam), advanced electric (batteries), mechanical energy storage (flywheel), and use of hydrogen evolved from metal hydrides. This list of candidates is divided into two classes of alternative power sources for mining applications, heat engines and energy storage systems.
Assessment of alternative power sources for mobile mining machinery
NASA Astrophysics Data System (ADS)
Cairelli, J. E.; Tomazic, W. A.; Evans, D. G.; Klann, J. L.
1981-12-01
Alternative mobile power sources for mining applications were assessed. A wide variety of heat engines and energy systems was examined as potential alternatives to presently used power systems. The present mobile power systems are electrical trailing cable, electrical battery, and diesel - with diesel being largely limited in the United States to noncoal mines. Each candidate power source was evaluated for the following requirements: (1) ability to achieve the duty cycle; (2) ability to meet Government regulations; (3) availability (production readiness); (4) market availability; and (5) packaging capability. Screening reduced the list of candidates to the following power sources: diesel, stirling, gas turbine, rankine (steam), advanced electric (batteries), mechanical energy storage (flywheel), and use of hydrogen evolved from metal hydrides. This list of candidates is divided into two classes of alternative power sources for mining applications, heat engines and energy storage systems.
Multimode Directional Coupler for Utilization of Harmonic Frequencies from TWTAs
NASA Technical Reports Server (NTRS)
Simmons, Rainee N.; Wintucky, Edwin G.
2013-01-01
A novel waveguide multimode directional coupler (MDC) intended for the measurement and potential utilization of the second and higher order harmonic frequencies from high-power traveling wave tube amplifiers (TWTAs) has been successfully designed, fabricated, and tested. The design is based on the characteristic multiple propagation modes of the electrical and magnetic field components of electromagnetic waves in a rectangular waveguide. The purpose was to create a rugged, easily constructed, more efficient waveguide- based MDC for extraction and exploitation of the second harmonic signal from the RF output of high-power TWTs used for space communications. The application would be a satellitebased beacon source needed for Qband and V/W-band atmospheric propagation studies. The MDC could function as a CW narrow-band source or as a wideband source for study of atmospheric group delay effects on highdata- rate links. The MDC is fabricated from two sections of waveguide - a primary one for the fundamental frequency and a secondary waveguide for the second harmonic - that are joined together such that the second harmonic higher order modes are selectively coupled via precision- machined slots for propagation in the secondary waveguide. In the TWTA output waveguide port, both the fundamental and the second harmonic signals are present. These signals propagate in the output waveguide as the dominant and higher order modes, respectively. By including an appropriate mode selective waveguide directional coupler, such as the MDC presented here at the output of the TWTA, the power at the second harmonic can be sampled and amplified to the power level needed for atmospheric propagation studies. The important conclusions from the preliminary test results for the multimode directional coupler are: (1) the second harmonic (Ka-band) can be measured and effectively separated from the fundamental (Ku-band) with no coupling of the latter, (2) power losses in the fundamental frequency are negligible, and (3) the power level of the extracted second harmonic is sufficient for further amplification to power levels needed for practical applications. It was also demonstrated that third order and potentially higher order harmonics are measurable with this device. The design is frequency agnostic, and with the appropriate choice of waveguides, is easily scaled to higher frequency TWTs. The MDC has the same function but with a number of important advantages over the conventional diplexer.
Smart Power Supply for Battery-Powered Systems
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.
2010-01-01
A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have differing power needs, this supply also has a secondary power bus, which can be programmed a priori or on-the-fly to boost the primary battery voltage level from 24 to 50 V to accommodate various loads as they are brought on line. Through voltage and current monitoring, the device can also shield the charging source from overloads, keep it within safe operating modes, and can meter available power to the application and maintain safe operations.
The HelCat basic plasma science device
NASA Astrophysics Data System (ADS)
Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.
2015-01-01
The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.
NASA Astrophysics Data System (ADS)
Goix, Sylvaine; Resongles, Eléonore; Point, David; Oliva, Priscia; Duprey, Jean Louis; de la Galvez, Erika; Ugarte, Lincy; Huayta, Carlos; Prunier, Jonathan; Zouiten, Cyril; Gardon, Jacques
2013-12-01
Monitoring atmospheric trace elements (TE) levels and tracing their source origin is essential for exposure assessment and human health studies. Epiphytic Tillandsia capillaris plants were used as bioaccumulator of TE in a complex polymetallic mining/smelting urban context (Oruro, Bolivia). Specimens collected from a pristine reference site were transplanted at a high spatial resolution (˜1 sample/km2) throughout the urban area. About twenty-seven elements were measured after a 4-month exposure, also providing new information values for reference material BCR482. Statistical power analysis for this biomonitoring mapping approach against classical aerosols surveys performed on the same site showed the better aptitude of T. Capillaris to detect geographical trend, and to deconvolute multiple contamination sources using geostatistical principal component analysis. Transplanted specimens in the vicinity of the mining and smelting areas were characterized by extreme TE accumulation (Sn > Ag > Sb > Pb > Cd > As > W > Cu > Zn). Three contamination sources were identified: mining (Ag, Pb, Sb), smelting (As, Sn) and road traffic (Zn) emissions, confirming results of previous aerosol survey.
U.S. Army PEM fuel cell programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, A.S.; Jacobs, R.
The United States Army has identified the need for lightweight power sources to provide the individual soldier with continuous power for extended periods without resupply. Due to the high cost of primary batteries and the high weight of rechargeable batteries, fuel cell technology is being developed to provide a power source for the individual soldier, sensors, communications equipment and other various applications in the Army. Current programs are in the tech base area and will demonstrate Proton Exchange Membrane (PEM) Fuel Cell Power Sources with low weight and high energy densities. Fuel Cell Power Sources underwent user evaluations in 1996more » that showed a power source weight reduction of 75%. The quiet operation along with the ability to refuel much like an engine was well accepted by the user and numerous applications were investigated. These programs are now aimed at further weight reduction for applications that are weight critical; system integration that will demonstrate a viable military power source; refining the user requirements; and planning for a transition to engineering development.« less
Development of a High-Average-Power Compton Gamma Source for Lepton Colliders
NASA Astrophysics Data System (ADS)
Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.
2009-01-01
Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.
The design of a low-cost Thomson Scattering system for use on the ORNL PhIX device
NASA Astrophysics Data System (ADS)
Biewer, T. M.; Lore, J.; Goulding, R. H.; Hillis, D. L.; Owen, L.; Rapp, J.
2012-10-01
Study of the plasma-material interface (PMI) under high power and particle flux on linear plasma devices is an active area of research that is relevant to fusion-grade toroidal devices such as ITER and DEMO. ORNL is assembling a 15 cm diameter, ˜3 m long linear machine, called the Physics Integration eXperiment (PhIX), which incorporates a helicon plasma source, electron heating, and a material target. The helicon source has demonstrated coupling of up to 100 kW of rf power, and produced ne >= 4 x 10^19 m-3 in D, and He fueled plasmas, measured with interferometry and Langmuir probes (LP). Optical emission spectroscopy was used to confirm LP measurements that Te is about 10 eV in helicon heated plasmas, which will presumably increase when electron heating is applied. Plasma parameters (ne, Te, n0) of the PhIX device will be measured with a novel, low-cost Thomson Scattering (TS) system. The data will be used to characterize the PMI regime with multiple profile measurements in front of the target. Profiles near the source and target will be used to determine the parallel transport regime via comparison to 2D fluid plasma simulations. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
Ammonia producing engine utilizing oxygen separation
Easley, Jr., William Lanier; Coleman, Gerald Nelson [Petersborough, GB; Robel, Wade James [Peoria, IL
2008-12-16
A power system is provided having a power source, a first power source section with a first intake passage and a first exhaust passage, a second power source section with a second intake passage and a second exhaust passage, and an oxygen separator. The second intake passage may be fluidly isolated from the first intake passage.
46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.
Code of Federal Regulations, 2013 CFR
2013-10-01
... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing either...
46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.
Code of Federal Regulations, 2012 CFR
2012-10-01
... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing either...
46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.
Code of Federal Regulations, 2014 CFR
2014-10-01
... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing either...
46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.
Code of Federal Regulations, 2014 CFR
2014-10-01
... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the ship...
46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.
Code of Federal Regulations, 2013 CFR
2013-10-01
... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the ship...
46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.
Code of Federal Regulations, 2012 CFR
2012-10-01
... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the ship...
Radioisotope Power Sources for MEMS Devices,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, J.P.
2001-06-17
Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a {sup 63}Ni liquidmore » source. A source volume containing 64 {micro}Ci provided a power of {approx}0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications.« less
Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N.; Gomes, Joseph; Geniesse, Caleb; Pappu, Aneesh S.; Leswing, Karl
2017-01-01
Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm. PMID:29629118
30 CFR 57.6404 - Separation of blasting circuits from power source.
Code of Federal Regulations, 2010 CFR
2010-07-01
... source. 57.6404 Section 57.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be locked in the open position except when closed to fire the blast. (b) Lead wires shall not be connected...
Spectral Modeling of the EGRET 3EG Gamma Ray Sources Near the Galactic Plane
NASA Technical Reports Server (NTRS)
Bertsch, D. L.; Hartman, R. C.; Hunter, S. D.; Thompson, D. J.; Lin, Y. C.; Kniffen, D. A.; Kanbach, G.; Mayer-Hasselwander, H. A.; Reimer, O.; Sreekumar, P.
1999-01-01
The third EGRET catalog lists 84 sources within 10 deg of the Galactic Plane. Five of these are well-known spin-powered pulsars, 2 and possibly 3 others are blazars, and the remaining 74 are classified as unidentified, although 6 of these are likely to be artifacts of nearby strong sources. Several of the remaining 68 unidentified sources have been noted as having positional agreement with supernovae remnants and OB associations. Others may be radio-quiet pulsars like Geminga, and still others may belong to a totally new class of sources. The question of the energy spectral distributions of these sources is an important clue to their identification. In this paper, the spectra of the sources within 10 deg of Galactic Plane are fit with three different functional forms; a single power law, two power laws, and a power law with an exponential cutoff. Where possible, the best fit is selected with statistical tests. Twelve, and possibly an additional 5 sources, are found to have spectra that are fit by a breaking power law or by the power law with exponential cutoff function.
Automated measurement of zebrafish larval movement
Cario, Clinton L; Farrell, Thomas C; Milanese, Chiara; Burton, Edward A
2011-01-01
Abstract The zebrafish is a powerful vertebrate model that is readily amenable to genetic, pharmacological and environmental manipulations to elucidate the molecular and cellular basis of movement and behaviour. We report software enabling automated analysis of zebrafish movement from video recordings captured with cameras ranging from a basic camcorder to more specialized equipment. The software, which is provided as open-source MATLAB functions, can be freely modified and distributed, and is compatible with multiwell plates under a wide range of experimental conditions. Automated measurement of zebrafish movement using this technique will be useful for multiple applications in neuroscience, pharmacology and neuropsychiatry. PMID:21646414
Automated measurement of zebrafish larval movement.
Cario, Clinton L; Farrell, Thomas C; Milanese, Chiara; Burton, Edward A
2011-08-01
The zebrafish is a powerful vertebrate model that is readily amenable to genetic, pharmacological and environmental manipulations to elucidate the molecular and cellular basis of movement and behaviour. We report software enabling automated analysis of zebrafish movement from video recordings captured with cameras ranging from a basic camcorder to more specialized equipment. The software, which is provided as open-source MATLAB functions, can be freely modified and distributed, and is compatible with multiwell plates under a wide range of experimental conditions. Automated measurement of zebrafish movement using this technique will be useful for multiple applications in neuroscience, pharmacology and neuropsychiatry.